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Abstract 

Abstract 

For equipment or plant replacement, when to replace an existing plant, fleet or a 

part of it, is one of the main concerns in decision-making. The thesis considers 

this decision-making problem using capital replacement models with a fixed 

planning horizon, and we took at the behaviour of optimal policy in this context. 

Application of the models is considered and we compare replacement models with 

a fixed planning horizon with replacement models with a variable planning 

horizon models comprising of two cycles. Capital replacement modelling in 

general and previous work done in the field are reviewed. The main work of this 

thesis is the study of the behaviour of optimal replacement policy for a single 

equipment/fleet over a fixed planning horizon, with a numerical investigation of 

the behaviour for non-like-with-like replacement. This is extended to describe the 

behaviour of optimal policy for replacement of a mixed fleet. A case study is 

presented that applies the fixed planning horizon model to a bus fleet; this fleet is 

operated by a Malaysian inter-city bus company. Finally we consider the 

challenger problem. Throughout, we recommend the use of a fixed planning 

horizon model rather than a two cycle variable-horizon model. The rent criterion 

is also our favoured criterion for decision-making; the rent criterion exists and is 

well behaved for all the models described. A dynamic programming approach is 

implemented for the like-with-like replacement problem over a fixed planning 
I horizon for comparison with the economic life modelling approach of this thesis. 

We discuss the use of the different replacement decision models for supporting 

replacement decision-making in practical contexts. 
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CHAPTER1 

Introduction to Capital Replacement 

Modelling 

1.1. Introduction 

Capital replacement has long been, and will remain a topic of interest. This is 

because it is concerned with strategic planning of capital expenditure. The 

objective is to spend the capital in reasonable manner while minimising 

(maximising) expenses (profit). Replacement policy in general deals with all sorts 

of items. The approach, however, is different when dealing with a component than 

with a plant. In the component replacement case, the factors of interest are 

generally the distribution of the time to failure, the cost of preventive replacement 

and the cost of failure, and the long run cost per unit time. For large expensive 

plant on the other hand, economic factors such as discount factor, rate of inflation, 

interest rate and tax parameters are considered; the implication is that capital 

expenditure is planned over a certain specified period, the planning horizon. The 

planning horizon is expressed in months or years and may be of finite or infinite 

length. 
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For plant replacement when to replace a current plant being used, a fleet or 

a part of it, is one of the main concerns in decision-making. Another concern for 

the decision-maker or manager is the choice of the new plant to purchase. This of 

course is an important issue for the decision-makers, but is often out of control of 

the modellers when the choice is fixed in advance (e. g. political decision). A good 

policy can lead to large savings in the total cost of operating a plant or a fleet of 

plant. To achieve this goal different approaches are used, which can be based on 

either the experience of the operator or modelling approach or a combination of 

both. 

When an equipment continues over an extended time it may deteriorate 

and a decision regarding the need for replacement should be made supposing that 

the optimal lifetime ends when the marginal revenues from immediate 

replacement are the same as those from the later replacement (Verheyen, 1978). 

This decision is influenced by the increasing maintenance cost per unit time and 

the effect of spreading the capital cost (replacement cost) over a longer period. 

Similarly the need for replacement may be due to failure or impending failure; the 

operating efficiency is not considered to change with use, but replacement is 

required due to a failure. After failure, no decision is required since repair or 

replacement is necessary. However, it may be economically advantageous to 

replace or repair on a scheduled basis before failure occurs, so yearly replacement 

results in decreased cost. Thus the problem becomes one of determining an 

optimal replacement interval. 

It is a very important fact that technological improvements may render 

equipment undesirable simply because they are no longer technologically 
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competitive with newer developments. Thus it is feasible to replace equipment 

currently operating satisfactorily in a mechanical sense with newer, perhaps more 

expensive equipment. Analysis of problems of this type is simplified if 

improvement in technology is assumed to occur incrementally each year. In fact 

this may be appropriate on a short-term basis since technological improvements 

typically occur at discrete points in time. For example, several years may pass 

before a significant improvement is made in competing equipment when a newer 

model is marketed. 

We should, however, emphasise that modelling in general can really only 

support decision makers and guide policy making. We do not claim that 

modelling can replace the role of the experienced manager/decision-maker. The 

modeller and decision-maker must work together if such models are to be adopted 

in practice. 

Capital replacement models can be classified (Scarf & Christer, 1997) as: 

cost limit models (e. g. Jardine et al 1976); or economic life models (e. g. Eilon et 

al. 1966, Christer & Goodbody 1980). Economic life models (our subject of study) 

may be specified according to the length of the planning horizon. The length of 

the planning horizon as we mentioned above may be: infinite; finite but variable 

with a number of cycles determined by the model; or fixed with variable number 

of cycles (replacements) influenced by the length of the horizon. 

Our work is concerned with the modelling aspects of the replacement 

decision, which can support the experience of the operator. We describe capital 

replacement models which attempt to reflect the actual replacement problem. We 

have presented a mathematical model of the replacement decision with a fixed 
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planning horizon. The fixed planning horizon approach is one which more closely 

resembles the operational context and also overcomes the difficulties in the 

variable planning horizon approach. In the fixed planning horizon approach, there 

is a variable number of cycles (replacements) each with a variable length 

influenced by the specified length of the horizon. In order to gain some insight 

into the behaviour of models with a fixed planning horizon, we study the 

behaviour of optimal policy of a simple model. This is done using certain 

restrictive assumptions regarding the number of replacements, the form of 

maintenance cost per unit time for current and future equipment, and the 

replacement cost and resale values. We are particularly concerned with the effect 

of the planning horizon length on the number of cycles (replacements) and the 

lengths of these cycles. We would expect the behaviour of the model to carry over 

into the more complex models, which would perhaps be used in particular 

applications. 

The structure of this work is as follows. In chapter 2 we present some 

preliminary considerations which are incorporated when establishing capital 

replacement models: the maintenance cost per unit time and how to model the 

maintenance cost per unit time in different forms according to the data available; 

the discount factor either constant or variable and its influence on the optimal 

policy; tax rates and their effect on the optimal policy; the total discounted cost 

and rent as two alternative criteria for replacement modelling; the planning 

horizon over which replacement is performed; the penalty cost (Christer & Scarf, 

1994) as a factor in the replacement problem; also resale values for the equipment 

that becomes obsolete, aged or incurs high maintenance cost per unit time (this 
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resale value can be formulated in different models as a function of age and one of 

these models is presented). 

In chapter 3 we present a review of capital replacement models and 

considerations concerned with it. In this review most of the authors study the 

economic life of an equipment under various circumstances. We present capital 

replacement models in general, considering infinite horizon models and finite 

horizon models. In the infinite horizon replacement models we present like-with- 

like replacement as the earliest model developed. Two different criteria of this 

model are presented; these are the total discounted cost and the equivalent rent. A 

computation approach is presented to determine the economic life of an 

equipment in the case of buying new. An extension of this model is also presented 

for the case of buying an old equipment (second hand). In the finite horizon 

models we present variable length planning horizon models and fixed horizon 

models. In the variable length planning horizon models we present the two-cycle 

model which was developed by Christer & Goodbody (1980). The behaviour of 

this model is illustrated and a computation approach to determine the average 

total discounted cost and equivalent rent is described. A numerical example is 

presented to show the replacement procedure over two cycles. Extensions of this 

model are also described, namely the case of sub-fleet replacement and retirement 

of sub-fleet as spares. For the fixed horizon models we consider the fixed length 

of the planning horizon as a control variable and the variable number of cycles 

and each of the variable cycle lengths as decision variables. We discuss a capital 

replacement model with a fixed planning horizon and illustrate the behaviour of 
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the model. We describe how the optimum policy is affected by the length of the 

horizon. 

In chapter 4 we study the behaviour of optimal policy of some simple 

models. This study is done for the infinite horizon model of like-with-like 

replacement. Also we study the behaviour of optimal policy for fixed horizon 

models and variable horizon models of like-with-like replacement and non-like- 

with-like replacement in different cases. First and second order approximations to 

the maintenance cost per unit time model are used to obtain optimal closed 

solutions. Numerical investigation for the behaviour of optimal policy is presented 

for general cases. The mathematical relationship between the fixed and variable 

planning horizon models is also presented. Finally, a dynamic programming 

approach is presented for a fixed planning horizon model which is not restricted to 

at most two replacements. Computational results are presented for like-with-like 

replacement. 

In chapter 5 we study the behaviour of optimal policy for a mixed fleet. 

We present the many subflccts case each with a single item. Also we present the 

two subfleets case numerically in order to study the behaviour of optimal policy 

for different replacement scenarios. We describe the many subfleets problem with 

up to two replacements over the fixed planning horizon. Finally, in this chapter, 

we describe the many subfieets, problem with many items in each subfieet. 

In chapter 6 we give an application of the fixed planning horizon model 

described in chapter 4. The model is applied to a fleet of a large Malaysian inter- 

city bus company. The fleet is mixed and compromises 5 sub-fleets of different 
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types and ages. Data on maintenance cost per unit time were collected and models 

for maintenance cost per unit time are fitted. 

Finally, in chapter 7 we present the "challenger" problem with a fixed 

planning horizon and a variable planning horizon. Comparison between the results 

using a fixed planning horizon and a variable planning horizon is presented in 

order to illustrate the differences between the alternative replacement decision 

modelling approaches. For a complete view on the challenger problem, we 

describe a dynamic programming approach to study the challenger problem 

numerically. 
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CHAPTER 2 

Preliminary Considerations 

In this chapter we discuss a number of factors which are usually considered in 

capital replacement. 

2.1. Maintenance costs 

The greatest uncertainty in many maintenance and replacement decision problems 

lies with the prediction of future maintenance costs, and with the adequacy of the 

data relating to the maintenance history. For example, for vehicle replacement 

modelling, it would be an ideal situation where we have sufficient data for 

building a mathematical model in which maintenance cost is related to age and 

usage. This is often difficult in practice. The under estimation of costs for older 

vehicles is inevitable due to selection bias (Scarf, 1994); this is because the older 

vehicles currently on the road must by definition be the "good" ones. Maintenance 

cost in general comprises the cost of, for example, parts, labour and lubricants. 

Other operating costs would include costs of fuel, for example. In our work, we 

assume that the operating cost is included in the maintenance cost. In order to 

model the maintenance cost per unit time for a plant, data for the old and the new 
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plant need to be available and as reliable as possible. This will reduce the 

uncertainty in maintenance and replacement decision policies. Typically, simple 

linear, exponential or power law type regression models are fitted to the data and 

used for simple prediction. When maintenance costs associated with new 

technology may be unknown, a simple way of proceeding would be to model the 

maintenance costs per unit time of new plant as old except for a multiplicative 

factor, the ratio of the cost of new plant to old one. A refinement of this approach 

was used by Christer (1988). 

An example of a model of maintenance cost per unit time is the power law 

type which we use in this work for the most part. The model is expressed as a 

power law ftinction by 

M(t) = at", 

or can be expressed linearly as 

(2.1) 

logm(t) = loga +ß logt, (2.2) 

where t is the age/usage of plant, M(t) the maintenance cost per unit time at age 

t and the parameter 6 is the slope (on the log-log-scale) of the regression and 

represents the increase in the log of the age-dependent maintenance cost per unit 

of log time. The coefficient a is the intercept (on the log-log scale) of the 

regression. 

This model is fitted to the data in the case study in chapter 6. These data 

relate to the late 1992 maintenance costs of a fleet of flve models of Malaysian 

buses as illustrated in Figure 2.1. Here a common (x with different Ps was fitted, 

although other maintenance cost per unit time models may be appropriate. 
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Other possible maintenance cost per unit time models are the simple linear 

and exponential regression types. Eilon et al. (1966) used a linear regression to fit 

the maintenance cost data for a sample of 10 fork lift trucks, giving in the 

following expression 

f(t) =a +bt, (2.3) 

where t is the age of the truck after its purchase new, f (t) is the maintenance 

cost per unit time at age t; the parameter b is the slope of the regression and 

represents the increase in the age-dependent maintenance cost per unit time. In his 

paper Scarf (1994) described an exponential form for the maintenance costs for 

Ford Escorts (mark III and IV), given in the following expression 

MQ) = exp (a + bx), (2.4) 

where x is the total mileage of the vehicle. 

Christer (1988) used a different method and this method consisted of 

collecting data on the maintenance cost of old plant and more limited data on that 

of new plant, and then the ratio of the average cumulative cost of the new plant to 

the old plant was determined. The estimate of the j1h quarter for the new vehicle 

was obtained using a sample of 8 vehicles from each type and was formulated as 

follows 

Cl(i)=Y(j)xco(j), (2.5) 

where y(j) is the value of the quadratic function fitted to the ratio of the 

maintenance cost of new vehicle to the old in the jth quarter, C, (j) and CO (j) 

are respectively the quarterly estimate of the maintenance cost per unit time of the 

new and the maintenance cost per unit time of the old vehicle in the j1h quarter. 
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2.2. Discounting 

The discounting of future costs (French, 1988) is necessary when the future costs 

are required to be presented in terms of present values. Although discounting of 
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future costs is not necessary for the determination of optimum policy, it may 

influence the replacement decision (Scarf, 1994). The same conclusion was 

obtained by Kobbacy and Nicol (1994). Discounting is appropriate because, when 

an individual retains a capital sum for a certain period before purchasing, the 

value (present value) of the sum would be different from its value if purchase was 

made immediately. It is clear that the future value of an amount of money differs 

from its present value. This is due to the combination of the inflation and the 

interest rate or any other rate of return on investment, provided the money is 

invested sensibly. Thus it is necessary to scale all future costs to their present 

value by means of a discount factor or rate. Decision makers would normally be 

in a position to decide a discount rate appropriate to themselves (Ehrhardt, 1994). 

