
Comparing the Performance of Object and Object
Relational Database Systems on Objects of Varying

Complexity

Reza Kalantari♣, Christopher H. Bryant

 School of Computing, Science and Engineering, Newton Building,
University of Salford, Salford, Greater Manchester, M5 4WT, UK

me@reza-kalantari.com, C.H.Bryant@salford.ac.uk

Abstract. This is the first published work to compare the performance of object
and object relational database systems based on the object’s complexity. The
findings of this research show that the performance of object and object
relational database systems are related to the complexity of the object in use.
Object relational databases have better performance compared to object
databases for fundamental database operations, with the exception of insert
operations, on objects with low and medium complexity. For objects with high
complexity, the object relational databases have better performance for update
and delete operations.

1 Introduction

When object oriented programming languages such as Java, C++ and Smalltalk
became popular in the 1980s, application developers found a mismatch between their
applications’ needs and Relational Database Management Systems (RDBMSs). The
mismatch led to the invention of Object Database Management Systems (ODBMSs).
In fact, ODBMSs are an extension of object oriented programming into the world of
databases and they benefit from using object programming languages. Despite the fact
that ODBMSs are very suitable for some specific applications, developers
encountered major problems when using them in place of RDBMSs such as a lack of
a universal standard, complex query optimization and poor support for large scale
business information systems. These drawbacks made developers generate another
type of database system, namely Object Relational Database Management Systems
(ORDBMSs). The main objective of ORDBMSs was to achieve the benefits of both
the relational and the object models and, in fact, ORDBMSs combine the features of
RDBMSs with the best ideas of ODBMSs. ORDBMSs store data in tables but the
main difference between ORDBMSs and RDBMSs is that ORDBMSs have object-
oriented features. The standard programming language for ORDBMSs is OR-SQL
which is also known as SQL3. Many well known database vendors such as IBM and

♣ To whom correspondence should be addressed.

2 Reza Kalantari and Chris Bryant

Oracle have released the object relational version of their database management
systems [2].

The success or failure of an application directly depends on the performance of the
database system in use. Therefore performance is a vital factor for the selection of
database systems in real-time applications. A variety of different ideas about the
performance of ODBMSs and ORDBMSs have been published. While [8] states
ODBMSs are known to be rich in functionality but poor in performance, [7] believe
that the performance of object databases is far better than hybrid ORDBMSs. The
contrast between these findings motivated the research described in this paper which
determines which one of object and object relational database management systems is
better in terms of performance for fundamental database operations such as Insert,
Update, Lookup and Delete. This paper presents the results of a fair comparison of the
performance of ODBMSs and ORDBMSs by means of an object oriented application
and it takes the object’s complexity into account.

Section 2 describes related work. In Section 3, we describe the performance
criteria for this work and justify why benchmarks are not used. Section 4 presents the
environment of the case study, the results of our evaluations and an analysis of the
results. In Section 5, we briefly summarize the main contributions of this paper and
identify the need for further research in this area.

2 Related Work

Over the last two decades, when ODBMSs were still rather new, there were a variety
of studies to assess the performance of this kind of DBMS. For example, [9]
compared the performance of various commercial ODBMSs. More recently, [11]
compared the performance of ODBMSs and Object Relational Mapping (ORM) tools.

