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V Abstract 

This thesis is about improving the suitability of the time domain Boundary Element 

Method (BEM) for predicting the scattering from surface treatments used to improve the 

acoustics of rooms.  The discretised integral equations are typically solved by marching 

on in time from initial silence; however, this being iterative has potential for divergence. 

Such instability and high computational cost have prohibited the time domain BEM 

from widespread use. 

The underlying integral equation is known to not possess unique solutions at certain 

frequencies, physically interpreted as cavity resonances, and these manifest as resonant 

poles, all excited and potentially divergent due to numerical error.  This has been 

addressed by others using the combined field integral equation; an approach built upon 

in this thesis. 

Accuracy and stability may also be compromised by poor discretisation and integration 

accuracy.  The latter is investigated on real-world surfaces, demonstrating that the 

popular Gaussian integration schemes are not suitable in some circumstances.  Instead a 

contour integration scheme capable of resolving the integrands‟ singular nature is 

developed. 

Schroeder diffusers are Room Acoustic treatments which comprise wells separated by 

thin fins.  The algorithm is extended to model such surfaces, applying the combined 

field integral equation to the body and an open surface model to the fins. It is shown that 

this improves stability over an all open surface model. 

A new model for compliant surfaces is developed, comparable to the surface impedance 

model used in the frequency domain.  This is implemented for surfaces with welled and 

absorbing sections, permitting modelling of a Schroeder diffuser as a box with surface 

impedances that simulate the delayed reflections caused by the wells.  A Binary 

Amplitude Diffuser - a partially absorbing diffuser - is also modelled. 



 xviii 

These new models achieve good accuracy but not universal stability and avenues of 

future research are proposed to address the latter issue. 

 



 1 

1 Introduction 

Numerical modelling is a powerful tool for Acousticians.  The overlapping ranges of 

audible wavelength and typical obstacle dimensions create complex sound fields that do 

not easily surrender to analytical techniques, except in certain idealised circumstances 

and geometries.  Over recent decades it has gained popularity as the required 

computational power has become more widely and cheaply available with the 

increasing capabilities of desktop computers. 

The sound that reaches a listener comprises a direct sound from a source and an indirect 

sound that has been reflected by the environment.  This indirect sound has the potential 

to support or distort the perception of the direct sound.  Reflections from a surface may 

be attenuated by increasing its absorption, or scattered more evenly over a wider range 

of angles by increasing its diffusion.  The latter treatment is particularly useful when 

sound energy must be maintained, for example in a concert hall, or when envelopment 

is desired. 

A diffusing surface treatment is characterised by the uniformity of its scattering
1
.  This 

may be measured under anechoic conditions, a time consuming and therefore expensive 

process, particularly for devices that scatter hemispherically.  An alternative is to predict 

this data using a numerical model.  The speed and low cost of this approach aid 

prototyping of new designs, and even allow automated optimisation of treatments to be 

performed.  The Boundary Element Method (BEM) is well suited to this task. 

The BEM for Acoustics is derived from the wave equation, the law of how pressure 

fluctuations propagate through a homogeneous linear media, such as the stationary 

isothermal air ideally encountered in Room Acoustics.  It is known how sound 

propagates through such a media unobstructed so the problem is converted to one only 

involving the wave‟s interaction with obstructions; the media‟s boundaries.  This is 

stated as a boundary integral equation involving surface pressure and particle velocity 

perpendicular to the boundary.  Particle velocity tangential to the boundary is ignored so 

it must be assumed that viscous boundary layer losses are small.  The BEM is inherently 
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suited to modelling anechoic conditions: this is equivalent to the air going on forever so 

there is simply no outer boundary. 

The surface quantities are considered to be continuous, but in order to be solved for 

numerically, a discrete representation is required.  To achieve this, the boundary is 

typically partitioned into elements and upon each the surface quantities are interpolated 

and thereby described by a few scalars.  The resulting model is of each element 

radiating a scattered wave independently, first due to the incident wave and then due to 

their mutual interactions. 

Most BEMs assume time invariant harmonic excitation so the unknowns are time 

invariant complex numbers.  Whilst this frequency domain analyses is a useful tool, the 

transient behaviour witnessed in the real world may only be recovered by calculation of 

many frequency domain models and inverse discrete Fourier transform.  An alternative 

is to drop the time invariant assumption and formulate the BEM in the time domain; this 

is the algorithm studied in this thesis. 

The time domain BEM is capable of modelling transient effects, such as the response of 

any acoustic treatment that employs lightly damped devices.  It may also be coupled to 

non-linear models; this is not possible for the frequency domain BEM as the assumption 

of frequency independence breaks down in a non-linear world.  It has also been realised 

during this research that it is easier to comprehend the interaction of scattered waves in 

a transient scenario than a time invariant one. 

Finite Difference Time Domain
2
 (FDTD) is a popular competing algorithm to model 

transient phenomena.  It represents the volume of air as a mesh of interconnected nodes, 

and the differential terms of the wave equation are replaced by finite-difference 

approximations between nodes in space and time.  This creates a great many unknowns, 

but their interactions are simple and efficient to solve.  In contrast, a BEM has a reduced 

number of unknowns, but solving for them is a comparatively more expensive process.  

Thus the two algorithms have very different cost trends and the comparison of 

execution times is very much dependent on implementation and the type of problem to 

be solved. 
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1.1 Research Methodology and Project Scope 

The original goal of this investigation was naively stated to be application of the time 

domain BEM to model Room Acoustics surface treatments, under the misconception 

that the algorithm was sufficiently mature to allow this.  Once investigations 

commenced inadequacies emerged and it became apparent that a deeper understanding 

was required, so the purpose shifted to developing the algorithm. 

The research methodology used was to first replicate a state of the art algorithm and 

then explore ways of extending it with features either novel or merged from other 

publications.  The replication stage is crucial to algorithm comprehension and provides 

a working model from which to build and verify.  It is also unavoidable as there are few 

commercial time domain BEM packages and it would not be possible to examine their 

inner workings or build upon them. 

Verification of a new algorithm is imperative, even if it is a replication of a published 

implementation.  This has been performed via Fourier transform against frequency 

domain BEM codes which have in turn been verified against experimental results. 

Unlike many publications of time domain BEM research this investigation has not 

pursued universal stability as a primary goal.  An improvement in stability has been 

used as supporting evidence for modifications that should be regarded as good practice 

anyway, but no attempts have been made to eradicate instability by heuristic means.  

This is in anticipation that future research might tackle solver divergence at its root 

cause. 

Similarly development has not focused on optimisation of implementation.  This is 

partially motivated by the PhD assessment process, which does not offer great rewards 

for improvements in code efficiency unless they are due to some novel technique.  

Accordingly implementation has been performed in Matlab to accelerate code 

development and aid data analysis and debugging.  Where a small section of code has 

been identified as a bottleneck it has been rewritten into a MEX file; a fragment of C 

code compiled to integrate with Matlab.  Despite the scaling trends discussed in section 
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 2.1.8 it has been found that, for the problem sizes modelled herein, greatest 

computational cost is associated with the integration of interactions coefficients.  

Clearly computational efficiency is paramount for any commercially released code and 

any such based on this research would undergo substantial optimisation. 

Recently much research has been directed towards acceleration schemes for the time 

domain BEM to cure its poor computation cost scaling trends.  Despite their 

significance these have not been investigated herein as other issues more important to 

the primary aims were prioritised. 

1.2 Thesis Structure 

This thesis is divided into four main chapters, followed by discussions and conclusions.  

Chapter  2 contains an introduction to the mechanics of the time domain BEM and the 

literature review.  The evolution of the algorithm discussed therein, starting with the 

earliest publications and then diverging to discuss different strands of development 

separately.  Finally an algorithm is chosen for replication and is described in more 

detail. 

Chapter  3 investigates the effects of integration accuracy on stability and accuracy of 

solutions.  The performance of the integration scheme of the replicated algorithm is 

shown to be inadequate.  In its place a new scheme is derived by conversion to contour 

integrals and shown to improve stability on real world surfaces. 

The scope of the algorithm is extended in chapter  4 to include scatterers with thin fins, 

such as Schroeder diffusers.  The fins must be modelled as rigid air / air interfaces to 

avoid singular behaviour in the underlying integral equations.  However, the replicated 

algorithm has a unique formulation which fundamentally tackles the stability of models 

of thick bodies; it is desirable to retain this, so a mixed surface model is developed that 

supports both surface types.  This is verified on some simple surfaces and a Quadratic 

Residue Diffuser. 
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Chapter  5 proposes a new model for compliant surfaces, comparable to the surface 

impedance model used in the frequency domain.  This is cast into the time domain BEM 

framework and requires only one surface quantity to be discretised.  The model is 

implemented for scatterers with welled and absorbing sections and verified on some 

simple surfaces plus a Quadratic Residue Diffuser and a Binary Amplitude Diffuser. 

The contribution to knowledge by the developments of the three preceding chapters is 

discussed in chapter  6 and many avenues for future research are identified.  Finally the 

conclusions of the thesis are summarised in chapter  7.  Some additional proofs follow in 

the Appendix, followed by the References. 
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2 Time Domain Boundary Element Methods: 

concepts and published models 

This chapter aims to elucidate to the reader the current state of the art in time domain 

Boundary Element Method (BEM).  It is presented in three sections: section  2.1 outlines 

the formulation of the time domain BEM and introduces the nomenclature used in this 

thesis, section  2.2 reviews the contribution made by various authors, and section  2.3 

focuses on a specific algorithm that was replicated as a starting point to the research 

process. 

2.1 Introducing Boundary Element Methods 

All BEMs begin with a Boundary Integral Equation (BIE).  In Room Acoustics the 

direct time domain BEM begins with the Kirchhoff Integral Equation and this will be 

introduced in the next section.  In this thesis, sound will usually be represented as 

velocity potential; consequentially it has the symbol   reserved for it.  While this is not 

a physical quantity, so of limited interest in itself, it has the convenient property that 

both pressure and velocity may be derived from it according to Equations  2.1 and  2.2.  

A dot above a quantity indicates temporal differentiation.  Both these quantities are not 

absolute (such as atmospheric pressure) but are small perturbations relative to the 

equilibrium (silent) state. 

   ttp ,, 0 rr           2.1 

   tt ,, rrv          2.2 
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2.1.1 Kirchhoff Integral Equation 

The sound waves considered in this thesis obey the linear acoustic wave equation within 

an enclosed connected volume of air 
 : 

   t
c

t ,
1

,
2

2
rr            2.3 

The initial conditions of the problem state that there is silence before time t = 0: 

   rr 0,t          2.4 

   rr 0,t          2.5 

These statements, combined with the boundary conditions introduced in section  2.1.2, 

form an initial boundary value problem.  This problem may also be written as a 

Boundary Integral Equation (BIE); this is known as the Kirchhoff Integral Equation 

(KIE): 

           
S

n

r dtvtRgtRgtt ',',,''ˆ,', rrnrr      2.6 

The above may be found by applying Greens Theorem to   minus the observation 

point r  and any point sources present; this is depicted in Figure  2.1.  The boundary 

surface S  need not be connected but it must be piecewise smooth enough that a unique 

normal vector n̂  may be defined everywhere on it, perpendicular to S  and directed into

 .  For completeness the volume behind S  is named  .  Variants on the derivation 

may be found in Pierce
3
 and Groenenboom‟s 1982 survey article

4
. 
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Figure ‎2.1: The air filled cavity represented by the KIE 

In Equation  2.6 r  and 'r  are the observation and radiation points respectively and 

'R rr   is the distance between them.   tr ,r  is the sound that is radiated to point r  

due to the pressure and velocity fields on S .   tt ,'r  is related to the known pressure 

field on S  at 'r  by Equation  2.1.  'n̂  is the surface normal vector at 'r  and   tvn ,'r  is 

the component of velocity in the direction of 'n̂  at 'r  and will be referred to as „normal 

velocity‟ for brevity.    denotes temporal convolution; for clarification on the 

properties of derivatives of the delta function under convolution see sections  8.1 and 

 8.2.   tRg ,  is the time domain Greens function, which describes how sound travels 

from a point source to a point observer, defined as follows: 

 
 

R

c
Rt

tRg




4
,


          2.7 

The first term in the KIE is similar to the sound radiated when the boundary exerts a 

force, a surface pressure, on the air.  If a surface section is open, representing a thin 

plate with air on both sides rather than a boundary, exerting a net force on the air is 

equivalent to a pressure jump between the two sides of the surface.  The radiation 

characteristics of this term are identical to that of a dipole sources smeared over S  with 

density  tt ,'r ; this hypothetical equivalent is known as a double layer potential since a 

  

  

S 

'r
 

R
 

'n̂

r
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layer of dipole sources is equivalent to two layers of opposed monopole sources.  The 

radiated sound is discontinuous at surface, limiting to  tt ,'
2
1 r  depending on the 

direction of approach. 

The second term in the KIE describes the sound radiated by surface vibration.  The 

radiation characteristics of this term are identical to that of monopole sources smeared 

over S  with density  tvn ,'r , hence this hypothetical equivalent is known as a single 

layer potential. 

Although the boundary is allowed to possess a non-zero normal velocity, this is 

considered to be oscillatory and the resulting displacements very small with respect to 

the dimensions of S.  Consequentially the movement of the boundary is negligible, and 

it is assumed stationary at its mean point so its radiation characteristics are time 

invariant.  Alternatively, if a surface is modelling the boundary of a non-rigid material 

then the surface may be assumed to be stationary and conformal to the boundary of the 

material. 

The hypothetical equivalent surface sources, the double and single layer potentials, 

serve as a conceptual tool and illustrate that the KIE is consistent with Huygens 

principle, which states that a wave-front may be replaced by an equivalent surface of 

sources.  To model this with the KIE, the boundary is chosen along the wave-front and 

surface pressure and normal velocity values chosen according to what would have been 

observed there if the incident wave was present; the boundary vibrates and exerts force 

as if it were the air of the wave-front.  The simplest example of this is an infinite flat 

boundary slicing perpendicularly through a plane wave.  Using the coordinate 

transformation described in section  3.2 it is readily shown analytically that the same 

plane wave is radiated forwards and nothing is radiated backwards. 

2.1.2 Scattering problems 

The KIE describes the sound radiated by the known behaviour of a surface: a radiation 

problem.  Conversely this thesis is primarily focused on the sound scattered by a surface 
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in response to an incident sound wave.  This wave could have originated from a point 

source inside 
 , be radiation from another surface segment, just be specified as 

existing in 
  (such as a plane wave), or be a sum of instances of all three.  In order to 

calculate this scattered sound it must first be known how the boundary reacts to such 

excitation; this is described by the boundary conditions. 

The total sound  tt ,r  is the summation of sound scattered by the surface  ts ,r  and 

incident sound  ti ,r  originating from other sources.  Equation  2.8 describes the total 

sound arising from a known incident sound and a known surface sound distribution.  In 

a scattering problem the surface sound distribution is unknown and must be found from 

the incident sound.  A relationship between incident sound and surface sound is 

required; this will be dependent on properties of the surface described by its boundary 

conditions. 

     

           



S

n

ti

sit

dtvtRgtRgtt

ttt

',',,''ˆ,',

,,,

rrnrr

rrr




   2.8 

Boundary conditions place restrictions of the value of  tt ,r  on S .  Examples often 

encountered in room acoustics include a rigid surface (Neumann problem), where the 

normal velocity must be zero, and a surface possessing a specific acoustic impedance 

where the pressure and normal velocity are related by a known transfer function.  

Surfaces are regarded to be locally reacting, that is behaviour at a point is not affected 

by neighbouring points (except by propagation through the air), so a boundary condition 

is a point-wise criterion. 

In the direct BEM derivation, a general relationship between incident and surface sound 

is established for any surface character, and then refined to reflect the surface in 

question by application of the boundary condition at the integration point.  In order to 

achieve the former, equation  2.8 is examined as the observation point r  approaches S  

from  .  As was mentioned in section  2.1.1 the two terms in the integrand of the KIE 
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have known values at the surface; these are substituted, hence the total sound at r  when 

r  is touching S  but still in 
  is given by Equation  2.9. 

            



rr

rrnrrr
'

2
1 ',',,''ˆ,',,

S

n

tti dtvtRgtRgttt     2.9 

Despite the definition that  tvn ,'r  is the normal component of the gradient of  tt ,'r  

they are independent fields on the boundary, so Equation  2.9 has more unknowns than 

knowns and cannot be solved.  This is unsurprising as no information on the 

characteristics of the boundary has yet been included, apart from its shape.  The 

boundary condition is now applied at the integration point 'r . 

For example, at a rigid surface   0,' tvn r , hence various terms in  2.9 are zero and the 

direct BIE is given by Equation  2.10.  This equation now possesses only one unknown 

field so can be solved.  It is an integral equation of the second kind as the unknown field 

also appears outside the integral.  The direct BEM is only valid for closed surfaces as it 

has been assumed that the surface potential is absolute rather than a jump potential. 

       



rr

rnrrr
'

2
1 ',''ˆ,',,

S

tti dtRgttt       2.10 

2.1.3 Indirect BEM 

The indirect BEM postulates that the solution to the scattering problem may be 

represented by the summation of the incident sound and sound radiated by single and 

double layer potentials on a surface.  In the acoustics application it so happens that this 

equation has the same form as the KIE and the densities correspond directly to named 

quantities, so the indirect and direct BEM appear very similar.  However, the single and 

double layer densities are regarded as hypothetical fields so, instead of application of 

the boundary condition at the integration point, a solution is found by satisfying the 

boundary condition at the observation point as it approaches the boundary.  This is 

demonstrated for the case of a rigid surface in Equation  2.11, where r  is assumed to lie 

on S . 
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 

   

   

          







S

n

S

ti

si

si

t

dtvtRgdtRgtt

tt

tt

t

',',ˆ',''ˆ,'ˆ,ˆ

,ˆ,ˆ

,ˆ,ˆ

0,ˆ

rrnrnrnrn

rnrn

rvnrvn

rvn



   2.11 

Distributions of  tvn ,'r  and  tt ,'r  are now found that satisfy the boundary 

condition, using the known behaviour of the normal derivative of the layer potentials.  

This is rather a trivial example since the boundary condition explicitly sets the single 

layer potential weights to zero.  Less trivial boundary conditions state a relationship 

between pressure and velocity at the observation point, so there are more terms to solve 

from.  An indirect BEM may be valid on open surfaces if the boundary condition is 

compatible (as this example is). 

2.1.4 External problems 

The final piece in the framework for modelling scattering problems is how to deal with 

the common situation where the air surrounds the boundary (external problem), depicted 

in Figure  2.2.  The KIE was necessarily derived for the interior problem where the 

boundary surrounds the media, so this must be upheld.  The common way of achieving 

this is to consider there to be an enclosing surface S  at an infinite distance from the 

scattering body of interest, noting that the derivation of the KIE did not require S  or 

  to be connected.  S  is shown to have no effect on the sound close to the scatterer 

by using causality for transient problems (the sound scattered from the enclosing 

boundary never arrives) or by using the Sommerfield Radiation Condition for frequency 

domain (section  2.1.5) problems. 
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Figure ‎2.2: In the external problem the air must still be enclosed by surfaces; an outer boundary is 

imagined that so distant that its effects never arrive. 

As was alluded to by the earlier mentions of thin plates and open surfaces, the KIE does 

not explicitly disallow sound waves to travel through  .  The restriction that air is 

present on only one side of the boundary was lost in the process of conversion from 

volume differential equation to BIE.  That a wave is propagated outwards rather than 

inwards from a boundary is merely a property of the interactions of the normal velocity 

and pressure jump radiation patterns.  It is assumed that the  ti ,r  penetrates the entire 

media, both   and  . If   0, tt
r  in   this is only because the solution of the 

boundary condition over S  has created an equivalent surface source distribution that 

radiates a wave  ts ,r  that cancels out  ti ,r  in  .  In other words   is modelled 

as an air filled cavity; ramifications for BEM performance are discussed in section 

 2.1.9. 

2.1.5 Frequency and Time Domain Models 

The time domain KIE discussed so far describes the transient behaviour of sound 

witnessed in everyday life.  A special case of this, albeit a very important one, is when 

  

  

r
 

'r

 
R
 

'n̂

S  

S
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sound of only one frequency is present and always has been and will be, so the system is 

in steady state.  All quantities oscillate in time with angular frequency ω, and are 

described by     tit et   rr Re, , where  r  is a time-invariant complex-valued 

spatial field describing magnitude and phase.  This form is valid as sine waves are 

orthogonal in time hence any excitation describable in the above form will only create 

steady state oscillations in the media that can be expressed in the same way; solutions 

for different frequencies are independent and may be evaluated individually provided 

the acoustic system is linear.  Additionally, summation of single frequency responses 

can represent any transient signal of finite energy, and the Fourier transform provides a 

gateway between the time domain of  tt ,r  and the frequency domain of  r . 

   rr  0iP          2.12 

   
 

oi

P



r
rrV


         2.13 

The relationships between pressure, velocity and velocity potential in the frequency 

domain are expressed in Equations  2.12 and  2.13.  As previously mentioned, the Greens 

function describes how sound travels from point 'r  to point r .  The time domain 

version (Equation  2.7) intuitively comprises a delay term as a numerator and a reduction 

in magnitude with distance as the denominator.  The factor of (4π)
-1

 arises from the 

spherical symmetry of a point source.  The frequency domain Greens function 

(Equation  2.14) is a Fourier transform of the time domain version, where the delay has 

been converted to a phase change as all variables are oscillating with the same period 

.  
c

k   is the wavenumber describing phase change as a function of distance 

'R rr  . 
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Similarly the frequency domain KIE (Equation  2.15) is the Fourier transform of the time 

domain version, noting that temporal convolution becomes multiplication under Fourier 

transform.  This has very similar form to the time domain KIE but upon discretisation 

requires a different solution scheme. 

    

        

        
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2.1.6 Discretisation 

The surface quantities must be discretised in order for a solution to the boundary 

conditions to be found numerically.  The notation for discretisation used in this thesis is 

that of basis functions; a quantity is approximated by a weighted summation of a family 

of functions covering its support.  For example, the spatial variation of a snapshot of a 

sound could be written as Equation  2.16 where each  rnf  is a member of a family of 

spatial basis functions that cover S  and nw  are corresponding scalar weights. 

   




basis spatial
 fn

f rr nnw          2.16 

This notation improves clarity relative to the definition in prose used in some 

publications.  Generality is not lost; basis functions may be chosen to represent any 

discretisation scheme mentioned in this thesis.  In fact generality is improved as an 

algorithm may be developed without condition on what the basis functions actually are.  

Conversely, where a property of a basis function is exploited to allow a certain 

refinement of an algorithm this must be stated categorically. 

Most spatial discretisation schemes require approximation of the surface by elements 

denoted nS .  These may be flat (usually triangles or quadrilaterals), in which case the 

surface is approximated by a polyhedron, or possess curvature that is optimised to fit the 
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surface.  Over each element a family of basis functions is defined, usually with the 

property that the summation of the family is constant everywhere on the element, and 

zero elsewhere.  The simplest family comprises a single basis function that has these 

properties (Equation  2.17).  The spatial discretisation for the entire surface is the 

weighted summation of all these families of basis functions for all elements. 

 




 


otherwise0

S   if1
f

nr
rn         2.17 

This division of the surface into elements is not strictly necessary, but construction of a 

bespoke family of basis functions for an arbitrary surface is expensive, certainly more 

so than meshing into elements.  It is generally accepted that using higher order spatial 

approximations (both element curvature and basis functions) allows larger and hence 

fewer elements, at the expense of a larger number of unknowns per element. 

The temporal variation in the frequency domain problem is described by the complex 

exponential tie  , which is periodic hence the only time information is phase and that is 

contained in the complex value of the spatial weight nw .  Consequentially spatial 

discretisation alone is adequate for the frequency domain discretisation. 

By contrast the temporal variation of the time domain problem is unknown.  A family of 

temporal basis functions is required that approximates the temporal variation of the 

surface sound over the required duration.  Spatial discretisation is still required, thus the 

time domain problem is approximated by a nested summation of spatial basis functions 

and temporal basis functions as shown in Equation  2.18, where each  tiT  is a member 

of the family of temporal basis functions and each pairing has its own weight inw , . 
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In order to be suitable for solution using the Marching On in Time solver (defined in 

section  2.1.7) the temporal basis family should comprise regularly delayed copies of a 

mother basis function (Equation  2.19), where t  may be thought of as a time-step.  

Such a family may represent common interpolation schemes such as linear interpolation 

or zero-order hold, for which the mother basis function is a triangle function or a top-hat 

function respectively. 

  




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 itt
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2.1.7 Boundary Integral to Boundary Element 

The strategy used to create a Boundary Element Method Model from a Boundary 

Integral Equation is the same in both the frequency and time domains, although the 

resulting algorithms are different.  In both schemes, the surface velocity potential is 

approximated by a weighted sum of basis functions as described in section  2.1.6 and 

this is substituted into the integral equation.  As the KIE is a linear operator the 

summations and weights may be moved outside the integrals, creating a weighted sum 

of integrals that are dependent only on the surface geometry and independent of system 

excitation.  Upon evaluation these integrals become interaction coefficients that can 

calculate sound radiated from the surface using only the discretisation weights.  This is 

shown in Equations  2.20 and  2.21 for the frequency domain and time domain problems 

respectively, where the linear operator  L  represents the KIE, mapping surface 

velocity potential to radiated velocity potential at r .  The discretisation weights will be 

found by numerical solution of the matrix equations that result from combination of 

these integral equations with the boundary conditions. 
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To aid clarity in the remainder of this section the choice of basis functions is assumed to 

be piecewise constant spatial as Equation  2.17, and time-step based temporal as 

Equation  2.19.  This allows the discussion of the number of unknown weights to use the 

conventional terms of number of spatial elements sN  and number of time-steps tN , 

rather than the product of the size of sets of basis functions used.  For higher order 

discretisation schemes the number of unknowns is still proportional to the number of 

elements and number of time-steps so the trends discussed hold. 

The BIEs derived in sections  2.1.2 and  2.1.3 to calculate surface sound from incident 

sound are discretised in the same way as the KIE.  The frequency domain equation has 

sN  unknown weights.  In order to solve for those weights it must be evaluated at sN  

different points on the surface, called collocation points, often chosen to be at the centre 

of each element.  Each collocation point contributes a row to Equation  2.22, comprising 

a matrix Z  of excitation independent interaction coefficients, a vector of weights w  

and an excitation vector e .  Once the integrals in each element of Z  have been 

evaluated, standard linear algebra techniques are used to solve for w .  This algorithm 

may be interpreted as solving for the discretisation weights such that the boundary 

condition is maintained at all collocation points.  nm,  is the Kronecker Delta, c

mr  is the 

centre of element mS . 

eZw   where 
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The process is very similar for the time domain, despite the fact that the number of 

unknowns is multiplied by tN .  Temporal basis function selection combined with 

causality dictates that past surface sound cannot be changed and future sound is 
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irrelevant, hence at each time-step 
tj jt   the algorithm is only solving for the current 

unknown weights and sN  collocation points will suffice.  Equation  2.23 describes the 

time domain problem, comprising matrices 
ijZ  of excitation independent interaction 

coefficients, vectors of discretisation weights iw  and excitation vectors 
je . 

j

stepstimei

iij ewZ 


  where 
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To emphasise the time and excitation invariant nature of the matrices 
ijZ , the 

summation index will be changed to retardation ijl   in Equation  2.24.  If the mesh 

is finite and the temporal basis functions compact then there will be an upper limit on 

retardation time across the mesh, hence lZ  will be zero for l  greater than some constant 

maxl .  Future surface sound cannot contribute to current sound so l  must be also greater 

than or equal to zero. 

j

ll

l

ljl ewZ 






max

0

         2.24 

Known terms are gathered together on the right hand side in Equation  2.25, revealing 

that this equation, like that of the frequency domain, may be interpreted as solving for 

the approximation weights such that the boundary condition is maintained at each 

collocation point at each time-step.  The resulting algorithm is commonly referred to as 

the Marching On in Time (MOT) or „Retarded Potential‟ algorithm, and intuitively 

possesses an iterative structure with sound travelling from element to element with a 

finite speed. 


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2.1.8 Computational Cost 

The first stage of both these algorithms is to populate the interaction matrices by 

numerical integration.  In the frequency domain, both computational and storage 

requirements for this scale  2O sN .  In the time domain, a pair of elements may have 

multiple non-zero interactions, but for the time-step values typically used the number of 

these turns out to be roughly constant.  Hence both computational and storage 

requirements for the time domain interaction matrices also scale  2O sN .  In both 

algorithms the matrix population stage can be easily parallelised (fine-grained) to 

accelerate larger problems. 

The solution stage differs, and both are not easily parallelisable so their computational 

cost is paramount.  In the frequency domain, a dense matrix equation must be solved.  

The cost of performing this with traditional methods such as Gaussian Elimination is 

 3O sN .  Modern iterative solution methods scale substantially better than this;  2O sN .  

In the time domain a sequence of matrix multiplications must be performed.  This 

appears from Equation  2.25 to be cost  max

2O lN s
,  but the predictable and sparse 

structure of the interaction matrices may be exploited to give a cost  2O sN .  A sparse 

matrix equation must then be solved, but as the previous time-step‟s weights are 

available as a seed an iterative solver will converge rapidly with cost  sNO .  This must 

all be done tN  times, so the overall cost is  ts NN 2O .  The storage for the surface 

sound history requires  ts NNO , though can be reduced by only storing contributing 

weights in a buffer size  maxO lN s  and streaming older results to disk. 

For both algorithms the number of spatial elements required to mesh a given body is 

proportional to maximum frequency squared.  Additionally for fixed model duration the 

number of time-steps required by the time domain algorithm is proportional to 

maximum frequency of the excitation signal.  Hence the cost of the frequency domain 

algorithm is  4O frequency  and the cost of the time domain algorithm  5O frequency . 
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This analysis makes the cost of the time domain algorithm look not unreasonable 

compared to the frequency domain algorithm, especially when excitation is short, 

system reverberation is brief and solutions over a broad bandwidth are required,.  

However, the cost of both algorithms increases extremely rapidly with frequency 

restricting them to low frequency applications. 

2.1.9 Non-uniqueness and Stability 

It is well known that matrix equations such as Equation  2.15 may not possess a unique 

solution.  In scattering problems these correspond to non-physical resonances of the air 

filled cavity created inside the surface on conversion to a BIE; the phenomenon is 

fundamental to the BIE rather than being caused by the discretisation scheme, although 

the latter may aggravate the problem.  If the frequency of excitation is close to a 

resonance of the cavity accuracy will be poor or the numerical solver may fail to 

converge at all.  This problem is commonly addressed in the frequency domain by using 

either the CHIEF
5
 method, where internal points are used to create an over-determined 

system of equations, or the Burton-Miller
6
 method, which uses a linear combination of 

the KIE and its surface normal derivative that only possesses unique solutions. 

The same issue affects the time domain BEM, unsurprising as it is derived from an 

equivalent BIE.  As the algorithm iteratively models sound at the surface, cavity 

resonances appear as oscillations in the surface fields; the MOT equation may be 

considered to be a discrete multi-variant infinite-impulse-response filter, and the cavity 

resonances are its poles.  Error introduced in the discretisation process may corrupt a 

pole so that its response now grows exponentially, and as all resonances will be excited 

to some extent by any excitation signal this will dominate in long duration problems.  

This relationship between discretisation and stability masks the true origin of the 

oscillations and is responsible for the many publications that propose stability criteria 

based on an observed correlation with some aspect of discretisation.  Section  2.2.6 

discusses the development of these conclusions in detail. 
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2.2 Literature Review 

Very similar integral equations to the KIE appear in disciplines other than Room 

Acoustics, primarily Underwater Acoustics, Electromagnetics and Elastodynamics; 

hence the appearance of such publications in what follows.  While the latter two of these 

differ in that their unknown fields are vector rather than scalar, they share many 

characteristics, not least the resulting solution algorithm, since they are all concerned 

with the propagation of a wave of finite speed through a linear media. 

2.2.1 Early algorithms 

The earliest algorithms created to solve the transient scattering problem fell into the 

class of boundary integral solvers rather than BEMs.  Examples of these include Keller 

and Blank‟s
7
 1951 model of scattering from an infinite wedge using conformal 

mapping, Mindlin and Bleich‟s
8
 1953 model of scattering from a circular cylinder using 

separation of variables, and Barakat‟s
9
 1960 model of scattering by a sphere using a 

temporal Laplace transform and spherical spatial modal functions.  These models used 

boundary conditions and approximations of the surface quantities; however space and 

time were not discretised into elements and they lack the characteristic numerical 

solution stage hence are not classed as BEM models. 

Friedman and Shaw‟s
10

 1962 algorithm was the first to discretise the surface and form a 

time domain BEM.  It modelled arbitrary rigid cylindrical objects subject to shockwaves 

using two-dimensional elements assuming constant velocity potential within an element 

in a time-step.  It used an unusual Greens function, but after manipulation the end result 

was the characteristic MOT equation, albeit referred to as solution of “successive 

algebraic non-simultaneous equations”. 