The discount factor v may be defined by (100 + i)l(l 00 + j) where i and j are the 

inflation and the internal rate of return respectively (Christer and Goodbody, 

1980). It should be noted that, although the discount factor is assumed to be 

constant, it corresponds, in fact, to different inflating and discounting situations. 

in practice, the discount factor is known to be time dependent and does not remain 

constant for any length of time (Kobbacy and Nicol, 1994), since inflation, 

interest rate or any internal rate of return vary constantly. As in Christer and 

Waller (1987a) the discount factor in any year t, v(t), may be expressed as 

V(t) = (100+i, )1(100+jt), (2.6) 

where i, andj, are the inflation rate and any rate of return in year 1, respectively. 

The discount factor over K years, taken to end of the year rK, is given by 

K 

rK 0(t)' (2.7) 
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The discount factor to the midpoint of the year K, denoted by dK Js given by 

K-1 
dK 

-"ý 
11 

1)(t)V')(K)' (2.8) 
t=l 

These discount factors (equations 2.7 and 2.8) can be easily introduced into the 

models (Christer and Goodbody, 1980). Kobbacy and Nicol (1994) used the same 

discount factor (equation 2.8) for a study related to replacement of commercial 

vehicles (tractor units) in the UK. It was shown that the discount factor had no 

influence on the optimal age (age at which replacement takes place). In their 

paper, Hawkins and Nasoni (1977) developed variable discounting as an approach 

to dealing with uncertainty. They introduced a linear approximation to the 

variable discount ftinction. It was concluded by authors that it is better to use a 

relatively simple replacement model than to introduce complicated changes such 

as variable discounting which do not usually have a significant effect on the 

optimal policy. 

2.3. Tax considerations 

Tax rates are detennined by the appropriate tax authority and are subject to 

changing laws on taxation; change occurs for different reasons which are either 

political or economic. Therefore modellers should be aware of tax factors, 

especially when new tax legislation is introduced. Tax considerations have not 

been taken into account in our work, although it may be incorporated where 

appropriate. Eilon et al. (1966) considered corporation tax and the system of 

allowances for capital expenditure on equipment; these tax considerations had an 

influence upon the optimal decision. Tax was also considered by Christer and 

15 



CHAPTER 2 Preliminary Considerations 

Waller (1987a), but it appeared that following the 1984 Finance Act, which 

simplified the tax allowance scheme, there was no major effect on the optimal 

decision. Tax allowances were also encompassed within the models of Christer 

and Goodbody (1980), but appeared to have no influence upon the replacement 

decision. It is worth pointing out that generally maintenance costs are considered 

as expenses against profit, therefore tax is not paid on them (Eilon et al., 1966). 

Also depreciation is taken into account in tax payment. 

2.4. Total discounted cost versus rent criteria 

Various criteria for replacement may be considered in the modelling. Policy is 

then optimised with respect to the chosen criterion. One of these criteria may be 

the total discounted cost; this means that all future costs are discounted to present 

value using a certain discount factor over a certain period. Another is the rent 

criterion where rent is the sum payable, per unit time interval over the length of a 

certain horizon, which should be necessary to meet the total discounted cost over 

that horizon (Christer & Goodbody, 1980). The two criteria above are often used 

in capital replacement modelling and the total discounted cost per unit time may 

be considered over a finite horizon. Over an infinite horizon, the total discounted 

cost criterion is only valid for discount factor, v, less than I because as v tends to 

I the total discounted cost tends to infinity (described latter in chapter 3). It is 

recommended to use the rent criterion when the discount factor approaches I 

because as v tends to I the rent tends to the cost per unit time. This leads to a 

discounted cost replacement criterion with a simple interpretation. For a 

replacement policy over a finite period both criteria can be used in a similar way 
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without distinction, provided that usage is at least reasonably constant. The term 

"rent criterion" was first used by Christer and Waller (1987a) for tax adjustment 

replacement models, though this type of criteria was referred to by Churchman et 

al. (1966) and used by Russel (1982) in vehicle replacement. The two criteria 

have a continuous as well as discrete representation, with the latter used for 

computational convenience. 

2.5. Planning horizon 

The planning horizon is that interval over which we wish to consider the 

formulation of replacement policy and in particular, over which we take account 

of costs or cash-flows. 

In capital replacement policy, the planning horizon may be either finite or 

infinite, fixed or variable. An infinite planning horizon is used for simplifying the 

modelling process. Sethi and Chand (1979) have developed a forecast horizon for 

the optimal replacement decision which frees the solution from an arbitrary 

horizon. They have shown that there exists a forecast horizon T such that the 

optimal replacement decision for the first machine (new or existing), based on the 

forecast of machine technology until period T, remains optimal for any longer 

horizon than T, and for that matter, the infinite horizon problem. The infinite 

planning horizon implies that if replacement has to be made on the basis of non- 

like-with-like, then the new model of equipment, as well as economic factors and 

failure costs need to be predicted in an objective fashion. This, of course, is rather 

difficult, if not impossible to realise in practice. The infinite horizon model with 

no technological change is invalid for many real situations. In their paper, Elton 
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and Gruber (1976), proved that an equal life over an infinite horizon is optimum 

for assets with linear rates of technological improvements. In real world 

applications, finite horizon models are desired and accepted, especially for cost 

prediction, and for considering factors such as inflation rate or discount factor. 

With a finite planning horizon, the prediction of the costs of the new model of 

equipment is made simpler. 

When the planning horizon is finite it may be either variable or fixed. For 

a finite planning horizon, replacement decision policy can in certain 

circumstances lead to the realisation of assets. This can impose replacement when 

it is not necessary (end-of-horizon-effects) and also the sale of the "best" plant at 

the end of the planning horizon. Therefore care must be taken. A finite variable 

planning horizon model was first introduced by Christer and Goodbody (1980), 

and later refined (Christer and Waller, 1987a, Christer, 1988; Christer and Scarf, 

1994). This model has two replacement cycles. The length of the horizon is 

variable and depends on the length of the two cycles. The term cycle is a time 

interval over which an equipment is bought, operated and sold. In this case the 

lengths of the cycles are decision variables. 

A fixed planning horizon model has a variable number of cycles 

influenced by the specified length of the horizon. The important decision variable 

is the time to first replacement since this is the immediate decision problem. Thus, 

the choice for the length of the horizon (chosen by the modeller and the plant 

owner) should be made adequately in order not to impose a poor replacement 

schedule. It is recommended that optimum policy be determined for a range of 

values of the fixed planning horizon provided that the horizon length is not too 
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large, but large enough in order not to increase costs by imposing a poorly 

scheduled replacement. However as the decision-maker will not have a firm value 

for the horizon length, the optimum policy must be "robust" to variation in the 

horizon length. Based on experience, the operator can plan replacement by 

considering a certain horizon which is appropriate in a strategic sense that is 

consistent with the time scale of the strategic planning of the organisation. 

2.6. Penalty cost 

We suppose that a penalty cost arises when equipment fails and causes a stoppage 

of production or service. This can lead to a financial consequence for the manager 

or operator. This financial consequence may be the cost of inconvenience or loss 

of opportunity. The notion of penalty cost appears to be readily recognised and 

accepted, but it is difficult to quantify. By taking into account and accepting the 

notation of penalty cost, the operator may reduce the risk of paying a high price 

when failure and unavailability occur. The modelling of the penalty cost is not an 

easy task, because of the subjectivity of this cost factor. This difficulty can be 

overcome by considering a wide range of acceptable values of the penalty cost per 

breakdown for the operator. This will enable the modellers to establish the 

influence of this parameter on the decision variables through sensitivity analysis. 

Christer and Scarf (1994) showed the strong influence of the penalty cost on the 

decision variables. Lake and Muhleman (1979) developed a simulation model for 

the cost resulting from plant stoppages (plant down time). It is important to note, 

however, that it is not proposed that penalty cost be estimated, but that the 

influence of penalty cost on optimal policy should be investigated, and that 
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operators or decision makers be allowed to observe optimum replacement policy 

for a range of penalty costs. 

2.7. Resale values and purchase costs 

Resale value is the second hand value of the plant. It is an age and time dependent 

cost factor which generally decreases in a very fast manner except in some 

situations where an unsteady and unstable economy prevails. In the absence of a 

second hand market, the resale value for some equipment is set to zero (scrap 

value) or the equipment is kept as a spare if it is not technically obsolete. Data for 

resale values are often obtained from some specified guide or directly from the 

second hand market. For example in the UK vehicle market, Glass's guide and the 

CAP Red Book (Kobbacy and Nicol, 1994) for private and commercial vehicles 

are available. From the prices given in these guides one can easily model the 

resale value function using regression techniques. The prices of old plant are also 

influenced by the introduction of new models in the market (Scarf, 1994). 

In Christer and Waller (1987a) and in Walker (1994) the depreciation 

cost or resale value was modelled as 

S(t) = Rrg', 0:! g y:! g 1,0: 5 8: 5 1, (2.9) 

where R represents the purchase cost new of the equipment; t its current age; y is 

the anti-log of the intercept of regression and represents the very early 

depreciation after purchase and finally 5 is the anti-log of the slope of the 

regression and represents the long term depreciation. It is however, not the only 

formulation for the resale cost. Lake and Muhleman (1979) considered a 

replacement problem for a wrapping machine for biscuits. They used different 
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models for resale values such as constant value, a linear decline of the resale value 

with the age of the machine and a monthly depreciation at constant rate. 

The resale value of an item of equipment depends on its age, usage and 

condition and of course the state of the market of supply and demand. In certain 

instances, particularly in developing countries resale value is sometimes higher 

than the cost new. In the absence of historical data on resale values we choose the 

model of Christer and Waller (1987a) (equation 2.9), for resale values. As 

mentioned before, it is not the only representation of the resale value model. The 

other models might be considered, such as, a linear or an exponential model. A 

simple example is the resale values for Ford Escort cars data obtained from 

Glass's Guide Car Values. The cost new of these types of cars is E9915 in 1993. 

The resale values and the ages of the cars at resale are as in the Table 2.1. The 

model was fitted to the data, equation (2.9), giving estimates for y and 8 of 0.912 

and 0.828 respectively. An illustration of the depreciation cost is shown in Figure 

2.2. The purchase price corresponds to age zero (buying new) although buying old 

may be considered in replacement modelling. The purchase price is the cost of a 

replacement equipment and may increase in the future as a result of inflation, 

technological improvement or many other economic factors. 
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Table 2.1. The resale values and ages at resale for Ford Escort model. 

Resale price Age in years 

2325 7.5 

2750 6.5 

3225 5.5 

3500 5.0 

3750 4.5 

4100 4.0 

4400 3.5 

4800 3.0 

2725 2.5 

6275 2.0 

6700 1.5 

7425 1.0 

8275 0.5 

9915 0.0 

10 

Age in years 

0 
Observed 

Fitted 

Figure 2.2. The model fitted along with the data observed for the resale values and cost new for 

Ford Escort model. 
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CHAPTER 3 

Capital Replacement Models 

3.1. Introduction 

Much research has been done in the replacement field so far, so before going 

directly to our work, we review this research. Many of the authors concentrate 

their studies on determining the economic life of an equipment (age at 

replacement). The costs mainly considered in economic life modelling are the 

maintenance cost (including the operating cost) and the replacement cost and the 

resale value. Need for replacement may also be driven by a lack of operating 

efficiency (failure) or by technical obsolescence. 

In this chapter we describe the quantitative issues in replacement and 

repair cost limit models. Also in this chapter we describe replacement models of 

economic life type, from the early like-with-like infinite cycle models of Eilon et 

al. (1966) to the sub-fleet replacement fixed horizon models of Scarf and Hashem 

(1997). The models are discussed in the context of various criteria, and examples 

are given where appropriate. 
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3.2. Qualitative issues in capital replacement 

For modelling the replacement problem, Christer (1988) presented a paper 

discussing the problem of when to replace an existing plant/item with an 

improved new type of a plant, and how the cost estimation and prediction should 

be undertaken. It was concluded that the replaced plant would be expected to have 

at least one improved attribute such: as lower running costs; higher unit output; 

improved quality of production; greater product variation; enhanced customer 

appeal; enhancement of the technical image of the company. The main task of the 

paper was to formulate a replacement criterion for technically improved 

equipment with operational measures reducible to a scalar measure called cash. In 

this way, the differences between the old (current) and the new plant would lie in -r 

purchasing costs and maintenance costs per unit time. Christer and Waller 

(1987b) discussed a descriptive model of the equipment-replacement decision 

process. The model was based on the results of a survey undertaken between 

February 1983 and May 1984 and the survey itself was based on a questionnaire. 

The survey observed that there is no particular decision technique or procedure 

peculiar to any one type of organisation and that a reasonably homogeneous mix 

is to be expected. The conclusion of this paper was that the descriptive model 

developed is appropriate to the decision process studied within the collaborating 

companies that provided the data. Care must be taken in extrapolating the results 

to other plant and companies. 

