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SUMMARY

This thesis describes experimente;l researches in ultrasonic
and viscoelastic relaxation in pure liquids, mixtures and a polymer
soiution. The measurements were made over a range of temperatures and
‘pressures in the frequency range 5 to 78 MHz.

Density, steady flow viscosity, real part and imaginary part
of the shear impedanceiwere measured on five liquids. Four of the
liquids obeyed the Time-—Température Superpositi c;n principle and could
be described by‘ the Barlow, Erginsav and lamb (B.E.L,) model, The
fifth liquid d;d not obey the Time—-Twiperatwre Superposition principle
and deviated from thé model, This was attribuéed to the distribution
of relaxation times widening as the tempefature 1s decreased.

The shear compliance (J(w)) for all five liquids varied

e

linearly with temperature at atmospheric pressure.- At higher pressures
it was the shear modulus (G(w)) that varied linearly with pressure.
Both low and high gfrequency longitudinal velocities were
found to vary linearly witth temperature at atmospheric pressure, while
at higher pressures only the low frequency velocity varied linearly
with I;ressure, the high frequency velocity results were too scattered.
Values of the bulk moduli obtained from the longitudinal
moduli and shear moduli were normalised and the variation with reduced
frequency was found to be of the same shape as for the shear moduli but
. displaced along the reduced frequency axis. Therefore the shear and
bulk relaxation properties have a common origin. From this displacement
and the 'valllles of G(cn) aﬁd the relaxing part of the bulk modulus
(K(«) -~ x(0)) the ratio of volume to shear viscosity was calculated for
three liquids at atmospheric pressure and two liquids at higher

pressures., The ratio nv/ns varied from 2.7 to 4.2 at atmospheric

pressure with slight'ly lower values' at_higher pressures but the

diff erénce_ was not statistically significant.

X Vit



X Viii

Measurements of density and velbcity'were made on solutions
of a surfactant at elevated pressures. The density measurements were
fitted to the linear secant modulus equation, Investigation of the
shear properties of a gel-soap solution showed that it was thiiotroPic.'

Finally, a conforgatibnal analysis at pressures above
atmospheric pressure showed that the felaxation.frequency'was not

significantly changed by increasing the pressuré.



CHAPTER 1

[INTRODUCTION



The mainIObjective of this research is to simulate in the
laboratory, the conditions which exist in heavily loaded gears and -
ball bearings lubricated under elastohﬁdrodynamic conditions. In
heavily loaded gears and ball bearings the lubricant is entrained
between two surfaces by rolling and is subjected to very high pressures
(1 GN m_z) and shear rates (105 s_1).' The liquid transit time is short
(10_5 s) and during this time the liquid's volume is decreased and its
viscosity increased. However, at these high pressures volume retard-
-4

ation occurs with a time constant = (T 8 10

v LTy s) and therefore since

the transit time is less than this, volume retardation effects can be
important., The shear relaxétion time T, (;:US/C(M)) is also of the
order of the transit time so that the shear viscosity (ng) will again
be time dependent(1). I'or a Newtonian liquid the product of shear
viscosity and shear rate (Y¥) is the shear stress (6) and is much less
than the shear modulus (G(®) ~ 1 GN m-2). Under conditions of elasto-
hydrodynamic lubrication (E.H;Iu) the shear stress is of the same
order.ofmagnitude_as the shear modulus, so that large elastic strains
will occur., Therefore the shear stress will be non linearly dependent
on shear rate and the viscosity will be shear rate dependent, i.e.
non-Newtonian viscosity (nNewt = shear stress/shear rate),

To have a better understanding of E.H.L., measurements of
volunme (cr bulk) and shear viscosities at high shear rates, shear
modulus and bulk modulus are reduired. To reproduce the above
conditions in a controlled experiment in the labaratory would be
extremely difficult, probably the only way is in the actual E,H,L.
contact, this does not allow any time for measurements, Attempts(z)
to measure viscosity in such situations using disc machines have given

results smaller than the values expected from reasonable extrapolations

of measurements made in low shear rate viscometers operating at high

(3)

static pressures. Fein‘'”’. suggested that the liquid fails to respond

to the rapid increase in pressure which occurs in a very short period



of time and therefore it does not reach the equilibrium state

corresponding to this pressure, which leads to a lower value of

(4)

viscosity. Paul and Cameron have shown that there is a definite

time delay of the viscosity rise after the pressure step, the viscosity

2 2 8

at 800 M m =~ varies from 3 x 104 N sm - after 0.015 s to 3 x 10

N s o ° after 105 s.