Shaw‟s research interests appear to have been motivated by tsunami research in 

underwater acoustics.  In 1966
11

 he tackled scattering by cylindrical obstacles that 

exhibited inertial but not elastic resistance and in 1972 he and English
12

 published an 

algorithm for transient scattering by a pressure-release sphere (bubble).  Finally in 1975 

Shaw
13

 published an algorithm for transient scattering by a circular cylinder.  This 
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ruthlessly exploited the problem symmetry; using regularly spaced elements created 

repetition in the interaction matrices reducing storage and set-up cost from  2O sN  to 

 sNO .  Some late time instability can be observed in the results from this algorithm. 

The first algorithm for surfaces of completely arbitrary shape was by Mitzner
14

 in 1967.  

Although criticised by Shaw
15

 for not supporting discontinuous excitation waves it may 

still have influenced him as his 1975 paper had the same restriction.  Surface quantity 

discretisation was still constant in time and space, but a novel integration routine 

supported curvilinear elements and elements of revolution; velocity potential terms were 

brought outside the surface integral using a Taylor expansion, then the remaining term 

was recognised as being the negative solid angle and approximated using a procedure 

by Kellogg
16

.  Temporal derivatives were evaluated using a three-point backward 

difference rule that Groenenboom
4
 later describes as equivalent to the use of a quadratic 

interpolation scheme. 

Neilson, Lu and Wang
17

 combined the approaches of Shaw and Mitzner in 1978 by 

tracking a discontinuous wave front across a surface of revolution.  Discontinuities are 

of interest because a pressure impulse excitation creates a discontinuity in velocity 

potential. This is an issue in Mitzner‟s scheme because the numerical temporal 

differentiation method used is only suitable for continuous excitation.  To circumvent 

this, Neilson et al divide the surface into the silent part ahead of the wave front, the 

discontinuous part around the intersection of the wave front with the surface, and the 

continuous part behind the wave front.  The thickness of the wave front region is shrunk 

so that it becomes a line integral.  The fact that this region is seeing its first excitation 

(no other sound has previously arrived) justifies use of the Kirchhoff (infinite plane) 

boundary condition on this region, which gives surface pressure directly as twice that of 

the incident wave without use of temporal derivatives.  This expression is substituted 

into the right-hand side of the KIE, allowing pressure in the continuous region behind 

the wave front to be handled conventionally.  The resulting algorithm is complicated, 

not least because the wave front‟s intersection with the surface must be calculated at 

each time-step and the elements are treated differently depending on which region they 

are in.  Ironically Neilson et al comment that Mitzner‟s scheme actually performs 
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surprisingly well on such discontinuous excitation as the temporal difference scheme 

acts as a smoothing filter. 

Kawai and Terai‟s
18

 1990 scheme for scattering from thin rigid plates is mentioned here 

as it does not fit comfortably into any of the following sections.  The discretisation 

scheme in this algorithm is simplistic for its time, comprising flat elements with 

constant quantities in a time-step and temporal derivatives by finite difference.  It is also 

slightly inconsistent due to the occasional use of temporal interpolation.  What this 

paper does contribute is the conversion of the spatial double integral to a contour 

integral, and the ability to model arbitrary thin surfaces.  This algorithm‟s integration 

routine is the foundation of that detailed in section  3.2, and its formulation for thin 

surfaces is detailed in section  4.1. 

2.2.2 Discretisation 

All the BEM models mentioned in the previous section feature elementary discretisation 

specified in prose, complicating distinction of the algorithm from the discretisation 

scheme.  This section describes the migration towards the more accurate and concise 

description using basis functions.   

In 1983 Groenenboom
4
 contributed a book chapter which aimed to review and discuss 

all time domain BEM for all applications through discussion of the acoustic (scalar) 

version.  In this publication he uses interpolating temporal basis functions and finds 

spatial derivatives from these and his spatial basis analytically rather than by using the 

finite-difference approach he took in his 1982 paper
19

.  High order isoparametric spatial 

elements are also used, which can mimic curved surfaces and represent quantities by a 

small family of basis spatial functions each with their own weight.  These were 

originally developed for Finite Element Method (FEM) models, so some have 

characteristics more suitable for FEM than BEM.  The eight-node compatible 

quadrangle element (Figure  2.3a) is an example of this; it is missing the ninth (central) 

basis function necessary for complete surface quantity approximation as it is 

insignificant to FEM models due to it being zero valued around the edges of the 

element.  Similarly compatible elements are favoured by FEM models as they have 
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nodes on the edge that can be shared between elements; for BEM this causes 

complications as nodes are used as collocation points and these are not guaranteed to be 

on a smooth part of the surface.  Groenenboom advocates the use of nine-node non-

compatible quadrangle elements (Figure  2.3b) which posses the full family of basis 

functions and do not have collocation points on their edges.  Seven-node non-

compatible triangular elements (Figure  2.3c) are also ideal for BEM discretisation. 

 

Figure ‎2.3: Some high order isoparametric elements 

Bluck and Walker‟s
20

 1996 algorithm uses isoparametric spatial elements; these are the 

eight-node type derided by Groenenboom thirteen years earlier.  They argue the 

generally accepted point that use of higher order elements such as these reduces the 

number of unknowns, a critical factor in reducing the cost of the MOT algorithm.  An 

unusual temporal interpolation scheme is used: quadratic temporal elements (probably 

Lagrange polynomial basis functions) each length t2 , creating three unknowns for 

each two time-steps.  Temporal derivatives are evaluated analytically. 

Manara, Monorchio and Regginannini‟s
21

 1997 algorithm for the Electric Field Integral 

Equation (EFIE) returns to piecewise constant spatial basis on a flat triangular patch 

geometry but with a piecewise quadratic temporal basis function.  The exact motivation 

for this function is unknown, but multiple delayed copies sum to one as desired and the 

authors consider significant that the middle piece is part of a parabola interpolating 

 0,t ,  1,0 ,  0,t .  Ergin, Shanker and Michielssen‟s
22

 1999 paper uses the same 

spatial discretisation scheme and a piecewise cubic temporal basis function inspired by 

that of Manara et al.  Both these temporal basis functions are attributed stabilizing 

properties.  Ergin et al comment on their spatial discretisation scheme that “Numerical 

(a) (b) (c) 
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schemes employing more sophisticated spatial basis functions (e.g. isoparametric 

elements) are expected to behave similarly to the present scheme”.  

Continuing the idea that the temporal basis function is pivotal in creating stability in the 

MOT algorithm, Hu, Chan and Xu
23,24

  have published temporal basis functions that 

have been numerically optimized to maximize stability.  Unfortunately these basis 

functions are symmetrical so unsuitable for evaluation with the model described in 

section  2.3; the temporal derivative of the basis function at 0t  appears in the self-

interaction equation, hence a symmetrical temporal basis function creates an all zero 

diagonal of the matrix 0Z  potentially resulting in a non-unique solution. 

In Ha-Duong, Ludwig and Terrasse‟s
25

 2003 paper basis functions are chosen according 

to the assumed variation of the quantity to be represented.  For example, pressure jump 

is assumed to possess a square integrable first derivative so a piecewise constant 

discretisation is inadequate and piecewise linear must be used.  Temporal discretisation 

is also piecewise linear. 

A recent approach to discretisation is to use a family of hierarchical basis functions such 

as wavelets.  Such a temporal family could be used with a conventional element-based 

spatial discretisation scheme, or could be combined with a hierarchical family of spatial 

basis functions that supports the entire scatterer, moving away from the surface 

elements concept entirely.  The latter approach is attracting interest in the solution of the 

Laplace and Helmholtz equations, such as the 2006 algorithm of Amini and Nixon
26

, 

and is considered attractive as the basis families may be chosen such that they exhibit 

orthogonality properties that can be exploited to reduce the cost scaling of the 

algorithm.  These approaches are discussed further in section  2.2.7 

2.2.3 Two Dimensions 

A potential computational cost saving may be made by considering the two-dimensional 

version of a problem, as was done by Shaw in his 1962
10

 and 1975
13

 papers.  

Groenenboom
4
 also used the two-dimensional time domain BEM in the context of 

modelling the behaviour of liquid sodium in a nuclear reactor heat-transfer system. 
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In 1994 Cox
27

 found that a two-dimensional frequency domain BEM model is a good 

approximation for the scattering behaviour of diffusers that are of constant cross-section 

so long as a correction factor is used to account for their non-infinite length.  This factor 

could be calculated from a two-dimensional BEM model of a plate of suitable length or 

by Fresnel diffraction theory - both methods assume that vertical and horizontal 

scattering mechanisms are independent.  It follows that a two-dimensional time domain 

BEM may be expected to perform well with the same caveats. 

In room acoustics the two-dimensional world is considered to be a slice through a three-

dimensional world where all quantities and geometries are invariant with the third 

dimension z .  An element is a small section of the line of intersection of the surface 

and a plane of constant z , but radiation implicitly includes the corresponding part of the 

surface stretching to infinity in the z  direction so point sources are now line sources.  

Spherical radius R  is replaced with cylindrical radius r .  The number of elements 

required is now  frequencyO  and collocation points are chosen at the centre of the line 

elements.  This is depicted in Figure  2.4. 

 

Figure ‎2.4: Two-dimensional BEM element interaction geometry 

This is the geometry used by Shaw and in justification he writes “The form of the 

fundamental solution requires that the problem be considered as three-dimensional 

rather than two”.  However, two-dimensional Greens functions do exist for both the 

frequency and time domains.  The surface integral can be decomposed into a contour 

integral along the line of intersection of the surface and the slice, and an integral in z .  

r 

R z 

Plane of 

constant z 
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All quantities (pressure, velocity, velocity potential and geometry) are invariant in z , so 

the integrals can be rearranged so that the z  integral only contains the Greens function.  

This is shown in Equation  2.26 for the time domain and the same applies for the 

frequency domain. 
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Here a two-dimensional Greens function has been introduced that encapsulates two-

dimensional behaviour; it is given explicitly in Equation  2.27 where  h  is the heavy-

side function.  Importantly it is no longer compact in time, but has an infinite decaying 

tail.  This agrees with the view of Morse and Ingard
28

 who write “…circular waves have 

a more complicated shape than plane or spherical waves; they leave a „wake‟ behind 

them as they spread out”.  As a result the sequence of interaction matrices is now 

endless, requiring truncation, and they are mostly full.  The computational cost is now 

 22O ts NN .  The number of elements and time-steps both scale  frequencyO , so the 

cost of the 2D problem is  4O frequency , which versus the 3D problem‟s 

 5O frequency  is not a great saving.  Consistently Groenenboom
4
 writes that “the 

expected advantage of treating 3D problems in 2D symmetry is partly lost”. 
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In the frequency domain the computational saving is greater.  By virtue of the system‟s 

time-invariant nature, the frequency domain two-dimensional Greens functions 

(Equation  2.28) is still a complex valued scalar, so the matrix equation is still full but 

with a reduction in the number of elements.  The computational and storage cost is still 



 29 

 2O sN , but due to the reduced number of elements this is  2O frequency , substantially 

faster than the 3D problem‟s  4O frequency .    1

0H  is the Hankel function, the 

outgoing-wave solution of the Bessel equation. 
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In 2000 Lu, Wang, Ergin, and Michielssen
29

 published a paper applying their Plane-

Wave Time Domain algorithm (section  2.2.7) to two-dimensional electromagnetic 

scattering.  This significantly reduces the computational cost from  22O ts NN  to 

    ttss NNNN loglogO .  This breakthrough may make two-dimensional time domain 

BEM attractive. 

In conclusion, great computational savings may be made by considering frequency 

domain problems in two-dimensions.  Traditionally these savings do not translate to the 

time domain except for short model durations, so the two-dimensional time domain 

BEM is of less interest.  Use of the Plane-Wave Time Domain algorithm may redress 

this. 

2.2.4 Galerkin Schemes 

Both collocation and Galerkin testing schemes are approaches to converting an equality 

between fields on a domain into a matrix equality suitable for numerical solution.  This 

is illustrated for two hypothetical spatially and temporally varying fields   and   as 

follows, where the domain of equality is the product of the spatial domain   and the 

temporal domain maxmin ttt  : 

    ΦΨrr
r


 maxmin,

,,
ttt

tt        2.29 

In the case of time domain BEM, the KIE and the boundary conditions have created a 

relationship between incident and surface sound and upon discretisation this yields the 

MOT equation.  All schemes discussed so far have used collocation; the relationship 
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between incident and surface sound is considered at (and hence the integral equation is 

evaluated at) the centre of each element at each time-step.  Accordingly the elements of 

the matrices in Equation  2.29 would be defined: 
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c

mjm t,, rΨ   

 j

c

mjm t,, rΦ           2.30 

A Galerkin testing scheme is more sophisticated than collocation; where collocation 

only evaluates the fields to be tested at a set of points in space-time, a Galerkin scheme 

integrates them over all space-time with significance weighting functions, referred to as 

testing functions (indicated by a tilde).  If a Galerkin testing scheme was applied to the 

field equality of Equation  2.29 then the matrix elements would be defined: 
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The testing functions must be non-zero only in the domain of equality (Equation  2.32).  

If the support of each testing function is known then the integration domain may be 

reduced.  If, as in the BEM case, the domain of equality   is a surface then the order of 

integration may be reduced. 
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It is common in Galerkin BEM to find the basis functions being used as testing 

functions firstly because they are already defined appropriately over the surface, and 

secondly because when used with symmetrical integrands the interaction matrices 

become symmetric which may be exploited to reduce storage.  The schemes are 
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interchangeable, and in addition to matched testing schemes the combinations of spatial 

collocation with Galerkin temporal testing and vice-versa appear in the literature.  This 

flexibility is unsurprising as collocation is a special case of the Galerkin method where 

the testing functions are delta functions: 
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The flourishing use of Galerkin testing schemes in time domain BEM models is a 

relatively recent phenomenon, although Shaw
13

 proposed it in the future work section of 

his 1975 paper.  In the field of Electromagnetics Vechinski and Rao
30

 used spatial 

Galerkin testing with temporal collocation in 1992, and Manara, Monorchio and 

Regginannini
21

 allegedly use a Gallerkin testing scheme in 1997 although details are 

omitted.  Ergin‟s 2000 Thesis
31

 uses spatial Galerkin testing with temporal collocation, 

but in all but one special case he evaluates the testing integral (over the observer 

element mS ) using a one-point Gaussian rule, resulting in almost the same 

implementation produced by collocation in his 1999 paper
22

. 

Galerkin schemes are preferred by the more mathematically inclined authors perhaps 

because their properties are better understood and surrender more readily to rigorous 

theoretical analysis.  A Galerkin scheme is more accurate, and hence more stable, than a 

collocation scheme; for example Ding, Forestier and Ha-Duong
32

 concluded in 1989 

that use of Galerkin testing with piecewise constant basis gave better results than 

collocation with a quadratic basis.  This is believable from a physical perspective as a 

Galerkin scheme maintains the boundary condition across the whole surface rather than 

just at the collocation points.  

Philosophical comments also appear, such as Bonnet, Maier and Polizzotto‟s
 33

 in 1998 

that the symmetric Galerkin BEM has “harmony”.  An energy meaning is also attributed 

to the procedure, due to Equation  2.31 having the form of an inner-product.  There are 

many publications discussing the mathematical properties of the time domain BEM, a 
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substantial proportion of which are in French.  Ha-Duong‟s
 34

 comprehensive 2003 

survey article references the bulk of these. 

However all this is at the expense of additional integration effort and additional 

complication because the collocation point can no longer be guaranteed to be on a 

smooth region of the scattering surface.  Ding, Forestier and Ha-Duong
 32

 circumvent 

this issue in 1989 by using a one-point Gaussian rule to evaluate their testing integral.  

In light of this, their comments in the previous paragraph on improved accuracy must be 

solely attributed to the use of temporal Galerkin testing, which perhaps is more critical.  

In 2003 Ha-Duong, Ludwig and Terrasse
 25

 do integrate over the entire testing element, 

but the jump property is considered to be ½ everywhere, even on element edges, on the 

reasoning that they have infinitesimal thickness and therefore contribute negligibly to 

the integral.  Bonnet, Maier and Polizzotto
 33

 consider the singularity occurring on a 

common edge or vertex of adjacent elements separately from the contribution of the rest 

of each element. 

In the hierarchical basis function schemes mentioned in section  2.2.2 and discussed 

further in section  2.2.7 Galerkin testing plays a pivotal role.  Basis and testing functions 

are chosen such that they exhibit orthogonality properties, meaning they have a zero 

non-self inner-product with respect to space or time.  The cost savings associated with 

these algorithms are achieved by using Galerkin testing and exploiting the pattern of 

zero interactions that arises. 

2.2.5 Implicitness 

The word implicitness refers to the existence of off-diagonal terms in the current-

interaction matrix 0Z , meaning a matrix equation must be solved to find the current 

discretisation weights to satisfy the boundary condition.  Conversely explicitness is the 

inexistence of these terms, so each discretisation weight is found by division by a scalar. 

The physical interpretation is that an explicit algorithm solves to maintain the boundary 

condition at each collocation point individually, while an implicit scheme allows 

elements to interact within the current time-step and its solution maintains the boundary 

condition at all collocation points simultaneously.  Implicit iterative algorithms are 
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generally considered to be more stable than their explicit counterparts, as local errors 

are damped by the effect of their neighbours. 

In many time domain BEM implementations sound radiated in the current time-step and 

that from past time-steps cannot be distinguished, often ultimately due to imprecise 

specification of the temporal discretisation scheme in prose.  Instead all self interactions 

are considered current and all non-self interactions are considered past, forcing 0Z  to be 

diagonal and solution explicit.  Many algorithms do not even have a 0Z  matrix, its 

diagonal terms appearing directly in the equation for each collocation point, hence 

explicitness is embedded.  This restriction forces an upper limit to be placed on the 

time-step duration such that sound from other elements cannot contribute to the current-

interaction.  This is the Courant-Friedrich-Levy (CFL) condition defined: 
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If an implicit scheme is used t  may be chosen freely instead of being limited by the 

smallest element according to the CFL condition.  This can make a particular difference 

in situations where a few small elements are required to describe a small surface feature 

rather than to model rapid spatial variation in the surface fields.  An explicit model 

would be tied to the short t  prescribed by the CFL condition for the smallest element, 

hence would require more time-steps to model the problem duration with increased 

numerical cost.  Dodson, Bluck and Walker
 35

 suggest a typical ratio of tx c  (cubic 

elements in space-time) when similar order spatial and temporal basis are used, which is 

logical as temporal and spatial variation is represented with similar accuracy for each 

frequency component.  x  is the maximum element vertex separation defined as: 
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In their 1996 paper, Bluck and Walker
 20

 published an implicit time domain BEM for 

acoustic scattering.  Gaussian (point-wise) numerical integration was used (more details 

on numerical integration follow in chapter  3) and points lying within a sphere radius 

tc  were flagged as „current‟ and moved to the left hand side of the MOT equation. 

Ergin, Shanker and Michielssen‟s
 22

 1999 method achieved greater elegance than this; 

their summation of temporal basis functions was brought outside the integrals and the 

implicit structure follows naturally. 

Both these algorithms efficiently addressed the issue of solution of the matrix equation 

that had previously been considered a major disadvantage of the implicit scheme.  If 

Gaussian elimination were used, at a cost of  3O sN , this stage would dominate the cost 

of the MOT process.  By exploiting the time-invariant of 0Z  and using LU 

decomposition or multiplication by 1

0


Z  the cost can be reduced to  2O sN , the same 

order as the right hand side of the MOT equation, but the real cost is still substantial.  

The most efficient method is to use an iterative matrix solver, such as the conjugate-

gradient algorithm.  The two reasons this is so efficient are that 0Z  is extremely sparse 

and that the previous time-step‟s solution is an excellent solution seed; cost is the order 

of the number of non-zeros in 0Z  which is  sNO .  Consequentially the implicit 

algorithm has the same cost trends as the explicit algorithm but with fewer time-steps, 

possibly making it more efficient overall. 

Many authors have put a stronger (lower) limit on t  than the CFL condition as it is 

considered that a smaller time-step improves stability, an argument clearly against 

implicit schemes.  However, there is also published evidence to the contrary.  Dodson, 

Bluck and Walker
 35

 found a trend of increased instability at smaller (less implicit) time-

steps. Herman and van den Berg
 36

 found that an implicit time-step gave the most 

accurate results for their steepest-descent scheme (described in section  2.2.7).  In 1998 

Dyka and Ingel
 37

 wrote “More importantly, but less widely known, is the fact that the 
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standard retarded potential formulation is unstable for time-steps below a critical 

value”; Groenenboom‟s
 19

 1982 paper is cited as justification for this statement, though 

the only relevant evidence contained there is a pair of numerical examples where the 

one with the smaller time-step shows instability, so the evidence is not extensive.  A 

further argument in favour of implicitness is that, if a primary concern is instability that 

occurs after a large number of time-steps, then surely fewer time-steps are favourable to 

more. 

The use of CFL as an accuracy criterion is also anti-intuitive.  In the frequency domain, 

spatial variation is described by the wavenumber 1 ck  .  The largest phase variation 

over an element‟s area is expected to be k  multiplied by its maximum vertex separation 

x .  For the entire mesh, spatial discretisation error will likely be defined by the size of 

the largest element, not the smallest as with the CFL condition.  For a given mesh, CFL 

is likely to be proportional to temporal discretisation error, as it is proportional to t .  

However, the same proportionality factor would unlikely transfer to a different mesh.  

Assuming similar order spatial and temporal discretisation, a more appropriate accuracy 

measure for the time domain BEM is the phase variation permitted by the discretisation 

scheme (Equation  2.36), where max  is the maximum angular frequency and a small 

value indicates high accuracy. 
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Ha-Duong is less positive about implicitness.  In his 2003 book chapter
 34

 he writes 

“Actually various methods are proposed to improve the stability of these schemes: 

techniques of time-averaging, of shifted time-steps or by having recourse to some 

implicitness.  The main idea is to manage to kill the high frequencies of the algebraic 

systems obtained in the discretisation process”.  By this he groups together implicitness 

with engineered stabilization schemes, when it is rather an improvement in generality of 

formulation.  His 1989 algorithm
 32

 enforces the CFL condition, creating an explicit 

matrix equation as delta functions are used as Galerkin spatial testing functions.  By 

contrast his 2003 paper
 25

 uses the spatial basis functions as Galerkin testing functions, 
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so even when the (now meaningless) CFL condition is enforced, 0Z  contains non-zero 

off-diagonal terms.   However, rather than acknowledge that this algorithm is „implicit‟, 

the authors choose to designate it „semi-explicit‟, claiming in justification that CFL > 1 

would violate the causality condition.  In contrast, this thesis asserts that the CFL value 

characterises only the discretisation scheme and causality is ensured by the time domain 

Greens function, a stance reinforced by the existence of non-MOT simultaneous solvers 

and non-time-step based temporal discretisation (e.g. hierarchical) as described in 

section  2.2.7. 

Explicitness is merely a special case of implicitness.  The elegance of formulations such 

as Ergin et al‟s
 22

 should improve the popularity of implicit MOT based schemes.  

Simultaneously the introduction of hierarchical temporal basis functions renders the 

notion of time-step, and consequently the CFL condition, redundant. 

2.2.6 Stability 

Stability is a crucial issue for the time domain BEM and it, along with high 

computational cost, is a key reason for its lack of widespread use.  The vast majority of 

publications touch upon stability issues, and many propose conditions (often heuristic) 

that if met guarantee stability of the corresponding algorithm.  However it was not until 

1986 that the source of the instabilities was addressed directly. 

Rynne
 38

 observed that similar instabilities affect all time domain BEM models 

regardless of the application or discretisation, implying that this behaviour is 

fundamental to the method rather than the problem considered.  Additionally, these 

instabilities commonly take the form of an exponentially increasing oscillation that 

alternates in sign at each time-step.  He proposed that the instabilities are solutions of 

Equation  2.37 with the form of Equation  2.38.  This contradicts the initial conditions so 

the instability must be initiated by numerical errors, explaining the apparent dependency 

on discretisation scheme.  It also allows multiple instabilities to exist but, due to their 

exponential increase, the one with the largest α will ultimately dominate.  From this 

model of the instabilities, he concluded that the backward finite-difference formula used 

to evaluate temporal derivatives is a prime culprit for promoting instability, as it 
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magnifies errors with alternating sign.  Use of a central-difference formula produces 

better results as alternating sign errors cancel out. 
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Additionally to this, he suggested that instabilities are associated with the harmonic 

solutions (resonances) of the equivalent frequency domain problem.  He executed low 

frequency models with long time-steps and correlated the frequency of the resulting 

non-physical oscillations with the internal resonances of the scatterer.  This evidence 

supported the resonance association and proved that solutions excluded by the initial 

conditions can exist.  At higher frequencies there was no obvious correlation between 

the growing instabilities and resonant frequencies, but this was attributed to poor 

representation of high frequency components combined with the destabilizing effect of 

the finite-difference formula. 

In 1990 Rynne and Smith
 39

 re-examined these high frequency instabilities.  Rynne‟s 

instability model was superseded by the use of Singularity Expansion Method (SEM) 

poles, combining the   jj
e1  terms into a pole term j

n .  The continuous system 

response is given in Equation  2.39 in terms of poles and corresponding modes denoted 

ns  and nΦ  respectively.  The real part of ns  represents a damping coefficient and the 

imaginary part an oscillatory component.  The discrete time version of this model is 

given in Equation  2.40 and is related to the continuous time version by Equation  2.41.  

A stable continuous time pole ns  will lie in the left-hand complex half plane of an 

Argand diagram, and corresponds to a discrete time pole n   inside the unit circle, as 

depicted in Figure  2.5. 
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Figure ‎2.5: The equivalent poles of continuous and discrete time models 

Rynne and Smith write “The inaccuracies induced by the numerical discretisation of the 

integral equation causes some SEM poles, which theoretically should lie on the 

imaginary axis, to move into the right half plane.  Their corresponding solutions are 

then excited by the incident sound, at a low level initially, and then proceed to grow 

exponentially due to the positive real part of the pole.”  Additionally they note that open 

but lightly damped structures such as parallel plates may have poles close to the 

imaginary axis.  Again numerical inaccuracies may cause them to move into the right 

half plane and become unstable. 

Smith
 40

 goes on to argue that any body with many resonances is likely to have a 

troublesome pole near -1, as resonances near the Nyquist frequency are most poorly 

represented.  Reducing the time-step extends the frequency range of possible 

resonances, and they will have coarse spatial representation so are more likely to stray 

unstable.  She also states that if a body has a multiple pole, the corresponding solution 

will grow like   jj p , where  p  is a polynomial of order equal to the multiplicity of 

 , hence if 1  this will still grow like a polynomial in j . 
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Re(λn) 

Im(λn) 
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Any numerical analysis of stability requires a measure of stability such that algorithms 

may be ranked and the effectiveness of modifications evaluated.  Dodson, Walker and 

Bluck
 35

 wrote:  “There are two coupled aspects to instability; the time till the field 

begins its oscillatory exponential increases, and the rate of this increase.”  From this 

they propose a measure of stability being the reciprocal of the time required for the 

surface sound to reach again the intensity of the incident sound.  But this measure is 

dependent on the spectral content of the excitation signal which is undesirable.  Based 

on the preceding discussion, a possible measure independent of the excitation spectrum 

would be the rate of the exponential increase, as this tends to the magnitude of the 

largest pole. 

SEM poles may be found numerically using the state-transition matrix method used by 

Smith
 40

 in 1990 and Dodson, Walker and Bluck
 35

 in 1998.  The definition begins with 

the MOT equation without excitation (homogeneous), as it has been established that 

instabilities are excitation independent: 
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The state includes the current surface sound and sound that is en route between parts of 

the surface.  In a BEM model this travelling sound is computed as retarded potential, 

radiated by a surface element at some point in history, so the state vector must include 

the surface sound for all time that is still contributing to the current observed sound.  

This is represented by a vector 1jh  created by stacking all the surface sound vectors 

that contribute to the right-hand side of the MOT equation. The retardation limit, maxl , is 

easily found as the largest l  for which lZ  is non-zero.  Equation  2.44 represents a MOT 

iteration through multiplication of jh  by the state-transition matrix M .  Both 1jh  and 

M  are defined in Equation  2.43 where ll ZZM
1

0

 .  For a typical mesh M  is very 

large and sparse with  2

maxlN s  elements and  1maxmax

2  lNlN ss  non-zeros. 
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The significance of M  is that the SEM poles discussed above are found by its 

eigenvalue decomposition; each eigenvector eigenvalue pair describes a state that is 

unchanged by a MOT iteration except for a multiplication by a scalar.  These 

eigenvalues (and eigenvectors if desired) are easily computed using a sparse matrix 

eigenvalue decomposition algorithm.  This can be verified by reconstructing a system 

state from an eigenvector, then iterating it through the MOT algorithm and confirming 

that future states are indeed the initial state multiplied by powers of the eigenvalue.  

Unfortunately, due to the size of M , meshes with a large number of elements or long 

interaction history quickly reach memory limits, so only small meshes (e.g. <300 

elements for the MATLAB function eigs.m) may be subjected to this technique. 

Manara, Monorchio and Regginannini
 21

 proposed a different model in 1997.  The MOT 

algorithm is a multi-variable Infinite Impulse Response (IIR) filter calculating surface 

sound from excitation sound, so its inverse is a Finite Impulse Response (FIR) transfer 

function from surface to excitation sound.  The zeros of the latter are found by standard 

filter design techniques and correspond to the poles of the former, and the largest in 

magnitude of these characterises stability.  However, they concluded that this approach 

was prohibitively costly and instead focused their efforts on creation of an algorithm-

specific heuristic stability condition based on time-step and geometric properties. 

Once the mechanism causing the instabilities was understood, methods were created to 

suppress them.  In his 1986 paper Rynne
 38

 proposed two different methods.  The first 

was a system of spatial smoothing where the effect of the unstable mode 
e

Φ  was 
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subtracted at each time-step, as described in Equation  2.45.  e
Φ  was not found by 

eigenvector decomposition of the state-transition matrix, but by running the MOT 

algorithm normally, isolating any stability that became dominant, and then re-running 

with the spatial smoothing applied.  To automate this process Rynne also proposed a 

method of detecting instability given in Equation  2.46.  This coefficient remains close to 

one for a stable solution, but is consistently close to minus one once an unstable 

solution is dominant.  Spatial smoothing was found to be very effective, with minimal 

effect on accuracy; however the method of finding e
Φ  is computationally expensive 

and prone to error if two poles of similar magnitude exist. 
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Rynne‟s second proposition was a temporal smoothing scheme, which has the 

advantage of being instability independent so applicable immediately for any problem.  

At each iteration two MOT steps are calculated, then these and the previous surface 

sound vector are averaged according to Equation  2.47.  This does not create the 

doubling in computational cost that it first appears, as much of the assembly of the right 

hand side of the MOT equation used to calculate 1jΦ  may be stored and used again at 

the next iteration.  However it does cause some loss of accuracy, proportional to the 

second derivative of the true solution multiplied by the time-step squared. 

 
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In 1990 Rynne and Smith
 39

 further examined the temporal smoothing approach, 

showing that such schemes alter the stability condition to be that the magnitude of a 

polynomial in the pole must be less than one (Equation  2.48).  Relative to Rynne‟s 1986 

scheme (Equation  2.47) this replaces the unit circle region of stability with a circle 

radius two centred on minus one (Equation  2.49).  Other similar and higher order 

schemes were also proposed and the stability regions identified.  In the same year Smith
 



 42 

40
 also investigated the stability region created by application of Equation  2.47 once 

every k iterations.  This was an efficient approach but created peculiar, non-physical 

„saw-tooth‟ graphs in log pressure, as instabilities periodically grew and were 

suppressed. 
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In contrast to the preceding methods that modify the discretisation weights, Harris, 

Wang, Chakrabarti and Henwood
 41

 proposed in 2005 a stabilisation method based on 

modifying the state-transition matrix M  such that the magnitudes of all eigenvalues are 

less than or equal to one.  This approximation is considered reasonable as unstable 

eigenvalues are typically only 1% larger than one.  M  is decomposed according to 

1 PDPM , where D  is a diagonal matrix containing the eigenvalues of M .  D  is 

replaced by D
~

 (Equation  2.50), capping the magnitude of each eigenvalue to one, and a 

modified state transition matrix M
~

 is calculated by 1~~  PDPM  to be used in place of 

M .  It is unclear whether the modified system of equations may be solved by the 

classical MOT algorithm, or if repeated multiplication of jh  by M
~

 must be used, but 

the end result would be the same.  P  may be rank deficient due to M  possessing 

repeated eigenvalues, however in practice these are always zero so contribute nothing to 

the iterative process; the generalised inverse of P  may be used as the rank deficient 

sections are multiplied by zero.  Unfortunately this stabilisation technique is expensive 

to implement.  This paper also showed evidence that more accurate integration can tame 

instabilities. 
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Ha-Duong et al‟s
 25, 32, 34

 approach to stability analysis is that of mathematical analysis 

of the integral equations in question.  No attempt is made here to précis his arguments; 

however his thoughts on the above temporal smoothing schemes are clear from the 

quotation in section  2.2.5.  This comment is justifiable when targeted at temporal 

smoothing schemes as they do indeed suppress high-frequency components producing 

inaccuracy.  He goes on to write that such techniques are “insufficiently well grounded” 

in mathematical analysis. 