In the study by Van zyl et al. [11], Db4o represents the ODBMS and Hibernate
represents the ORM tool. Both of these are popular open source products. Hibernate is
an ORM tool that stores and retrieves in-memory objects to and from a RDBMS.
Hibernate can be used with any RDBMS but in their research it was used with
Postgres for persisting objects. The OO7 benchmark was used to compare the speed
of execution of a suite of typical persistent-related operations in both candidates. For
good documentation of OO7 benchmark, see [4]. Van zyl et al. [11] decided to use
Java objects for their research study because they believed that “most of the large
persistence mechanism providers provide persistence for Java objects”. As a result of
this decision, they had to re-implement OO7 in Java because the OO7 benchmark had
been developed in C++ for Versant. Db4o can be run as an embedded DBMS, as a
local server in the same virtual machine or as a remote server; for their research Db4o
was run as an embedded DBMS. Both of Db4o and Hibernate were to persist the in–
memory Java objects generated by the OO7 benchmark. Van zyl et al. [11] concluded
that Db4o’s overall performance is better than that of Hibernate. They propose that
the overhead of object-relational translation causes ORM-based implementations to
be consistently slower than staying in object form with an ODBMS. The study by Van
zyl et al. [11] is similar to the one described in this paper in the sense that both
compare the performance of Db4o with a hybrid database solution, on an artificial

Comparing the Performance of Object and Object Relational DBSs 3

dataset. However our study is different to the one by Van zyl et al. [11] because they
used OO7 benchmark for performance evaluation while we use an object oriented
application.

Hohenstein et al. [9] performed an application-specific comparison of the three
best known commercial ODBMSs. The goal of their evaluation was to create a
realistic test for ODBMSs, allowing for a fair and precise comparison of performance.
The researchers took as their starting point an existing warehouse application running
on a relational DBMS. The application was a large software system that maintains
automatic warehouses. For simplicity and to reduce the effort, they restricted the
application to only one procedure, namely storing materials. The researchers also
compared the ODBMSs with the original, real-world relational system; however they
believed that this comparison is vague because the times for the RDBMS were
measured while concurrent processes may influence locking and elapsed times. In the
study by Hohenstein et al. [9] the ODBMSs remain anonymous and they are
introduced as ODBMS1, 2 and 3. Each ODBMS has been tuned heavily according to
its specific architecture. Their experiments measure the times for the whole
application’s test rather than for simple database operations. The test consists of
placing 860 containers with articles in the warehouse and specific functions such as
queries.

Hohenstein et al. [9] concluded that traversals of relationships are much faster in
the page server ODBMSs than in related SQL queries. Since ODBMSs do update
operations in the primary memory and update in the server and disk is postponed to
the commit, this results in slower update operations by ODBMSs compared to
RDBMS. The complex search is also very fast in ODBMSs. The study by Hohenstein
et al. [9] is similar to our work in that it evaluates the performance of DBMSs by
means of a concrete object-oriented application. However they use a real dataset for
their experiments while we use an artificial dataset. We justify our use of an artificial
dataset in Section 4.2.

3 Performance Measurement

In this work we aim to evaluate and compare the efficiency of Db4o and Informix
DBMSs for performing four fundamental database operations: insert, update, look up
and delete. The efficiency of these operations in any database system is a vital factor
of performance. For measuring performance, we use Response time. Response time
measures the performance of an individual transaction or query. Response time is
typically treated as the elapsed time from the moment that a query’s execution starts
until the time that the execution finishes successfully.

One approach used by research studies aiming to evaluate the performance of
database systems is benchmarking. A lot of standard benchmarks have been published
in the literature. Benchmarks are general applications that reduce the effort required to
implement and perform performance tests. For example, the OO1 benchmark [6]
models a graph of interconnected nodes in which each node is related with three other
nodes [5]. Other benchmarks such as HyperModel [1] and OO7 [3] model more
complex schemas; they take into account inheritance hierarchies and various forms of

4 Reza Kalantari and Chris Bryant

relationships between nodes. Nevertheless, these benchmarks are compact, general
and do not meet the requirements of all performance tests. In reality, applications
interface database systems and use them to store and retrieve data. Also applications
perform access and make additional demands of DBMSs that standard benchmarks do
not cover at all; therefore performance of database systems should be evaluated by
means of applications. In addition, a benchmark that meets the requirements of our
research could not be found.

