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SUMRY 

This thesis describes experimental researches in ultrasonic 

and viscoelastic relaxation in pure*liquidso mixtures and a polymer 

solution. The measurements were made over a range of temperatures and 

pressures in the frequency range 5 to 78 MHz. 

Density, steady flow v-4,. scosity, real part and imaginary part 

of the shear impedance were measured on five liquids. Four of the 

liqkxids obeyed the Time-Temperature Superposition principle and could 

be described by the Barlow, Erginsav and Lamb (B. E. L, ) model. The 

fifth liquid did not obey the Time-Temperature Superposition principle 

and deviated from the model. This was attributed to the distribution 

of relaxation times widening'as the temperature is decreased. 

The shear compliance Woo)) for all five liquids-varied 

linearly with temperature at atmospheric pressure. At higher pressures 

it was the shear modulus (Gov)) that varied linearly with pressure. 

Both low and high frequency longitudinal velocities were 

found to vary linearly with tempeiýature at atmospheric pressure, while 

at higher pressures only the low frequency velocity varied linearly 

with pressure, the high frequency velocity results were too scattered. 

Values of the bulk moduli obtained from the longitudinal 

moduli and shear moduli were normalised and the variation with reduced 
I 

frequency was found to be of the same shape as for the shear moduli but 

displaced along the reduced frequency axis. Therefore the shear and 

bulk relaxation properties have a common origin. From this displacement 

and the'values of G(w) an d the relaxing part of the bulk modulus 

K(O)) the ratio of volume to shear viscosity was calculated for 

three liquids at atmospheric pressure and two liquids at higher 

pressures. The ratio Tlv/T), varied from 2.7 to 4.2 at atmospheric 

pressure with slightly lower values at higher pressures but the 

difference was not'statistically significant. 



x viii 

Measurements of density and velocity were made on solutions 

of a surfactant at elevated pressures. The density measurements were 

fitted to the linear secant modulus equation. Investigation of the 

shear properties of a gel-soap solution showed that it was thixotropic. ' 

Finally, a conformati onal analysis at pressures above 

atmospheric pressure showed that the relaxation frequency was not 

significantly changed by increasing the pressure. 

11 



CHAPTER I 

INTRODUCTION 
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The main objective of this research is to simulate in the 

laboratory, the conditions which exist in heavily loaded gears and 

ball bearings lubricated under elastohydrodynamic conditions. In 

heavily loaded gears and ball bearings the lubricant is entrained 

between two surfaces by rolling and is subjected to very high pressures 

(1 GN m72 ) and shear rates (105 S-1). * The liquid transit time is short 

(10-5 s) and during this time the liquid's volume is decreased and its 

viscosity increased. However, at these high pressures volume retard- 

ation occurs with a time-constant rTz 10--4 s) and theref ore since 

the transit time is less than this, volume retardation effects can be 

important. The shear relaxation time r, (= WGH) is also of the 

order of the transit time so that the shear viscosity (-q. ) will again. 

be time dependent 
(1) 

. For a Newtonian liquid the product of shear 

viscosity and shear rate (ý) is the shear stress (6) and is much less 

than the shear modulus (G(') 
-- 1 GN m7 

2 ). Under conditions of elasto- 

hydrodynamic lubrication (E. H. L. ) the shear stress is of the same 

order of magnitude. as the shear modulus, so that large elastic strains 

will occur. Therefore ýhe shear stress will be non linearly dependent 

on shear rate and the viscosity will be shear rate dependent, i. e. 

non-Newtonian viscosity (7INewt = shear stress/shear rate). 

To have a better understanding of E. H. L., measurements of 

volume (or bulk) and shear viscosities at high shear rates, shear 

modulus and bulk modulus are required. To reproduce the above 

conditions in a controlled experiment in the labctatory would be 

extremely difficult, probably the only way is in the actual E. H. L. 

contact, this does not allow any time for measurements. Attempts 
(2) 

to measure viscosity in such situations using disc machines have given 

results smaller than the values expected from reasonable extrapolations 

of measurements made in low shear rate viscometers operating at high 

static pressurbs. Fein(3). suggested that the liquid fails to respond 

to lhe*rapid increase in pressure whiclý occurs in a very shcrt period 
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of time and therefore it does not reach the equilibrium state 

corresponding to this pressure, which leads to a lower value of 

viscosity. Paul and Cameron 
(4) 

have shown that there is a definite 

time delay of the viscosity rise after the pressure step, the viscosity 

at 800 M nr 
2 

varies from 3x 104 Ns m7 
2 

after 0.015 s to 3x 10 8 

-2 Ns in after 105 S. 

To overcome these difficulties of measurement other 

techniques have been used, namely ultrasonics, high rates of shear 

can be obtained for shcrt durations, use is then made of the analogy 

between the behaviour of viscoelastic fluids in oscillatory and 

continuous shear. 

There are two types of elastic waves, longitudinal and 

shear. In longitudinal waves the particles in the medium move in the 

direction of propagation of the wave while in shear or transverse 

waves the displacement of the particles is at right angles to the 

direction of propagation. In this work elastic waves in the range 

5 MHz to 78 MHz (ultrasonic frequency) have been used. 

Sinusoidally alternating shear and longitudinal waves of 

ultrasonic frequency are propagated into fluids and from the response 

of the fluid to these waves, information regarding shear and bulk 

properties can be obtained. It is possible to Iroduce pure shear 

waves but not pure compressional waves. 

The techniques used today ýave been developed over many 

years starting with the 'classical' absorption of sound in gases by 

Stokes 
(5), 

Biquard 
(6) 

made'the first quantitative measurement s. in 
(7) 

liquids and later Pellam and Galt developed the Pulse Technique.. 

They used piezoelectric transducers excited by pulsed electrical 

oscillations to rroduce a pulse of ultrasound which was propagated in 

the liquid and detected by a second identical transducer and 

reconverted to electrical energy for measurement. This technique is 

suitable for longitudinal waves. (ofte; n reterred to as ultrasonic waves) 
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but owing to the high absorption of shear waves in a liquid, the 

technique has to be modified. This has been carried out initially by 
(8) (9) 

Mason and further developed by Barl(nr and Lamb Since 

longitudinal waves propagate more easily through a liquid than do 

shear waves, their absorption coefficient and velocity can be 

determined whereas shear wave techniques rely on the reflection of a 

wave at the interface. 

The behaviour of a liquid to an elastic wave depends upon 

the frequency of that wave, i. e. for longitudinal waves it depends 

upon the period of compression. If the period of alternating 

compression is short the wave will propagate adiabatically and the 

local temperature will alter in phase with its changing volume, hence 

any equilibria which are sensitive to temperature or pressure changes 

will be disturbed by the wave. This disturbance is detected by an 

increase in the attenuation of the longitudinal wave, the maximum 

attenuation will occur at a frequency fc (=. 1/27Er) 
where r is the 

relaxation time of the equilibrium. Equilibria studied include 

chemical reactions, molecular energy transfer between translational, 

vibrational and rotational degrees of freedom, rotational isomerisation 

in liquids and the flow of molecules between regions of high and low 

density. It is possible that more than one type of equilibrium may 

be taking place at any one time giving rise to more than one relaxation 
(10) 

time 

When a liquid is subjected to a shear wave there is no 

volume change and a negligibly small temperature change and hence 

chemical equilibria which are present are not disturbed. The medium 

responds to the shear wave by viscous flow (liquid), by elastic 

deformation (solid) or by some combination of the two (viscoelastic). 

Whether viscous, viscoelastic or elastic properties are observed 

depends on the peipiod of the shear-wave. If the period is long 

compax-ed to the time required fo: ý the liqiýid to return to equilibrium 
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after the application of the strain, then the liquid will respond to 

the oscillating strain and the behaviour of the liquid is referred to 

as Newtonian, i. e. shear viscosity is independent of rate of deform- 

ation. If the period is small compared-to the time fcr the liquid to 

return to equilibrium then there will be no molecular diffusion and 

no flow, any energy is now stored, not dissipated as before, and the 

liquid behaves as an amorphous solid with Hookean elasticity. The 

change from viscous to elastic behaviour (viscoelastic relaxation) 

occurs when the period of the shear wave becomes comparable to the 

time for molecular diffusion. This 'time may range from seconds in 

polymers to 10-13 secs in liquid argon. There are many examples of 

materials which exhibit both elastic and viscous properties depending 

on the time scale, e. g. glass will flow over many years and pitch can 

be shattered by a sharp blow. 

In lmactice the change in amplitude and phase of-Ithe shear 

wave are measured to give the reactive and resistive parts of the 

shear impedance and the absorption and velocity of longitudinal waves 

are measured. From these measurements a shear and volume viscosity 

and the various moduli can be calculated. Results to date have shown 

that if the components of the shear modulus (or reactive and resistive 

parts of the impedance) and bulk modulus are plotted in normalised 

form, they do not fit models of viscoelasticity based upon a single 

relaxation time, however the results can. be described by assuming a 

distribution of relaxation times(9). An empirical model based upon 

the impedance of the viscoelastic fluid being a parallel combination 

of the impedance of a Newtonian liquid and an elastic solid has been 

shown to account for the results for pure liquids(11) but the model 

has to be slightly modified to account for the behaviour of liquid 

mixtures 
(12). 

,A theoretic al treatment by Phillips 
(13) 

gave the same 

equation for the relaxation function as 
. 
developed by Barlow("), this 

treatment vias based on a defect diffusion model which was an extension 
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(14) (15,16,17) 
of Glarum's defect diffusion model . Barlow has shown 

that the compressional or bulk modulus can be treated in the same way 

as the shear modulus, with the assumption that both the volume 

viscosity and relaxing part of the compressional modulus are constant 

multiples of the shear viscosity and shear modulus. 

To date only a few liquids have been studied in detail, the 

results of these studies are given in Tables 1,2 in Appendix I. There 

has been no correlation between the ratio of volume viscosity to shear 

viscosity and molecular structure, but there is'a difference in the 

temperature dependence of this ratio between associated and unassociated 
(18,19) 

structures The unassociated liquids, exhibit a positive slope 

for temperature against coefficient of absorption and a temperature 

dependent ratio of experimental absorption (cL exp) to the classical 

absorption (a, 
C 1). This behaviour is attributed to thermal relaxation 

processes due to temperature changes Ixoduced by the ultrasonic wave 

and these are the predominant mechanisms for volume viscosity in these 

liquids. A temperature independant ratio of a, exp/cLCJ 
lying between 

I and 3 is found in associated liquids. The absorption coefficient 

decreases with increase in temperature as in the 'classical' absorption. 

The mechanism responsible for the volume viscosity in associated 

liquids is closely related to the mechanism for the shear viscosity. 

Structural relaxation processes connected with volume changes among 

different molecular rearrangements. and produced by pressure changes of 

the sound waves are assumed to occur. 

Likewise with the shear modulus no theory or experiment has 

shown any relationship between chemical structure and viscoelastic 

properties for non-polymeric liquids. Initially, Barlow and Lamb(9) 

gave an interpretation in terms of hydrocarbon type and later Hutton( 
20) 

showed that this was an incorrect interpretation. This has been 

confirmed by work on unrelated molecular structures which showed'no 
, (11,21) 

significant*difference in shear properties although impurities 

p 

r 
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in samples can lead to small differences 
(11) 

0 

The liquids so far investigated have either been 'supercooled' 

or have a viscosity about 1Ns m72 at ambient temperature. Super- 

cooling is usually limited to asymmetric molecules (symmetric molecules 

crystallise readily, e. g. benzene crystallises at a much higher 

temperature than toluene). For symmetrical molecules, only translation 

to a suitable site is required whereas for asymmetric molecules, 

translation and rotation of the molecule is usually necessary, the 

latter requiring more energy. I 

In Chapter II the theory of ultrasonic and viscoelastic 

relaxation is discussed and the terminology. used is introduced. The 

relationships between experimentally measured quantities and the 

various moduli are derived. The experimental measurements made and 

apparatus used are described in Chapter III. The viscoelastic 

properties of two bitumen samples have been investigated, the 

experimental results are given in Chapter IV, together with a 

discussion of the results. In Chapter V the results of shear and 

ultrasonic relaxation measurements are given for three Isupercooledl 

liquids at atmospheric and high presoure. The analysis of these results 

to give the ratio of shear to volume viscosity and a discussion of them 

is given in Chapter VI. The above forms the bulk of the work 

presented, however, to take advantage of the high pressure equipment 

two minor pieces of work have been carried out. The first being the 

effect of pressure on a micelle system, the theory and experimental 

resiilts for the work are presented and discussed in Chapter VII; also 

included in this chapter are some shear measurements on a 'liquid 

crystal system'. The second is the effect of pressure on a rotational 

isomerisation equilibrium - conformational analysis, the theory and 

results are presented and discussed in Chapter VIII. Chapter IX is 

devoted to an'assessment of the work and general conclusions. The 

experimental data are given in the app6ndices, appendix numbers 
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correspond with the chapters, i. e. results for Chapter IV are given 

in Appendix IV. 
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CHAPTER 11 

THEORY 
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2.1 Introduction - longitudinal waves. 

From classical theory Stokes 
(5) 

showed that the longitudinal 

sound absorption (a) depends on the shear viscosity (TI. ) by the 

following relationship 

8% Tts f 
3p0 .. 

(2.1) 

where p is the density cf the medium, I 

v is the velocity of sound in the medium, 

f is the frequency of the sound. 

Usually this equation is re-written as follows: 

CL/f 2 7L 'Is 
.. 

(2.2) 
p0 

a/f2 is a constant at a particular temperature for some liquids, e. g. 

water, carbon tetrachloride. The shear viscosity is well Imown and was 

defined by Newton as the ratio of tangential force per unit area (a) to 

the shear rate (5'yt) or rate of strain. This ratio is often constant at 
over a limited range of shear rates and when independant of shear rate 

the fluid is said to behave in a Newtonian manner. The fluids described 

in this work are mainly studied in the non-Newtonian range. In practice 

the measured absorption (cLex) is not equal to the classical absorption 

given by equation (2.1). The difference is caused by volume and 

pressure changes in the fluid, the molecules in the fluid have to flow 

from a more compact to a less compact structure in the direction of the 

motion imposed by the sound wave. A fluid can therefore have a volume 

or bulk viscosity (-0 ) defined as the viscosity of volume flow (Stokes 
v 

assumed -qv = 0). This volume viscosity can arise from structural 

changes and various equilibria. The 'classical' absorption given by 

equation (2.1) is modified to give 

CL = 
2, n 

23 
(4 /3 -n s+ -qV) : C2 

Pv 

Kirchoff showed that a, is also a function of tfie thermal conductivity (K) 
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of the fluid, Qth, absorption due to thermal conductivity is given by 

2, x 
2 (y-1) Kf 

thý pV3 Pp 

where y= 
CP/Cv 

and Cp is specific heat at constant pressure, 

Cv is specific heat at constant volume. 

The contribution to a from Nh is negligible 
. 
for all liquids except 

liquid metals. 

2.2 Propagation of longitudinal waves. 

The amplitude of the waves is small so that heating of the 

liquid is insignificant butlocally there is a significant temperature 

rise in a sound wave to cause chemical reactions to occur. The 

temperature variations are in the region of 0.002 deg. 
(22) 

The wave 

motion is described by the following two dimensional wave equation 

9. 
(2-5) 

where u is the particle displacement in the direction (x) of the wave 

moti on, 

VL is the phase velocity. 

The solution of equation (2-5) is obtained by the method of separation 

of variables and after substitution of the boundary conditions the 

following is obtained, 

u(x, t) = uo exp 
. 

iw(t - 
X/V 

L)+ uol exp iw(t + x/VL) 

uo and uo' are constants, 

w (27cf) is the angular frequency, 

t time. 

The first term represents a wave travelling in the positive x direction 

and the second term a wave travelling in the negative direction, both 

with velocity VV UO I is zero when there is no reflection (which is 

true in the work in thi s thesis) and therefore there is a single 

4 

progressive wave with maximum amplitude U0. This equation (2.6) 
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assumes no attenuation in the medium and has to be modified to account 

for the attenuation. Equations (2-7) and (2.8) give the modified wave 

equation and solution. 

v2au4 13 TIO '8 u 
-8-x, -2 -p -ax- =at 

u(x, t) =u exp iw(t - x( 
'- ýL 

))] 
0V 

L 

a is the longitudinal sound absorption (the subscript L refers to L 

longitudinal sound waves in the remaining chapters this subscript is 

omitted). 
ia. 

L 
-) is the complex velocity V* of the sound wave. VLW 

1-1 ia 
u. 

(2.9) 
V9E -vL- Co 

The wave equation can also be written in the following form 

--* a au 
2' 

P -Ft 2 .. 
(2.10) 

The longitudinal modulus If, a complex quantity, is related to the 

complex velocity 

P (V') 2 

and 141 + iMII .. 
(2.12) 

wh6re M, and M" are the real and imaginary parts of the longitudinal 

modulus respectively. 

By a simple ma thematical. pýocedure from equations (2.9) and 

(2.11) it can be shown that 

24222433 
P?, =P (VII) = P(W VL-QLWVL+i 2p a. LWVL.. (2.13) 

(W2+ (1 L2VL2)2 

2 ýV 
and hence MI PV 

2] 
L 

+'(aLVL 
2]2 
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2PV 2 aV 
L LL 

+ (('Lvb 
2 

.. (2 "1 5) 

We now have the real and imaginary parts of the longitudinal modulus 

in terms of the measured quantities namely aL' VL and w. Singh and 

Mishra 
(23) 

have identified a relationship bet. ween frequency and a/f2 

Iloglo amax/f 2= 
-1-075 logjO f-3.512 1; their findings have been 

confirmed in this work. It is therefore possible to give an estimate 

of the maximum and minimum 
. 

values of 
aLVL/W in the range of frequencies 

aLVL 
used in the present study. ýw ranges from mo4 to 0.060. 

When aLVL/w is small then from equation (2.14) 

2 
MI = PVL M(O) 

(v 
L=v L(o)) 

H(O) is the low-frequency longitudinal modulus. 

If the frequency is greatly increased above the relaxation frequency 

then 
aLVL/W 

will again be small and 

MI = PVL 
2= MH 

(v 
L ý-- v L(-)) 

M(cý-) is the longitudinal modulus at infinite frequency. 

M" in both the above conditions becomes very small and M" goes through 

a maximum as the frequency is increased from a low to a high value. 

In viscous liquids (71, (Oý > 100 Ns m72 ) it is experimentally 

difficult to measuire the absorption coefficient and velocity directly. 

Reflection techniques are then used to measure the impedance of the 

liquid. The longitudinal impedance (Z 
I) is the ratio of force to 

particle velocity and is related to the complex velocity by the 

following 

ZL=RL+ ix L= PýL K 
.. 

(2.18) 

0 

where RL '8* the real or resisti-ve part of the impedance,. 
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and XL is the imaginary or reactive part of the impe, dance. 

From e. quation (2.9) then 

ia 
zi- 7)-l 

Lp( VL 

and at high frequency the equation reduces to 

zL (-) =R L(-) = PVL(-) XL =0.. (2.20) 

the velocity is obtained from the impedance and the density. ' 

To complete the relationships, from equations (2.11) and 

(2.18) 

zL2 (R 
L+ ix L) 

pp 

RL2xL2 
and Ml =-v p 

.. 
(2.21) 

Mit = 

2R 

pXL.. 
(2.22) 

2.3 Viscoelastic Response. 

When a solid is subjected to a shear stress (6) it experiences 

a shear strain (y) and the ratio of these two quantities is the shear 
A 

modulus (G) 
. 

cr = Gy .. 
(2.23) 

A liquid responds to a shear stress by flowing and the relative motion 

bf the different layers of the flowing liquid leads to a resistance to 

the flow and energy is dissipated, the liquid is said to exhibit 

viscosity and obey Fewton's law 

ay 
at .. 

(2.24) 

Deviations from these ideal Hookean and Newtonian behaviour occur and 

the material is then said to be viscoelastic. A shear stress is 

produced in a liquid by shear waves and unlike longitudinal waves no 

volume or temperature change takes place, the temperature rise resulting 

fr om viscous flow appears as a random increase in the translational 
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energy of the molecules, therefore any temperature sensitive equilibria 

will not be affected by the shear wave. Shear waves can be used to 

study molecular diffusional motion in the medium and will not be 

complicated by other relaxation processes. 

2.4 Propagation of shear waves. 

The amplitude of the shear wave is small so that heating of 

the liquid. is insignificant and only the linear viscoelastic response 

is determined, higher orders can be neglected. When shear waves are 

propagated into a medium the displacement of the particles in the 

medium is perpendicular to the direction of motijn. Using normal 

Cartesian co-ordinates the x axis gives the direction of propagation 

and the displacement is in the z direction. The shear stress (Cf 
xz 

) is 

given by equation (2.23) and the strain y= 
au /az, where u is the 

particle displacement in the z direction. For a unit volume the 

driving force is the Froduct of mass and acceleration giving 

82 u 
66 

xz 
72 az *. 

(2.25) 

Differentiation of equation (2.23) with respect to the z direction and 

after substitution of y we have 

.. 
(2.26) -Ft 12 "" 2 -a-Z7 

(This equation is analogous to (2.16)for longitudinal waves). The 

solution of (2.26) is given by the method of sepa3ýation of variables 

u(z, t) u exp 
[iw (t 

-z 
(I 

- 
las 

.. 
(2.27) 

0 vs w 

where u is the initial value of u, 

.Vs 
and a. s 

are the velocity and absorption coefficient of the 

shear wave respectively, 

w (= 2nf) is the angular' frequency. 
q 

The- complex shear velocity (V*) iEr given by 
S 

It 
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v ;c=[1- 
ias] -1 

.. 
(2.28) 

sv (o 

and (Vs") 2Gx /P 
oo(2.29) 

G -N is the frequency dependant complex shear modulus. 

GX= G'. + iGI, **(2-30) 

where GI is the real part and is described as storage modulus and G" 

is the imaginary or loss modulus. Experimentally the complex shear 

impedance (Z 
s) 

is measured which is defined as the negative ratio of 

shear stress to particle velocity. 

R+ ilý =- oxz/(, U/at) - 

where Rs is the real or resistive part of Z. 

and X is the imaginary or reactive part of Z 
8s 

Substitution for 6 
xz 

from (2.23) gives 

Z8 -G" ('u/6z)/('u/at) 

-G 
V. a z/at GX/Vs V. 

and substitution for VS -x from (2.29) gives 

2 z8= PG 

Equating real and imaginary parts of (2-34) we have 

GI Rs 2_ 
xs 

2 

P 

2R X 
G" s 

P 

2 PG, 
or R+ (GII 

82[ 

(1 

GI 

x2 PGI 
+ (G 11 

2 GI 

.. 
(2.31) 

.. 
(2-32) 

*. 
(2-33) 

.. 
(2-34) 

.. 
(2-35) 

.. 
(2-36) 

9. 
(2-37) 

.. 
(2.38) 
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Two other complex quantities can be defined namely, complex viscosity 

. ns; 
g 

= . 9s iOs G/iw *. 
(2.39) 

where list = GII/w and T1,11 = GI/w o. 
(2-40) 

and complex compliance J /G -H 

iR= ji - ijil 

giving 

ji =2 
GI 

2 jil -2 
G" 

GI + G" GI + G" 

.. 
(2.41) 

.. 
(2-42) 

In the Newtonian limit Gt 0 by definition T)" =0 and P=0 

2R X 
but G" ="=ss sp 

and since GI = 0, R (0) 2=X (0) 2. 
ss 

Then R(O) =X(O) =ýWns(o)p 
2 

.. 
(2-43) 

ss ý7 -2 

) 

R8 (o), )cs(o) in equation (2-43) are the Newtonian values and 

z Ci + i) .. 
(2-44) 

Newtonian ": sp 

The absorption coefficient (a, for a Newtonian and velocity (V 
8 

liquid can be obtained in terms of density, viscosity and angular 

frequency from (2.28), (2.29) and (2-33). 

VS = 
(2 ac r Is and CL 

P (2 45) 
P 

)z 

s -gs 2) 

0 

It can be seen that the absorption coefficient is extremely large, for 

water at 298.2 K and w= 27c 10 6s -I 

CLS 
.=1. 

'B x 10 6 
ne per sm- 

giving a skin depth 1/cLs 
= 5.6 x 10-7 M. 

For a perfect Hookean solid where T11 =0 by definition G" =0 and J11 0. 

GI is qqual to the shear modulus and 
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Rs = (P G x) 
ý 

xs =0 @a(2-46) 

H G= G(o-) the shear modulus at infinite frequency 

and V oo(2-47) 

2.5 The relationship of longitudinal modulus to shear modulus. 

Both the complex longitudinal modulus and complex shear 

modulus are frequency dependant and can therefore-be written O(w) and 

G'x(w) respectively. The longitudinal modulus is a linear combination 

of the shear modulus and the bulk modulus K*(w), which is also complex, 

M 91 (W) = K'(W) +4 /3 Gx(w) .. (2.48) 

and OW 
=KI (w) + K" (w) 

where KI(w) is the real part of the bulk modulus and K"(, ) is the 

imaginary part. O(w) cannot be obtained by experiment and therefore 

is obtained by the above relationship. 

K'(W) + 
4/3 

GI(w) + i(KII(w) + 
4/3 

GII(w)) .. 
(2-49) 

separating into real and imaginary paTts gives 

MI(w) = KIM + 
4/3 GI(w) .. 

(2-50) 

and 1411(w) = Y", (W) +4 /3 G 11 (w) 
.. 

(2-51) 

At low frequencies (Newtonian liquids) GI(O) =0. 

MI W= M(O) 
M(O) = KI (0) = K(O) .. 

(2-52) 

where K(o) is the low f: pequency bulk modulus. 

At high frequency Mt(w) becomes m(-) and ITI(w) = 0. 

Then M(-) = K(9) + Kl(-) + 
4/3 G(-) **(2-53) 

Kf(-) = (Kca 
- Kd is the relaxing part of the bulk modulus and is 

usually denoted by K 2* 

Relationship of viscosities. 

Prom equation (2.39) 

G -X = 1"s K 



19 

and by using a similar approach to that used for shear waves it can be 

shown that 

D? = iWq 
L, *. 

(2-54) 

where n His the complex longitudinal viscosity. L 
Substitution of (2.39) and (2-54) into (2-48) gives 

:A= OW + 
4/3 i" K. 

*9(2-55) 3'"L 
s 

Rearranging equation (2-55) gives 

iw(n Lx_4 
/3 K 

.. 
(2-56) 

and TIV 
K= 

T)L gE 
_4 13 rIS" *. 

(2-57) 

where TIV A is the complex bulk viscosity. 

From (2-56) and (2-57) 

K CO) I"V 

2.6 Models of viscoelastic liquids. 

2.6.1 Maxwell model. 

The simplest model was formulated by Maxwell and is given by 

the addition of the compliances of the two elements (elastic and 

viscous) of the fluid. The total strain rate (a-r) is given by at 

ay ad 16*. (2-59) 5-t ý-- Tt -G(c7a, + TT-(70 
s 

dr alternatively, 

ay 1 66 1 *6 
.. 

(2.60) 
at -G (-) Tt + --G- 

=7 -um 

where rm is the Maxwell relaxation time, a single relaxation time. By 

a suitable choice of boundary conditions this equation reduces to 

either Hookes Law or Newtons Law. 

If the strain and stress are sinusoidal then 

y= YO exp (icot) 
*. 

(2.61) 

=60 exp (iw! ) 
.. 

(2.62) 
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Differentiation with respect to t of (2.61), and (2.62) and substitution 

into (2.60) gives 

6 iwrmd = iwTýG(-) .. 
(2.63) 

and (5 
i(A), r mG 

.. 
(2.64) 

y+ iwv In 

The complex shear modulus (G K=6 /y) can be separated into 

the real and imaginary parts giving, from equation (2.64), 

G(-) w Tm G(-) w Tm 
GI 22 GII 22.. 

(2.65) 
+w 'rm 0+w 'r M 

or the viscosities from equation (2-40) can -be given by 

G (-) rm G (-) wr2 
718 

+w2 Tm 
2) TIS 

+w2 'r 

m2 
oo(2.66) 

m 

R8 and Xs are then given from equations (2-37), (2-38) and (2.65). 

221-I 

R 
(WT 

m+ WT m+ 
(on 

M) 
2 

(2.67) 
2 ((Or 

m 
)2 

2+ 
Wr m+ 

(unm) 2)1 ]12 

and Xs (PG(-)) 2[2]e* (2.68) 

The usual quantities plotted are RS &G(oo)) and X8 I(PG(-))l 

against a reduced frequency (wr. ) (where r. = ijs(O)/G(-)) (GIIG(-), 

GIIIG(-) and T). I/T),, (O) are occasionally plotted against wr 
M) 

The Maxwell model predicts that the viscoelastic region 

(defined as the region in which GI/C- varies from 0.05 to 0.95) extends 

over two decades of reduced frequency (wnm). However, fcr most liquids 

studied the region extends over four or more decades, but Mikhailov(24) 

suggests that soyabean and cotton-seed oils have a single relaxation. 

The behaviour of the viscoelastic fluids cannot be character.: - 

ised. by a single relaxation time but by a distribution of relaxation 
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times(9) and equation (2.64) 'is then written as follows 

NGi iw(, Vm) 
G'(w) =T.. (2.69) 

j=i I+ iw(. r m 
)j 

where G0 is the contribution of the j th 
process to G(-) and (, r. ) i is 

its relaxation time. In the limiting condition of a continuous 

distribution of relaxation times the summation may be replaced by an 

integral 
Co 

G(C0) drm u. 
(2-70) 

11+ 

iwrj� 
0 

where g(, r- ) represents the distribution of rplaxation times and G(-o) 
M 

gT M 
dT 

M 
is the contribution to G(') from those processes whiýh have 

relaxation times in the interval Tm to Tm + dTm. 

