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Abstract—Techniques for detecting synthetic lethal mutations Il. BACKGROUND

in double gene deletion experiments are emerging as powerful .
tool for analysing genes in parallel or overlapping pathways A- Metabolic Pathways

with a shared function. This paper introduces a logic-based | jying organisms import nutrients from their environment

approach that uses synthetic lethal mutations for mapping genes . . .
of unknown function to enzymes in a known metabolic network. in order to synthesise the essential molecules necessary fo

We show how such mappings can be automatically computed their survival [1]. The conversion of nutrients into comple
by a logical learning system called eXtended Hybrid Abductive molecules is achieved by sequences of biochemical reaction

Inductive Learning (XHAIL). known as metabolic pathways. Each step in a metabolic
pathway usually represents a small change to the molecule
. INTRODUCTION and is mediated by a specific enzyme. Enzymes are biological

The advent of high-throughput laboratory techniques hagatalysts that speed up reactions by many orders of magnitud
contributed to a detailed knowledge of biological activity SO they can support the processes of life. A pathway can be
the genomic and metabolomic levels. DNA sequencing higigntified by the sequence of enzymes it contains.
revealed the genetic code of many organisms, and metabolidn general, enzymes catalyse reactions in which one set
studies have exposed the enzyme-catalysed biochemidal pa@f molecules, called substrates, are converted into anothe
ways by which these organisms survive. Yet a major challenget of molecules, called products. For simplicity, this grap
still facing biologists is to achieve a more comprehensiwill only consider reactions that transform a single sutstr
understanding of cellular operation by considering therint into a single product. All of the substrates and products
play between genomic and metabolomic phenomena. The m@bich appear in a metabolic pathway are called metabolites.
basic task in this enterprise is determining the function &fetabolic pathways often intersect on shared metaboldes t
genes by identifying which enzymes they encode [1]. create complex graphs known as metabolic networks.

Functional genomics has traditionally employed methods Fig. 1 illustrates a metabolic network in which two nutrient
based on knocking out single genes from an organism and?_1 and nut_2 are converted into one essential molecule
using auxotrophic growth experiments to study the resgiltiress_7 via four intermediate moleculegiol_3-mol_6. Each
phenotype [1]. This involves comparing the viability of rant arrow represents one reaction in which the metabolite at the
strains on synthetic growth media to obtain clues about thdl is transformed into the metabolite at the head via the
enzyme encoded by the deleted gene. But recent studies heivgyme on the side. In all, there are seven reactions cathlys
shown the limitations of single gene deletions and prompt&y seven enzymesnz_a-enz_g. This network shows that
new techniques for detecting epistatic interactions inbftou ess_7 can be synthesised from eitheut_1 (via pathways
mutant strains [2]. These new approaches can uncover gceg andadfg) or from nut_2 (via pathwaybf g).
called synthetic lethal deletions — i.e., pairs of mutasiomat
are lethal in combination, but viable in isolation.

This paper introduces a logic-based approach for inferringThe expression of each enzyme in a metabolic network is
the function of genes from synthetic lethal mutations. Thegulated by one or more genes which are said to code for
work builds upon a model of metabolism used in an earli¢hat enzyme [5]. Modern experimental methods allow mutant
Robot Scientist project [3]. Like the Robot Scientist, oima strains to be created by selectively deleting individuahege
is to map genes of unknown function to enzymes in a knowrom the genome of an organism. In some species, such as
metabolic network. But, unlike the Robot Scientist, ourimoet the yeast S. cerevisiae, whole libraries of single genetidale
is able to represent and reason about double gene deléfiiens mutants are readily available [6]. If a deleted gene encades
show how this can be accomplished using a logical learniegzyme necessary for the synthesis of some essential nfmlecu
system called eXtended Hybrid Abductive Inductive Leagninthe corresponding mutant is said to be auxotrophic (i.eable
(XHAIL) [4]. to produce that molecule).