Issues related to replacement of existing plant and equipment were 

discussed by Campbell (1994). The idea for this study rose when hospital 

executives found that they must make major strategic and replacement capital 
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investment decisions for an environment that is likely to be quite different from 

the one that currently exists. Concerning replacement of different types of assets 

little was known about which factors are more important in the replacement of 

plant such as buildings and infrastructure relative to the replacement of medical 

equipment. For example, buildings and infrastructure improvements are likely to 

be less important than equipment replacement to hospital physicians. The study 

addressed the issues by examining plant and equipment replacement priorities in 

116 large US hospitals. It was found that main factors affecting hospital capital 

replacement were financial factors (funding resource) and industry factors such as 

the variability in the demand for acute care hospital services with the expansion of 

man aged care and changes in government reimbursement. These factors 

dominate the timing of planned replacements. Other factors governing the capital 

replacement decision such as the degree of competition between the hospital and 

its peers, the demand for replacement by the hospital's doctor, equipment 

maintenance that may be more important than plant renovation to physicians, and 

patients' comments and concerns. A survey was done by randomly selecting a 

sample of financial managers from the 1992 Health Care Financial Management 

Association. The study results were intended to apply only to larger hospitals. The 

results revealed that the most important factor affecting plant replacement was 

meeting regular or accreditation requirements, and the leading factor in equipment 

replacement was technological obsolescence. The financial condition of the 

hospital was second in order of importance for plant replacement decisions; 

however, the financial condition was fourth in order of importance for equipment 

replacement. Plant improvements are likely to be less important than equipment 
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replacement to a hospital physician and also equipment maintenance may be more 

important than plant renovation to a physician. The hospitals were highly 

influenced by physicians' requests in the decision to replace equipment; this was 

less so for plant. The plant in this context is the hospital buildings and their 

equipment needed for medical purposes. The priority given to patient complaints 

is consistent with the view that the hospital's primary customers are physicians 

and not patients. The major factor causing delays in replacements was lack of 

internal funds. On the basis of the responses in the survey, priorities need to be 

altered to reflect the importance of costs and utilisation in replacement decisions. 

The study considered that hospital executives must direct greater attention to: 

consumer concerns in the capital investments that they make; access to funds for 

replacement is directly dependent of profitability, financial condition, and 

perceived community benefit, as cost-based reimbursement is eliminated; and 

finally, hospital executives in the nation's large acute care hospitals will need to 

take a leadership role in altering their replacement priorities to reflect this new 

environment. 

In his paper Russell (1982) presented a description of an operational 

research project team's assessment of the environment within which replacement 

decisions are made and the team's attempt to take these decisions into account to 

ensure effective implementation of assessment work. The work was done in the 

context of one vehicle replacement policy and the following were considered. 

I -Developing a vehicle replacement model. 

2-The collection of data for modelling. 

3-Analysis of data on repair and maintenance costs of vehicles. 
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4-The development of a suggested approach to vehicle replacement. 

5-Development of the ideas on aiding the selection of individual vehicles via the 

use of annual expenditure limits. 

6-Consideration of transport management systems information. 

3.3. Repair cost limit models 

Sometimes, it may be economical to repair or replace before failure happens. As 

we mentioned above, most of the authors concentrate their study on the economic 

life models. Other authors consider repair cost limit models. Hastings (1967) 

described the replacement problem when an item requires repair. The item should 

be inspected to determine whether the estimated cost of repair is less or more than 

a certain level (the repair cost limit). The author used dynamic programming to 

determine optimum repair cost limits. Two main problems were analysed; the first 

one concerning condition related to age and the second where condition is related 

to the number of overhauls. 

Jardine, Goldrick and Stender (1976) suggested the concept of annual 

maintenance cost limit (AMCL) as an approach to be used in making replacement 

decisions. The decision to replace is taken if the estimated maintenance bill for 

the next year exceeds the AMCL appropriate to the vehicle. A replacement model 

was constructed assuming that the equipment will be required over a fixed 

planning horizon. The objective was to minimise the total cost by the selection of 

optimal AMCL, and this was obtained by solving a recurrence relation 

considering the following. 

I -The time required for running the vehicle until the end of the planning horizon. 
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2-The age of the vehicle at the beginning of the year. 

3-The probability density function for the maintenance cost, for a vehicle of that 

age. 

4-The maintenance cost limit for a vehicle of that age. 

5-The minimal expected cost of replacing and maintaining a vehicle during the 

running time starting with age in (2) above. 

The model was modified to deal with fleet replacement taking account of 

tax allowances, prices of new vehicles, resale values and discounting. Finally, the 

maintenance cost limit replacement indicated that premature replacement incurs 

heavy penalties and that delayed replacement results in far lower penalties. 

Replacement models are either related to components or related to a single 

complex system. 

A recent study on vehicle replacement was done by Hensher and Zhu 

(1994); the authors suggested an approach to overcome some shortcomings of 

traditional methods related to the vehicle replacement decision process for 

different types of vehicles in a vehicle fleet subjected to budget and average fleet 

age constraints. This paper resolved the limitation of the traditional vehicle 

replacement methods by introducing the concept of a residual value function of 

which the positive portion is a linear function of used years and completed 

kilometres. This was used to calculate annualised costs of a vehicle. With the 

additional kilometres and years, the annualised equivalent cost (AEC) can be 

derived by the sum of capital AEC (AECc ), operating and maintenance AEC 

(AEC.. ), and major rebuild (engine rebuild, transmission rebuild) AEC (AEC, ), 

then the total annualised cost of the vehicle is 
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AECtotai ---: AECc + AEC. m + AEC 
r 

(3.1) 

The above AEC of the vehicle is the annualised equivalent cost without 

considering replacement. Therefore, there are three similar components of the 

total AEC upon replacement ( the vehicle's useful life), and the total is expressed 

as 

AECtotal 
-,, ý AECc + AECom + AECr (3.2) 

Ideally, a vehicle with higher total AEC associated with rebuild than the total 

AEC upon replacement should be replaced. The paper proposed a 0-1 integer 

programming model taking into account the age and budget constraints. This 

model yielded an optimal solution which determines the particular decision for 

each vehicle in the fleet. A case study with a fleet of 21 vehicles was discussed, 

along with a software development called the Vehicle Replacement System 

(VRS). For simplicity, all vehicles were assumed to be of the same type. 

3.4. Early replacement models. 

Early replacement models were studied by Eilon et al. (1966). The authors 

developed two replacement models as an attempt to determine the optimum 

economic life of the equipment. For the first model attention was paid to the total 

cost per annum; for the second model the total cost discounted to present value 

was considered. The authors introduced the concept of the discount factor defined 

in terms of the inflation rate. This factor is used to calculate the present value of 

capital that will be spent in the future. The first model was formulated as 

T =A -S-Cy ý- 
I lf(t)dt, 

(3.3) 
nn. 
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where T= the total cost per annum 

A= acquisition cost of new truck; 

S= resale value of the existing truck (n years after it was purchased); 

(t) = maintenance cost per unit time of a truck t years after acquisition; 

n= age (in years) of truck when replaced; 

C= capital allowances; 

rate of taxation. 

Notice that the first term in equation (3.3) represents the average capital 

costs involved in the acquisition of the existing truck when the resale value and 

capital allowances are accounted for; the second term expresses the total 

maintenance costs of the existing truck averaged over the n year replacement 

cycle. 

The second model was formulated as 

A-Sr" -C p 
)V In 

P=- +- ff (t)r'dt, (3.4) 
nn0 

and for an infinite number of successive machine replacements the total of all 

future costs V discounted to present value was given by: 

V=P(I+r" +r .......... ) 

P 
- 

1-rn 
' 

where r =discount rate; 

CP = present value of capital allowances; 

total average cost per year discounted to present value. 

(3.5) 
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The results obtained from applying model one (equation 3.3) were based 

on an imaginary average truck, with maintenance cost per unit time model 

according to that fitted to data for a sample of 10 trucks. Furthermore, it was 

found that the results for optimal replacement lives for the trucks considered 

varied from 5 to 12 years. The results from model two (equations 3.4 and 3.5) 

were affected by capital allowances, so the optimal replacement period was 

reduced by about 4-5 years. The study demonstrated the importance of 

considering capital allowances for tax purposes. The two models yielded a flat 

objective function near their optimal points. Model one suggests replacing the 

equipment more frequently than model 2, and for that reason it has the advantage 

that it provides an opportunity to assess technological innovation and new designs 

of equipment over shorter time intervals. 

Elton and Gruber (1976) presented a paper for studying the equipment 

replacement model with equal replacement intervals. They presented proof for the 

optimality of the equal life policy incorporating technological change when new 

equipment is identical to old (current) equipment. They showed that; a policy of 

replacing at equal intervals does not have to be assumed but rather can be proved 

to be optimum. They found that over an infinite horizon if two replacement 

intervals (two economic lives) are different, future lives must decrease or increase 

with limit. Since such an increase or decrease is impossible, equal lives must be 

the only solution. 

Another problem of equipment replacement was studied by Lake and 

Muhleman (1979). They developed a simulation model for the replacement of a 

particular type of machine in order to predict the effects of production stoppages 
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that can sometimes result from the breakdown of the machine. They were 

concerned simply with determining the age at which a machine has to be replaced 

(economic life policy). Technological progress is relatively slow in this area so its 

effects were excluded from the model. 

It was apparent that, one of the weaknesses of the pure economic life 

model is that it ignores the situation when a machine requires an expensive repair 

before the end of its economic life. 

A recent study was performed by Scarf (1994), who considered a 

modelling approach aimed at answering the questions, " how old to buy a 

vehicle? " and "how long to run it before resale? ". These questions were 

considered in the context of the replacement problem of a private motorist. The 

author proposed an equivalent rent criterion which assumed an infinite series of 

identical buy, operate and sell cycles, typical of models found in Operational 

Research literature. It was found that the model (infinite horizon model) is 

appropriate for this problem. 

In their paper Hawkins and Nasoni (1977) presented a theoretical model 

for dealing with uncertainty in capital investment. They developed variable 

discounting as an approach to dealing with uncertainty. They considered a 

relatively simple prototype replacement model (stationary technology, no inflation 

and no salvage) assuming an instantaneous rate of cash flow per unit time, 

discounted net benefit to determine the economic life and constant discount factor 

over infinite horizon. The rate of change of cash flow with time was proportional 

to the variable discount factor. It was necessary to assume that if k(t) and K are 

the variable and constant discounting factors respectively, then 0: 5 k(t): 5 K. . 

33 



CHAPTER 3 Capital Relacement Models 

They also used a linear approximation to the variable discounting function, which 

represents the next level of generality over that of constant. The conclusion of the 

study relating to a real example stated that there can be a substantial difference in 

present value results using a variable versus a constant discount rate. 

The earliest infinite horizon model for like-with-like replacement was 

provided by Kauftnan (1963), Churchman, Ackoff & Arnoff (1966) and Eilon et 

al. (1966). The earliest economic life models over one replacement cycle were 

basically all expressed as 

C(t) = -1 
[R 

+ 
'ff 

(r)d-r - S(t)], (3.6) 
t0 

where C(t) the total cost per unit time, f (r) is the maintenance cost per unit time 

of equipment aged r, SQ) is the resale value of equipment aged t, R is the 

purchase (capital cost). Equation (3.6) represents the cost per unit time over the 

cycle of length t. That value of t which minimises C is called the economic life. 

Without discounting the one cycle model and infinite cycle model are identical 

(assuming like-with-like replacement). 

Here for our study, we assume that the individual requires an equipment 

over an indefinite period, so that it is necessary to consider a series of buy-run- 

sell-cycles. The decision variable is the optimum value of the age of the 

equipment at replacement, the so called "economic life" for equipment bought 

new. 
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3.4.1. The total discounted cost criterion 

The total discounted cost criterion is an extension of the model (3.6). It is one 

possible criterion for the determination of the economic life. It considers an 

infinite planning horizon and a discount factor v in order to consider costs at net 

present value. For a single purchase and resale cycle we have that the total cost 

discounted to present value is given by 

R+ ff (r)vd-r - S(t)u' 
01- 

Thus for an infinite series of such cycle, the total of all future costs discounted to 

present value is 

+ V, +v.. . ....... ), 

C(t), 

from which 

cl R+ ff(r)vdr 
- S(t)v' (3.7) 

(I - V') 

10 

Notice that as v -+ 1, Cý (t) -+ oo and for this reason the cost C, does not have a 

straightforward intuitive interpretation. A computation approach for the 

determination of economic life using the total discounted cost criterion is 

expressed by the equation 

C (n) R+ 
n 

M. v 
j-112_ S(n)vn 2<1, (3.8) 

where R, Mj , S(n) and v are respectively the purchase cost new; the 

maintenance cost per unit time of equipment in its jth year; the resale value of 
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equipment in its nth year and the discount factor. Here the cost functions may be 

considered with a unit time interval the month, year or whatever is appropriate. 

The maintenance costs are assumed to occur in the middle of each interval and are 

discounted accordingly. 

3.4.2. The equivalent rent criterion 

Consider now an infinite series of identical buy-run-sell cycles (see Figure 3.1) 

with total discounted cost given byC2(n), equation (3.8). 

buy buy buy 
buy sen 

nm 
sen 

run seU 
nm > 

time 

Figure 3.1. An infmite series of buy-run-sell-cycles, with values of n the same for each cycle. 

Another approach to determine the economic life considers the rent 

payable per unit time period and payable over an indefinite period, which would 

be necessary to meet the total discounted cost C2 (n). This periodic payment is 

called the equivalent rent and this criterion can be used to determine optimal 

policy. Discounting this rent payable in each time period in future to present 

value, it follows that 

C3(n)(I +v+v......... )= C20) 
9 

from which 
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C3(n) 
I= 

C2(n), 
I-V 

consequently we obtain 

C3 (n): -- 
(1 - OC2 (n), (3.9) 

where C3 (n) is the equivalent rent. Notice that to obtain the equivalent rent 

C3(n) as v -+ I we substituteC2(n) from equation (3.8) and consequently 

1-1) 
[R+jn 

C3(n) -> lim - M. -S(n) 
V -> I I_vn i 

where 

lim 
I-V 

V -4 1 -, n 

can be obtained by using L'Hopital's rule as 

lim lim 
V-ý,, I_vn V-ýI-nvn-l n' 

from which 

n 
C3(n) R+m S(n) (3.10) 

Thus when there is no discounting the equivalent rent is equivalent to the average 

cost per unit time. 