4 Case Study

4.1 Database Products for this Case Study

Db4o1 is an open source pure ODBMS that enables Java and .NET developers to store
and retrieve any application object; eliminating the need to predefine or maintain a
separate, rigid data model. Db4o’s programming can be integrated in the application
code; therefore database access is largely transparent, which is one of the main
objectives of ODBMSs [10]. Informix Dynamic Server2 is a well-known commercial
ORDBMS that completely supports the object relational specifications. Informix
provides an application programming interface for C, C++, Java and .NET.

4.2 Dataset

Datasets have an important role in experimental studies which evaluate the
performance of databases. Data is the core of a database system and it affects the
database’s performance. This means that a performance test on a specific database
system with two different datasets may result in different conclusions. One of the
common approaches in experimental studies is to use a dataset which is already in the
public domain. For this work an online dataset that fits in the designed database could
not be found. The other common approach is to create an artificial dataset by
randomly generating data of the required form. This is the approach we use. Objects
are populated with random data when they are instantiated.

4.3 Object Oriented Database Schema

This section describes the design of the object oriented database schema used in the
experiments. Since the aim of the research is to compare the performance of two
database systems which are both object oriented, three objects of varying complexity
were designed. Project, Staff and Department objects represent objects with low,
medium and high complexity respectively. As Fig. 1 shows, Project, Staff and
Department objects consist of different attributes. For simplicity the objects have no
method. Project object is an object with low complexity because its attributes are of

1 Db4o 6.4 .Net 2.0
2 Informix Dynamic Server v11.50

Comparing the Performance of Object and Object Relational DBSs 5

basic data types such as String, Integer and Date that have low complexity from
database management point of view. The Staff object is more complex. It includes the
Project attribute that is an ordered list of the projects that the employee took part in.
Each of the elements in this list is a Project object. Also it includes the address
attribute which is a user defined data type. Address consists of four attributes of type
String which hold the employee’s address.

Fig. 1. The schema of Project, Staff and Department objects

The Department object includes the Staff attribute which is an ordered list of Staff
who work for the department. Each element in this list is a Staff object. Another
attribute of Department object is the ProjectHistory. This attribute is an ordered list of
a user defined data type that holds the previous projects and their live date. The
Department object also includes the Address attribute which is a user defined data
type that holds the Department’s address. Therefore, Department object is considered
as an object with high complexity.

4.4 Object Oriented Test Application

The Object Oriented Test Application (OOTA) is a .NET object oriented application
that has been developed to perform the performance tests against both Db4o and
Informix DBMSs. OOTA implements the Project, Staff and Department objects
which represent the objects with low, medium and high complexity respectively.
OOTA also implements four test functions for each object to perform the performance
tests against the database systems for the object. Each test function performs a
specific performance test against the DBMSs.

4.5 Methodology

To perform the empirical experiments, the object oriented database schema has been
implemented with both Db4o and Informix DBMSs. OOTA was developed to
interface both Db4o and Informix DBMSs and performs the performance tests against

6 Reza Kalantari and Chris Bryant

them. OOTA performs the performance tests through test functions. OOTA obtains
the response time by measuring the time before the functions’ call and after the
functions’ execution. All experiments have been repeated five times and the mean of
response times is reported in the results. The standard deviation was less than 3% in
every experiment.

In all empirical experiments, the performance of both Db4o and Informix
databases has been evaluated for six different quantities of objects. The six different
quantities are 1000, 5000, 10000, 20000, 50000 and 100000. These quantities
represent a variety of small to large databases. For each experiment, each test function
has been called six times against both Db4o and Informix DBMSs for the six different
quantities of each object. The experiments allow a fair comparison of Db4o and
Informix DBMSs because:-

• The same hardware and operating system was used in all the experiments.
• The same database model (i.e., the same objects) has been implemented with both

Db4o and Informix.
• The same performance test application, (i.e., the OOTA) is used to perform the

tests against both Db4o and Informix.
• The same performance tests have been performed against both Db4o and Informix.
• The mechanism for creating new objects within OOTA is the same for both Db4o

and Informix.
• The object’s data that OOTA generates in the object construction process is

completely random and the mechanism is the same for both Db4o and Informix.
• The most optimized function’s code has been developed within OOTA for both

Db4o and Informix DBMSs according to the database vendors’ release notes and
tutorials.