B. Auxotrophic Growth Experiments
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Auxotrophic growth experiments are a classical way tO. Knowledge Representation by Logic Programs

discover clues about the compromised enzyme by comparingrpe analysis of synthetic lethal screens can be seen as
the viability of mutant strains with the wild type on diff@® 5 combinatorial problem. But the vast number of possible

growth media supplemented with or deprived of Cafefu”gene-enzymes mappings means that additional knowledge
chosen nutrients [1]. Previous work has shown such tests Gy constraints must be used in practice. Logic programs
be automated and interpreted by an intelligent Robot Seieniyrovide an expressive and intuitive modelling language in

platform [3]. For example, referring to Fig. 1, if a singleyhjch knowledge and constraints can be modularly added and
deletion mutant survives in a medium containing botht_1  refined. They also have the advantage of a formal semantics
andnut_2, but does not survive in a medium containing jusing sophisticated tool support which have proven useful in

nut_1, then the deleted gene must encede_a. real applications of bioinformatics [3], [9].

More recent studies have begun to reveal the limitations of p logical language is built from terms (which denote objects
single mutant experiments [2]. The problem is that biolagicor individuals) and predicates (which denote properties or
systems have evolved robust mechanisms to compensate stions). The most basic logical expression is calledtama
single points of failure. These include alternative patysvior 59 comprises a predicate followed by a tuple of terms. For
synthesing the same molecule and multiple genes for codig)gamme' if nut_1, enz_a, mol_3 and gene_a are terms,
the same enzyme. Thus 80% of deletions in the yeast enOmR| if reaction and codes are predicates, then the atoms
are non-essential for survival [7] and have a measurabdmteﬁreaction(nut_l’ enz_a,mol_3) and codes(gene_a, enz_a)

only under very specialised growth conditions [6] which argan express the facts thatz_a catalyses a reaction from
difficult to replicate and may have unwanted side-effectisu,,,;; 1 to mol_3 and thatgene_a codes forenz_a.

as sensitivity to synthetic growth media [8]. In brief, a logic program is a set of clauses of the form
C. Synthetic Lethal Mutations

Deeper insights into genes that operate in parallel or over; . L
lapping pathways with a shared function can be obtainW(J1ere %0 is an atom and eachi'|s either an atoma; or
ets negationnot a;. The atomagy is called the head of the

from double deletion strains [2]. This is because doubl

mutants can uncover synthetic lethal deletions that ahall@ _cefausg anql ez_icn IS <_:a||ed a body I|_teral. Loglcally,_a clause
L : L : : . is an implication which says that, if all the body literalsar
combination, but viable in isolation. Referring again tg.Fi,

. -~ true, then head atom must also be true. Clauses can contain
enzymesc and d would show a synthetic lethal relation in a

: L O variables which may be replaced by any terms in the language.
medium containingrut_1 but not containinghut_2. However, A clause with an empty body is called a fact and denaigd
disabling just one would have no effect in this medium. Pty y

Industrial strength methods — such as dSLAM (diploid'-a‘ clause with the head atomy = false is called a constraint

based Synthetic Lethality Analysis with Microarrays) ang n_d states _the body literals, ..., L, must not all be true-. If
i . . . is a predicate and; . ..t, are terms, them(ty;...;t,) is

SGA (Synthetic Genetic Array) — are now becoming avallabﬁeSe d to abbreviate the factgt,) ()

which perform genome-wide screens for synthetic lethality Gigt) - .- p(tn)-

These use highly developed microarray techniques thabgxpE. Hypothetical Reasoning with XHAIL

genetic bar codes inserted into mutant libraries and avoidyHaIL is a hybrid reasoning system for logic programs
many difficulties of standard auxotrophic experiments. sEheinat integrates abductive (explanation-based) and inguct
techniques are reviewed in [2]. (generalisation-based) inference within a common legrnin
framework [4]. Given a logic progranf (theory or back-
ground knowledge) and a set of ground litergl§goals or
ess’ examples), XHAIL will return a logic prograr (hypothesis)
that, together with7", explainsg.
enz_g The XHAIL hypothesis space is constrained by a form of
mol 6 language bias called mode declarations As explained in [10]
. mode declarations are either head declarationgeh(r, s) or
enz_e enz_f body declarationsnodeb(r, s), wherer is an integer (recall)
and s is a ground atom (scheme). Schemes contain special
placemarker terms#, + and —, which must be replaced by
constants, input and output variables of a specified type.