The association of the bulk of instabilities with cavity resonances suggests examination 

of the well established techniques of eliminating these in the frequency domain BEM.  

One popular method is CHIEF
 5,

 where silent observation points are chosen inside the 

scatterer and used to form an over-determined system of equations.  This method has 

the weakness that if all points happen to be chosen on nodes of the resonance, then the 

matrix will still be ill-conditioned and the solution non-unique.  It is also unsuitable for 

time domain application due to the finite-velocity of propagation between surface and 

observer. 

The alternative method is that of Burton and Miller
 6
.  They show that the 

complementary cavity problems of the standard BIE and its surface normal derivative 

never both have resonances at the same frequency.  Consequentially a matrix equation 

created from a weighted sum of the two will never be ill-conditioned and always 

possess a unique solution.  In 1999 Ergin, Shanker and Michielssen
 22

 published such an 

algorithm for the time domain and demonstrated its effectiveness.  Additionally they, 

plus Aygün
 42

, published a similar algorithm in 2000 for electromagnetics applications.  

This was a linear combination of the Magnetic Field Integral Equation (MFIE) and 

EFIE, referred to as the Combined Field Integral Equation (CFIE), a name they 

transferred to its acoustic equivalent.  This was not the first time the CFIE had been 
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investigated in a time domain context.  In 1992 Vechinski and Rao
 32

 compared the 

MFIE, EFIE and CFIE in the application of modelling scattering from a dielectric 

cylinder and experienced some, but not significant, improvement in accuracy by using 

the CFIE.  Ergin et al attribute the inconclusiveness of Vechinski and Rao‟s results to 

general numerical inaccuracies masking the improved stability granted by the CFIE.  In 

particular, low accuracy spatial integration and finite-difference temporal differentiation 

were used and sound retardation over an element was assumed constant. 

In 2006 Harris, Chappell, Henwood and Chakrabarti
 43

 published work using the CFIE 

to model sound radiated from vibrating surfaces.  Their algorithm was based on Ergin et 

al‟s, with the additional inclusion of terms for non-zero surface-velocity and an 

integration method for axisymmetric surfaces based on a Taylor Series expansion of the 

integrands. 

A final perspective on cavity resonances is Groenenboom‟s
 4
 1983 line of sight 

argument.  Based on the derivation of the BIE from the application of Greens theorem 

to the domain   that supports acoustic wave propagation, he argues that influence 

between points that do not have „line of sight‟ should be excluded, the intention being to 

restore the restriction that sound may only propagate through  .  He does not give 

implementation details, but it seems this must eliminate any interaction that propagates 

through  , including all cavity resonances.  There remain implementation questions 

such as whether the same shadows are applied to the incident sound (does   0r
i  if 

r ?) and how a convex surface can support tangential waves when the interaction 

from element to collocation point must pass through  ; perhaps the solution to this 

later point is use of a Galerkin testing scheme.  However, it seems this approach 

possesses a unique advantage of simultaneously removing cavity resonances and 

reducing the cost of the MOT routine (possibly at increased, though parallelisable, 

integration cost) through reduction in the number of non-zero interaction coefficients.  

For example, a convex scatterer would normally be expected to possess  2O sN  

interactions, but with Groenenboom‟s argument this would be reduced to neighbouring 

elements only being  sNO  interactions, a vast computational saving. 
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2.2.7 MOT Alternatives and Acceleration 

As the size of the problem and the number of elements increases, the bottleneck in the 

algorithm becomes the MOT process.  The integration stage may be fine-grain 

parallelised so can take as much or little time as the user chooses depending on the 

computational resources applied to it.  By comparison the MOT algorithm is not easily 

parallelised as each element interacts with every other element at every iteration.  

Granted, elements in proximity of each other will interact more imminently than those 

further away but a scheme for subdividing the surface among processors is not 

straightforward. 

This section describes methods proposed to accelerate or replace the MOT solver.  The 

methods that retain the Marching on in Time iterative process will be described first, 

and those that function by solving for all time simultaneously described second. 

In 1998 Walker and Vartiainen
 44

 proposed the use of the Kirchhoff boundary condition 

(surface velocity potential is double the incident) on parts of a surface that are large 

with respect to the largest wavelength present in the excitation signal.  Regions of 

complex geometry continue to be solved using the KIE and the MOT algorithm, but the 

numerical cost is reduced as the sound at much of the surface is already known.  Let x  

be the fraction of surface elements with complex geometry for which the KIE continues 

to be used.  Interaction matrices storage cost is reduced to  2O sxN , cost of assembling 

the right-hand side of the MOT equation is  ss NxN 2O , and the naive implicit matrix 

solution used costs  33O sNx  though this could be reduced to  sxNO  by using an 

iterative solver, giving a total algorithm cost of  ts NxN 2O .  This does not change the 

frequency scaling of the cost of the time domain BEM algorithm, unless x is considered 

to be a function of frequency.  However, the real cost of any suitable problem is 

reduced.  Walker and Vartiainen demonstrate the algorithms accuracy and efficiency on 

the problem of a rigid sphere close to a flat rigid plate. 

Another approach to accelerating the MOT directly is to perform convolutions using the 

Fast Fourier Transform (FFT).  Yilmaz, Jin and Michielssen‟s
 45

 2001 MOT-FFT 
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algorithm computes spatial convolutions in this manner for electromagnetic scattering 

from a rectangular plate. Features of the geometry are exploited to increase efficiency; 

in particular the plate must be meshed regularly, although some elements in the mesh 

may be holes rather than plate if desired.  As a result all element interactions for a given 

retardation are equal except for translation so form a two-dimensional spatial 

convolution; this is depicted in Figure  2.6.  All quantities are stored in their Discrete 

Fourier Transformed (DFT) form, and an inverse DFT is only taken of them for the 

MOT equation to be summed and solved before a DFT is applied to the solution   

Noting that for a regular rectangular mesh 
sNl max

  and that the cost of carrying out 

a DFT sequence of length n using an FFT algorithm is  nn log , the setup cost is 

  ss NN logO 5.1 , the storage cost is  5.1O sN  and the MOT cost is  ts NN 5.1O .  These 

cost trends are not as low as the Plane Wave Time Domain (PWTD) algorithm 

(introduced below) but this algorithm has a low complexity constant; the authors‟ 

implementation is faster than conventional MOT for 100 plus unknowns, and faster than 

PWTD for up to 100,000 unknowns, albeit for a limited application.  This algorithm 

could be readily transferred to acoustics.  In addition to a plate, the MOT-FFT method 

could be used to accelerate Shaw‟s
 13

 1975 cylinder model by one-dimensional spatial 

convolution.  No attempt appears to have been made to accelerate temporal convolution 

using the FFT, perhaps because temporal convolutions in three-dimensions are usually 

quite compact.  However, two-dimensional models require non-compact temporal 

convolutions so the FFT may be an efficient approach. 

 

Figure ‎2.6: Interactions on a regular grid of elements form a spatial convolution 

Ergin, Shanker and Michielssen published their two-level
 46

 and multi-level
 47

 Plane 

Wave Time Domain (PWTD) algorithms for acoustics in 1999 and 2000 respectively.  
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They write that they “can be considered the time domain counterpart of the frequency 

domain fast multipole method”, some versions of which
 48, 49, 50

 are based on similar 

principles.  The algorithms function by projecting the aggregate sound radiated by a 

portion of the scatterer (sub-scatterer) onto a number of time-dependent plane waves.  

These are readily propagated and the sound at an observer sub-scatterer is constructed 

from the plane waves arriving from all adequately distant sub-scatterers; MOT is used 

for adjacent sub-scatterers and self-interaction. The number of plane waves required and 

their permitted duration are functions of sub-scatterer size and separation respectively.  

The latter limit exists due to the presence of non-casual „ghost‟ signals in the plane 

wave transform that must be removed by temporal gating. 

In the two-level algorithm all sub-scatterers are similar size and periodically the plane 

wave transform is used to calculate retarded interaction between all non-adjacent sub-

scatterer pairs.  The implicit matrix equation is solved simultaneously over the whole 

surface using an iterative solver.  Computational cost is improved from  2O st NN  for 

MOT to   sst NNN logO 5.1 . 

The multi-level algorithm uses the same plane wave transform but exploits the 

relationship between sub-scatterer separation and plane wave duration more fully.  Sub-

scatterers are grouped hierarchically according to location, so distant regions can be 

aggregated and interact on mass.  These interactions between these larger, more distant 

sub-scatterers can occur less frequently but require a larger number of plane waves to 

achieve acceptable accuracy.  In order to achieve this efficiently in a multi-level setting 

processes of „interpolating‟ and „splicing‟ are developed that construct the plane wave 

transform of a parent sub-scatterer from those of its children.  The inverse operations of 

„resection‟ and „anterpolation‟ convert long duration plane waves arriving at a parent 

observer sub-scatterer into a shorter duration representation suitable for its children.  

Again MOT is used for close elements and iterative implicit matrix solution is applied at 

each time-step.  Plane wave terms dominate memory usage at a cost of  st NNO .  The 

computational cost is reduced to an attractive   sst NNN 2logO  and the authors‟ 

implementation is more efficient than MOT for 1600 plus unknowns. 
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An entirely different approach to solving a time domain BEM matrix equation is to 

solve for all time simultaneously.  This approach is given by in Equation  2.51; all 

surface sound and excitation vectors are stacked and the interaction matrix Z  exhibits a 

clear pattern in terms of the MOT interaction matrices.   In this context the MOT 

algorithm may simply be considered a matrix solver for any problem where Z  is lower-

block-triangular, but standard matrix solution techniques may also be used. 

eZΦ   where:         2.51 
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Due to the size of Z  ( 22

st NN  elements) a very efficient solution strategy is required.  

Herman and van den Berg‟s
 36

 1982 algorithm was defined as a steepest-descent 

algorithm but in integral equation terms rather than matrix terms.  Starting with the 

incident sound as an estimated solution, the square of the residual from the KIE 

integrated over the surface and time was iteratively minimised.  They achieved similar 

computational cost to the MOT process, and better accuracy in terms of the residual 

criteria.  Additionally Rynne
 38

 commented that such methods tend not to exhibit 
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instability; steepest-descent solvers typically disregard components of homogeneous 

solutions which do not affect the residual that they aim to minimise. 

Although Equation  2.51 can be extremely memory inefficient, some restrictions 

imposed by the MOT equation are lifted.  As the solution is performed simultaneously 

for all time, a time domain version of the CHIEF
 5
 algorithm could be used to tackle 

cavity resonances.  The notion of time-steps is not required so temporal basis functions 

may be chosen to be something other than delayed copies of a mother basis function; for 

example a hierarchical scheme such as a wavelet family. 

One approach to improving the computational efficiency of matrix solution is to choose 

basis functions that exhibit orthogonality under Galerkin testing such that the majority 

of coefficients in Z  are zero and a compressed version of Equation  2.51 may be solved.  

This is attracting significant attention in the solution of the Laplace and Helmholtz 

equations such as Amini and Nixon‟s
 26

 2006 two-dimensional algorithm that achieves 

  ss NN logO  computational cost.  Shifman and Leviatan‟s
 51

 2001 publication uses 

this approach in the time domain Electromagnetics application for a one-dimensional 

dielectric slab.  In their implementation interactions are evaluated for a standard basis 

function representation, but subsequently transformed to a Haar wavelet basis using a 

basis transformation matrix.  A compressed matrix equation is solved, iteratively 

including dominant wavelets until an error criterion is satisfied.  Optimisations include 

tailoring the wavelet library to include appropriate basis, such as periodic or semi-

periodic functions to model quasi-periodic behaviour.  This approach appears to have 

the potential to achieve excellent cost scaling and emphasises the equivalence of the 

frequency and time domain problems. 

The final algorithm in this section exploits the orthogonality of Laguerre polynomials 

with respect to te  (Equation  2.52).  This suggests Equation  2.53 for use as temporal 

basis and Gallerkin testing functions, where s is a scaling value, with the orthogonality 

property given in Equation  2.54.  The Laguerre polynomials are defined recursively 

according to Equation  2.55.  The definition of these temporal basis functions also has 
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the convenient property of not supporting un-physical exponentially growing 

oscillations. 
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This approach was published for electromagnetic applications by Chung, Sarkar, Jung, 

Salazar-Palma, Ji, Jang and Kim
 52

 in 2004, and an updated algorithm with improved 

integration by Ji, Sarkar, Jung, Yuan and Salazar-Palma
 53

 in 2006.  The algorithm 

solves for all time simultaneously, but due to the recursive definition of the temporal 

basis functions, takes on a Marching On in Order (MOO) representation.  This process 

requires a matrix equation solution at each iteration, but the matrix in question is 

spatially dependent only so LU factorisation need be performed only once.  This method 

has the benefit that the same temporal basis is used for all bandwidth excitation sound, 

suffice that the MOO process is truncated at an appropriate order. 

2.2.8 Boundary Conditions 

Most surfaces studied using time domain BEM are rigid but a few exceptions have been 

published.  Shaw and English‟s
 12

 1972 publication of an algorithm for a pressure 

release sphere contained a zero pressure boundary condition, but this is realised by 
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discretising normal velocity and remains a simple implementation.  Groenenboom
 19

 

used a radiation condition (Equation  2.56) to model pipes leaving a pressure vessel.  

The same boundary condition was used by Ha-Duong, Ludwig and Terrasse
 25

 in their 

2003 model of absorbing boundary conditions using a real absorption coefficient a .  A 

Robin boundary condition (Equation  2.57) is equivalent to a surface that offers inertial 

but no elastic resistance.  This was modelled by Shaw
 11

 in his 1967 paper, with 

differing algorithms for heavy surfaces (discretised pressure) and light surfaces 

(discretised normal velocity) with respect to the weight of the fluid.  Herman
 54

, and 

Herman and van den Berg
 36

 modelled scattering by inhomogeneous and homogeneous 

obstacles respectively. 
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0ˆ   Kn          2.57 

Boundary conditions in the form of Equation  2.56 are used in the frequency domain to 

represent reflection from arbitrary surfaces except 1c  is replaced by specific acoustic 

impedance, a frequency dependent complex quantity.  Such a multiplication in the 

frequency domain is equivalent to a convolution in the time domain, as shown in 

Equation  2.58.  Unfortunately a  t  found by inverse Fourier transform of measured 

and extrapolated frequency domain data is not necessarily casual.  Publications 

addressing this issue include 1996 Tam and Auriault
 55

, 2000 Fung, Ju and Tallapragada
 

56
, 2001 and 2004 Fung and Ju

 57, 58
.  Their discussion of obtaining time domain versions 

of frequency domain impedance data is not considered in this thesis, however their 

conclusion that reflectance is a more reliable quantity to use is exploited in chapter  5. 
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2.2.9 Conclusions 

Many ideas and implementation approaches have been précised in this chapter, 

presenting a wealth of research questions to be answered.  However, what is initially 

required by the research methodology is an algorithm that occupies the middle ground 

of the state-of-the-art and is accurately described so as to be readily replicated.  The 

various sections of this literature review have identified that such an algorithm should 

use the classical MOT process but support implicit time stepping, use a basis function 

representation so that the discretisation scheme may be readily altered, and address 

stability, preferably by considering its origins rather than applying averaging. 

Of the algorithms referenced the one that most closely fits these criteria is Ergin et al‟s
 

22
 1999 publication.  In addition to these properties, it is an ideal candidate for 

acceleration, proven as it is the basis for the group‟s PWTD algorithms, and suitable for 

application of a Galerkin testing scheme rather than collocation.  In addition, there is a 

wealth of implementation detail present in the paper that allows the following section to 

describe the algorithm with authority.  This algorithm will form the algorithmic 

foundation of this thesis, with concepts and implementation approaches being 

introduced from other publications as necessary. 

2.3 “Analysis of transient wave scattering from rigid 

bodies using a Burton-Miller approach” 

This section describes the algorithm published by the group at the University of Illinois
 

22
 in 1999.  The structure of the algorithm and its transparent nomenclature matches that 

used in this thesis, which in turn bears great similarity to the nomenclature of Pierce
 3
.  

Because much of this has already been discussed in section  2.1 the key features of this 

algorithm and their significance will here be outlined individually.  The algorithm also 

appears in Ergin‟s thesis
 31

, and there are slight discrepancies between the two that will 

be highlighted in what follows. 
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2.3.1 Basis functions 

The scattering surface S is approximated by flat triangular surface elements.  Velocity 

potential is assumed to have no spatial variation over each of these elements so may be 

approximated by a single time dependent scalar; the basis function used is by Equation 

 2.17.   

This is a MOT style algorithm, so the temporal discretisation comprises regularly 

delayed copies of a mother basis function as Equation  2.19; the mother basis function 

used is a piecewise polynomial given in Equation  2.60 and shown in Figure  2.7 and has 

the important advantage that temporal derivatives may be found analytically.  The 

piecewise polynomial chosen is stated to be an extension of that used by Manara et al
 21

 

in electromagnetic applications.  It is continuous but does not possess continuous 

derivatives.  It is compact in time and its integral with respect to time is unity.  It is 

asymmetrical, with a non-zero derivative at zero time, and supports less than t  into 

negative time, hence is suitable for solution by the MOT algorithm. 

The full discretisation scheme may be written as Equation  2.59.  The weights njw ,  have 

been renamed nj ,  in response to the fact that, because of the choice of the basis 

functions, each set of weights jΦ  is equal to the instantaneous surface velocity 

potential at time tj jt  . 
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Figure ‎2.7: The mother temporal basis function 

2.3.2 Integral operators 

All the operators are derived from the KIE for a rigid surface, given in Equation  2.61; 

here the time domain Greens function has been written explicitly in the integral 

equation.  The primed surface normal vector and gradient operator are evaluated at the 

integration point 'r . 
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The pressure operator is created by substituting Equation  2.61 into the boundary 

condition that no pressure field may exist inside the scatterer (  ), hence incident and 

scattered fields must annihilate (Equation  2.62). Substituting in Equations  2.1 and  2.61 

and taking the limit as r  approaches S  from the inside results in the familiar double 

layer potential jump property and definition of the pressure operator  pL  (Equation 

 2.63). 
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The velocity operator  vL  is created by specifying that surface normal velocity 

through a rigid surface must be zero, so components of velocity must cancel at S  

(Equation  2.64).  Note that this un-primed normal derivative is carried out at the 

collocation point r .  The integral is smooth everywhere except the singularity 'rr  , so 

the normal derivative operation may be moved inside the integral everywhere apart 

from there.  However, the integral is spherically symmetric so the gradient at the 

singularity must be zero.  Hence the integral with the normal derivative moved inside is 

simply evaluated in the finite part sense with no other term (Equation  2.65). 
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The combined operator is defined as a linear sum of the pressure and velocity operators, 

where α is a parameter between 0 and 1 that defines the weighting of the two constituent 

operators; if 0  then pc LL  , if 1  then vc c LL  .  The wave speed c  

normalises the magnitude of the self-interaction terms.  The complete acoustic CFIE is 

defined from the linear sum of the respective boundary conditions: 
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Ergin et al present numerical examples plus an argument based on conservation of 

energy to strengthen the case that this combined operator is fundamentally more stable 

than either of its constituent operators.  This argument states that only the combined 

operator provides a means for energy trapped in the cavity to escape.  Although in 

principle the initial conditions (silence) combined with the rigidity of S  should prevent 

energy from being present in the cavity, numerical inaccuracies allow leakage and, 

without a means to escape, this accumulates into growing oscillations at resonant 

frequencies of the cavity.  Hence the CFIE circumvents instabilities inherent in its 

constituent operators and any remaining instability is attributed to numerical inaccuracy, 

be its origin discretisation approximation or finite machine precision. 

2.3.3 Implicitness 

An implicit algorithm structure follows naturally from the summation of temporal basis 

functions being brought outside the integrals.  In addition to this improvement in 

elegance Ergin et al propose an efficient approach to address the issue of solution of the 

current-interaction matrix.  This exploits the fact that it is usually diagonally dominant 

and extremely sparse, making it an ideal candidate for iterative solution.  Additionally, 

in their implementation the previous time-step‟s solution is used as a seed so 

convergence is rapid; the authors write “a relative residual error of 10
-6

 was obtained in 

less than 15 iterations for all cases presented”. 

2.3.4 Integration 

Numerical integration is addressed differently in the paper and Ergin‟s thesis; the latter 

implements a spatial Galerkin scheme and the former spatial collocation, both use 

temporal collocation.  However, due to the numerical integration methods chosen for 

the Galerkin testing the resulting implementations are extremely similar. It appears that 

the Galerkin scheme existed first and was replaced by collocation for journal 

publication. (Evidence for this sequence of events lies in a typographical error in the 
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appendix of the paper where an expression from the Galerkin scheme mistakenly 

appears.) 

In the paper spatial testing is performed with delta functions to form a collocation 

scheme, where c

mr  is a collocation point: 
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In the thesis testing is performed with the spatial basis functions to form a Galerkin 

method: 
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Testing for all surface elements produces a matrix equation that is rearranged to form 

the familiar MOT equation (Equation  2.25).  In the paper the excitation vector je  is 

evaluated at the collocation points (Equation  2.69) but in the thesis it is integrated over 

the observer element mS  using a one point Gaussian rule (Equation  2.70).  

Consequentially the only difference between the schemes in implementation is a scaling 

by mA , the area of element mS . 
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To calculate the elements of lZ  the testing schemes are carried through to the pressure 

and velocity operators as shown in Equations  2.71 and  2.72. 
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 pL  is first evaluated analytically converting all spatial differentiation into temporal 

differentiation of the temporal basis function.  This is given below, except that Ergin et 

al omit the   1
4


  from the integrand; this is a typographical error.  1 cRt j  is 

retarded time. 
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The same process is performed for  vL : 
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In the self interaction case, this integral becomes hyper-singular so it is regularized by 

conversion to a polar integral.  Equation  2.75 is correct for the paper, and Equation  2.76 

for the thesis, where a one-point Gaussian rule is used to evaluate the testing integral. 

(typographical errors corrected): 
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2.3.5 Choosing time-step duration 

Ergin et al recommend that an appropriate value for t  may be found by solely 

considering the frequency content of the excitation signal.  They introduce a parameter 

β to represent temporal resolution and suggest t  is chosen according to Equation  2.77, 

where for all the examples they present “β = 10 yielded reliable results”. Rearrangement 

of this equation shows that β is inversely proportional to the CFL coefficient for a given 

problem (mesh and excitation).   While numerical examples later in this thesis show that 

error does increase as β is reduced, results will also reveal that in practice the choice of 

t  is very critical for stability of certain meshes. 
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t


max

2




           2.77 

2.3.6 Verification 

Ergin et al verified their algorithm against a Mie series scattering model on a sphere and 

against a frequency domain BEM model on a cube and an almond.  The verification was 

run with differing values of   and the instabilities that occurred when 0  or 1  

reinforced the effectiveness of the CFIE formulation. 

2.3.7 Weaknesses 

Ergin et al‟s algorithm only calculates surface velocity potential for rigid polyhedral 

surfaces devoid of thin appendages.  It does not calculate the scattered sound in   but 

this is trivial to implement.  More significantly, it will be seen in chapter  3 that the 

numerical integration techniques employed are incompatible with the temporal basis 

function used, although this has surprisingly little effect on the solution.  Chapter  4 

demonstrates a simple way to extend the algorithm to model surfaces with thin 

appendages.  Chapter  5 extends the algorithm to model absorbing and welled surfaces.   

2.4 Conclusions 

The time domain Boundary Element Method has been presented.  Its likenesses to its 

frequency domain counterpart have been highlighted and the computational costs have 

compared.  The current state-of-the-art has been listed, précised where appropriate, and 

the foundations of this thesis laid.  An algorithm has been selected for replication and its 

implementation described.  

In the next chapter the effect of integration accuracy on solution accuracy and system 

stability will be investigated.  A numerical integration scheme based on conversion of 

the surface integral to a contour integral is proposed and shown to be superior to the 

implementation used by Ergin et al. 
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3 Integration accuracy and real-world surfaces 

Typically, the problems used for verification of time domain BEMs are extremely 

simple.  In contrast most surfaces of interest in Acoustics, such as diffusers, are 

extremely complex.  This has a two-fold effect; first the sound field at the surface may 

be expected to exhibit more rapid spatial variation than for a simple surface, resulting in 

greater discretisation error.  Secondly, quirks of the geometry may cause the integrals to 

become more singular, hence more difficult to evaluate accurately. 

As the MOT solver is an iterative process any errors in the interaction coefficients can 

affect not only accuracy but also stability.  Ergin et al
 22

 claim their combined operator 

is inherently stable, unlike the pressure and velocity operators alone, so any additional 

instability must result from discretisation and integration errors.  Within the current 

discretisation scheme, error can only be reduced by increasing the number of elements 

and reducing the time-step, both of which significantly increase numerical cost.  It 

therefore seems logical to investigate the numerical integration algorithm, to discover if 

accuracy can be improved without a major increase in computing overhead.  In 2005 

Harris, Wang, Chakrabarti and Henwood
 41

 applied Ergin et al‟s algorithm to radiation 

problems, and published evidence in support of this stance.  

As was concluded in chapter  2, the Combiner Field Integral Equation (CFIE) will be 

implemented due to its absence of cavity resonances; accordingly this chapter must 

study numerical integration performance on both the pressure and velocity operators 

that comprise the CFIE.  The discretisation scheme is chosen to match that of Ergin et 

al; some ramifications of temporal basis function choice will be discussed in chapter  6.  

The MOT solver will be used as, although inefficient, it forms the basis of acceleration 

schemes such as PWTD and it is anticipated that meshes need not be large for the effect 

of integration accuracy to be assessed. 

In this chapter two candidate integration schemes will be contrasted: Gaussian and 

contour.  The former will be examined in section  3.1, where the scheme used by Ergin 

et al is adopted as a typifying example.  The integrands of this scheme will be seen to be 
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discontinuous, due to the choice of the temporal basis function, and accuracy poor 

where a discontinuity intersects the integration element of an interacting pair.  Monte 

Carlo integration
 59

 is used as a verification tool to assess numerical accuracy.   

In section  3.2 the contour integration scheme is derived, based on the same integral 

transformation used by Kawai & Terai
 18

 (1990).  This is compared with the Gaussian 

integrands, again by Monte Carlo integration, and seen to disagree when a discontinuity 

intersects the integration element.  Modifications are made to the contour scheme to 

compensate and the resulting implementation achieves excellent agreement with the 

Gaussian integrands.  The origin of these changes is explored and it is found to be the 

Gaussian scheme that is deficient; the un-modified contour integration scheme is 

embraced as correct. 

Section  3.3 provides numerical examples, contrasting performance of the three 

integration implementations on a simple idealised surface (a sphere) and a complex 

diffusing surface typical to Room Acoustics.  Significant integration error is observed 

for both meshes, but the MOT results are largely unaffected; accordingly a mechanism 

is identified by which integration errors arsing from the temporal basis function largely 

cancelled out.  However, on the diffuser mesh the MOT solver is unstable with 

Gaussian integration, while the contour integration schemes both result in stable 

solutions.  It is concluded that spatial singularity terms are responsible for the latter 

result. 

3.1 Gaussian Integration 

Ergin et al‟s integrands were briefly introduced in section  2.3.4.  This section examines 

the behaviour of those integrands, describes the numerical integration strategy used and 

reviews their appropriateness.  Symmetric Gaussian integration rules for triangular 

domains will be introduced, some suitable for polynomial integrands of a very high 

order.  The convergence of Monte Carlo integration on the real integrands will be 

examined to show the significant factors which affect accuracy. 
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3.1.1 Gauss-Legendre Rules 

Gaussian integration is a fixed precision numerical integration scheme which operates 

by evaluating the integrand at a set of abscissa (locations), multiplying those results by a 

corresponding set of weighting coefficients, and summing to obtain an approximation to 

the integral.  The corresponding sets of abscissa and weights are referred to as a rule, 

and may be optimised for different types of integrand.  In this chapter all Gaussian rules 

fall into the subcategory of Gauss-Legendre rules, and are optimised to give zero error 

for polynomials of up to a given order, referred to as the order of the rule.  This is 

easiest to visualise for a one-dimensional integral; the approximation equation and a few 

simple examples are shown below where  f  is the integrand to be approximated, and 

iw  and ix  are the weights and abscissa respectively which are scaled according to the 

integration domain [a, b]: 
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Table ‎3.1: Examples of low order Gauss-Legendre rules. 

Order Polynomial  Abscissa Weights 
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Gaussian rules for double integrals (surfaces) are more difficult to optimise for a given 

polynomial order than those for single integrals (lines).  They still have the same form 

as the one-dimensional integral approximation with only a single summation despite the 

double integral: 
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Rules for quadrangle integration domains are often created from two nested single 

integral rules and may be condensed into the above single summation form.  These rules 

are usually termed “Gaussian Product Rules”, and the number of abscissa possessed is 

the product of the numbers in the constituent rules: 
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      3.3 

This chapter will deal solely with triangular elements in accordance with the example 

Gaussian implementation chosen, so it is triangular integration domains that are of 

interest.  Gaussian product rules may be used for triangular domains, but many abscissa 

become clustered in one corner, an inefficient distribution.  Symmetric rules are evenly 

spaced so more efficient in their use of abscissa. The seven-point symmetric 6
th

 order 

rule
 60

 used by the Gaussian implementation is given in Table  3.2 and the location of the 

abscissa is depicted in Figure  3.1; this will be referred to as „Rule7‟.  Wandzura and 

Xiao
 61

 have published very high order rules found by numerical optimization.  Many of 

these can be downloaded as Matlab m-files from a useful online resource created by 

John Burkardt
 62

. 
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Table ‎3.2: Rule7 abscissa and weights 

Abscissa Weights 

 0,0  1200
270  

   
14

115

14

115

7

115 3,,0,    
1200

15155  

   
14

115

14

115

7

115 3,,0,    
1200

15155  

 

 

Figure ‎3.1: Locations of the abscissa of Rule7 

To grasp the meaning of the “order” of a Gaussian integration rule it will be applied to 

an analytically integrable integrand and the error examined.  This shall be the product of 

powers of two orthogonal variables, intended to represent any term arising from the 

product of two one-dimensional polynomials.  The integration domain shall be the 

triangle bounded by the lines 0y , xy   and 1x .  The analytical result and the 

vectorised integrand are given in Equations  3.4 and  3.5 respectively.  Figure  3.2 shows 

isograms of relative error (the magnitude of the error divided by the magnitude of the 

correct result) as a percentage for varying powers m  and n  as evaluated with Rule7. 

1 
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Figure ‎3.2: Error in integrating the product of two polynomial terms using Rule7 

It is concluded from Figure  3.2 that small relative errors are a function of nm , the 

combined order of orthogonal polynomials, meaning the orientation of the polynomial is 

irrelevant.  This assumption allows n  to be set to zero and m  varied; Equations  3.4 and 

 3.5 are replaced by  3.6 and  3.7 respectively. 
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  1
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Figure ‎3.3: Performance of symmetric Gaussian integration rules: Lowest polynomial order giving greater 

than 1% error versus number of abscissa 

Figure  3.3 shows the lowest polynomial order giving greater than 1% error versus the 

number of abscissa (the cost of the rule) for a variety of symmetric rules.  The trend is 

that the number of abscissa is roughly equal to the order of polynomial that creates 1% 

error.  Rule7 is indicated and can be seen to perform slightly better than the trend; from 

this result and its cited order it is expected to give less than 1% error and zero error 

when integrating polynomials of order nine and six respectively.  

The Gaussian integration implementation tested replicates that in the 1999 paper of 

Ergin et al. Rule7 is utilised for elements pairs that are non-adjacent (do not share a 
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vertex).  Where elements share vertices the integral is expected to be more singular and 

the integration element is first subdivided into four sub-triangles then Rule7 applied to 

each.  Self-interaction in the case of the pressure operator  pL  is a special case that 

only involves the collocation point so no numerical integration is necessary.  The self-

interaction integral occurring for the velocity operator  vL  is converted to a contour 

integral, as was described in section  2.3.4, and one-dimensional numerical integration is 

applied to each contour. 

3.1.2 Integrands 

The temporal basis function is defined from a piecewise polynomial and was introduced 

in Equation  2.19, Equation  2.60 and Figure  2.7.  Each piece of the polynomial is readily 

differentiated, the results are given in Equations  3.8,  3.9,  3.10 and  3.11, but Figure  3.4 

and Figure  3.5 show that there is ambiguity, as there are two possible values for the 

differential at each integer time-step. 