3.4.3. Numerical example 

Using the two computational approaches in equation (3.8) and equation (3.9), we 

can determine the economic life for an equipment. For example, we consider this 

for five models of Malaysian buses such as Mercedes, Isuzu CSA, Mitsubishi, 
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Isuzu OR and Cummins. The purchase cost new for the five models are M$500K, 

M$230K, M$750K, M$300K and M$800K, respectively. Maintenance cost per 

unit time functions were obtained from maintenance records (full details are given 

in chapter 6). Using a typical discount factor of 0.98, the results are as given in 

Table 3.1. Here the results represent the equivalent rent per bus per year and the 

total discounted cost per unit time for each model type. It is obvious that the two 

models give the same n* (economic life), but of course different minima of both 

the equivalent rent and the total cost discounted respectively. The equivalent rent 

has an easier interpretation than the total discounted cost. Figure 3.2 and Figure 

3.3 illustrate these results. Also it should be noted that Cummins is the most 

expensive one among all models and this is because of the high maintenance cost 

per unit time of Cummins. 

Tale 3.1. Results for total discounted cost and equivalent rent criteria; discount factor--0.98 

Rent criterion Total discounted 
cost criterion 

Bus model n* Min. rent n* Min. cost 

Mercedes 18 42132* 18 5408988 

Isuzu CSA 20 98575 20 428907* 

Mitsubishi 18 108180 18 2106609 

Isuzu OR 5 83975 5 4197855 

Cummins 6 126433 6 6321632 
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Figure 3.2. Rent versus age at replacement / running time. 
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Figure 3.3. Total discounted cost versus age at replacement / running time. 
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3.4.4. Model extension 

The infinite horizon model for like-with-like replacement can be extended to the 

case of buying old equipment aged m years at purchase. In this case it is 

necessary to consider a series of buy-run-sell cycles (Scarf, 1994) with decision 

variables: the age of the equipment at purchase; and the running time, a time to 

replacement, of the equipment. 

The approach, equation (3.8), can be extended to this case and the total 

discounted cost is expressed as 

C4(m, n) R. +EM. +jv 
j-1/2 

_ 
sm+n )n 

n 

j=l 

Here m is the age of the equipment at purchase (buying old). 

R., M., S. and v are respectively the purchase cost of equipment aged m 

years; the maintenance cost per unit time for equipment aged m; the resale value 

of equipment aged m, and the discount factor. 

The equivalent rent is expressed as 

C5(m, n)=(I-v)C4(m, n). 

m and n are the decision variables in this model. 

3.5. Finite horizon models 

Christer and Goodbody (1980) considered the decision problem concerning the 

replacement of members of a fleet of fork lift trucks during a period of inflation 

and economic uncertainty. The authors used an alternative model based upon 

relatively short term estimates of costs. The replacement decision was determined 

for both constant and variable discount rates. They developed a model of the 
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maintenance cost per unit time for fork lift trucks with a view to determining the 

optimal replacement age. The criterion function was selected to be related to the 

average discounted cost over two replacement cycles. The process can be 

associated with the short term decision problem of when to replace currently 

operating plant of a certain age. Factors such as tax allowances, regional 

development grants and technological improvements were readily encompassed 

within the proposed models. 

Christer and Waller (1987a) extended the one and two-cycle rent criteria 

for capital equipment replacement and the infinite-cycle discounted-cost criterion 

to incorporate new tax features of the 1984 finance act. A basic discrete rent 

criterion was described prior to taking account of any adjustment for tax 

allowances. Results from the one cycle model stated that: 

I -the optimum age is directly proportional to the tax rate, but inversely 

proportional to the writing down allowance , 

2- the delay in tax payment has very little effect on the results. 

Results from the two-cycle model showed that: 

1 -the values of maintenance costs, initial age of the first vehicle and replacement 

age of the second vehicle are major influences on the model's results; 

2-interest rates have very little influence on the results; 

3- variation in the tax parameters has virtually no effect on the results. 

The results of the infinite-cycle model showed that the effect of tax 

parameters remained very small. The authors found that modellers may, with 

some justification, consider simplifying matters by omitting tax parameters from 

replacement models until such time as the legislation changes. 
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Recently, Bean, Lohman and Smith (1994) presented a paper on 

equipment replacement under technological change. They developed bounds on 

the error due to truncation involved by truncating infinite-horizon replacement 

economy problems at some finite horizon. These bounds were illustrated through 

a numerical example from a real case in vehicle replacement. The analysis 

allowed for the existence of both revenues and costs. The results were of value 

because of the high cost of gathering information for decision problems of this 

type. It was apparent that if a small number of years of data is available, and no 

forecast horizon (period over which one is concerned with making replacement 

decisions) is found within that time frame, the results obtained give the decision 

maker the power to evaluate the cost of not planning further in time. 

A robust replacement model with applications to medical equipment was 

formulated by Christer and Scarf (1994) who perceived shortcomings in the 

applicability of capital equipment replacement modelling. These shortcomings 

were identified in a 1987 survey within the UK by Hsu (1988). A comparison 

between a 1987 survey and a similar 1988 survey undertaken in the USA was 

made with the explanations for apparent differences. The replacement model was 

developed, however, taking into account some factors such as service and risk, 

and introducing the concept of a penalty factor. A prototype replacement model of 

medical equipment was contemplated in an appropriate format. The prime aim of 

the model was to aid replacement decision making by identifying a "good" 

replacement decision and the consequences of alternative decisions. The marginal 

costs associated with delayed replacement were also considered. Finally the 

model was found to be straightforward, responsive to parameter changes, allows 
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technological development and can be extended to incorporate variable discount 

or tax considerations. 

Scarf (1994) considered a two-cycle replacement model which involved 

three decision variables for the currently running vehicle. These variables were 

the time (the length of the first cycle) of operating a vehicle before replacement, 

the age at purchase of the replacement vehicle and the ongoing requirement for a 

vehicle (the length of the second cycle). Since the planning horizon is finite and 

variable, circumstances can arise in which it is optimal to resale the current asset. 

In real world applications, finite horizon models are desired and accepted, 

especially for cost prediction as well as for consideration of economic factors 

such as inflation rate or discount factor. Also with a finite planning horizon, 

prediction of the costs of the model of equipment is relatively easy to consider. In 

this case the length of the planning horizon is either variable or fixed. 

3.5.1. Variable length finite planning horizon models 

Christer and Goodbody (1980) developed a two-cycle model with variable length 

for the planning horizon and the function to be minimised was expressed as 

KL 

Qr; K, L) Ifl (r + t)v'dt +VK R+ 
ff 

2 
(t)Vldt +VL R] ,v>0. (3.13) 

K+L 010 

This function represents the total discounted cost per unit time of operating a 

plant, currently r years old for a fin-ther K years, replacing it with a possibly 

different model and then operating for a ftirther L years before replacing again 

with an equipment model of the same type. Thus K and L are the decision 

variables in this model. 
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Notice that the resale value of the plant was not considered but could be 

incorporated without any difficulty. This model was later refined (Christer and 

Waller, 1887a; Christer, 1988; Christer and Scarf, 1994). The outline of the 

model is shown in Figure 3.4. Here, f( r+ t), R and v are respectively the 

maintenance cost per unit time of an equipment currently aged r at age t, the 

purchase price and the discount factor. 

Buy Buy 
sell sell 

Now 

Figure 3.4. Two-cycle replacement model with variable planning horizon. 

Technological change is recognised for the case in which replacement is 

not like-with-like and the second cycle addresses the cost consequences of such 

technological change. Technological development was discussed in detail in 

Christer (1988), and was applied to the problem of non-like-with-like replacement 

in which prediction for maintenance cost of new plant was made using historical 

data and a predictive ratio method. 
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The discrete form of equation (3.13) is the most practical approach to 

determine the replacement decision variables. Thus, for the model which 

considers resale values, the total discounted cost over two cycles is defined by 

L 
KK R-S, (r+K)+j: M2(0) 

TDC(K, L) = 
YMI (, r +t)Vt-112 +V t=l 

+VL IR- S2 (L)j_ 

(3.14) 

where M, (. ) andM2(. ) are the age related maintenance costs per unit time for 

current and new plant respectively; R is the cost of the new plant ; S, (. ) andS2 (. ) 

are the age related resale values for current and new plant respectively, and v is 

the discount rate. 

All costs are discounted to present values. In practice the discrete 

formulation, (3.14), is a necessary requirement, and appropriate units for K and 

L should be used. Here all maintenance costs are assumed to occur in the middle 

of the respective time period. Thus, the average cost per year over the length of 

the two cycles, discounted to present value, is then 

A TDC(K, L) = TDC(K, L)I(K + L). (3.15) 

The annual equivalent rent R(K, L), which would be necessary to meet the total 

discounted cost over the two cycles, can be obtained by noting that 

R(K, L)[v+v 2........ 
+0 K+L j= 

TDC(K, L), 

whence 

K+L 

R(K, L) v' = TDC(K, L). 

Therefore 
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K+L 

R(K, L)=TDC(K, L (3.16) 
V 

3.5.1.1. Numerical example 

This example considers replacing a Cummins bus with an Isuzu OR bus, and also 

a Mercedes with an Isuzu CJR. The data for these buses operated by a Malaysian 

bus company is considered in detail in chapter 6. The prices new are of M$500K, 

M$300K and M$800K for Mercedes, Isuzu OR and Cummins respectively. The 

maintenance costs per year for Mercedes, Isuzu OR and Cummins are 

9680 to*", 9680 tI. 14 and 9680t'-" respectively (in Malaysian dollars, M$) where 

t is the running time in years for the bus. This maintenance cost per unit time 

fonn considered is discussed in detail in chapter 2. The resale values are given by 

SQ) = RriV where R is the cost new for the bus (in Malaysian dollars, M$), 

y and & are of 0.613 and 0.811 respectively and t is the age in years at resale for 

the bus. Using a discount factor of 0.98 and various lengths of the second cycle 

L, the results are presented in Tables 3.2 and 3.3. 
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Table 3.2. Replacement decision for replacing Cummins with Isuzu OR for various lengths of the 

second cycle L; discount factor =0.98. 

Rent Discounted cost 

K* L Min. rent K* L Min. cost 

3 3 114679 4 3 106387 

3 6 101312 3 6 91703 

3 9 102714 3 9 90293 

3 12 110889 4 12 94259 

Table 3.3. Replacement decision for replacing Mercedes with Isuzu OR for various lengths of the 

second cycle L; discount factor --0.98. 

Rent Discounted cost 

K* L Min. rent K* L Min. cost 

18 3 59251 20 3 47004 

19 6 60482 20 6 46596 

20 9 64192 20 9 48091 

20 12 70025 20 12 

Table 3.2 shows that Cummins is very expensive because its maintenance 

cost increases rapidly with its early life. The decision is replace Cummins as soon 

as possible after at most 4 years usage. Table 3.3 presents the minimum rent and 

minimum discounted cost for replacing Mercedes with Isuzu OR. The table 

illustrates that Mercedes has a very low maintenance cost and that explains why 

the decision is to keep Mercedes as long as possible. From the two tables it should 
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be noted that the length of the planning horizon (K+L) depends on the choice of 

bus to be replaced. It is noted that the values of K* produced in the case of rent 

criterion are always smaller than that in the case of discounted cost criterion. 

Figures 3.5,3.6,3.7 and 3.8 illustrate these results. 

600 

500 

400 

300 

a ý- 
;g 200 

100 

A 

Figure 3.5. Total discounted cost per year versus length of first cycle K, for various lengths of 

second cycle L, Cummins replaced with Isuzu CJR. Two-cycle model with variable planning 
horizon. 
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Figure 3.6. Rent per year versus length of first cycle K, for various lengths of second cycle L, 
Cummins replaced with Isuzu CJR. Two-cycle model with variable planning horizon. 
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Figure 3.7. Total discounted cost per year versus length of first cycle K, for various lengths of 

second cycle L, Mercedes replaced with Isuzu CJR. Two-cycle model with variable planning 
horizon. 
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Figure 3.8. Rent per year versus length of first cycle K, for various lengths of second cycle L 

Mercedes replaced with Isuzu CJR. Two-cycle model with variable planning horizon. 

3.5.1.2. Model extensions 

The use of two cycles in the model can be considered as a compromise between 

the need to model the on-going requirement for the plant, and the requirement for 

reasonable forecasts for future costs. The model can be adapted to the case of 

variable length planning horizon models with one cycle or three cycles. Here the 

---------- 
---------------------- 
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lengths of the cycles are decision variables and the number of cycles chosen is a 

control variable for the replacement decision. 

The model also can be extended to the case of sub-fleet replacement. This 

is when the fleet is inhomogeneous, so that plant differs in model specification, 

age and/or condition, say. Here, replacement models which consider a typical 

plant are inappropriate. When the fleet is to be replaced as an entire fleet, then 

model, equation (3.8), may be extended. This can be done by summing age (and 

plant specification) related maintenance costs per unit time and resale values over 

the entire fleet. However, it is unlikely that an operator would consider replacing 

an inhornogeneous fleet in its entirety. When plant are to be replaced singly, then, 

given individual maintenance cost history, repair cost limit replacement policies 

(Hasting, 1967; Jardine et al., 1976) may be considered. Of course, the 

replacement of plant singly may be impractical in certain cases. The replacement 

criteria, equations (3.7) and (3.8), are appropriate for a fleet which is 

homogeneous. 

It may be often natural to subdivide the fleet, with interest focusing on 

which single sub-fleet is to be replaced and when to replace it. The choice of the 

equipment model type for purchase will usually be defined in advance by the 

operator/manager of the fleet. Optimal policy for the replacement of any 

particular sub-fleet would depend on the cost of the whole fleet. With new sub- 

fleet (s) likely to be different from the replaced sub-fleet (s), technological change 

is accepted and may be modelled. 