In this way, a set of head and body declarations allow certain
mol_3 literals to appear in the head and body of a hypothesis clause
enz GI and their recalls limit how many literals each may contréut

By default, XHAIL will return maximally compressive hy-
nut_ 1 nut 2 potheses containing the fewest number of literals. This is a
popular heuristic motivated by Occam’s Razor, which pefer
Fig. 1. A Highly Simplified Metabolic Network the simplest hypothesis explaining the data.

ap - —ll,...,ln.

mol_4 mol 5

enz_c

enz_b




1. M ODEL A. Experimental Setup

This section introduces our logical model for analysing Fig. 2 gives the background knowledge for the relevant
synthetic lethal mutations. The approach is illustrated Kfganism and the experimental conditions. Clauses (1-7) en
means of a hypothetical organism with the highly simplifie§ode the metabolic reactions from Fig. 1, while Clauses (8-
metabolic network given in the previous section. In all, thé0) specify the growth media used to culture the mutants.
model contains 31 clauses which, for convenience, are spiigre, there are two growth mediaied_1, which contains the
into four groups Shown in F|gs 2-5 and described be'ow_ nutrientnut_l; andmed_2, which Contains’LUt_l andnut_?.

(1) reaction(enz_a,nut_1, mol_3).
(2) reaction(enz_b,nut_2, mol_5).
(3) reaction(enz_c,mol_3, mol_4).
(4) reaction(enz_d, mol_3, mol_5).
(5) reaction(enz_e, mol_4, mol_6).
(6) reaction(enz_f, mol_b, mol_6).
(7) reaction(enz_g,mol_6,ess_7).

(8) nutrient_in(nut_1,med_1).
(9) nutrient_in(nut_1, med_2).
(10) nutrient_in(nut_2, med_2).

(11) essential_molecule(ess_T7).

(12) gene(gene_a; gene_b; gene_c; gene_d;
gene_e; gene_f; gene_g; gene_h).

Fig. 2. Experimental Setup

(13) experimental_observations : —
synth_lethal_muts(gene_c, gene_d, med_1),
not synth_lethal_muts(gene_c, gene_d, med_2),

synth_lethal_muts(gene_d, gene_e, med_1),
not synth_lethal_muts(gene_d, gene_e, med_2),

not synth_lethal_muts(gene_a, gene_b, med_1),
synth_lethal_muts(gene_a, gene_b, med_2),

synth_lethal_muts(gene_e, gene_f, med_1),
synth_lethal_muts(gene_e, gene_f, med_2),

singl_lethal_mut(gene_a, med_1),
singl_lethal_mut(gene_g, med_2).

Fig. 3. Experimental Observations

(14) goal(experimental_observations).

(15) modeh(10, codes(” #gene”,” #enzyme”)).

(16) synth_lethal_muts(Gi,Gj, D) : —
genes(Gi, Gj), medium(D),
tnviable_without_genes(Gi, G4, D),
not singl_lethal_mut(Gi, D),
not singl_lethal_mut(Gj, D).

(27) singl_lethal_mut(G, D) : —
gene(Q), medium(D),
inviable_without_genes(G, G, D).

(18) inviable_without_genes(Gi,Gj, D) : —
genes(Gi, Gj), medium(D),
codes(Gi, Ei), codes(Gj, Ej),
essential_molecule(M), enzymes(Ei, Ej),
not make_without_enzymes(D, M, Ei, Ej).

(19) make_without_enzymes(D, M, Ei, Ej) : —
medium(D), metabolite(M ), enzymes(Fi, Ej),
essential_molecule(M), nutrient_in(N, D),
path_without_enzymes(N, M, Fi, Ej).