2.6.2 -The Barlow, Erginsav and Lamb (B. E. L. ) model. 

Barlow, Erginsav and Lamb(")'found that their data for pure 

liquids could be fitted within experimental error to a model based on 

a parallel combination of the shear impedances of a Newtonian liquid 

and a Hookean solid (Z 
H) as follows 

z ZN zH 

where Z is the impedance of the viscoelastic fluid. 

Substituting for ZN and ZH from (2-44) and (2-46) 

111 
*o(2-72) z- (i + i) (nfT)SPI2 PGo-a-ý2 

rearranging then gives 

.. 
(2-73) 

The usual f orm of the model is written in terms of the compliance J3%w) 

6 

ip1 
[1 

+1+ (2 ý%Co) 
ýZ2 -- G(--) iwr 

I-- 

. 74) 
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Comparing equation (2.74) with (2.64) for the Maxwell model we see 

there is an additional term, 2/G(-)(iwr)2, I 

Separating equation (2-74) into real and imaginary parts and 
;E 

equating to J= JI - iJII gives 

J1 +11 (2-75) 
G 

and JI, (112 w-c) oo(2-76) 

Although the experimental results for fairly pure compounds fitted 

this model, it was not consistent with binary mixtures 
(12) 

, the 

deviations were found to be greatest when the components of the mixture 

differed significantly in molecular weight. In order to describe these 

results an empirical modification was made by multiplying the additional 

term by a parameter (k) in equation (2.74), which becomes 

JR + 
2k (2.77) 

iwr ,-( ý2 iwT) 

k is a measure of the width of the distribution times, the larger k 

values corresponding to a wider distribution. k=1 corresponds to tho 

original B. B. L. model and k=0 to the Maxwell model. The same results 

are plotted as for the Maxwell model, namely R, 1(PC-)' and X 
S/(PG-), 

against wT. The following relationships are obtained from (2-42), 

(2.75) and (2-76) 

+1k 
G (12 

G700 
+ 

(2-78) 

+ (I 
k2-+( 

ýk 
]2 

V2 cor) 2 Q), r WTTi 

1k 
G 112 

.. 
(2-79) 

G+k2++k 

2]2 02 112 

6 
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R JtG(-) 21 
2+ 

(2.80) 
TT T ý- 2] 2J G-) + (J"G-) 

XS 
2 

JIG- 2 
-1.. 

(2.81) 
ýG (j G. ). 

2 
+ 2 (J"G-) 

ý 

or alternatively 

Rs0 2ý1) 
11+ 2wv)3 

o. 
(2.82) -PG 7coT 2 

+( LE + 

x 
s 

.. 
(2.83) 

+ 2)2]2 + 2. 2) 

In all the above equations T may be replaced by r) s 
(O)IG(-) 

. 

The model, which predicts a behaviour in cyclic shear in agreement 

with experimental results over the frequencies and temperatures 

employed, does not explain satisfactorily the creep behaviour 
(12) 

, it 

leads to the prediction of unlimited creep strain which is physically 

unrealistic, i. e. the delayed elastic strain increases indefinitely as 

t This defect with the model led the authors to look deeper into 

the ill-defined region between Newtonian behaviour and the onset of 
(25,26) 

the viscoelastic relaxation region . From these measurements a 

new model was Iroposed giving the following equation which is analogous 

to an equation used by Davidson and Cole 
(27) 

in dielectric studies. 

J'(W) J(-) +-1r i G-ýj s, 
(1 + iwc 

r 

where ir is the retardation compliance which represents the delayed 

storage of energy under stress through reorientational changes; 'r r 
is the retardation time and P is an adjustable parameter similar to 

that used by Davidson and Cole f. or'dielectric relaxation in supercooled 

liquids. The complex retardati-onal compliance Jr 3%w) is given by the 
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following expression 

i 
r 

.. 
(2.85) 

+ iw-T-r-7p 12 

where J1(w) and J 2( w) are the real and imaginary parts of the complex 

retardational compliance. J1(w) and J 2(w) c, an be calculated from the 

measured quantities by the following, equations 

il (w) = 
P(R 

s2_ 
XS 

2)- 

(R 
s2 

xs 
2 

and j 2( W) ' 
2P RsX9-. L 

(R 
s+x Sý) 

2 "S 

The B. E. L. model has been used to describe volume - 

relaxations 
(15,16,28) 

, the equations are similar to those for shear 

relaxation and are given by the following: 

+II 
.. 

(2.88) 
K2 2+ 

l12 
W, rv 'uv) ý2T 

7772 
WTV 

V) 
Kit 2 
K1 ]2, 

+[ 1]2 2++v 
L WTV 

where -T v 
is the volume relaxation time (= T)v/K 

2) * i1v is not obtainable 

directly by experiment and therefore KI /K2 and/or K "/K 2 are plotted 

against the reduced frequency " 
s(O)IK2 

[or ", (O)/G(co) if K2 is not 

available]. The shape of these curves is identical to those obtained 

from plotting GIIG(. ) and GIIIG(-) against reduced frequency, but they 

are usually shifted along the reduced frequency axis. If the 

4 

assumption is made that Tj s 
is a constant multiple of TIV and G(-) is a 

constant multiple of K 2' the amount Of. shift will give Tj vG 
(00)/nsK2 or 
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if K2= G(, *) it will give 

2.7 The method of reduced variables. 

It was stated in the previous sections that the liquids to be 

investigated have a distribution of relaxation times extending over 

thre*e'to four, decades of frequency. Therefore, with the experimental 

techniques available (less than two decades of frequency can be obtained) 

it would not be possible to study the complete relaxation. This 

disadvantage is overcome by varying the temperature (or pressure) and 

using Time Temperature (pressure) Superposition - effectively altering 

G(-) and Tl, (O) of the liquid. The viscosity, which changes far more 

rapidly with temperature and pressure than G. (-), must be changed by 

at least four decades. Lamb 
(29) 

gives the characteristic frequency 

corresponding to cL), r m=1 
as 0.8/T,, (O) (GHz) and therefore liquids with 

-2 a viscosity of about 10 Nsm are used. The method of reduced 

variables does not apply across a first order phase change and therefore 

the 'liquid' should remain in the liquid state until a viscosity ofý 

105 Ns m72 is rea6hed and preferably-reach the glass transition 

temperature or pressure before crystallisation takes place. 

It is assumed that changes in temperature (or pressure) 

affect all relaxation frequencies by the same factor (a 
r 

). Now if two 

experiments are carried out at the same frequency but at different 

temperatures, T1 and T 2' then the relaxation times (assumed single 

relaxation) 9r and r can be related as follows: Ti T2' 

IV T2 ar 'r TI .. 
(2.90) 

and G(-) T2=b G(-) T 

where ar and br depend on "'T2 P Ir Tj and G (911) T2, G(oo) T1 respectively. 

The ratio of viscosities (T)s)Tj : (71s)T2 at these two temperatures 

can be obtaine. d as follows: 

(TIs) 
T2 ý- 'r. T2 

G (co )T2 



26 

=rbrG (00) 
T, 'ýTj 

=rbr (ns)Tl 
.. 

(2.92) 

I 
From (2.92) the ratio of the steady flow viscosity at two temperatures 

(9) 
will give the product arbr, br is usually close to unity Hence, 

if (T's) 
T2/(T)s) Ti z 104, the effective frequency arW $3 104 w. This 

method has been used widely to extend the frequency range of various 

techniques. 

2.8 Summary of important equations. 

K"E(w) + 
4/3 G3c(w) .. 

(2-48) 

R8 (0) =X S(O) = (0-5 "s(O)P) 
' 

*9(2-43) 

R (-0) F)d (00) )1.. (2-46) 

22 GRS-xs Vp 
.. 

(2-35) 

G 2R 
sxs/p . 

(2-36) 

? is G **(2-40) 

? is (W) Gl/w .. 
(2-40) 

GO =- 
it 

.. 
(2-42) 

j, 2 + jl, 2 

G" = 
jil 

.. 
(2-42) 

j12 + j,, 2 

For B. E. L. model 

J1 
11+ 

G 
1 
WT e. 

(2-75) 

and jil + Tý) (2-76) 

0) IG 

M(O) = K(O) = P(v L 
(0) )2 

.. 
(2.16) (2.52) 

p(V L 
(. )) 2 

0 
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.. 
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EXPERIMENTAL TECHNIQUES 
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3.1 Generation of longitudinal and shear waves of ultrasonic frequency. 

The required frequencies can be generated by using piezo-. 

electric crystals, these are unsymmetric crystals. Quartz, which is 

the most well known and belongs to the trigonal crystallographic system, 

is particularly suited for this type of work; it is inert and has a 

very high melting point (- 1500 K). Whether longitudinal or shear 

waves are produced depends on the way the crystal is cut. X-cut 

crystals with faces parallel to each other and normal to the X-axis 

are used to generate longitudinal waves and AT-cut crystals which are 

Y-cut rotated about the X-axis to make an angle of 49 0 with the Z-axis 

are used to generate shear waves. When these crystals (or transducers) 

are metal plated (gold or silver with resistance <'Jon) on opposite 

parallel faces and an alternating voltage of frequency (f) applied 

across, the crystal will vibrate at this frequency. The oscillations 

will be of small amplitude unless f coincides with the natural, frequency 

of the quartz transducer, the amplitude will then increase giving the 

most efficient conversion of electrical to-mechanical energy. This is 

known as the fundamental frequency of the transducer, the thickness of 

the transducer required is calculated from the f ormula given by Mason 
(30) 

t= -1- 

E66 

Tf p 

Where t= thicImess (m) C1 66 = elastic c. onstant (N m72) 

f= frequency (Hz) 

p= density (Kg m73) 

Por longitudinal waves of 5 MHz fundamental frequency t10.5 mm, and 

for shear waves of 6 M]Iz fundamental frequency tN0.3 mm- If the 

electrical frequency is equal to (2n + 1)f (i. e. odd harmonic of the 

fundamental frequency) the amplitude is high but as n increases the 

amplitude decreases, n is usually less than ten giving a frequency 

range of less than two decades. The transducers, which are usually 

circular or rectangular plates, must have parallel faces (parallel to 



6 seconds of arc) and be flat to ý'/8 (of sodium light). It is 

necessary to mount these transducers on to quartz bars (delay lines) 

their main use being to delay the signal thereby allowing the 

transmitted and detected signal to be separated in time. The 

transducer is attached to the delay line by some bonding agent, this 
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agent should transmit the m"echanical. vibrations with no attenuation, 

it should be thin, homogeneous and must be capable of Iwoducing a 

parallel film so that the transducer and face of the delay line will 

be parallel to each other. * Many materials have. been used in the past 

but the best to date is indium, the whole process is carried out under 

vacuum (Gooch and Housego - Ilminster) . This bond has* reproducible 

properties and is suitable for use at high pressures (700 M m72). 

3.2 Real and imaginary parts of the shear mechanical impedance. 

In principle the components of the complex shear modulus can 

be obtained from measurements of the velocity and attenuation of plane 

shear waves propagated t1wough a liquid, but experimentally this 'is not 

feasible because of the very high attenuation of shear waves at these 

frequencies. The technique used is to measure the complex reflection 

X 
coefficient R 

ZFS - ZQS 

z FS +z QS 

3.2.1 Theory 

The theory has been developed by O'Neil(31). For a wave 

propagating through the solid at angle of incidence ý some of the wave 

is reflected at an angle ý and some is refracted into the liquid at an 

angle If the interface lies in the plane y=0 then the particles 

in both media move parallel to the Z direction with velocities given 

by the following equations: 

W1 =W0 e- 
FQ (x Sin-O +y Cos 0) 

wWe 1ý' e-r'F 
(x- sin +. y Cos 

20 
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Iwe Rx e-rQ 
(x Sin ý-y cos 0) 

where W1 is the velocity of particles for the incident wave, 

W2 if It it 11 It it 11 refracted wave, 

W3 it it It 11 11 It reflected wave, 

W when X=0, 

is a propagation constant iWP/z 

suffixes F and Q refer to liquid and fused quartz respectively, 

U? E is a transmission factor, 

R-N is a reflection constant. 

Equation (3-4) is only valid if the attenuation in tho liquid 

is much greater than that in the solid. This is true for shear waves 

refracted at a quartz/liquid interface. 

Using the assumption that at the interface there is no slip 

and the shear stress (cF = ZW) suffers no change across the interface 

we have 

WW2+W3.. (3.6) 

and a **(3.7) 'ý1'1 + '03 2- 

Rewritting equation (3.7) in terms of the impedance and particle 

velocities from equations (3.3), (3-4) and (3.5) gives the following 

equation 

z QS 
(1 + R; K) Cos 0=Z 

FS T -H Cos ý 
.. 

(3.8) 

where suffix S refers to shear waves. 

XH Since T=1-R the n 

z FS =z 
QS 

(1 +R Cos 
oo(3-9) (I - Rý) Cos ý 

If the liquid is replaced by a vacuum or rarefied gas the refracted 

wave will not exist and the reflection factor is equal to -1 . Now R -X 

is a complex quantity and can be written as follows: 

RR 9-0-10) 
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where R is the relative reduction in amplitude and (7r+O) is the total 

phase change, x due to the phase change at the interface and 49 due -to 

applying the liquid. By substituting equation (3-10) into equation 

(3.9) and rearranging we have 

1; 
17 

Cos 1-R2+2iR Sin e 
ZF3 "ý' -Q, 9 Cos ý1 

+R 
242RC 

os 15 

(Z 
Fs " 0.1 Z Qs) 

Cos ý can be put equal to unity and since 0 is less than 50 Cos 0 can 

also be put equal to unity. Then equating real and imaginary parts of 

equation (3-11) gives: 

I 
R ZQS Cos 01R 

FS 1 +R 

where R 
FS 

is the real part of ZFS 

and 
I os 0 2R Sin 4) X'ý' = ZQS ' 

(1 +R2 

To simplify the calculations in terms of the measured 

quantities dB and e we define two quantities C and Q where 

dB 1-R 
and 

2R 
c1 +R (1 + R)' .. 

(. 14) 

and dB = 20 log, 0 R. 

C and Q have been calculated for various values of dB(32,33). 0 is 

small and cannot be measured accurately when 0 (normal incidence 

technique), 'however the sensitivity can be increased if the angle of 

incidence (ý) is increased. U= 770 381 for inclined incidence). 

At pressures greater than atmospheric pressure a reference 

fluid other than air has to be chosen. For' normal incidence Cos 0 can 

be put equal to unity and then from equation (3-9) 

Z FS +Z QS 

for. amplitude ratio from air to liquid and 



RK=Z TS Z QS 
RZ 

TS +Z QS 

for amplitude ratio from air to reference liquid, where the suffix T 

refers to the reference liquid. 

The n R' ZFS "E 

U -H = TF 
S R" 

Rearranging and putting RR E 

z Qs- z TS z QS 
+Zz+Z QS TS QS 

RR 

then z 
[z 

QS 
(1 RR+Z TS 

(1 +R R) ZRS 
Qs z QS 

(i + RR) + ZTS (1- RR) 

where dB = 20 log 10 RR, and 

(0.5 Pw T)s(O)) (3-19) 

The reference liquid is chosen to behave as a Newtonian 

liquid throughout the experimental range. 

The experimeýnts yield values of dB and 0, Z 
QS, 

Z 
RS and ý are 

known, hence RFS and XFq can be calculated at atmospheric pressure and 

R 
FS at pressures greater than atmoppheric. 

3.2.2 Measurement of amplitude change for R 
FS* 

The shear waves produced by the transducer (diameter 12.5 mm) 

travel down the delay line (length 50 mm, diameter 15 mm). They are 

reflected normally from the end face and travel back to the transducer 

where they are detected. The shear waves are produced in pulses at 

intervals of 20 ms and the pulse duration which can be varied from 2 to 

10 ps is shorter than the time taken to travel twice through the delay 

line; the transducer is then quiescent and acts as a receiver for the 

returning pulse', part of the returning pulse is reflected and will 

travel up and down the delay line*many times with ever-decreasing 

amplitude. There will be a train of reflected pulses (echoes) of 

decreasing amplitude displayed on týe o. scilloscope. The amplitude of 

these eýhoes is measured by using a comparizon pulse. This comparison 

33 
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pulse is produced by a comparison oscillator of the same frequency but 

is pulsed a short time after the main transmitter pulse. The comparison 

pulse, which can be made equal in duration to the sample pulses, is 

passed t1hrough a calibrated piston attenuator which is used to adjust 

the comparison pulse amplitude; the position of the comparison pulse 

on the oscilloscope screen can be altered so that it can be placed side 

by side with each echo in turn. A set of readings is obtained of pulse 

amplitudes up to the n 
th 

reflection. After applying a. liquid to the end 

of the delay line the reduced pulse amplitudes are measured. The 

difference in amplitude, which is obtained from the difference of the 

two measurements, is plotted against reflection number, the gradient 

of the graph then gives the amplitude per reflection (A). The amplitude, 

which is measured in terms of a change of distance between the coils in 

the attenuator, must be converted to dB. This is achieved by multiplying 

A by the piston attenuator constant which is -obtained from the geometry 

of the attenuator (1 
. 675 dB mm7l). 

For measurements at atmospheric pressure air is used for the 

first measurements. However, at higher pressures air cannot be used, 

therefore some suitable fluid has to be chosen; the fluid should have 

a low viscosity (< 10-2 Ns m-2 ) and be liquid over the pressure range 

up to 700 EN m7 
2 

and temperature range down to 243 K. The fluid used 

is isopentane (99% ex. B. D. H. ), the viscosity and density have been 
(34) 

determined over the*pressure and temperature ranges by Bridgeman 

The data have been fitted to the Roelands equation for viscosity and 
(35) 

linear secant modulus equation fcr density by Phillips Bridgeman's 
(36) 

data has recently been confirmed by Houck The shear impedance of 

isopentane is obtained from equation 

3.2.3 Measurement of phase change for X-- S, 

, 
Phase chanae measurements are possible only at atmospheric 

pressuiýe bec. ause no suitable apparalus has yet been designed for use at 

6 

high Iz; essure. Two idontical. transducers (19 mm x 12.5 =) and quartz 
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bars (see diagram ý. 2 for details) are required. The two quartz bars 

are initially free of liquid. The signal from the reference bar is. 

passed through a variable'delay line and variable piston attenuator and 

adjusted to be equal in amplitude and opposite in phase with the signal 

from the test bar. The two signals are derived from the same source, 

therefore they are coherent and able-to interfere destructively when 

brought together in the receiver. After cancellation of the first echo, 

the reading of the variable delay line is noted and the Irocedure 

repeated for each echo. The liquid from the trough is applied to the 

test bar and again the cancellation procedure carried out. The 

difference between the two readings is then plotted against reflection 

number (only even reflections are obtained) and the gradient gives the 

length of delay line ýar reflection. The variable delay line consists 

of fixed lengths of coaxial cable and a telescopic line for fine 

adjustment. The conversion of length of delay line (L) into phase 

change (49) is given by: 

0-0818 P. L where f in NHz @. 
(3.20) 

L in cm 
0 in degrees 

XFS is calculated from equation 

The frequency is measured by adding a sii9nal from a standard 

signal generator (Marconi Inst. Ltd. No. TF 1444/4) which can be varied 

until the condition of zero beating with the reference pulse is 

obtained, this standard signal is measured on a frequency meter 

(A. M. F. Venner, model 7736). 

3.2.4 Apparatus. 

The shear relaxation spectrometer is based on apparatus 

developed by Mason and McSkimin(8) and refined by Barlow and Lamb(9)9 

a block diagram is shown in Figure 3.1. The dotted parts are not 

required for amplitude measurements and the sample trapezium bar used 

for. inclined incidence measurements is replaced by a cylindrical bar 
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for normal incidence. The spectrometer operates at four frequencies, 

the fundamental 6 NHz and three odd harmonics (18,30 and 78 PffIz) - 

The apparatus has been descri . bed in general by Powell 
(28) 

and in detail 

(33) 
by Barlow and Subramanian Both the. atmospheric and high pressure 

(28) 
normal incidence cells have been described in detail by Powell 

The inclined incidence cell is shown in Figure 3.2, the two identical 

quartz bars are side by side but separated by a metal partition, the 

quartz transducers are bonded to the end of each bar and electrically 

connected to the spectrometer via coaxial cable taken through a metal 

tube. Above the test bar is a trough which can be rotated from outside 

the vessel, the trough is filled with liquid and after the initial 

measurements is rotated to allow the liquid to flow over the surface of 

the bar. The whole apparatus is fitted into a glass-fronted sealed 

container which can be immersed in a bath and brought to the required 

temperature. 

3.2.5 Sampling technique. 

Normal incidence, at temperatures at which the test liquid 

flowed readily (viscosity< 10 Ns m7 
2) the liquid was placed in the 

bottom of the tube and after the initial measurements the tube was 

tilted and the delay line pushed into the liquid. The tube was returned 

to-its initial pos: Ltion and the second measurements taken. With 

increasing viscosity o' 102Ns m7 
2) this technique became unusable 

because it was not possible to pus4 the d9lay line or bar into the 

liquid so that the surface of the bar was completely covered by the 

liquid. Other techniques were tried, unsuccessfully, but finally a 

technique was used which seemed to overcome the difficulty of keeping 

out moisture and ensuring the end of the bar was covered with liquid. 

The holder for the quartz bar and transducer was bent to form a 

and sellotape was placed around the free end of the bar extending about 

0.01 m above the bar. A piece of sellotape was placed over the top of 

the first pi-ece of sellotape, thus sealing the face of the bar from the 
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atmosphere. The holder containing the quartz bar was placed in a sealed 

glass tube containing molecular sieve to absorb any moisture present. 

After the initial measurements the warmed liquid was injected by a 

syringe or pasteur pipette through the sellotape on to the face of the 

bar. The final measurements were taken after allowing time for the 

liquid to reach the temperature of the bath. 

Inclined incidence: - The apparatus was designed for liquids 

which flowed easily and therefore could be poured from the trough onto 

the bar. If this technique was not possible then the apparatus had to 

be removed from the bath, opened and the warmed liquid poured onto the 

bar, and then placed back in the bath and re-establish the initial 

conditions. An initial. experiment showed that the initial conditions 

could be re-established, i. e. the first and second measurements'concurred. 

This technique was used once for a bitumen sample. 

3.2.6 Accuracy. 

The accuracy of the technique depends to a great extent on the 

stability of temperature, pressure and electronics of the instrument. 

At atmospheric pressure they can be made stable over the period of 

measurement, but at higher pressures where longer times are required 

stability can be a problem. The measurements are checked by re-establish- 

ing some reference condition after making a deliberate change; if these 

measurements do not agree the experiment is repeated. The amplitude 

changes can be measured to 1 0.05 dB in the range 1 to 3 dBs for low 

attenuation, i. e. at 6 to 30 MIz. At 78 MHz the attenuation is high 

and leadp to larger errors in measurement, frequently less than three 

echoes can be measured. Results at the low frequencies are better than 

t 5% but 'at 78 MIz they are less accurate. Phase change measurements 

can be made to 0.5 cm of delay line cable leading to an error in 0 of 

0.0550 in 30 to 50 at 6 MIz and 0.71 0 at 78 14Hz. 
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3.3 The measurement of the sound absorption coefficient (cL). 

3.3.1 Theory. 

The absorption coefficient is the absorption of sound per 

unit distance, the usual units are nepers per meter. The amplitude 

(A) of the attenuated wave is related to a by the following equation 

A=A0 exp 
[- 

CM + iW (t - xv- .. 
(3.21) 

where A0 is the amplitude of the unattenuated sound wave, 

x- is the acoustic path length, 

w is the angular frequency of the sound wave 2nf, 

V is the phase velocity of the sound wave in the liquid. 

Experimentally changes of path length can be measured with 

greater accuracy than absolute values of path length, therefore by 

measuring the amplitude at two path lengths the difference between the 

two being known, A0 can be eliminated. 

Taking the real part of equation (3.21) we have 

In 
A1 

CLX .. 
(3.22) 

A 
0 

where x is the first path length, and 1 

In 
A2 

aX2 *. 
(3.23) 

0 

where x2 is the second path length. 

Eliminating A0 between (3.22) and (3.23) gives 

In 
A, 

CL 9-0.24) 
(x2-x1 

A2 

A plot of amplitude versus path length will then give a (slope 

of the graph). cL is usually measured in decibels but is converted to 

ne pers by the following relationship, Neper = dB/8.686. 

3.3'. 2 Apparatus. 

(37) The apparatus is a modified design of Andreae et al and 

is base*d on the pulse technique developed by Pellam and Galt(7). A 
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block diagram of the apparatus is shown in Figure (3-3). Two cells 

are used with the apparatus (a) atmospheric cell and (b) high pressure 
(28) 

acoustic absorptiometer. Both cells have been fully described 

Some small modifications were made to the high pressure cell for ease 

of handling. The jack plug was chýnged to one identical in design to 

that of the viscometer so avoiding the necessity of breaking electrical 

connections when interchanging the viscometer and absorptiometer. Also 

to avoid breaking electrical connections the floating piston was held 

in place by two special screws inserted through the jack plug. 

The apparatus operates at a fundamental frequency of 5 MlIz 

and the following odd haromincs; 15,25,35,55 and 75 MHz. There is 

also a comparison channel for each frequency. The launching transducer 

(atmospheric cell 15.5'mm. diameter, high pressure cell 12.5 mm diameter) 

in both cells is bonded to the fixed delay line. It is pulsed at 

intervals of 4 ms with a pulse duration of 2-10 ps, this is less than 
I the time (- 50 ps) required to travel through the fixed delay line, 

liquid and movable delay line onto which is bonded the receiving 

transducer (15.5 mm diameter). The signal is detected by this trans- 

ducer, amplified, demodulated and finally displayed on the oscilloscope 

screen, together with the delayed comparison pulse. It is extremely 

important for the yroduction of a good signal that the faces of the 

two delay lines should be parallel to each other, the atmospheric cell 

is designed so that this can be achieved easily, the high pressure cell 

has been designed so that the faces are parallel. 

3.3.3 Pbasurement. 

The amplitude of the first echo, which must be free from any 

beating with other echoes, is measured by adjusting the amplitude of 

the comparison pulse until equal in amplitude to the first echo. (In 

the atmospheric pressure cell the comparison pulse is placed adjacent 

to the. first echo,, whereas in the ýigh press=e cell it is placed to 

the right of the tiain of. echoes because there is insufficient space 
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between the echoes). The distance between the delay line is increased 

a known amount and again the amplitude is measured. This process is 

repeated until there is a decrease of about 30 dB. The amplitude is 

plotted against path length and cL obtained from the slope. The whole 

process is repeated but the acoustic path is decreased instead of 

increased. The two values of m should not differ by more than 

The apparatus (atmospheric cell) is checked at 298.2 K for each 

frequency using carbon tetrachloride (spectroscopic grade, B. D. H., 

a22 -1 If = 550 10-15 Nepers sm). The frequency is measured, as 

described in Section 3.2.3. 

3.3.4 Accuracy. 

The accustic path length can be measured to + 0.01 mm in the 

atmospheric cell and ±1 
pm in the high pressure cell. The amplitude 

can be measured to within 1 0.05 The accur'acy' of the absorption 

coefficient depends on the attenuation of the liquid, at low attenuation 

it can be better than 1 2% but at high attenuation ± 5% would be 

considered good. 

3.4 Measurement of ultrasonic velocity. f 

The ultrasonic velocity is required with high accuracy, small 

errors in the velocity can lead to much larger errors in M(O), MI(w), 

and M(-) and hence in the ratio 'IV/? I.. Several methods exist for 

determining the velocity of sound in a liquid, however no single method 

can be used for the complete temperature and pressure range, each has 

some disadvantage. 

The following methods were used, (1) pulse beating, (2) veloci- 

meter, (3) normal incidence and (4) method of Blundell and Wyn-Jones. 

3.4.1 Pulse beating method. 

This technique(37) which uses the same apparatus used for the 

determination of a is limited by the viscosity of the liquid, since at. 
52 

viscosities greater than 10 Ns m7 the delay lines cannot be moved. 
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For low attenuated liquids beating can be observed on the first echo at 

small acoustic path lengths vhen the path length is changed. This is 

due to interference between the first echo and echoes reflected from 

the quartz faces. Moving the delay line through ý'/2 
causes a complete 

beat, hence knowing the frequency, the velocity can be determined. To 

increase the accuracy many beats and the corresponding path lengths are 

measured. When the above method is used with high attenuated liquids 

only a small number of beats are obtained, leading to loss of accuracy. 

To overcome this the upper delay line is replaced by a shorter delay 

line, thus allowing the transmitter pulse to interfere with the first 

received echo. Changing the path length now causes beating of these 

two, but now a complete beat occurs when the delay line is moved through 

?,. In the high pressure cell the movable delay line is sufficiently 

short to allow overlap of the first echo with the transmitter pulse. 

3-4-1A Theory. 

If n complete beats are obtained for an acoustic path change 

L, the wavelength of the sound wave is given by. 

L-2.. (3.25) 
n 

or X=1 for shorter delay line. 
n 

and V=fX.. (3.26) 

3-4-IB Accuracy. 

The accuracy of the technique depends on (a) visually 

observing the point at which a complete beat occurs, by measuring a 

large number of beats the accuracy can be increased; (b) measuring the 

distance moved by the delay line and (c) the accuracy of the frequency 

measurement. The frequency can be measured to t'0.02 14Hz, the distance 

to t 0.005 mm and better than quarter of a beat can be seen easily. 

Under the most favourable conditions, i. e. low attenuation and low 

frequency, velocity can be deteriAined to within 1 1%, but as the 

frequency increases and aitenuation is high it can only be determined 
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to within t 

3.4.2 Velocimeter method. 

This method designe Id by Barlow and Yazgan 
(38,39) 

is based on 
(40) 

a fixed path acoustic system developed by McSkimin The method is 

only suitable for liquids with a low absorption coefficient (cL < 200 

Neper m7 
1 ), and is used here to measure V(O).. 