The choice of differential at integer time-steps is critical as  
jlj tT  appears in the 

element self-interaction term for all operators.  Which piece is chosen (or perhaps the 

average of the two) has a major effect on the result of the MOT solver. 
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Figure ‎3.4: The first derivative of  motherT  

 

Figure ‎3.5: The second derivative of  motherT  
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Section  3.2.1  shows that these terms appear in the self-interaction equations as lower 

limits in integrals in R , hence should be considered as upper limits in 1 cRt j , so 

the lower piece with respect to   should be chosen.  This is easily achieved by 

changing the lower limits in the mother basis piece criteria from ≤ to <; the revised first 

and second derivative definitions are given in Equations  3.12 and  3.13 , and shown in 

Figure  3.6 and Figure  3.7 where the values at integer time-steps are marked with a dot. 
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Figure ‎3.6: The clarified first derivative of  motherT  

 

Figure ‎3.7: The clarified second derivative of  motherT  
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Now the values of the derivatives at integer time-steps are clarified the self-interaction 

equations require no further attention as they are already implemented in an accurate 

and efficient manner.  The rest of this section focuses on non-self-interactions. 

Both the  pL  and  vL  integrands (Equations  2.73 and  2.74) contain the first and 

second derivatives of the temporal basis function.  These operate on retarded time 

1 cRt j  so their temporal discontinuities are converted into spatial discontinuities 

that lie on spherical shells at radii tlc  centred on r  as depicted in Figure  3.8, where 

retardation index l  is a non-negative integer.  Their intersection with the plane of nS  

forms irregularly spaced circular arcs, whose radii may be calculated by Pythagoras‟ 

rule, centred on the projection of r  into the plane, as depicted in Figure  3.9.  The 

presence of these discontinuities due to the choice of temporal basis function will be 

seen to be fundamental to the performance of the integration strategy. 

 

 

Figure ‎3.8: Spherical discontinuity geometry 

 

 

Figure ‎3.9: Discontinuities in the plane of 
nS  
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3.1.3 Monte Carlo Convergence to Gaussian Integration 

Monte Carlo integration
 59

 is a “blind” numerical integration strategy, usually chosen as 

a last resort when nothing is known about the integrand.  Unlike the Gaussian schemes 

above, which are optimised for a polynomial of a given order, Monte Carlo integration 

is not optimised for any integrand, yet will converge as the number of integration points 

is increased.  The algorithm is very simple: pick a given number N  abscissa randomly 

over the integration domain and then take the mean of the integrand value at these 

points; this amounts to using a uniform weighting of 1N .  Abscissa are chosen 

randomly to avoid the pitfall that if using uniformly spaced abscissa, periodic variations 

with a period equal to the grid spacing do not contribute to the scheme‟s result. 

Monte Carlo integration has been chosen as a verification tool as, although inefficient, it 

is guaranteed to converge to the true integral with the general trend that error is 

inversely proportional to number of abscissa.  If this trend is plotted on a log-log axis it 

appears as a straight downward sloping line.  Figure  3.10 shows its convergence to the 

analytical solution of the integral given in Equation  3.6, used to evaluate order of 

Gaussian integration rules in section  3.1.1.  The y-axis displays normalised 

disagreement, the magnitude of the difference between the Monte Carlo solution and the 

analytic solution divided by the magnitude of the analytic solution.  This has been 

termed disagreement rather than error as in forthcoming sections both the Monte Carlo 

result and the comparison solution will have inherent error. 

In Figure  3.11 a 1% error has been artificially introduced into the analytical solution by 

multiplying it by 1.01.  The Monte Carlo scheme still converges to the correct solution, 

so the normalised disagreement converges to the error, indicated by the dashed 

horizontal line.  This demonstrates how it will be used as a means of estimating the 

accuracy of a numerical integral. 
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Figure ‎3.10: Monte Carlo convergence to the analytic result of Equation ‎3.6 

 

Figure ‎3.11: Monte Carlo disagreement convergence on Equation ‎3.6 when 1% error has been added to 

the analytical solution 
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The Monte Carlo implementation that produced the convergences shown here reuses 

abscissas; 10
6
 abscissa were chosen and the integrand evaluated at each; results for 

smaller N  are found from subsets of these evaluations.  This is permissible since the 

abscissa were randomly chosen, plus it is more efficient and produces clearer 

convergence trends than picking a new set of abscissa for every N .  10
6
 was roughly 

the maximum number of abscissa the hardware could handle without optimisations in 

integrand coding. 

Ideally the above convergence test would be performed for every element pair in a 

mesh.  However this would have a prohibitive duration, plus the convergence is not 

always very clear hence automatic detection is unreliable.  Here instead the worst case 

scenario will be investigated, depicted below.  Two elements have been created that 

share an edge (adjacent) and are inclined relative to one another such that all scalar 

product terms in the integrands are non-zero.  The black cones represent their normal 

vectors and the black dots the vertices, which lie on the corners of a 0.1m cube; these 

are clearly uncharacteristically large elements, but since errors and time-step durations 

are normalised this is of no consequence.  The lighter grey element is the integration 

element nS . 

 

Figure ‎3.12: Element pair used for Monte Carlo convergence testing 
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The following figures show Monte Carlo disagreement with the Gaussian scheme‟s 

result (elements are adjacent so nS  is subdivided into four triangles and Rule7 applied 

to each) on both  pL  and  vL  integrands for all l  (retardations) that yield non-

zero interaction.  In Figure  3.13 and Figure  3.14 the time-step has been chosen such that 

m16.0 tc  therefore no discontinuity intersects nS .   The disagreement with Monte 

Carlo integration either does not converge clearly so the error is very small, or 

converges to an error smaller than 1%.  The only exception to this is the 0l  line for 

the  vL  integrand which converges to an error of approximately 2.5%.  This error is 

due to the more complex spatial variation of   vL ; the 0l   pL  and  vL  

integrands are shown in Figure  3.15 and Figure  3.16 for comparison.  The  pL  

integrand shows better than 1% error for all retardations, but the  vL  integrand 

evidently can be too singular to be integrated accurately on adjacent elements by the 

Gaussian scheme. 

 

Figure ‎3.13:  pL  Monte Carlo convergence to Gaussian result, m16.0 tc  
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Figure ‎3.14:  vL  Monte Carlo convergence to Gaussian result, m16.0 tc  

 

Figure ‎3.15: 0l   pL  integrand where m16.0 tc  
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Figure ‎3.16: 0l   vL  integrand where m16.0 tc  

If the time-step is adjusted such that m08.0 tc  then a discontinuity does intersect nS  

and different results appear.  Figure  3.17 shows Monte Carlo convergence on the 

 pL  integrand.  Typically the Gaussian scheme still achieves accuracy of 2% or 

better, but when 3l  error is worse than 10%.  Figure  3.19 and Figure  3.20 show the 

3l   integrand and 1l  integrands respectively; the larger 3l  error is associated 

with a larger discontinuity jump.  Figure  3.18 shows Monte Carlo convergence on the 

 vL  integrand.  In this example the discontinuities do not appear to significantly 

affect the accuracy relative to Figure  3.14. 
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Figure ‎3.17:  pL  Monte Carlo convergence to Gaussian result, m08.0 tc  

 

Figure ‎3.18:  vL  Monte Carlo convergence to Gaussian result, m08.0 tc  
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Figure ‎3.19: 3l   pL  integrand where m08.0 tc  

 

Figure ‎3.20: 1l   pL  integrand where m08.0 tc  

In conclusion, the singularity of the integrand does not appear to be a significant source 

of error for the Gaussian scheme.   However, accuracy does suffer when discontinuities 

are present in the integrand, and they will occur for many element pairs if tc  is of the 

order of x .  A point-wise integration rule is inherently unsuitable for a discontinuous 

integrand as its result will be significantly affected by the location of the abscissa 

relative to the discontinuity.  Either these discontinuities must be removed or a new 

integration technique that respects their existence created. 
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3.2 Contour Integration 

As was alluded to in the definition of the Gaussian product rules mentioned in section 

 3.1.1, the cost associated with evaluating a surface integral over an element using a 

given spatial resolution scales with the element‟s area.  By contrast, the cost of 

evaluating a contour integral around the edge of an element with constant spatial 

resolution scales only with cumulative edge length.  If a surface integral is converted to 

an equivalent contour integral then the cost scaling of achieving a given accuracy is 

reduced, so long as the contour integrand is no worse behaved than the surface 

integrand it replaces.  In addition, a wider palette of numerical integration methods is 

available for one-dimensional integrals. 

A common approach to conversion between surface and contour integrals is use of 

Stokes‟ theorem
 63

 below.  This is valid for any bounded surface, including curvilinear 

elements and surfaces of revolution.  Unfortunately its use in this application amounts to 

guessing a vector field F  with curl equal to either the  pL  or  vL  surface 

integrand, a feat this author has attempted with limited success. 

 



S S

dldS lFFn̂         3.14 

An alternative approach is to use a change of coordinate system.  Bonnet, Maier and 

Polizzotto
 33

  mention various in the context of self-interaction singularity evaluation in 

their 1998 Elastodynamics survey paper.  For flat elements, such as used in this thesis, 

conversion to cylindrical coordinates proves very convenient.  Stokes‟ theorem is not 

applied; instead the radial component of the integration is performed analytically 

leaving just the angular component to be evaluated as a contour integral.  This 

coordinate system transform was used by Ding, Forestier and Ha-Duong
 25

 in 1989 for 

their Galerkin scheme, and by Terai and Kawai
 18

 in 1990 for their thin surfaces 

algorithm, creating an implementation equivalent to the  vL  operator in section 

 3.2.1.8. 
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3.2.1 Derivation of contour integration 

In this section the contour integration scheme will be derived.  First the coordinate 

system will be defined, followed by derivation of the process to convert polar and 

cartesian integrals to edge integrals, and finally the derivation of scattered quantities 

themselves.  The new numerical integration scheme will be seen to have the desirable 

property that, on calculating element self-interaction, it reduces to the special schemes 

used by Ergin et al in this context.  Although this integral coordinate transformation has 

been exploited before, this derivation is more general as it is followed without 

refinement specific to any basis function – it is valid for any quantity discretisation on a 

polyhedron.  The implementation is valid not only for triangular elements, but for 

polygonal ones with any number of straight sides. 

Following this section the new integration scheme will be contrasted with the Gaussian 

integration strategies discussed in section  3.1 and discrepancies highlighted and 

justified.   

3.2.1.1 Coordinate system 

In order to clarify the conversion of the surface integral over nS  into nested integrals 

two new coordinate systems will be used; one is a cartesian system  zwv ,,  and one a 

cylindrical polar system  zr ,, , both shown in Figure  3.21.  The origin and positive z  

direction are the same in both coordinate systems.  The origin is defined as the 

projection of the collocation point r  into the plane of nS  and the positive z  direction is 

specified by  'n̂ .  The positive v direction is defined as the projection of n


 into the 

plane of nS .  In practice the unit vectors of the cartesian system are found according to 

Equation  3.15 such that 0ˆˆ nw .  If the normal vectors of the two elements are 

parallel, or velocity scattered to an off-body point is being evaluated, then v  and w may 

be chosen arbitrarily; an easy choice is for v̂  or ŵ  to be parallel to an edge vector as 

these are known to lie in the plane of nS .  The positive theta direction is defined such 

that  cosrv   and  sinrw   in the conventional way.  As the collocation point r  

is the only point with a non-zero z  coordinate, the variable z  will be used to refer to 
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that and equally the z  component of R .  Similarly, any reference to v , w , r or   

implies the integration point 'r  or the appropriate component of R . 

 

Figure ‎3.21: Problem geometry and coordinate systems 
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The contour integration path shall be the edge vectors, the directions of which are 

defined by the order of the vertices in the definition of nS .  Because the new coordinate 

systems are defined from nˆ  (which is in turn also defined by the order of the vertices), 

the edge vectors always travel around the centre of nS  in the same direction that   

increases around the origin.  This property will be exploited in subsequent sections. 

3.2.1.2 Transforming polar integrals into edge integrals 

The polar integrals requiring evaluation have the form shown in Equation  3.16.  How 

this is evaluated depends on whether the cylindrical origin is contained by nS ; the two 

scenarios are depicted in Figure  3.22. 
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ŵ

 

v̂

   



 84 

 

Figure ‎3.22: Polar origin interior and exterior to
nS  

In the case where nS  contains the origin, zRmin   so the first integral is an integral 

around the edge and the second integral is evaluated at the origin; this takes the form of 

Equation  3.17 where  2origin .  If the origin lies on the edge of nS  
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the enclosed angle; intersection of one edge implies  origin
, intersection of a corner 

implies 
origin  will equal the acute angle between the adjoining edges. 

In the case where the origin is outside nS , each integral is around an exclusive segment 

of the edge.  If written as a contour integral those edge segments that correspond to minR  

automatically have a negative contribution as they travel in a negative direction with 
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This contour integral around nS  is with respect to .  Numerical integration 

implementation would be simpler if the integral were with respect to a parameter that 

reflects position along an edge.  Hence   is introduced as the edge coordinate; 0  

represents the start vertex of the edge, 1  the end vertex.  A relationship must be 

found between   and   so that the contour integral with respect to  can be 

transformed into a summation of edge integrals with respect to  . 

  is defined as the line coordinate of the projection of the origin into the line of edge 

e  as depicted in Figure  3.23.  It is found by solving Equation  3.19, observing that the 

shortest distance from a point to a line is perpendicular to the line.  As drawn it would 

take a negative value.    may be found from  by Equation  3.20. 

 

Figure ‎3.23: Converting polar coordinates to edge coordinates 
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  is equal to some constant plus or minus   depending on the direction of the edge 

with respect to   (Equation  3.21).   The sought differential of   with respect to  may 

be evaluated by Equation  3.22.   θe ˆˆsign   is constant along the length of e  and is 
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evaluated according to Equation  3.23.  If an edge intersects the origin, that edge‟s 

contribution to the contour integral will be zero as 0ˆˆ θe  and 0r . 

  constant  θe ˆˆsign         3.21 
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Combining Equations  3.17 and Equation  3.18 with the above expressions completes the 

transform from polar integral to summation of edge integrals with respect to  . 

3.2.1.3 Transforming Cartesian integrals into edge integrals 

The Cartesian integral requiring evaluation over each smooth region has the form shown 

in Equation  3.24.  As with the polar integral this would be most convenient to integrate 

if transformed to a summation of edge integrals.  To achieve this requires the derivative 

of w  with respect to  ; this is easily found in Equation  3.25 from the definition of w  

for a point on e  and is constant along the length of an edge. 
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As mentioned in section  3.2.1.1, the  zwv ,,  coordinate system is derived from the 

normal vector of nS , so the edges have the convenient property of always travelling 

clockwise when viewed in the  wv,  axes as shown in Figure  3.24.  Consequentially the 

derivative of w  with respect to   will always be positive for edges contributing to the 

maxv  integral and negative for edges contributing to the minv  integral.  There is no 

contribution from the origin, even if it is within nS .  Hence the Cartesian integral may 

be written in edge integral form as Equation  3.26.  Similarly Equation  3.27 holds with 

Equation  3.28. 

 

Figure ‎3.24: Edge directions in the  wv,  plane 
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3.2.1.4 Scattered velocity potential 

Scattered velocity potential is described by the KIE for a rigid surface.  The Greens 

function term is a function solely in R  and t  hence its spatial gradient may be 

expressed as a derivative with respect to R.  Convolution with retarded derivatives of 

the delta function has the effect of applying its derivatives and retardation onto the 

convolved field.  This identity is proved in section  8.1.  
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It can be observed from Figure  3.21 that for a flat surface section Equation  3.30 holds.  

Equation  3.31 results from substitution of Equation  3.30 into Equation  3.29, then 

conversion of the surface integral to a polar integral. 

R

z

R





R'n
R'n


         3.30 

 
 

 
 

 

  

 













 


















 






elements

elements

max

min

max

min
4

,'

'
4

,'
,



















ddr
R

c
Rt

RR

r
z

d
R

c
Rt

RR

z
t

r

r

t

S

t

s

n

r

r
r

r

    3.31 

This integral in cylindrical radius r  is converted to an integral in spherical radius R  by 

substituting Equation  3.32, and is integrated analytically in Equation  3.33.  The 

resulting polar integral is converted into a contour integral using the identities derived in 

section  3.2.1.2. 
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Importantly this identity is valid for any piecewise flat surface (polyhedron), regardless 

of the discretisation scheme for  tt ,'r .  The situation where 0z  and 0origin  is 

ambiguous (dual-valued as expected of the double layer potential), but only occurs in 

the case of element self-interaction where it is resolved by the boundary condition. 

3.2.1.5 Scattered pressure 

Scattered pressure is easily found by temporal differentiation of Equation  3.33, and 

again this statement is valid for any  tt ,'r  discretisation scheme piece-wise constant 

elements on a polyhedron: 
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3.2.1.6 Pressure Operator 

The pressure operator is defined as the scattered pressure divided by 0  so when 

0  the elements of the interaction matrix are defined according to Equation  3.35.  

The element self-interaction term (Equation  3.36) is defined by the boundary condition 

to be the limit as the observer point approaches the surface element from inside the 
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body; it is encouraging that this statement matches Ergin et al‟s self-interaction 

statement.  Here the contour integral has been replaced by a sum of edge integrals using 

the identities derived in section  3.2.1.2 so the statements are in a form ready for 

implementation. 
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3.2.1.7 Scattered velocity 

Scattered velocity is the gradient of scattered velocity potential.  In this scenario r  is an 

off-body point hence the velocity potential field is assumed smooth enough that the 

gradient operator may be moved inside the integral: 

   

 

 
















 















S

t

S

t

ss

d
R

c
Rt

R

d
R

c
Rt

R

tt

'
4

,'
ˆ'ˆ

'
4

,'
ˆ'ˆ

,,

r
r

Rn

r
r

Rn

rrv











      3.37 

Application of the spatial gradient operator to the bracketed term requires use of the 

product rule; this is done below where for clarity  tR,,'q r  is introduced according to 

Equation  3.39. 
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The gradient is evaluated at the observation point so it is only the dependency of the 

scattered velocity potential on R  that contributes; the local variation of surface velocity 

potential at the integration point does not.  Hence Equation  3.40 holds; there is no minus 

sign here because at the collocation point R̂  points in the direction of increasing R .  

Equation  3.41 is proved in section  8.3.  Equation  3.42 may be readily proven using the 

product differentiation rule.  These three identities are substituted into Equation  3.38 to 

produce Equation  3.43. 
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The geometric identities in Equation  3.30 and Equation  3.44 are valid for each flat 

surface element.  These are substituted to create Equation  3.45 and the surface integrals 

grouped as polar or Cartesian. 
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The integration variables are changed to allow analytical integration in R; this requires 

the derivatives of Equation  3.46.  In Equation  3.47 these are substituted, the analytical 

integration performed, and then conversion to contour integrals is achieved using the 

appropriate identities from sections  3.2.1.2 and  3.2.1.3. 
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Again this statement is valid for any  tt ,'r  discretisation scheme piece-wise constant 

elements on a polyhedron. 

3.2.1.8 Velocity Operator 

The velocity operator is equal to  ts ,ˆ rvn   and is calculated as a contour integral as 

follows, where the  zwv ,,  coordinate system has chosen such that 0ˆˆ wn .  Here the 

contour integrals have been replaced by a sum of edge integrals using the identities 

derived in sections  3.2.1.2 and  3.2.1.3 so the statements are in a form ready for 

implementation: 
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Still this statement is valid for any discretisation scheme on a polyhedron.  It is 

equivalent to Kawai and Terai‟s
 18

 Equation 15, except for a factor of   1
4


   that 

occurs due to a difference in definition of the integral operators.  A basis representation 

specific refinement is now introduced: substituting Equation  3.49 into Equation  3.48 

gives the following statement for the elements of the interaction matrices when 1 : 
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 vL  is continuous across 0z , so the element self-interaction term below is the 

limit when the observer point approaches the surface element from inside or outside the 

body.  This statement matches Ergin et al‟s self-interaction statement, except for the 

factor of   1
4


  typographical error mentioned in the section  2.3.4. 
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Equations  3.35 and  3.50 are equivalent to the double integrals that for non-self 

interactions are evaluated using numerical integration in the Gaussian scheme. These 

now only contain single integrals as the nested integral has been performed analytically.  

This reduces the order of algorithmic complexity, as integration is now over a line 

instead of over a surface, and allows one-dimensional numerical integration methods to 

be applied.  The expressions are also valid for calculating velocity potential, pressure 

and velocity fields scattered to off-body points. 

3.2.1.9 Implementation details 

Ergin et al write that the contour integral that occurs in their implementation of the self-

interaction case of the  vL  operator may be performed analytically, though similar 

accuracy was achieved using a seventeen point Gauss-Legendre rule.  Here, despite 

numerous attempts, the author has not been able to replicate this analytical integration, 

nor is it known if the more general result of completely analytical integration of all non-

self interactions is possible.  Instead this thesis adopts adaptive integration. 

Adaptive integration focuses its effort on the regions with greatest variation, tunnelling 

into greater detail until an accuracy criterion is met.  If integrating a polynomial of 
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known order it is likely to be less efficient than an appropriate Gaussian integration 

scheme.  However, for an unknown integrand it has the benefit of only applying 

computational effort where required and guaranteeing a certain accuracy.  In the view of 

the author this is inherently suitable for evaluating the edge integrals derived in the 

previous section.  As long as all terms are brought inside the numerical integration 

(including constant multipliers such as   1
4


 ) an absolute accuracy termination 

criterion may be used.  This produces greater relative accuracy on larger (and hence 

more significant) interaction terms, while smaller (less significant) interaction terms 

receive less effort and relative accuracy. 

Another benefit is the subjective property of algorithmic elegance.  If Gaussian 

integration is used, both with or without a coordinate transformation or regularization 

procedure, then to increase efficiency the order of the rule may be changed according to 

the expected complexity of the integrand, perhaps dictated by some combination of 

element separation and orientation; Ergin et al increase the order for adjacent elements, 

others have suggested that a one-point rule is adequate for distant element pairs.  While 

such bespoke schemes may bring a modest increase in computational efficiency, this is 

likely to be by a fixed factor, unlikely to scale with problem size, and non-physical rifts 

are created at which different accuracy integration schemes are selected.  By 

comparison the adaptive integration scheme proposed here is continuous and 

transparent, with the tailoring of computational effort abstracted into an assertion of 

accuracy.  The integrands are weakly singular, with a non-zero line of integration never 

intersecting a singularity point, and are well conditioned at larger element separations so 

misbehaviour is not anticipated. 

Due to the support of the temporal basis function each element interaction creates non-

zero values for a sequence of retardation indices; this is length four or above for the 

temporal basis function used in this chapter.  The new numerical integration scheme 

carries geometrical overheads both in setting up the coordinate system, and evaluating 

geometrical terms in the integrands.  These overheads are effectively reduced if they can 

be shared over the sequence of retardation indices.  To achieve this, an adaptive 

integrator has been implemented that can integrate multiple retardations simultaneously; 
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this was adapted from the standard Matlab function quad.m, which uses adaptive 

Simpson integration with Romberg extrapolation.  The integrand routine was also 

vectorised to evaluate multiple retardations simultaneously.  To ensure maximal 

efficiency at each recursion the adaptive integrator compares retardations to the 

termination criterion individually and only the subset that fail have their integration 

refined. 

Thus all retardations for an element pair are evaluated simultaneously.  A new storage 

class was designed that stores these retardation sequences in the order they were 

generated; this is done efficiently by exploiting the fact that non-zero interactions 

always occur in adjacent sequences with respect to l  (this pattern is depicted in Figure 

 3.25).  The data structure comprises three arrays; the „values‟ array is a double precision 

column vector containing all interaction coefficients stacked below each other.  The 

„start‟ and „length‟ arrays are square, with number of rows and columns equal to the 

number of elements, and store the lowest non-zero retardation index (precision int16) 

and length of the sequence (precision int8) respectively.  A Mex („c‟ subroutine 

compiled for Matlab) implementation was created that executed the MOT solver 

directly from this storage class.  Conversion to and from the sparse matrix 

representation used in the MOT equation was also implemented as M-files for 

comparison and verification. 

 

Figure ‎3.25: Pattern of non-zero interactions 

One final issue facing adaptive integration is that the edge integrands in Equations  3.35 

and  3.50 contain discontinuities due to the presence of the first derivative of the 

temporal basis function.  The adaptive integrator will expend considerable effort trying 
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to integrate this discontinuity as if it were a smooth, albeit rapidly varying, quantity.  It 

is more efficient to locate the intersections of discontinuities and edges and integrate 

each continuous edge section separately and sum the results. 

3.2.2 Comparison with Gaussian integrands 

The accuracy and correctness of the new integration scheme must now be verified.  This 

is done by examining the convergence of Monte Carlo integration to the contour result. 

3.2.2.1 Monte Carlo convergence 

Figure  3.26 and Figure  3.27 show the convergence of Monte Carlo integration to the 

contour integration result for interaction between the same adjacent element pair used in 

section  1.1.1.  t  has been chosen such that m16.0 tc  and no discontinuities 

intersect nS .  Some retardations have not fully converged, indicating the accuracy of the 

contour integration is better than the Monte Carlo, but all retardations achieve accuracy 

significantly better than 1% for both  pL  and  vL .  This demonstrates the 

excellent accuracy of the contour integration implementation for elements not 

intersecting discontinuities. 

Figure  3.28 and Figure  3.29 show the same convergence scenario with t adjusted such 

that m08.0 tc  so a discontinuity does intersect nS .  For both  pL  and  vL  

integrands the error of the contour integration is chronic; this must be associated with 

the presence of the discontinuity as accuracy was excellent in the continuous case.  The 

derivation of the contour integration scheme will now be revisited to establish and cure 

the source of these errors. 

 



 99 

 

Figure ‎3.26:  pL  Monte Carlo convergence to contour result, m16.0 tc . 

 

Figure ‎3.27:  vL  Monte Carlo convergence to contour result, m16.0 tc . 
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Figure  3.28:  pL  Monte Carlo convergence to contour result, m08.0 tc  

 

Figure  3.29:  vL  Monte Carlo convergence to contour result, m08.0 tc  
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3.2.2.2 Modifications to the contour integration derivation 

The derivation in section  3.2.1 is correct so some difference between it and the 

derivation of the Gaussian integrands must be causing the discrepancy in Figure  3.28 

and Figure  3.29.  One fundamental difference is that in the Gaussian implementation 

spatial derivatives are evaluated as temporal derivatives, where as in the new scheme 

they are mostly kept as derivatives with respect to R , the intention being to remove 

them by analytic integration after a change of coordinates. 

If, instead of starting the contour integration derivation from the KIE, it is started from 

the Gaussian integrands a slightly different algorithm arises.  In section  3.2.2.4 it will be 

shown that Equations  3.52 and  3.53 only hold for continuous regions of the integrand.  

This means that when they are applied to the Gaussian integrands each continuous 

region must be converted to a contour integral separately; this is depicted in Figure  3.30 

and written in Equations  3.54 and  3.55. 
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Figure ‎3.30: Continuous integration regions 
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The crux of this change is that a contour integral around an element will be replaced by 

a summation of contour integrals around its continuous regions.  The summation over 

regions is rearranged such that contributions from the region boundary sections lying 

along the discontinuities are separated from the sections lying on the edges of nS .  Due 

to there being two regions sharing a boundary along each discontinuity its contribution 

is the difference between the contour integrand in each region.  The net result is the 

same as that which was derived in sections  3.2.1.2 and  3.2.1.3 plus extra terms 

contributed by the discontinuities. 
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The polar case is shown above.  All integrands vary spatially with R  only and, as R  is 

constant on a discontinuity arc, integration along it with respect to   is just 

multiplication by the total angle of the arc intersecting nS , denoted included .  included  is 

found by tabulating all angles where an arc crosses an edge.  These are automatically in 
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ascending order due to the definition of the cylindrical polar coordinate system.  An arc 

may enter and exit nS  up to six times if it is triangular, and each angle must be 

identified as an entry or exit point.  In most cases this is straightforward as at least one 

pair of angles will occur on one edge; the first must be an exit point and the second an 

entry point, then other angles may be identified as they alternate along the table.  In the 

remaining case where an arc intersects two edges once, included  is the acute angle: 

 21wrap  included         3.57 

Special care must be taken when an arc passes through a vertex as arc / edge 

intersections may be lost due to finite machine precision.  To counteract this issue, the 

implementation adds extra angles to the table at any vertex that lies on (or very close to) 

an arc.  A sort procedure is used to eliminate duplicate angles in the case that an odd 

number results.  The angle table is implemented in Matlab by a cell array (similar to a 

hash table) with each cell corresponding to an edge / discontinuity pair and containing 

zero, one or two angles. 
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The Cartesian integral above is rearranged in the same way as Equation  3.56.  The 

lower and upper regions are respectively below and above the discontinuity with respect 

to v .  As all integrands are functions of R  only and along a discontinuity arc R  is 

constant, integration with respect to w  is just multiplication by the total length with 

respect to w  of the arc intersecting nS , denoted includedw  and easily found from the 

angle table according to Equation  3.59.  It is also convenient for implementation that 

due to the definition of the axis systems Equation  3.60 holds.  In the case where an arc 

intersects two edges once Equation  3.61 is used. 
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The scattered velocity potential statement is not affected by these complications as its 

contour integrand is continuous.  If the derivation of the contour integrals for  pL  

and  vL  is repeated for each continuous region separately, application of the 

identities derived in this section produces Equations  3.62 and  3.63 respectively.  

Recalling from section  3.2.1.9 that the adaptive integrator was implemented to integrate 

each continuous region of the edge separately, this modified scheme is identical to the 

scheme of section  3.2.1 with the addition of contributions from the discontinuities.  As 

it is derived from the point-wise integrands it should agree with them under Monte 

Carlo integration. 
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3.2.2.3 Monte Carlo convergence 

The Monte Carlo convergence procedure is performed as sections  1.1.1 and  3.2.2.1 and 

the results are shown below.  t  is chosen such that m08.0 tc  and a discontinuity 

intersects nS .  Accuracy is excellent with all errors less than 1%.  The  pL  3l  

result is above the trend simply because it contains a large discontinuity that the Monte 

Carlo integrates very inaccurately.  However, the convergence still demonstrates that 

the modified contour result is performing well.  The results for m16.0 tc  are not 

shown; they are identical to Figure  3.26 and Figure  3.27 because there are no additional 

terms. 

The modified scheme is now verified against point-wise integration.  It should be noted 

that in addition to the shown convergence results, convergence was examined on larger 

meshes.  As the recognition process could not be reliably automated, this was achieved 

efficiently by identifying element pairs for which the contour scheme disagreed 

significantly with the Gaussian scheme and examining those manually.  As the scheme 

of section  3.2.1 may be recovered by simply removing the discontinuity contributions 

introduced in  3.2.2.2, it too may be considered verified against its definition. 
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Figure ‎3.31:  pL  Monte Carlo convergence to contour result, m08.0 tc  

 

Figure ‎3.32:  vL  Monte Carlo convergence to contour result, m08.0 tc  
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Table  3.3 and Table  3.4 respectively give the disagreement between the three 

integration schemes for  pL  and  vL  when the time-step duration is chosen such 

that m08.0 tc .  In each case the disagreement between the schemes is normalised to 

the contour integration scheme to give relative disagreement as a percentage.  

Significant disagreement appears between the Gaussian scheme and the contour with 

discontinuity terms scheme only for  pL  with 3l  and  vL  with 0l ; both of 

these disagreements are due to the error of the Gaussian scheme as was discussed in 

section  1.1.1.  Massive disagreement appears between the Gaussian scheme and the 

contour without discontinuity terms scheme.  The effect of these errors on overall 

system accuracy and stability will be investigated in section  3.3. 

Table ‎3.3: Integration disagreement for  pL , m08.0 tc  

l 
Gaussian versus contour 

with discontinuity terms 

Gaussian versus contour 

without discontinuity terms 

0 0.51% 3.82% 

1 0.65% 10.75% 

2 1.40% 38.34% 

3 10.20% 112.26% 

4 1.20% 276.01% 

 

Table ‎3.4: Integration disagreement on  vL , m08.0 tc  

l 
Gaussian versus contour 

with discontinuity terms 

Gaussian versus contour 

without discontinuity terms 

0 3.46% 1.93% 

1 0.21% 8.86% 

2 0.18% 17.46% 

3 0.06% 49.80% 

4 0.34% 440.63% 
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3.2.2.4 Inadequacy of point-wise integration 

Presently there are two contour integration schemes, one derived directly from KIE and 

another derived from the point-wise integrands, which disagree and agree with them 

respectively.  The important question is which is a more accurate evaluation of the 

integrals in the discretised KIE? 