(20) path_without_enzymes(M, M, Ei, Ej) : —
metabolite(M), enzymes(Fi, Ej).

(21) path_without_enzymes(Mi, Mj, Ei, Ej) : —
metabolites(Mi, Mj), enzymes(Ei, Ej),
reaction(E,Ni,Nj),E # FEi,E # Ej,
path_without_enzymes(Mi, Ni, Ei, Ej),
path_without_enzymes(Nj, M j, Ei, Ej).

(22) metabolites(Mi, Mj) : —
metabolite(M1), metabolite(My).

(23) enzymes(FEi, Ej) : —enzyme(Ei), enzyme(Ej).
(24) genes(Gi, Gj) : —gene(Gi), gene(Gj).

(25) metabolite(Mi) : —reaction(E, Mi, Mj).

(26) metabolite(M3j) : —reaction(E, Mi, Mj).

(27) enzyme(E) : —reaction(E, Mi, Mj).

(28) medium(M) : —nutrient_in(N, M).

(29) coded(E) : —enzyme(E), gene(G), codes(G, E).
(30) false : —enzyme(E),not coded(E).

(31) false : —gene(G),enzymes(Ei, Ej),
codes(G, Fi), codes(G, Ej), Ei # Ej.

Fig. 4. XHAIL Directives

Fig. 5. Metabolic Theory




Clause (11) states there is one essential moleesde7, the underlying reactions. Similarly, Clause (28) definesgin
and Clause (12) asserts there are eight gepes_a - gene_h media as entities that contain nutrients. As stated in @laus
in the genome of the organism (which must be mapped on®9), an enzymdv is said to becoded if there exists (at least)
the enzymes in the metabolic network). one corresponding gern@ that codes for E. Clauses (30-31)

B. Experimental Observations are constraints which state that every enzyme must be coded

' and that each gene may code at most one enzyme.

Fig. 3 represents a set of experimental observations thaigjyen all of these definitions, the notions of single and
could be revealed by synthetic lethal screening of the te§fnthetic lethal mutations can now be formalised in terms
organism and which provide the learning examples for ok the predicateinviable_without_genes with respect to a
approach. In particular, the positive and negative lieialthe mediumD. As shown in Clause (17), a gefizcorresponds to
body of Clause (13) are the positive and negative examplgssingle lethal mutation if the organism is inviable withtht
respectively. These examples contain two sorts of atoms: gene. As shown in Clause (16), ger@sand G correspond

o synth_lethal_muts(g1, g2, m). asserts that the geneso synthetic lethal mutations if the organism is inviabléhaiit

g1 and g, correspond to ‘synthetic lethal mutationsthose genes but neither deletion constitutes, by itselingles
in m (i.e., a mutant lacking both these genes canngithal mutation.
survive in the medium, but a mutant lacking just one can).

o singl_lethal_mut(g, m): says genegy corresponds to a E. XHAIL Results

‘single lethal mutation” inm (i.e., @ mutant lacking this  Gijyen the input clauses (1-31) detailed above, the XHAIL
gene cannot survive in the medium). system computes two solutions, each containing sevéns
The first pair of body literals state thaténe_c andgene_d  atoms (the minimum needed to ensure all seven enzymes
exhibit a synthetic lethal relationship imed_1 but not in are covered). The enzyme-gene codings returned by these

med_2. The final pair of body literals state that gengsie_a  solutions are summarised in Fig. 6 belbw.
and gene_g are single lethal mutations in growth media

med_1 andmed_2, respectively. enzyme| solution 1] solution 2
C. XHAIL Directives enz—z 96”6—‘; 96”6—‘;
Fig. 4 contains the XHAIL directives that specify the learn- enc- gene— gene_