The transducer (11 mm diameter) has a fundamental frequency 

of 10 MHz and will also operate at the third harmonic (30 hHz). The 

principle of the method is to measure the time taken for a longitudinal 

wave of known frequency to travel a fixed path length of liquid. The 

cell consists of two quartz rods (41 mm x 15 mm diameter; 13 mm. x 15 mm. 

diameter) separated by a fused quartz spacer ring'(7-747 mm). A 

I transducer (11 mm. diameter) is bonded to the longer rod. A pulse of 

sound waves (duration variable 1 to 35 v secs) travels from the trans- 

ducer down the longer delay line and is partially reflected at the first 

quartz/liquid interface, the remainder travels through the liquid, is 

reflected at the second interface and back through the liquid to the 

transducer. These two reflected pulses are out of phase, the phase 

difference between the two can be determined by cancelling each 

separately against a continuous reference signal. The phase difference 

gives the wavelength difference between the two pulses but does not 

give the number. of complete wavelengths forming the major part of the 

total phase difference; this number. may be evaluated if measurements 

are made at a slightly different frequency obtained from a second 

oscillator, the two frequencies differing by only a few parts in a 

thousand. The system used for cancelling the pulses is identical to 

that described for X. 
FS measurements, i. e. the continuous reference 

signal is passed through varying lengths of co-axial cable until 

cancellation is achieved. 

3.4.2A Calculation. 

Let f, be the first frequency, and let d1 and d2 be the 
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lengths of cable (in cm) required to cancel the first and second pulses 

respectively. The wavelength, X19 (-- 660 cm at 30 MHz) is obtained by 

cancelling the first pulse a second time,. the difference between these 

two cancellations gives the length of cable equivalent to one wavelength. 

Let t be the time for the fractional part of the wavelength 

with frequency f 

Then t1fxf% if d1>d 2' 

Let f2 be the second frequency, f2>f 
1* 

Lot d11 and d21 be the lengths of cables (in cm) required to 

cancel the first and second pulses at frequency f 
2* 

W2 is obtained as for using frequency f 
2* 

Lot t be the time for the fractional part of the wavelength 2 

with frequency f 2' d2d1d21+X2-d1 
Then t2fX- or x 

if d1>d2 
2222 

i, etn, be the number of complete wavelengths. 

1f1f2x=0 if tt +ve Then n+ý .= 
(t -t+a 2- 1 

.f2f121f2x=1 
if t 2-t 1-ve 

2L 2Lý 
and VI Yf or VI 

n1 +2 1+t12 
(n2 +2)/f2 + t2 

n2 ý-- n1+1, or n2=n, . 

v1 should not differ from V2 by more than 0.02 m persec. 

3.4.2 B Theory. 

IRAN DUCER QVARtZ 
RODS 

LIQUID 

E 

E6 

EL 

FIG. 3*4 ACOUSTIC SYSTEM 

4*. 
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Let EQV EL be the waves reflected from the first and second 

interface respectively. The relationship between the amplitudes of 

these two waves is given by 

EQ -4 ZL ZQ 
exp 21(cL + .. (3.27) 

EL (Z 
L+zQ). 

1 is the thickness of the spacer and (a + ip) is the propagation constant. 

For the liquids investigated P >>a,, giving 

zLý IZL Ie 
xp (i a /P) 

.. 
(3.28) 

and ZQ ZZ I ZQ I exp (i a/b) 
.. 

(3.29) 

where a+ ib (b >> a) is the propagation constant of fused quartz. 

, (Z 
L+Z Q) 

2 
z= 1ZL+Z 

Q12 exp (i 2y) 

22 
ab PL + ap ppQ density of quartz 

where Y= bp(P 
LbI+P PL density of liquid. 

Substituting (3.28), (3.29), (3.30) into (3.27) gives 

4 IZLI I 
exp(- 21m) exp i(21p - 

CL a+ 2y - 7z)] (3-31) EL =EQ lz 
L+Z Q12 

I- 
p-b 

If the phase delay of the reference for the two cancellations is .9 

radians 

then 21p -11-1+ 2y-., n = . 2nn+ 0 
Pb .. 

(3-32) 
. 

a 2y is negligible under the conditims cf the experiment. 

I/-. t P= '/v. 
- 

Then 21 w1 /V -z= 27: n + 01 oo(3-33) 

and 21W2/V -n= 27m 2+02.. 
(3-34) 

By putting n2n1+X, .61=t1 27Ef 1 and 02 : -- t22, nf 2* 

12 (t +X (3-35) 2-f2-f1[ 
.2-t. 

T2] 
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x=0 if t2 -t 1 is +ve and x=1 if t2 -t 1 is -ve. 

In general, n1 will not be an integer since experimental 

errors are finite. However, the nearest integer to the value obtained 

is taken as n1; the following equations are then obtained from equations 

(3-33) and (3-34): 

V 2L 
.. 

(3-36) (nl+ 1. )If, + tj 

vn 2L 
*. (3-37) 

2 ( 2+ )/f2 + t2 

3.4.2C Apparatus and Accuracy. 

The apparatus which has been aescribed by powell(28) is shown 

schematically in Figure 3.5. The accuracy depends on the stability of 

temperature 
. 
and pressure, and measurement of the spacer length, delay 

line length and frequency. Temperature and pressure must be extremely 

stable, the temperature to better than 0.01 degree and pressure 0.01 

M m-2* . Any change in either temperature or pressure was easily 

detected since phase cancellations were impossible to achieve or, if 

achieved, it was very quickly lost. The instrument is a very sensitive 

detector of changes of temperature and pressure. At 30 MIz, 7 degrees 

or 2 to 4 EN m7 
2 

are sufficient for the phase to go through a complete 

cycle (0 660 cm of delay line). A similar technique has been used by 

Angel and Bean(41) to measure temperature and pressure. 

The frequency measured directly (digital-counter A. M. F. 

Venner model 7736) was accurate to ± 0.1 kHz, and the delay line 

measurements were accurate to ± 0.1 cm, both these measurements did not 

affect the accuracy of the velocity greater than 0.01%. The spacer 

length was measured with slip guages to t 0.001,, 0.02 mm), giving 

an accuracy of 
t3m 

S-1 in the velocity. The calculation of n is 

important, a difference of 1 in the value of n gives a difference of 

t In s- 
1 in the velocity. 
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Providing the temperature and pressure are stable and the 

I ppacer length is known accurately the velocity can be obtained to 

better than i 0.01%. 

3.4.3 Normal incidence technique. 

This technique is used when the pulse beating technique 

becomes inoperable due to the high viscosity of the sample (i. e. at low 
6 

temperatures and high pressures). It is based on the same principle as 

that used for determining the real part of the shear impedance-of 

(9) . liquids .. The only change to the apparatus is the replacement of 

the A. T. quartz crystal with an X-cut crystal to generate the 

longitudinal waves. 

3.4-3A Theory 

An analogous equation to (3.18) can be written for longitudinal 

waves 
-z 

QL(l - R) + ZTIL (1 + R) 
(3-38) 2k ý- ZQL 

-ZQL 

(1 + RT+ TTL(l - R) 

I 

where the subscript. L refers to longitudinal waves and F, Q and T are 

sample liquid, quartz ancl reference liquid respectively, R is the 

amplitude ratio, where 20 log, 0'R= dB. 

When the reference fluid is air the equation reduces to 

F 
(i - R) ZFL ý-- ZQL (-1+ -IR) .. 

(3-39) 

The impedance ZFL is related to-the phase velocity (V 
L) by the 

f ollowing equation, 

7-'F Lý -- vLP oo(3-40) 

yr ovi ding (a, /W) cc I 

where p is the'density of the sample liquid 

and therefore the velocity can be determined from the impedance and the 

density. At 4gh 1=essures isopentane is used as the reference fluid 

and. the.: Longitudinal imPedance Z, is obtained from the velocity and TL 
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density of isopentane using equation (3-40). 

3.4-3B Accuracy. 

The error in the phase velocity depends on the error in the 

impedance measurements and density measurements, density can be measured 

to better than 1 1% and impedance to about ý3 to Vo. 

3.4.4 Wyn-Jones and Blundell method. 

The, method used by Wyn-Jones and Blundell(42) for solid discs 
I 

was. adapted for liquids as follows. Using the apparatus and atmospheric 

cell for longitudinal absorption, the pulsed sound wave was passed 

through the liquid and after detection the undemodulated signal was 

displayed on the oscilloscope screen. Into ýhe second channel of the 

oscilloscope a signal of frequency 1 MHz (accuracy 0.00% at 298.2 K). 

was added. This signal was used to measure the time change since the 

time betwee: ý two adjacent waves was one micro-second. The undemodulated 

signal was superimposed on one of the 1M signal waves and the position 

noted. After a change of temperature or pressure the position of the 

signal was again noted and the time change measured. Initial measure- 

ments showed this time tb be very small. However, when calculations 

were carried out for the change of time with temperature for quartz and 

the liquid, they were found to be --: 16-5 x 16-10 s per degree, and 

+15.0 x 10 -10 s per degree respectively. Therefore, after correcting 

for the quartz the errors could be considerably larger than existing 

methods. The method used by Blundell and Jones did not involve any 

change in temperature or pressure, the solid sample was moved in and 

out of the sound path. 

3.5 Measurement of Density. 

3.5.1 Atmospheric pressure. 

Densities were determined using a density bottle calibrated 

with double distilled water. The density bottle was used in accordance 

with A. S. T. M. Standard D. 1481. The accuracy of the method is better 

than 0.5%. In samples measured the dens'ity was found to vary linearly 
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with temperature. 

3.5.2 Pressures greater than atmospheric. 

The method depends on measuring the decrease in volume of a 

known weight of liquid with increase in-pressure. The densitometer 
(28) 

has been described previously The volume at atmospheric pressure 

is obtained from the weight of the sample and its density. The 

decrease in volume is measured by determining the distance a floating 

piston moves as the pressure is increased and the internal cross- 

sectional area of the densitometer. The results of the density 

(43) 
determinations are fitted to the linear secant modulus equation 

3.5.3 Theory. 

The change in volume (&V) is given by the following equation: 

%D 
, 8v 

where Ax is the' distance moved by the floating piston, 

D is the internal diameter of the densitometer. 

Now, if VF is the final volume and VI the initial volume 

then VF =VI- AV .. 
(3-42) 

and 
VF 

= 
VI 

- AmD 2 
.. 

(3-43) 
M M 4M 

where M is the mass of the liquid. 

The density P(P) is then given by 

P(P) P( ) -1 0 _, 8x 7ED 
oe(3-44) 4M 

where P(O) is the density at atmospheric pressure. 

The distance can be measured to 15 
pm and the volume at 

atmospheric pressure is known to 0.5%, giving an overall accuracy of 

0.5%. 

3.6 Measurement of the Steady Flow Viscosity. 

3.6.1 Atmospheric pressure. 

Kinematic viscosities were measured with calibrated suspended 
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level viscometers BS/IP/SL (S) 
, which were used in accordance with 

A. S. T. M. Standard D445. The kinematic viscosity (v) ranged from 10-5 

*-2 2 -1 to 10 ms. The zero shear viscosity (. n, (O)) is obtained from the 

kinematic viscosity by the following relationship 

T)S(o) =pv *9(3-45) 

The viscosity can be measured to an accuracy of ± 1%. To 

obtain viscosities greater than 20 Ns m7 
2, 

the high pressure viscometer 

described below was used. The results of the viscosity measurements 
(44) 

were fitted to Roelands' equation 

3.6.2 Pressures greater than atmospheric lzessure. 

For measurements at Ixessures above atmospheric, a Couette 
(45) 

viscometer designed by Hatton and Phillips was used. The zero shear 

viscosity is given by(46) 

ke 
T)S(O) XL .. 

(3-46) 

where' k is a constant for the viscometer,. 

& is the strain in the strain gauge bridge, 

A is the relative angular velocity of the cylinders. 

The viscometer constant was obtained from the geometry of the apparatus 

and by measurement with liquids of known viscosity. The two values 

agreed to better than 1% (k = 0.580 N. rad. m. -2 ). The relative angular 

velocity can be varied from 150 to 0.005 rads per second, but in 

practice was used in the range 5.0 to 0.05. The strain was measured by 

a 'Budd' strain gauge, bridge calibrated in microstrain; measurements 

with weights hanging on the torsion springs showed that the bridge was 

only linear to ± 200 V e. The measured viscosity is accurate to t 5%0. 

The results ar .e fitted to the high pressure form of Roelands' equation(44) 

3.7 Temperature Control and Measurement. 

At aimospheric pressure two baths were used, a Townson and 

Mercer X27 for operation at and above room temperature, and a laboratory- 
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built bath below ambient. Water was used from 298 K to 340 K and oil 

above 340 K in the Townson and lvbrcer bath. The laboratory-built bath 

consisted of a stainless steel dewar into which was placed a smaller 

glass dewar. The space between the two dewdrs was partly filled with 

liquid nitrogen. The level of liquid nitrogen was maintained by 

pressure sensors placed in the nitrogen; these sensors activated a low 

pressure nitrogen gas supply to the vapour space in the nitrogen 

container and nitrogen was blown over until the required level was 

reached. The inner dewar, which was filled with Industrial Methylated 

Spirits (I. M. S. ) (10 d m3) f or temperatures from 298 K to 220 K and 

isopentane for temperatures below 220 K, was fitted with a heater, 

stirrer and platinum resistance thermometer from which the temperature 

was controlled by an A. E. I. (RT3/R, HK2) controller. 

The bath used for the high pressure%studies was larger than 

the atmospheric pressure bath to accommodate the stainless steel high 

pressure vessel. The bath consists of an inner and outer vessel. The 

outer vessel which is thermally insulated on the outside, contains the 

cooling coil and a bimethllic strip controller. It is filled with 

I. M. S. (50 d m73). The aluminium, inner vessel is surrounded by three 

layers of glass matting which are bonded to the vessel with a special 

low temperature epoxy resin. The inner vessel is fitted with a stirrer, 

two heaters and a platinum resistance thermometer connected to. an A. E. I. 

RT3/RMK2 controller and contains I. M. S. (40 d m73) and sodium nitrite 

W/v). The temperature in the. outer vessel is controlled by the (0.5% 

bimetallic strip which activates an electrical relay. The relay operates 

a heater (5 W) inside a closed dewar containing liquid nitrogen. The 

nitrogen boils and the increased pressure forces liquid nitrogen through 

the cooling coil and out into the I. M. S. On sufficient cooling the 

'bimetallic strip breaks the electrical circuit, the heater is switched 

off and the dekar is vented to atmosphere. The temperature cycle is 

3*K. ' The temperature in the inner vebsel is controlled by the platinum 
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resistance thermometer to t 0.05 K. 
(47) 

described by Hutton and Phillips 

The bath and operation has been 

All temperatures were measured 

with mercury or alcohol thermometers which had been calibrated against 

standard National Physical Laboratory (N. P. L. ) thermometers; temperatures 

recorded are correct to 0.1 degreeý 

3.8 Mgh Pressure Apparatus. 

The high pressure vessel is a stainless steel (3.5%o NCMV) tube 

with internal diameter 25.5 mm, external diameter 152.4 mm and length 

638.2 mm. The vessel is sealed at each end with special plugs 

containing three rubber 101 rings and each end plug is kept in place 

by a backi. ng nut. The lower end plug contains an inlet for the 

pressurising fluid and electrical connections for the Couette viscometer 

and absorptiometer. These electrical leads are sealed into the end Plug 

with an epoxy resin (AY 103 + HY 951 ex. Ciba-Geigy). Two upper end 

plugs are used, one containing only electrical connections used for the 

normal incidence and velocimeter cells, and a second containing both 

electrical connections and a rotary seal. In the second one the 

electrical connections are used fQr the absorptiometer and densitometer. 

The rotary seal, which comprises a steel rod and a close-fitting hole, 

allows a linear motion for these two pieces of equipment and a rotary 

motion for the viscometer. The end of the rod which goes into the 

pressure vessel has a thread 0.5 mm pitch, the other end is attached 

to a device for measuring the rotary motion. One revolution of the 

thread is equivalent to 500 divisions on the meter (hence 1 division E 

I pm linear motion). For the operation of the viscometer the part of 

the rod outside the vessel is coupled to a gearbox and synchronous 

motor, thus enabling a range of constant rotational velocities to be 

selected. All three end plugs have been described in detail by Powell 
(28) 

(47) 
and Hutton 

High pr6ssure is generated ip a pressure transmitting fluid 

(AeroShell Fluid 4 by a hydraulic intensifier (Powermatic century 
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100,000 p. s. i. pump, Olin Matheson). The pump is driven by the 

laboratory high pressure air supply (0*65 MN m -2 ) and each recipro-- 

cation of the pump delivers a small volume (100 mm3) of fluid through 

a check valve and at a pressure controlled by the air inlet 1wessure. 

-2 Pressures up to 700 Mm can be attained. The pressure can be 

increased or decreased (by a let down valvEý)-at a slow rate (1 M11 m72s-1 

The test fluid is isolated from the pressurizing fluid by seals within 

the particular pieces of equipment, the pressure is transmitted by the 

use of floating pistons, bellows or diaphragms. These seals were often 

found to distort owing to elastoplastic flow of the rubber (Viton) but 

the original shape was soon recovered by warming. If any leakage of 

the pressurizing fluid into the test liquid occurred it could easily 

be detected by its pink colour. 

Inside the intensifier were three small 101 rings; the nearest 

to the high pressure side was teflon, this was required to be replaced 

every two to three months when the pump was in constant use. The 

pressure is measured in the hydraulic circuit outside the pressure 

vessel by a Manganin resistance piezometer (HP 200E Coleraine 

Instrument Company), the output is displayed on a digital voltmeter in 

2 
units of 1M m7 . The piezometer was calibrated against a 100,000 

2 
p. s. i. dead weight tester and was found to be accurate to ±1 MN m7 

3.9 6 MHz Results. 

3.9.1 Introduction. 

With all the liquids studied the results at 6 MHz measured 

with the normal incidence apparatus have always been poor compared to 

the results at other frequencies. In some measurements the attenuation 

versus reflection number graphs have shown a IS' shape instead of the 

linear relationship shown with the other frequencies. The first three 

points lie more or less on a straight line and then after a decrease 

in the rate of rise of attenuatign the- curve shows 4 marked increase. 

This effect has also been* seen in the measurements of m. C. Phillips. 
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3.9.2 Observations. 

There are many variables in the system, some of which would 

affect all frequencies and can be eliminated. The nature of the sample 

at different temperatures required the use of different sampling 

techniques and with some techniques an imIrovement was noticed. 

Different crystals for normal incidence were used but with no improve- 

ment. The results improved when the temperature was decreased. However, 

the inclined incidence apparatus gave good results even at the higher 

temperatures. Crystal bonding agents were not suspected because indium 

was used with all crystals. Degassitig a sample showed no improvement. 

The results suggest that the size of the crystal and rod may be causing 

this effect since most other variables could be eliminated. 

Pinkerton(') showed that the graph of attenuation versus 

- reflection number is linear for distances less than R2/X (where R is 

the radius of the crystal) but as the distance increases we move from 

the Fresnel region to the rraunhoffer region where the graph is not 

linear. At 6 MHz in quartz X=0.63 mm and R2/% = 62.5 mm. Since the 

normal incidence rods are longer than R2 /A this may be the cause of 

these poor-results, although it would not explain the good results at 

lower temperatures and high pressures. A shorter rod (40 mm) and 

larger crystal (30 mm diameter) was used at the higher temperature 

giving good results at 6 MHz and the other frequencies. 

Whenever the technique discussed in Section 3.2.5 was used 

good results were obtained at all temperatures with the 50 mm quartz 

rods and 12.5 mm crystals. The only significant difference between 

this technique and the previously used push-in technique was that only 

the face of the rod was wetted by the liquid, the sides were unchanged. 

In the high pressure cell only the face of the rod is wetted by the 

liquid and may account for the good results obtained at 6 MHz using 

the high pressure cell. 
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Finally, two more experiments were carried out using the 

'push-in' technique, the difference between the two was in the second 

experiment the sides of the rod were protected with several layers of 

sellotape. The first gave the poor results at 6 Mz whereas the 

second gave good results at all frequencies. This result provides an 

explanation for the good results at low temperatures. 

It can be concluded that the curvature in the graphs of 

attenuation against reflection number with the normal incidence 

equipment operated at 6 MIlz occurs when a substantial part of the 

sides of the quartz rod are wetted by the liquid. An increase in 

diameter/length ratio of the rod diminishes the curvature when the 

sides are wetted. 
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CHAPTER IV 

VISCOELASTICITY OF BITUMENS 
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4.1 Introduction. 

Bitumens are viscoelastic fluids prepared from crude oil 

distillation residues, their composition varies depending on their 

origin. They usually contain asphaltenes, tars and different oils. 

Asphalt is a thermoplastic high molecular component of the colloid 

structure formed by micelles in the oil liquid environment. Bitumens 

are used as bonding agents on roads and therefore their flow properties 

are important. The viscous and viscoelastic properties are quite well 

known, but their elastic properties are not so well known and have, in 

(48,49) 
the past, been obtained from low frequency measurements . The 

elastic Ixoperties can be obtained by either-using low temperatures or 

high frequencies (equivalent to short time scales). By using shear - 

waves in the frequency range 6- 78 MHz the elastic properties can be 

invesfigated. Although bitumen becomes brittle at low temperatures, 

brittleness should not become a problem-because the strain levels are 

low 10-5). In practical applications both linear and non-linear 

behaviour is encountered, but in the present experimental arrangement 

only the linear behaviour can be determined. 

Two samples of bitumen have been studied; sample (a) Kuwait 

SB 80/100 (glass transition temperature (Td = 263.2 12 K) is a typical 

bitumen used for road construction and sample (b) Miri 150/250 thought 

tb be a Maxwell liquid. It was decided to look at sample (b) because 

of the anomalous results with sample (a). 

4.2 Experimental Results. 

4.2.1 Kuwait SB 80/100. 

The density and viscosity had been determined previously and 

the data fitted to the equations which are given in Appendix U, Tables 

A111.1 and 2. Rs and XS were measured as described in Chapter, III, R. 

over the temperature range 250 to 390 K and Xs above 300 K. The shear' 

modulus (G(-)) was obtained from l9w temperature measurements of R 
s 
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where there was no dispersion with frequency. At slightly higher 

temperatures R, (-) was obtained by the extrapolation procedure of 

Hutton and Phillips 
(50). 

G(co) was found not to vary linearly with 

temperature but the compliance J(-) does. vary linearly with temperature 

and is given by the following equation, 

-2 -1 J(-)AGN m)= -2-305 + O-OM-T/K .. 
(4-1) 

The variation of G(co) and J(cq) with temperature is illustrated in 

2 Figure 4.1. R (co) is obtained from equation (4-1) (R(-o) 
.S 

for all temperatures and the ratio R 
S. 

(W)/R 
s 

(-) known as the reduced 

impedance is plotted against a reduced frequency w-qs(O)/G(') to give 

a reduced variables plot, illustrated in Figure 4.2. The numerical 

values -of reduced impedance and frequency are given in Table AIV-3. 

4.2.2 Miri 150/250. 

This sample is very similar to one reported. by Jongepier and 

Kuilman, sample A in (51) and sample 1 in (49). The viscosity data were 

fitted by Jongepier and Kuilman to the equation given in (51), the 

parameters for the viscosity and density equations are given in Tables 

AIM and 2; R8, Xs 'and values of R, (-) were obtained as for Kuwait SB 

80/100. Table AIV-4 contains values of R, (-) and G(-) calculated from 

R (-) at various temperatures. The variation of R. (w), G(CO) and J(00) 
Ss 

with temperature is shown in Figures 4.3,4.4b and 4-4a respectively. 

was found to vary linearly with temperature (from 270 K upwards) 

according to equation (4.2). 

J(-)I(GN M72) -1 =' -3-714 + 0.0173 T/K .. 
(4.2) 

The reduced impedance'and reduced frequency calculated from the above 

are given as a function of temperature and frequency in Table AIV-5 and 

the resulting reduced variables plot is shown in Figure 4.5. 

4.3 Discussion of results. 

Viscosity curves of the logarithm of viscosity against 

temperature ýere of similar shapb for the two samples, but sample (b) 
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was shifted by -1 on the logarithm scale. The two samples gave very 

different reduced variables plots. Similar behaviour was found by 

Jongepier and Kuilman for various bitumens(49). Sample (b) showed the 

behaviour of a typical organic liquid described as tthermo-rheologically 

siniple 1 
(52) 

. If the reduced variables Plot of sample (b) is compared 

with graph 1 in the back cover then it can be seen that it is identical 

to the B. E. L. model with ak value of 1.0. Sample (a) could not be 

reduced successfully and will be discussed in section 4.4. Comparing 

with graph 1 gave ak value between 4 and 5. 

Values of the shear modulus lay between 0.5 and 1.0 GN m72 

over the temperature range measured. These values agree with the work 
(49 ' (48) 

of Jongepier and Kuilman 
) 

but not with the work of Isayev et al 

Isayev attributes the difference to the group composition and the quality 

of asphaltenes. Their properties are influenced by temperature and 

sample history 
(53). 

The cooling of bitumen is accompanied by the 

formation of asphaltene associates(48). For ease of handling it was 

necessary to heat the samples prior to applying to the quartz rod and 

then to cool to the required temperature. The samples had therefore 

undergone an ageing process pri, or to measurement. The value of the 

shear modulus was lower for sample (a) than sample (b). 

4.4 Attempts to reduce variables for Kuwait SB 80/100. # 

From Figure 4.2 it can be seen that the results at different 

frequencies do not superimpose. The scatter is greater than for other 

liquids and the 6 MHz results are smaller than 18 MHz, the 18 MIz smaller 

than 30 MHz and so on. Barlow et al(12) showed that for a number of 

different liquids, the results for each liquid could be reduced onto a 

single curve, although the k values differed: slightly from 1.0 for some 

liquids, except for castor oil which had ak value of 2.9. Although no 

previous work has been reported to show this breakdown of time-temperature 

superposition, many earlier results were obtained at only one frequency 

where týe effect woýLld not. be seen. 
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A more critical assessment of the measixements was made and 

revealed some slight deviation from linearity of the amplitude versus 

reflection number graphs. 
[This 

was also noticed with other fluids 

measured]. Nevertheless, for this first. liquid only the results which 

showed no deviation from linearity were retained. The effect of this 

was to reduce the number of 6 and 78 HHz results but with little effect 

on the reduced variables plot. After other liquids had been studied, 

and about four to twelve months after the first measurements, more 

measurements were obtained on sample (a) but no improvement in results 

was noticed. It is therefore concluded that this anomalous reduced - 

variables plot is real and not caused by some instrument or operator 

fault. Plotting R(w) against log (", (0)) instead of the more usual 

reduced variables showed the same effect. However, in the range 

log (0)) 9 to, 14 the results at a fixed temperature had the same 

slope, giving, 

R(w) =M log. ("S(O)) +C oe(4-3) 

where M is the slope independent of temperature and C is a constant 

dependent on temperature. If the temperature is altered then the 

viscosity changes and therefore C depends on the viscosity. To change 

c would require a'new viscosity function but at present there is no 

reason to suspect that the viscosity function should be altered. 

The value of k is frequency dependent, the higher the frequency 

the smaller the k value. Replacing'w by f(w), where f(w) is given by 

equation (4.4)p 
w. w 

w3 0 

where x refers to the frequepey, 

oe(4-4) 

and plotting Rs (w) /R 
8 against log (f(CO) il, (O)/G(O-)) showed a trend 

in the right direction, but although the results could be reduced onto 

a single curve within experimental error, they were not random; the 

18 MIz results were always below. the ýO MHý results. The experimental 
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results could be synthesised by replacing k in the B. E. L. equation by 

k(w), given by 

k(w) =k+ 
(t)3 0_, 

oo(4-5) 

The: ýe is no physical or theoretical-explanation for the above but it 

does suggest that the viscosity should depend on frequency. Barlow et 

al(54) found that for poly-l-butenes as the molecular weight increased 

the deviation from the B. E. L. model increased and they suggested that 

the relaxation mechanism involved only part of the steady flow viscosity. 

The steady flow viscosity can be calculated from the measured quantities 

using the B. E. L., model by the following equation 

(R 
s2+Xs 

2)2 

TIcal. 
2 P-w X82,.. 

(4.6) 

The viscosity calculated from equation (4.6), see Appendix-Table AEZ. 6, 

is less than the measured steady flow viscosity and decreases with 

increase in frequency. Replacement of Tj (0) by Tj or the dynamic 
a cal. 

viscosity (711) would increase the difference between the results at 

different frequencies. When n8 (0) -was replaced by the ratio Tj a 
(0)/T)cal. 

' 

the few results obtained gave a better reduced plot with a slightly 

lower k value. Two things must be borne in mind before too much emphasis 

is put on the last result, namely the inaccuracy in the measured values 

of Rs and, particularly, X8 leading to inaccuracy in T) cal. and equation 

(4-6) which assumes k is equal to 1.0. 

4.5 Physical Characteristics. 

The two samples were different in appearance, sample (b) 

resembled treacle whereas sample (a) was a darker, heavier material with 

less lustre. During sample preparation, sample (a) gave a deposit with 

hydrocarbon solvent but this was not seen with sample (b). A fine 

precipitate was obtained from sample. (b) when pentane was used as solvent. 