The shortcoming lies in the combination of the temporal basis function choice and 

point-wise integration.  The first derivative of the mother temporal basis function 

(Equation  3.12 and Figure  3.6) contains discontinuities.  The upper (+) and lower (-) 

piece values for each discontinuity are summarised in Table  3.5.  This suggests the 

decomposition of  motherT  into a continuous piecewise polynomial plus a sum of 

heavy-side functions to encapsulate the discontinuities; this in done in Equation  3.64 

and shown in Figure  3.34. 

The second derivative may be decomposed in the same way; this is done in Equation 

 3.65 and shown in Figure  3.33.  The piecewise polynomial in Equation  3.64 gives rise 

to a new piecewise polynomial and a new sum of heavy-side functions.  The heavy-side 

functions become delta functions. 

Table ‎3.5: Discontinuities in first derivative of mother temporal basis function 

  -1 0 1 2 3 

 
motherT  3

1  2
1  -1 6

1  0 

 
motherT  0 6

11  -3 2
3  3

1  

     
mothermother TT  3

1  3
4  2 3

4  3
1  
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These decompositions cast new light on the performance of Gaussian integration on the 

 pL  and  vL  integrands.  The piecewise polynomial parts are not the integrand 

Gaussian integration is optimised for, but they are continuous and low order within each 

part so error is expected to be low.  The sums of heavy-side functions are responsible 

for the discontinuities seen in the integrands and are very poorly integrated by a 

Gaussian scheme; where the abscissa fall in relation to the discontinuities massively 

affects the result. 
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Figure ‎3.33: Decomposition of  motherT   

 

Figure ‎3.34: Decomposition of  motherT  
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The delta functions present in the second derivative have been entirely omitted in 

previous statements.  Their presence indicates that the  pL  and  vL  integrands 

are in fact infinite valued along the discontinuities, as depicted below.  Such a function 

could never be integrated accurately by a point-wise integration scheme, regardless of 

the number of abscissa, as any abscissa falling near the delta functions will either miss 

or be infinite valued; both scenarios fail to characterise the step in first derivative from 

which these delta functions arise.  In fact, they cancel out the discontinuity terms added 

to the contour integration implementation, meaning that it is the original contour 

integration implementation (without discontinuities) that correctly integrates the 

discretised KIE. 

 

Figure ‎3.35: Gaussian integrands are infinite at discontinuities 

Ergin et al do not specify exactly what expressions they used to evaluate these temporal 

derivatives in their implementation, but given they chose Gaussian integration it is 

unlikely that these would include the delta functions above.  This means their scheme is 

not integrating the spatial derivatives they say but something subtly different.  

Evaluation of this erroneous integral by contour integration requires the addition of the 

discontinuity contributions introduced in section  3.2.2.2.  By contrast, the integration 

scheme derived in section  3.2.1 correctly integrates the discretised KIE and possesses a 
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simpler implementation.   The latter is regarded as the „correct‟ integration scheme, and 

the effects of its use on accuracy and stability will be investigated in the next section. 

3.3 Numerical examples 

In this section the effect of integration accuracy on solution accuracy and system 

stability will be investigated for two meshes.  These meshes have been chosen with 

contrasting geometrically complexity; the first is a uniformly meshed sphere, the second 

is a two-dimensional primitive root diffuser known as skyline.  Both meshes have a 

relatively small number of elements so that the magnitude of the largest pole of the 

resulting MOT system of equations can be calculated to characterise system stability.  

Solution accuracy will be calculated by comparison to a previously verified frequency 

domain BEM (RADDIFF.exe) at the principle frequency of excitation using the DFT.  

This BEM is implemented according to Terai‟s
 64

 1980 paper. 

The time domain BEM model will be executed with a variety of time-step values and 

excitation signals.  Temporal discretisation is characterised by the implicitness of the 

time-step duration, being the ratio between the distance sound travels in a time-step and 

the largest element dimension ( 3.66).  This choice, in preference to the CFL parameter 

(Equation  2.34), is motivated by the phase-change argument in section  2.2.5 and 

produces a fairer comparison between the two meshes. 

'maxmax
,

rr
r'r





 nn SmeshS

tc
         3.66 

The excitation signal will be a sine wave propagated from a point source and the 

solution duration is chosen such that the system reaches steady state and any instability 

has the opportunity to appear.  This is clearly an inefficient application of the time 

domain BEM but was found to be necessary to make error between it and the frequency 

domain implementation small enough that fluctuations due to temporal discretisation 

could be observed.  Additionally, the frequency domain BEM solution is approximate 

and its inherent error will limit the best model agreement that can be achieved.  The 
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excitation signal has no effect on inherent system stability but the observed stability 

may differ in accordance with the extent to which the respective resonant mode is 

excited.  The combined field operator ( 2
1 ) was used in all models. 

Results are displayed for both meshes as follows.  There are three integration types and 

disagreement will be plotted for two pairs.  The first plot will show the disagreement 

between the contour integration scheme with and without discontinuity terms; this is 

error caused by omission of the delta function terms from the second derivative of the 

temporal basis function.  The second plot will show the disagreement between the 

contour integration scheme with discontinuity terms and the Gaussian scheme; this 

describes the error caused by integrating a discontinuous, singular integrand with a 

Gauss-Legendre rule.  Both plots will comprise histograms for each time-step duration 

modelled.  The height of a bin is the number of element interactions that fall into it as a 

percentage of the total number of non-zero interactions at that time-step duration.  Bin 

edges are logarithmically spaced, but the error axis is also logarithmically spaced hence 

the area of each bin represents the percentage of interactions in it.  Absolute 

disagreement magnitude is used as the bin criteria in preference to relative (percentage) 

disagreement as the former favourably displays larger magnitude interactions which are 

more significant in the solution, while the latter has the pitfall that errors on 

insignificant interactions are inflated by the small magnitude of their correct values.  

When analysing the histograms it should be remembered that both meshes‟ interaction 

coefficients typically have magnitudes between 10
3
 and 10

-3
,  

Stability will be characterised by plots of the two largest SEM poles of the MOT 

process versus implicitness. 

Surface sound error between the time domain BEM and the frequency domain BEM is 

calculated from the respective source to surface element transfer function at the 

excitation frequency.  In the frequency domain this is simply the element pressure 

divided by the source monopole pressure (Equation  3.67).  In the time domain it is 

found by division of the DFT of the surface velocity potential by the DFT of the source 

monopole potential (Equation  3.68); complex conjugates are taken because this thesis 
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uses     tit et   rr Re,  whereas the Matlab implementation of the DFT uses 

    tit et  rr  Re, .  The first 50β (defined below) iterations are omitted from the 

DFT to allow the time domain solution to reach steady state.  The next 100β iterations 

are chosen for DFT; this length maintains periodicity and eliminates windowing error.  

The surface sound error is calculated as the spatial mean magnitude of the difference 

between 
FD  and 

TD , normalised to the spatial mean magnitude of 
FD  (Equation 

 3.69) and is written as a percentage.  This is displayed for each integration type as a 

contour plot verses time-step implicitness and temporal resolution   1
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3.3.1 Spherical mesh 

This mesh is of a 1m radius sphere using 270 flat triangular elements.  It can be seen 

from Figure  3.36 that the mesh is quite regular with no elements having a skewed aspect 

ratio or being at right angles to a neighbour.  As the surface is entirely convex the poles 

of its physical response are likely to be well damped.  The point source is located 100m 

distant. 



 115 

 

Figure ‎3.36: The spherical mesh 

Figure  3.37 shows the error of the contour integration scheme with discontinuities 

components compared to the implementation without; this is the error caused by 

omission of the delta functions from the second derivative of the temporal basis 

function.  These errors are towards the bottom of the figure so are of large magnitude.  

On the left of the figure where the time-step is most explicit these errors occur for the 

majority of element interactions due to the density of discontinuities.  By contrast, on 

the right of the figure error is zero as the time-step multiplied by the celerity spans the 

entire mesh and no discontinuities intersect any element. 
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Figure ‎3.37: Disagreement populations between the spherical mesh interaction coefficients, as calculated 

by the two contour integration schemes, versus time-step implicitness 

Figure  3.38 shows the disagreement between the Gaussian scheme and the contour 

integration scheme with discontinuity components, which correctly evaluates the 

numerical integrands of the former; this is error caused by using Gaussian integration to 

integrate a discontinuous singular integrand.  Two error mechanisms with defined ridges 

can be observed. At explicit time-steps (left) there is a high density of discontinuities 

intersecting the mesh and error associated with these dominates.  Moving to the right 

the discontinuity density approaches zero revealing the, previously masked, error due to 

the singularity of the integrand.  This latter mechanism is of spatial origin and occurs for 

all time-step durations.  However it predominately results in errors smaller than 10
-5

 

hence is deemed insignificant for this mesh. 
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Figure ‎3.38: Disagreement populations between the spherical mesh interaction coefficients, as calculated 

by the contour integration scheme without discontinuity terms and the Gaussian scheme, versus time-step 

implicitness 

Figure  3.39 shows the magnitude of the largest two SEM poles versus time-step.  The 

dominant observation is that there always seems to be a pole with magnitude close to 

one.  This characteristic occurs because the scatterer is a passive body: Devoid of 

excitation the system remains silent.  Silence implies zero pressure (relative to 

atmospheric) and this implies constant velocity potential.  Thus the system must be able 

to exist in a non-zero steady state and this requires the MOT equation to possess an 

eigenmode with an eigenvalue of unity.  Numerical experiments suggest that this 

eigenmode is primarily associated with the self-interaction coefficients. 

The largest poles (solid lines) of the three sets of interaction matrices deviate little with 

t , so seem unaffected by the large integration errors seen in the previous figures.  The 

largest pole of the Gaussian implementation reduces marginally at implicit t  but this 

is dismissed as a numerical quirk.  The second largest poles (dashed lines) reduce in 

magnitude as t  becomes more implicit, supporting those in section  2.2.5 that believe 
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implicitness improves stability.  It is encouraging to see the „correct‟ contour integration 

scheme achieving the best stability in the middle of the time-step range. 

 

Figure ‎3.39: Stability trends on the spherical mesh characterised by the largest two poles versus time-step 

implicitness for each integration scheme 

Figure  3.40, Figure  3.41 and Figure  3.42 show the error versus the frequency domain 

BEM model for contour integration without discontinuities, contour integration with 

discontinuities, and the Gaussian scheme respectively.  The grey shaded area indicates 

8
 x  so spatial discretisation error is expected. 

All three figures show the same trend; error reduces with increased   as expected from 

the discretisation scheme, and also as t  becomes more implicit in harmony with 

Herman and van den Berg‟s
 36

 results.  Error seems to hit a floor at around 1%, likely 

due to error inherent to the numerical implementations or the comparison process.  

Despite the considerable integration discrepancies shown above there is are no 

significant differences between the surface error trends, so any time domain errors must 

be masked by the error floor. 
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Figure ‎3.40: Surface error on the spherical mesh versus temporal resolution and implicitness when 

interactions are calculated by the contour integration scheme without the discontinuity terms 

 

Figure ‎3.41: Surface error on the spherical mesh versus temporal resolution and implicitness when 

interactions are calculated by the contour integration scheme with the discontinuity terms 
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Figure ‎3.42: Surface error on the spherical mesh versus temporal resolution and implicitness when 

interactions are calculated by the Gaussian integration scheme 

3.3.2 Skyline mesh 

This mesh is of a five by six well primitive root diffuser using 266 flat triangular 

elements and is depicted in Figure  3.43; please note the surface is meshed correctly, 

graphical anomalies are due to Matlab‟s rendering engine.  Its surface comprises 

rectangular faces so triangular elements are not a first choice but necessary for 

comparison with the Gaussian implementation.  Due to the small difference in height 

between some wells, some elements have an extremely irregular aspect ratio, causing 

collocation points to be very close to adjacent elements, which are often also at right 

angles to the observer element, resulting in worst case singularities.  The surface 

contains concave parts so may possess physical poles which are more lightly damped 

than those of the sphere.  The point source is located 100m distant. 
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Figure ‎3.43: The skyline mesh 

 

 

Figure ‎3.44: Disagreement populations between the skyline mesh interaction coefficients, as calculated by 

the two contour integration schemes, versus time-step implicitness 
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Figure  3.44 shows the error of the contour integration scheme with discontinuity 

components compared to the implementation without; this is the error caused by 

omission of the delta functions from the second derivative of the temporal basis 

function.  The trend here is the same as Figure  3.37, though the error peaks are wider 

reflecting the greater variety of element pair geometries that occur in this complex 

mesh. 

 

Figure ‎3.45: Disagreement populations between the skyline mesh interaction coefficients, as calculated by 

the contour integration scheme with discontinuity terms and the Gaussian scheme, versus time-step 

implicitness 

Figure  3.45 shows the disagreement between the Gaussian scheme and the contour 

integration scheme with discontinuity components that correctly evaluates the numerical 

integrands of the former; this error is caused by using Gaussian integration to integrate a 

discontinuous singular integrand.  As in Figure  3.38, two error mechanisms with 

defined ridges can be observed. At explicit time-steps error associated with 

discontinuities again dominates though the peaks are wider.  Moving to the right the 

previously masked error due to the singularity of the integrand is revealed.  This latter 

mechanism contributes more error of significant magnitude than it does for the spherical 

mesh, so may affect the solution. 
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Figure  3.46 shows the magnitude of the largest two SEM poles versus time-step.  Again 

the contour integration models always have a pole with magnitude close to one.  

However the largest pole of the Gaussian implementation grows non-linearly with 

implicitness so the system becomes grossly unstable.  This is counter-intuitive in light 

of Figure  3.45, since larger interaction errors are observed at explicit time-steps.  

Instead instability correlates with dominance of the less significant error mechanism 

observed above, so it is inferred that the latter may be the cause of the former.  That fact 

that this causes solver divergence for this mesh, whereas none was witnessed for the 

spherical mesh, is due to more resonant nature of this surface; numerical error perturbs 

SEM poles, so the less well damped they were physically the more likely they are to 

stray unstable.  The second largest pole is well behaved for all schemes, though 

significantly more stable when contour integration is used. 

 

Figure ‎3.46: Stability trends on the skyline mesh characterised by the largest two poles versus time-step 

implicitness for each integration scheme 

Figure  3.47, Figure  3.48 and Figure  3.49 show the error versus the frequency domain 

BEM model for contour integration without discontinuities, contour integration with 

10
-1

10
0

10
1

0

1

2

3

4

5

6

7

c
t
 / 

x

|
|

stability trends: sky5x6 266 c343

with discontinuous terms

without discontinuous terms

Gaussian



 124 

discontinuities, and Gaussian integration respectively.  The two contour integration 

implementations show the same trend as they did on the spherical mesh, in fact with 

smoother convergence.  The Gaussian scheme is unstable as predicted by Figure  3.46 

and even at the most explicit time step, where stability is best, error relative to the 

frequency domain BEM is close to 100%; it cannot handle the singular nature of the 

integrals regardless of the time-step duration chosen. 

 

Figure ‎3.47: Surface error on the skyline mesh versus temporal resolution and implicitness when 

interactions are calculated by the contour integration scheme without the discontinuity terms 
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Figure ‎3.48: Surface error on the skyline mesh versus temporal resolution and implicitness when 

interactions are calculated by the contour integration scheme with the discontinuity terms 

 

Figure ‎3.49: Surface error on the skyline mesh versus temporal resolution and implicitness when 

interactions are calculated by the Gaussian integration scheme 
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3.3.3 Discussion 

Evidence has been presented that integration accuracy can affect system stability.  

However, further questions have been raised as extremely significant errors have been 

observed to have had very little effect on the end result. 

What is certainly not the case is that off-diagonal terms of the interaction matrices are 

insignificant and the solution solely due to the incident field and the self-interaction 

terms.  This is readily shown by setting all off-diagonals to zero (equivalent to the 

Kirchhoff optical boundary condition), running the MOT solver and observing that the 

resulting surface sound field is very different and does not agree with the frequency 

domain model. 

One possible explanation is that the interaction errors resulting from discontinuities 

partially cancel out in the MOT solver routine.  As retardation l  increments, a spatial 

discontinuity appearing within an integrand will arise from each temporal basis joint in 

turn.  Table  3.6 shows that the summations of the discontinuities in the first and second 

derivatives of the temporal basis function are zero, suggesting cancellation is possible. 

Table ‎3.6: Cancellation of temporal basis function discontinuities 

  -1 0 1 2 3 
l
  

     
mothermother TT  3

1  3
4  2 3

4  3
1  0 

     
mothermother TT  1 -4 6 -4 1 0 

 

The delta functions appearing in Equation  3.65 are weighted by the middle row of Table 

 3.6 and are completely omitted by Gaussian integration; these omissions will cancel out 

in a summation over l .  The cancellation of the effect of the sums of heavy-side 

functions in Equations  3.64 and  3.65 is harder to prove since they do affect the Gaussian 
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integration results.  To do so consider a single abscissa; this is always located at the 

same point on the element, so always has the same   value.  For each value of l  this 

will correspond to a different piece of  motherT  and a different column in Table  3.7.  

The cumulative effect of either row of Table  3.7 upon the single abscissa is shown to 

cancel.  Additionally, when an abscissa lies close to a discontinuity Gaussian accuracy 

appears very poor as a change in t  or numerical error could move the abscissa across 

the discontinuity and give a very different result.  However, in the context of summation 

of interactions with respect to l ,  this shift of the abscissa across the discontinuity just 

shifts the row of terms in Table  3.7 left or right by one; their effect still cancels.   

Table ‎3.7: Cancellation of temporal basis function decomposition heavy-side terms 

 01    10   21   32    
l
  

 1H  3
1  -1 1 3

1  0 

 2H  1 -3 3 1 0 

 

Thus the effect of discontinuities on Gaussian integration is shown to cancel under 

summation with respect to l .  This means that if  tt ,r  is constant with respect to time 

(silence) such integration errors will entirely cancel within the MOT solver, if  tt ,r  is 

slowly varying then they will mostly cancel.  Consideration of system stability is more 

complex as no assumptions can be made about the system state or excitation.  However, 

these cancellations do provide a mechanism for the substantial interactions errors 

observed to have so little effect on the system response. 

There is also the issue of Gaussian integration of the piecewise polynomial parts of 

Equations  3.64 and  3.65.  These are continuous but are still not the class of integrand 

the Gaussian rule is optimised for, so errors will result.  It is inferred that this and spatial 
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singularity are the source of the less significant error observed in Figure  3.38 and Figure 

 3.45, to which the instability in Figure  3.46 and Figure  3.49 has been associated. 

Above is the beginning of understanding why the Gaussian implementation is so stable 

in face of its deficiencies.  The temporal basis function is a curious choice, but perhaps 

one that is somehow quasi-optimal for MOT solution of a collocation scheme with 

piecewise constant spatial basis.  Ergin et al‟s lack of commentary on the subject of 

basis selection suggests that this is by chance rather than design.  It has been seen that 

the bulk of the interaction errors occurring due to use of Gaussian integration cancel to 

some degree, but there remains error primarily of spatial origin that can cause 

instability.  These deficiencies are overcome by the proposed contour integration 

scheme, leaving discretisation approximations as the primary source of error. 

3.4 Conclusions 

The aim of this chapter has been to investigate the effect of integration accuracy on 

system accuracy and stability.  A shortcoming has been identified in Ergin et al‟s 

implementation in the form of their combination of temporal basis function and 

integration scheme.  A new integration scheme utilising contour integration has been 

derived to accurately evaluate the necessary integrals.  The integration schemes have 

been compared on two meshes, one geometrically simple and another geometrically 

complex, the latter typifying those of interest in Room Acoustics.  Accurate integration 

has been shown to improve stability on the more complex mesh.  However it has also 

been seen that a Gaussian integration scheme is remarkably robust in the face of 

significant interaction errors, and a mechanism has been highlighted that accounts for 

this. 

The following chapter will investigate extending the method such that bodies with thin 

appendages may be modelled.  A common example of such an object occurring within 

the field of Room Acoustics is the Quadratic Residue Diffuser and the time domain 

BEM will be applied to model it. 
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4 Time domain BEM for Finned Closed Surfaces 

The purpose of this thesis is application of the time domain BEM to model surface 

treatments typical to Room Acoustics.  In the preceding chapter, a simple surface was 

contrasted with a complex surface used to diffuse sound, and integration accuracy was 

concluded to be an important factor for accurate and stable modelling of complex real-

world surfaces such as the latter. 

The models considered so far have been closed surfaces where S surrounds some 

interior domain  .  This chapter will consider surfaces that are thin and open (with air 

on both sides of S), such as an orchestral canopy, and lead onto solid bodies with thin 

appendages, such as a Quadratic Residue Diffuser (QRD).  Both class of surface have 

been modelled using frequency domain BEMs, but only the former has been 

investigated using a time domain BEM
 18

.  This chapter aims to redress this by 

modelling the latter class of surface using the time domain algorithm. 

Section  4.1 discusses the application of BEMs to thin surfaces.  Problems that occur as 

the thickness of   tends to zero are described and publications analysing this in the 

frequency domain discussed.  The procedure of modelling a thin surface by an open 

surface is introduced, in particular the concept of jump in velocity potential or pressure 

across S, and an existing time domain BEM that uses this approach is detailed. 

Section  4.2 is concerned with modelling mixed surfaces, that is a closed surface and a 

thin surface attached to or in proximity of one another.  Here it is proposed that the 

CFIE be used on closed parts of the surface while the open surfaces model is used on 

the thin parts, and anticipated that this shall improve stability relative to using the open 

model for the entire surface.  Research on the frequency domain BEM is cited as 

justification for this approach.  The formulation of the CFIE is seen to lend itself to 

modelling mixed surfaces in this way. 
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Numerical results are presented in the two sections that follow.  Section  4.3 models a 

simple geometry (a cube plus a fin) to establish that the mixed surfaces approach is 

accurate and that the improvement in stability occurs.  Section  4.4 models a real world 

surface (a QRD) and shows that the improvements still hold, although stability is not 

universally guaranteed. 

Section  4.5 presents conclusions and discusses the significance of the results. 

4.1 BEM Thin Shape Breakdown 

All thin surfaces occurring in the real world have some finite thickness, so accordingly 

attempts have been made to use the closed surface BEM to model these with two 

surfaces, each conformal to a body-air interface.  This is a reasonable model of reality, 

however when the BEM is applied problems occur.  These surfaces will be very close 

with respect to their other dimensions, causing the singularity of the KIE to affect non-

self element pairs, leading to very large interaction coefficients and integration accuracy 

issues.  These can in turn lead to breakdown in the numerical solution stage of the 

algorithm, a phenomena known as Thin Shape Breakdown (TSB). 

 

Figure ‎4.1: A thin body section 

TSB can be avoided by taking the limit as thickness approaches zero and approximating 

the two body-air interfaces by a single surface.  Figure  4.1 depicts a thin body whose 

air-interfaces are the surfaces S1 and S2.  As the thickness approaches zero S1 

approaches S2, so 1'r  and 2'r  coalesce.  The normal vectors are opposed, meaning the 

sound radiated by the surface is a function of the jump in velocity potential (or pressure) 

1'n̂  

1S  
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across the surface instead of the absolute values on each side; this is shown in Equation 

 4.1 where jump velocity potential      ttt
ttt ,',','~

21 rrr   .  The surface subscripts 

are dropped as they both refer to the same surface. 
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  4.1 

It is apparent that the equation for jump velocity potential on an open surface is 

identical to that for velocity potential on a closed surface; this concurs with the 

discussion in chapter  2.  The KIE does not distinguish between   and  ; they are 

both modelled as air filled, so differences only arise because of the source locations and 

boundary condition.  A closed rigid boundary condition typically asserts that 

  0,'2 t
t

r , hence    tt
tt ,','~

1 rr   .  Similarly, the concept of a double layer 

potential is based on dipoles, which cause a jump in velocity potential (and pressure) 

across the surface.  Accordingly one way of viewing this is that whenever  tt ,'r  is 

found for a closed body using a BEM, what is really being found is  tt ,'~ r , it just 

happens to equal  tt ,'r  as   0,'2 t
t

r .  This is a minor distinction, but one that 

improves algorithmic elegance and will be adhered to in the notation of the remainder of 

this thesis. 

Since  tt
,'1 r  and  tt

,'2 r  are unknown, no boundary condition of the form 

  0,'2 t
t

r  may be used.  However, boundary conditions involving normal velocity 

are still valid, so the rigid surface boundary condition of Equation  2.64 may be used, 

producing the BIE below; this is simply  vL  (Equation  2.65) applied to jump 

velocity potential. 



 132 

   

 
 

  t

d
R

c
Rt

t

tt

t

v

S

t

si

,~L

'
4

''ˆ,'~ˆ

,ˆ,ˆ

r

rnrn

rnrn

















      4.2 

The scattered sound may be found directly from jump velocity potential by Equation 

 4.1.  If the absolute values on the front and back of the surface are required then these 

may be found by combining the double layer potential jump property (Equation  4.3) 

with the definition of jump velocity potential, yielding Equation  4.4. 
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   4.4 

The first time domain BEM to use this formulation was Kawai & Terai‟s
 18

 1990 

implementation.  Unlike the above, their derivation supported non-rigid surfaces, 

though these terms were dropped before the implementation stage, which 

consequentially just supported thin rigid plates.  Integration was performed by 

conversion to contour integrals, resulting in an implementation equivalent to Equation 

 3.48, placing a further restriction that the surface be comprised of flat elements. A 

trapezoidal rule was used to integrate the contribution from each element edge, doubling 

the division repeatedly until relative error became less than 1%; this is a similar 

approach to that of section  3.2.1.9, but less efficient (not locally adaptive) and devoid of 

the assertion of absolute accuracy. 

The primary weaknesses of the algorithm were due to the definition of discretisation in 

prose, that jump velocity potential is assumed uniform over an element between time-

steps.  There is inconsistency in their contour integrand which interpolates this quantity 
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between time-steps.  Due to this imprecision in definition the only place the current 

velocity potential could be distinguished from its retarded counterpart was at the 

collocation point; hence the algorithm was restricted to explicit time-step durations.  In 

their implementation the time derivative at the collocation point was replaced by a 

backward finite-difference approximation; this was substituted into the integral equation 

and rearranged to find the current jump velocity potential weight for that element: 
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   4.5 

While Kawai & Terai‟s implementation was progressive in its modelling of thin 

surfaces and use of contour integration, its discretisation scheme was a significant 

weakness. 

Martinez
 65

 investigated the TSB problem for the frequency domain BEM in depth in his 

1991 paper.  He shows by Maclaurin expansion that as the thickness of an object 

approaches zero, the zero‟th expansion term of the KIE vanishes and its first derivative 

with respect to the surface normal vector becomes dominant.  This provides a link to 

those codes that choose to use the normal derivative form of the KIE (as above), and 

offers explanation as to why some closed body implementations appear to work on thin 

appendages.  His work‟s scope includes non-rigid compliant fins supporting flapping 

and breathing modes, whereas this thesis will restrict its investigation to rigid fins.  

Finally, he contrasted the methods needed to tackle the TSB with those required for the 

non-uniqueness deficiency and highlighted that the former is not frequency dependent. 

4.2 Mixed surfaces 

A method for modelling thin plates has been detailed, but there remains the question of 

what is best when it is desired to model a plate near a solid body, or a solid body with a 

protruding fin.   vL  is valid on closed and open surfaces, so one solution is to use it 
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for both closed and open surface sections; this will be referred to as an all-thin model.  

However, Ergin et al
 22

 found that  vL  supports cavity resonances of closed surfaces 

so is potentially unstable in that application; they promote use of the Combined Field 

Integral Equation (CFIE,  cL , Equation  2.66). 

Wu
 66

 (1994) addresses the same concerns in the frequency domain and shows that the 

non-uniqueness problem occurs if at least one closed body exists in a mixed body 

environment.  He implements a direct BEM that uses different solution strategies on 

thick and thin surface parts; thin parts are modelled with the normal derivative of the 

KIE, as above, closed parts are modelled with either the Burton and Miller method or 

the CHIEF method, both of which inhibit cavity resonances and the associated non-

uniqueness issue.  The implementation was verified against a multi-domain BEM, 

which is correct albeit less elegant and efficient.  Martinez
 65

 mentioned all of these 

aspects, including use of a different integral operator on open and closed surface parts, 

but stopped short of proposing such an algorithm. 

Wu is careful to distinguish between closed and open surfaces, and groups their 

elements such that the interaction matrix may be partitioned into thick-thick, thick-thin, 

thin-thin and thin-thick interactions.  By contrast, the comments on jump potential in 

section  4.1 suggest that these surface parts need not be distinguished in this way; they 

merely have differing boundary conditions.  Derivation is further simplified because 

 cL  reduces to  vL  when 1 ; this is not the case for the Burton and Miller
 6
 

definition in which the KIE and its normal derivative have a fixed weight of one and a 

variable weight respectively. 

Consequentially the mixed surfaces algorithm proposed here is identical to Ergin et al‟s 

algorithm, with the replacement of  tt ,'r  by  tt ,'~ r  and the constraint that 1  on 

open surface sections.  This has the advantage that all the numerical machinery has been 

verified, so it is merely the above premise that must be tested.  The „correct‟ (no 

discontinuity terms) contour integration scheme from chapter  3 will be used. 
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4.3 Accuracy and Stability 

The verification process will comprise two distinct stages; firstly the response of the 

model to an impulsive source will be examined to detect instability (as the meshes are 

now too large to calculate SEM poles for all time-step durations), then the steady-state 

response will be compared to a frequency domain BEM to assess accuracy. 

A new source type will be required to create impulsive excitation, the motivation being 

to provide a broadband excitation that excites all system poles so any that are unstable 

make their presence known.  The model does not support discontinuous excitation, so 

delta and heavy-side functions cannot be used.  Instead a „sampled‟ source with defined 

scalar values 
j  at each time-step is defined.  These samples must be interpolated and 

the surface discretisation temporal basis function is an obvious candidate.  The resulting 

excitation function is given below, where R is the distance from the source to r: 

   
 

R

c
Rt

tTt
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jj
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


4
,


r        4.6 

This source type could represent many possible signals depending on the choice of 

sample values; these could for instance be the PCM samples of a piece of recorded 

music.  However, to create the required impulsive source the samples will be chosen to 

be unitary at t = 0 and zero otherwise.  Accuracy is not expected to be good as the 

rapidly varying field is poorly discretised, so (instead of showing redundant data) the 

spatial maximum of velocity potential at each time-step is shown, as is required to 

characterise stability.  This is plotted for each time-step duration modelled.  The source 

will be located 10m distant normal to the scattering surface. 

Solution accuracy will be calculated by the same method as used in section  3.3.  A 

100m distant normally located harmonic point source will excite the surface, modelled 

by the time domain BEM with a variety of time-step durations.  The temporal resolution 

is characterised by the number of time-steps per excitation period (), and its 

relationship to spatial resolution by the implicitness ( 1 xtc ).  The source to surface 
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element transfer function at each excitation frequency is calculated using the frequency 

domain BEM (Equation  3.67).  The same is calculated from the time domain data by 

DFT (Equation  3.68); the first 50β iterations are omitted to allow the solution to reach 

steady state, then the next 100β iterations are chosen for DFT as this length maintains 

periodicity and eliminates windowing error.  The surface sound error is calculated as 

spatial mean magnitude of the difference between these transfer function estimates, 

normalised to the spatial mean magnitude of the frequency domain estimate and is 

written as a percentage (Equation  3.69).  In most cases a frequency domain BEM for 

open surfaces (DIFTHIN.exe) will be used. However at certain frequencies this shows 

spurious behaviour so a frequency domain BEM for closed surfaces (RADDIFF.exe) 

will be used for confirmation.  Both these implementations are previously verified 

against experimental results and follow Terai‟s
 64

 1980 derivation. 

This section will commence by modelling a simple surface (a cube) and then progress to 

a complex „real-world‟ one (a QRD).  In both cases, the closed part of the surface will 

first be modelled to observe the stabilising effect of the CFIE.  Then the thin 

appendages will be added, and the mixed model compared with the all-thin model. 

4.3.1 Cube 

This mesh is 0.7m cubed comprising 294 elements.  It is an extremely regular mesh; all 

elements are perfectly square, so no collocation points are unduly close to element 

edges and integration error is not anticipated to be an issue.  It is depicted in Figure  4.2: 

Figure  4.3 shows the response of the surface to an impulsive source when a thick 

surface model has been used (CFIE with α = ½).  Each line shows the spatial maximal 

velocity potential magnitude versus time for models of differing time-step duration.  As 

expected, energy is dissipated away from the scattering surface and the surface velocity 

potential decays rapidly.  In the most implicit time-step durations (top of figure) the 

decay appears slower; this is due to the longer excitation and the cruder temporal 

discretisation failing to model the rapid decay.  Note that the minimum of the value axis 

is artificially set to 10
-6

; data below this magnitude is not shown. 
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Figure ‎4.2: Cube mesh 

 

Figure ‎4.3: Impulse response of the cube closed surface model for various time-step durations 

Figure  4.4 shows the response of the surface to an impulsive source when an all-thin 

surface model has been used (CFIE with 1 ).  The system still appears to be 

approaching steady state, but instead of the clear decay of velocity potential seen in 

Figure  4.3, other artefacts are clearly visible.  At the most explicit time-step durations, 
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high frequency oscillation is observed, which is unlikely to have a physical origin so is 

considered to be algorithmic error.  As time-step durations become more implicit this 

subsides but velocity potential still converges slowly to a non-zero value.  Recalling that 

it is the derivatives of velocity potential that have physical meaning, any constant value 

shown here represents silence so the fact that the curves do not tend to zero is not a 

concern.  In fact, terminating with such a non-zero steady state is typical of time domain 

BEM responses; Figure  4.3 would show such behaviour if the low limit of the value 

axis were reduced.  However, the slow convergence to this value represents a slowly 

decaying pressure field, indicating that there are some system poles with magnitudes 

only marginally smaller than unity, which is not expected of a convex scatterer. 