To overcome these difficulties of measurement other
techniques have been used, namely ultrasonics, high rates of shear
can be obtained for shcrt'duratians, use is then made of the analogy

between the behaviour of viscoelastic fluids in oscillatory and

continuous shear.
/

There are two types of elastic waves, longitudinal and
Shear;' In longitudinal waves the particles in the medium move in the
direction of propagation of the wave while in shear or transverse
waves the di3placeﬁent of the particles is at‘right angles to the
direction of propagation. In this work elastic waves in the range
5 Mz to 78 MHz (ultrasonic frequency) have beén.used.

Sinusoidally alternating shear and longitudinal waves of
ultrasonic frequency are propagated into fluids and from the response
of the fluid to these waves, information regarding shear and bulk
properties can be obtained, It is possible to mproduce pure shear
waves but not pure compressional waves,

The techniques used today have been developed over many
years starting with the 'classical' absorption of sound in gases by

(6) |

Stokes(5), Biquard made the first quantitative measurements in
liquids and later Pellam.and.Galt(7) developed the Pulse Technique..
They used piezoelectric transducers excited by pulsed electrical
oscillations to produce a pulse of ultrasound which was propagated in
the liquid and detected.by'a second identical transducer and

reconverted to electrical energy for measurement, This technique is

suitable for longitudinal waves (often referred to as ultrasonic waves)



but owing to the high absorption of shear waves in a liquid, the
technique has to be modified. This has been carried out initially by
MasonKB) and further developed by Barlow andLamb(g). oince
longitudinal waves propagate mare easily through a liquid than do
shear waves, their absorption.coefficiént and velocity can be
determined whereas shear wave techniques rely on the reflection of a
wave at the interface,

The behaviour of a liquid‘to an elastic wave depends upon
the frequency of that wave, i.,e. for longitudinal waves it depends
upon tﬁe period of compression, If the period of altermating
compression is short the wave will propagate adiabatically and the
local temperature will alter in phase with its changing volume, hence
any equilibria which are sensitive to temperature or pressure changes
will be distu:rbed by the wave., This disturbance is detected by an
increase in the attenuation of the longitudinal wave, the maximum
attenuation will occur at a frequency f, (=.y/2ﬁr) where 1 is the
relﬁxaticn time of the equilibrium. Equilibria studied include
chemical reactions, molecular energy transfer between translational,
vibrational and rotational degrees of freedom, rotational isomerisation
in liquids and the flow of molecules between regions of high and low
density. It is possible that more than one type of equilibrium may

be taking place at any one time giving rise to more than one relaxation

When a liquid is subjected to a shear wave there is no
voluﬁe change and a negligibly small temperature change and hence
chemical equilibria which are present are not disturbed. The medium
responds to the shear wave by viscous flow (liquid), by elastic
defcrmafion (s0lid) or by some combination of the two (viscoelaatic).
Whether viscous, viscoelastic or elastic properties are observed
depen§s on fhe period of the shear:wave, If the period is long

compared to the time required for the liquid to return to equilibrium



after the application of the strain, then the liquid will respond to
the oscillating strain and the behaviour of the liquid is referred to
as Newtonian, i.e, shear viséosity'is independent of rate of deform-
ation, If the period is small compared-to the time far the liquid to
return to equilibrium then there will be no'molecular diffusion and
no flow, any energy is now.stcred, not dissipated as before, and the
liquid behaves as an amorphous éolid'with Hookean elasticity. The
change from viscous to elastic behaviour (viscoelastic relaxation)
occurs when the period of the shear wave becomes comparable to the
time for molecular diffusion. This time may range from seconds in
polymers to 10"'1 secs 1n liquid argon., There are many examples of
mater;als which exhibit both elastic and viscous properties depending
on the time scale, e.g. glass will flow over many years and pitch can
be shattered by a sharp blow.,