The progipitate from sample (a) was filtered off to give a black 
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crystalline material (m. P. > 473.2 K, 17.3%). The infrared spectrum 

(3.46% w/v in M4,0.1 mm) was that of an aliphatic hydrocarbon. This 

solid material may have been present in the original sample or 

precipitated by the solvent. It was impossible to obtain without pre- 

treatment a suitable film for the optical microscope. The sample was 

frozen in liquid nitrogen and fractured to give a good surface for 

electron microscopy. The pretreatment for the scanning electron micro- 

scope involves the deposition of an electrical conducting surface layer 

which is accomplished under vacuum. During this process the samples 

were distorted and also under the electron beam the samples tended to 

melt. It was possible to see fragments on thq surface of sample (a) 

but not on sample (b). Electron probe microanalysis of these fragments 

showed them to contain traces of calcium, silicon, magnesium, aluminium 

and chlorinet together with a reduction in the sulphur content compared 

tO-a part of the surface free of the fragments. Analysis of the 

crystalline material showed only a trace of sulphur, much less than 

obtained in the bulk. sample. From the electron microprobe analysis 

there does appear to be additional mate rial in sample (a) but the evidence 

is not conclusive. 

The wavelength of the shear waves used is about 0.5 mm. at 

6 MHz falling to 0.04 mm. at 78 MHz. If the particles in the bitumen 

were of similar size to the wavelength some scattering may occur, 

particularly if the particles migrated to the surface on cooling. The 

effect of this would be for Rs to be increased the higher the frequency, 

This may account for the results. At low frequencies (100 Hz) as used 

by Jongepier 
(49) 

the wavelength would be about 10 meters, very much 

larger than the size of any particles which may be present. 

4.6 Discussion. 

The shear wave is attenuated by exp (-27: ) per wavelength 
(55) 

and therefore penetrates to-a depth less than the wavelength. Only the 

surface layer is being investigated with the shear waves whereas the 
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the shear viscosity is that of the bulk material. It is conceivable 

that the viscosity of this surface layer is not equal to that of the. 

bulk material. The viscosity at the surface could be less than that of 

the bulk, bitumens are known to 'sweats, i. e. a layer of oil is seen on 

the surface, particularly after air blowing (a technique used to produce 

rubbery bitumens). However, it is not' so easily understood that the 

surface viscosity could be higher than that of the bulk sample which 

would imply that particles were suspended in the surface layer or some 

change in the nature of the surface. 

Following up these two possibilities, if the viscosity was 

lower at the surface the points on the reduced variables plot (Figure 

4.2) would be shifted to the left and may be reduced on to the B. E. L. 

curve with k=1, i. e. equivalent to sample (b). At high temperatures 

the points do lie on this curve, bui as the temperature is lowered the 

situationgets worse requiring a greater difference between the viscosity 

of the surface and that of the bulk. The other possibility where the 

surface viscosity is. higher than the' bulk sample would move the points 

on the reduced variables ýlot to the right, i. e. on the curve with k 8. 

Also, as the temperature is lowered the situation gets better, this 

would be expected since the movement of particles would be restricted. 

Assuming this latter situation, the viscosity was calculated which would 

re-duce the values onto a curve with k=8. The logarithm of viscosity 

was found to decrease linearly with depth of penetration. At lower 

temperatures the values are lying on the curve with k=8. 

Discussions withlexPe-rts in Bitumen Chemistry( 56) indicated 

that the surface viscosity would probably be lower than the bulk value. 

It was suggested that high frequency shear measurements should be made 

on a sample of the bitumen (a) from which the asphalt was removed. 

(Asphalt content, sample (a) -1 (Ylo, sample (b) 0.02%) . The asphalt was 

removed by precipitation with petroleum spirit 60-80 and the petrol 

remoýed 
'from the filtered solution by a lacuum rotary evaporator. 



72 

Because of the limited sample size measurements were made at 293.2, 

298.2 and 313.5 K and the viscosity was measured with a Hallikainen 
(56) 

micro viscometer . At 298.2 and 313.5 K the R. values were lower 

than for the untreated bitumen but at 293.2 K they were closer to the 

original values at the same temperature, the viscosities were also 

lower than the original viscosities at the same temperatures. The 

limited number of results prevented the calculation of R(co) and G(co), 

therefore the ýalues were plotted on the graph of R(w) against log 10 
(WTI 

8 
(0)) obtained previously. The values superimposed on the previous 

results, although shifted down the curve, but not on the graph of the 

Eiri results. It is therefore doubtful whether the asphalt can be the 

cause of the anomalous results; the petrol treatment would also remove 

any inorganic material which nay have been present. 

The only explanation for the results of the Kuwait SB 80/100 

bitumen sample is probably that the surface of the sample changes with 

temperature. At the higher temperatures the *results fall onto a curve 

predicted by the B. E. L. model'with k=1, thus showing the presence of 

a commonly-observed distribution of relaxation times. However, at lower 

temperatures the distribution of relaxation times widens. On the other 

hand, in sample (b) (Miri 150/250) the distribution does not change as 
(61) 

the temperature is lowered. Miles and Hamamoto found for hexachloro- 

biphenyl that the width of the distribution was temperature dependent 

with a broader distribution at lower temperatures. 

1 
4.7 Conclusions. 

The present work has shown some unexpected features for certain 

bitumens compared with other organic fluids. Nevertheless, the findings 

in no way contradict previous work 
(49). 

The value of the shear modulus 

(- I GN m7 
2) is in agreement with'other fluids and varies slowly with 

temperature. It is seen that the value of k in the B. E. L. model (k is 

a parameter which depends on the width Df the distribution of relaxation 

times) increases with decrtýase'in frequency*. (For much lower frequencies(49) 
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k was 8). In this work there appears to be a breakdown of the Time 

Temperature Superposition. 

However, further work would be required before any firm 

conclusions could be reached, i. e. the frequency range should be 

extended to cover the region 100 Hz to 1 HHz and also various particle 

sizes should be dispersed in a bitumen type medium. This would require 

a knowledge of all components Iresent in bitumen and the effect of 

temperature on the migration of these components. 
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CHAPTER Y 

SHEAR AND LONGITUDINAL 

MEASUREMENTS 
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5.1 Introduction 

The samples chosen for investigation must satisfy certain 

criteria, namely they should be fairly viscous at ambient temperature 

and should remain liquid or in a glassy state until a viscosity of 

105 NsM72 is reached. There should be no phase change throughout 

a series of measurements at varying temperatures and pressures. 

shou-Id be inert to normal atmospheric conditions and the surface 

should be representative of the bulk sanple. The following three 

liquids were chosen. 

A. 4-phenyl dibenzofuran 

( ri ) 

0 

They 

4-phenyl dibenzofuran(I) (m. P. 307-308 K, b. p. 676K) was known from 

previous industrial experience to supercool. Details of the 

preparation are given in Appendix III. It is a pale yellow viscous 

liquid at ambient temperature and at all temperatures at which 

measurements were made there was no evidence of crystallisation in the 

sample. The 1,2 and 3-phenyl dibenzofurans have 
, 
much higher melting 

points with the lowest as expected for the I-phenyl dibenzofuran. The 

ultraviolet absorption spectrum showed that there is hindrance to 

conjugation in the 1 and 4 phenyl substituted derivatives of dibenzofuran. 

The lowering of the melting point in the 4 phenyl derivative is thought 

to be due to the ortho hydrogen atoms of the phenyl group interfering 

with the bulky heterocyclic atom and therefore twisting the phenyl ring 

out of the plane of the dibenzofuran nucleus. 

Thermogravimetric analysis (T. G. A. ) showed it to be stable 

in air to 473 K and Differential Thermal Analysis (D. T. A. ) gave a 

glass transition temperature of about 257 K. 
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B. Epoxy Resin MY 750 (ex Ciba Geigy) 

The major component determined by Nuclear Magnetic 

Resonance (N. M. R. ) was diglycidyl ether of bisphenol A (II). 

CH -CH-CFý-O- C-(CH ý2 
0 

'31 J2 

H 

Mass Spectrometric analysis showed smaller amounts of material of higher 

molecular weight but of similar stru cture and a chlorohydrin 

probably partially reacted starting material. It is a pale yellow 

viscous liquid at ambient temperature and there was no evidence for 

crystallisation at any temperature or pressure at which it was used. 

T. G. A. showed it to be stable to 513 K and the glass transition 

temperature determined by D. T. A. was about 264 K. 

C. Styrene' ethylene-propylene copolymer (S. E. P. ) in Di-2-ethylhexyl 

phthalate 

_CýOR 

-COO R 

IR 

R= CH2-CH -C 4 
Hq 

I 
C2H5 

The preparation of this solution is given in Appendix III. 

Di-2-ethylhexyl phthalate(III) (ex Lankro Chemicals Ltd. ) which is used 
(16,28,57) 

as a synthetic lubricant has been investigated by others 

S. E. P. is a block copolymer of styrene (RI = 30vOOO) and ethylene 

pro-pylene 
(Ri = 50,000) *RwITh, - 1.2. Polymers are frequently added to 

lubricating oils to improve the viscosity characteristics and S. E. P. 

is such a polymer. The glass transition temperature determined by 

D. T-. A. was 19 K. 

In the remaining part of this chapter the experimental results 

are given in the following order, 4-phenyl dibenzofuran, Epoxy Resin 

NY 750 atmospheric and high pressures and finally S. E. P. in 

Di-ý-et. hylhexYl phthalate ýt atmospheric and high pressures. 
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5.2 4-phenyl dibenzofuran 

The density was measured at five temperatures between 

298.2 K and 353.2 K and found to vary linearly with temperature 

according to equation (5-1). 

P =A +BT 

Numerical values of A and B are given in Table AV. 1. The viscosity 

was measured between 290 K and 340 K and the values fitted to Roelands' 
(44) 

equation, the, parameters of which are given in Table AV. 2. Plotting 

the logarithm of viscosity against reciprocal temperature gave two 

,2 straight lines intersecting at 0.5 Nsm- and 307 K with an activation 

energy for viscous flow at the higher temperatures of 32 kJ. The 

densityý and viscosity equations are used to interpolate and extrapolate 

to temperatures at which measurements were not obtained. 

The absorption coefficient and velocity of the longitudinal 

waves were determined as a function of temperature and the results are 

listed in Table AV. 6. Figures 5.1 and 5.2 show the absorptioii 

coefficient and velocity as a. function of temperature respectively. 

The low frequency velocity was found to vary linearly with temparature, 

parameters of the linear equation are given in Table AV-5. The high 

frequency velocity was also assumed to vary linearly with temperature 

acc6rding to equation (5.2). 

3931.1 - 6.10 T/K so(5.2) 

Both linear equations (V(O) and V(. o)) are -used to extrapolate to. the 

relaxation region. The absorption shows the expected increase 

followed by a decrease and the velocity shows a d1spersion with 

decrease in temperature, typical of a structural relaxation. 

/f2 The logarithm of maximum a/ý was found to vary linearly with the 

logarithm of frequency as given by Mishra and Singh(23) and also to 

have very similar values. 

Results of the normal incidence measurements to give the 

4 

resistive or'real part of the shear impedance are given in Table AV-7 
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and illustrated in Figure 5.3. The figure shows the typical visco- 

elastic response. The dashed line gives the values of Rs (calculated 

from equation 2.43) as a func . tion of temperature apsuming a ]Newtonian 

liquid at a frequency of 78 MHz. A few values were obtained of the 

reactive part of the shear impedance, these were used to calculate the 

dynamic viscosity (r)'(w)) and storage'modulus (GI (co)) which are given 

in Table AV. 8. G(m) was calculated from the low temperature 'values 

of Rs and the density. The variation of G(- ) and J(oo) with temperature 

are illustrated in Figure 5.4 which shows the compliance to vary 

linearly with temperature, the parameters for the linear equation are 

given in Table AV. q. The reduced variables plot, shown in Figure 5.5, 

was obtained from the values given in Table AV. 11. Superimposing 

graph I (contained in the back cover) shows that the'results can be 

described by the B. E. L. model with ak value just less than 1.0. 

5.3 Epoxy Resin MY 750. 

5.3.1 Atmospheric pressure. 

The density was measured at eleven temperatures between 

293.2 K and 358.2 K and found to vary linearly with temperature. The 

values of the viscosity determined at twelve temperatures between 

288 K and 356 K were fitted to Roelands' equation. Parameters for the 

density and viscosity equations are given in Tables AM and 2 

respectively. The graph of logarithm of viscosity against reciprocal 

temperature gave two straight lines-intersecting at - 0.5 Ns m7 
2 

and 

319 K and the activation energy of viscous flow at the higher 

temperatures was 25.7 kJ. 

The absorption coefficient and velocity were measured at 

temperatures between 270 K and 360 K. The values are given in Table 

AV. 12. The low frequency velocity was found to Vary linearly with 

temperature, the parameters of the equation are given in-Table AV-5. 

At low temperatures, '1ý280 K, the velocity was measured using the normal 

incidence technique, values obtziined were more scattered than the low 
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frequency velocity values obtained at higher temperatures. The values 

of the velocity at low temperatures were fitted to a linear equation 

to give 

V(-)/ms-' = 4322.2 - 7.52 TIK .. 
(5-3) 

Figures 5.6 and 5.7 illustrate the absorption coefficient and velocity 

as a function of temperature respectively. ýhe dashed lines give the 

variation of V(O) and V(c. ) obtained by extrapolating the linear 

equations. The figures show that a structural relaxation is taking 

place. The logarithm of maximum a/f2 plotted against logarithm of 

frequency was found to be linear and to concur with the values obtained 

f or 4-phenyl dibenzofuran. 

The real part cf the shear impedance (values given in Table 

AV-13) together with the density was used to calculate the shear 

modulus. At low. temperatures the shear modulus was independent of 

frequency and these values are shown in Figure 5.8b. The relationship 

of the shear modulus with temperature is non-linear but as shown in 

Figure 5.8a the compliance was found to be linear. The parameters for 

the equation are given in Table AV. 9. The normalized shear resistance 

as a function of the logarithm of reduced frequency is illustrated in 

Figure 5.9a and the values given in Table AV-14. -Comparison with 

graph I shows the results can be described by the B. E. L. model with k 

equal to 1.0. The low value of the shear resistance at 248.4 K (below 

the glass transition temperature) is probably due to incomplete 

coverage of the quartz rod. It was found that results obtained below 

the glass transition temperature were not reproducible. A few 

measurements of the imaginary part of the shear impedance were made 

and used to calculate the dynamic viscosity and the storage modulus, 

the results are given in Table AV. S. 

5.3.2 Pressures above atmospheric.. 

Figure 5.10 shows the variation of density with pressure at 
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three temperatures, the symbols represent the experimental measurements 
I 

and the lines are calculated from the equation obtained by fitting the 

results to the linear secant modulus equation, the parameters of which 

are given in Table AV-3. The lines are parallel to each other 

indicating that, within the temperature range used, at any fixed 

pressure the density varies linearly with temperature, i. e. (8 P /aT)p 

is a constant at all pressures. The variation of viscosity with 

pressure at four'temperatures is shown in Figare 5.11, the symbols 

represent the experimental values and the lines are calculated from 

the equation obtained by fitting the experimental results to the high 

pressure form of Roelands' equation. The parameters of this equation 

are given in Table AV. 4. 

The real part of the shear impedance was measured at various 

pressures at three temperatures. R(-) was obtained from these 

measurements and used to calculate G(-) . Both R(-) and G(-) appeared 

to vary linearly with pressure, but when the values obtained at 

atmospheric pressure were considered the resul ts were better fitted by 

G(-) being linear with pressure. These results are illustrated in 

Figure 5.12 and the parameters given in Table AV. 10. Values of R 
S(W) 

are given in Table AV-15 and the normalised shear resistance as a 

function of reduced frequency are given in Table AV. 16. The reduced 

variables plot is illustrated in Figure 5.9b. It'is identical in shape 

to Figure 5.9a obtained at atmospheric pressure, 

At 278.0 K and pressures greater than 250 MN M72 G(-) levels 

off and shows no further increase with increasing pressure. The 

viscosijy calculated at this temperature and pressure was greater than 

10 12 Ns m7 
2 indicating that the glass transition pressure had been 

reached. It is also seen at higher temperatures that G(-) increases 

beyond the maximum value at 278.0 K. Although this has not been noticed 

in the-literature, 'calculations on . the_results for Aroclor(28) and 

di-2-ethyýhexyl phihalateý57). indicate that this wou 
. 
ld be true for 
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these liquids also. There was insufficient data given for castor 

oil(58) to calculate, but the formula given suggests 
. 
that as the 

temperature is raised, the pressure of the glass transition is raised 

and since G(-) varies more with pressure than temperature G(-) will 

also increase. aG(-)Iap was found to vary linearly with temperature 

given by the following equation 

6G(-) 
= 15.6 - 0.0408 T/K *. (5-4) 

ap 

The absorption coefficient and velocity of the longitudinal 

waves were measured at 310.2 K in the pressure range 0.1 to 200 EN m-2 

The signal decreased in size with increasing. pressure thus making it 

difficult to obtain accurate values of the velocity, particularly at 

the higher frequencies. The values for the absorption coefficient and 

velocity are given in Table AV. 17 and illustrated in Figures 5.13 and 

5.14 respectively. The dashed line in Figure 5.14 represents the 

velocity at low frequency. This was obtained as follows. The velocity 

was obtained as a function of pressure at higher temperatures and 

shown to have the same pressure dependence at each temperature. It 

was then assumed that 8V/6P was the same at 310.2 K. The value at 

-2 0.1 Mm was calculated from the atmospheric pressure relationship 

of velocity as a function of temperature. Di-2-ethylhexyl phthalate 

was shown by Powell 
(28) 

to have a temperature independent pressure 

coefficient 
av /aP. Boelhouwer(59) has measured the low frequency 

velocity of several alkanes as a function of pressure, and at each 

'temperature the curves were found to be parallel to each other. 

The hieh frequency velocity was measured at low temperature, 

278.0 K. Prior to measurement an experiment was carried out outside 

the pressure vessel to establish whether the path length of liquid in 

the pressure ceil would be sufficient. If it was too short the sound 

waves would be-reflected or absorbed by the rubber diaphragm and a 

decýeaie in the signal, or unwanted signal, would be present. It was 
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found that there was no change in the signal when the diaphragm was 

placed close to the quartz rod. In the high pressure vessel a further 

test was carried out to see if the decrease in volume caused by the 

increased pressure would give unwanted signals or a change in the 

signal. To establish this, one of the pistons was shortened which 

allowed the path length to be increased by 5Wo. Again there was no 

significant change in the results. Although the above findings were 

encouraging the results were very scattered and differed by much more 

than the experimental error. (The impedance of isopentane, required 

for the calculation of the impedance of the liquid, was obtained from 

the density, given in Table AV-3, and the velocity which was measured 

with the velocimeter). The velocity was determined from the impedance 

and the density and the'results fitted to. the following linear 

equation: 

V(o. )/ms-1 2215 + 2.88 P/NN in -2 
*. 

(5-5) 

At zero pressure V(-)(= 2215 ms-1) compares with the value obtained 

at atmospheric pressure. 

5.4 S. E. P. in Di-2-ethylhexyl phthalate. 

5.4.1 Atmospheric pressure. 

The density was measured at five temperatures between 294.9 K 

and 333.7 K and was found to vary linearly with temperature. The 

viscosity was measured in the temperature range 263.2 K to 333.7 K. 

A graph of logarithm of viscosity against reciprocal temperature gave 

two straight lines intersecting at 0.2 Ns m72 and 279 K. The 

activation energy of viscous flow for the higher temperature region 

was 17.4 kJ. Parameters for the linear density equation and the 

viscosity equation are given in Table AM and 2 respectively. 

The absorption coefficient and velocity were measured as a 

function of temperýLture and the values given in Table AV. 18. Figures 

5.15 and 5.16 illustrate the abso: ýption coefficient and velocity as 
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a function of temperature respectively. The dashed lines in Figure 

5.16 represent the variation of the low frequency velocity and high 

frequency velocity. The low frequency velocity varied linearly with 

temperature, the parameters for this linear relationship are given in 

Table AV-5. The high frequency velocity is given by the following 

equation: 

4218.5 - 9.35 T/K 

The absorption coefficient and velocity show the characteristics 

typical of a structural relaxation and the logarithm of maximum cL/f2 

showed the same linear dependence on logarithm of f as the two previous 

liquids. There was no significant difference between the graphs of 

absorption against temperature (Figure 5.15) of S. E. P. in Di-2-ethyl- 
(28) 

hexyl phthalate and Di-2-ethylhexyl phthalate To check this 

observation a concentrated solution of S. E. P. in cyclohexane was 

prepared (maximum concentration obtained = 6. Vo w/v) and the 

absorption coefficient was determined at a few temperatures. The 

results agreed within experimental error with those of cyclohexane 

indicating that S. E. P. is not contributing significantly to the 

absorption of the Di-2-ethylhexyl phthalate solution, at least at 

temperatures between 280-300 K. 

The real part of the shear impedance was measured between 

194.7 K and 298.2 K and showed a vi 
. 
scoelastic response. The values 

are given in Table AV. 19. A few values of the imaginary part of the 

imp 
. 
edance were obtained and used together with the real part to give 

the dynamic viscosity and storage modulus given in Table AV-8. G(-) 

and J(co) were calculated as before and J(-) was found to be linear 

with temperature, the parameters for the linear equation are given in 

Table AV. 9. The variation of G(-) and J(-) with temperature is 

illustrated in Figures 5.17a and b respectively. The normalised 

impedance values as a function of reddced : rrequency are given in 
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Table AV. 20 and the resulting reduced variables plot is shown in 

Figure 5.18a. The results can be described by the B. E. L. model with 

k=1.0. 

5.4.2 Pressures above atmospheric. - 

The density was measured at four temperatures in the pressure 

-2 range 0.1 to 400 MN m. The variation of density with pressure is 

shown in Figure 5.19, the symbols represent the experimental measure- 

ments and the lines are calculated from the equation given in Table AV-3 

which was obtained by fitting the experimental results to the linear 

secant modulus equation. At any particular pressure at which meas-ure- 

ments were made it is seen that the density varies linearly with 

temperature. The viscosity was measured at four temperatures within 

2 
the pressure range 0.1 to 500 EN m7 . Figure 5.20 shows the variation 

of viscosity with pressure, with the symbols representing the 

experimental results and the lines representing the values calculated 

from the Roelands' equation, the parameters of which are given in 

Table AV-4. The variation of viscosity with reciprocal temperature 

at four pressures is shown in Figure 5.21, and at each pressure it is 

seen that the variation is similar to that at atmospheric pressure. 

The real part of the shear impedance was measured at three 

2 
temperatures within the pressure range 0.1 to 600 EN m7 The results 

at 252.2 K are shown in Figure 5.22 and the values of R8 as a function 

of pressure and temperature are given in. Table AV. 21. R(-) and G(-) 

were calculated and both found to vary linearly with pressure at a 

fixed temperature, however G(-) was taken to be linear for the purpose 

of calculating the reduced frequency and also for calculation of GI(W) 

and GII(w) . The variation of R(-) and G(oo) is illustrated in Figure 

5.23a and b respectively and the reduced variables plot is shown in 

Figure 5.18b. The values of the normalised shear resistance as a 

function of reduced frequency at. three temperatures are given in 

Table AV. 22. ' The variation of aG(-)/aP.. with temperature could not be 
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fitted by a linear equation, but the variation with temperature was 

smaller than for Epoxy Resin MY 750. 

The absorption coefficient and velocity were measured at 
2 296.2 K in the pressure range 0.1 to 400 M m- and at 269.9 K in the 

range 0.1 to 100 NN M72. At both temperatures velocity dispersion and 

increased absorption typical of a structural relaxation were observed. 

Figures 5.24 and 5.25 show the variation of absorption coefficient and 

velocity with pressure respectively at 296.2 K and the results at 

269.9 Kare shown in Figures 5.26a and b. The dashed lines on Figures 

5.25 and 5.26b give the variation of the low frequency velocity with 

pressure. To obtain this variation the velocity was measured at two 

higher temperatures and found to be linear over the pressure range 0.1 

to ioo mN m7 
2 

and to have thb same slope at, each temperature. The 

values for the absorption coefficient and velocity are tabulated in 

Table AV. 23 for 296.2 K and Table AV. 24 at 269.9 K. The parameters 

for the equation for the velocity are given in Table AV-5b. 

5.5 The limiting high frequency velocity. 

Ibasurements of the limiting high frequency velocity were 

made using the normal reflection technique. The results for the three 

liquids are recorded in Table AV. 25. These measurements were the least 

reproducible of all the measurements made on the three liquids. 

Differences of up to 1 Wo were obtained. There didn't appear to be any 

reason for the lack of reproducibility between the two frequencies, 

namely 18 HHz and 30 MHz. At 6 MHz the pulse shape was very poor but 

this was not so at the other frequencies. Ivbasurements at 78 MHz in 

4 phenyl dibenzofuran and S. E. P. in Di-2-ethylhexyl phthalate were 

different from those at 18 and 30 MIjz and were therefore neglecte'd. 

At pressures above atmospheric the same lack of reproducibility and 

scatter was obtained. The results at atmospheric pressure and above 

would bnly EC11ow a linear relationshipi A linear relationship has 
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(55) 
been reported by Litovitz for Aroclor, V(cO) is linear with 

temperature, it was also found for liquids that the ratio 6V(-)/6T : 

aV(O)/aT ranged from 2.0 for Aroclor to 3.58 for 2-methyl 2,4-di-hydroxy 

pentane. In the present work for 4-phenyl dibenzofuran, Epoxy Resin 

MY 750 and S. E. P. in Di-2-ethylhexyl phthalate the values were 1.9, 

2.0 and 3.0 respectively, again the more viscous the material at the 

same temperature the lower the value. 

5.6 Viscosity measurement. 

The viscosity measurements of the three liquids were fitted 

to the Roelands' equation 
(44) 

for the purposes of interpolation and 
(20) 

extrapolation. This equation has been used previously by Hutton 

for hydrocarbon oils and Phillips 
(35) 

used both the atmospheric and 

high pressure forms for Di-2-ethylhexyl phthalate, Aroclor 1254 and 

isopentane. Both found that the equation represented their data. 

However, Winer et al 
(6p) 

found that for siloxane fluids less than half 

of their viscosity pressure isotherms show significant deviations of 

the data from that preducted by the Roelands' equation. In the present 

work, within the range of measurements, the Roelands' equation has been 

found to fit the data at both atmospheric and higher pressures. 

"1 
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CHAPTER VT- 

BULK MODULUS AND 

VOLUME VISCOSITY 
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6.1 Introduction. 

The results given in Chapter V will now be uzed to determine 

the various bulk moduli and viscosities. To completely determine all 

the moduli the following are required: G(co), GI (w), G"(w), M(O) E= K(O)], 

Yl(ca), M, (w) and M"(w) . There is no equivalent of M(O) in shear because 

a liquid cannot support a continuous shear stress. The relationship of 

G(()o) with temperature and/or pressure has been given in Chapter V and 

at a few selected temperatures GO(w) and G"(w) were obtained from 

measurements of the real and imaginary parts of the impedance. To 

calculate GI(w) and G"(w) for the whole range of temperature and/or 

pressure it is assumed that the liquids can be described by the B. E. L. 

model. This has been shown to be a valid assumption for the three 

liquids; the values of R, (w, P, T)/R, (co, P, T) plotted against reduced 

frequency do fall on to the B. E. L. curve. Any errors obtained by this 

method will be small and will not seriously affect the values of K'(w) 

and K"(w). 0 

From the absorption coefficient and velocity of the 

longitudinal waves, MI(w) and WI(w) are calculated and hence K'-(w) and 

K11(co) according to equations (2-50), (2-51) (page 27). An error in the 

absorption coefficient can affect M"(w) far more than MI(w), errors of 

±1 Cr/. cause K 11 (w) to be meaningless when compare d with KI (w) On the 

o- ther hand, an error in the velocity affects the value of M'(W) more 

thaýn ITI(w), errors of 
± 1% can make K' (w) have a negative value or 

have a very large value. 

K(O) and M(co) are important values, K(O) f or both KI (w) and 

r 
Y, K( 0)] =K2 and M(m) for the latter. The magnitude of K(O) 

compared to GI(w) and K'(w) makes it extremely important that this 

quantity is accurately known. At temperatures above which relaxation 

occurs it is possible to measure the velocity accurately (- 0.1%) but 

within the relaxation region extrapolation is required. This procedure 

has been partly confirmed by Litovitz et al 
(62) 

and Ambrus 
(63) 

who 
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measured the velocity at lower frequencies just within the relaxation 

range, Le, at temperatures where velocity dispersion was occuring at 

higher frequencies. The low frequency velocity was found to be linear 

with temperature, a finding confirmed by- others(15'16,17,28) , however 
f r^ 

K(O) has also been reportedý 62,63,64) to be linear with temperature. 

H(co) is determined from the high frequency velocity obtained at low 

temperatures and/or high pressures. This was the most inaccurate 

measurement made and has always been open to doubt especially about its 
(28) 

temperature relationship, Powell found that 'it was linear with 

temperature. When measurements of V(O-) are unobtainable then it is 

assumed that 
[K(()o) 

- K(O)] = G(co) or some suitable multiple of G(co) 

and this value is used to reduce the data. 

The above assumption has been used to calculate Dýco) from 

equation (6.1)y 

H(C0) =K( 0) + xG «») + 
4/3 G (��) .. 

(6.1) 

where x=1 or some suitable value. 

The velocity (v(co)) can be obtained from M(co) and the density; for Di- 

2-ethylhexYl phthalate 
(16) 

,B is(m-(m-phenoxy phenoxy)phenyl) ether 
(17) 

and Triorthotolyl phosphate 
(15) 

it was about 2300 m s-1, the same 

value as obtained in the present work. 