 

Figure ‎4.4: Impulse response of the cube open surface model for various time-step durations 

Figure  4.5 confirms that the all-thin model has larger magnitude poles than the closed 

model, even showing one thin pole to have magnitude greater than one, an instability 

that was not excited in Figure  4.4.  To the left of Figure  4.5 few open poles are shown as 

the sparse matrix eigenvalue solver could not converge to any distinct ones; this is 

indicative of the problems experienced calculating MOT poles as the number of 

elements is increased. 
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Figure ‎4.5: Stability trends on the cube mesh characterised by the largest resolvable poles versus time-

step implicitness for the open and closed surface models 

Although the contour integration derivation of section  3.2 was valid for any polygonal 

surface, the implementation has not been verified on square elements so here it is first 
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Figure ‎4.6: Surface error of the time domain BEM for closed surfaces compared to the frequency domain 

BEM for closed surfaces versus temporal resolution and implicitness on the cube mesh 

 

Figure ‎4.7: Surface error of the time domain BEM for closed surfaces compared to the frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the cube mesh 
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Figure  4.7 shows accuracy of the time domain BEM for closed surfaces versus the 

frequency domain BEM for open surfaces.  Agreement is mostly good, except at a few 

localised points in the top right of the figure; Figure  4.8 compares the frequency domain 

BEMs and shows that these errors are associated with the frequency domain BEM for 

open surfaces rather than the time domain implementation.  It is suspected that these 

could be non-uniqueness symptoms as they lie on a line of roughly constant frequency.  

Contrary to the argument favouring jump velocity potential in section  4.2 it has been 

found that the frequency domain BEM for open surfaces gives lower error if, for closed 

surface sections, the pressure on the front surface is used.  The time domain BEM is still 

validated on jump velocity potential as proposed and achieves good accuracy versus the 

frequency domain BEM for closed surfaces.  It must therefore be that open surfaces 

frequency domain implementation supports some spurious interior pressure field that 

corrupts the jump pressure but that is cancelled out on evaluation of the front pressure.  

The time domain BEM equipped with the CFIE rejects these interior modes. 

 

Figure ‎4.8: Surface disagreement between the frequency domain BEMs versus temporal resolution and 

implicitness on the cube mesh 
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Figure  4.9 shows accuracy of the time domain BEM for open surfaces versus its 

frequency domain equivalent.  Error appears randomly distributed with a mean value of 

80%, demonstrating that the artefacts seen in Figure  4.4 do manifest as error in the 

solved surface sound, even if only considering the principle frequency of excitation.  

Comparison of this with Figure  4.6 and Figure  4.7 bolsters the evidence in support of 

the superiority of the CFIE in comparison to an all-thin model. 

 

Figure ‎4.9: Surface error of the time domain BEM for open surfaces compared to the frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the cube mesh 
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4.3.2 Cube with a Thin Appendage 

This mesh is the same 0.7m cube modelled above with 0.7m square appendage attached 

to one edge, increasing the element count to 343.  Again it is an extremely regular mesh.  

It is depicted below, where thin elements are coloured blue, and stability results follow: 

 

Figure ‎4.10: Mesh of cube plus fin 

 

Figure ‎4.11: Impulse response of the cube plus fin mixed model for various time-step durations 
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Figure ‎4.12: Impulse response of the cube plus fin open model for various time-step durations 

Figure  4.11 shows the same trends as Figure  4.3, except for a marginally slower decay 

rate possibly because the surface now has concave parts.  The excitation of a steady-

state response is now visible for more implicit time-step durations.  Similarly, Figure 
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significantly affected model stability.  MOT poles are not shown as the results are 
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the solver. 
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corner is due to the frequency domain BEM. 

Like Figure  4.9, Figure  4.14 shows poor accuracy from the time domain all-thin model 

with an average error of 83%.  These results demonstrate that, as expected, the 

superiority of the CFIE is not weakened by the proximity of a thin body, and that the 

simple implementation change proposed in section  4.2 does indeed improve accuracy on 

mixed surfaces. 
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Figure ‎4.13: Surface error of the time domain BEM for mixed surfaces compared to the frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the cube plus fin mesh 

 

Figure ‎4.14: Surface error of the time domain BEM for open surfaces compared to the frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the cube plus fin mesh 
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4.4 Application example: Quadratic Residue Diffuser 

A Quadratic Residue Diffuser
 67

 (QRD) is a number-theoretic diffuser popular in Room 

Acoustics applications.  It comprises a series of wells, separated by thin fins, whose 

depths are dictated by the quadratic residue sequence and a design wavelength.  In this 

thesis only one-dimensional QRDs will considered; these are designed to diffuse in one 

plane only and take the form of an extruded cross section.  The diffuser modelled in this 

section has a design wavelength of approximately 1.4m, a well width of 0.25m, and a 

height of 1.0m. 

Cox and Lam
 68

 performed three-dimensional BEM models of QRD in 1994 and 

concluded that a BEM capable of modelling the thin fins of the diffuser gave the most 

accurate results compared to scale models, justifying this as an appropriate application 

of the time domain BEM for mixed surfaces. 

4.4.1 QRD Block 

Again the closed portion of the surface will be modelled first to demonstrate the 

effectiveness of the CFIE.  This part of the surface is depicted in Figure  4.15 and 

comprises 726 elements.  Dimensions have been chosen such that all elements are close 

to square, so again integration error is not anticipated to be an issue.  This surface has 

two concave regions which form part of the two deepest wells, and some surface 

sections are close and parallel, suggesting a disposition toward resonances. 

Despite use of the CFIE, the two most explicit time-step durations in Figure  4.16 can be 

seen to exhibit instability; some poles have been corrupted by discretisation error (at 

these short time-step durations primarily spatial discretisation error) and their 

magnitudes perturbed to greater than unity.  Otherwise behaviour is as expected from 

the previous figures, with a slightly slower decay due to the concave parts of the 

surface. 
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Figure ‎4.15: Mesh of a QRD without its fins 

 

Figure ‎4.16: Impulse response of the QRD block closed model for various time-step durations 
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Figure ‎4.17: Impulse response of the QRD block open surface model for various time-step durations 

Figure  4.17 shows the situation is much worse for the time domain BEM for open 

surfaces.  Not only are all the error causing artefacts visible in Figure  4.4 and Figure 

 4.12 again present, but the solution is clearly unstable at 7 of the 21 time-step durations 
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surface geometry.  Accuracy is poorer than in section  4.3, however the low minimum 

error is encouraging. 
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Figure ‎4.18: Surface error of the time domain BEM for closed surfaces compared to frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the QRD block mesh 

 

Figure  4.19: Surface error of the time domain BEM for closed surfaces compared to the frequency 

domain BEM for closed surfaces versus temporal resolution and implicitness on the QRD block mesh 
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Error of the open surface time domain model compared to the frequency domain is not 

shown as no trends can be observed beyond the fact that accuracy is very poor.  

Omitting the unstable time-step durations, average error for the stable results is still 

approximately 300%.  This result again reinforces the superiority of the CFIE. 

4.4.2 Quadratic Residue Diffuser 

Here the diffuser is modelled with its fins, shown in translucent blue, increasing the 

element count to 900.  Again all elements are close to square, so integration error is not 

anticipated to be an issue.  The surface now contains a wealth of exterior convex parts 

and parallel surfaces, whose presence suggests a disposition toward resonances.  This is 

unsurprising since each well may be considered to be a ¼ wave resonator, albeit 

damped by energy leaving through its mouth.  Energy trapped in these is not suppressed 

by the CFIE as they as physically relevant external features of the problem; their 

response is part of the desired solution.  It will be seen if discretisation errors push these 

physical lightly damped poles into instability. 

 

Figure ‎4.20: Mesh of a QRD 
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Figure  4.21 shows that addition of the fins has clearly had a negative effect on model 

stability.  In addition to instability of the two most explicit time-step durations observed 

in Figure  4.16 there are now an additional three that are divergent, plus other artefacts 

previously restricted to the open model.  However, stability is good for most of the more 

implicit time-step durations, apart from a slowly decaying pole at the fourth most 

implicit. 

The effect of these phenomena on solution accuracy is shown in Figure  4.22.  Some 

instabilities seem to affect all frequencies ( xtc  1.0  and xtc  ) while others 

only seem to become significant at higher frequencies (top of the figure).  Error at the 

most implicit time-step durations is better, though still poorer than has been achieved 

for other problems. 

 

 

Figure ‎4.21: Impulse response of the QRD closed model for various time-step durations 
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Figure ‎4.22: Surface error of the time domain BEM for mixed surfaces compared to frequency domain 

BEM for open surfaces versus temporal resolution and implicitness on the QRD mesh 
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The numerical results in sections  4.3 and  4.4 have proven these notions.  The mixed 

surface model has been shown to be more stable and more accurate than an all-thin 

model.  In addition, evidence is shown in support of the stance taken in chapter  2, that 

implicitness and use of the CFIE increase accuracy and stability. 

However, the numerical results also highlight the well known shortcoming of the time 

domain BEM that stability cannot generally be guaranteed.  The instabilities observed 

for the mixed model of the QRD with an implicit time-step duration result from spatial 

discretisation error corrupting physical poles, such that their magnitudes become greater 

than one.  The closer to unity magnitude the poles originally were, the greater the 

likelihood of this occurring, hence the contrast in stability witnessed between the simple 

surfaces of section  4.3 and the more complex resonant structures of section  4.4. 

A finer mesh would improve spatial discretisation so should lower the associated error 

and improve stability, albeit at a higher computational cost.  An argument against 

implicitness is that it returns a smaller bandwidth for a given spatial resolution than an 

explicit model would, or equivalently that implicitness demands higher spatial 

resolution for given temporal resolution.  This view suggests higher computational cost 

for an implicit scheme, although better accuracy and stability result.  There is clearly a 

compromise to be found, and the range of time-step duration and temporal accuracy 

modelled in the above figures is intended to show trends and not all locations are 

efficient.  For example, in the top right corner of the accuracy figures xtc  10  and β 

= 20, which for the QRD mesh ( x  = 0.15m) result in a maximum frequency of only 

12.5Hz!  It is suggested that for efficiency and accuracy xc  should be the order of t  

and that β should be 10 to 15; this region lies central to the above figure and for the 

QRD mesh gives a maximum frequency of the order of 250Hz. 

The following chapter will extend the time domain BEM further by investigating 

compliant surfaces.  In particular, an implementation is developed that allows the well 

of a QRD to be abstracted to a compliant surface at its mouth.  Implications for 

accuracy and stability are considered. 
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5 Time Domain BEM for Compliant Surfaces 

So far this thesis has concentrated on rigid surfaces which are themselves 

approximations as no real scatterer has a surface that is truly rigid and impenetrable to 

sound waves.  This is not a bad approximation in certain cases; the diffusers modelled 

hitherto are effectively rigid within their operational frequency range so were 

appropriately modelled.  However, many materials such as porous absorbers and 

membrane absorbers are used specifically because of their compliant nature so a rigid 

model entirely fails to characterise their behaviour.  A model of the material of the 

scatterer is required that can be coupled to the BEM through its unknown surface 

quantities pressure and normal velocity. 

Acoustics is a science whose significant dimensions span orders of magnitude, and there 

is a need to reconcile models applicable for each.  The KIE and resulting BEM models 

are detailed to the order of wavelength and hence able to describe diffractive effects.  

However, the interaction of air with a surface such as a porous absorbent is on a much 

smaller scale, not described by the KIE, where viscous boundary layer and thermal 

conduction effects are significant.  It would be inefficient to couple such models; better 

to use a material model that is of the same abstraction level as the BEM used to model 

the scattering.  One such suitable model is Finite Element Method and many such 

coupled algorithms have been published. 

However, in the acoustics discipline it is preferred to abstract the properties of the 

material further so just its interface with the air is modelled.  In the frequency domain it 

is convenient to do this using the concept of surface impedance, which integrates easily 

into a BEM framework.  An equivalent time domain model is sought. 

In this chapter a novel time domain BEM algorithm is devised to model compliant 

surfaces.  A simplified version that models surfaces that have absorbing welled regions 

is implemented and verified.  In section  5.1 frequency domain impedance models are 

discussed along with publications that transfer their meaning to the time domain.  The 

surface reflection coefficient is identified as a more robust candidate for time domain 
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conversion than impedance.  In section  5.2, the time domain boundary integral model 

for compliant surfaces is developed.  This begins with a simple model of a well with a 

rigid piston at its mouth and is abstracted to include any arbitrary compliant surface 

where propagation inside the material may be regarded as normal to its surface.  The 

model relies on distinction between sound propagating into and out of the surface.  The 

incoming sound is discretised and the outgoing sound expressed casually from it by 

convolution.  This is believed to be a novel approach. 

In section  5.3, the boundary integrals defined in section  5.2 are converted to sums of 

contour integrals valid for any piecewise flat compliant surface.  A simplified surface 

model allowing the outgoing wave to be delayed and attenuated is introduced in section 

 5.4 to simulate the behaviour of the mouth of a well containing a hypothetical 

broadband absorbent.  The contour integral formulations are refined to create a 

numerical integration implementation of this BEM for absorbing welled surfaces.  An 

equivalent frequency domain impedance boundary condition is derived for verification 

purposes.  Verification is presented in section  5.5, including two surfaces typical of 

diffusing treatments applied in Room Acoustics.  Finally conclusions are drawn in 

section  5.6. 

5.1 Surface Impedance 

Surface impedance  ,rZ  abstracts the behaviour of any locally reacting material to a 

frequency dependent complex ratio between pressure  ,rP  and the inward normal 

component of particle velocity  ,rinV  (Equation  5.1).  Its meaning is analogous to its 

use in Electronics, where it relates voltage and current, again being a potential variable 

and a flow variable.  Its real part is termed resistance and signifies energy that is 

removed from the system.  Its imaginary part is termed reactance and signifies energy 

that is stored and returned later in the cycle.  Because there is an underlying assumption 

of periodic excitation it does not directly distinguish between energy that is stored for 

different numbers of periods, only phase is known.  
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Surface impedance is an ideal notion for the frequency domain BEM as it is a frequency 

dependent quantity and the scattering body has already been abstracted to a surface.  

The frequency domain KIE was given in Equation  2.15, and the relationships between 

velocity potential, pressure and velocity in Equations  2.12 and  2.13.  In a direct BEM, 

Equation  5.2 is substituted into the KIE at the integration point and gives normal 

velocity in terms of pressure such that there remains only one unknown field on the 

surface.  In an indirect BEM the surface impedance is evaluated as a boundary condition 

at an observation point approaching the boundary, allowing solution for the single and 

double layer potential distributions. 
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In contrast time domain non-rigid boundary conditions are usually less straightforward 

to apply.  They usually take a derivative form, as Equations  2.56 and  2.57, so require 

numerical differentiation or, if possible, analytical differentiation of the discretisation 

scheme.  To arrive at such a form from frequency domain surface impedance requires 

consideration of its variation with frequency.  Measured data is usually in a discreet 

form, so some form of interpolation with frequency is necessary, and the inverse Fourier 

transform of the interpolation scheme will form the time domain boundary condition. 

Tam and Auriault‟s
 55

 1996 publication is a good example of such a scheme.  They first 

give two single-frequency time domain boundary conditions derived directly from 

Equation  5.2 and show by Laplace transform that each is unstable for a range of surface 

reactance values so unsuitable for broadband application.  They then progress to 

interpolate measured impedance data; resistance is assumed to be constant with 

frequency, and reactance is approximated by the sum of frequency and its reciprocal, 

each with a scalar weight which is found by a least-squares fit.  This leads to a new 

boundary condition through the association of   with differentiation and 1  with 

integration; stability is proved by Laplace transform. 
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As was stated in section  2.2.8, the time domain equivalent of Equation  5.2 involves 

convolution.  In accord with Tam and Auriault‟s two direct boundary conditions, there 

is immediately ambiguity as two possible convolutions can be implemented; one arises 

from the impedance (Equation  5.3) and one from its reciprocal the admittance (Equation 

 5.4).  From this it is apparent that  tz ,r  and  t,r  are matched filters.  However, 

neither of them represents a causal relationship; both  tt ,r  and  tvn ,r  contain the 

excitation and scattered waves.  Accordingly, it is difficult to clarify by examining 

 tz ,r  or  t,r  whether they represent causal behaviour by the surface; that scattered 

sound cannot precede incident sound.  Fung, Ju and Tallanpragada
 56

 (2000) write that 

all roots of   1, rZ  must have positive imaginary parts to guarantee causality, and 

that a polynomial fit in frequency cannot generally achieve this; Tam and Auriault‟s 

success appears to be a special case. 
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Instead of interpolating surface impedance or admittance, Fung, Ju and Tallanpragada 

propose interpolating the surface reflection coefficient.  This is the frequency dependent 

complex ratio between magnitudes of harmonic plane waves travelling into and out of a 

flat sample of the material, as would occur in an impedance tube, and is related to 

impedance by the bilinear mapping in Equation  5.5.  They write: “… a direct inversion 

of  ,rZ  generally results in an unstable system of temporal operators.  If instead, the 

equivalent temporal system is derived from the corresponding reflection coefficient 

 ,rW , its stability and convergence are ensured.”  This leads to the convolution form 

of boundary condition in Equation  5.6, where sound into and out of the surface must be 

distinguished. It is commented that this form is less sensitive to numerical error than the 

differential based form.  tr ,r  is the inverse Fourier Transform of the surface reflection 

coefficient and will be denoted “surface reflection response” in this thesis, motivated by 

its form as an impulse response that defines reflection.  Causality of the surface 

response may be easily established by observing that the poles of  ,rW  are damped, 



 158 

and that  tw ,r  is zero for negative time.  In their 2004 publication, Fung and Ju
 58

 have 

migrated to using “wall softness” (Equation  5.7), so named as a value of zero indicates a 

rigid surface, but the spirit is much the same. 
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There is a further issue that measured data is discreet and unlikely to cover the entire 

audible frequency range, so an inverse Fourier transform cannot be used to calculate any 

of the convolution kernels mentioned above.  In particular low frequency information is 

required to unwrap the phase of the higher frequency behaviour but this is rarely 

measured.  In this thesis only simple surfaces with palpable surface reflection responses 

will be considered so this is not an immediate issue.  However it has the potential to be 

a serious restriction on the method, and as such has been tackled in the literature.   

Fung, Ju and Tallapragada
 56

 and Fung and Ju
 57, 58

 all decompose surface reflection 

response into a sum of pole responses, the characteristics of which are found from the 

complex residues of the interpolation of  ,rW .  This has the advantages that a 

representation may be produced when only a finite bandwidth of discrete impedance 

data is available, and that causality and boundedness are explicitly known.  It also 

replaces the need to store surface history with storage of the most recent contribution by 

each pole; this is convenient for methods such as FDTD
 2
 which do not store surface 

history, less useful for time domain BEM.  Modelling the surface as a sum of damped 

oscillators is also suggested as a future implementation. 

These authors, motivated by a variety of research interests, have investigated the 

concept of impedance in the time domain.  The primary contribution which will be 

carried over into this thesis is the use of surface reflection response to represent surface 

impedance (Equation  5.6).  Crucially for a time marching algorithm this guarantees a 
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causal surface response if the poles of  ,rW  are damped and  tw ,r  is zero for 

negative time.  The implementation optimisations for arbitrary surface reflection 

responses proposed above will not be considered in what follows, not least because it is 

not clear that these hold any benefit in the time domain BEM framework where the 

surface history is readily available. 

5.2 Incoming and Outgoing Sound Wave Model 

The surface reflection response model requires distinction between sound that is 

propagating into the surface and sound that is propagating out.  In order to cast this into 

a BIE framework the model in Figure  5.1 proved enlightening.  This represents a light 

rigid piston in a rigid baffle, where the piston is coupled to a well of depth d .  The 

properties of the piston are consistent with the assumption of constant velocity potential 

over an element (piecewise constant spatial basis) implemented in this thesis.  The 

piston does not excite any cross modes in the well so all activity can be described by 

plane waves propagating vertically.  These reflect from the well floor hence the outward 

wave is simply the inward wave with a change of direction and a delay of 12 cd ; this is 

consistent with Schroeder‟s model of wells in a Quadratic Residue Diffuser
 67

 (QRD).  

Total velocity potential at the piston is the sum of the incoming wave and the outgoing 

wave. 
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Figure ‎5.1: Model of a light rigid piston above a well 

The arrows, and their correspondingly coloured equations, represent the flow of sound 

to a collocation point in the centre of the piston.  An early conceptual barrier was how to 

account for reflection back into the well due to radiation impedance of the piston.  This 

turns out to be accounted for directly in the BIEs, indeed it is exactly these equations 

that are approximated to in the classical model of radiation by a piston
 69

. 

Realising that the BIEs in the figure above express the entirety of the problem and that a 

well model has limited applicability the above model is generalised.  The delayed 

reflection from the bottom of the well is superseded by a statement that the outgoing 

wave is found from the incoming wave by convolution with a surface reflection 

response.  If the area of the well is reduced it can be imagined that the surface becomes 

like an extruded honeycomb material, where each pore has its own surface reflection 

response.  If this area reduction is taken to the limit, the piston becomes irrelevant and 

what is left is a continuously varying surface reflection response over the surface.  

However the well analogy still states that each point on the surface behaves 

independently; the surface is locally reacting.  This means that the incoming and 

outgoing waves are better imagined not as plane waves, but one-dimensional waves 
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travelling down infinitesimally thin pores perpendicular to the surface.  Such a model is 

appropriate where sound propagates into a material in a direction close to perpendicular 

to the surface, as may occur due to refraction if the speed of sound in the material is 

substantially lower than that in air.  This is a subclass of the locally reacting impedance 

surface.  What is behind the surface is abstracted; its influence on the surrounding 

media is completely encapsulated by its surface reflection response.  With this in mind, 

the model depicted above is simply a physical interpretation of the surface reflection 

response model where piecewise constant spatial basis have been used and the surface 

reflection response is a delta function delayed by 12 cd .  The generalised model will 

now be formalised and discretisation considered. 

The outward sound is a causal function of inward sound, defined by convolution with 

the surface reflection response (Equation  5.6).  The total velocity potential on the 

surface is assumed to be the sum of an inwardly propagating wave and an outwardly 

propagating wave (Equation  5.8).  The propagation directions defined for these waves 

connect their normal velocities with their temporal derivatives (Equations  5.9 and  5.10).  

Combining Equations  5.6,  5.8 and  5.10 gives normal velocity in terms of the inward 

wave (Equation  5.11).   These statements for normal velocity are dependent on the local 

reaction assumption; sound propagating through a point in the surface does so 

independently of its neighbours and normal velocity is completely defined by the 

gradient of the incoming and outgoing waves. 
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Equations  5.8 and  5.11 wholly define the properties of the surface sound required by the 

KIE in terms of the inwardly propagating wave.  It is therefore natural to discretise the 

inwardly propagating wave as the unknown surface quantity (Equation  5.12); here the 

discretisation weights have reverted to being named njw ,
 since they do not represent 

instantaneous total surface velocity potential. 

     
 


s tN

n

N

j

jnj

in twt
1 1

n, Tf, rr        5.12 

The above set of equations is believed to be a novel approach to discretisation of a 

compliant surface.  The inwardly propagating wave has been identified as the 

fundamentally unknown quantity, discretised, and had the total surface sound evaluated 

from it.  Use of surface reflection response to characterise a surface is also believed to 

be new within the context of time domain BIE.  In what follows these equations will be 

transformed into a time domain BEM. 

Surface normal velocity is non-zero, so the boundary conditions associated with  vL , 

and therefore  cL , cannot be used on a compliant surface;  pL  must be used 

exclusively.  However, as section  4.2 states, the boundary condition is a local restriction 

and other operators may be used on other parts of the surface.  A surface can be 
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conceived that contains rigid thick parts on which  cL  is used, rigid fins on which 

 vL  is used, and thick compliant parts on which  pL  is used.  Again no special 

problem partitioning is required as long as the integration routine can handle all surface 

types.  Note that the well in Figure  5.1 has now been abstracted to an infinitesimally 

thin surface that behaves in accordance with its surface reflection response, so the 

comments on jump potential in section  4.2 still hold.  Care will be taken in the 

following section to show that sound is not simply allowed to flow into  . 

5.3 Derivation of contour integrals for compliant 

surfaces 

This section extends the contour integration scheme of section  3.2 to support compliant 

surfaces and the surface reflection response discretisation model.  Many definitions are 

carried across and conclusions cross referenced.  The coordinate system of section  3.2.1 

will be used; individual terms are described in the glossary but a brief recap of section 

 3.2.1.1 might be advisable.  Again the derivation will be pursued such that it is valid for 

an arbitrary a piece-wise constant discretisation scheme on a piecewise flat surface. 

5.3.1 Scattered velocity potential 

Scattered velocity potential is described by the KIE (Equation  2.6).  Section  3.2.1.4 

evaluates the scattering due to the double layer potential part of the KIE as a contour 

integral (Equation  3.33) so here the focus will be on evaluating the single layer 

potential.  Below the sifting property of the delta function is applied: 
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The incoming and outgoing wave model provides a convenient link between normal 

velocity and the temporal derivative of velocity potential (Equation  5.11).  The retarded 

nature of the integrand allows the temporal derivative to be converted to a spatial 

derivative with respect to R  by application of the chain rule: 
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Equation  5.14 is substituted into Equation  5.13 below.  As in section  3.2.1.4, the 

integral over each flat surface section (element) is converted to polar form then the 

integration variables are changed so that analytical integration may be performed with 

respect to R .  This requires the derivative of Equation  5.15.  The angular integral is 

converted to a contour integral as defined in section  3.2.1.2. 
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Equation  3.33 gives the contour integral resulting from the double layer potential as 

follows.  The surface reflection response discretisation model is substituted: 
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Equations  5.16 and  5.17 substituted into the KIE to give the statement for scattered 

velocity potential below.  Terms are grouped according to their association with either 

the incoming or outgoing waves.  This statement is valid for any discretisation scheme 

on a polyhedron. 
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The meaning of the various terms in Equation  5.18 with respect to their interaction with 

the incoming wave and its annihilation within   is summarised in Table  5.1.  The 

existence of an immediate scattered wave that attempts to cancel the incoming wave 

implies that, as desired, incoming sound is not allowed to flow into  .  The double 

and single layer potentials ally to create an anechoic termination for incoming waves 

plus a means of radiation of outgoing waves. 
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Table ‎5.1: Interpretation of scattered wave terms 

Term Value Interpretation 














1

4 z

zorigin




 

0 in 
  

-1 in 
  

Describes a plane wave propagating into 
  cancelling 

the incoming plane wave. 









1

R

z  1R'n
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Describes the diffraction of the above cancelling wave 

due to the finite size of nS .  Cardoid pattern below S . 
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1 in 
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0 in 
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Describes the outgoing plane wave propagating into 
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
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1

R

z  1R'n
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Describes the diffraction of the outgoing wave due to 

the finite size of nS .  Cardoid pattern above S . 
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the scattered velocity potential resumes the form of the rigid surface model: 
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5.3.2 Scattered Pressure 

The scattered pressure is readily found by temporal differentiation of Equation  5.18.  

This statement is valid for any discretisation scheme piece-wise constant elements on a 

polyhedron:
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5.3.3 Scattered Velocity 

The scattered velocity is the gradient of scattered velocity potential.  Section  3.2.1.7 

evaluates the scattered velocity due to the double layer potential part of the KIE as a 

contour integral (Equation  3.47) so here the focus will be on evaluating the velocity 

scattered by the single layer potential.  First the incoming and outgoing wave model is 

exploited to express the normal velocity at the integration point as a temporal derivative 

of velocity potential (Equation  5.11).  Then, the gradient operator is moved inside the 

integral under the assumption that r  is an off-body point so the velocity potential field 

is smooth: 
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The gradient operator is evaluated at r  so it is only the dependency of the scattered 

velocity potential on R  that contributes; the local variation of surface velocity potential 

at the integration point does not.  At r  the direction of increasing R  is R̂ : 
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In order to match the numerical integration framework used in section  3.2.1.7 it is 

useful to replace R̂  with an equivalent statement in terms of the cartesian unit vectors 

of Figure  3.21 (Equation  5.24).  The surface integrals are decomposed as polar or 

cartesian below.  To aid succinctness  tR,,'s r  is defined: 
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The integration variables are changed to allow analytical integration in R ; this requires 

the derivatives of Equation  5.26.  In Equation  5.27 these are substituted and then the 

analytical integration performed. 
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The velocity scattered by the double layer potential term is derived in Equation  3.47 and 

recapped below.  The definitions of  tR,,'q r  and its derivative with respect to R  

follow: 
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Equations  5.27 and  5.28 are combined to give a statement for the velocity scattered 

from a compliant surface: 
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Expanding the terms defined in Equations  5.23,  5.29 and  5.30 and gathering inward and 

outward terms together results in the following expression for scattered velocity.  The 

integrals have been converted to contour integrals using the equivalences derived in 

sections  3.2.1.2 and  3.2.1.3.  This statement is valid for any discretisation scheme piece-

wise constant elements on a piecewise flat surface. 



 170 

 

   

   

   

   

   

   













































































































 

























 

























 

























 













































































































 



































 
























elements

2

2

2

2

2

2

2

2

2

2

4

,'
1

4

,'
ˆ

4

,'
1

4

,'
ˆ

4

,'
1

4

,'
ˆ

4

,'
1

4

,'
ˆ

4

,

1'ˆ

4

,

1'ˆ

4

,'

4

,'
1'ˆ

4

,'

4

,'
1'ˆ

,

n

n

n

n

n

n

S

outout

S

inin

S

outout

S

inin

origin

out

origin

origin

in

origin

S

outout

S

inin

dv
cR

c
Rt

R

z

R

c
Rt

R

z

dv
cR

c
Rt

R

z

R

c
Rt

R

z

dw
cR

c
Rt

R

z

R

c
Rt

R

z

dw
cR

c
Rt

R

z

R

c
Rt

R

z

c

c
z

t

z

z

c

c
z

t

z

z

d
cR

c
Rt

z
R

z

R

c
Rt

R

z

d
cR

c
Rt

z
R

z

R

c
Rt

R

z

t































































rr
w

rr
w

rr
v

rr
v

r

n

r

n

rr
n

rr
n

rv

















  5.32 

5.4 Derivation of a time domain BEM for absorbing 

welled surfaces 

Care has been taken to derive the preceding contour integrals for any surface 

discretisation and surface reflection response to maximise potential application.  

However, the remainder of this chapter will concern itself with verifying the derivation 

for a simpler boundary condition.  This shall be that of the well elements depicted in 

Figure  5.1 plus frequency independent absorption.  The surface reflection response is 

given in Equation  5.33, where nd  is the depth of the well behind nS  and 10  nr  is 



 171 

the ratio of sound that is reflected.  The discretisation scheme previously used for 

 tt ,r  (piecewise constant spatial basis according to Equation  2.17, piecewise 

polynomial temporal basis according to Equations  2.19 and  2.60) shall be used for 

 tin ,r . 
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5.4.1 Pressure Operator 

The pressure operator is defined as the scattered pressure (Equation  5.20) divided by 

0 , so when 0  the elements of the interaction matrix are defined according to 

Equation  3.35.  The element self-interaction term (Equation  3.36) is defined by the 

boundary condition to be the limit as the observer point approaches the surface element 

from inside the body.  Here the contour integral has been replaced by a sum of edge 

integrals using the identities derived in section  3.2.1.2 so the statements are in a form 

ready for numerical implementation.   
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5.4.2 Velocity Operator 

The velocity operator is equal to  ts ,ˆ rvn   and is calculated as follows, where the 

 zwv ,,  coordinate system has been chosen such that 0ˆˆ wn .  Here the contour 

integrals have been replaced by a sum of the edge integrals using the identities derived 

in sections  3.2.1.2 and  3.2.1.3 so the statements are in a form ready for numerical 

implementation.  Equation  5.36 evaluates the elements of the interaction matrices for 

rows where 1 .   vL  will never be used for self-interaction since its boundary 

condition is at odds with the compliancy of the surface, hence no limit as r  approaches 

S  is taken. 
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5.4.3 Constructing the total surface sound from the 

discretisation weights 

In the preceding chapters, the discretisation weights were denoted 
nj ,  to reflect that 

fact that, due to the temporal basis function chosen, their values gave instantaneous 

surface velocity potential.  For the compliant surfaces model this is not the case.  In 

order to compare the BEM for welled surfaces with a frequency domain BEM 

instantaneous surface velocity potential must be recovered.  Combining Equations  5.8 

and  5.12 produces the following relationship for compliant surfaces: 

          
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1 1
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For the welled surface sections the surface reflection response is defined by Equation 

 5.33.  This is substituted below to find instantaneous velocity potential on an element 

nS  at tj jt  .  This may be calculate by discrete convolution with the sequence 

 1

0, 2T  cdtT njnj : 
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5.4.4 Impedance equivalent to absorbing wells 

In order to verify the welled time domain BEM against a frequency domain BEM the 

impedance equivalent of the boundary condition for the absorbing wells must be found.  