In préctice the change in amplitude and phase of“the shear
wave are measured to give the reactive and resistive parts of the
shear impedance and the absorption and velocity of longitudinal waves
are measured. From these measurements a shear and volume viscosity
and the various moduli can be calculated. Results to date have shown
that if the components of the shear modulus (or reactive and resistive
parts of the impedance) and bulk modulus are plot£edinnormalised.
form, they do not fit models of viscoelasticity based upon & single
relaxation time, however the results can. be described by assuming a
distribution of relaxation times(g). An empirical model based upon
the impedance of the viscoelastic fluid being a parallel combination
of the impedance of a Newtonian liquid and an elastic solid has been

(11)

shown to account for the results for pure liquids but the model

has to be slightly modified to account for the behaviour of liquid

(12)

mixtures o A theoretical treatment by Phillips(13) gave the same
cquation for the relaxation function as developed.by'Barlow(11), this

'treatment was based on a defect diffusion model which was an extension



of Glarum's defect diffusion,model(14). Barlow(15’16’17)

has shown
that the compressional or bulk modulus can be treated in the same way
as the shear modulus, with.the assumption that both the volume
viscosity and relaxing part of the compressional modulus are constant
multiples of the shear viscosity and shear modulus.,

To date only a féw liquids have been studied in detail, the
results of these studies are gi%en in Tables 1,2 in Appendix I. There
has been no correlation between the ratio of volume viscosity to shear
viscosity and molecular structure, but there is a difference in the
temperature dependence of this ratio between associated and unassociated
structures(18’19). The unassociated liquids exhibit a positive slope
for tgmperature against coefficient of absorption and a temperature
dependent ratio of experimental absorption (a exp) to the classical
absorption.(ac ). This behaviour is attributgd.to thermal relaxation
processes due to temperature changes produced by the ultrasonic wave
and these are the predominant mechanisms for volume viscosity in these
liquids, A temperature independant ratio of aéxp/dCl lying between
1 and 3 is found in associated liquids. The absorption coefficient
decreases with increase in temperature as in the 'classical' absorption.
The mechanism responsible for the volume viscosity in associated
liquids is closely related to the mechanism for the shear viscosity.

Structural relaxation processes connected with volume changes among
different molecular rearrangements.and produced by pressure changes of
the sound waves are assumed to occur.

Iikewise with the shear modulus no theory or experiment has

shown any relationship between chemical structure and viscoelastic

(9)

properties for non~polymeric liquids, Initially, Barlow and Lamb

(20)

gave an interpretation in terms of hydrocarbon type and later Hutton

showed that this was an incorrect interprefation. This has been

confirmed by work on unrelated molecular structures which showed no

(11, 21)

significant difference in shear properties although impuritics

r



(11)

in samples can lead to small differences ;

The liquids so far investigated have either been 'supercooled!
or have a viscosity about 1 N s m72 at ambient temperature, Super-
cooling is usually limited to asymmetric molecules (symmetric molecules
crystallise readily, e.g. benzene crystallises at a much higher
temperature than toluene). For symmetrical molecules, only translation
to a suitable site is required whereas for asymmetric molecules,
translation and rotation of the molecule is usually necessary, the
latter requiring more energy.

In Chapter II the theory of ultrasonic and viscoelastic
relaxation 1s discussed and the terminology.used is introduced. The
relationships between experimentally measured quantities and the
various moduli are derived. The experimental measurements made and
apparatus used are described in Chapter I1I. The viscoelastic
properties of two bitumen samples have been investigated, the
experimental results are given in Chapter IV, together with a
discuésion of the results. In Chapter V the results of shear and
ultrasonic relaxation measurements are given for three !'supercooled!
liquids at atmospheric and high pressﬁre. The analysis of these results
to give the ratio of shear to volume viscosity and a discussion of them
is given in Chapter VI. The above forms the bulk of the work
presented, however, to take advantage of the high pressure equipment
two minor pieces of work have been carried out. The first being the
effect of pressure on a micelle system, the theory and experimental
results for the work are presented and discussed in Chapter VII; also
included in this chapter are some shear measurements on a 'liquid
crystal system!, The second is the effect of pressure on a rotational
isomerisatioﬁ.equilibrium - conformational analysis, the theory and
results are presented and discussed in Chapter VIII., Chapter IX is
devoted to an assessment of the work and general conclusions. The

experimental data are given in the appendices, appendix numbers



correspond with the chapters, i,e. results for Chapter IV are given

in Appendix IV,



CHAPTER Il

THEORY



2.1 Introduction - longitudinal waves,
From classical theory'Stokes(S) showed that the longitudinal

sound absorption (a) dependsion the shear viscosity‘(ns) by the

following relationship
2 2

a = % T TTSf | --(211)
P vo

where P is tThe density of the medium,
v is the velocity of sound in the medium,
f is the frequency of the sound.