There are three quantities which must be extrapolated, namely 

V(O) (or K(O)) , V(CO) (or K(oo)) and J(co) (or G(co)) . V(O) and V(co) have 

been taken to be linear and assumed to be linear into the relaxation 

range. J(co) has been shown to be linear but Only until Tg is reached, 

bel ow this temperature J(o-) (or G(co)) is constant. The range of 

temperature and/or pressure over which measurements are made is small 

and it is possible that other functions would fit these measurements 

within the experimental err*cr. However, in the present cirbum tances 

and because of previous literature given-above, it would not be 

justified to fit the experimental values to a mare complicated expression. 
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Finally, when the reduced variables plots are obtained for 

shear and bulk moduli, the real parts and imaginary parts are compared. 

If the shapes of the curves for the real part of the reduced shear 

modulus and the real part of the reduced bulk modulus are identical and 

also the shapes of the curves for the imaginary part of the reduced 

shear and bulk moduli are the same then it can be assumed that the 

relaxation spectra for the shear and bulk (or compressional) processes 

are the same. Although the shapes may be the same the two plots may 

not superimpose, but since they are the same shape they could be 

superimposed by a shift of one relative to the other along the reduced 

frequency axis. Since, in both sets of reduced plots, the shear 

viscosity is used to calculate the reduced frequency, this shift is 

related to the moduli and viscosities by the following expression, 

Shif t= 
T)v 

.G 
(co) 

T) s 
(K(co) - K(O» .. (6.2) 

If the shapes of the reduced moduli curves are not the same then the 

two processes must be different. On the other"hand, if the real parts 

are the same and the imaginary parts different or vice versa, then 

either the results are suspect or linear theory is inadequate. 

6.2 4-phenyl dibenzofuran. 

GO(w) and GII(w) were calculated from equation (2-42) (with 

k=0.9) at the frequencies and temperatures at which the absorption 

coefficient and velocity were measured. MI(w) and MII(w) were calculated 

from equations (2.14) and (2.15) and K(O) was obtained from the low 

frequency velocity and density. From the above values KI (w) and KII(W) 

were calculated from equations (2-50) and (2-51). The relaxational 

bulk modulus 
[K(") 

- K(O)] was calculated from the values of K(O)p 

M(co) and G(co) using equation (6.3) 
v 

4 K(O) i(oo) 
- K(O) G(oo) 
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The values of 
[ 

K(w) - K(O)] as a function of temperature and the 

ratio to G(oo) are given in Table AVI-1. This ratio is not constant- 

throughout the temperature range but within the relaxation range it 

has a value of 1.40 ± 0.05. The values of the normalised bulk moduli 

are given in Table AVI. 2 as a function of reduced frequency and 

illustrated in Figare 6.1, curve ITVI(w)/K(oo) - K(O), is shifted by 

1.0 on the logarithm scale. The curves have the same shape as the 

normalised shear moduli shown on Graph 2 (in the back cover) but to 

superimpose the two figures, Graph 2 musp be shifted by 0.48 ý 0.04 

on the logarithm scale. The value of TIvIT), calculated from equation 

(6.2) is therefore 4.2 ± 0.6. This is higher than the values obtained 

by Powell 
(28) 

but lower than that obtained for Bis(m-(m phenoxy phen6xy, ' 

(17) 
phenyl) ether . The various moduli as a function of temperature are 

shown in Figure 6.2. 

6.3 Epoxy Resin NY 750. 

ý-3-1- Atmospheric pressure. 

Value s of- GI (w) 
,G 11 (w) M, (w) and IT' (w) were calculate d as 

described in the previous section. K(O) and H(co) were calculated from 

V(O) and V(cx)) respectively and the dýnsity. KI(w), KII(w) and 
[K (m) 

K(O)] were calculated and the values of K(co) - K(O) together with the 

ratio of[K(()*) - K(O)] to G(()*) are given in Table AVI-3 as a function of 

t*emperature. The ratio was not constant with temperature but within 

the relaxation range it was 1.20 t 0.05. The values of the normalised 

bulk moduli are given in Table AVI. 4 and shown in Figure 6.3. (Curve 

II is shifted along the logarithm of reduced frequency axis by 1.0). 

Comparison with Graph 2 shows that the shape of the curves are identical 

and the shiftrequired to superimpose the two curves is 0.43 1 0.03 on 

the logarithm scale. The value of 7)v/rI. obtained is 3.2 ± 0.3. The 

moduli as a function of temperature are given in Figure 6.4. 

6.3.2 Pressures abovo atmospheric. 

There is no apparatus available to measure the imaginary part 
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of the shear impedance at pressures above atmospheric and therefore 

it is not possible to check experimentally the values of GI(w) and 

GII(w) obtained using the B. B. L. model. However, as seen in Figure 

5.9b, the normalised values of the real part of the shear impedance 

as a function of the reduced frequency can be described by the B. E. L. 

model and therefore it can be assumed that values of GI(w) and GII(w) 

can be obtained from this model. 

Because of the limited pressure range (0.1 to 700 M m7 
2) it 

is not possible to measure the low frequency and high-frequency velocity 

at the same temperature. The measurement of V(O) was described in 

Chapter V and K(O) was calculated from this value and the density. 

Attempts to use the same technique to measure the high frequency 

velocity were unsuccessful. The velocity was measured at 278.0 K, at 

-2 which temperature and pressures above 100 EN m it was assumed that 

there would be very little dispersion in the velocity. The results 

were very scattered and were fitted with some apprehension to a linear 

equation (5-5). The longitudinal modulus (Kw)) was calculated from 

the velocity and the density and again fitted to a linear equation to 

give 

H(co) IGN m7 
2=5.7 

+ 20.4 P/GN m7 
2 

.. (6.4) 

The value of 
6M(()')/aP (= 20-4) compares with the value of 20.7 obtained 

by Litovitz et al 
(62) 

for O. S. 124 (a mixed five-ring polyphenyl ether) 

and 18.9 for glycerol 
(65). 1K (co) -, K(O)]was calculated as before and 

.1 compared with the values of G(cn) at 278.0 K. The ratio of K(co) - K(O) 

to G(00) was found to decrease with pressure but the atmospheric pressure 

value was the same as that obtained by variation of the temperature at 

atmospheric pressure. It was also found at atmospheric pressure that 

as the temperature decreased the ratio of[K(oo) - K(O)]to G(co) decreased. 

The values of KI(w) and KII(w) were obtained as before and because of the 

difficulty in obtaining V(oo) and hence M(co), G(co) was used to reduce the 
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values of KI(w) and KII(w) and the frequency. The normalised values 

are given in Table AVI-5 as a function of pressure and shown in Figure 

6.5. The curves are identical in shape to those of the reduced shear 

moduli but shifted by 0.45 on the logarithm scale, giving the ratio 

Of T? VAS equal to 2.8 ± 0.04, this is of the same order as the value 

at atmospheric pressure. 

6.4 S. E. P. in Di-2-ethylhexyl phthalate. 

6.4.1 Atmospheric prpssure. 

GI(w) and G"(w) were calculated from the B. E. L. model at the 

same frequencies and temperatures at which the absorption coefficient 

and velocity had been measured, the latter quantities were used to 

obtain. MI (w) and M"(w) . KI (w) and K"(w) were calculated as described 

previously. In Chapter V the high frequency velocity was taken to be 

linear with temperature, however, when the experimental values were 

used ýo calculat e M(oo) and 
1 /M(oo) they were both found to be linear 

with temperature. The linear equations were as follows, 

2 
M(co) IGN m7 16.89 - 0.055 T/K .. 

(6-5) 

1/ 
M(co) / (GN m72)-j 

= 0.179 + 0.00175 T/K .. (6.6) 

Therefore, depending on which equation is used, we have three-values 

for 14(co), the highest values are given by equation (6.6). Three values 

of K(co) - K(O) were obtained at each temperature and compared with the 

values of G(co) . When V((*) was takeh to be linear the ratio K(CO) - K(O)/ 

G(co) decreased with increase in temperature but within the relaxation 

range it varied between 1.0 ± 0.2. Likewise, when 11(co) was taken to 

be linear with temperature the ratio (K((v) 
- K(O)/G(co)) decreased with 

increase in temperature and at high temperature[K(co) - K(O)]was 

negative. The ratio was constant when 
'/M(oo) 

was taken to be linear 

with temperat. ure but was high, 9.0 ± 0.1.. This is considerably higher 

(16,28) 
than expected when compared with-Di-2-ethylhexyl phthalate 
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The normalised values calculated using 
'/M(co) 

linear with temperature 

were obviously too small and K' (W) /(K(co) 
- K(O)) was not approaching 

1.0 even at fairly low temperatures (- 21.0 K) It was decided to use 

G(co) instead of[K(co) - K(O)Jto reduce KI (w) and K"(w) . The values of 

the normalised bulk storage and loss moduli are given in Table AVI. 6 

and the reduced plot is shown in Figure 6.6 (-Curve II is offset by 0.5 

on the logarithm scale). Comparison with the c'urves of G'(W)/G(co) and 

G"(w)/G(co) in Graph 2 gives a shift of 0.43 ± 0.03 on the logarithm 

scale and hence T)v/T), is equal to 2.7 ± 0.2. The moduli are shown in 

Figure 6.7, [K(co) 
- K(O)]was calculated from V(co) linear with temperature. 

6.4.2 Pressures above atmospheric. 

ljo attempt was made to measure V(c-), (a) because of the 

scatter of the results experienced with the epoxy resin and (b) because 

fairly low temperatures would be required approaching the safety limit 

of the apparatus. To measure V(O) and V(co) at the same temperature as 

relaxation is observed is not possible with the limited pressure range 

of the present apparatus. G(()*) was therefore used to reduce K'(w) and 

KVIM - GI (w), G"(w), MI (w), ITI(w), KI (w) and K"(w) were calculated as 

described before. The values of the normalised bulk storage and loss 

moduli are given as a function of reduced frequency in Table AVI-7 at 

296.2 K and Table AVI. 8 at 269.9 K. Figures 6.8 and 6.9 show the 

normalised values of K'(w) and K"(w) as a function of reduced frequency 

at 296.2 Y, and 269.9 K respectively-. In Figures 6.8 and 6.9 Curve II 

is shifted by 1.5 and 1.0 respectively. Comparison with Graph 2 gives 

shifts of 0.35 + 0.03 at 296.2 K and 0.40 1 0.03 at 269.9 K. The values 

Of 
')V/T)B 

calculated from these shifts are 2.2 ± 0.2 at 296.2 K and 

2.5 1 0.2 at 269.9 K. 

6.5 Discussion. 

6.5.1 Shear modulus. 

Fcr the three liquids at atmýosphpric pressure, J(co) was f ound 
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to vary linearly with temperature, the values of G(co) were about the same 

order of magnitude for the three liquids and other liquids 
(11,21) 

with 
2 

maximum values between 1.0 and 1.5 GN m7 . Above atmospheric pressure 

G(co) was found to vary linearly with pressure (although for Epoxy Resin 

MY 750 and S. E. P. in Di-2-ethylhexyl phthalate R (co) was also found to 

vary linearly with pressure at each temperature), maximum values of 

G(co) were greater than those obtained at atmospheric pressure (- 2 GN m7 
2 

At the glass transition temperature or pressure G(co) approaches its 

maximum value and thereafter is constant. The variation of 
aG(()*)1aP 

with temperature was found to be linear for Epoxy Resin MY 750, within 

the temperature range used. (Since only three temperatures were used 

any extrapolation outside this range should be used with great care). 

For S. E. P. in Di-2-ethylhexyl phthalate no simple variation of 
6G(a))/ap 

with temperature could be found, although the values could be forced to 

fit a linear expression, but with so few points this was not valid. 

The values for Epoxy Resin MY 750-and S. E. P. in Di-2-ethylhexyl phthalate 

compare with previous results 
(28,58,66) 

(see Table AI. 2) and confirm that 

the value is not constant with temperature. It has been suggested that 

aG(co)lar is constant for glycerol 
(65) 

. This quantity 
aG(co)/ap 

is an 

important variable in elastohydrodynamic theory 
(67) 

0 

All the reduced variables plots can be superimposed on one- 

another within experimental error and it is seen that there is no 

difference between a temperature reduced curve and pressure reduced 

curve (cf. Figures 5.9 a and b). It can be concluded that the same 

relaxation mechanism is present for the range of frequency, pressure 

and temperature used. All three liquids can be described by the B. E. L. 

model. 

6.5.2 Longitudinal modulus. 

The data available on this quantity is sparse but recent work 

using light scattering techniques 
(62,63) 

has shown that M(w) is linear 

with tempera ture and also pressdre. As-far as is known there is no work 
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. 
to show what happens at low temperatures and/or high pressures when the 

glass transition is reached. The magnitude of M(co) and to a certaiii 

extent K(O) depends on the density. For liquids with densities of 

about 1000 Ke m73 at ambient temperature, HVI 330 oil, MVI 170 oil, 
(28) 

Di-2-ethylhexyl phthalate and S. E. P. in Di-2-ethylhexyl phthalate 

m72 
I 

K(O) is about 3.0 GN and M(w) les's than 5.0 GN m -2 at the low 

temperature end of the relaxation region, whereas liquids with higher 

densities, Aroclor 1254 
(28) 

, 4-phenyl dibenzofuran and Epoxy Resin EY 

750 have values of K(O) equal to about 4.0 GN m72 and M(co) about 6.0 

-2 GN m It appears that the density is a more important quantity than 

the velocity in determining the magnitude of-M(00). The above seems to 

be true for organic covalent compounds but ionic compounds haie much 

higher values of K(O) and M((D), for aqueous calcium nitrate solution 

Ambrus et al 
(63) 

gives K(O) about 5.5 GN m7 
2 

and M(co) about 18 GN m7 
2 

the density is also higher than organic covalent compounds. Attempts 

to put some quantitative measure on the value of 14(co) failed, calculation 

of M(co at a fixed -density 
(i. e. 10*00. Kg mý'3) gave similar values for 

oils but for Aroclor 1254 and Epoxy Resin MY 750 very low values were 

obtained. Zwanzig and Mountain 
(68). 

gave the following formula for K(co) 

K(co) =5 13 G (co) + 2(P - PkBT) .. (6.7) 

where p is the number density N /V (where V is the total volume of N 

molecules)v 

kB is Boltzmann's constant (= R IN = 1.3805 x *10723 J K-1)f 

-P is the thermodynamic pressure of the fluid. 

Substituting in (6-7) for K(co) (= M(ýý, ) _4 
/3 G(, -)) we have 

M(co) 3G (co) + 2(P - PkBT) 

now PkBT NT 
v*K 

2 
.. (f. or 4-. phenyl dibenzofuran at 270. K, f", T=0.011 GN m7 , -", B 
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The quantity PkBT can be neglected in comparison with M(w) and G(()-) and 

therefore 

M(co) ý4 3G (co) + 2P 

In the present work and that of Powell 
(28) 

it is found that M(co) is 

equal to about 6 G(co) . Thus P has values between 1 .0 and 2.0 GN m72. 

Gopala Rao and Nammalvar 
(0) 

using Henderson's equation of state for P, 

found good agreement between the observed and calculated value for 

G(co). However, calculation of P from Henderson's equation for glycerol 
2 

using the quantities given yields 0.24 GN m7 , less than calculated 

in the present work. 

The value of 
8*0ý8P 

obtained in this work is very similar 

to that obtained by others, but this may have been fortuitous. The 

value of M(w) like that of G(oo) is'higher at pressures above atmospheric 

by a factor of 1.5 to 2.0 that of the atmospheric value at the end of 

the reldxation region. 

6.5.3 Bulk modulus. 

The low freqýehcy bulk modulus has been discussed earlier. 

The accuracy of the high frequency bulk modulus depends on the value 

of M(oo), since G(IO) has been well established. K(co) is important in 

determining[K(oo) - K(Og which has been found to be of the same order of 

magnitude as G(ý) and to have a similar temperature and pressure 

dependence. With all three liquids the reduced variables plots of the 

real and imaginary parts of the bulk modulus were-found to have the 

same shape as the real and imaginary parts of the shear modulus but in 

a 11 instances they were shifted to the left of the shear values. It 

can be assumed that the same mechanism is involved in both shear and 

bulk relaxations. All the data can be fitted by assuming a distribution 

bf relaxation times. The majority of the literature on viscoelastic 

relaxation has' shown that the results can only be accounted for by 

assuming a distribution of relaxation 0. times. However, there have been 
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claims that a single relaxation time is obtained, f or Soya bean and 
(24) 

Cotton seed oils . for both bulk (volume) and shear viscosities. 

The shear relaxation is attributed to a reorientational mechanism and 

bulk relaxation to a molecular packing rearrangement. In two other 

liquids, Castor and Tung oils, both processes are thought to be strongly 

coupled and therefore lead to a wide spectrum of relaxation times for 

both bulk and shear viscosities. A dubious paper(70) also assumes a 

single relaxation time for bulk and shear relaxation of an ethyl 

alcohol-water mixture. 

6.5.4 The ratio of volume to shear viscosity. 

The value of this ratio was found to be about 3 for three 

liquip. These values compare with those previously obtained by the 

same method (cf. Table AI. I). For Di-2-ethylhexyl phthalate, S. E. P., 

in Di-2-ethylhexyl phthalate and Epoxy Resin MY 750 the value of Y)vAs 

was smaller at pressures above atmospheric pressure, but the difference 

between the two values is hardly significant. Slie and Madigosky 
(65) 

found for glycerol at 299.2 K that the ratio was 0.80 ± 0.03 for 

2 
pressures up to 200 MN m7 . Their value was obtained from ultrasonic 

measurements from the formula given in (6.11). 

Tlv/y)s =4 /3 CLobs/cL., 
-'l 

Another later investigation of glycerol(71) found by changing the 

pressure from 0.1 to 100 M m72 the-ratio-changed from 1.24 to 1.16 

1.20 t 0.04). 

All the evidence to date suggests that for viscous liquids 

the ratio is constant at temperatures and pressures. 

6.5.5 The magnitude of cL. 

In previous work 
(28) 

and this work, the value of logarithm of 

maximum (1/f2 against logarithm of f at atmospheric pressure was shown 
(23) 

to fit the linear relationship of Singh and Mishra This relation- 

ship seems t'o be applicable to covalent-organic compounds. The results 
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of Ambrus et al 
(63) 

for calcium nitrate and Bogdanov et al(72) for 

bnrin nyide aave much hi, -zher values of maximum a/f2 at a fixed freauennv 

than predicted by Singh and Mishra. Nevertheless, all the literature 

seen to date gives values of a, for a structural relaxation process 

which are always higher than those'obtained from rotational isomerisation, 

vibrational relaxation and chemical equilibria. The values differ by a 

factor of 2 upwards. Therefore the value of cL will give some 'Indication 

of whether a structural relaxation is present when shear measurements 

are not available. It is doubtful if any other process could be 

detected if it takes place on the same time scale as the viscoelastic 

relaxation, Matheson and Dexter(lo) found two processes for sec-butyl 

benzene but they were separated in time, the high temperature mechanism 

was due to internal rotation-of the sec-butyl group and the low 

temperature process due to viscoelastic relaxation. A recent Russian 

(73) 
paper suggests different mechanisms for the low and high frequency 

measurements on butyric esters. 

6.5.6 Polymer solutions. 
_ 

The values obtained in this work for S. E. P. in'Di-2-ethylhexyl 

phthalate have been compar 
* 
ed with those of Di-2-ethylhexyl phthalate 

(28) 
obtained by Powell . The various quantities are given in Table AVI. 9. 

There is really no significant difference between the two sets of values, 

except perhaps. in the value of T)v/Tjs (Di-2-ethylhexyl phthalate = 1.9 

+ 0.2, S. E. P. in Di-2-ethylhexyl phthalate = 2.7 ± 0.2), but differences 

of this magnitude have been quoted before 
(16) 

polymcrs have been studied by others, Barlow et al 
(74) 

investigated polydimethylsiloxane liquids of varying viscosity in the 

frequency ranges 10 kHz to 125 kHz and 6 to 78 MHz and temperatures 

from 223.2 to 323.2 K. The data for each liquid could be reduced onto 

a single curve, but at low frequency the combined data could not be 

reduced onto. a single curve. The vAlues of the real and imaginary parts 

of the bhear modulub were found to increase. with increase in viscosity 
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at the same reduced frequency. However, as the frequency was increased 

(6 to 78 MHO the curves merged together. The results were in close 
(75) 

agreement with the theory of Rouse This theory proposes that the 

molecule is composed of sub-units whose movement is damped by the 

solvent viscosity, but the velocity of the solvent is unaffected by the 

presence of the polymer. The relaxation time of the modes of motion 

depends on the molecular weight and the viscosity. Further work by 

Barlow et al(54) on poly-l-butenes (later(76) described as isomeric 

butenes) of varying molecular-weight, the lowest molecular weight 

equivalent to eight monomer units, at low (64 kHz) and high (6-30 MIIz) 

frequencies showed that the polymer of lowest molecular weight was 

similar to that of pure liquids whereas the higher molecular weight 

samples were found to have a second relaxation process at the low 

frequency. *Similar results were found for polyethylacrylates and poly- 
(76) 

n-butylacrylates . The relaxation process at high frequencies could 

be described by the B. E. L. model, whereas the relaxation process at 

lower frequencies arose from the modeq of motion of the flexible 

polymer chain. 

The above work was concerned with 'pure' polymers, nevertheless 

work on polymers in solution has shown similar effects. Dilute solutions 
I 

of high molecular weight polystyrene in Aroclor and Di-2-ethylhexyl 

ýhthalate at low frequencies (6.016 to 400 Hz) have been investioated 

by. Frederick et al(77) , they found-that the observed frequency 

dependence of the real and imaginary shear modulus ranged from the 
(78) 

I=edictions of Rouse to that of Zimm The Zimm theory is similar 

to that of Rouse but assumes that the solvent is retarded at the centre 

of the coiled chain. The viscoelastic properties of high molecular 

weight polystyrene in a few solvents have been investigated by Lamb and 

Matheson 
(79) 

again at low frequency (40 
- 73 kHz). In a good solvent,. 

e. g. toluene and fairly dilute solutions 1- 3% w/v the results could 

be fitted to the Zimm theory with some deviations at lower frequencies, 
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but as the solvent power decreased greater deviations were obtained 

from both the Rouse and the Zimm theories. The values of GI and G"' "s 

were not self-consistent and this was attributed to the viscosity term. 

The viscosity was adjusted to make the values self-consistent and the 

results were then found to fit the theory of Rouse. From this'adjusted 

viscosity it was found that 25% of the polymer contribution to the 

viscosity does not take part in the viscoelastic relaxation. For the 

poor solvent, e. g. m6-thyl ethyl ketone the behaviour could be described 

by the Rouse or Zimm theory depending on the polymer contribution to 

the viscosity. 

There has been very little work on*the ultrasonic absorption 

of dilute polymer solutions, Mikhailov and Polunin(80) found a slight- 

increase in absorption for a Vo solution of polyisobutylene (molecular 

weight 118,000) in transformer oil compared to the pure oil at various 

pressures. They attributed the cause of the increase in absorption to 

be due to the friction between the polymer chains and the solvent. 

It can be seen frtm the a bove brief survey of polymers and 

their solutions that the effects of polymers are only seen at low 

frequency where the molecular modes are active, at higher frequency 

the viscosity has relaxed and the solution behavds like a low molecular 

weight liquid. This has been confirmed in the present work. However, 

jhe effect on the absorption coefficient of the longitudinal waves was 

small and therefore suggests that in this solution (S. E. P. in Di-2- 

ethylhexyl phthalate) there is very little friction between the polymer 

chains and the solvent. 
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MICELLE SYSTEMS 
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7.1 Introduction. 

This chapter is devoted to a preliminary investigation of 

micelle solutions. It was intended to measure the absorption 

coefficient, velocity and density at pressures above atmospheric 

pressures However, in the presence of these solutions the transducer 

was detached from the quartz rod and therefore only the velocity and 

density were measured. Section 7.2 deals with the effects of pressure 

on solutiQns of decyltrimethylammonium bromide, while in Section 7.3 

the shear properties of a liquid crystal system are investigated. 

7.2 Attempts to determine the critical micelle concentation. at 
various pressures. 

'7.2.1 Introduction. 

At the start of this work only a few studies had been made 

of the effect of pressure on the critical micelle concentration (c. m. c. ) 

in aqueous solutions. Hamann 
(81) 

studied the effect of pressure (to 

200 EN m -2 ) on solutions of sodium dodecyl sulphate. He argued that an 

increase in pressure should raise the c. m. c. This was found to be true 
I 

for sodium dodecylsulphate 'at prepsures below 100 MR m72 
, however, above 

100 EN m -2 the c. m. c. 
decreased 

with increase in pressure. Hamann 

suggested that the micelles were more dense than the free ions which 

may have been caused by either the partial freezing of the hydrocarbon 

chains within the micelle, or the hydrocarbon interior within the micelle 

was more compressible than the hydrocarbon chains of the free ions in 

water. Tuddenham and Alexander 
(82) 

investigated the effect of pressure 

(to 300 M m72) on octyl, decyl and dodecyltrimethylammonium bromide. 

They foýnd the same effect as Hamann, that is, the c. m. c. increased 

followed. by a decrease with increase in pressure. The partial molar 

volume change (5-) was found to change sign with increasing pressure, 

at low pressures (up to 100 M M72) it was positive whereas above this 

pressure it-was ndgative. Several pla"ible explanations were put 

forward iiqcluding the fact that the viscosity of water passes through 
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a minim= at about 100 MN m7 
2 

and then rises rapidly with increase in 

pressure. Dodecyl ammonium chlorides were also found to show the s6Lme 

pattern of behaviour up to 500 MR m72 
(83,84). 

In all the above 

investigations the c. m. c. was determined from conductivity measurements, 

therefore it would be useful to compare with measurements obtained by 

another technique. A series of sodium alkylsulphates have been studied 

at atmospheric pressure and 303.2 K by Shigehara 
(85). 

The c. m. c. was 

determined from the compressibility which in turn was obtained from the 

measurements of velocity and density. The graph of velocity against 

density shows a break at the c. m. c. The compressibility is closely 

related to the hydration of the solute in solution. Shigehara showed 

that the compressibility of the micelle and the molar volume of the 

methylene group in the micellar state were constant and independeilt of 

the number of carbon atoms in the alkylsulphate molecule. The value 

was nearer to that of a liquid rather than solid hydrocarbon. It was 

concluded that the hydrocarbon interior was liquid in nature. Sound 
(86) 

velocity measurements were also used bv Rassing et al to determine 

the c. m. c. of a larger series of alkylsulphates (C 
5 

to C 11 
). The 

values obtained compared with those from reaction rates ( c. m. c. ='ýa/ 

k where k- and k are the association and dissociation rate constants d' ad 

respectively 
) and from other published c. m. c. data. The success of 

the velocity method prompted an investigation of decyltrimethylammonium 

brpmide at pressures above atmospheric. 

7.2.2 Theory. 

The change of c. m. c. with pressure has been shown by Tuddenham. 
(82) 

and Alexander to be related to the partial molar volume change by 

the following equation. 

RT a(ln c. m. c. 
ap 

The formu-la was derived by*two different methods each one making certain 

I assumptions. 
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The compressibility is related to the velocity and density 

by the Laplace equation (7.2), 

1--f7.2) 

v2pk 

Therefore from the density and velocity all the above quantities can 

be calculated. 

1 7.2.3 Experimental and results. 

Decyltrimethylammonium bromide (ex. Pfaltz and Bauer) was 

used to prepare the following aqueous solutions 0.005,0.01,0.04, 

0.05,0.2,0.1,0.5 and 1.0 molar. The density was measured at a few 

temperatures at atmospheric pressure and at 298.2 K at preSSUrEsabove 

atmospheric. The apparatus for both sets of measurement was described 

in Chapter 111 (3-5). At atmospheric pressure the density varied 

linearly with temperature, the parameters for the linear equation for 

the solutions are given in Table AVII. 1. The high pressure measure- 

ments which are shown in Figure 7.1 were fitted to the linear secant 

modulus equation, the parameters of which are given in Table AVII. 2. 

The velocity was measured with the velocimeter described in 

Chapter 111 (3-4.2). The apparatus is capable of providing very 

accurate measurements of velocity which are required to detect the 

break in the curve of velocity against concentration to give the c. m. c. 

]3if. ficulties were experienced with these measurements. At atmospheric 

pressure with the Townson and Mercer bath the measurements were 

reproducible to - 0.01% with both cells. (Atmospýeric pressure cell, 

spacer length 5.5 = and high presýure cell, described by Powell 
(28) 

). 

Nevertheless, when the cell was used in the high pressure apparatus the 

results were only reproducible to ± 0.201o, which was unsatisfactory for 

the calculation of the c. m. c. The poor reproducibility was attributed 

to poor temperature stability and/or pressure stability. The temperature 

stability was not better than 0.1 of a degree, which was inadequate. The 

glass matting, surrounding the aluminium bath, had cracked through 
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constant use at low temperature and was therefore renewed, but the. 

slight improvement in temperature stability was still insufficient to 

achieve accurate measurements of velocity. After extensive measure- 

ments had been made it was decided not to pursue the velocity measure- 

ments, which would probably only be improved by the construction of a 

more suitable bath and/or pressure system. At high pressure the indium 

bond seemed to be attacked by the solutions and in two instances the 

crystal was detached from the quartz rod. 

With only reliable density measurements available the 

compressibility could not be determined. However, the density measure- 

ments may allow the c. m. c. to be determined. It is seen from Figure 

7.1 that below a concentration of 0.1 mol dm73 there is very little 

change in the density with concentration, on the other hand, above 

0.1 mol dm73 there is a marked increase in density with concentration. 