. . enz_c gene_e gene_c

ing problem. Clause (14) states that the goal of the system is
. ) enz_d gene_d gene_d
to return a hypothesis that correctly explains the expertaie
enz_e gene_c gene_e

observations above. Clause (15) is a head declaration which
states that the returned hypotheses may contain (up to 10)
ground atoms of the formodes(gene_i, enz_j) wheregene_i

is a gene an@dnz_j is an enzyme. Fig. 6. XHAIL Results

enz_f gene_f gene_f
enz_g gene_gqg gene_g

D. Metabolic Theory ) ) .
The core component of our model is a theory which Both solutions correctly explain all the experimental abse
links the observable predicatesynth_lethal_muts and vations. They differ only in the mapping between genes and

singl_lethal_mut to the abducible predicateodes. This cH2YMes ande. This is because, as can be seen from Fig. 1,

theory is shown in Fig. 5 and formalises the notion of syrid:hetthere is no possible way to distinguish enzymeand e on

: } 5
lethality in terms of metabolic paths from growth nutrietds the ba§|s of medid an_d 2
- But if we knew a-priori thalgene_c codes forenz_c, then
essential molecules. Id rul t the f lution by adding the fact
The key predicatejnviable_without_genes, is defined in Wwe could rule out the Tformer solution by adding the fac
Clause (18) and states that a mutant lacking two géfiesnd
Gj is inviable (i.e., unable to survive) in a growth medium
if those genes code for two enzym&8 and Ej and there is  Anq if we wanted XHAIL to compute all non-minimal
some essential moleculé/ which cannot be made from  go|ytions too, we could add the directive
without using enzyme#’i and Ej.
As formalised in Clause (19), it is possible to make a (33) find(all).
metaboliteM from D without the help ofE: and Ej if and
only if there is a metabolic path from one of the nutrients In this case XHAIL returns twenty solutions, obtained from
N in D to the metabolited/ which does not use either ofvarious permutations involving the redundaatie_h.
the enzymeski or Ej. The collection of all such paths are
defined inductively in Clauses (20-21). !Total execution time is less than one second on a 1.7 GHz @eriio
Clauses (22-24) are convenient abbreviations that maR@iop PC running Windows Vista with 1 Gb of RAM.
. . . Clearly, enzymesnz_c and enz_e could only be differentiated by a
the preceding clauses easier to read. Clauses (25-27)ysimplgi

) ] > >l edium containing the metabolit@ol_4 (in which case the organism could
define enzymes and metabolites as the objects appearinguiive withoutenz_c but not withoutenz_e ).

(32) codes(gene_c, enz_c).



IV. RELATED WORK However, the example used in this case study was highly

The XHAIL svst di K int tes techni simplified and the model must be refined before it can be use-
€ system used in our work integrates tec rllqueﬂs.llly applied to real data. Firstly, the model must be extshd

from the fields of Abductive Logic Programming (ALP) [11]to deal with reactions that have more than one substratemand/

and Inductive Logic Programmlng_ (ILP) [12]'. In brief, ALP roduct. Secondly, the model could be extended to represent
and ILP are methods for hypothetical reasoning that comp fore subtle interactions between metabolic pathways. For
hypotheses which generalise or explain a set of examplese&)r

. . ample, a metabolite in one pathway may inhibit an enzyme
goals with re_spect t_o a prior backgrounq theor.y._The tw|ﬂ another: either by blocking its catalytic effect or by tking
gpproaches dlffer primarily in the syntactic restrictichgy the expression of its regulating gene(s).
impose on their outputs and inputs. To do this, we will generalise existing logic programming
« ILP systems are designed to return hypotheses Witfodels of metabolic inhibition [9]. Then we will validate ou

non-ground clauses, but most are unable to reasgpproach on real biological data and compare it with other
correctly with negation. Moreover, many ILP systemgethods for refining biological networks. Finally, we ndtet
can only infer one clause in response to each exampife declarative nature of our logical model means it canyeasi

and they typically assume the predicate in the head Bé extended to interactions between more than two genes.
the hypothesis is the same as the example — a restriction

called Observation Predicate Learning (OPL) [13].
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