Usually this equation is re-written as follows:

2
a/p2 - % T_Ds ..(2.2)
p vI

G/fz ié a constant at a particular temperature for some liquids, e.g.
water, carbon tetrachloride. The shear viscosity is well known and was
defined by Newton as the ratio of tangential force per unit area (o) to
the shear rate (-g-};:) or rate of strain, This ratio is often constant
over a limited range of shear rates and when independant of shear rate
the'fluid.is said to behave in & Newtonian mamner., The fluids described
in this work are mainly studied in the non-Newtonian range. In practice
the measured absorption (aexp) is not equal to the classical absorption
given by equation (2.1). The difference is caused by volume and
pressure changes in the fluid, the molecules in the fluid have to flow
from a more compact to a less compact structure in the direction of the
motion imposed by the sound wave, A fluid can therefore have a volume
or pulkviscosity'(nv) defined as the viscosity of volume flow (Stokes
assumed n_ = 0). This volume viscosity can arise from structural
changes and various equilibria. The 'ciassical' absorption given by

equation (2.,1) is modified to give

2 L |
_2n 4 2 |

Kirchoff showed that o is also a function of the thermal conductivity (k)
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of the fluid, i}y absarption due to thermal conductivity is given by

> 7
o (y=1) « f ..(2.4)

“th = py3 Cp

where y = CP/CV and Cp is specific heat at constant pressure,
Cv is specific heat at constant volume,

The contribution to o from a,, is negligible for all liquids except

th

liquid metals.

2,2 Propagation of longitudinal waves.
The amplitude of the waves is small so that heating of the

liquid is insignificant but, locally there is a significant temperature
rise in a sound wave to cause chemical reactions to occur. The
(22)

temperature variations are in the region of 0.002 deg. . The wave

motion is described by the following two dimensional wave equation

2 82u 6211
Vo 322 T a2 | ..(2.5)

where u is the particle displacement in the direction (x) of the wave
motion,
VL is the phase velocity.
The solution of equation (2.5) is obtained by the method of separation

of variables and after substitution of the boundary conditions the

following is obtained,

4

u(x,t) = wug exp in(t - J:/VL) + uy' exp iw(t + /V .o(2.6)

1)
u, and u,' are constants, |
w = (2nf) is the angular frequency,

t = time,

The first term represents a wave travelling in the positive x direction
aﬁd the second term a wave travelling in the negative direction, bo;ch
with velocity VL. u,' is zero when there is no reflection (which is
true in the work in thié thesis). and therefore there is a single

progressive wave with maximum ami)litude Ug. This equation (2.6)
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assumes no attenuation in the medium and has to be modified to account

for the attenuation. Equations (2.7) and (2.8) give the modified wave

equation and solution.

2 2 )

ou 2 du 4 Ms o07u_

552 = Yy w2t 3 5 et -+(2.7)
| . 1 1

u(x,t) = wu, exp [1w(t - x(-ﬁ-]-:-' - ) ) ] ..(2.8)

ar is the longitudinal sound absorption (the subscript L refers to

longitudinal sound waves — in the remaining chapters this subscript is

omitted).
1 iaL =1 ' ¥
( - - T) is the complex velocity V*© of the sound wave,
I,
1 ] 1a,
'f;{ = "'V'-' _—&T ..(2.9)

The wave equation can also be written in the following form

MEE azﬁ auzr
522 = P3¢2 ..(2.10)

The longitudinal modulus M , a complex quantity, is related to the
complex velocity
2
= p(vF) .-(2.11)

cand M- = M 4 iMM ..(2.12)

]

where M' and M" are the real and imaginary parts of the longitudinal

modulus respectively.,

By a simple mathematical.mocedure from equations (2.9) and
(2,11) it can be shown that

. M¥ _ P(Vx)2 2 & 5 o I

4 2 . 4 .
P(w V." =-a; VL) +12P a; w V,

ve(2.13)