• The interface creation time for Db4o and the connection time for Informix have
been excluded from the response time.

4.6 Object Insertion

The aim of this experiment is to determine whether Informix or Db4o has a better
performance for the insert operation. The response times for insert operations in this
experiment includes the object’s creation time. The results of the Object Insertion
experiment for inserting different quantities of objects with low, medium and high
complexity into both of Db4o and Informix DBMSs are shown in Fig. 2.

As Fig. 2 shows, for objects with low complexity, although both database
systems’ response times are very close until 5,000 objects, Db4o performed the insert
operations in less time compared to Informix throughout the experiment. The more
objects in the insert operation, the bigger the difference between their response times.
Another point is that Informix has the same performance during the experiment but
Db4o’s performance is slightly variable and is best when inserting 5000 to 10000
objects.

Comparing the Performance of Object and Object Relational DBSs 7

Fig. 2. Results of inserting objects with low
(top left), medium (top right) and high
(bottom left) complexity

According to results for object with medium complexity, Db4o’s performance is

better throughout the experiment. The performance of Informix is nearly the same as
Db4o for inserting less than 5000 objects but after this point the Informix’s
performance decreases. Db4o has a constant performance for inserting more than
10000 objects. Surprisingly, Informix’s performance is not the same during the
experiment for all the number of objects; it performed better for quantities between
1,000 and 5,000.

Db4o has inserted the high complexity object in less time than Informix for every
quantity. Similar to the medium complexity experiment, Db4o’s performance is
constant for inserting more than 10,000 objects. The Informix’s performance is worse
than that of Db4o and it is constant throughout the experiment.

4.7 Object Modification

The aim of this experiment is to determine whether Informix or Db4o has a better
performance for the update operation. In each update operation one object is
modified. The results of the Object Modification experiment for updating objects with
low, medium and high complexity with both Db4o and Informix DBMSs while they
hold different quantities of these objects are shown in Fig. 3.

According to Fig. 3, the performance of Informix is far better than that of Db4o
for updating objects with low complexity. With the exception of 5000 to 10000
objects, the response times of both Db4o and Informix increase as the number of
objects in the databases increases. Informix’s performance is more consistent
compared to Db4o during the experiment.

8 Reza Kalantari and Chris Bryant

As Fig. 3 shows, Informix’s response time is less than that of Db4o for updating

objects with medium complexity. Informix has a better performance while less than
5,000 objects exist. The two DBMSs have nearly the same performance while 5,000
objects exist but, after this point, again the Informix has a better performance.
Informix’s performance is consistent while more than 20,000 objects exist. After
50,000 objects, the difference between their performances becomes considerable.

The results for objects with high complexity shows that Informix performs the
update operation faster than Db4o because the response time of Informix is less than
Db4o’s throughout the experiment. The response times are very close while less than
5,000 objects exist in the databases. After this point, the difference between their
performances becomes considerable.

4.8 Object Lookup

The aim of this experiment is to determine whether Informix or Db4o has a better
performance for the lookup operation. In this experiment just one project object was
looked up as a result of the look up query. For Staff and Department objects when
different quantities of these objects exist in the database, different number of these
objects were looked up but the number of returned objects for Db4o and Informix is
nearly the same. The results of the Object Lookup experiment for objects with low,
medium and high complexity with both Db4o and Informix DBMSs while they hold
different quantities of these objects are shown in Fig. 4.