This is readily done analytically by considering the absorbing well depicted in Figure 

 5.2.  For convenience x  has been chosen to be zero at the base of the well.   
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Figure ‎5.2: An absorbing well 

The complex harmonic incoming and outgoing waves are defined as follows where 

1 ck   is the wavenumber.  At the base of the well they are in phase: 
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The impedance at the mouth of the well is the ratio of the surface pressure to inward 

velocity and is found below.  When 0nr  and 1nr  this reduces to   cxZ 0  and 

   nkdcixZ cot0  respectively.  
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This completes the BEM framework for absorbing wells.  The necessary refinements of 

the integration scheme of section  5.3 have been derived along with a frequency domain 

equivalent boundary condition for verification purposes, which shall be performed in 

the next section. 

5.5 Numerical Examples and Verification 

In this section the BEM for absorbing wells will be verified on four surfaces.  Two are 

simple surfaces designed to show verification trends in receiver pressure and two are 

models of diffusing treatments typically used in Room Acoustics applications.  On all 

x = 0 x = dn 

 

 x

x

out

in
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four surfaces solution accuracy will be calculated compared to the closed surfaces 

frequency domain BEM using the impedance boundary condition derived in section 

 5.4.4.  Interference effects between the incident and scattered waves at external points 

are inspected for the simple surfaces using both the time and frequency domain BEMs.  

Polar plots of scattered sound are shown for the diffusing surfaces using both the time 

and frequency domain BEMs.  For the surfaces including wells but no absorption, 

results from the open surfaces frequency domain BEM on equivalent meshes are also 

shown.  Surface sections using the absorbing wells boundary condition are usually 

referred to as impedance surfaces for brevity. 

Solution accuracy will be calculated by the same method used in sections  3.3,  4.3 and 

 4.4.  The time domain BEM will be verified with a range of time-step durations defined 

by their relationship to spatial resolution by their implicitness ( 1 xtc ).  For each of 

these a harmonic point source excites the surface such that the number of time-steps per 

excitation period (β) assumes a range of predetermined values.  For each combination 

the source to surface element transfer function is calculated at the excitation frequency 

using the frequency domain BEM (Equation  3.67).  The same is calculated from the 

time domain data by DFT (Equation  3.68); the first 50β iterations are omitted to allow 

the solution to reach steady state, then the next 100β iterations are chosen for DFT as 

this length maintains periodicity and eliminates windowing error.  The surface sound 

error is calculated as spatial mean magnitude of the difference between these transfer 

function estimates, normalised to the spatial mean magnitude of the frequency domain 

estimate and is written as a percentage (Equation  3.69).  Both the frequency domain 

BEM implementations for open surfaces (DIFTHIN.exe) and for closed surfaces 

(RADDIFF.exe) are previously verified against experimental results and follow Terai‟s 

1980 derivation
64

. 

For the receiver results tc  is chosen to be equal to x , as suggested on the grounds of 

efficiency and accuracy in section  4.5 and by Dodson, Bluck and Walker
 35

.  Source to 

receiver transfer functions are calculated in the same manner as the source to surface 

type defined above.   For all meshes the source is located 100m distant normal to the 

surface, to approximate plane wave incidence. 
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In section  4.4.2, the mixed surface Quadratic Residue Diffuser model encountered 

stability problems and these were attributed to the complexity of the surface and its 

many concave sections.  By contrast, an equivalent impedance surface mesh is much 

simpler so it is anticipated that it might be more stable.  The wells mimic the concave, 

resonant parts of the surface, but in a way that is defined as causal, so it is hoped their 

presence will not lead to instability. 

5.5.1 Uniform welled surface 

This mesh is 1.0m square and 0.5m deep comprising 400 elements.  The front face 

comprises 100 well elements all with a depth of 0.1m.  It is an extremely regular mesh 

so integration error is not anticipated to be an issue.  It is depicted in Figure  5.3 where 

the well elements are coloured purple.  Non-welled elements have the CFIE boundary 

condition. 

 

Figure ‎5.3: Impedance model of a surface with uniform depth wells on its front face 

Accuracy is characterised below by error compared to the closed surface frequency 

domain BEM.  The time domain BEM is unstable for 3 of the 21 time-step durations 

modelled.  The same mesh was modelled with zero well depth on the front face and was 

unanimously stable hence the instability arises from the well elements.  This is 

disappointing but not entirely surprising since a well is a quarter-wave resonator so will 
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possess poles with magnitudes very close to unity.  Very small errors, arising from 

integration, discretisation or finite numerical precision (truncation), may be enough to 

corrupt these poles so they become unstable. 

Aside from the instability, the trends match that which has been observed in chapters  3 

and  4.  To the left of the figure spatial resolution is poor with respect to excitation 

wavelength so the accuracy of all BEM suffers.  The grey shaded area indicates 8
 x

, its right hand boundary a recommended lower limit in spatial resolution for the 

frequency domain BEMs.  Toward the bottom of the figure temporal resolution of the 

excitation frequency is poor; error here primarily originates from the time domain BEM.  

However, in the middle to upper right quadrant of the figure discretisation error is low 

and good agreement occurs. 

 

Figure ‎5.4: Error of the time domain BEM compared to the frequency domain BEM for closed surfaces 

both modelling the uniform welled surface 
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An equivalent mixed mesh is depicted in Figure  5.5 where the virtual wells of Figure 

 5.3 have been meshed explicitly using thin elements (shown in translucent blue) 

increasing the element count to 580.  The presence of this honeycomb of thin elements 

separating the wells ensures they act in a locally reacting manner. A receiver is placed 

in the mouth of each mixed mesh well corresponding to the centre of a well element 

(collocation point).  The total velocity potential at each of these should match the 

surface velocity potential of the well elements in the welled mesh. 

 

Figure ‎5.5: Mixed model of a surface with uniform depth wells on its front face 

Figure  5.6 may be interpreted as showing how well the impedance surface mesh of 

Figure  5.3 approximates the behaviour of the mixed mesh of Figure  5.5.  The error is 

calculated as outlined in section  5.5 except that only the well elements and their 

corresponding mixed mesh receivers have been included in the spatial average.  As 

anticipated, error is greater than Figure  5.4 because the models are not identical, in 

particular the mixed mesh model does not force velocity potential and normal velocity 

to be uniform across the well mouth.  Disparity to the top right of Figure  5.6 originates 

from the open surface frequency domain BEM implementation as was the case in Figure 

 4.7 and Figure  4.13.  However, the generally good level of agreement supports this 

chapter‟s notion that each well element is an approximation to a rigid walled well of 

equal mouth dimensions. 
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Figure ‎5.6: Error in total velocity potential between the well elements modelled by the time domain BEM, 

compared to the well mouth receivers modelled by the frequency domain BEM for open surfaces, both for 

the uniform welled surface 

The following figures show the interference patterns that occur between incident and 

scattered sound.  The receivers are arranged in a vertical line that starts behind the 

scatterer, passes through its centre and emerges at the front.  They are spaced such that 

none touch the surface.  Magnitude of the source to receiver total sound transfer 

function is plotted in dB versus the receiver z  coordinate; incident sound approaches 

from the right of the figures.  Data series are shown for the welled mesh modelled by 

the time domain BEM (TD Well) and the frequency domain BEM (FD Well) for closed 

surfaces and for the mixed mesh modelled by the frequency domain BEM for open 

surfaces (FD Mixed).  The vertical lines at 0.0z  and 5.0z  indicated the front and 

back of the scatterer, and the shaded area indicates the wells of the mixed mesh.  A few 

frequencies are shown so that the variation of the trends with frequency can be 

recognised. 
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Figure ‎5.7: Total receiver sound though the uniform welled surface at 142Hz  β = 17 

 

Figure ‎5.8: Total receiver sound though the uniform welled surface at 202Hz  β = 12 
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Figure  5.7 and Figure  5.8 both show interference effects between the incident and 

scattered waves in front of the surface and in this region there is excellent agreement 

between the time and frequency domains.  The BEM for open surfaces is seen to extend 

the interference patterns into the welled region and its surface normal gradient 

approaches zero as expected from the rigid well floors.  Inside the surface the frequency 

domain BEM for closed surfaces achieves the best cancellation, but this figure still 

confirms that the time domain compliant surfaces boundary condition does not permit 

sound to flow into the cavity.  In the shadow region behind the surface all models 

roughly agree but there is no apparent interference behaviour. 

 

Figure ‎5.9: Total receiver sound though the uniform welled surface at 346Hz  β = 7 

If the excitation frequency is increased the accuracy of the time domain model solution 

suffers.  This trend is clearly visible in Figure  5.9 and is predictable since β = 7 is below 

the β = 10 limit suggested by Ergin et al
 22

.  The interference patterns are still observed 

albeit with significant error, but it is inside the surface and in the shadow zone that error 

is greatest, as in these regions accurate cancellation between the incident and scattered 

waves is critical.  The frequency domain BEM for open surfaces also shows poor 

cancellation inside the surface.  Ergin et al‟s temporal discretisation criterion for rigid 
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surfaces clearly also applies to welled surfaces with the incoming sound discretisation 

scheme. 

This model has shown agreement between the time and frequency domain BEMs for 

surfaces with welled sections.  Agreement with an equivalent frequency domain mixed 

model has also been good.  However it has been seen that use of well elements can 

result in instability as they possess the same lightly damped poles as the physical 

surface they approximate and these are easily corrupted.  The well boundary condition 

is clearly one whose surface reflection response is borderline stable, so this 

misbehaviour is probably not typical of the compliant surfaces model.  The interference 

trends in total receiver sound shows that the model behaves as expected. 

5.5.2 Uniform absorbing surface 

This mesh is identical to the uniform welled surface except that the front face is now 

absorbing instead of welled.  The rigid elements on other faces have the CFIE boundary 

condition.  The surfaced is modelled with four different reflection ratios: 1.00 (100% 

reflection ≡ rigid surface), 0.50, 0.25 and 0.00 (0% reflection ≡ anechoic termination).  

The frequency domain BEM for open surfaces cannot be used for comparison since no 

equivalent rigid mesh exists. 

The error compared to the frequency domain BEM for closed surfaces is shown in 

Figure  5.10 for reflection ratio = 0.00.  Excellent agreement is seen for this case and the 

other cases show very similar performance and universal stability. 

The following figures show the interference patterns that occur between the incident and 

scattered sound for receivers behind, within and in front of the surface.  The receivers 

are arranged as for the uniform welled mesh in section  5.5.1, again xtc   and the 

results are plotted equivalently.  Data series are shown for the time domain BEM (TD) 

and the frequency domain BEM for closed surfaces (FD) for all reflection ratios 

modelled as indicated by the legend. 
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Figure ‎5.10: Error of the time domain BEM compared to the frequency domain BEM for closed surfaces 

both modelling the uniform absorbing surface with surface reflection ratio = 0.00. 

 

Figure ‎5.11: Total sound at the receivers though the uniform absorbing surface 142Hz  β = 17 
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Figure ‎5.12: Total sound at receivers though the uniform absorbing surface 202Hz  β = 12 

 

Figure ‎5.13: Total sound at the receivers though the uniform absorbing surface 346Hz  β = 7 
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In both Figure  5.11 and Figure  5.12 the model with unity reflection ratio provides the 

strongest reflection hence the strongest interference pattern which clearly tends towards 

zero normal gradient close to the rigid surface.  These patterns are proportionally 

reduced for the 0.5 and 0.25 cases, showing less sound is reflected, down to the zero 

reflection ratio series which produces only slight fluctuation due to the finite size of the 

anechoic termination.  The pressure in the shadow region seems slightly affected by the 

front face absorption but here, as in front of the surface, good agreement is present 

between the time and frequency domains.  Inside the surface the frequency domain 

BEM for closed surfaces again achieves the best cancellation. 

As for the uniform welled surface, the accuracy of the time domain model solution 

worsens as excitation frequency is increased and β reduced.  In Figure  5.13 the 

interference patterns are still observed with time domain error proportional to the 

strength of the reflection; the weaker reflections cause smaller error as the total sound is 

dominated by the incident sound which is calculated analytically.  Again it is inside the 

surface and in the shadow zone, where cancellation is most critical, that the error is 

largest. 

This model has shown excellent agreement between the time and frequency domain 

BEMs for surfaces with absorbing sections and the MOT solver has been universally 

stable.  The trends in total received sound show that the absorbing surface model is 

behaving as expected. 

5.5.3 Quadratic Residue Diffuser 

The Quadratic Residue Diffuser
 67

 (QRD) is the first of the realistic Room Acoustics 

treatments to be modelled using the time domain BEM for absorbing welled surfaces.  It 

comprises a series of wells, whose depths are defined by a quadratic residue sequence 

and a design wavelength, separated by thin rigid fins.  Its diffusion mechanism is the 

interference patterns created by the delayed sound re-radiating from each of these wells.  

The specific diffuser modelled in this section has a design wavelength of approximately 

1.4m, a well width of 0.25m, and a height of 1.0m. 
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Figure ‎5.14: Impedance surface model of a Quadratic Residue Diffuser 

The welled mesh (738 elements) is depicted above, though as it is simply a box whose 

front surface has the impedance boundary condition necessary to mimic the QRD it is 

more informative to review Figure  4.20 which depicts the mixed surface version (900 

elements).  On comparison of the two Figures it is apparent that their relationship does 

not exactly mirror the relationship between the two meshes of the uniform welled 

surface of section  5.5.1 (Figure  5.3 and Figure  5.5).  In particular, the wells of the mixed 

surface QRD mesh, like the real device, are not subdivided by thin rigid surfaces into 

the honeycomb structure that is equivalent to the welled surface model.  This means the 

mixed surface model allows modal behaviour in the well prohibited by the welled 

model, hence the latter, as a poorer approximation of reality, may show increased error.  

This issue was investigated by Cox and Lam
 68

 in the frequency domain.  They 

concluded that a BEM capable of modelling the thin fins of the diffuser gives the most 

accurate results compared to scale models, but that an impedance surface model gives 

good results and is more efficient due to the smaller number of elements.  This 

conclusion justifies this application of the time domain BEM for absorbing welled 

surfaces though the model disparity remains. 

The error for the time domain BEM compared to the frequency domain BEM for closed 

surfaces is shown below.  The time domain BEM is unstable for 2 of the 21 time-step 

durations modelled.  Unlike the instability observed in chapter  4, none occurs at the 
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shortest most explicit time-step durations; instead it occurs in the middle of the time-

step range tested.  The instability seen for the mesh with uniform depth wells (section 

 5.5.1) was shown to result from the well elements, and so it is likely that here it is of the 

same origin.  Where the time domain BEM is stable its accuracy is good, much 

improved over that seen for the QRD mixed mesh in Figure  4.22. 

 

Figure ‎5.15: Error of the time domain BEM compared to the frequency domain BEM for closed surfaces 

both modelling a QRD as an impedance surface. 

Receivers are placed in the mouth of each mixed mesh well such that each lies at the 

centre of a well element (collocation point); the total velocity potential at each of these 

should match the surface velocity potential of the corresponding well element in the 

welled mesh.  The error is calculated as for Figure  5.6; only the well elements and their 

corresponding mixed mesh receivers are included in the spatial average: 
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Figure ‎5.16: Error in total velocity potential between the well elements modelled by the time domain 

BEM, compared to the well mouth receivers modelled by the frequency domain BEM for open surfaces, 

both for the QRD 

Figure  5.16 may be interpreted as showing how well the impedance surface mesh of 

Figure  5.14 approximates the behaviour of the QRD mixed mesh of Figure  4.20.  The 

instabilities are of course again apparent.  The underlying error is greater than Figure 

 5.15 because the models are not identical, in particular the mixed mesh model permits 

sound transmission paths in the well that are forbidden in the locally reacting impedance 

surface model.  Coincidentally the error trend here is similar to that obtained with the 

mixed surface model in Figure  4.22, suggesting that modelling a QRD with the time 

domain BEM results in similar error whether it be using a mixed surface model or an 

impedance surface model. 

The following figures are polar plots of the source to receiver scattered sound transfer 
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receivers are uniformly spaced in a 5m arc located in the primary scattering plane of the 
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mixed mesh modelled by the frequency domain BEM for open surfaces (FD Mixed).  

Again xtc  , the optimal compromise between spatial and temporal resolution, 

though the different value of x  for this mesh results in a slightly different set of 

frequencies for the same choices of  compared to the previous two sections.  Neither of 

the frequency domain implementations output receiver scattered pressure so it has been 

calculated by subtracting the incident pressure from the total pressure. 

 

Figure  5.17: Sound scattered from the QRD at 5m. 134Hz  β = 17 

 

Figure  5.18: Sound scattered from the QRD at 5m.190Hz  β = 12 
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In Figure ‎5.17 and Figure ‎5.18 the frequency is below that at which the diffuser 

produces grating lobes so scattering is fairly uniform.  Agreement between the time 

domain and frequency domain impedance surface models is good in Figure ‎5.17, but in 

Figure ‎5.18 there is significant discrepancy.  The frequency domain mixed model shows 

significant discrepancy at both frequencies. 

 

Figure  5.19: Sound scattered from the QRD at 5m. 326Hz  β = 7 

In Figure ‎5.19 grating lobes are apparent; however agreement between the three models 

is poor.  For the time domain model, poor temporal resolution is a factor at this 

frequency, although accuracy was also poor in Figure ‎5.18, suggesting other error 

sources also contribute. Figure  5.15 shows that this time-step duration is close to one 

which is unstable and surface error here is greater than it was for this implicitness in 

sections  5.5.1 and  5.5.2.  Again agreement between the frequency domain models is 

poor. 

In this section instability originating from the well elements has again been witnessed.  

Accuracy has generally been as good as or better than the mixed surface QRD model in 

section  4.4.2, but the robust alternative hoped for has not emerged.  Scattered sound has 

not seen good agreement, though this could be due to borderline stability at the chosen 

time-step duration. 
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5.5.4 Idealised Binary Amplitude Diffuser 

An idealised Binary Amplitude Diffuser
 70

 (BAD) is a surface comprising an array of 

patches that alternate between 0% and 100% absorption, hence the term binary 

amplitude.  The arrangement of these patches is critical.  Individually each patch 

scatters sound widely as it is small with respect to wavelength at typical frequencies of 

operation.  However, if there is a recurring pattern in the arrangement, the uniformity of 

the scattering will be reduced as certain scattering angles will experience constructive 

interference and other destructive interference due to the pattern periodicity.  Diffusion 

quality is defined as the uniformity of scattering so any such recurring pattern will 

reduce the diffuser‟s effectiveness. 

Consequentially the arrangement of patches should have minimal similarity to a shifted 

version of itself (be optimally spatially auto-decorrelated).  This is achieved by starting 

with a Maximum Length Sequence (MLS), which has optimal auto-correlation 

properties, and folding it into a surface using a process called the Chinese Remainder 

Theorem
 71

.  This process requires the resulting array to have dimensions specified by a 

pair of co-primes, and MLSs always have 2
n
 – 1 bits (where n is a real number), so only 

certain sizes are possible.  Commercial implementations typically comprise a 31 by 33 

array of 2
10

 – 1 = 1023 patches.  This section has opted for a smaller diffuser 

comprising a 15 by 17 array of 2
8
 - 1 = 255 patches depicted below. 

It should be noted here that what is being modelled is an idealised BAD and behaviour 

of the real device differs, particularly at low frequencies.  The construction is usually a 

perforated mask of steel or wood in front of a slab of mineral wool, all wrapped in cloth.  

At low frequencies this mineral wool is unlikely to be thick enough to create significant 

absorption, although the sound propagating through it will still experience a phase 

change meaning diffusion may still occur though not as predicted by the idealised 

model herein.  Other mechanisms arise that are not considered here such as compliance 

of the mask as it is supported by the compressible mineral wool.  What follows should 

be considered a model of the diffusing principle rather than the real device. 
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Figure ‎5.20: Chinese Remainder Folding of a 255 bit MLS to a 15 by 17 array 

 

Figure ‎5.21: Binary Amplitude Diffuser Mesh 

The BAD mesh (Figure  5.21) is 0.15m by 0.17m by 0.03m and comprises 702 elements.  

x  is one tenth of that used in the models in sections  5.5.1 to  5.5.3 so time-step 

durations are proportionally shorter and frequencies inverse proportionally higher.  The 
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white elements are 100% absorbing and the coloured elements are rigid.  The CFIE 

boundary condition is used on the rigid elements of the non-front face. 

The error compared to the frequency domain BEM for closed surfaces with an 

equivalent impedance boundary condition is shown in Figure  5.22 and excellent 

agreement occurs with no instability evident. 

 

Figure ‎5.22: Error of the time domain BEM compared to the frequency domain BEM for closed surfaces 

both modelling a BAD as an impedance surface. 

91 receivers are arranged in a 5m radius arc as was the case for the QRD.  Unlike the 

QRD, the BAD is designed to scatter hemispherically so what is shown is a cross-

section through its scattering.  Polar plots follow displaying the magnitude of the source 

to receiver scattered sound transfer function in dB versus receiver angle relative to the 

surface normal.  Data series are shown for time domain (TD) and frequency domain 

(FD) BEMs and again xtc  : 
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Figure ‎5.23: Sound scattered from the BAD at 5m. 1426Hz  β = 17 

 

Figure ‎5.24: Sound scattered from the BAD at 5m. 2021Hz  β = 12 

In the above figures, the frequency is below that at which the diffuser produces grating 

lobes, so scattering is fairly uniform.  Agreement between the time and frequency 

domain impedance surface models is excellent.  (The wiggle in the frequency domain 

line is due to truncation error in the process of extracting scattered pressure.)  Grating 

lobes are apparent in both results in Figure  5.25, but the poor temporal resolution of the 

time domain model at this frequency has compromised its accuracy somewhat. 
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Figure ‎5.25: Sound scattered from the BAD at 5m 3464Hz  β = 7 

In this section, the time domain BEM has been applied to an idealised model of a 

Binary Amplitude Diffuser.  Excellent agreement has been seen with the equivalent 

frequency domain model and no instability has been witnessed.   

5.6 Conclusions 

This chapter has sought a representation for abstracting a non-rigid material into a 

compliant surface suitable for incorporation into a time domain BEM.  Differential and 

impedance representations were deemed unsuitable as their stability and causality are 

hard to prove.  Instead, the inverse Fourier transform of the surface reflection 

coefficient was adopted as it explicitly defines the surface response to an incident 

impulse so is easy to characterise and is said to be robust in the presence of numerical 

error; this quantity was termed surface reflection response. 

Application of the surface reflection response requires the ability to distinguish between 

sound travelling into and out of the surface.  This concept gave rise to a new surface 

model.  The outgoing sound is found by convolution of the incoming sound with the 

surface reflection response.  Crucially this model allows surface normal velocity to be 

found from surface pressure for each of these waves, as for plane waves in free space.  

The combination of these insights allows the integrands of the KIE to be written solely 
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in terms of the incoming wave, thus it is natural to discretise incoming sound in 

preference to total sound.  This model was cast into a time domain BEM framework and 

contour integrals were derived valid for an arbitrary compliant surface without 

restriction on the surface reflection response or discretisation, the only one being that 

the surface be piecewise flat.  These novel statements are the time domain equivalent of 

a frequency domain BEM that supports impedance boundary conditions so have wide 

potential application. 

A simpler model was implemented and verified.  In this each piecewise constant surface 

element represents the mouth of a well containing some hypothetical broadband 

absorbent, thus the outgoing wave is a scaled and delayed copy of the incoming wave.  

This simplified scheme is verified on two simple surfaces and two diffuser models.  The 

models with absorbing and rigid sections demonstrate excellent accuracy and stability 

properties.  The models with welled and rigid sections demonstrate excellent accuracy 

but aggravate some stability issues with the MOT solver.  This agrees with the 

corruption of poles model, as a well is a quarter wave resonator so possesses lightly 

damped poles.  A well is therefore concluded to be a borderline stable example of a 

compliant surface and the stability issues encountered not expected to be inherent to the 

model proposed in sections  5.2 and  5.3.  The Quadratic Residue Diffuser model showed 

similar accuracy and stability performance to the equivalent mixed surface time domain 

model in section  4.4.2 so no particular advantage is seen there beyond the reduced 

computational cost of the simpler mesh.  Overall the results are encouraging and suggest 

viability of the full time domain BEM for compliant surfaces proposed. 

In the following chapter the contributions of the thesis will be discussed and avenues for 

future research identified. 

 



 197 

6 Discussion and Future Research 

Many publications in the field of time domain BEM study are quite abstract and have a 

similar structure.  Firstly some aspect of the algorithm is analysed and arguments made 

for why proposed criteria are desirable, for example improving accuracy, efficiency or 

stability.  Secondly an algorithm is presented that contains modifications such that it 

excels according to the proposed criteria.  This generalisation is not meant critically; the 

analysis and criteria may be lucid and revealing, enlightening the research community, 

and the modifications novel and progressive, maturing the algorithm.  Instead its 

purpose is to contrast the structure of this thesis which, while essential effort has been 

made to retain generality and rigour, is motivated by the application of modelling 

surface treatments typical to Room Acoustics.  Hence focus has more been toward 

extending the scope of the time domain BEM rather than modifying the trends of its 

computational cost or stability. 

The original goal of this investigation was naïvely stated to be application of the time 

domain BEM to modelling Room Acoustics surface treatments, under the 

misconception that the algorithm was sufficiently mature to allow this.  Once 

investigations commenced inadequacies emerged and it became apparent that a deeper 

understanding was required, so the purpose shifted to developing the algorithm. 

The purpose of this chapter is to examine the contribution of this thesis and identify 

where future research should be focussed.  It is organised thematically, as was the 

literature review in section  2.2, but the section boundaries will be drawn differently in 

response to the different significance and priority this thesis gives to subjects and their 

future research. 

6.1 Stability and the MOT solver 

A popular goal in published algorithms has been unconditional stability of the MOT 

solver and many properties have been correlated with this.  These include: discretisation 

(particularly temporal basis and time-step choice), underlying integral equation 

formulation, bespoke stabilisation and averaging, and heuristic mesh criteria.  In 
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contrast this thesis has considered stability but not pursued it as a primary goal.  Partly 

this was because the thesis‟s primary goal lay elsewhere, but more fundamental reasons 

were also influential.   

Ergin et al
 22

 showed that both the KIE and its surface normal derivative permit non-

physical cavity resonances, as do their frequency domain equivalents, but that the CFIE 

does not.  This was a fundamental failing of the integral equation representation of the 

physical problem so must be redressed in the interests of model correctness.  Remaining 

model error originates from a number of sources, primarily discretisation.  However, the 

fact that this may manifest as instability is a property of the MOT solver rather than the 

underlying integral equations.  The dominant analysis of this phenomenon has stemmed 

from the work of Rynne
 38

 and has been embraced herein, being the concept of 

corruption of stable physical poles into instability. 

In this thesis stability has been analysed and where possible quantified by extraction of 

the maximum discreet pole magnitude.  These results have been used as supporting 

evidence for algorithmic modifications that can be considered good practice anyway, 

but the algorithm has not been modified in the sole pursuit of stability.  An example of 

good practice that aids stability is the improvement in integration accuracy achieved in 

chapter  3.  The instability that occurred for the Quadratic Residue Diffuser model in 

chapters  4 and  5 was disappointing but no attempt was made to eradicate it by heuristic 

means, instead an explanation for its origin was suggested. 

Stability is clearly a prerequisite for a mature algorithm, so if a solution does not lie 

with the integral equations, discretisation and boundary conditions considered in this 

thesis, then hope must be placed elsewhere.  Discretisation and computational errors 

will always exist to some extent, but it is the solution strategy that dictates whether 

these manifest as modest solution inaccuracy or overwhelming error due to solver 

divergence.  Rynne
 38

 suggested that simultaneous solvers such as Herman and van den 

Berg‟s
 36

 steep descent algorithm may be more resilient than the MOT scheme.   

Although the divergent poles may still permitted be by the matrix equations, they are its 

homogeneous solutions so tend to be disregarded as they do not affect the residual the 

aim is to minimise.  Such solvers superficially have very bad cost scaling, so an 

acceleration strategy is necessary, but do lift restrictions on temporal discretisation 
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placed by the MOT solver.  Acceleration could involve compression of the interaction 

matrix
 51

, exploitation of orthogonal basis functions
 26, 52, 53

, or perhaps some 

aggregation matrix solution strategy similar to fast multipole method
 48-50

. Such a 

simultaneous solver may still require a method of managing non-physical cavity 

resonances else it is conceivable that the non-uniqueness issues that plagued the 

frequency domain BEM may emerge.  This could utilise the CFIE, or a time domain 

equivalent of the CHIEF
 5
 algorithm may be possible.  Future research into improving 

stability would be better focussed on establishing the behaviour of such algorithms 

rather than persisting with the MOT solver.  To an extent this comment also applies to 

accelerated versions of the MOT solver, such as the PWTD
 46, 47

 algorithm, though the 

possibility that aspects of their implementations may aid stability is not denied. 

6.2 Discretisation 

This thesis has not specifically investigated discretisation, though a stance emerged 

from the discussion in section  2.2.2.  This was that the discretisation scheme should be 

chosen on the grounds of required accuracy, rather than ensuing effects such as stability, 

and that a basis function representation has advantages in precision of definition yet the 

ability to be carried through integral derivations without refinement.  The ability to 

choose an implicit time-step duration is an example of liberation that is brought about 

by careful derivation with a temporal basis function representation.  Ha-Duong, Ludwig 

and Terrasse‟s
 25

 2003 paper demonstrates basis function choice made according to the 

expected variation of the quantities they interpolate. 

The MOT solver places two restrictions on the temporal basis function family; it must 

comprise regularly delayed copies of a mother basis function and that must be zero for 

tt  .  Another property fundamental of a basis function family is that the sum of its 

members should be one over the interpolation domain; such a family is called a partition 

of unity.  There are many conceivable mother temporal basis functions who fulfil the 

MOT criteria and whose delayed copies form a partition of unity.  The element 

interaction integrands place a further restriction by the evaluation of  0Tmother
  at the 

collocation point; the mother temporal basis function cannot be smooth and symmetrical 

about 0  else sufficiently explicit time-step durations would result in an entirely zero 
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0Z  matrix so the MOT equation could not be solved.  This criterion prohibits various 

choices such as the raised cosine (Hanning) function and Hu, Chan and Xu‟s
 23, 24

 

optimised basis functions, however it is worth noting that it is specific to temporal 

collocation as for temporal Galerkin testing it is the basis function‟s autocorrelation that 

is significant. 

Contrary to the perspective of this thesis, much influence on stability has been ascribed 

to the temporal basis function.  Both the temporal basis function used in this thesis, and 

its predecessor by Manara et al
 21

, have been cited as possessing  stabilising properties.  

Hu, Chan and Xu
 23, 24

 took such notions further and optimise their temporal basis 

function against an instability cost function to achieve maximal stability for their 

electromagnetic algorithm.  Above it was stated that discretisation should be dictated by 

desired accuracy and stability should be a separate issue, however for the MOT solver 

this is not the case.  Because the temporal basis function typically has support longer 

than t , element self-interactions coefficients will be non-zero for past time-steps in 

addition to the current one.  Anti-intuitively this allows a lone element to be unstable, 

regardless of integration accuracy or the properties of the rest of the mesh. 

Consider the state transition matrix of Equations  2.43 and  2.44.  If there is only a single 

element in the mesh then each of the sub-matrices on the top rows of M  becomes a 

scalar (Equation  6.1) and its eigenvalues are readily found as the roots of its 

characteristic polynomial (Equation  6.2).  maxl  is the support of  t0T  divided by t . 
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Calculation of interaction by the pressure operator  pL  ( 0 ) is the simplest case 

as only the collocation point contributes so element shape and time-step duration do not 

affect the result.  The elements of M  and its characteristic polynomial are given as 

follows, providing a direct analytical link between the temporal basis function and its 

effect on MOT solver stability: 

 
 0T

0T

0



l

lm            6.3 

  00T
max

0




l

l

l

l            6.4 

Any temporal basis function whose delayed copies form a partition of unity also has the 

property that the sum of the derivatives of its delayed copies sum to zero.  This causes 

the coefficients of the pressure operator‟s characteristic polynomial (Equation  6.4) to 

sum to zero resulting in a trivial pole at unity, as has been a feature of all pole 

magnitude plots (Figure  3.39, Figure  3.46 and Figure  4.5).  The physical explanation of 

this pole is that it carries the current system state to the next system iteration so that, 

when there is no excitation, the time derivative of the surface velocity potential is zero 

representing zero pressure. 