2
(0” + CI,L2 VL2)2

[ -
and hence M! P'VL l W | e (2- 14)

12



opy. & arVy

___f.’___:“:_z .. (2.15)
L

We now have the real and imaginary parts of the longitudinal modulus

Mll

in terms of the measured quantities namely a., VL and w. oSingh and

bﬁshra( 23) have identified a relationship between frequency and G’/fz,

[10g1 5 U»max/fz

- confirmed in this work. It is therefore possible to give an estimate

a1V
of the maximum and minimum values of L L/w in the range of frequencies

-1.075 lc)g10 I - 3.512] + their findings have been

. oV,
used in the present study. '/w ranges from 0.004 to 0.060.
atV
When L I‘/w is small then from equation (2.14)

wo= pv~ = M(0) .. (2.16)

(v; = v, (0)

M(0) is the low frequency longitudinal modulusi.

If the frequency is greatly increased above the relaxation frequency

ayV
then L L/oo will again be small and

= Psz = N() .o (2.17)

(v = V(=)

M(=) is the longitudinal modulus at infinite frequency.

M" in both the above conditions becomes very small and M" goes through

a maximum as the frequency is increased from a low to a high value.

In viscous liquids (r,s(O)' ). 106 N s m-2) it is experimentally

difficult to measure the absorption coefficient and velocity directly.
Reflection techniques are then used to measure the impedance of the
liquid. The longitudinal impedance (ZL) is the ratio of force to

particle velocity and is related to the complex velocity by the

following

-— 3 — 2t | '
Zy, = Ry +iX = PV ..(2.18)

where RL is the real or resistive part of the impedance,
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and.XL is the imaginary or reactive part of the impedance.,

From equation (2,9) then

1 i \ -1
Z, = P "{;‘I'J' " ..(2.19)

and at high frequency the equation reduces to

zL(w) - RL(m) = va(m) X, =0 ..(2.20)

the velocity is obtained from the impedance and the density.

To complete the relationships, from equations (2.11) and

(2.18)
2 2 .
Z (R. + iX )
I, I, L
- ——— = S O et . o 2-21
M > 5 (2.21)

R - xL2 @ X

and y o= =D M = ..(2.22)

2.3 Viscoelastic Response,
When a solid is subjected to a shear stress (6) it experiences

a shear strain (Yy) and the ratio of these two quantities is the shear

A

modulus (G).
d -— GY U ) (2- 23)

A liquid responds to a shear stress by flowing and the relative motion
of the different layers of the flowing liquid leads to a resistance to
the flow and energy is dissipated, the liquid is said to exhibit

viséosity'and obey Newton's law

0
g = "Ts','_:,'% .o (2.24)

Deviations from these ideal Hookean and Newtonian behaviour occur and
the material is then said to be viscoelastic, A shear stress 1is
'produced in a liquid by shear waves and unlike longitudinal waves no
volure or temperature change takes pléce; the temperature rise resulting

.

from viscous flow appears as a random increase in the translational

14



energy of the molecules, therefore any temperature sensitive equilibria
will not be affected by the shear wave, Shear waves can be used to
study molecular diffusional motion in the medium and will not be

complicated by other relaxation processes.

24 Propggation of shear waves.

The amplitude of the shear wave is small so that heating of
the liquid is insignificant and only the linear viscoelastic response
ig determined,higher orders can be neglected. When shear waves are
propagated into a medium the displacement of the particles in the
mediun is perpendicular to the direction of motion. Using normal
Cartesian co-ordinates the x axis gives the direction of propagation
and the displacement is in the z direction. The shear stress (d&z) 1s
given by equation.(2.23) and the strain v = a?/az, where u is the
particle displacement in the z diréction, For a unit volume the

driving force is the product of mass and acceleration giving

2 T oz | | -+(2.25)

Differentiation of equation (2.23) with respect to the z direction and

after substitution of ¥ we have

2 ¥ .2
P ou G o u
2 T o2 -+(2.26)

(This equation is analogous to (2.109for longitudinal waves) « The

solution of (2.26) is given by the method of separation of variables

u(z,t) = u_ exp [iw (t - 2 (%s -3%5))" .o (2.27)

'

where u is the initial value of u,

V, and a_ are the velocity and absorption coefficient of the
shear wave respectively,
w (= 2nf) is the angulaf frequency.