Scarf and Bouamra (1995) presented a model for the case in which an 

inhomogeneous fleet is considered as comprising r sub-fleets of sizes 
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ni (i = 1,.., r). The approach was used to determine: which sub-fleet to replace 

first (on the basis of minimum cost over the horizon); when to replace it; and the 

increased cost of alternative (sub-optimal) choices for sub-fleet to be replaced 

first. 

Some papers have been presented about the problem of mixed fleet and the 

size and composition of a fleet. An early attempt to tackle the problem of fleet 

size optimisation was made by Kirby (195 9). He described the two-sided problem 

of both preventing a low utilisation of owned wagons in a small railway system 

and conversely preventing the frequent hire of costly extra wagons. He obtained 

an expression for the total expected cost per day and via this he could determine 

the number of owned and hired wagons that would minimise cost. 

Gould (1969) discussed the simple fleet size problem and then presented 

an actual case study. Linear programming was used to find the optimum size and 

composition of the fleet. The study resulted in some principle recommendations. 

I- Reduction in the size of the company fleet. 

2- More emphasis on large vehicles. 

3- More emphasis on stainless steel vehicles. 

These recommendations were accepted by the company. 

Mole (1975) extended previous work on the fleet size problem. A dynamic 

programming model was developed to determine the optimum fleet size that is 

time dependent. In order to allow for obsolescence of vehicles, a particular 

disposal policy was specified in advance, and it was assumed that the purchase 

price can be appropriately reduced to allow the scrap value in the period specified 

by the disposal policy. This paper took no account of the possibility of a mix of 
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differing vehicle types and sizes, or the possibility of incompatibility between 

vehicles and loads. The model discussed was quite flexible enabling the cost 

implication of many practical policies to be estimated. 

Woods and Harris (1979) used a simulation approach for investigating 

fleet composition for concrete distribution. Each vehicle handled only one order at 

a time, and vehicle trips were thus round trips between the depot and a single 

customer. They denoted that order was to some extent matched to vehicle size. 

Statistical analysis was used to determine the percentage of customers who would 

switch order sizes if the fleet mix was changed. 

In his paper Parikh (1977) described an approximate but quick method for 

solving a fleet sizing and allocation problem. This paper presented a general 

queuing-theory-based approach to obtain a fast, approximate solution to the 

problem which arises when there is a lack of immediate availability of a transport 

vehicle unit. The lack of service was measured in terms of the factor of customer 

delayed orders and was assumed to be less than unity. Finally the fleet sizing 

problem corresponds to a multi-server queuing system with known mean arrival 

and service rates. 

Etezali and Beasley (1983) considered the problem of determining the 

optimal composition of a vehicle fleet (the best fleet size and the best fleet mix). 

This paper was an attempt to tackle the problem of fleet composition only rather 

than the vehicle fleet size problems that had received more attention in the 

literature. The authors developed a mixed integer programming formulation of the 

problem; they were concerned with long-term decisions concerning the number 

and type of vehicles that the company should operate. They found that the 
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solution to the progranune, for any particular set of data, will give a vehicle fleet 

judged to be the best vehicle fleet that can be examined in more detail using the 

simulation approach. 

A Recent study on the fleet size and fleet mix was presented by Scarf and 

Bouamra (1999). They tackled the capital replacement model for a fleet with 

variable size. They were concerned with the question : "how many items of plant 

are required to maintain a certain level of availability? "; this was associated with 

the question of "at what time should a currently operating plant or fleet of plant 

be replaced ?". They developed a simple two-cycle model in which the size and 

the age at replacement of the fleet replacement are the principal decision 

variables. They also used a birth and death process to model the unavailability due 

to failure, and this unavailability was considered as a penalty cost. Optimal fleet 

replacement decisions were presented over a certain range of the penalty costs. 

The model allowed for the possibility of modelling varying demand with time. 

They applied the model developed to a homogeneous fleet using real data related 

to ventilators in the operating department of a large hospital. A difficulty of the 

model is that the optimum value of the horizon length depends on the choice of 

sub-fleet to be replaced (replacement schedule). 

Vemuganti, Oblak & Aggarwal (1989) presented network models to 

determine the optimal replacement policy for a fleet of vehicles of various types 

and ages over a finite planning horizon. Although the models were formulated in 

the context of a fleet of vehicles, they are applicable to many-equipment 

replacement problems. An interesting feature of the network models was an 

allowance for fleet size variation during the planning horizon. The paper 
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suggested further investigation for the composition of the vehicles of various ages 

in the fleet. 

Another study recently done by Scarf and Bouarnra (1995) considers a 

model for a mixed inhomogeneous fleet. They proposed a method to consider the 

optimum size of new sub-fleets replaced over a certain horizon. A two-cycle 

replacement model with a variable finite planning horizon was formulated with 

the time to first replacement and the size of the new sub-fleet at this time as 

principal decision variables. The model was applied to a mixed fleet of buses 

operated by a large Malaysian intercity bus company. Results for fixed fleet size 

and variable fleet size were obtained indicating the optimality of decision 

variables and the replacement order to the different sub-fleets. 

In their paper Simms, Lamarre, Jardine and Boudreau (1984) described a 

policy for buying, operating and selling buses. The problem arose when a large 

urban transient authority with a yearly budget constraint operating a mixed fleet 

of buses which accumulated a number of kilometres per year, did not know 

whether to replace or not. A model was developed using linear and dynamic 

programming to select buy, sell and operating policies to minimise the total 

discounted cost over the finite horizon. Also a computer program was developed 

to optimise a flexible model to be used in a wide variety of replacement problems. 

The results could be equally useful to maintenance engineers, operations 

managers and budgeting officers. 

Retirement of sub-fleet as spares occasionally (or even the case when sub- 

fleet is retained and fully used), can be modelled using the approach described 

above. The number of sub-fleets would simply increase by one at each 

54 



CHAPTER 3 Capital Relacement Models 

replacement, with the cost associated with the retired sub-fleet added. Predicting 

the mean number of failures and maintenance costs for a retired sub-fleet would 

be difficult however, and it is likely that no data would be available for this, 

because such item would be used occasionally. 

3.6. Fixed horizon Models 

The previous models consider a variable planning horizon with a fixed number of 

cycles as a control variable, usually two in number. In the fixed horizon models 

the length of the planning horizon is fixed and is considered as a control variable. 

There will then be a variable number of cycles each of variable length. The 

number of cycles and their lengths are considered as decision variables. 

A capital replacement model with a fixed planning horizon, h, say, may 

be formulated with number of cycles, N(ý: 2), say, as a decision variable (Scarf 

and Christer, 1997). Other decision variables are the time, K, from now to 

replacement of the current plant (length of first cycle), and the lengths, L21. 
*ILNý 

of subsequent cycles. This scheme of the model behaviour is illustrated in Figure 

(3.9). 
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Figure 3.9. Replacement model with fixed planning horizon of length h, and 

variable number of cycles, N, of length K, L2ý, LN* 

A special case of this model was first proposed by De Sousa and 

Guimaraes (1992). Bean et al. (1994), for example, have a fixed horizon for 

modelling technological change, but the approach is only applicable to a single 

plant or homogeneous fleet. Simms et al. (1984) sought an optimum age based 

mix for a fleet over a fixed horizon. Bouamra (1996) briefly describes a sub-fleet 

replacement model over a fixed planning horizon. Scarf and Hashem (1997) 

described sub-fleet replacement for a large inhomogeneous fleet of buses and also 

described the behaviour of a simple fixed planning horizon model in general 

context. 

The approach which uses a fixed planning horizon replacement model 

resembles more closely the real world situation. Here an operator fixes a horizon 

of a certain length and is then interested in how many replacement cycles are 

needed to span the horizon, and in the length of each replacement cycle. This 

approach can also reduce the "end of horizon effect7' that variable length planning 

horizon model may produce. In their paper Scarf and Christer (1997) presented a 

capital replacement model over a fixed planning horizon. The model is for the 
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replacement of a single plant or homogeneous fleet, and the total discounted cost 

is expressed in the form 

K 

TDC(N, K, L2,.., L,; h) K C, (I- + t)t)I-K-112 +R -S, (-r+K) 2 

N Li (3.17) 
+ )m(i) Ci (t)VI-Li-112 + Rj+j - Si (Li) 

i=2 t=l 

where 

Lj; 
j=2 

-r is the age now of existing plant; C, (. ) and S, (. ) are the age related maintenance 

cost per unit time and resale value of the plant in cycle i (i = 1,.., N); R, is the 

replacement cost of plant operated in cycle i (i = 2,.., N), and purchased at the end 

of the planning horizon (i =N+ 1); and v is the discount rate. The objective 

function may be considered as either the total discounted cost per unit time as 

h 

TDC(N, K, L2 .., LN; h) / h, or the equivalent rent as TDQN, K, L2,.., Ly; h) 

and optimised subject to the constraint 

N 

k+ Li = h. 
i=2 

It is recommended that optimum policy be determined for a range of 

values of h, and then h chosen not too large, but large enough in order not to 

increase costs by imposing a poorly scheduled replacement. If replacement is like- 

with-like, then as h -+ oo, optimum policy reduces to that based on an infinite 

cycle model. Fixed planning horizon models can be used to illustrate the effect of 

length of the horizon on the resulting optimum policy. Looking at the resulting 
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optimum policy as a function of the horizon length (control variable) then allows 

the decision maker to choose a "robust" optimum policy. 

3.6.1. A simple fixed planning horizon model 

In their paper Scarf and Christer (1997) reviewed models with finite horizons that 

may be classified according to two types: variable planning horizon models and 

fixed planning horizon models. The models were also classified according to their 

use for modelling replacement of single plant, an entire fleet, or sub-fleet of a 

large inhomogeneous fleet. They pointed out that the models discussed were also 

appropriate for equipment improvement and refurbishment decisions such as 

major redesigns costing substantial sums of money and therefore requiring both 

justification and strategic planning. 

A fixed planning horizon model with at most two replacements performed 

over the horizon is presented in its simplest form as 

x h-x 
fa(t+r)"dt+ fatl6dt 

+ 2R, 0: 5 x<h, 

h 
Qx) 00 (3.18) 

fa(t +, r)" dt + R, x=h, 

10 

where a (t + -r), 6, at fl are respectively the age-related maintenance cost per unit 

time for the current equipment and the new equipment; x is the time until first 

replacement; -r is the age of the current equipment; R is the price of the new 

equipment and h the length of the horizon. Here h is a control variable and x is 

the decision variable. The model outline is illustrated in Figure 3.10. We impose a 

replacement at the end of the horizon in order to allow a comparison with the 

Christer & Goodbody model. 
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Figure 3.10. A simple fixed horizon model with at most two replacements: 

(a) two replacements at x<h and at xh; (b) single replacement at the end of the horizon 

x=h. 

The cost function Q. ) for this model has the form illustrated in Figure 3.11. 
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x 

Figure 3.11. Cost function for a simple fixed horizon model with two local minima 

Note that, for simplicity, the resale value is ignored and the discount factor 

is considered as unity. 

This model is useful in practice, because often the life of the equipment is 

similar in duration to the length of the planning horizon. We consider this model 

in particular in order to study the behaviour of the optimal policy. This we do in 

chapter 4. 
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CHAPTER 4 

The Behaviour of Optimal Policy for Simple 

Capital Replacement Models 

4.1. Introduction 

In this chapter we consider the behaviour of optimal policy for a number of 

different capital replacement models. We begin this by looking at the behaviour of 

a simple economic life model of Eilon et al. (1966). Then we consider the 

behaviour of replacement models with a fixed planning horizon of length h (Scarf 

& Hashem, 1997). 

We contrast these models with variable planning horizon models proposed 

by Christer & Goodbody (1980), which were motivated by the need to consider 

both technological change and the fact that decision-makers need to take account 

of the age of the equipment or fleet currently in operation. 
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4.2. Infinite horizon model of like-with-like replacement 

In this simple economic life model we suppose that the equipment is used until 

aged y and then replaced. The model is fon-nulated such that the average cost per 

unit time is 

Iy 
C(Y) = 

ff(t)dt +R 
Ylo 

I 
(4.1) 

where f (t) is the maintenance cost per unit time for equipment aged t, y is the 

age at replacement and R is the purchase cost of the new equipment. This model 

is presented in section 3.4. We assume that the discount rate v=1. We seek the 

value of y which minimises the cost Qy). With the maintenance cost per unit 

p time f(t) in the form at , which was discussed in section 2.1, equation (4.1) 

takes the form 

C(y) = -1 
[ lat 

16 dt + R] 
Y0 

The minimisation procedure is carried out as follows. Differentiate with respect to 

y to get 

dC 
=12 

[oy-8" 
- 

ay'6+' 
-R]. dy y '8+1 

Setting dC / dy = 0, we get 

[R(, 8 + 1) / a, 6]1 1('6+') (4.2) 

y* is called the economic life. The value of d'C / dy' can be calculated from the 

following formula: 

d'C 
=I 

la, 
8y'6" 

dY2 Y3 

2a 
y '0', + 2R (4.3) 
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Equation (4.3) indicates that d'C / dy' > 0, since the quantities a, fi and R are all 

positive and so Qy) the average cost per unit time, is minimised at y= y*. 

Equation (4.2) describes the behaviour of optimal policy in terms of the 

replacement cost, R and the maintenance cost per unit time function f (t) = at ft. 

If the replacement has to be made on the basis of non-like-with-like, the infinite 

planning horizon implies that the new model of equipment, as well economic 

factors and failure costs, need to be predicted in an objective fashion. 