At 298.2 K and atmospheric pressure the c. m. c. of Decyltrimethylammonium 

bromide is 0.054 to 0.06 mol dm73 
(86) 

. The density was plotted against 

concentration at fixed pressures, the results are given in Table AVII-3 

and illustrated in Figure 7.2. From Figure 7.2 it can be seen that there 

is a discontinuity in the. graph in the region of 0.08 mol dm-3 at all 

pressures. Plotting the results on a linear concentration scale, the 

discontinuity was found to be about 0.05 mol dm73 at all pressures 

except atmospherico in which case the density was linear with 

concentration. To measure the discontinuity accurately, the density 

woula have to be determined to at least 0.01% instead of . 0.1%. From 

the present density measurements neither the c. m. c. nor the variation 

of the c. m. c. with pressure can be obtained with sufficient precision. 

7.2.4 Discussion and conclusions, 

This Part of the work was unsuccessful in achieving the 

objective, namely to determine the c. m. c. at various pressures from the 

compressibility ana hence to calculate,. the partial molar volume. After 

this lqcrk had progressed, -i. e. ' all the density and some velocity 
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measurements had been made, a paper by Tanaka et al 
(87) 

was published 

on the partial molar volumes of surfactants under high pressure. Among 

the compounds studied was decyltrimethylammonium, bromide. They found 

the partial molar volume decreased with. increase in pressure in the 

micelle state for all compounds and in the singly dispersed state for 

the alkyl ammonium bromides, whereas the sodium alkylsulphates in the 

singly dispersed state behaved differently, there was an increase with 

increase in pressure. The difference between these two series of 

surfactants was attributed to the difference in the partial molar 

volume of the inorganic ions. Two more recent papers by Tanaka et al 
(83189) 

show for sodium dodecyl sulphate 
(88) 

that the initial 

compression, due to the increase in pressure, causes the micelle to 

disaggregate forming smaller . micelles. The other paper(89) deals with 

dodecyltrimethylammonium bromide in aqueous urea solutions. 

The c. m. c. increased with increase in concentration of urea 

at all prepsures but the variation of c. m. c. with pressure was less 

the higher the concentration of urea. It was also found that the 

partial molar volumes of the micellar state and singly dispersed state 

were constant and increased with the addition of urea respectively. 

In these recent papers the c. m. c. was again determined by conductivity 

measurements. In the present work it has not been possible to confirm 

the above findings using a different technique and therefore doubts 

still exist concerning the effect of pressure on micellar systems. 
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7.3 Shear properties of aI liquid crystal' . 

7.3.1 Introduction. 

The properties of 'liquid crystals' or crystalline phases 

are becoming increasingly important, especially in the field of 

medicine and detergents. Winsor(90) has reviewed the amphiphilic 

compounds of liquid crystalline solutions with regard to phase changes 

and other physical properties. However, to date only a few reports 

have appeared of the response to shear and ultrasonic waves. Lee et a' 

have shown that liquid crystals have different values of the shear 

impedance when orientated in different directions. The nematic and 

isotropic states of p-methoxybenzylidene-p-ný-butylaniline gave values 

of the real (R 
8) and imaginary (x 

s) parts of the shear impedance which 

were equal for the three orientations in the isotropic state but varied 

according tb the direction for the nematic state. The real part was 

larger than the imaginary part and both values were very close to that 

expected from a Newtonian liquid. Barlow and Letcher 
(92) 

found that 

in the nematic state of ethyl p(p-methoxybenzylidene amino) cinnamate 

Rs was equal to the Newtonian value within experimental error at 30 

and 450 MHz- on the other hand, the smectic states of ethyl-p-azoxy- 

benzoate arýd heptyloxyazoxybenzene gave Rs values lower than those 

expected from Newtonian liquids. The latter was attributed to either 

ýhe material being viscoelastic cr the shear impedance was a measure 

of Ahe low viscosity component. The only significant increase in R 
8 

was obtained for ethyl-p-azoxybenzoate at its melting point, attributed 

to the shear wave transmission into the solid. Both shear and ultra- 

sonic measurements have been made by Dyro and Edmonds(93,94) on C-18 

unsaturated fatty acid esters of cholesteral. The shear wave measure- 

ments show a slight deviation from Fewtonian behavicar as the 

cholesteric phase is reached and then a greater increase in deviation 

from the Pholesteric to sm6ctic phase. The values of R and X were ss 

not affected by the orientation. The hichest values of GI(w) were 
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mainly confined to the smectic phase and were three orders of 

magnitude less than G(OD) obtained for typical organic liquids. In the 

ultrasonic measurements Oo to 70 Iffiz) there was no anomalous behaviour 

of the absorption coefficient or velocity at either of the two phase 

transitions namely isotropic to cholesteric and cholesteric to smectic. 

From the temperature dependence of the ratio-T)v/r),, they suggested that 

both structural and thermal relaxations were taking place. This was 

in partial agreement with Zvereva and Kapustin(95) who thought that 

only a structural relaxation (a phase transition type) was taking place 

in cholesteryl caprate. 

The system chosen for study in the present work was an aqueous 

solution of cetyltrimethylammonium, bromide (cetrimide*_ antiseptic 

detergent). This system has been studied semi-quantitatively in the 

(96,97) 
presence of naphthalene derivatives by Nash The solutions were 

found to have pe culiar mechanical properties. Ekwall et al( 
98) have 

investigated the system cetrimide, hexanol and water and found 

different phases, depending on concentration. There was a phase change 

for the binary mixture cetrimide-water at 25 to 2Vo W/W cetrimide, and 

several phase changes in the ternary mixtures. The homogeneous phases 

LE and D were an isotropic aqueous solution, two dimensional 

hexagonal mesophase and lamellar mesophase respectively. The shear 

properties of these phases have now been studied. 

7.3.2 Preparation of phases and shear measurements. 

All measurements were made at 298.2 K using the shear 

spectrometer described in Chapter 111 (3.2). Cetrimide (ex. B. D. H., 

m. p. 503.2 - 513.2 K with decomposition) was used as received to prepare 

a 4Q% W1w solution in water (Phase E) . After measurements of Ra it was 

diluted slowly with water to give a lWo W/W solution. There was no 
(98) 

evidence of the rigid fairly clear gel at 4W- w/w described by Ek-wall 

A further sample of cetrimide (ex. B. D. H. ). was obtained and recrystal- 

lised from acetone and ethanol Io give a white powder (M. P. 503.2 
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513.2 K with decomposition). Preparation of phase B gave, after 

removal of' the foam by centrifugation, (2000 r. P. m., 300 s) a fairly 

clear rigid gel. The gel was diluted with water to give a 3Wo W 1w 

cetrimide in water and a gelatinous solution, and then 2Wo w/w, giving 

a solution. The ternary mixture cetrimide, water and hexanol (ex. 

B. D. H. ) 40 : 40 : 20 (phase D) gave a mucoid cloudy mass. The viscosity 

of phase E was measured with a Ferranti-Shirley viscometer; other 

viscosities-with suspended level viscometers. 

7.3.3 Results and discussion. 

The results are tabulated in Table AVII-4. With all the 

phases measured, Rs was found to be less than 0.02 
'EX s m73, i. e. 

within the experimental error of the apparatus. Values of Rs expected 

for a Newtonian liquid for the lWo w 1w and 40 W/w solutims were of 

the same order of magnitude. However, the Newtonian value of R for 
8 

the gel would be greater than 0.5 EN s m73 and would be measureable 

w with the present apparatus. The viscosity of the rigid gel (49.3% /w 

cetrimide) was shear rate dependent. It range d from 2.85 Ns M72 at 

86.5 8_1 to 0.002 Ns m7 
2 

at 3,460 s-1 and was independent of the 

previous history of the sample. The ternary mixture supported its own 

weight for about two months and thereafter began to flow, but the bulk 

of the material was still gel-like, it was only the surface which had 

lost its gelatinous nature. 

7.3.4 Conclusions. 

There was no change in the measured shear properties across 

any of the phases, L, E or D. The present spectrometer may not have 

been sufficiently sensitive to detect any small changes. Viscosity 

measurements on phase B showed it to be thixotropic. 
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CONFORMATIONAL ANALYSIS 
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Introduction. 

The passage of an ultrasonic longitudinal wave in a liquid 

takes place adiabatically. Pressure variations of 0.03 atmospheres 

and temperature variations of 0.002 degr'ees(99) take place in the 

liquid due to the passage of the wave. The local temperature variations 

will affect the equilibrium constant. At sufficiently low frequencies 

the equilibrium constant will fluctuate with the temperature variations, 

but as the frequency is increased then the chemical equilibrium does 

not adjust so quickly and there is a phase lag which gives rise to 

excess sound absorption. The frequency range in which this occurs is 

related to the chemical reaction rates and the relaxation time. In 

principle the ultrasonic technique can be used to measure reaction 

rates and enthalpy changes. It is an accepted physical chemistry 

method for rates of conformational changes and has been used for many 
(100-110) 

years by several workers in various countries The majority 

of the above papers are concerned with rotational isomerisation at 

atmospheric pressure. The isomerisation is readily perturbed by the 

small pressure and temperature changes within the sound wave, if the 

relaxation frequency is of the same order of magnitude as the 

experimental frequency range. However, to date there has been a paucity 

of works dealing with the effect of increased pressure on such systems. 

The relaxation frequency of Triethylamine was found to be independent 

2 (111) 
. 

(112) 
of pressure up to 300 M m7 Slie'and Litovitz studied the 

rotational relaxation in ethylacetate at pressures up to 100 EN m72 

but their work was in disagreement with the work of Kallyanov and 

11ozdrev 
(113). 

Slie and Litovitz found that the relaxation frequency 

was independent of pressure but was not constant at constant density, 

whereas Kallyanov and Nozdr. ev found at constant density, ' fc, was 

independent of density. Mamedov(114) has found similar behaviour for 

crotonaidehyde, namely the relaxation frequency was independent of 

density. A search of the chemiLl literature including the Science 
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Citation Index for reference 112 revealed very little on this topic. 

Therefore, with the exception of some Russian papers(115'116) , it is 

concluded that there are no other references to ultrasonic work on 

the effect of pressure on rotational is6merisations. 

In the applicatiop of the ultrasonic method to determine 

equilibrium parameters, two assumptions are made, first, that we are 

concerned with a first order rea ction and secondly, that 
AV /V . CP161,6 

is small compared with 1.0. (see later) . For ethylacetate this was 

shown to be a correct assumption, but Wyn-jones 'et al(l 
17,118) have 

shown that f or certain compounds the second assumption is incorrect. 

Volume changes of the order of 2% were found and the sign of these 

volume. changes appeared to depend on the dielectric constant of the 

medium. The effect of these volume changes will affect the equilibrium 

constant (K) and therefore should have some effect on the relaxation 

frequency. To test this hypothesis a compound was chosen which has 

been shown to have a volume change, when investigated in solution. 

1,1,2 Trichloroethane, which has been studied by Padmanaban 
(105) 

in 

the pure state and by Wyn-Jones et al(117) in various solvents, was 

chosen. At atmospheric pressure 1,1,2 Trichloroethane has a relaxation 

frequency within the experimental frequency range. at temperatures 

between 275 and 330 K. 

8.2 Theory 

A two state process is assumed I- II with I being the 

lower energy state. The process is characterised by a single relaxation 

time. The absorption coefficient (Q) and frequency (f) are related to 

I the relaxation frequency (f 
C= 

1/27rr) by the following equation: 

a, A+B 
F2 `i+(f If 

cy2 

where A is a relaxation parameter, 

B represents the contribution t0 ýlf '2 
from shear viscosity and 
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any other relaxation processes having a relaxation much greater 

than f 
c 

When a two state unimolecular equilibrium is perturbed by a sound wave, 

then the relationship between the rela: ýation parameters and the thermo- 
(119) 

dynamic equilibrium parameters is given by Matheson namely; 

AVfcp/ (Y - 1) %= 

R[ 
LH ]2 [1 

_ 
]2 

RT VA H-6 
exp 

_(-W/RT) 
(I + exp(-8G/RT)) 

2 

where C is the specific heat at constant pressure, 
.P 
VL is the velocity of sound in the liquid, 

y is the ratio of specific heats, 

V is the molar volume, 

&V is the volume change, 

AG is the Gibbs free energy difference, 

AH is the enthalpy of activation, 

0 is the thermal expansion coefficient, 

R is the gas constant. 

.. 
(8.2) 

AH obtained from ultrasonic measurements has not always agreed withA. H 

obtained by other technquies (infrared spectroscopy). The assumption 

JAV/V Cp/, 61<<, AH, which simplifies equation (8.2), has been thouzht 

to be a possible reason for this discrepancy. Measurements at pressures 

greater than atmospheric should allow us to test this assumption. 

8.3 . 1,1,2 Trichloroethane. 

Trichloroethane exists in the following conformations, 

c cl 

Cl" 'H 

cl cl 

H' cl 

cl 
cl cl 

till'. 'H 

IT 



152 

the more stable trans isomer I which has two optical isomers of equal 

energy and the gauche isomer II of higher energy. The infrared 

spectrum of the compound has been studied by Harrison and Kobe 
(120) 

and the fundamental bands assigned. Some of these bands were found to 
(121) 

disappear on solidification irdicating that only one isomer is 

present in the solid state. The solid form was also produced by 

pressure at ambient temperatures (much higher pressures than used in 

the present work). The initial high pressure solid was primarily the 

more polar gauche isomer 
(122) 

. Relaxation times and free energy of 

activation in solution have been obtained from dielectric studies 
(123) 

N. M. R. spin relaxation times 
(124) 

and activation energy from N. M. R. 

studies 
(125) 

have been obtained in solution. 

8.4 Experimental. 

1,1,2 Trichloroethane (ex. R. N. Emanuel) has to be stabilised 

and therefore, was used as received. It was not expected that any Small 

amounts of impurities would affect the results, this assumption has been 
(105) 

supported by Padmanaban . The absorption coefficient was measured 

at four frequencies (5,15,25,. 35'. MHz) in the pressure range 0.1 to 

250 10 m7 -2 at three temper . atures (283.4,293.2 and 313.2 K) using the 

apparaýus described in Chapter 111 (3-3.2). Under the same conditions 

of temperature and pressure the velocity was measured by the method 

described in Chapter 111 (3-4-1). 

8.5 Analysis of results. 

The velocity was found to be independent of frequency over 

the range of pressure and temperature used and to increase with increasing 

pressure. The absorption coefficient decreased with increasing pressure. 

The variation of absorption coefficient and velocity at 293.2 K are 

illustrated in Figure 8.1. The limited frequency range (5 to 35 MHz) 

made the analysis extremely difficu-it. However, a comprehensive survey 

of the expe. rimental'data stiowed it to be consistent with the followil-e; 
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A and B decrease with increasing pressure and fc remains fairly constant, 

to within 
±2 nHz. In conformational analysis, at a fixed frequency, 

CL/f2 reaches a maximum with temperature, at this temperature (at which 

a/f2 reaches the maximum) the relaxation frequency is equal to the 

experimntal frequency. If the relaxation frequency changes with 

pressure then the graph of cL/f2 versus temperature at a fixed frequency 

should show some change with increase in pressure. The experimental 

results of Q/f2 at 5,15 and 25 MHz were plotted against temperature 

and the shape of the graphs was unaffected by an increase in pressure. 

I 

8.6 Discussim. 

The relaxation frequency could not be determined to better 

than ±2 EHz (i. e. 
± 10), the values'of A were thought to be less 

accurate and therefore could not be used in equation (8.2). The 

relaxation frequency was used to determine the volume change expected 

for a variati on of relaxation frequency of ±2 EHz. 

For a kinetic process the relaxation frequency is related to 

the reaction rate constants as follows; 

27rf 
c 

kb +kc 

where kb is the reaction rate constant for I 

and k 11 11 it 11 11 f or II 

27rf 
and k Z-ý 

c1 +K 

where K is the equilibrium constant. 

From reaction rate theory we have 

.. (8.3) 

.. (8.4) 

K=C exp LE! 
- 

Me AS I- 
RT TF+R *9(8-5) 

where C is a constant depending On temperature, 

AEW is the energy difference between the activated state and the 

less stable isomer, 

AS`x is, the entýopy difference between the'abtivated state and the 
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less stable isomer, 

LV is the volume difference between the activated state and the 

less stable isomer. 

Now from equations (8-4) and (8-5) we have 

log, 0[ 

fC2 ]_ ýpl - P2) 'ý'V31 
fcl 2.3.03 RT - 

and substituting the limits for fc from section 8.5 into equation (8.6) 

for*the pressure range 0.1*to 250 DW m7 
2 

and temperature range 283.4 

to 313.2 K gives values 'of EV VE 
equal. to about ± 2%. Therefore, for V 

any increase in pressure to have any effect on the relaxation frequency 

a volume change greater than ± 2% would be required. The above findings 

show that this work is not inconsistent with previous work, nevertheless 

it does not show conclusively that a volume change occurs in the 

transition from. I to II for 1,1,2 Trichloroethane. 
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ASSESSMENT AND CONCLUSIONS 
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This work has shown the versatility of the ultrasonic 

technique. The technique has been used to study intramolecular movement 

of atoms, i. e. rotation within a molecule, movemnt of molecules to and 

from a group of molecules (micelle state) and lastly structurai'movement. 

Discussing the latter first, the ultrasonic and viscoelastic 

properties of the three liquids, 4-phenyl dibenzofuran, Epoxy Resin My 

750 and S. E. P. polymer in Di-2-ethylhexyl phthalate, agree with previous 

findings and show that the shear and bulk properties of these liquids 

have a common origin, described by the relaxation of defeqts within the 

liquid. The chemical nature seems to be of very little significance, 

although the chemical nature determines to some extent whether the 

liquid supercools and therefore, can be investigated by this method. 

A fair number of compounds hdve been investigated over the years but 

the number is small in comparison with the possible number of compounds 

available. Some theoretical treatments have also shown that the shear 
(126) 

and bulk properties should have a common origin and that the shear 

and bulk viscosities are approximately the same. The ratio of volume 

to shear viscosity in the three liquids was approximately the same and 

was constant with temperature and pressure. For rotational and thermal 

mechanisms this is not so; with increase in pressure the ratio of 

volume to shear viscosity decreases and increases with increase in 

temperature. The frequency region of excess ultrasonic absorption 

depends on the temperature in shear and rotational mechanisms but the 

vibrational frequency is unaffected by temperature. The magnitude of 

the absorption coefficient and velocity dispersion predict a structural 

relaxation which can be easily confirmed by shear measurements. 

Once a structural relaxation has been confirmed then the 

reduced variables plot can be obtained. These plots are very similar 

for many liquids studied. Therefore, once the viscosity function is 

known, -most other behaviour (shear and. bulk) can be calculated, i. e. 

the effect. at frequency, temperature and pressure. The shear modulus 
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does not vary much throughout the temperature range, and for most 

liquids studied G(oo) is of the same order of magnitude f or each liquid. 

Because the viscosity is such an important quantity, then it 

(60) 
may be possible to design lubricants with specific properties The 

viscosity required could be achieved by introducing specific groups at 

strategic points in a molecule or the introdaction of impurities. 

Ilowever, it is doubtful from previous evidence if compounds can be 

designed with rheologically different properties from those which exist 

at present. 

Theoretical treatimnts of viscosity and shear and bulk moduli 

have been many and varied and often only applicable to a few closely 

related compounds and not universally applicable. 

Although the work has shown common features for most liquids 

the work on bitumens shows that care must be taken before. the method 

is applied universally. The time temperature superposition principle 

cannot be applied without some previous knowledge. Initially there 

was nothing to suggest that Kuwait bitumen would not obey this rule. 

A closely related material (although different from most bitumens) 

Xiri 150/250 did obey the. rule. Bitumens are complex materials whose 

chemical and structural properties are not fully known. 

A disadvantage of the technique at present is that it can 

only be applied to fairly viscous liquids which are usually supercooled. 

A lot of inf ormation would be obtained if symmetrical molecules could 

be studied; we may find that these molecules have a single relaxation 

time or perhaps a much narrower distribution of relaxation times. 

The other two parts of the work were hindered by the fact 

that the. apparatus had been designed for the above work and different 

types of liquids, where extreme accuracy of temperature and pressure 

were not so important. In particular the rotational isomerisation 

work required a slightly*different absorption cell. Nevertheless, some 

useful resýilts were obtained which will help future work. To establish 
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the theory about volume changes and relaxation frequency much more work 

should be carried out, namely the dilution technique 
(118) 

should be 

applied to ethylacetate, where there was no change in the relaxation 

frequency with pressure. At present only 1,1,2 Trichloroethane has 

been studied by the dilution technique and pressure variation, which 

was inconclusive. 

The technique has been used for a number of years but it is 

still in its irfancy. 'If it is to gain wide support and use the 

apparatus would have to bQ automated. It can be compared with other 

spectroscopic techniques where it was not until they were widely used 

týhat the full potential was realised. It has an advantage over infra- 

red sp9ctroscopy in that prominent relaxations can be observed when 

there is less than 1% of the molecules in the excited state. Any 

technique which is sensitive at this level must surely be significant. 
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APPENDIX I 

Table AI. 1. Literature values of the ratio of volume viscosity (71) 
to shear viscosity (Tjs) as a function of. pressure or 
temperature. 

Compound 

Glycerol 
(299.2 K) 

Carbon tetrachloride 

Toluene 

Chlorobenzene 

Cyclohexanone 

propane 

Cyclopentane 

Acetone 

n-hexane 

n-heptane 

n-octane 

Argon 

Isobutyl bromide 

! ýYdrocarbon oil 
(M. W. 300) 

Dichloromethane 

Liquid metals 

Fused salts 

Calcium nitrate 
solution 

'Di-2-ethylhexyl 
phthalate 

Temperature- 
or Pressure 

0.01 111, M72 
4.73 

10-14 
19-43 

253.2 K 
193.2 K 
243.2 K 
253.2 K 
153.2 K 
183.2 K 
193.2 K 
423.2 K 

123.2 K 
83.2 K 

273.2 K 

223.2 K 
323.2 K 

293.2 K 

223.2 K- 273.2 K 
243.2 K- 333.2 K 

b- 400 Mt, In7 
2 

0.78 
0.77 
0.79 
0.83 

2.5 1.5 
1.7 0.2 
1.6 0.2 
0.4 0.1 
1.1 0.1 

«< 0.7 

--e 2.0 

7.0 1.0 
6.0 1.0 
6.0 l. () 

0.9 0.5 

0.44 

1.33 

1.4 

0.4 4. o 

1 to 27 

Reference 

65 

127 

128 

129 

130 

131 

132 

127 

8.3 63 

3.0 0.3 16 
1.9 0.2 28 
1.2 0.2 28 

(cont.. ) 
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Table AI. 1 cont.. 

Tri-orthotolyl 230 K 3.0 ý! 0.3 15 
phosphate 310 K 

3 -phenyl propyl 1.61 10 
chloride 

sec. butyl benzene 3.86. 

Bis, -Em(m-phenoxy 
phenoxy)phenyl] 

267.2 K- 5.3 17 
ether 

370.2 K 

Hydrocarbon oil 
HVI 330 243 - 303 K 0.64 0.2 28 

it LVI 260 247 - 303 K 1.05 0.2 

it MVI 170 249 - 300 K 0.93 0.2 
Aroclor 1254 240 - 300 K 3.2 0.2 
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Table AI. 2. Literature values of moduli. 

X=A+ BY 

-2 where X. = G, J, K, M(w, P, T) in GN m 

Y=T in K or P in GN m -2 

Compound and Modulus A B Reference 

OS 124 (mixed isomeric 5 ring 
polyphenyl ether) - 

M (cx,, 0, T) 19.9 -0-051 62 

K(0,0, T) 6.64 -0.0122 
i (()D, 0, T) -0-474 0.0051 12 

Di-2-ethylhexyl phthalate 

J (o: 6,0, T) -1.664 0.0138 16 

to -2-31 0.017 21 

Bis 4m-(m-phenoxy phenoxy) 
phenyl] ether 

K(0,0, T) 7.193 -0-0135 16,12 

J (co, 0, T) -1.011 0.0075 it 

Tri-orthotolyl phosphate 

1 (00" 0, T) -0.167 0.0041 15 

Benzyl benzoate 

J(CO, 0, T) -2-454 0.0168 133 

3-Phenylpropyl chloride 

J(co, 0, T) -1-573 0.0144 10 

Sec. butylbenzene 

J00,0, T) -1.186 0.0138 10,21 

Isopropyl bromide 

i(co, 0, T) -1.826 0.020 21 

n-propylbromide 
J (co, 0, T) -1-839 0.0198 21 

Di-isobutyl phthalate 

1 (0., 0, T) ý1 . 676 0.0126 21 

(cont.. ) 
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Table AI. 2 (cont.. ) 

Di-n-butyl phthalate 
i (CO, 0, T) -2-712 0.0193 21 

Castor oil 
J (co, 0, T) 0.054 0.005 12 

Lubricating oil HVI 330 

m(o., 0, T) 9.38 -0.0223 28 

K(0,0, T) 5.5 -0.012 
J (()*, 0, T) -4-734 0.0276 

Lubricating oil MVI 170 

M(Oo, 0, T) 9.55 -0.0232 28 

Y, ( 0,0, T) 4.6 -0.009 it 
J(co, 0, T) -3-341 - 0.0202 is 

Lubricating oil LVI 260 

J(oo, 0, T) -2.660 0.0172 28 

Aroclor 12ý4 

Y(co, 0, T) 14-17 -0-0301 28 

K (0,0, T) 6.85 -0-013 it 
i (co, 0, T) -1.886 0.0103 11 

Glycerol 

M((v, 0, T) 11.59 -0-0815 65 
K(0,0, T) 4.91 0.0125 11 
G (co, 0, T) 2.65 0.0274 it 

)S 124 

lq(c*, P, 295) 4. E33 20.7 62 

K(0, P, 29 5) 3.01 3.2 it 

K (CO, P, 29 5) 4.12 13.9 

G(po, P, 295) 0.53 5.1 

is-[ra-(m-phenoxy phenoxy) 
phenyl] ether 

G (1)0, P, 3 03) 0.79 5. o 66 

(cont.. ) 
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Table AI. 2 (cont.. ) 

Di-2-ethylh6xyl phthalate 

G (w, P, 3 03) 0.50ý 2.5 66 

G (c*, P, 3 03) 0.28 1.6 57 

G(w, P, 243) 0.54 2.6 57 

Lubricating Oil LVI 260 

G(oo, P, 288) 0.33 2.0 28 

G(po, P, 303) 0.31 1.6 11, 

Aroclor 1254 

G (co, P, 3 03) 0.86 3.8 28 

G (co, P, 313) 0.64 3.7 11 

Castor Oil 

G(co, P, 303) 0.637 1.5 58 

Glycerol 

K(0, P, T) K(O, 0, T) 10.8 65 

K (w, P, T) K (()o, 0, T) 14. ý 11 
M (co, P, T) M(oo, 0, T) 18.9 11 

G (oo, P, T) G (co, 0, T) 3.2 it 
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APPENDIX III 

- Preparation of 4-phenyldibenzofuran. 

Ph Ph 

-Tr % 

CýO-: Jo (Dýo 

Ph Ph 

(j) 2-(21-phenylphenoxy) cyclohexanone, III. 

2-chlorocyclohexanone, I (358 g), dry sodium ortho phenyl 

phenate (424 g) and ortho phenyl phenate, II (1600 g) were heated (410 
- 

420 K) for 12 hours. After cooling the mixture was poured into water 

and the resulting brown oil was ether extracted. The ether extract was 

washed well with dilute sodium hydroxide solution followed by water and 

then dried (Na SO The ether was distilled off and the residue 24 

distilled in vacuo to give a pale yellow oil (b. p.. 435 - 440 K/0.6 

(ii) Cyclodehydration of 2-(21-phenylphenoxy) cyclohexanone. 

2-(21-phenylphenoxy) cyclohexanoneIII (- 200 g), phosphorus 

pentoxide (400 g) and phosphoric acid (0.2 L) were heated (373 K) for 

3 hours. After cooling the reaction mixture was Poured into water and 

ether extracted. The ether extract was washed twice with dilute sodium 

hydroxide solution followed by water and dried (Na 
2SO4 

). The solvent 

was distilled off leaving a solid material which was recrystallised 

from ethanol to give yellow crystals (m. P. 315.5 K). 

(iii) Dehydrogenation of 4-phenyltetrahydrodibenzofuran IV. 

4-'phenyltetrahydrodibenzofuran (147.5 g) and 5% palladium on 
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charcoal (52.2 g) were heated (573 K) for 16 hours. The dehydrogenation 

Froduct was dissolved in benzene and hot filtered to remove the 

: catalyst. The concentrated solution was distilled to give 4-phenyl 

dibenzof uran, a pale yellow oil (b. p-. .. 451 - 453 K/O. 6 mm) . The infra- 

red spectrum showed no OH or CH2. Gas chromatographic analysis showed 

less than 1% impurity to be present. 

Preparation of S. E. P. in Di-2-ethylhexyl phthalate solution. 

Styrene-ethylene propylene (S. E. P. ) (45.0 g, 0.56 x 1073 g. 

mole. ) was dissolved with stirring into warm (327.0 
- 337.0 K) di-2- 

ethylhexyl phthalate (ex Lankro Chemicals Ltd. ) (3-0 litres, 7.55 

mole. ). After standing at room temperature the solution was filtered 

through glass wool to remove some gelatinous particles. The residue 

was taken up into toluene and the polymer precipitated with methanol 

(0-833 a of polymer). 

w S. E. P. in Di-2-ethylhexyl phthalate sol. = 1.47% /v 

Molar ratio ;J1: 7.4 x 10-5 
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APPP. TJT)TY TIT 

Table AIM. Pit of density-temperature results to a linear equation. 

p/, Cg m73 =A+B T/K 

Bitumen A B 

Kuwait S. B. 80/100 

Miri 150/250 
11 

1207.3 

1179.2 
'1 

-0.623 

-0-523 

Table AIV. 2. Fit of viscosity-temperature results. 