Fig. 3. Results of updating objects with low
(top left), medium (top right) and high
(bottom left) complexity

Comparing the Performance of Object and Object Relational DBSs 9

Fig. 4. Results of looking up objects with low
(top left), medium (top right) and high
(bottom left) complexity

As the results for object with low complexity show, the response time of Informix

is less than that of Db4o while less than 10,000 objects exist in the DBMSs. The two
DBMSs have the same performance at 10,000. For the rest of the experiment,
increasing the number of objects increases Db4o’s response time significantly. As
Fig. 4 shows, the Informix’s performance is more consistent than that of Db4o in
looking up object with low complexity.

The results for object with medium complexity show that Db4o’s response time is
less than that of Informix while less than 8,000 objects exist in the databases. As the
number of objects increases, Db4o’s response time increases. After 8,000 objects
Db4o’s performance is worse than Informix’s. Informix’s performance is the best
while between 10,000 and 20,000 objects exist. The results show that the performance
of Informix is better than Db4o for looking up object with medium complexity.

As Fig. 4 shows, Db4o’s response times are less than those of Informix for
looking up objects with high complexity. There is only a tiny difference between the
response times of the two DBMSs while less than 20,000 objects exist. For the rest of
experiment, as the number of objects increases, the performance of Db4o becomes
better compared to Informix. Overall, the results show that the Db4o is better than
Informix for looking up object with high complexity.

4.9 Object Deletion

The aim of this experiment is to determine whether Informix or Db4o has a better
performance for the delete operation. In this experiment one project object has been
deleted as result of delete operation. For Staff and Department objects when different
quantities of these objects exist in the database, different number of objects has been
deleted but the number of deleted objects for Db4o and Informix is nearly the same.

10 Reza Kalantari and Chris Bryant

The results of the Object Deletion experiment for objects with low, medium and high
complexity with both Db4o and Informix DBMSs while they hold different quantities
of these objects are shown in Fig. 5.

Fig. 5. Results of deleting objects with low
(top left), medium (top right) and high
(bottom left) complexity

As Fig. 5 shows, Informix’s response time for deleting an object with low

complexity is less than that of Db4o. Both DBMSs have similar response times up to
10,000 objects. After this point, the difference in their performance increases as the
number of objects increases. Informix’s performance is more constant compared to
Db4o’s for delete operation on objects with low complexity.

The results for medium complexity (see Fig. 5 top right) show that the
performance of Informix is better than that of Db4o. Db4o’s response time for
deleting an object while 5,000 objects exist is less than when 1,000 objects exist.
Db4o’s response time starts increasing when more than 5,000 objects exist but the
corresponding number of objects for Informix is 10,000.

As Fig. 5 shows, throughout the experiment, Informix’s response time is less than
that of Db4o for deleting objects with high complexity. Informix’s response time is
very low while less than 20,000 objects exist but after this point its response time
increases considerably. Although Db4o’s response time is low while less than 5,000
objects exist, its response time increases after this point until 50,000 objects; after
which point its response time remains the same for the rest of the experiment.

The results of all empirical experiments are summarized in Table 1. For each
experiment it shows which DBMS is better in terms of performance according to the
complexity of object. For example, it shows that Db4o has better performance for
inserting objects with low complexity; Informix is better in terms of performance for
updating objects with medium complexity and so on.

Comparing the Performance of Object and Object Relational DBSs 11

Table 1. Summary of the empirical experiments' results

According to Table 1, Informix has better performance for modifying, looking up
and deleting objects with low complexity. Db4o is just better than Informix in terms
of performance for inserting this kind of object. The results for fundamental database
operations on objects with medium complexity are the same as objects with low
complexity. For objects with high complexity, the results are different; Db4o has a
better performance than that of Informix for inserting and looking up objects with
high complexity while Informix has a better performance for modifying and deleting
this kind of objects.