The cost function in the case of non-zero resale value (S # 0) is 

C(Y) =I[ff (t)dt +R- S(t) 
yI- 

Again to minimise C(y) we set dC / dy =0 where, with f (t) = at fl, 

dC 
=I 

[oy 
16" 

- 
ay'6+' 

-R- yS'+ S 
dy 7 8+1 

11 

where S' represents dS / dt . 

Setting dC / dy =0 yields 

oyp+l (, 8 1,8 + 1) -R- yS'+ S=0, 

from which 

R[(y / y*)16" - 1] = yS'- S, 

and so 

(Y/y YS F -S 
R 

Hence 

I 
ys IS 

+1 Y/Y .-ýR 

(4.4) 
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Suppose S= ae -bl 
, a, b>0, then, 

S'= -abe-". 

Hence 

< yS'-S +, =-a ýb 1ý-bl 

RR 

In fact, provided S decreases with t then yS' -S<0, so that y/y*<1, that is 

y* > y. Thus if S decreases with t then y* will always be an upper bound for 

the economic life. Given the numerous choices for S that could be adopted in 

practice and the non-linear nature of equation (4.4) we do not consider non-zero 

resale value further in this chapter. 

4.3. Fixed planning horizon models 

In order to gain insight into the behaviour of models with a fixed planning 

horizon, we study the behaviour of optimal policy for a simple model. This is 

done using certain restrictive assumptions regarding the number of replacements, 

the form of the maintenance cost per unit time for current and future equipment, 

and the replacement costs and resale values. 

4.3.1. Notation and assumptions 

Consider a fixed planning horizon, h. In line with the earlier models (Christer & 

Goodbody 1980, Christer & Scarf 1994, Scarf & Bouamra, 1995) we impose a 

resale and replacement at the end of the horizon in order to make a comparison 

with Christer and Goodbody model. For simplicity we also assume that: 
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at most two replacements will take place over the horizon 

(ii) a typical equipment of age r is currently being operated and on replacement 

the new equipment is of age zero (new equipment). 

(iii) the purchase cost of the new equipment is R; 

(iv) the maintenance cost per unit time of the equipment age I is at", where 

a>0; 0: 5,8:! ý 1; (see Figure 4.4). 

(v) the resale value of equipment is zero; 

(vi) the discount rate is unity. 

4.3.2. Like-with-like replacement 

In this section we suppose that the new plant is an identical model to the current 

plant. So, if the time to the first replacement is x, the total cost over the horizon h 

takes the following fonn (as described in equation 3.18): 

x h-x 
fa(t+r)ßdt+ falßdt+2R, 0: 9 x<h, 

C(X) 00 (4.5) 
h 

f a(t + r)ßdt + R, x=h, 

where at'6 is the maintenance cost per unit time of an equipment at age t; R is 

the purchase cost new for an equipment; x is the time of the first replacement and 

h is the length of the fixed planning horizon. Notice that h is fixed; strictly we 

consider it as a control variable which may be varied by the modeller and/or 

decision-maker. Notice that if x=h, then there is only one replacement over the 

horizon (see Figure 4.1) and for this reason Qx) is discontinuous at x=h. 
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First Second 
Cycle Cycle 

< 

4 ol 

(a) 

x=h 

4 10 

(b) 

Figure 4.1. A simple fixed horizon model with at most two replacements: 
(a) two replacements; (b) single replacement at the end of the horizon. 

We have to minimise the cost function (4.5). First note that 

Qx) = 
a(x+r), +' 

_ar 

6+1 

+ a(h-x)"+' i- 2R, 0 -< x<h. 
'6+1 '0+1 '6+1 

Differentiating with respect to x we get 
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dCldx=a(x+, r)" -a(h-x)6. 

Setting dC / dx = 0, we obtain x= (h - r) / 2, (z- :! ý h) , as a solution. Also 

d'Cldx'=a, 81(r+x)"-'+(h-x)16-')>O forO:! ýx<h. 

Thus Qx) has local minima at x= (h - r) /2 and at x=h. The global minimum 

can be obtained by comparing the two local minima Q(h - r) / 2) and C(h). 

Thus, Qx) has a global minimum at x= (h - r) / 2, and it is optimal to perform 

two replacements, if 

[h + r]6+' - 2[(h + r) / 2], 0+' > R(, 6 + 1) / a. (4.6) 

Otherwise it is optimal to make only one replacement at the end of the planning 

horizon (by default). 

Equation (4.6) is most easily interpreted when r=0, whence Qx) has a 

minimum at x=h/2 if 

h, " - 2-160" >R(, 8+1)la. (4.7) 

Inequality (4.7) leads to the conclusion that it is optimal to perform two 

replacements if 

h> [R(, 6 + 1) / a(l - 2-16)1'(6+) 

Note that the replacement is carried out at the midpoint of the planning horizon. 

For 8=0.7, a= 25, R= 450, say, and t measured in years, we obtain that 

it is optimal to perform two replacements, one at h/2 and the other at h, when 

h> 13.1 otherwise we perform only one replacement at h. 

Also from equation (4.2) and inequality (4.7), we have that for the fixed 

horizon model it is optimal to replace at x=h/2 if- 

y* >ý /(I - 2-16)1 
/(fl+l) 

ý-- V-2-, (21 <- fl :! ý 1) 
- 
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The conclusion of this result is that if the economic life of equipment is y*, then 

the fixed horizon model will always replace once only at the end of the planning 

horizon if h< \F2y* approximately (taking into account the typical values of P 

occurring in practice). Otherwise for z- 0, replacements should be performed at 

the mid point of the planning horizon and at the end. Consequently, the optimum 

policy is sensitive to the length of the planning horizon h. This emphasizes that h 

should be chosen with care. 

When r# 0 we have that it is optimal to perform two replacements, one at 

(h - r) /2 and the other at h when (from inequality 4.7) 

> JR(, 8 + 1) /a (I - 2-1)ý'(6+1) - r. (4.8) 

Alternatively we can view this inequality (4.8) as a condition on r, that is 

r 
JR(, B + 1) / a(l - 2-16 )f(fl+') -h = r,. 

If r>r, (some critical value) then two replacements, one within the horizon, and 

one at the end (by default), is optimal. 

For 6=0.7, a= 25, R= 450, T= 5(l 0) and I measured in years, we have 

that it is optimal to replace at x= (h - -r) /2 provided that h>8.1 for r=5 but for 

r= 10 the equipment is currently old so that r>h, leading to replacement 

immediately. The optimum policy changes with T in a simple manner. 

Also in the case of r# 0 and from equation (4.2) and inequality (4.8) we 

have that for the fixed horizon model it is optimal to replace at x= (h - r) /2 if 

/(P+I) (h+r)ly* >ý1(1-2-16)j 
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For l/ 2 : ý, j8 !ý1, the typical values of 8 that occur in practice, [, 8 /(1 -2 
-16 )]", 6" 

has approximate minimum value -52. Thus if the economic life of an equipment 

is y*, then the fixed horizon model will always replace once only at the end of 

the planning horizon if h< V-2y* 
-, r approximately. Otherwise replacements 

should be made at (h - r) /2 (r:! ý h) and at the end of the planning horizon. 

Now if r>h, it follows that dC / dx *0 for 0:! ý x:! ý h. Therefore Qx) 

has local minima at x=0 and at x=h, and it is optimal to replace immediately 

(at the beginning of the horizon) if C(O)<C(h), thatisif 

[h lo+' +r 16" 
1> R(, 8 + 1) / 

There will also be a replacement at the end of the horizon (by default). For 

example, if 8=I, then it is optimal to replace immediately if -r > Ra -' /h. 

We should briefly note that if 8=0, then the maintenance costs are not 

age-related and so for like-with-like replacement, replacement of existing plant 

will not be optimal. This is an obvious point here but will become more relevant 

in the following section when we consider non-like-with-like replacement with 

/3=0. 

4.4. Fixed planning horizon models and non-like-with-like replacement 

Suppose now that the new plant differs from the current plant, and that this 

difference is only in economic terms (purchase cost, maintenance cost per unit 

time); the new equipment performs the same function as the current equipment. 

The maintenance cost per unit time of the new equipment is assumed to take the 

form a2 t6' while that of the existing equipment takes the form at, 01 
. 
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4.4.1. Case A =, 82 

For the simple caseA -= . 
62=, 8, we first let a, =a and a2= pa . If the time to 

first replacement is x, the total cost over the planning horizon [O, h] is then 

x h-x 
fa(t+, c)"dt+ fpctt"dt+2R, 0! ý x<h, 

h Qx) 00 (4.9) 
fa(t + -r)16 dt + R, x=h, 

10 

where p is a factor representing the ratio of maintenance cost per unit time of the 

new equipment to that of the old (current) equipment and the other parameters are 

as defined earlier (section 4.2.1). Again if x=h then there is only one 

replacement over the horizon and Qx) is discontinuous at x=h. Differentiating 

with respect to x, we have 

dC I dx = a(x + r)16- pa(h - #6 

Setting dC / dx =0 we obtain: 

a(x + z-) fl = pa(h - x) 16,0:! ý x<h. 

Also 

d'C / dx' = aß[(x + z) ß-' + p(h - x) ß-'] > 0, 

so Qx) has local minima at: 

x= x'= (hpilp - T)/(P" p +1), 

and at: 

x=h, 

(4.10) 

0:! ý x<h, 

The local minimum at x= x' = (hp "P- r) 1(p ", 6+ 1), is the global minimum if 

C(x') < C(h), that is if 
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11,6 + 1) 
+r+ph- 

(Pllfl +1) - (h + r)6+' + R(, 8 + 1) /a<0. 

(4.11) 

Then there are two replacements over the horizon. Otherwise there is only one 

replacement at the end of the horizon. Inequality (4.11) explicitly provides the 

value of h for which there are two replacements, that is if 

h> [R(, 6 + I)la 11 - p(l + p"6)-'6 11"6+'- r. (4.12) 

Alternatively we can view this inequality (4.12) as a condition on r, that is 

r 
[R(, 8 + I)la 11 - p(l +p I/p )-flil 1/, 6+1 

-h=r,. 

If r>r, (some critical value) then two replacements, one within the horizon, and 

one at the end (by default), is optimal. Inequality (4.12) may also be considered as 

a condition on p, the ratio of the instantaneous age related maintenance costs per 

unit time of the new to current equipment, so that it is optimal to replace at time 

x'= (hpllp - I-) /(P I I# + 1), (and at h by default), if 

P(l + p'/# <I-. 
Ra-(, 8 + 1) 

(h+7-)P+' * 

When -r= 0, it is optimal to replace at x= hp", O 1(p"-6 + 1) if 

h> [R(p + I)la (I - p(l + p", 
8)-, 6 1] Iifl+l 

Figures 4.2 and 4.3 illustrate the cost function. 

For r=0,8 = 0.7, a= 25, R= 45 0, p=2 (the maintenance cost per unit 

time of the new equipment is twice as expensive as the maintenance cost per unit 

time of the current one) and t measured in years - we have that it is optimal to 

replace at 0.7h provided that h> 19.5 years. If the maintenance cost per unit time 
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of the new equipment is less expensive than that of the old (current) one, thus, for 

the same values mentioned above, and p= l/ 2 (2 / 3), the optimal replacement 

occurs at 0.3h (0.4h) provided h> 10.1 (11.1) years. We consider other values for 

p and the results are shown in Table 4.1. Obviously, from Table 4.1, we notice 

that as the value of p increases the first replacement time gets close to h and that 

the planning horizon length for which two replacements would be made increases. 

Also from the table it is noticed that there is a symmetrical behaviour between the 

values of p and the values of x (for example p= 1/ 2 gives x=0.3h and p=2 

gives x=0.7 h ). Note that the value of h, as we mentioned in many situations 

above, is a control variable and that the optimum policy would be, in practice, 

detennined for a range of values of h. 
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Qx) 

x 

Figure 4.2. Cost function for a simple fixed planning horizon with two local minima at X' and 

for non-like-with-like replacement model (z- :! ý hp "P). 

Qx) 

x 

Figure 4.3. Cost function for a simple fixed planning horizon with two local minima at 0 and 

for non-like-with-like replacement model (I- > hp 1 /'0 ). 
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Table 4.1. The times of first replacement and lengths of horizon at which two 

replacements would be made for different maintenance cost per unit time factors, p 

P x (time to first replacement) h (horizon length) 

1/4 0. Ih 8.7 

1/3 0.2h 9.2 

1/2 0.3h 10.1 

2/3 0.4h 11.1 

2 0.7h 19.5 

3 0.8h 25.5 

4 0.9h 31.6 

If r> hp " 16, it follows that dC / dx# 0 for 0 !ýx<h. Therefore Qx) has 

local minima at x=0 and at x=h, and it is optimal to replace immediately (at 

the beginning of the horizon) if C(O) < C(h), that is if 

[h + rl"" - 
[ph fl" + va" 

]> R(, 8 + 1) /a. 

There will also be a replacement at the end of the horizon (by default). Thus, 

immediate replacement is optimal if 

< h-(, 6+1) {(h +, r), 8+1 - T, 6+'- Ra-'(, B + 1)). 

If 8=I this simplifies to 

2R 2-r 
aý -h 

We can consider inequality (4.13) as providing a limit for the age of existing 

equipment beyond which immediate replacement should be made, or as a 
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condition on the horizon length given the age and cost parameters. For example, if 

,8=1, then it is optimal to replace immediately if 

Ra-' h 
r>--- h 2' 

or if 

> J-r (p < 

4.4.2. Case A -"ý A :-0 

This case in which the age-related maintenance costs per unit time are constant 

may at first sight appear trivial, and in fact the behaviour of optimal policy is 

straightforward. However there are practical situations in which the assumption of 

non-age-related maintenance costs will be appropriate. Furthermore, in this case, 

the variable planning horizon model of Christer and Goodbody (1980) will not 

give sensible results; this is because the optimum value of the length of the current 

replacement cycle will be non-finite; this is discussed later in this chapter. 