Kuwait S. B. 80/100 

logl O(TJIN S M72 -0-54. + (,, /K 
4.22 

_ 101) 2 

Mri 150/250 

log, O(TIIN 
s m7 

2 17-189 -17.970 
x 103 

+ 
4.219 x 10 6 

T/K 2 
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Table AIV-3. Bitumen Kuwait S. B. 80/100. 

Values of the normalised shear resistance as a function 
of the reduced frequency and temperature. I 

Temperature/K Rs (w, T) /R 
s 

(w, T) log 101 w -q s( 
0) IG (cý) 1 

389.7 0.164 -1.312 
0.259 -0.834 
0.319 -0.612 
0.406 -0.198 

375.1 0.315 -0.311 
0.373 -0.090 

358.1 0.395 0.417 
0.466 0.639 

348.1 0.459 0.920 
0.536 1.142 

342.2 0.496 1.248 

0.59.4 1.470 

342.1 0.496 1.254 

0.594 1.452 

332.9 0.554 1.818 

0.648 2.039 
0.765 2.454 

327.7 0.587 2.167 

0.687 2.389 

323.6 0.613 2.461 
0.705 2.683 
0.825 3.098 

322.7. 0.618 2.527 
0.717 2.749 
0.829 3.164 

313.9 0.686 3.223 

o. 775 3.445 
0.877 3.860 

(cont.. j 
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Table AIV. 3 (cont.. ) 

313.7, 0.611 

0.686 

313.3 0.790 

0.949 

304-9 0.839 

0.912 

299.7 0.776 

0.815 

0.892 

292.7 0.884 

0.946 

0.946 

291.1 0.902 

0.958 

0.945 

283.7 0.949 

0.955 
1.002 

0.955 

273.4 0.974 

0.974 

1.037 

0.974 

273.0 0.978 

1.034 

0.978 

266.2 1.000 

1.000 

1.000 

1.000 

264.2 0.996 
1.050 

2.765 

3.242 

3.498 

3.913 

4.259 

4.674 

4.080 

4.557 

4.780 

5.326 

5.548 

5.963 

5.516 

5.737 

6.152 

5.976 

6.453 

6.675 

7.090 

7.488 

7.966 

8.187 

8.602 

8.030 

8.252 

8.667 

8.719 

9.196 

9.418 

9.833 

9.093 

9.792 

(cont. 
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Table AIV-3 (Cmt.. ) 

263.8 1.000 9.645 

1.053 9.867 

1.000 10.282 

259.2 1.003 10.086 

1.003 10-563 
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Table AIV-4. Bitumen Miri 150/250. 

Values of Rs(00, T) and calculated values of G(cn). 

Temperature/K Rs T)/IN s M--3 G (00) IGN M-2 

298.5 0.835 0.682 

289.7 0.893 0.778 

285.5 0.916 0.817 

276.6 0.992 0.956 

272.7 1.016 1.002 

270.0 1.040 1.050 

268.7 1.042 1.053 

266.7 
. 
1.061 1.091 

265.0 1.089 1.055 

261.1 1.047 I. o6o 

257.3 1.035 1.137 

253.5 1.057 1.078 
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Table AIV-5. Bitumen Eiri 150/250. 

Values of the normalised shear resistance as a function 
of the reduced frequency and temperature. 

Temperature/K RS(w, T)/RS(W, T) log, 
0 

[W 
TIS ( 0) /G (co) 

373.2 0.107 -1.655 
0.227 -1-178 
0.253 -0-956 

353.2 0.255 -0-914 
0.423- -0-437 
0.529 -0.215 

343.1 0.337 -0-424 
0.537 0.054 

0.620 0.276 
0.637 0.690 

334.9 0.483 0.042 
0.675 0.519 
0.733 0.741 

333.4 0.596 0.612 
0.715 0.834 

324.0 0.702 0.769 
0.805 1.247 

0.849 1.468 
0.908 1.833 

314.6 0.820 1.511 
0.939 2.210 

309.5 0.884 1.965 
0.995 2.442 
1.020 2.664 

303.5 0.966 2-546 
1.000 3.023 
1.005 3.245 

(cont.. ) 
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Table AIV. 5 (cont.. ) 

298.5 0.990 3.077 
0.990 3.554 
1.004 3.775 

269.7 0.992 4.120 
IoO24 4.597 
0.975 4.819 

276.6 1.012 5.972 
1.004 6.449 
1.020 6.671 

272.7 1.010 6.604 

0.995 7.081 
1.006 7.303 
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Table AIV. 6. Experimental and calculated values for the steady flow 
viscosity. 

Sample 
Temperature 

/K 
Frequency 
/Miz 

Viscosity 
from 
experiment 

s m72 

Viscosity 
from 
calculation 
IN 8 m72 

Kuwait Bitumen 303.2 6 8.16 x 104 9.19 x 10 

18 7.97 x 10 

30 5.55 x 10 

323.6 6 1.28 x 103 2.37 x 10 

18 if 2.64 x 10 

30 of 1.71 x 10 

348.1 18 3.17 x 10 5.07 

30 11 4.61 

358.1 18 9.42 2.21 

30 it 1.34 

389.7 18 0.45 0.51 

30 0.49 

78 0.89 

Miri Bitumen -334.9 is 14-05 18.25 

30 of 13.61 
% 

343.1 18 4.50 4.46 

30 it 5.18 

F, poxy Resin MY 750 343.2 is 0.119 0.115 
30 11 110.136 

4-: Phenyl dibenzo- 335.0 18 0.035 0.036 furan 
30 It 0.039 

S. E. p. in Di-2- 292.6 18 0.093 0.113 

. ýPthylhexyl 30 If 0 117 
phthalate . 

298.2 18 0.068 0.063 
30 11 0.130 

s M-2 = (R 
s- + xs-) 

2 -p co 
2 XS 

Rs, X, in Ns m--3 

in Kg n; -3 

in s-1 
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. 
APPENDIX V 

Table AV. 1- Fit of temperature-density results to a linear equation. 

plKe m73 =A+ Bý/K 

Liquid A B 

4-phenyl dibenzofuran 1390 -0-712 

Epoxy Resin MY 750 1381.3 -0-730 

S. E. P. in Di-2 eihyl- 1203.0 -0.742 hexyl phthalate 

Table AV. 2. Fit of temperature viscosity results to Roelands' 
equation. 

log 10 
[ 

10910 T)s (0) IN s M-2 +4.2] =A+B log lo[ 
T/K 

135 
138 

Liquid A B 

4-phenyl dibenzofuran 0.8754 -2.661 

Epoxy Resin MY 750 0.8647 -1-942 

S. E. P. in Di-2 ethyl- 0.5751 -1 258 hexyl phthalate . 
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Table AV-3. Fit of pressure-density results to the Linear Secant 
Modulus Equation. 

P/K9 m-3 =1+ AP/IqM ]n-2 + BT/K 
-2 C+ DP/EN M' 

Uquid 103 A- 10 3B 103 c 10 6D 

Epoxy Resin EY 750 0.7418 -0-7843 0.6558 0.4553 

S. E. P. in Di-2-ethyl- 1.721 -0.6195 0.8296 1.337 
]hexyl phthalate 

Di-2-ethylhexyl -N 1.462 -0.5716 0.8442 1.085 
phthalate 

Isopentane X 3.428 -1.010 1.135 3.541 

Table AV-4. Fit of pressure-viscosity results to Roelands' equation. 

log 10 
(loglo Tj IN s M72 + 4.2) =A+ BPr + CTr + DPrTr 

where Pr = 109 ((200 + PINN m72)/200) 

Tr = log ((T/K - 138)/135) 

Liquid A B c D 

Epoxy Resin MY 750 0.8729 0.9239 -2.102 -1-768 

S. E. P. in Di-2-ethyl- 0.5765 0.6096 -1-713 0.9212 hexyl phthalate 

Isopentane -X -0.185 0.784 -1.126 0.952 

Di-2-ethylhexyl 0.5746 0.6065 -1.295 -0-0505 phthalate 

9E 
Ref. 35 
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Table AV-5a. Fit of temperature-velocity (V(O)) results to a linear 
equation. 

V(O)/m S-1 =C+ DT/K 

I 

Liquid c D 

4-phenyl dibenzofuran 2666.5 -3.25 

Epoxy Resin MY 750 2841 -3-85 

S. E. P. in Di-2-ethyl- 2292.2 -3-12 hexyl phthalate 

Table Av. 5b. Fit of pressure-velocity V(O)) results to a linear 
equation. 

V(O)/m S-l C+ DP/Ill, M72 

Liquid Temperature 
K 

c D 

Epoxy Resin NY 750 310.2 1647 2.95 

S. E. P. in Di-2-ethyl- 296.2 1368 3.30 
hexyl phthalate 269.9 1450 3.30 
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Table AV. 6- 4-phenyl dibenzofuran. 

The values of longitudinal velocity and absorption 
coefficient, a,, as a function of frequency and temperature. 

I 
Temperature/K 

I 
Frequency/MHz 

I 
Velocity/m 8-1 

11073 
a/Nepers m7 

11 

273.6 5.37 2200 0.367 
272.2 15.01 2241 0.552 
271.2 24-77 2249 0.676 

272.3 34.78 2252 0.835 

282.6 5.37 2021 o. s96 
279.5 1 4.92 2141 1.38 

279.1 24.92 2165 1.68 

279.7 34-78 2167 2.32 

291.3 5.37 1826 1.16 

288.8 . 14.92. 1951 2.70 

289.0 24-77 1986 3. s6 

289.2 34-78 2031 5.41 

298.8 5.37 1721 0.548 

298.2 15.01 1783 2.56 

298.7 24-77 1796 4.24 

298.9 34-78 1828 6.31 

309.0 5.37 1657 0.196 
307.0 15-. 38 1693 1.41 

307.0 24-97 1701 2.94 

306.8 35-09 1718 4.52 

318.8 5.37 1631 0.070 

316.3 15-38 1644 0.616 

316.4 24-97 1645 1.49 

316.3 35-13 1654 2.52 

328.3 5.37 16oo 0.029 

325.1 15-35 1612 0.292 
325.0 24-97 1614 0.705 
325.5 35-05 1613 1.24 

337.4 5.37 1570 0.014 
335.5 15-35 1577 0.121 
3.35.5 24-97 1577 0.308 
3ý5-4 35-09 1578 0.597 

(cont.. ) 
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Table AV. 6 (cont.. ) 

347.2 
345.6 
345.6 
345.5 

357.3 
358.1 
357.1 

5.37 
15-35 
24-97 
35-05 

15-43 
25.26 
35-15 

1539 
1543 
1 54Q 
1546 

1503. 
1503 
1506 

0.012 
0.073 
0.156 
0.317 

0.057 
0.076 
0.174 
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Table AV-7.4-phenyl dibenzofuran. 

Values of the resistive part of the shear impedance as 
a function of frequency and temperature. 

Temperature/K Frequency/MHz Rs(w, T)/IV B m7-3 

258.2 18' 1.184 

30 1.175 
78 1.096 

265.1 18 1.112 

30 1.128 

78 1.120 

274.2 1.011 

30 1.039 
78 1.035 

283.4 
. 
18 0.873 
30 0.885 
78 0.933 

298.6 18 0.400 

30 0.524 
78 0.641 

. 314.4 6 0.088 
18 0.137 
30 0.180 
78 0.309 

323.5 18 o. o76 
30 0.105 

-78 0.201 

335.0 6 0.027 
18 0.048 
30 0.065 
78 0.108 
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Table AV-7.4-phenyl dibenzofuran. 

Values of the resistive part of the shear impedance as 
a function of frequency and temperature. 

Temperature/K Frequency/Miz RS(w, T)/M s m73 

258.2 18 1.184 

30 1.175 
78 i. o96 

265.1 18 1.112 

30 1.128 
78 1.120 

274.2 18 1.011 

30 1.039 
78 1.035 

283.4 
. 
18 0.873 
30 0.885 

78 0.933 
298.6 18 0.400 

. 30 0.524 
78* 0.641 

. 314.4 6 0.083 
18 0.137 
30 0.180 
78 0.309 

323.5 18 o. o76 
30 0.105 
78 0.201 

335.0 6 0.027 
18 0.048 

30 0.065 
78 0.108 
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Table AV. 9. Parameters in the linear equation for the shear 
compliance with temperature. 

J(()o)/(GN M72) -1 .=A+ BT/K 

Liquid A B 

4-phenyl dibenzofuran -3-023 0.0151 

Epoxy Resin MY 750 -5-18 0.0224 

S. E. P. in Di-2-ethyl- 
-3-34 0.022 hexyl phthaltLte 

Table AV. 10. Parameters in the linear equation for the shear modulus 
with pressure. 

G (w) IGN m7 
2=A+ BP/GN M72 

Li . quid 
Temperature 

K A B 

Epoxy Resin MY 750 310.2 0.493 2.99 
0.675 2.65 

1 
298.0 0.724 3.48 

0.742 3.44 

278.0 1.01 4.3 

S. E. P. in Di-2-ethyl- 296.2 0.225 2.05 
hexyl phthalate 

269.9 0.375 2.26 

252.2 0.435 2.67 
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Table AV-11, - 4-phenyl dibenzofuran. 

Values of the normalised shear resistance as a function 
of the logarithm of reduced frequency. 

Temperature/K Rs (co, T) /R 
s 

(OD, T') log, 
O 

r"S(O) /G(co, T) 

258.2 1.009 5.019 

1.001 5.241 

0.934 5.656 

265.1 1.004 3.657 

1.019 3.879 

1.011 4.294 

274.2 0.978 2.233 

1.005 2.455 

1.000 2.870 

283.4 0.897 1.113 

0.910 1.335 

0.959 1.750 

298.6 0.449 -0.246 
0.588 -0.024 
0.720 0.383 

314.4 0.107 -1-703 
0.167 -1.226 
0.219 -1-004 
0.376 -0-589 

323.5 m96 -1.655 
0.133 -1-433 
0.255 -1.019 

335.0 0.036 -2-570 
0.064 -2.093 
0.086 -1-871 
0.144 -1.456 
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Table AV. 12. Epoxy Resin MY 750. 

Values of the longitudinal velocity and absorption - 
coefficient, a, at atmospheric pressure as a function 
of frequency and temperature. 

Temperature/K Frequency/EHz Velocity/m s-1 
1 1073 a/ýepers 

II 

Inf-i 

I 

268.6 

it 

it 

272.9 

279.8 

11 

280.3 

291.2 

289.8 

290.0 

289.7 

296.9 

298.0 

297.8 

297.9 

305.1 

of 

305.2 

304.7 

316.7 

313.6 

313.7 

313.8 

325.8 

322.7 

322.6 

322.2 

15-00 
24-78 
34-85 

5.08 
15.02 
24.86 
34-70 

5.16 
15.02 
24.86 
34-70 

5.16 
15-40 
25.20 
35.25 

5.10 
15-40 
25.20 
35.25 

5.08 
15-40 
25.20 
35.25 

5.37 
15-40 
25.20 
35.25 

2280 

2284 

2284 

2182 

2144 

2136 

2153 

1903 

1981 

2001 

2030 
r 

1832 

1853 

1902 

1911 

1705 

1759 

1787 

1816 

1632 

1676 

1691 

1721 

1591 

1617 

1628 

1641 

0.621 

0. 
-743 0.722 

0.476 

1.24 

1.33 

1.80 

0.885 

2.28 

3.34 

4.16 

0.849 

2.70 

4.66 

5.62 

0.58 

2.48 

4.27 
6.02 

0.272 

1.83 - 
3.53 

5.33 

0.161 

1.211 

2.44 

4.01 

(cont.. ) 
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Table AV. 12 (cont.. ) 

333.9 5.31 1557 0.092 
332.7 15-40 1567 0.653 
332.6 25.20 1575 1.42 
332.8 35-12 1582 2.56 

344.9 5.16 151'5 0.088 
342.8 15-35 1524- 0.371 
343.0 25-15 1526 0.862 
343.5 35.14 1526 1.49 
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Table AV. 13. Epoxy Resin MY 750. 

Values of the resistive part of the shear impedance as 
a function of frequency and temperature. 

Temperature/K 

248.4 

259.6 

261.5 

264.1 

273.7 

282.7 

297.2 

304.3 

313.2 

.. 

Frequency/I. lHz Rs (w, T)/M s m73 

18 1.102 

30 1.087 

78 1.102 

30 1.300 
78 1.358 

18 1.195 
30 1.208 

78 1.203 

6 1.124 

18 1.198 
30 1.147 
78 1.147 

18 1.019 

30 1.058 

78 1.085 

18 0.901 

30 0.901 
78 0.991 

6 0.437 
18 0.576 
30 0.672 
78. 0.716 

18 0.484 
30 0.572 
78 0.640 

6 0.169 
la 0.307 
30 0.383 
78 0.529 

(cont. 
.) 
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Table AV. 13 (cont 
- 

318.4 

331.9 

343.4 

18 0.230 

30 0.305 
78 0.492 

18 0.125 

30 0.150 
78 0.273 

18 0.073 
30 0.124 
78 0.233 
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Table AV-14. Epoxy Resin MY 750. 

- Values of the normalised shear resistance as a function 
of log 10 

«0 -q 3 
(0) IG (co, T) ). 

Temperature/K Rs(w, T) /R 
s 

(co, T) log, 0(W T) s 
/G (OD, T» 

248.4 0.624 5.261 

0.615 5.483 

0.624 5.898 

259.6 0.949 3.850 

0.991 4.265 

261.5 0.901 3.390 

0.911 3.612 

0.907 4.027 

264.1 0.885 2.605 

0.943 3.082 

0.903 3.304 

0.903 3.719 

273.7 0.914 2.081 

0.949 2.303 

0.973" 2.718 

282.7 0.892 1.401 

0.892 1.623 

0.971 2.038 

297.2 0.492 -0.143 
0.649 0.334 

0.757 0.562 

0.806 0.977 

304.3 0.575 --0.069 
o. 679 0.153 

0.760 0.568 

313.2 0.213 -0.945 
0.387 -0.468 
0.483 -0.246 
0.668 0.169 

(cont.. ) 
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I 

Table AV. 14 (cont.. ) 

318.4 0.300 -0.685 
0.397 -0-461 
0.641 -0-048 

331.9 0.176 -1-171 
0.211 -0-949 
0.384 -0-534 

343.4 0.109 -1-505 
0.185 -1.283 

-0-347 -0.868 



Table AV. 15. Epoxy Resin MY 750. 

Values of the resistive part of the shear impedance as 
a function of temperature, pressure and frequency. 

Temperature/K Pressure/m m-2 Frequency/MHz RS (w)IMN s m73 

278.0 0.1 6 0.94 
18 0.97 
30 1.03 

50 6 1.11 

18 1.15 
30 1.18 

100 6 1.29 
18 1.32 
30 1.34 

150 6 1.41 

18 1.43 

30 1.43 

200 6 1.49 

18 1.50 

30 1.50 

225 6 1.57 

18 1.57 

30 1.57 

250 6 1.62 

18 1.63 

30 1.625 

278.0 275 6 1.64 

18 1.64 

30 1.65 

310 6 1.62 
18 1.65 
30 1.65 

350 6 1.61 
18 1.64 

-30 1.63 

(cont.. ) 

191 
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Table AV. 15 (cont.. ) 

298.0 

310.2 

0 6 0.398 
18 0.543 
30 0.608 

50 6 0.677 
18 0.801 
30 0.857 

100 6 1.03 
18 1.09 
30 1.09 

150 6 1.18 
18 1.22 
30 1.23 

200 6 1.31 
18 1.31 
30 1.30 

250 6 1.41 
18 1.42 
30 1.42 

300 6 1.48 
18 1.48 
30 1.49 

350 6 1.56 
18 1.57 
30 1.55 

400 6 1.64 
18 1.63 
30 1.64 

450 6 1@72 
18 1 . 71 
30 1.73 

100 6 0.648 
18 0.773 
30 0.853 

(cont.. ) 
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M-'I, I- Air IrZ 1---4- 
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Table AV. 16. Epoxy Resin W 750. 

Values of the normalised resistive part of/the shear 
. impedance as a function of reduced frequency at various 

pressures and temperatures. 

Temperature/K pressure/DN m -2 R (w) /R (CXI) 
ss 

log(w Tl, (O)/G(co)) 

278.0 0.1 0.857 1.286 

0.884 1.763 

0.939 1.984 

50 0.918 2.729 

0.951 3.207 

0.976 3.428 

100 0.949 4.160 

0. '970 4.637 

0.985 4.859 

150 0.99, 5.571 

1.00 6.048 

1.00 6.270 

200 0.976 6.970 

0.983 7.447 

7.669 

298.0 0 0.427 -0.273 
0.583 0.204 

0.653 0.426 

50 0.651 0.648. 

0.770 1.125 

0.824 1.347 

298.0 100 0.903 1.543 

0.955 2.021 

0.955 2.243 

150 0.956 2.417 

0.988 2.894 

0.996 3.116 

200 0.990 3.271 

0.990 3.748 

0.982 3.970 

(cont.. ) 
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Table AV. 16 (cont.. ) 

250 1.002 4.108 
1.01 4.585 
1.01 4.807 

300 0.995 4.930 

0.995 5.408 
1.00 5.630 

350 0.997 5.739 
1.003 6.216 

0.990 6.438 

400 1.00 6.536 

0.99 7.013 
1.00 7.235 

310.2 100 0.614 0.436 
0.733 0.913 
0.809 1.135 

200 0.844 1.753 

0.918 2.230 

0.935 2.452 

300 0.965 2.999 

0.943 3.476 

0.950 3.698 

400 0.995 4.192 
0.975 4.669 

0.982 4.891 

450 1.021 4.770 

0.988 5.248 

0.998 5.470 
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Table AV. 17. Epoxy Resin MY 750. 

Values of the longitudindl velocity and absorption 
coefficient, cL, at 310.2 K as a function of frequency 
and pressure. 

Pressure/MN m-2 Frequency/MHz Velocity/m s-1 10-3 a/Nepers M-1 

0.1 5.13 1666 0.432 
40 1826 0.691 

50 1875 0.729 
60 1927 0.768 

100 2140 0.726 

125 2280 0.627 
150 2400 0.499 
200 2637 0.262 

0.1 15-94 1702 2.04 

40 1888 2.39 

50 1947 2.42 

6o 2008 2.37 

100 2217 1.78 

125 2347 1.36 

150 2429 0.959 
200 2685 0.489 

0.1 24.98 1729 3.98 
40 1927 4.14 
50 1980 3.88 

60 2002 3.73 
100 2252 2.57 
125 2354 1.89 

150 2649 1.34 
200 2691 0.671 

0.1 35-08 1749 5.94 
40 196o 5.71 
50 1987 5.29 
60 2065 4.89 

100 2280 3.36 
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Table AV. 18- S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the longitudinal velocity and absorption 
coefficient, a, as a function of frequency and 
temperature. 

Temperature/K Frequency/MHz Velocit y/m s -1 10-3 a/Nepers m- 
1. 

286.4 5.05 1404 0.087 

14-98 1404 0.460 

25-04 1409 1.10 

34-85 1413 2.24 

275.7 5.05 1437 0.120 

14-98 1446 0.860 

25-04 1455 2.13 

34-85 1463 3.68 

266.5 5.05 1472 0.240 

14-98 1493 1.55 

25-04 1509 3.69 

34-85 1523 4.69 

259.2 5.05 1508 0.410 

14.98 1542 2.48 

25-04 1563 4.35 

34.85 1583 6.37 

249.2 5.10 1577 0.692 

14-94 1641 2.85 

25-16 1672 4.42 

34.86 1689 5.88 

242.2 5.10 1672 0--899 

14-94 1731 2.70 

25-16 1761 3.71 

34-86 1772 5.05 

237.7 5.12 1731 0.903 
15.12 1791 2.32 
24-98 1812 3.14 
34-74 1834 5.97 

(cont.. ) 
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Table AV. 18 (cont.. ) 

223.7 5.12 1938 0.424 

15-12 1958 0.835 

24.98 1966 1.04 

34-74 1971 1.21 

217.2 5.12 2 017 0.165 
15-12 2030 0.403 
24.98 2034 0.524 
34-74 2034 0.564 

Nib 
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Table AV. 19. S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the resistive part of the shear impedance as 
a function of frequency and temperature. 

I 
Temperature/K 

I Frequency/MHz I 
Rs (co, T) IMN s m-3 

I 

194.7 6 I. o6o 
18 1.042 
30 1.089 
78 1.065 

201.2 6 1.005 
18 1.008 
30 1.012 
78 0.996 

202.5 6 0.982 
18 0.990 
30 0.991 
78 0.984 

209.7 6 0.916 
18 0.902 
30 0.910 
78 0.914 

217.6 6 0.810 
18 0.848 
30 0.824 
78 0.917 

225.6 6 0.679 
18 0.754 
30 0.781 
78 0.815 

234.4 6 0.561 
30 0.667 
78 0.691 

239.5 6 0.481 
30 0.605 
78 0.613 

0 

(cont.. ) 
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Table AV. 19 (cont.. ) 

254.3 

263.2 

274.4 

292.6 

298.2 

6 

18 
30 
78 

18 
30 
78 

30 
78 

6 

18 

30 

78 

6 

18 
30 

i 

, 0.271 

0.379 

0.413 

0.455 

0.247 

0.303 

0.371 

0.152 

0.232 

0.043 

0.065 

0.102 

0.151 

0.032 

0.059 

0.093 

J 
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Table AV. 20. S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the normalised shear resistance as a function 

of the logarithm of reduced frequency. 

Temperaturc/K Rs (w, T) IR, (co, T) log 1w 
-0 s( 

0) /G «», T) 1 

194.7 1.001 5.547 

0.984 6.024 

1.028 6.246 

1.005 6.661' 

201.2 1.020 4.179 
1.023 4.656 
1.027 4.878 
1.011 5.293 

202.5 1.010 3.944 
1.019 4.421 

1.020 4.643 
1.013 5.058 

209.7 1.010 2.815 

0.995 3.292 
1.004 3.514 
1.008 3.929 

217.6 0.955 1.844 
1.000 2.321 
0.971 2.543 
1.081 2.958 

225.6. 0.850 1.063 
0.944 1.540 
0.978 1.762 
1.020 2.177 

234.4 0.746 0.378 
0.886 1.075 
0.918 1.492 

239.5 o. 66o 0.043 
0.830 0.742 
0.841 1.157 

(cont.. ) 



Table AV. 20 (cont.. ) 

254.3 -0.404 
1 

-0-736 
0.565 -0.259 
0.616 -0-037 
0.678 0.378 

263.2 0.385 -0.624 
0.472 -0-402 
0.578 0.012 

274.4 0.250 -0-783 
0.381 -0-368 

292.6 0.0 76 -1.963 
0.115 -1-486 
0.181 -1.264 
0.268 -0-849 

298.2 0.058 -2.083 
0.107 -1.606 
0.168 -1-384 

-0.969 
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Table AV. 21. S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the resistive part of the shear impedance as 
a function of temperature, pressure and frequency. 

Temperature/K Pressure/m m7 
2 

Frequency/MIlz R (co, p) /NZ s In73 

252.2 0.1 6 0.286 
18 0.315 
30 0.416 

75« 18 0.561 
30 0.646 

102 6 0.626 
18 0.656 
30 0.674 

»151 6 0.747 
18 0.793 
30 0.830 

203 6 0.84 
18 0.91 
30 0.91 

300 6 1.11 
18 1.11 
30 1.12 

350 6 1.21 
18 1.22 
30 1.23 

400 6. 1.26 
18 1.25 
30 1.26 

450 6 1.37 
18 1.35 
30 1.37 

500 6 1.47 
18 1.46 
30 1.47 

(cont. 



Table AV. 21 (cont.. ) 

269.9 

p 

296.2 

50 

106 

1 156 

0 

66 

100 

300 

448 

500 

0 

6 

18 
30 
78 

6 

18 
30 
78 

30 

6 

18 
30 

6 

18 
30 

6 

18 
30 

6 

18 
30 
78 

6 

18 
30 
78 

6 

18 
30 
78 

6 

is 
30 
78 

0.12 

0.16 

0.215 

0.43 

0.29 

0.38 

0.46 

0.53 

0.515 

0.85 

0.94 

0.97 

1.11 

1.17 

1.20 

1.35 

1.37 

1.36 

o. o46 

0.087 

0.128 

0.190 

0.082 

0.147 

0.212 

0.303 

0.094 

0.203 

0.252 

0.335 

0.178 

0.319 

0.380 

0.447 

(cont.. 
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Table AV. 21 (co nt.. ) 

204 6 0.233 
18 0.442 
30 0.483 

78 0.554 

257 6 0.368 

18 0.560 

30 0.656 

352 6 0.630 

18 0.767 

30 0.835 

78 0.911 

398 6 0.735 

18 0.840 

30 0.913 

78 0.826 

449 6 0.86 
18 o. 96 
30 1.00 

500 6 0.98 
18 1.03 
30 1.10 

501 6 0.98 
18 l. o6 
30 1.10 
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Table AV. 22. S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the normalised shear resistance as a function 
of the logarithm of reduced frequency at various 
pressures and temperatures. 

T emperature/K 
I 

Pressure/Ili m -2 1R (w, P) /R 
s 

(c., P) 
I log 10 

(", (O)/G(Oo)) 

4 

252.2 0.1 0.45 -0.240 
0.49 0.237 

o. 65 0.459 

75 0.736 1.020 

0.847 1.242 

102 0.806 0.808 

0.814 1.285 

0.836 1.507. 