The* complex shear velocity (V:) is given by

£
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- 1 ia.s "'1
vE - ["{f _..a..] ..(2.28) ;

and (V% = 6%/p .. (2.29)

G* is the frequency dependant complex shear modulus.

Gx: — G‘l+'iG" . ‘11(2130)

where G!' is the real part and is described as storage modulus and G"
is the imaginary or loss modulus. Experimentally the complex shear

impedance (Zs) is measured which is defined as the negative ratio of

shear stress to particle velocity.

by = Rg+ 31Xy = - de/(au/at) ' .+(2.31)

where RS is the real or resistive part of /8
and.XS is the imaginary or reactive part of Zs.

Substitution for o _, from (2,23) gives

Z <% (“Yaz) /(Y at) .. (2.32)

S

il

]

<* %ot = N FE .. (2.33)

and substitution for st from (2,29) gives

2 ¥

ZB — pG --(2-34)
Equating real and imaginary parts of (2.34) we have
2 2 |
P
2RSX
G" = —5 < ..(2.36)

or Rsz = -E’-Gé-'- [(1 + (%;)2>§ + 1:| .o (2.37)
st = f-gé-t- [(1 + (%—?—)2>i - 1 :l | oo (2.38)




Two other complex quantities can be defined namely, complex viscosity

ng = ng' - ing" = G /iw .« (2.39)

where 1’ G"/w and n" = G'/w ..(2.40)

and complex compliance J* = 1 /GgéE

JEE

Jt — ig" - .o(2.41)
giving

' 1
J! ._...2.._g_.__..2. . Jn ._.__2...9_____2. . _(2.42)
G' + G" G' + G"

1l
I

In the Newtonian limit G!' = 0 by definition .. n" =0 and J!' = 0
2R X

s"s

P

| — | —
but G" = wr]s =

and since G' = 0, RS(o)2 = XS((_))Z.

T.her; RS(O) = xs(o) =<_“>D§_(é_9_)_8>% .. (2.43)

RS(O) y XS(O) in equation (2.43) are the Newtonian values and

P)'% ee(2.44)

\

= ( ) { s
‘Newtonian = (1 +4) ( 5

The absorption coefficient (a,s) and velocity (VS) for a Newtonian

liquid can be obtained in terms of density, viscosity and angular

frequency from (2.28), (2.29) and (2.33).

' % B
_ [ 2un 4 [ wp
vs ""( PS) and ars--'(zns 11(2 45)

4

It can be seen that the absorption coefficient is extremely large, for

6 -1

water at 2908,2 K and w =21 10 & .

6 1

a, = 1.8x 10 nepers m .

S
o : 1 ~7
giving a skin depth /G's = 5,6 x10 ' n,
For a perfect Hookean solid where n! = 0 by definition G" = 0 and J" = 0.

G' is equal to the shear modulus and



%

< ,
RS = _ (P G ) Xs = 0 --(2-46)
" = G(w) the shear modulus at infinite frequency
.
and V(=) = (G(=)/P)® o, = O | .+ (2.47)

2.5 The relationship of longitudinal modulus to shear modulus.

Both the complex longitudinal modulus and complex shear
modulus are frequency dependant and can therefore be written M (w) and
G;E(w) respectively. The longitudinal modulus is a linear combination

of the shear modulus and the bulk modulus K;E(w) , which is also complex,

|

1 w) K (w) + 4/3 ¢ (w) | .+ (2.48)

and K (w) = K'(w) + K"(w)
where X'(w) is the real part of the bulk modulus and K"(w) is the

imaginary part. Kﬁ(w) cannot be obtained by experiment and therefore

is obtained by the above relationship.

M(w) = K'(w) + 4/3 G'(w) + i(I_{"(w) + 4/3 G"(w)) ..(2.49)

separating into real and imaginary'par_-ts gives

M (w) = K'(u;) + 4/3 ¢! (w) s (2.50)

and  M"(w) K"(w) + */3 ¢ (w) ..(2.51)

At low frequencies (Newtonian liquids) ¢'(0) =0

Mt (@) = M(0)

(o) = K'(0) = Kk(0) .+(2.52)
where K(0) is the low frequency bulk modulus.
At high frequency M'(w) becomes Mw) and M'(w) = 6.