5 Conclusions and Future Work

The findings from this work suggest that the complexity of the object in use affects
the performance of object and object relational DBMSs. The performance of the
object relational DBMS is better than the object DBMS for fundamental database
operations with the exception of insert operations for objects with low and medium
complexity. Increasing the level of object’s complexity affects the performance of
object relational DBMS. For objects with high complexity, in addition to insert
operation, the object DBMS has better performance for the look up operation
compared to the object relational DBMS.

The findings suggest that system developers should consider the following factors
when selecting a DBMS for persisting objects: 1) The complexity of the object in use;
2) The database operations that the system will perform most frequently. For
example, if a system uses objects that are mainly highly complex and it performs a lot
of look up operations then this research suggests that an ODBMS is more efficient
than ORDBMS as a mechanism for persisting objects.

Due to limited time, this work focused on the performance of object and object
relational DBMSs for fundamental database operations such as Insert, Update, look
up and Delete. The following could be the subject to further studies.

First of all, the performance analysis of ODBMSs and ORDBMSs for
fundamental database operations on objects that have behaviour (methods). In reality
objects have behaviour and adding methods to objects may impact the performance of
DBMSs. Also the performance analysis on Binary Large OBjects (BLOBs) and
Character Large OBjects (CLOBs) could be evaluated and compared for these two
database technologies. With the rise in popularity of image, audio and multimedia

12 Reza Kalantari and Chris Bryant

databases, further research is required to determine which one of ODBMSs and
ORDBMSs have better performance for database operations on these kinds of objects.

Secondly, in addition to the fundamental database operations, the performance of
object and object relational DBMSs for complex queries involving two or more
objects could be evaluated and compared. Today’s systems are more complex than
before and further research is required to determine which one of ODBMSs and
ORDBMSs have better performance for complex queries.

Finally, other object and object relational database systems could be taken into
account in the comparison. Evaluating the performance of other database products,
would make the results more precise and realistic.

6 References

1. Anderson, T. L., Berre, A. J., Mallison, M., Porter, H. H., and Schneider, B.: The
HyperModel Benchmark. In: 2nd Int. Conf. on Extending Database Technology (1990)

2. Brown, P.: Introduction to Object-Relational Database Development. Prentice Hall, USA
(2001)

3. Carey, D. J., DeWitt, D., and Naughton, J. F.: The OO7 Benchmark. In: Proceeding of the
ACM SIGMOD Int. Conf. on Management of Data, pp. 12—21. Washington DC (1993)

4. Carey, M. J., Dewitt, D. J., Naughton, J. F.: The OO7 Benchmark. CS Tech Report,
University of Wisconsin-Madison, April (1993b)

5. Carey, M. J., Dewitt, D. J., Naughton, J. F.: A Status Report on the OO7 OODBMS
Benchmarking Effort. In: Proceedings of the Ninth Annual Conf. on Object-Oriented
Programming Systems, Language, and Applications, pp. 414—426. ACM Press, New York
(1994)

6. Cattell, R.G.G., Skeen, J.: Object Operations Benchmark. ACM Transactions on Database
Systems, Vol. 17, No. 1, 1-31 (1992)

7. Chaudhri, Akmal B., McCann, Julie A., and Osmon, P:. A Performance Study of Object
Database Management Systems. Theory and Practice of Object Systems, Vol. 5(4), 263-
279 (1999)

8. Gorla N.: An Object-Oriented Database Design for Improved Performance. Journal of Data
& Knowledge Engineering. 37 117—138 (2001)

9. Hohenstein, U., Volkmar, P., Rainer, H.: Evaluating the Performance of Object-Oriented
Database Systems by Means of a Concrete Application. Theory and Practice of Object
Systems, Vol. 5(4), 249--261 (1999)

10. Ritchie, C.: ed. Database Principles and Design. Cengage Learning EMEA, London (2008)
11. Van zyl, P., Derrick, G., Kourie and Boake, A.: Comparing the Performance of Object

Databases and ORM tools. Proceeding of South African Institute for Computer Scientists
and Information Technologists, pp. 1-11 (2006)