Now the cost function is 

x h-x 
fadt +f padt + 2R, 0:! ý x<h, 

h Qx) =00 
I 

adt + R, x h, 
10 

from which 

Qx) = 
ax+pa(h-x)+2R 0: 5 x<h, jah 

+ R, x=h, 

giving that 
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Qx) = 
a(1 - p)x + pah + 2R O:! g x<h, jah 

+ R, x=h. 

The minimisation technique in this case implies that Qx) has a minimum when 

x=0. Therefore, if p<I then Qx) is strictly increasing in [0, h) , so that Qx) 

has local minima at x=0 and at x=h, and it is optimal to replace immediately 

(at the beginning of the horizon) if 

C(O) < C(h), 

that is if 

ah' 

or equivalently if 

h> hL :, ": Ra-(1 - p). 

Note that if p>I then C(x) is strictly decreasing in [0, h) , and 

"Mx--. 
hC(X)> C(h), 

so that it is optimal not to replace within the horizon (only at the end by default). 

4.4.3. Case A #, 82 

Now consider the case in which a, # a2 and A#, 82 . Thus Qx) has the 

following fonn: 

x h-x 
fa, (t+r), "dt+ fa2t"ldt+2R, 0:! ý x<h, 

C(X) =10 h 
f 

a, (t + r), 61 dt + R, x=h, 

10 
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where atfil is the maintenance cost per unit time for the current equipment at age 

a2 t6' is the maintenance cost per unit time of a new equipment at age t; R is 

the purchase cost new for an equipment; x is the time of the first replacement and 

h is the length of the fixed planning horizon. To determine the optimum value of 

x (the time of first replacement) we initially use the linear function at which is 

closest to the power law function at 0 over the range of values of the age of the 

equipment, that is [0, h+ r]. This eases the calculations and makes the solution 

tractible. The mathematical expression for the distance (squared to ensure the 

positive value of it) function denoted by D is 

h+r 

D= f[atl'-at]'dt, 

0 

where a is a constant for which D is minimum. Thus, 

D=a 2+T 
2p+l 

- 2aa 
+T 8+2 

+a2 
(h + r) 

3 

, 
8+1 8+2 3 

Differentiating with respect to a we obtain 

aD / aa = 2a -2a 
(h + C), 

6+2 

3 8+2 

Setting aD / aa =0 we obtain 

(4.15) 

a= 3a 
(h 

(4.16) 
fl+2 

Using the fonn at , the total cost is expressed as 

x h-x 
fal(t+, r)dt+ fa2tdt + 2R, 0! ý x<h, 

C(X) 10 
h 

f a, (t +, r)dt + R, x=h, 

78 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

from which we obtain 

a, [(X 
+, r) 1-7 2 ]+ 

a2 + 2R, 
Qx) 22 

:-1 
ý-'- [(h +Z. ) 2 

-V 
2 ]+R 

2 

Differentiating with respect to x we obtain 

dC /A=a, (x +, r) - a2(h - x). 

Setting dC / dx =0 we obtain 

where a, = 3a, (h + r)fll 
A+2 

From which it follows that 

xl= 
a2h-air 
a, +a2 

and a2= 3a2 
(h + r), 61 

, 
82+2 

XF = 
a2(h+7-)161-'h(, 8, +2)- a, (h+r)161-''r(. 82 +2) 

a, (h + -r)61 -' 02 + 2) +a2 (h + 7-), 62-(, 81 + 2) 

(4.17) 

(4.18) 

The local minimum at x' is the global minimum if the value of h satisfies the 

inequality 

a, a2h - a, r + TI 

2 

+a2 h _a2h 
- a, -r 

12 

- a, (h + r)2 + 2R < 0. (4.19) 
a, +a2 a, +a2 

In this case there are two replacements over the horizon. Otherwise there is only 

one replacement at the end of the horizon. 

We consider this case ftirther in section 4.5 using a quadratic 

0 approximation to at , and a numerical example in section 4.6. 

0:! ý x<h, 

x=h. 
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4.4.4. Case a, = a2l A7ý 
182 

Also consider the case a, = a2 =a and A #, 82, proceeding as in the case 

a, #-- a2 and A #, 82, writing down the total cost, C(x), over the planning horizon 

h then the values of a, and a2 are given as 

a, = 3a and a2= 3a 
(h +r), Oý 

. A+2 82+2 

The optimal policy will follow the same concept as in the case of a, * a2 and 

A3'- A* 

(Note that if a, = a2 then we have like-with-like replacement). 

4.5. The behaviour of optimal policy with second order approximation 

In this section we apply a second order approximation to the maintenance cost per 

unit time function at 16 . In fact we use a quadratic function of the form at' + bt, 

where a and b are constants determined by minimising the integral of the square 

distance between the function at' + bt and the function at" over the range of 

values of the age of the equipment, that is [0, h+ r]. This allows us to obtain an 

explicit value for the optimum time to replacement, x*. The distance function 

takes the following form 

h+r 2 
f[at"-(at2 

+bt)] dt, 
0 

from which we obtain that 

a2 (h+z-)'fl" 2aa(h+-r)16" 2ab(h + r) 
fi+2 

218+1 8+3 8+2 

++ 
2ab(h + r) 4 

54 

(4.20) 

b'(h + 
3 
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To obtain expressions for a and b, we minimise D with respect to a and b. 

The minimisation procedure is as follows 

cID 2a(h + r)' 2b(h + 7. )4 2a(h + 7. ), 
6+3 

aa 5+4 8+3 

Setting aD / aa =0 we obtain 

2a(h + r)' + 
2b(h + 2a(h + r)'O+' (4.22) 

54 6+3 

Differentiating D with respect to b and setting aD / ab =0 we obtain 

2a(h + r)' 
I 

2b(h + -r)' 
- 

2a(h + r), 
0+2 

(4.23) 
43 8+2 

Solving equation (4.22) and equation (4.23) simultaneously we obtain 

a_ 
20a(h + r) 

ß-2 (ß 
_ 

1) 

5 (4.24) 
(ß + 3)(ß + 2) 

and 

12a(h+, r)-8-(2-, 8) 
(4.25) 

(, 6 +3)(, 6 + 2) 

The behaviour of the power law function at#, the first order 

approximation function and the second order approximation function is illustrated 

in Figure 4.4. 
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80 

60 

40 
rA 0 

20 

k" 

- 

47/ 

power law 

Ist. order 

2nd. order 

o 
0 6 

Time 
10 

Figure 4.4. The behaviour of the two different approximate functions along with the behaviour of 

the function at 
0 

with a =20,8 =0.5 and h= 10, r=0. 

The total cost function in the case of non-like-with-like as presented in 

equation (4.14) is then 

x h-x 
fj 

a+ r)2 + b, (t + -r)ldt +f (a2 t2 + b2t)dt + 2R, 
x) =h Qo0 

ff 
a (t + r) 2+b, (t + -r)ldt + R, 

10 

0:! ý, x<h, 
(4.26) 

x=h, 
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where alt 2 +b, t is the maintenance cost per unit time function of the current 

equipment at age t; a2 t2 + b2t is the maintenance cost per unit time function of a 

new equipment at age t; R is the purchase cost new for an equipment; x is the 

time of the first replacement; and h is the length of the fixed planning horizon. 

The cost function then becomes 

3_3 ]+ Ll [ 
(. r + X)2 _. r 

2 ]+ 21 (h _ X)2+ 2R, 0! ý x<h, - 
I(Ir + X) (h-x)'+L2 

Qx) =3232 la, [(-r + h)' _ r3 ]+ b' [(r + h)2 
_. r2 ]+ R, x=h. 32 

Differentiating with respect to x we obtain 

dC 
= (a, - a2)X 

2+ (2a2h + 2a,, r + b, + b2)X+ 
a, r 

2_ 
a2h 

2+ bjr - b2h. 
dx 

and so Qx) has a local minimum at x=h and at 

X= xf 
(2a2h + 2a, r + b, + b2): ý V4a, a2 (h + r)2 + 4(a2b, + a, b2)(h + r) + (b, + b2 )2 

2(a, - a2) 

(4.27) 

From equations (4.24) and (4.25) presented earlier we then have the following: 

20a, (h+r), 6-'(#, -1) (4.28) 
(, 81 + 3)(fil + 2) 

12a, (h + r)161-1(2 -, 81) 
(4.29) 

(, 81 +3)(, 81 +2) 

- 
20a, (h + 7. ) 

#2 
-2 (02 

2 "": 682 + 3)(182 + 2) 
(4.30) 

and 

b2 -"ý 
12a2(h + r)161 -'(2 - J62) 

(4.31) 
()62+3)(-82+2) 
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It is straightforward in principle to find the range of values of h for which the 

global minimum of Qx) is at x= x' given by equation (4.27), though closed 

form expressions are not obtainable. 

4.6. Comparison between the first order and second order approximations 

To compare the first order and the second order approximations to the 

maintenance cost per unit time M(t) = atfi we apply the fixed planning horizon 

model with at most two replacements. For this comparison we apply the model 

with some arbitrary values for a, 8 and the planning horizon h. The 

comparison is based on the minimum cost obtained from each approximation and 

the minimum cost obtained by applying the maintenance cost per unit time in the 

form at -6. The results obtained are shown in Tables 4.2-4.7. From the results in 

these tables one can observe that the minimum cost obtained in the case of the 

second order approximation is close to the minimum cost obtained by using the 

maintenance cost per unit time at". Also the value of x* (time for replacement at 

which the cost is minimum) is reasonably close to the value obtained using the 

second order approximation. Therefore we can conclude that the second order 

approximation is a suitable approximation to the maintenance cost per unit time 

atfl, and that the first order approximation could be used if desired. 
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Table 4.2. Replacement results representing the total costs and time to first replacement (X*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M (t) = at# along with the replacement results using the maintenance cost per unit time as at'8 - 

Fixed planning horizon h =I 0; a, =20, a2 =40,01 =0.5 and J62 =0.7. 

Current 
age 

V. order approx. to at 2*d. order approx. to atfl M(t) = at 
6 

T X QX) C(h) X0 X QX) C(h) X* X QX) C(h) X* 

2 7.0 1262 935 10 7.7 1344 966 10 8.1 1360 967 10 

4 6.6 1325 1027 10 7.4 1411 1050 10 7.8 1424 1042 10 

6 6.2 1378 1110 10 7.1 1465 1120 10 7.6 1477 1107 10 

8 5.8 1422 1185 
E Eil 

1508 
1 

1180 
1 

10 
1 

7.4 
1 

1524 1167 10 

Table 4.3. Replacement results representing the total costs and time to first replacement (X*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M (t) = at fl along with the replacement results using the maintenance cost per unit time as at fi 

Fixed planning horizon h= 15; a, =20, a2 =40,81 =0.5 and 82 =0.7. 

Current 
age 

1". order approx. to atfi 2d. order approx. to at# M(t) = at 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 11 1532 1280 15 11.9 1675 1339 15 12.5 1710 1347 15 

4 10.6 1621 1400 15 11.7 1772 1453 15 12.3 1798 1448 15 

6 10.2 
- 

1698 1511 15 11.4 1853 1552 15 12.1 1875 1537 
ii 

15 

8 
t9 

.9 [ 
1767 

1 
1614 

, 
15 11.1 

1 
1922 

1 
1640 15 11.9 

1 
1943 

1 
1619 

1 
15 
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Table 4.4. Replacement results representing the total costs and time to first replacement (x*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M (t) = at6 along with the replacement results using the maintenance cost per unit time as atfi . 

Fixed planning horizon h =10; a, =20, a2 =30,61 =0.5 and 82 =0.7. 

Current 
age 

V. order approx. to at, ' 2d. order approx. to at# M(t) = at 
6 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 6.3 1233 935 10 6.9 1319 966 10 7.3 1336 967 10 

4 5.8 1290 1027 10 6.5 1381 1050 10 6.9 1394 1042 10 

6 5.3 1335 1110 10 6.1 1428 1120 10 6.6 1442 1107 10 

8 4.8 1372 1185 10 5.7 1465 1180 10 6.3 1483 1167 10 

Table 4.5. Replacement results representing the total costs and time to first replacement (X*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M(t) = at6 along with the replacement results using the maintenance cost per unit time as at'6 

Fixed planning horizon h= 15; a, =20, a2 ý30,81 =0.5 and 82 =0.7. 

Current 
age 

1". order approx. to atfl 2*d. order approx. to at6 M(t) = at 
6 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 10.1 1486 1280 15 10.9 1636 1339 15 11.4 1672 1347 15 

4 9.6 1566 1400 15 10.5 1726 1453 15 11.1 1754 1448 15 

6 9.1 1636 1511 15 10.2 1801 1552 15 10.8 1825 1537 15 

8 8.65 
1 

1696 1614 15 9.8 
1 

1863 1640 
1 

15 10.5 1887 

86 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

Table 4.6. Replacement results representing the total costs and time to first replacement (x*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M(t) = at P along with the replacement results using the maintenance cost per unit time as at6 

Fixed planning horizon h= 10; a, =40, a2 =20,81 =0.5 and 02 =0.7. 

Current 
age 

1". order approx. to aro 2 d. 
order approx. to atfi M(t) = at P 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 3.2 1303 1420 3.2 2.5 1413 1482 2.5 2.3 1441 1483 2.3 

4 2.2 1350 1605 2.2 1.4 1458 1650 1.4 1.2 1477 1634 1.2 

6 1.1 1370 1770 1.1 0.3 1470 1789 0.3 0.1 1490 1765 0.1 

8 0.1 1367 1921 0.1 0.0 1457 1910 
1 

0.0 
1 

0.0 1484 1883 0.0 

Table 4.7. Replacement results representing the total costs and time to first replacement (x*) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M (t) = at fi along with the replacement results using the maintenance cost per unit time as at P 

Fixed planning horizon h= 15; a, =40, a2 =20,61 =0.5 and P2 =0.7. 