Self-interaction poles are more complicated for the combined operator  cL  due to the 

contribution from the edge of element, hence are dependent on element geometry and 

t .  Due to the definition of  cL , the immediate self interaction coefficients are 

unchanged by the blend coefficient α for CFL < 1.  If CFL ≥ 1 and α > 0, the element 

edges contribute extra terms to the immediate self interaction coefficients that shift the 

poles of M .  With Ergin et al‟s temporal basis function these extra terms usually act to 

reduce the magnitude of the largest pole as shown below, however other temporal basis 

candidates exist where this is not the case. 
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Figure ‎6.1: Self-interaction poles of an equilateral triangular element with a piecewise constant spatial 

basis function and Ergin et al‟s temporal basis function. 

While it cannot be denied that the basis function used herein does provide accurate and 

mostly stable results, it seems likely that there should be other possibilities that also 

achieve this and whose mathematical properties are better known.  If such could be 

found that had a continuous first derivative then the integration implementation would 

be simplified.  One candidate family of such functions are the uniform B-splines
 72

.  

These come in various orders matching their underlying polynomials, starting with the 

commonly used top hat and triangle functions then subsequently becoming more 

complex and having greater overlap.  Early investigations suggest they produce stable 

self-interaction poles with collocation and the MOT solver. 

The more mathematically elegant alternative to collocation is Gallerkin testing.  This 

was described in section  2.2.4 and is mentioned here because of its influence on basis 

function choice.  Essentially it replaces the aim of satisfying the boundary condition at a 

set of points in space time by satisfying it in a weighted average sense as defined by a 

set of testing functions.  This averaging requires extra integration so immediately 

appears computationally expensive.  However, unlike its spatial counterpart, little 
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increased cost is seen for temporal Gallerkin testing as the testing integral may be 

moved inside the spatial integral to only enclose the retarded temporal basis function 

term.  This temporal integral is an inner product or cross-correlation between the testing 

and basis functions and, for such as are considered herein, may be computed 

analytically.  Assuming the testing and basis functions are both retarded copies of the 

same mother basis function, what is achieved is equivalent to the collocation integrands 

herein but with the mother basis function replaced by its auto-correlation. 

This is of modest interest in itself, although it permits impulse excitation as the cross-

correlation of the incident wave with the testing function will be finite; a simpler and 

more elegant solution than the early algorithms
 10-13, 17

 that modelled shockwaves.  

However it has great impact if the MOT solver‟s restrictions on temporal basis choice 

are lifted and a family is used that has orthogonal members whose inner product is zero.  

A solver can be constructed that predicts and exploits the resulting pattern of zero 

interactions to achieve excellent efficiency.  Such algorithms have been published 

within the Electromagnetics community that exploit Laguerre polynomials
 52, 53

 and 

multi-resolution basis
 51

 and it would make sense for these ideas to be transferred to 

acoustic modelling.  This approach could accelerate the simultaneous solvers described 

in section  6.1; hopefully an efficient and stable algorithm would result. 

Temporal Gallerkin testing also highlights the symmetry between the time domain and 

frequency domain BEMs.  If a complex exponential is used as the temporal basis 

function and its complex conjugate as a testing function, then inner product between the 

two resembles a Fourier transform and the frequency domain integral equations are 

recovered.  In acoustics applications, data averaged for a third of an octave is often 

desired but cannot be calculated by a frequency domain BEM except by averaging of 

discreet frequencies.  It is possible that this data could be calculated directly using a 

time domain BEM with appropriately band limited basis functions. 

In this section it has been shown that temporal basis function choice is inextricably 

linked with stability of the MOT solver.  Alternative temporal discretisations have been 

discussed plus some cost aspects of Gallerkin temporal testing.  The latter is identified 

as a means of accelerating the simultaneous solvers discussed in section  6.1 plus permits 

modelling of impulse excitation and possibly third octave analysis. 
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6.3 Integration Accuracy 

The research presented in chapter  3 initially appears slightly at odds with the earlier 

comment that this thesis has been focused on extending the scope of the algorithm, as it 

examines the effect of integration accuracy on solution accuracy and solver stability 

rather than propose an algorithmic extension.  However it arose from the same 

motivation as the other chapters; that of applying the time domain BEM to modelling 

typical Room Acoustics surface treatments.  Having selected an algorithm to replicate 

as a starting point for investigation, it quickly became apparent that the Gaussian 

numerical integration employed was inadequate, especially for complex real world 

surfaces, so further investigation was necessary. 

Gaussian integration is a popular method of evaluating discretised boundary integrals 

because of its efficiency and simplicity.  It is generally recognised that the self-

interaction integral must be treated as a special case and regularised in some way, but 

the potential unsuitability of Gaussian schemes for other interactions seems to often be 

ignored.  By contrast the contour integration scheme derived herein regularises all 

integrals and treats them in a consistent and appropriate way.  Use of an adaptive 

numerical integration scheme with an absolute accuracy criterion on each edge abstracts 

tailoring of numerical effort to an assertion of accuracy so that the same integration 

implementation can be used for all element pairs without loss of efficiency.  It was 

recognised that such algorithmic modifications create maximum impact if derived in a 

general manner, so the pre-conditions were relaxed to be only that the surface is rigid 

and piece-wise flat (polygonal).  This coordinate transform had been applied to these 

integrals before
 18, 25

, but this derivation‟s generality gives it potential for wider impact 

on this matter than either of these publications.  Tomes
 64

 exist on integral methods 

suitable for BEM but this one is omitted, a frustration to this investigation for which 

integration accuracy is a secondary objective. 

The contour integration scheme was shown to be more stable than the Gaussian 

integration scheme.  Ironically the dominant error in the Gaussian results, originating 

from derivatives of the temporal basis function, was shown to cancel within the MOT 

solver while the spatial singularity error caused the instability.  The latter conclusion is 

evidence that regularisation of some non-self element interactions is necessary. 
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The contour integration scheme was carried forward to subsequent chapters.  In chapter 

 5 significant developments were performed embedding the surface reflection response 

model and deriving a contour integral implementation of the single layer potential term 

of the KIE.  Again it was possible to achieve this without restriction on discretisation, 

just that the surface be piecewise flat, so generality and impact were maximised.  The 

compliant surfaces model encompasses rigid surfaces so it was possible to retain a 

single integration routine that calculated all interactions in an elegant way. 

It is felt that the current scheme is exceptionally well suited to calculating interactions 

on a piecewise flat surface; it is this geometric restriction that is its primary weakness.  

An implementation that was valid for curvilinear surfaces or surfaces of revolution 

would have significant application, though it is unclear whether it would retain the same 

brevity.  It is anticipated that any such transformation would be derived by Stokes 

theorem
 63

, which is valid for any bounded surface.  Obtaining a Stokes theorem based 

derivation equivalent to the current scheme is a likely first step toward this. 

A pre-requisite to adopting spatial Galerkin testing would be a scheme for evaluating its 

double surface integrals.  In principle the testing integral should be less singular than 

that of the KIE since its integrand is total sound radiated from the integration element to 

a point on the observation element; this is closely related to total surface velocity 

potential which is assumed smooth so Gaussian integration may suffice.  However, the 

work of Bonnet et al
 33

 suggests that this is a naive viewpoint and more careful 

consideration of the arising singularities is required, especially where the elements share 

an edge or vertex.  Conversion to a double contour integral appears attractive based on 

the conclusions of this thesis, but may prove excessively complex. 

6.4 Scope & Applications 

The primary aim of this thesis was development of the time domain BEM to better suit 

the needs of Room Acoustics modelling.  There are many surface treatments of interest 

that cannot be modelled by a rigid closed surface BEM so accordingly chapters  4 and  5 

focused on extending the algorithm‟s scope. 
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Predicting the scattering from a Schroeder Diffuser was an application of particular 

interest.  These comprise a sequence of wells, separated by thin fins, whose depths are 

dictated by a number theoretic sequence and a design wavelength.  Modelling these 

devices in the time domain is of interest as their wells are resonators so store energy and 

potentially produce transient effects not predicted by the diffusion mechanism model.  

The Schroeder Diffuser is modelled using two approaches: one involves meshing its 

entire geometry, the other replacing the wells by surfaces across their mouths that 

mimic their behaviour. 

The time domain BEM implemented in chapter  3 cannot model objects with thin fins as 

the proximity of the surfaces at each solid / air interface causes singular behaviour in the 

underlying integral equations, a phenomena known as Thin Shape Breakdown
 65

.  

Chapter  4 tackles this by adopting an open surfaces model where a single surface 

models the fin as a rigid air / air interface, an approach previously used with the time 

domain BEM
 18

 so not itself new.  However, Ergin et al
 22

 showed that such a model of a 

closed surface permits cavity resonances so is often unstable.  In light of this it was 

proposed herein that the open surfaces model be applied solely to the thin surface 

sections (the fins), the CFIE be applied to the remaining closed sections and that an 

improvement in stability will result relative to universal application of the open surfaces 

model.  This mixed surface approach is analogous to an approach used for the frequency 

domain BEM
 66

 but is novel for the time domain algorithm.  The observation that jump 

in velocity potential across the surface is the dictating factor in scattering by the entire 

rigid body, not just the thin sections, allows the same integral formulation to be applied 

to the entire surface and only the CFIE‟s blend parameter varied, thus algorithmic 

elegance is maintained. 

The other strategy to model a Schroeder diffuser is as a box with properties on its front 

face that mimic the wells of the real device.  In the frequency domain this property 

would be surface impedance, which encapsulates the fixed phase change between sound 

travelling into and out of the well as a relationship between total surface pressure and 

total surface normal velocity.  Chapter  5 achieves an equivalent model as an application 

example of a new time domain BEM for compliant surfaces. 
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A Quadratic Residue Diffuser
 67

 is a class of Schroeder Diffuser and a single period of 

the device was modelled using the two methods outline above.  Both approaches were 

successful, achieving similar accuracy compared to an open surfaces frequency domain 

BEM, but universal stability can be ensured for neither.   As postulated, the mixed 

surface model of chapter  4 does achieve superior stability compared to a purely open 

surface model, but instability still occurs for some time-step durations.  It is suggested 

that this occurs because the wells possess lightly damped poles, not suppressed by the 

CFIE as they are physical and external to the body, and that these are easily corrupted 

into instability.  The impedance surface model in chapter  5 suffers from instability, but 

this is not due to the mesh which is a simple convex box.  Instead it is the well elements 

themselves that possess lightly damped poles in likeness to the physical structure they 

represent.  Again the light damping of the poles means the system readily becomes 

unstable if corrupted by numerical error.  Both models fail for the fundamental reason 

that the Schroeder diffuser contains wells which are lightly damped resonators.  

Obviously the real device does not become unstable so the behaviour of the time 

domain BEM is erroneous.  However, Rynne
 38

 showed that divergent poles should be 

forbidden by the system initial condition, so it is the way error accumulates in the MOT 

solver, rather than a fundamental property of the integral equations, that allows the 

solution to diverge 

There are many materials used by Acousticians that are not well approximated by a 

rigid surface model, the most extreme examples being ones used specifically for their 

sound absorbing properties, thus the scope of the time domain BEM would be increased 

if it could model compliant surfaces.  Compliant surfaces have been modelled by 

frequency domain BEMs for some time.  It is achieved by coupling the BEM to a 

material model through the surface unknowns of pressure and normal velocity.  This 

material model could be a volumetric model of the interior of the scattering body, but 

more commonly it is abstracted to surface impedance, a frequency dependent complex 

valued scalar relating pressure and inward normal velocity.  The absence of a time 

domain equivalent to the impedance boundary condition is sometimes remarked upon as 

a limitation of the time domain BEM for Room Acoustics modelling applications, but in 

chapter  5 that is redressed. 
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Surface impedance is a convenient quantity for use in a frequency domain BEM as it 

relates pressure and normal velocity by a fixed complex scalar so only one unknown 

surface quantity need be solved for.  However this representation is not convenient for 

the time domain BEM with an MOT solver.  The frequency dependent multiplication by 

a scalar becomes a convolution under inverse Fourier transform.  Total surface pressure 

is not a causal function of total normal velocity, or vice versa, so a convolution to find 

one from the other will include future sound, thus is incompatible with the time 

marching MOT solver.  The surface reflection coefficient provides a solution to this 

issue as it relates inward and outward propagating sound, the latter being a causal 

function of the former, so its time domain equivalent includes convolution with past 

sound only.  Its convolution kernel is the inverse Fourier transform of surface reflection 

coefficient, the frequency dependent complex ratio between magnitudes of harmonic 

plane waves travelling into and out of a flat sample of the material as would occur in an 

impedance tube, and is denoted the surface reflection response.  This representation is 

cited
56

 as being more robust to numerical error than differential boundary conditions 

and allows the causality and stability of the boundary condition to be examined in a 

straightforward way not possible for impedance. 

A crucial and novel step to allow the surface reflection response model to be efficiently 

integrated into a time domain BEM framework was made in section  5.2.  This observed 

that the inward and outward wave model allowed normal velocity and pressure to be 

related by a scalar for the incoming and outgoing waves independently, as for plane 

waves in free space.  This highlights that it is not the relating of pressure and normal 

velocity by a scalar that causes impedance to yield convolutions that include future 

sound, rather it is its aggregation of incoming and outgoing sound.  The resulting time 

domain algorithm shares the convenience of only possessing one surface unknown, the 

incoming sound wave, but to find the total pressure and normal velocity values 

convolution with the surface reflection response is required.  It was identified that 

incoming velocity potential should be discretised, and that the basis function 

representation allowed the convolution necessary to evaluate total sound to be 

embedded into the temporal convolution of the MOT solver, both novel approaches.  

The interaction coefficients for such were derived as contour integrals, valid for a 

piecewise-flat surface of arbitrary compliance without refinement to a particular 
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discretisation scheme or surface reflection response.  These statements are hoped to 

have significant impact on state of the art time domain BEM research. 

At this early stage a full compliant surface time domain BEM was not implemented, 

instead the statements were refined for a simpler boundary condition.  In this each 

piecewise constant surface element represents the mouth of a well containing some 

hypothetical broadband absorbent, thus the outgoing wave is a scaled and delayed copy 

of the incoming wave.  This simplified scheme was verified on surfaces containing 

either welled or absorbent surface sections, including the Quadratic Residue Diffuser 

discussed above.  Accuracy compared to a frequency domain BEM modelling an 

equivalent impedance surfaces was excellent.  Interference effects between incident and 

scattered sound were examined close to box shaped scatterers with one source 

orientated face of uniform welled or absorbing elements; trends were seen to make 

physical sense and agree with both frequency domain BEMs.  The surfaces with welled 

elements experienced some instability; this was interpreted as corruption of the lightly 

damped physical poles of the real device manifesting as divergence of the MOT solver, 

rather than failure of the compliant surface boundary condition.  In contrast the surfaces 

with absorbing sections were universally stable.  These did not represent an increase in 

algorithm scope since absorbing surfaces have been modelled before
 19, 25

, but they 

served to further verify the principle of the compliant surfaces BEM. 

As regards future research directions, the compliant surfaces BEM has been derived for 

arbitrary surface reflection responses but not implemented, so this should be pursued.  

However, obtaining suitable surface reflection response data is a serious impediment.  A 

direct approach would involve applying the inverse discrete Fourier transform to 

discrete measured frequency domain data.  Adequate temporal resolution and length of 

the surface reflection response could be ensured by including suitably high frequency 

domain measurements and interpolating their data respectively, but the extremely low 

frequency data necessary to unwrap phase is unlikely to be available.  Literature cited
 23-

25
 in chapter  5 attempts to overcome this obstacle by decomposing the convolution into 

the individual responses of the poles of the surface reflection coefficient within the 

frequency band of interest and may provide a solution.  Further research is required to 

establish for exactly what class of surface the surface model proposed herein holds. 
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An alternative to the surface impedance equivalent model proposed herein is coupling to 

a volumetric material model though the physical surface unknowns of pressure and 

normal velocity.  This could be a BEM
 33, 36

 if the material were homogeneous; 

otherwise a Finite Element Method would be more suitable and may be more efficient if 

vibrations are known to not penetrate far into the scatterer.  This approach would likely 

have higher computational cost than a surface impedance type model, but could 

simulate additional phenomena:  The local reaction assumption is invalid for certain 

materials in cases of grazing incident sound and this could be correctly modelled.  The 

motion and consequential absorption of thin surfaces, such as the fins of a Schroeder 

diffuser or an orchestral canopy, in response to the pressure differential across them 

could be simulated.  In addition there are potential applications that are not readily 

modelled by other means:  If the material model supports non-linear effects then the 

coupled system could model their audible response, such as far-field radiated 

components of loudspeaker distortion. 

A remaining enhancement of algorithm scope that was discussed in section  2.2.3 but has 

not received further attention is modelling in two dimensions.  Cox
 27

 found this was a 

good approximation for frequency domain modelling of extruded shapes, such as the 

Quadratic Residue Diffuser modelled in chapters  4 and  5, accompanied by excellent 

cost scaling due to the reduced number of elements.  These cost savings do not translate 

directly to the time domain as its two dimensional Greens function is not compact.  

However methods such as the PWTD
 29

 algorithm or calculation of discrete 

convolutions by Fourier transform may redress this and are worthy of further research. 

All future research suggested so far has focussed on enhancing the time domain BEM 

rather than applying it, a reflection on the immaturity of the method.  However, it is 

application that gives meaning to modelling so a research question the time domain 

BEM could answer is pertinent.  This regards the transient nature of scattering from 

diffusers as mentioned in the discussion of Schroeder diffusers at the beginning of this 

section.  The two diffusers modelled in this thesis have different diffusing mechanisms. 

Fundamentally they both rely on being partitioned into sections that are small with 

respect to wavelength so individually scatter widely.  The impedances of these surface 

sections are varied so that instead of constructive interference occurring for one angle 

only, as would happen for a uniform flat surface, it occurs at many angles so the total 
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reflected wave is diffuse.  The Quadratic Residue Diffuser achieves this by changing the 

phase of reflections.  The Binary Amplitude Diffuser modulates which parts of the 

surface reflect and which absorb.  The former diffuser has resonant wells capable of 

storing energy while the latter does not; hence it is likely their transient responses will 

be very different.  To what extent theses differences propagate to the far-field and are 

audible is of interest to diffuser designers.  This data could be calculated through many 

frequency domain BEM models and inverse DFT, but this would be computationally 

expensive and the time domain BEM is well suited to this type of transient analysis. 

6.5 Conclusions 

This thesis achieves its original goal of modelling surface treatments typical to Room 

Acoustics.  In particular, two classes of diffuser have been modelled that previously 

were not possible.   These are a two-dimensional Primitive Root Diffuser, which was 

unstable due to poor integration accuracy, and a Quadratic Residue Diffuser, which 

required the mixed surfaces model to achieve any useful stability.  An idealised Binary 

Amplitude Diffuser was also modelled requiring absorbing surfaces; technically this 

was previously possible using other published algorithms but had not been attempted.  

A more realistic Binary Amplitude Diffuser model would be possible with a full 

implementation of the BEM for compliant surfaces. 

In addition to the primary goal, the field of time domain BEM research has been given 

two new surface models, one for finned closed surface and the other for compliant 

surfaces, plus an efficient and accurate integration scheme valid for arbitrary 

discretisation of a piecewise-flat scatterer.  More so than the above modelling results, 

these are the primary contributions of this thesis.  

However, the time domain BEM still requires significant development before it can be 

considered a mature method.  In particular stability issues persist, albeit to a lesser 

extent, and computational cost is still high.  These two critical issues preclude the 

algorithm from widespread application given that alternate modelling methods exist.  

Nonetheless the algorithm has potential applications that are not readily modelled by 

other means, particularly if coupled to a non-linear model of the scattering or radiating 
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surface.  If stability and computational cost can be overcome then in such applications 

the algorithm will have the opportunity to shine.  
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7 Conclusions 

This thesis has attempted to improve the suitability of the time domain BEM for 

modelling the scattering of sound by surface treatments typical to Room Acoustics.  

Such numerical predictions aid treatment design by accelerating prototyping and 

allowing optimisation to be performed. 

Unlike the frequency domain BEM, the time domain algorithm discretises the surface 

sound in time as well as space.  The solution is solved iteratively in time from known 

initial conditions, a process named Marching On in Time (MOT), so the algorithm has 

the potential to be unstable and diverge from the correct solution.  This behaviour and 

high computational cost currently prohibit the algorithm from widespread application. 

The time domain BEM also finds application in Electromagnetics and Elastodynamics, 

and between these fields and Acoustics much research has been published.  The 

research on stability falls into two main camps: those that analyse the stability of the 

MOT solver, and those that consider the fundamental behaviour of the underlying 

boundary integral equations.  This thesis has adopted the prominent stability analysis of 

the former, being the concept of the corruption into instability of damped physical poles 

then excited by numerical truncation error, and the cures of the latter, for example the 

Combined Field Integral Equation which inhibits non-physical surface cavity 

resonances.  It was identified that representation of the discretisation scheme using basis 

functions has advantages in maintaining generality when deriving numerical integrands, 

such as permitting implicit time-step durations.  As a starting point for this research an 

algorithm that included these features was replicated. 

It was observed that the numerical integrands of the replicated algorithm are 

discontinuous because they contain the derivatives of the temporal basis function, and 

that this caused significant integration error.  The algorithm was not universally stable 

so it was inferred that these two aspects were connected.  The purpose of chapter  3 was 

to investigate this connection and develop a solution. A method of quantifying 

integration error was required and was found in the guise of Monte Carlo integration.  
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This showed that the Gaussian integration scheme gave errors worse than 10% on some 

element interactions, so an alternative integration scheme was developed. 

The superior numerical integration scheme proposed is based on conversion to contour 

integrals by analytical integration following a change of coordinates.  This regularises 

the integrals so the same routine may be used for self and non-self interactions.  

Adaptive numerical integration with an absolute accuracy criterion is applied to each 

contour to tailor numerical effort as required in a transparent and continuous way. 

The contour integration scheme and the Gaussian scheme were compared on simple and 

realistic surface meshes to investigate the effect that integration errors have on solution 

accuracy and stability.  The contour integration scheme yielded interaction matrices that 

were universally stable on both meshes.  The interaction discrepancies originating from 

the presence of the derivatives of the temporal basis function in the integrands were 

shown to largely cancel within the MOT solver and not significantly affect the solution.  

The remaining error of the Gaussian scheme was due to its unsuitability for the spatially 

singular numerical integrands and rendered it unstable on the realistic surface mesh.  

The superiority of the contour integration implementation was confirmed. 

Chapter  4 aimed to expand the modelling scope of the time domain BEM while 

maintaining the state-of-the-art in stability control.  Objects with thin fins, in particular 

Schroeder diffusers, were considered because these cannot be modelled naïvely by 

surfaces at each solid / air interface as their proximity causes singular behaviour in the 

underlying integral equations.   Instead the fins were modelled as rigid air / air 

interfaces and the rest of the body using the CFIE, the latter necessary to inhibit 

resonances of the enclosed cavity.  This approach is analogous to an approach used for 

the frequency domain BEM but is novel for the time domain algorithm.  The 

observation that jump in velocity potential is the dictating factor in scattering by the 

entire surface, not just the thin sections, allows the same integral formulation to be 

applied to the entire surface and only the CFIE‟s blend parameter varied, thus 

algorithmic elegance is maintained. 

This mixed surfaces model is extensively verified, and there is unanimous evidence that 

use of the CFIE improves accuracy for any surface with closed sections.  However, 
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results also show that, even with the CFIE and contour integration, stability is not 

guaranteed, especially on complex surfaces with concave parts.   

In chapter  5 a new time domain BEM capable of modelling certain compliant surfaces is 

developed.  For the frequency domain BEM this is usually achieved using the concept 

of a surface impedance boundary condition, which relates total surface pressure and 

normal velocity.  This is unsuitable for a time domain BEM with a time marching solver 

as neither of these quantities is a causal function of the other, so evaluating the 

boundary condition will require future data which is not yet known to the solver.  

Instead the time domain impedance equivalent boundary condition is derived from the 

surface reflection coefficient; this relates sound propagating into and out of the surface, 

a causal relationship so involves past data only.  The inverse Fourier transform of 

surface reflection coefficient is denoted surface reflection response and its convolution 

with the incoming sound wave gives the outgoing sound wave. 

This boundary condition requires the incoming and outgoing sound waves to be 

distinguished within the boundary integral equations.  The surface model allows the 

normal velocity of each wave to be found by scalar multiplication of its pressure, so 

only the velocity potential of the incoming wave is unknown and need be discretised.  

The resulting boundary integral equations are expressed as contour integrals, derived for 

a piecewise flat surface without refinement to a particular discretisation scheme or 

surface reflection response. 

A full compliant surface time domain BEM is not implemented; instead the statements 

are refined for a simpler boundary condition.  In this, each piecewise constant surface 

element represents the mouth of a well containing some hypothetical broadband 

absorbent, thus the outgoing wave is a scaled and delayed copy of the incoming wave.  

This simplified scheme is verified on simple surfaces and two diffuser models.  

Accuracy compared to a frequency domain BEM is good, confirming the principles of 

the model; however instability is evident for surfaces including welled elements. 

The three algorithm extensions (contour integration, mixed and compliant surfaces) are 

considered to be the primary contributions to knowledge by this thesis, as the modelling 
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that was performed was primarily for verification purposes and the analysis followed 

the thoughts of others. 

Much further research and development is required of the time domain BEM before it 

can be considered a mature method and put to widespread use.  The association of 

instability with the way error accumulates in the MOT solver and the connection created 

between temporal discretisation and stability suggests an alternative solver should be 

sought.  This could be some type of simultaneous solver as these are said to less favour 

divergent solutions and relieve restrictions on choice of temporal discretisation.  

However, they have potentially poor computational cost scaling so an acceleration 

strategy is required; this could exploit element interaction aggregation and / or 

orthogonality of the discretisation basis functions under Galerkin testing. 

The full compliant surfaces BEM was not implemented in chapter  5 so this is an 

obvious avenue of future work.  However, there are issues surrounding obtaining 

suitable surface reflection response data that need to be resolved.  Coupling to a 

material model of the scatterer is more computationally expensive but circumvents this 

issue and widens the modelling scope. 

This thesis has investigated the time domain BEM and its applicability to modelling of 

Room Acoustics surface treatments.  Despite improving the algorithm, it is still 

insufficiently mature to permit this.  One source of numerical error is integration 

accuracy and this has been addressed by derivation of a contour integration scheme 

valid for any discretisation of a piecewise flat surface.  Unless treated carefully the 

underlying boundary integral equations become singular on thin bodies and support 

non-physical cavity resonances inside larger bodies; an algorithm was developed that 

manages both these phenomenon.  Many surface treatments used in Room Acoustics are 

not rigid so an impedance equivalent surface model was developed, cast into the BEM 

framework and implemented for surfaces with welled and absorbing sections.  Some 

instability was observed on surfaces with lightly damped physical resonances; this is 

thought to be due to the behaviour of the MOT solver and it is suggested that an 

alternative be sought. 
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8 Appendix 

8.1 Temporal convolution with spatial derivative of the 

Greens function 

The Kirchhoff Integral Equation (KIE) for rigid surfaces contains the following 

boundary integral which it is desired to solve numerically.  Currently this is not in an 

amenable form as it contains the spatial derivative of a generalised function, which 

cannot be tackled numerically.  It is also in an inefficient form containing three nested 

integrations; a double spatial integral and the temporal integration of the convolution 

operator.  The purpose of this section is to exploit the sifting characteristics of the delta 

function to remove the temporal integral and handle the spatial derivative. 
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Ergin et al
 22

 tackled this hurdle in the derivation of their numerical integrands; they use 

the equivalence below.  It will be seen later that this equivalence only holds for rigid 

surfaces; this was not an issue for them as they only considered such.  However, 

Equation  8.1 is the double layer potential which forms part of the KIE for non-rigid 

surfaces (Equation  2.6), therefore the scope of any integration implementation derived 

from it will be widened if care is taken to not assume the surface is rigid.  The change 

will be seen to be subtle, but significant given that this thesis aims to maximise 

generality and considers non-rigid surfaces. 
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First the spatial derivative of the Greens function will be considered.  As this is a 

function solely in R and t its spatial gradient may be expressed as a derivative with 

respect to R, yielding a scalar, and a unit vector to indicate direction.  The minus sign 
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appears because at the integration point R̂  points away from the direction of increasing 

R.  The quotient rule is then applied: 
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This is substituted into the temporal convolution and all possible terms are moved 

outside the convolution.  The derivative of the delta function with respect to R is 

substituted by a derivative with respect to t by observing the chain rule: 
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The sifting property of the delta function under convolution (below) is now exploited.  

As this is not especially well known for derivatives of the delta function, it is derived in 

section  8.2.  In Equation  8.6 this is substituted into Equation  8.4, and the process of 

expanding the spatial derivative is reversed. 
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Equation  8.7 gives the integral of the KIE for a rigid surface in a form amenable to 

numerical evaluation.  The delta function has been extracted and the order of integration 

reduced.  To see that this that this is equivalent to Ergin et al‟s statement on a rigid 

surface, consider under what circumstances Equation  8.8 holds; this asserts that all 

surface normal variation in the quotient term is due to the dependence on R, or 

conversely that   0,'''ˆ  tt
rn  .  This is the rigid boundary condition, so  8.2 holds 

only for a rigid surface.  By contrast,  8.7 also holds for non-rigid surfaces so may be 

used to evaluate the double layer potential within the full KIE. 
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ERROR – It has been implicitly assumed in this section that all spatial variation in the 

retarded surface velocity potential is due to the convolution with the retarded delta 

function.  Hence this statement only holds when there is no spatial variation in the 

surface velocity potential, which requires the use of piece-wise constant spatial 

elements. 

8.2 Sifting properties of the delta function 

The sifting property of the delta function under convolution (below) is well known, but 

the properties of its temporal derivatives are less so, hence this explanation appears 

here.  f(t) is an arbitrary function of time, and a is a constant scalar. 

     atatt  ff          8.9 

What is of interest is the convolution of f(t) with the n
th
 temporal derivative of a 

retarded delta function.  This is written below, and the convolution is expanded into its 

integral form.  Note that τ is being used here as an integration variable, rather than to 

represent retarded time.  The derivative with respect to t is substituted by a derivative 
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with respect to τ by observing the chain rule; the (-1)
n
 term arises due to the opposite 

signs of t and τ in the argument of δ(…).  Flipping the sign of the argument cancels this 

term. 
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The sifting property of derivatives of the delta function
73

 is usually written as follows.  

It has the effect of applying the derivative and delay to f(…), plus a change of sign if the 

order of differentiation is odd: 
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This is substituted into Equation  8.10 and the derivative with respect to τ changed back 

to one with respect to t.  This statement extends the well known sifting property 

(Equation  8.9) to temporal derivatives of the delta function as required by section  8.1. 
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 ff1f

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8.3 Gradient of dot product term 

This section focuses on evaluating Rn ˆ'ˆ  .  A cylindrical polar coordinate system is 

defined centred on 'r , depicted below.  This is the same as that which is used in section 

 3.2.1, except for a translation of the origin and that it is specific to the current choice of 

'r ; the later point means this derivation applies to any shape surface. 



 221 

 

Figure ‎8.1: Cylindrical Polar Coordinate System 

The gradient is evaluated in cylindrical polar form as follows, where   Rnr ˆ'ˆf  : 
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 rf  is re-written as an explicit function of the position of r : 
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Immediately it is clear that the angular derivative of f is zero.  In calculating the 

remaining derivatives it will prove convenient to define 1 zrx , so the derivative of 

 rf  with respect to x  may be found.  The remaining derivatives are found by chain 

rule: 

   

 
  3

2

22

3
2

2

2
3

2
3

2
1

1
f

1f

R

rz

zr

z

z

r
xx

dx

d

x



















r

     8.15 

33

21f

R

rz

R

rz

zdx

d

r

x

r

f



















       8.16 

3

2

3

22

3

2

3

2

2

1f

R

z

RR

zR

R

r

R

rz

z

r

dx

d

z

x

z

f






















    8.17 

 0,0,0'r  

r
 

origin 

)( r'rR   

 zr ,,r  

'nz ˆˆ   

  



 222 

Equations  8.16 and  8.17 are substituted into Equation  8.13 to evaluate the gradient.  The 

terms are manipulated such that the end result is written using only quantities directly 

found from the surface geometry, rather than via the coordinate system of Figure  8.1.  

This equality applies to any smooth surface. 
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