151 0.843 1.268 

0.895 1-. 745- 

0.937 1.967 

203 0.865 1.732 

0.937 2.209 
0.937 2.431 

300 0.983 2.542 
0.983 3.019 
0.992 3.241 

350 1.00 2.936 
1.01 3.413 
1.02 3.635 

400 0.975 3.316 
0.967 3.793 
0.975 4.015 

450 0.997 3.683 
0.983 4.16o 
0.997 4.382 

500 1.01 4.040 
1.00 4.517 
1.01 4.739 

(cont.. ) 
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Table AV. 22 (cont.. ) 

269.9 0 

66 

100 

300 

448 

500 

296.2 10 

50 

106 

156 

.1 

-6 

0.20 -1.273 
0. ?6 -0-796 
0.35 -0-574 
0.70 -0.159 

0.40 -o. 686 

0.52 -0.209 
0.63 0.013 

0.73 0.428 

0.65 0.302 

0.79 1.156 

0.87 1.633 

0.90 1.855 

0.89 2.182 

0.94 2.659 

o. 96 2.881 

0.99 2.845 

1.01 3.322 

1.00 3.543 

0.098 -2.102 
0.185 -1.624 
0.272 -1-403 
0.404 -0.988 

0.144 -1.798 
0.258 -1-321 
0.372 -1-099 
0.532 -0.684 

0.140 -1-442 
0.303 -0.965 
0.376 -0-743 
0.500 -0-328 

0.237 -1.123 
0.425 -o. 646 

0.507 -0.424 
0.596 -0-009 

(cont.. ) 
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Table AV. 22 (cont.. ) 

296.2 1 204 

257 

352 

398 

449 

500 

501 

0.282 -0.818 

0.536 -0-341 
0.585 -0.119 
o. 672 0.296 

0.410 -0-487 
0.624 -0.010 
0.731 0.212 

0.618 0.092 
0.752 0.569 
0.819 0.791 
0.893 1.206 

0.687 0.366 
0.785 0.843 
0.853 1.065 
0.772 1.480 

0.762 0.665 
0.851 1.142 
0.887 10364 

-0-831 0.958 

0.873 1.435 

0.932 1.657 

0.831 0.965 
0.898 1.442 
0.932 1.664 
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Table AV. 23. S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the longitudinal velocity and absorption 
coefficient, cL, as a function of frequency and 
pressure at 296.2 K. 

I 

pressure/10 
-m- -1 1 2 ýFrequency/IMz I 

V610city/m S-1 
1 

1073 a/Nepers m 

0.1 5.06 1368 0.035 
14-93 1364 0.288 
25-12 1372 0.675 
34.98 1371 1.31 

25 5-o6 1451 0.042 
14-93 1453 0.345 
25.12 1444 o. 796 
34.98 1457 1.38 

50 '5.06 1534 0.058 

14.93 1536 0.425 

25-12 1541 1.01 
34-98 1529 1.78 

75 5.06 1620 0.080 

14-93 1621 0.590 
25-12 1628 1.20 

34-98 1631 2.22 

100 5.66 1700 0.101 
14-93 1698 0.722 

25-12 1708 1.55 

34-98 1699 2.47 

150 5.06 1870 0.169 

14-93 1920 1.00 
25-12 1900 2.11 

200 5.06 2040 0.241 

14-93 2060 1.30 
25-12 2100 2.39 

250 5.06 2230 0.322 

14-93 2267 1.41 
25-12 2311 2.41 

(cont. .) 
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Table AV. 23 (cont.. ) 

300 5.06 2418 0.372 

14.93 2478 1.38 

25-12 2512 2.03 

350 5.06 2631 0.396 

14-93 2680 1.23 

25-12 2600 1.71 

400 5.06 2798 0.359 

14-93 - 1.01 

25.12 1.36 
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Table AV. 24- S. E. P. in Di-2-ethylhexyl phthalate. 
Values of the longitudinal velocity and absorption 
coefficient, cl, as a function of frequency and pressure 
at 269.9 K. 

Pressure/pu m7 
2 Prequencv/mHz Velocity/m s-1 10-3 a/Nepers M- 

1 

0.1 5.11 1509 0.192 
14.96 1510 1.16 
25-07 1531 2.52 
34-95 1540 4.05 

25 5.11 1596 0.269 
14.96 1615 1.46 
25-07 1631 3.01 
34.95 1644 4.63' 

50 5.11 1687 0.357 
14.96 1716 1.72 
25-07 1738 3.33 
34-95 1754 4.93 

75 5.11 1782 0.444 
14-96 1823 1.89 
25-07 1850 3.45 
34-95 1869 4.90 

100 5.11 1883 0.520 
14.96 1936 1.95 
25-07 1966 3.36 
34-95 1987 4.62 

I dk 
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Table AV. 23 (cont.. ) 

300 5.06 2418 0.372 
14-93 2478 1.38 

25-12 2512 2.03 

350 5.06 2631 0.396 
14-93 2680 1.23 

25-12 26oo 1.71 

400 5. o6 2798 0.359 
14-93 - 1.01 
25-12 1.36 
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Table AV. 24- S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the longitudinal velocity and absorption 
coefficient, cL,. as a function of frequency and pressure 
at 269.9 K. 

Pressure/Mg m-2 Frequencv/EHz Velocity/m s- 
1 1073 a/Nepers m -1 

0.1 5.11 1509 0.192 

14.96 1510 1.16 
25-07 1531 2.52 

34-95 1540 4.05 

25 5.11 1596 0.269 

14.96 1615 1.46 

25-07 1631 3.01 
34.95 1644 4.63' 

50 5.11 1687 0.357 
14.96 1716 1.72 

25-07 1738 3.33 
34.95 1754 4.93 

75 5.11 1782 0.444 
14.96 1823 1.89 

25-07 1850 3.45 
34-95 1869 4.90 

100 5.11 1883 0.520 

14.96 1936 1.95 
25-07 1966 3.36 
34-95 1987 4.62 
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Table AV. 25. The values of the limiting high frequency longitudinal 
velocity obtained with the normal reflection technique. 

Li id T at /K V/m s -1 
qu emper ure 

18 MHz 30 MIZ 78 MHz 

4-phenyl dibenzofuran 275.9 2252 2283 

270.7 2304 2297 

265.8 2309 2314 

261.2 2324 2339 

Epoxy R esin MY 750 280.2 2222 2243 2201- 

274.1 2222 2227 2232 

271.5 2275 2313 2261 

2615.2 2331 2345 

261.0 2377 2425 2388 

S. E. P. in Di-2-ethylhexyl 211.7 2222 2246 
phthalate 206.2 2294 2282 

203.2 2310 2317 

199.2 2361 2384 

1,95.7 2400 2396 
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APPENDIX VI 

Table AVI. 1.4-phenyl dibenzofuran. 

Values of tlie relaxing par. t, K(co) - K(O), of the bulk 
modulus and ratio to the shear modulus as a function of 
temperature. 

1 
Temperature/K 

1 
K(cD)-K(0)/GN m72 

1K (co) 
-X 

(0) /G (co) 
1 

273.6 1.145 
272.2 1.150 
272.1 1.152. 
272.3 1.150 

282.6 1.098 

279.5 1.117 
279.1 1.120 
279.7 1.116 

291.3- 1.034 
288.8 1.054 
289.0 1.008 
289.2 1.051 

298.8 0.968 
298.2 0.974 
298.7 0.969 
298.9 0.967 

309.0 0.869 
307.0 0.889 
307.0 0.88 9 

306.8 0.891 

318.8 0.768 
316.3 0.794 
316.4 0.793 
316.3, 0.794 

328.3 o. 668 

325.1 0.702 
325.0 0.703 
325.0 0, ý 698 

1.27 

1.25 

1.26 

1.26 

1.38 

1.35 

1.34 

1.35 

1.44 

1.42 

1.36 

1.42 

1.46 

1.46 

1.46 

1.46 

1.45 

1.45 

1.45 

1.45 

1.40 

1.41 

1.41 

1.41 

1.31 

1.35 

1.35 

1.34 

(cont.. ) 
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Table AVI. 1 (cont.. ) 

337.4 0.571 1.21 
335.5 0.591 1.23 
335.5 0.591 1.23 
335.4 0.593 1.23 

347.2 0.468 1.06 
345.6 0.485 1.09 
345.6 0.485 1.09 
345.5 0.486 1.09 

357.3 0.364 0.88 
358.1 0.356 0.87 
357.1 0.366 0.88 
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Table AVI. 2.4-phenyl dibenzofuran. 

Values of the normalised bulk storage, Kl(w)/K(co) - K(O), 
and loss, KII(w)/K(co) - K(O), moduli as a function of 
log 

10 
(w 

Tj 
s 

(0)/K(OO) - K(O)) . 

Temperature/K 1 log, rw M-AJU. 
) 

1 Kl(w)/(K(01»-K(0» 

273.6 1.687 
272.2 2.339 
272.1 2.571 
272.3 2.689 

282.6 0.540 
279.5 1.349 
279.1 1.618 
279.7 1.69o 

291.3 -0-334 
288.8 0.342 
289.0 o. 56o 
289.2 0.670 

298.8 -0-945 

. 298.2 . -0-454 
298.7 -O. 3GO 
298.9 -0-141 

309.0 -1.610 
307.0 -1-035 
307.0 -0.825 
306.8 -0.665 

318.8 -2.107 
316.3 -1-535 
316.4 -1-329 
316.3 -1-176 

328.3 -2-486 
325.1 -1-913 
325.0 -1-700 
325.5 -1-569 

337.4 -2-771 
335.5 -2.260 
375.5 -2.049 
335.4 -1.898 

0.882 

0.965 

0.960 

0.971 

0.610 

0.829 

0.874 

0.885 

0.245 

0.507 

0.622 

0.752 

0.061 

0.221 

0.240 

0.340 

-0.030 
0.071 

0.082 

0.1 lý 
0.002 

0.018 

0.017 

0.050 

0.002 

0.008 

0.015 

0.016 

0.000 

0.005 

0.004 

0.007 

0.098 
0.057 
0.040 
0.035 

0.231 
0.133 
0.090 
0.098 

0.307 
0.242 
0.212 
0.238 

0.123 
0.223 
0.210 
0.235 

0.047 
0.118 
0.148 
0.139 

0.018 
0.055 
0.082 
0.097 

0.008 
0.028 
0.042 
0.052 

0.004 
0.013 
0.020 
0.027 (cont.. ) 
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Table AVI. 2 (cont.. ) 

347.2 -3-002 0.007 0.005 
345.6 -2-514 -0.002 0.009 
345.6 -2-302 -0.020 0.011 
345.5 -2.153 0.016 0.017 

357.3 -2-711 0.025 0.010 
358.1 -2-507 0.003 0.006 
357.1 -2-350 0.000 0.011 
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Table AVI-3- Epoxy Resin EY 750. 

Values of the relaxing part (K(OO) K(O)) of the bulk 
modulus and ratio to the shear modulus G(o-) as a function 
of temperature. 

- -2 1 
Temperature/K 

1 
K«») - K(0)IGN .m1 K(c») - K(O)/G(co) 1 

268.6 

11 

it 

272.9 

279.8 

it 

280.3 

291.2 

289.8 

290.0 

289.7 

296.9 

298.0 

297.8 

297.9 

305.1 

305.1 

305.2 

304-7 

316.7 

313.6 

313.7 

313.8 

325.8 

322.7 

322.6 

322.2 

333.9 

332.7 

332.6 

3ý2.8 

0.8212 

it 

it 

0.8750 

0.9052 

it 

0.9059 

0.8645 

0.8733 

0.8721 

0.8739 

0.8222 

0.8125 

0.8144 

0.8135 

0.74'14 

0.7429 

0.7418 

0.7471 

0.6115 

0.6481 

o. 6469 

0.6495 

0.5012 

0.5393 

0.540ý 

0.5453 

0.4011 

0.4159 

0.4180 

0.41.43 

II, 

o. 69 

it 

if 

0.82 

0.98 

if 

1.00 

1.16 

1.15 

1.15 

1.14 

1.21 

1.21 

1.21 

1.21 

1.22 

1.23 

1.23 

1.23 

1.17 

1.20 

1.19 

1.20 

1.06 

1.19 

0.92 

0.95 

0.95 

0.94 
(cont. 

.) 
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V, 

Table AVI-3 (cont.. ) 

344.9 0.2662 0.68 
342.8 0.2917 0.73 
343.0 0.2893 0.72 
343.5 0.2992 0.75 



219 

Table AVI-4. Epoxy Resin NY 750. 

Values of the normalised bulk storage and loss moduli 
as a function of log, O(w -qs()/K((: o) - K(O)) ._ 

Tvmperature/K logjy[w -ný(0)/ Kl( w) K ýc» 
- 

1K 

0) 1 K(co) - K(O) K«») - K(O) 

263.6 2.670 1.000 0.090 

2.880 0.995 0.056 

3.036 0.978 0.021 

272.9 1.696 0.799 0.159 
279.8 1.474 0.901 0.098 
279.8 1.693 0.794 0.014 
280.3 1.793 0.866 0.030 

291.2 0.103 0.550 0.244 
289.8 'o. 665 0.656 0.214 

290.0 0.870 0.680 0.185 
289.7 1.036 0.761 0.170 

296.9 -0.268 0.280 0.027 
298.0 0.140 0.453 0.250 
297.8 0.363 0.599 0.304 

297.9 0.507 0.599 0.230 

305.1 -0-725 0.129 0-. 166 
305.1 -0-246 0.294 0.235 
305.2 -0-037 0.375 0.247 
304.7 0.134 0.450 0.250 

316.7 -1.233 0.044 0.088 
313.6 -0.630 0.157 0.185 
313.7 -0-421 0.198 0.213 
313.8 -0.277 0.336 0.239 

325.8 -1-515 0.023 0.057 
322.7 -0.962 0.085 0.141 
322.6 -0.745 0.129 0.165 
322. ý2 -0-586 0.175 0.191 

333.9 -1-726 0.009 0.039 
332.7 -1.237 0.041 0.089 
332.6 -1.026 0.092 0.113 
332.8 -0-877 0.144 0.152 

(cont.. ) 
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Table AVI-4 (cont.. ) 

344.9 -1.919 0.022 0.039 
342.8 -1-420 0.024 0.067 
343.0 -1.210 0.049 0.093 
343.5 -1-095 0.061 0.109 

rý 
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Table AvI. 5. Epoxy Resin NY 750. 

Values of the normalised bulk storage and loss moduli 
at 310.2 K. 

pr essure/m m -2 lo9jo[wr)s(O)/G(co)] KI/G(co) KII/G(()O) 

0.1 -0-956 0.068 0.125 
40 -0-467 0.191 0.212 
50 -0-325 0.245 0.222 
6o -0-184 0.310 0.239 

100 0.368 0.516 0.228 
125 0.705 0.656 0.214 
150 1.024 0.715 0.175 
200 1.685 -0.880 0.100 

0.1 -0-491 0.189 0.194 
40 -0.003 0.360 0.234 
50 0.139 0.440 0.249 
6o 0.280 0.533 0.254 

100 0.832 0.689 0.197 
125 1.169 0.804 0.161 
150 1.502 0.690 0.098 
200 2.149 1.04 0.070 

0.1 -0.268 0.275 0.226 
40 0.221 0.467 0.250 
50 0.362 0.510 0.228 
6o 0.503 0.381 0.201 

100 1.055 0.780 0.172 
125 1.392 0.759 0.125 
150 1.724 0.844 0.094 

, 
200 2.372 1.04 0.061 

0.1 -0.121 0.335 0.239 
40 0.368 0.578 0.254 
50 0.510 0.470 0.210 
6o 0.651 0.659 0.215 

100 1.203 0.876 0.177 
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Table AVI. 6. S. E. P. in Di-2-ethylhexyl phthalate. 
Values of the. normalised bulk storage and loss moduli 
as a function of the logarithm of reduced frequency* 

I jog[", (O)/G(co)] I K'(w)/G(co) I K,, (W)/G(co) I 

-1.824 

-1-348 

-1.126 

-0.980 

-1-488 

-1.011 

-0.789 

-0.642 

-1.128 

-0.651' 

-0-429 

-0.283 

-0.820 

-0-343 

-0.121 
0.025 

-0.291 
0.187 

0-08 

0.554 

0.156 

0.633 

0.854 

1.000 

0.484 

0.961 
1.183 

1.329 

0.041 0.028 

0.032 0.036 
0.062 0.050 
0.083 0.086 

0.031 0.028 

0.077 0.071 
0.121 0.114 
0.158 0.146 

0.060 0.058 

0.157 0.138 

0.219 0.223 
0.287 0.165 

0.120 0.103 
0.248 0.255 
0.321 0.250 

0.403 0.268 

0.238 0.153 

0.460 0.275 
0.568 0.239 

0.612 0.228 

0.497 0.229 

0.637 0.269 
0.742 0.200 

0.747 0.215 

0.580 0.230 
0.736 0.232 
0.789 0.181 
0.887 0.177 

(cont.. )' 
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Table Avi. 6 (cont.. ) 

1.783 0.882 0.130 

2.260 0.919 0.097 

2.482 0.942 o. o6q 
2.628 0.959 0.057 

2.582 0.951 0.040 

3.059 0.978 0.054 

3.281 1.000 0.043 

3.427 0.996 0.030 
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Table AVI. 7* S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the normalised bulk storage and loss moduli 
as a function of reduced frequency at 296.2 K. 

I log 10 
(w 71 s( 

0) /G (00) )IKI (W) /G (00). -IK 11 (W) /G (00) 

-1.932 
-1-461 
-1.235 
-1.091 

-2.027 
-1-557 
-1-332 
-1.188 

-1-873 

-1-402 

-1-177 

-1-033 

-1-714 

-1.245 

-1.019 

-0-875 

-1-554 

-1-085 

-0-859 

-0-715 

-1.235 

-0-765 

-0-539 

-0.918 

-0-448 

-0.222 

-0.604 

-0-134 
0.092 

-0.1002 

-0.056 
0.031 
0.011 

0.005 

0*. 020 

-0.080 
0.049 

0.008 
0.019 
0.056 

-0.067 
0.037 
0.032 
0.078 
0.089 

0.012 

-0.025 
0.034 
0.061 

0.037 
0.360 
o. 166 

0.042 

0.087 

0.290 

0.149 

0.239 

0.429 

0.011 
0.033 
0.043 
0.065 

0.018 
0.053 
0.065 
0.082 

0.025 
0.062 
0.085 
0.102 
0.037 
0.091 
0.098 
0.136 

0.046 
0.110 
0-. 132 

0.137 

0.083 
0.179 
0.197 

0.122 
0.222 
0.235 

0.178 
0.258 
0.254 

(cont.. ) 
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Table AVI. 7 (cont.. ) 

-0.297 
0.173 
0.399 

0.006 
0.476 
0.702 

0.195 

0.362 
0.466 

0.346 
0.398 

0.211 

0.270 

0.196 

0.247 

0.252 

0.110 

o. 304 1 0.618 1 0.521 
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Table AVI. 8. S. E. P. in Di-2-ethylhexyl phthalate. 
Values of the normalised bulk storage and loss moduli 
as a function of reduced frequency at 269.9 K. 

log (w T), (O)/G(c)o)) Kt(w)/d(co) K"( W) /G (00) 

-1-343 0-. 035 0.067 

-0.877 0.007 0.128 

-0.653 0.141 0.168 

-0-508 0.182 0.192 

-1.116 m46 0.094 

-0.650 6.129 0.168 

-0-426 0.195 0.203 

-0.28.1 0.248 0.222 

-0-895 0.122 0.1128 

-0-428 0.235 0.203 

-0.204 0.317 0.231 

-0.060 0.373 (). 242 

-0.678 0.126 0.163 

-0.212 0.271 0.229 
0.012 0.362 0.246 
0.157 0.424 0.250 

-0-466 0.188 0.198 
0.000 0.362 0.246 
0.224 0.451 0.249 
0.369 0.517 0.246 
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Table AVI-8- S. E. P. in Di-2-ethylhexyl phthalate. 

Values of the normalised bulk storage and loss moduli 
as a function of reduced frequency at 269.9 K. 

log (w T), (0)/G(co» K' (w) IG (c0) K /G 

-1.343 0. -035 o. o67 

-0.877 0.007 0.128 

-0.653 0.141 0.168 

-0.508 0.182 0.192 

-1.116 o. o46 0.094 

-0.650 d. 129 0.168 

-0.426 0.195 0.203 

-0.281 0.248 0.222 

-0.895 0.122 0.1128 

-0.428 0.235 0.203 

-0.204 0.317 0.231 

-0. o6o 0.373 0.242 

-0.678 0.126 0.163 

-0.212 0.271 0.229 
0.012 0.362 0.246 
0.157 0.424 0.250 

-0.466 0.188 0.198 
0.000 0.362 0. -246 
0.224 0.451 0.249 

0.369 0.517 0.246 
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Table AVI. 9- Comparison of Di-2-ethylhexyl phthalate and S. E. P. in 
Di-2-ethylhexyl plithalate. 

property Di-2-ethylhexyl phthalate 
S. E. P. in Di-2- 

ethylhexyl 
phthalate 

(experiment) T 184'K 190 ±3K 
9 

T (calculated at 
. 

9( 0) = 1012 Nsm -2 ) 183.8 K 186 ±IK 
9 

Density/Kg m7-3 1202.0 - 0.689 T/K )203.0. - 0.742 T/K 

Velocity V(O)/m s-1 2140.6 - 2.525 T/K 2292.2 - 3.12 T/K 

Viscosity 

'loge 'Is(O) -11-724 + 1305/(T/ý-150.6) 
log 10 

(log, 
0 Tjý. 2) 0.5751 - 1.258 

(T/K - 138) log 
- 10 135 

J (00) IGN m72 -2.16 + 0.0152 T/K -3.34 + 0.022 T/K 

331ax. cL/f 2 at 15 MHz 1.43 - 10-11 1.40 - 10-11 

max. a/f 2 at 25 MHz 0.84 - 10711 0.86 . 10711 

max. M/f 2 at 35 MHz 0. '61 . 10711 0.60 . 10-11 

Ref . 28 
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Table AVI. q. Comparison of Di-2-ethylhexyl phthalate and S. E. P. in 
Di-2-ethylhexyl phthalate. 

Property Di-2-ethylhexyl phthalate 
S. E. P. in Di-2- 

ethylhexyl 
phthalate 

(experiment) T 184*K 190 3K 
9 

T (calculated at 
9(0) 

= 1012 Ns m*-2 .r 
183.8 K 186 1K 

) 

Density/Kg m-3 1202.0 - 0.689 T/K 1203.0,0.742 T/K 

Velocity V(O)/m s-1 2140.6 - 2.525 T/K 2292.2 - 3.12 T/K 

Viscosity 

lo'Oe 71s(o) -11-724 + 1305ATA-150.6) 

log, 
O(loglo rl-+4.2) 0.5751 - 1.258 

(T/K 
- 138) logj 

0 - 135 

J(00) IGN m72 
-2.16 + 0.0152 T/K -3-34 + 0.022 T/K 

max. (1/f2 at 15 MHz 1.43 - 10-11 1.40 . 10-11 

max. a, /f 2 
at 25 MHz 0.84 - 10711 0.86 . 10711 

max. a, /f2 at 35 NIIZ 0. *61 
. 10-1 1 

0.60 . 10-11 

Ref . 28 
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APPENDIX VII 

Table AVII. 1. Decyltrimethylammoniumbromide aqueous solutions. 

Fit of atmospheric pressure density results to a 
linear equation. 

plKg m: -3 =A .+ 
BT/K 

Solution Concentration 
/mol dM73 A B 

0.005 1 P85.8 -0.2892 

0.01 1102.5 -0-3467 

0.05 1127.0 -0-4267 

0.10 1125.9 -0-4175 

0.50 1149.1 -0-4700 

1.. 00 1194.1 -0.5882 
' 

Table AVII. 2. Decyltrimethylammonium bromide. 

Fit of pressure-density results to the linear secant 
modulus equation. 

P/Ko m73 =1+ 
Ap/M M-2 + BT/K 

-2 C+ DP/MN m 

Solution Concentration 
/mol dm73 103 A 10 4B 104 C 10 6D 

0.005 1.314 -2.664 9.211 0.9102 

0.01 1.295 -3.021 9.105 0.9008 

0.05. 1.495 -3-738 8.873 1.097 

0.10 1.400 -3-901 8.825 1.007 

0.50 1.332 -4-167 8.675 0.9522 

1.00 1.469 -5.626 8.159 1.086 
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I 
Table AVII-3. Decyltrimethylammonium, bromide aqueous solutions. 

Values of the density as a function of concentration 
and pressure at 298.2 K. 

1ýressur 
/ MN m7 

Concentration 
/Mol. 

- dm-3 
Density 

/Kg m73 

0.1 0.005 998.9 

it 0.01 999.1 

0.04 999.4 

0.05 999.8 

0.10 1001 

0.20 1003 

0.50 1009 

1.00 1019 

100 0.005 1039 

0.01 1039 

0.04 1040 

0.05 1041 

0.10 1042 

0.20 1044 

0.50 1048 

1.00 1059 

200 0.005 1073 

of 0.01 1072 

0.04 1072 

0.05 1073 

0.10 1074 

0.20 1076 

0.50 1080 
1.00 1090 

300 0.005 1101 
0.01 1100 
0.04 1100 
0.05 1099 
0.10 1100 
0.20 1102 
0.50 1105 
1.00 1115 
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Table AVII-4- Cetrimide - Hexanol - Water. 

A. Values of Rs at 298.2 K 

Composition, w /w % 
E3 R /M 

R (a) 
Phas 

Cetrimide Water Ilexano. 1 
s 

EN s m73 
e 

40 60 0 0.02 0.0406 E 

10 90 0 ---0.02 0.0123 L 

49.3 50.7 0 -zz 0.02 >0.5 E 

30 X 70 0 -: zO. 02 E 

2e 80 0 --0.02 L 

39.8'x 40.3 19.9 ---0.02 D 

-H Recrystallised cetrimide. 

(a) Ref. 98. 

B. Values of viscosity and density at 298.2 K 

COMPosition, w1w 
72 3 

Cetrimide Water 
Viscosity/N sm Density/Kg m7 

40 60 0.0174 1005.4 

10 90 0.0016 998.8 

. 
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APPENDIX VIII 

Table AVIII. 1.1,1,2 Trichloroethane. 

Values of CI/f2 and VL(w) as a function of frequency 
and pressure at 283.4 K. 

Pressure/EN m-2 Frequency/MlIz 10 13 alf 2 Nepers m -1 82 v L(W) 
/M S-1 

0.1 5.07 35.0 1210 

14.96 11.3 1212 

25-12 5.08 1214 

34-93 3.45 

40 5.07 28.6 1385 

14.96 8.11 1386 

25.12 3.03 

54.93 1.6o 1386 

50 5-o7 27.5 1415 

14.96 7.75 1415 

25-12 3.18 

34.93 1.54 

6o 5-o7 24.3 1450 

14.96 7.78 1451 

25-12 2.60 

34-0 1.49 

so 5.07 24.0 1490 

14.96 7.10 1492 

25-12 2.60 
34-93 1.22 

100 5.07 22.6 1530 
14.96 6.22 1531 
25-12 2.29 1529 
34-93 1.00 

120 5.07 21'. 5 1570 
14.96 5.62 1569 

150 5.07 18.3 1605 
14.96 5.01 1609 
25-12 2.01 

34-93 0.80 (cont.. ) 
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Table AVIII. 1 (cont.. ) 

200 5.07 16.6 
14.96 4.83 1662 
25-12 1.79 1675 
34-93 0.70 

250 5.12 15.0 
14.96 3.83 1723 
25-12 1.49 
34-93 0.51 
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Table AVIII. 2.1,1,2 Trichloroethane. 

Values of a/f2 and VL(w) as a function of frequency. 
and pressure at 298.2 K. 

Pressure/Ma m72 
I Frequency/MHz 11 ol 3 cL/f 2/ Kepers m -1 s21V, (W)/m S-1 

0.1 5.14 23.5 1165 
15.62 11.7 1161 
24.96 9 . 91 1160 

34-71 3.87 1180 

40 5.14 18.9 1336 
15.62 8.76 1334 
24.96 5.62 1336 
34-71 2.01 1342 

50 15.62 8.70 
34.71 1.71 

60 5.14 17.8 1394 
15.62 8.26 1386 
24.96 6.01 1394 
34-71 1.61 1396 

80 5.14 16.7 1446 
15.62 7.00 1441 
24.96 5.04 1446 
34-71 1.09 1450 

loo 5.14 15.5 1489 
15.62 6.72 1482 
24.96 4.82 1488 
34-71 1.00 1493 

120 5.14 14.8 1526 
15.62 6.34 1516 
24.96 4.59 1526 
34-71 o. 89 1530 

150 5.21 14.5 1562 
15.60 6.19 1561 
24-97 4.57 1573 

34.86 0.80 1578 

(cont. 
.) 
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Table AVIII. 2 (cont.. ) 

200 5.21 14.3 1657 
15.60 5.71 1650 
24-97 4.32 1652 
34.86 o. 61 1655 

250 5.21 13.4 1737 
15.60 5.78 1746 
24-97 4.23 1737 
34.86 0.50 1738 
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Table AVIII-3.1,1,2 Trichloroethane. 

Values of C'1f 2 
and VL( w) as a function of frequency 

and pressure at 313.2 K. 

Pressure/m m7 
2 rrequency/MIIz 1013 ýI/f2/Nepers m7l S2 V W/m S-1 L 

0.1 5.31 15.8 1103 

15.16 11.3 

25-19 7.87 1105 

34.96 6.12 

40 5.31 12.6 1274 

15-16 8.57 

25.19 7.57 1281 

34.96 3.87 

50 5.31 11.3 

6o 5.31 11.1 1326 

15-16 7.31 1323 

25-19 6.8o 1328 

34.96 2.97 

80 5.31 9.86 1382 

15.16 6.51 

25-19 6.16 1384 
34.96 2.22 

loo 5.31 8.85 1418 
15.16 4.26 1420 
25-19 3.92 1422 
34.96 2.19 

120 5.31 9.01 1452 
15-16 4.17 1457 
25-19 3.6o 
34.96 1.60 

150 15-16 4. o8 1493 
34.96 1.5o 
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