Then M=) = K(0) + K'(=) + %/3 () ..(2.53)

Kt (=) = (Km - KO) is the relaxing part of the bulk modulus and is

usually denoted by K2.

Relationship of viscosities,
From equation (2.39)

. . x . 3%
G -lwr]s
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and by using a similar approach to that used for shear waves it can be

shown that
N
I‘dx = :LQ)T]L ) ( 2- 54)
where qEE is the complex longitudinal viscosity.

Substitution of (2.39) and (2.54) into (2.48) gives

iwan = K (w) +-4/3 iwnsaE .« (2.55)

Rearranging equation (2.55) gives

K(w) = :'i.uo(n;E - 4/3 nsx) | ..(2.56)
% i 4 3
and nv = T}L - /3 T,S --(2- 57)
where WVK is the complex bulk viscosity.

From (2.56) and (2.57)

K(w) = e, ) | ..(2.58)

2.6 Models of viscoelastic liquids.
2.6.1 Maxwell model,

The simplest model was formulated by Maxwell and is given by
the addition of the compliances of the two elements (elastic and

viscous) of the fluid. The total strain rate (%11) is given by

o _ 20 _1 :
ot = 3t G(e) T 7 (0) .. (2.59)

or alternatively,

& A3 1 0
3t = =) o T G T, | ++(2.60)

where T is the Maxwell relaxation time, a single relaxation time., 3By
a suitable choice of boundary conditions this equation reduces to

either Hookes Law or Newtons law,

If the strain and stress are sinusoidal then

Y Y, exp (iwt) "' ..(2.61)

o\
It

o exp (iwt) | ' ..(2.62)



Differentiation with respect to t of (2.61) and (2.62) and substitution

into (2.60) gives

and 2 3 lemG (m) ( ) 64)
vy 1 + iw'rm CEANTE

The complex shear modulus (Gr;E = 6/y) can be separated into

the real and imaginary parts giving, from equation (2.64),

2 2
G(m) W T

2 2 ?
(1 + w T )

G(W) W T
G" = ——-—2—22) ..(2-65)

G! = ==
(1 + w T

or the viscosities from equation (2.40) can be given by

6(=) = 6(=) o ° |
= —— ..(2.66)

s T T2 3 * 7
. (1+w2 'rmz ® (1+m2 "L'mz)

RS and Xs are then given from equations (2.37), (2.38) and (2.65).

((D"[,'m)z_-l- mm(1 + (w'rm)z)% :

— ee(2.67)
2 [1 + (wfrm)? ]

R, = (pa(=))

- (w"l:m)z + me“ + (w'rm) 2)% 2

2 [1 + (m-m)2 ]

and X = (PG(‘”))% ..(2.68)
The usual quantities plotted are Rs/ (PG(oo))% and Xs/ (PG(m))%
égainst a reduced frequency ((m:m) (where T, = ns(O)/G(m)). (G'/G(fn),
G"/G(») and Ng' /qs(o) are occasionally plotted against tm:m).

. The Maxwell model predicts that the viséoelastic region
(defined as the region in which G'/Gm varies from 0.0 to 0.95) extends
over two decades of reduced frequency (w«rm) . However, for most liquids
studied the region extends over four or more decades, but Mikhailov(24)
suggests that soyabean and cotton-seed oils hﬁve a single relaxation.

The behaviour of the viscoelastic fluids cannot be character~

ised by a single relaxation time but by a distribution of relaxation
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times(g) and equation (2.64)'13 then written as follows

G . :L(D('r)‘

Gx(m) L ..(2.65)

J=1 1 + 103('|:m)3

where Gj is the contribution of the jth‘process to G(*) and (q,-m)j is
its relaxation time, In the limiting condition of a continuous

distribution of relaxation times the summation may be replaced by an

integral

. g(r ) it
¢ (w) = G(°) B e — Torr dt ..(2.70)
where g(Tﬁ) represents the distribution of relaxation times and G(e)
ng.dTm is the contribution to G(®) from those processes which have
relaxation times in the interval Tm_to T, + dxm.
2,6.2 - The Barlow, Erginsav and lLamb (B.E.L.) model.
Barlow, Erginsav and Lamb(11)‘found.that their data <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>