Current 
age 

1". order approx. to al'8 2*d. order approx. to al'6 M(t) = at, ' 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 5.6 1633 2109 5.6 4.8 1842 2228 4.8 4.6 1907 2244 4.6 

4 4.6 1716 2350 4.6 3.7 1935 2456 3.7 3.6 1982 2445 3.6 

6 3.7 
1 

1773 2571 
- 

3.7 2.6 1992 2654 2.6 2.5 2031 2624 2.5 

8 
1 

2.7 
i 

1809 
r2777 

,, 2.7 1.6 2021 
1 

2829 1.6 1.5 
1 

2060 
1 

2788 
1 

1.5_ 
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Table 4.8. Replacement results representing the total costs and time to first replacement (x* ) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M (t) = at P along with the replacement results using the maintenance cost per unit time as at 6. 

Fixed planning horizon h= 10; a, =30, a2 =20,81 =0.5 and 82 =0.7. 

Current 
age 

V. order approx. to atO 2 Id. order approx. to at# M(t) = at# 

T X QX) C(h) X* X QX) C(h) X' X QX) C(h) X* 

2 4.0 1256 1177 10 3.7 1360 1224 10 3.8 1384 1225 10 

4 3.2 1305 1316 3.2 2.8 1413 1350 10 2.9 1432 1338 10 

6 2.3 1335 1440 2.3 1.9 1442 1454 1.9 2.1 1462 1436 10 

8 1.4 1349 1553 1.4 1.1 1454 1545 
F1.1 

1.3 1480 
1 

1525 1.3 

Table 4.9. Replacement results representing the total costs and time to first replacement (x .) in 

the case of first order and second order approximations to the maintenance cost per unit time 

M(I) = atfl along with the replacement results using the maintenance cost per unit time as at*8. 

Fixed planning horizon h =15; a, =30, a2 =20,81 =0.5 and )62 =0.7. 

Current 
age 

1". order approx. to at" 2 W. order approx. to at'6 M(t) = at 

T X QX) C(h) X* X QX) C(h) X* X QX) C(h) X* 

2 6.9 1540 1694 6.9 6.5 1732 1783 6.5 6.7 1786 1795 6.7 

4 6.0 1619 1875 6.0 5.6 1824 1955 5.6 5.9 1865 1946 5.9 

6 5.2 1679 2041 5.2 4.8 1890 2103 4.8 
1 

5.1 
11 

1925 2081 
1 

5.1 

8 4.3 1724 
1 

2195 
1 

4.3 
1 

4.0 
1 

1936 2234 
1 

4.0 
1 

4.3 
1 

1972 
1 

2204 4.3 

88 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

4.7. Numerical study of the behaviour of optimal policy with non-like-with- 

like replacement 

In this part we study the behaviour of optimal policy of non-like-with-like 

numerically. The cost function is as given by the function (4.14) from which we 

have that 

a' (h-x), 61+'+2R, 0: 5x<h, 

Qx) '81+1 162+1 (4.32) 
a' h. 

'61+1 

4.7.1. Some numerical results 

We illustrate the behaviour of optimal policy by example. We present optimum 

policies for a range of values of maintenance cost per unit time parameters (a 

and j6 
) and current age (r ). We also vary the control parameter, h, the length of 

the planning horizon. Thus, with a fixed planning horizon of length 10 years and 

15 years and R= 450 and different values of a,, a2 
. 101, 

P2 and T (the age of the 

current equipment), Tables 4.10-4.12 show the minimum total cost at x= x' and 

the cost at x=h and the value of x* (the optimal replacement time according to 

the global minimum of x= x' and x= h). 
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Table 4.10. The results of optimal policy behaviour with fixed planning horizons of length 10 

years and 15 years respectively; a, =20, a2 =20,81 =0.5 and J62 =0.7. 

Planning Horizon h =I 0 Planning Horizon h= 15 

xf Min. cost 

at X' 

Min. cost 

at h 
X* X? Min. cost 

at X' 

Min. cost 

at h 
X* 

0 6 1223.1 831.6 10 10 1503.1 1224.6 15 

2 6 1288.2 966.5 10 9 1605.5 1346.9 15 

4 5 1334.8 1041.8 10 9 1665.7 1417.6 15 

6 5 1372.0 1107.2 10 8 1724.0 1537.2 15 

8 4 1400.0 1166.5 10 8 1773.2 1619.0 15 

Table 4.11. The results of optimal policy behaviour with fixed planning horizons of length 10 

years and 15 years respectively; a, =20, a2 =20,81 =0.7 and 82 =0,5* 

Planning Horizon h= 10 Planning Horizon h= 15 

x? Min. cost 

at X' 

Min. cost 

at h 
X* x Min. cost 

at X' 

Min. cost 

at h 
X* 

0 4 1220.2 1039.6 10 5 1503.1 1624.7 5 

2 2 1287.7 1215.7 10 4 1595.6 1865.0 4 

4 1 1317.3 1370.5 1 2 1648.2 2081.6 2 

6 1 1334.1 1513.5 1 1 1672.6 2284.0 1 

8 1 1349.5 1648.1 1 1 1687.9 2476.0 1 
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Table 4.12. The results of optimal policy behaviour with fixed planning horizons of length 10 

years and 15 years respectively; a, =20, a2 =30,81 =0.7 and 62 =0.65. 

Planning Horizon h =I 0 Planning Horizon h= 15 

XF Min. cost 

at X' 

Min. cost 

at h 
X* x? Min. cost 

at X' 

Min. cost 

at h 
X* 

0 6 1326.5 1039.6 10 9 1742. 1624.7 15 

2 6 1442.1 1215.7 10 8 1902.3 1865.0 15 

4 5 1527.5 1370.5 10 8 2030.6 2081.6 8 

6 4 1591.8 1513.5 10 7 2135.6 2284.0 7 

8 3 1640.7 1648.1 3 6 2223.8 2476.0 6 

From Table 4.10 it is noted that the optimal policy is always to replace at the end 

of the horizon in the case of h= 10 and h= 15. Therefore, we find that x* = 10 in 

the case of h= 10 and x* = 15 in the case of h= 15. This decision is affected, of 

course, by the fact that the maintenance cost per unit time of the current 

equipment is less expensive than that of the new equipment and the physical 

meaning of this behaviour seems to be to keep the current equipment as long as 

possible. 

Table 4.11 shows that the optimal policy varies when the maintenance cost 

per unit time of the new equipment is cheaper than that of the current equipment. 

Thus, the optimum policy at the lower current ages (-r = 0, r= 2) is always replace 

at the end of the horizon. For the older current ages, the maintenance cost per unit 
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time of the current equipment becomes very expensive so that the policy tends to 

replace soon. In the case of h= 15 the optimal policy is always to replace as soon 

as possible. 

Table 4.12 shows that the optimal policy in the case of h= 10 is replace at 

the end of the horizon except when r=8 in which case the maintenance cost per 

unit time of the current equipment becomes expensive enough to replace within 

the horizon. In the case of h= 15 the optimal policy is to replace at the end of the 

horizon at the early current ages but this policy changes to replace within the 

horizon when the current equipment gets older showing the effect of the horizon 

length on the behaviour of optimal policy. 

The above results show that the optimal policy is affected by the model 

parameters. It is noted that the most influential parameters are the current ages and 

the length of the planning horizon. Therefore, the optimum policy is sensitive to 

h so that h should be chosen with care. For brevity, we consider further 

examples graphically in the next section. 

4.7.2. Graphical results 

We now investigate the behaviour of optimal policy for non-like-with-like 

replacement. Rather than using approximations to at, 8 to obtain explicit values 

for x*, we explore the behaviour numerically through the relation between the 

two ratios x *1h and a, / a2. We present the results graphically. This investigation 

is done by varying the values of a, and a2 and the values of A and #2, 

detennining x* and then plotting x *1h against a, /a2. For a fixed planning 

horizon h, the optimum value of x (the time for replacement) is determined. If 
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the cost is a minimum at h, then x* =h leading to replacement once at the end of 

the horizon. Otherwise the cost is a minimum at x' <h and x*= x', leading to 

replacement twice at x= x' and x=h. Moreover, x*A=I indicates that there is 

only one replacement at the end of the horizon and x *1h <I indicates that there 

are two replacements one at x' and the other at h. 

In Figures 4.5 to 4.16 we show the behaviour of optimal policy according 

to the maintenance costs per unit time parameters and the length of the planning 

horizon. 

Figure 4.5 shows that the optimal policy changes when a, and r (the age 

of the current equipment) increase. Thus, for a, = 20 the optimal decision is 

always to replace at the end of the horizon when r=0. Also when -r =2 the 

optimal decision changes from replace at the end of the horizon to replace within 

the horizon as a, increases (the maintenance cost per unit time of the current 

equipment becomes more expensive than that of the purchased equipment). For 

-r =4 and r=8 it is obvious that the decision is to replace within the horizon 

most of the time except when a, = 20 but for some values of a2 (a, /a2 > 1-05) 

the decision is to replace at the end of the horizon. 

Figure 4.6 shows that the condition A< 82 affects the optimal policy 

since the maintenance cost per unit time of the current equipment is increasing 

more slowly. Thus, for r=0 the decision is always to replace at the end of the 

horizon. When r=2 the decision is to replace at the end of the horizon when 

a, = 20 or 30 but the policy changes when a, = 40 because of the expensive 

maintenance cost per unit time for current equipment. For z- =4 the optimal 
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policy is always to replace at the end of the horizon when a, = 20 and replace 

within the horizon when a, = 30 or 40 with the same values for a2 . For -r =8 

the maintenance cost per unit time of the current equipment is increasing 

gradually for a, = 20, a, = 30 and a, = 40 respectively and that affects the 

optimal policy decision to replace within the horizon at certain values for a2 . 

Figure. 4.7 shows that the optimal policy is affected by the age of the 

current equipment. Thus, for r=0 the decision is always to replace at the end of 

the horizon except for aI= 40 when a, /a2>1.8. For z- =2 the decision is 

always to replace at the end of the horizon when a, = 20 but it is noticed that the 

optimal policy changes to replace within the horizon when a, = 30 for 

a, /a2 > 1.88 and when a, = 40 for a, / a2 > 1.33. For r=4 the optimal policy 

is nearly the same as for r=2. For T=8 the optimal policy starts with replace at 

the end of the horizon and turns to replace within the horizon. 

Figure 4.8 shows that the optimal policy rapidly changes being affected by 

all the parameters of the maintenance cost per unit time. Thus the behaviour of 

optimal policy illustrated in Figure 4.8 is nearly the same as the behaviour of 

optimal policy illustrated in Figure 4.5. The difference between Figure 4.8 and 

Figure 4.5 is that the decision replace within the horizon is taken at earlier stages 

because 
. 
82 = 0.5 in Figure 4.8 and . 

8, = 0.65 in Figure 4.5. The case fl, = 0.7 

and P2 = 0.5 in Figure 4.8 makes the maintenance cost per unit time of the 

current equipment much more expensive than that of the purchased equipment 

compared with the case 8, = 0.7 and . 
82 = 0.65 in Figure 4.5. 
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Figure 4.9 shows that the optimal policy is affected by the length of the 

planning horizon compared with the behaviour of optimal policy in Figure 4.5 

when h =I 0. Therefore, the optimal policy is to replace within the horizon most 

of the time for r=0, -r =2 and r=4 respectively and all the time for r=8. 

Figure 4.10 shows that the behaviour of optimal policy is affected by the 

length of the planning horizon h= 15 compared with h =I 0 in Figure 4.6. It is 

noticed that the optimal policy is nearly the same in both Figures. The difference 

is that the decision replace within the horizon takes place earlier in the case h= 15 

(more expensive maintenance cost per unit time for the current equipment). 

Figure 4.11 shows the effect of h= 15 on the optimal policy compared 

with the optimal policy shown in Figure 4.7 with h= 10 . Notice that there is a 

slight difference between the effect of A =0.55 in Figure 4.10 and A=0.5 in 

Figure 4.11. 

Figure 4.12 shows that in addition to the effect of h= 15 the optimal 

policy is affected by the condition A> fl2 . Therefore, the optimal policy 

behaviour is almost to replace within the horizon except at the beginning only for 

r=0 when 0.5! ý a, /a2 < 0.8 and for -r =2 when 0.5: 5 a, / a2 < 0.6. Compared 

with Figure 4.8 the difference is obvious. 

Figure 4.13 shows that the behaviour of optimal policy is greatly affected 

by the length of the horizon h= 20 compared with the case h= 10 in Figure 4.5 

and the case h= 15 in Figure 4.9. This effect of the longer planning horizon leads 

to the decision replace within the horizon except for a very short period when 

r=0 and 0.5! ý a, /a2 < 0.6. 
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Figure 4.14 shows that h= 20 has an influence on the optimal decision 

compared with that illustrated in Figure 4.6 for h= 10 and Figure 4.10 for h= 15. 

Figure 4.14 also shows that although the optimal policy is affected by the longer 

horizon h= 20 the condition A< 82 (cheaper maintenance cost per unit time for 

current equipment) allows replace at the end of the horizon for some time. It is 

noticed that the decision replace at the end of the horizon is ignored (replace 

within the horizon) as r and a, increase. 

Figure 4.15 shows that although A= . 82 makes the maintenance cost per 

unit time of the current equipment cheaper the length of the horizon has an 

influence on the behaviour of optimal policy compared with that shown in Figure 

4.7 and Figure 4.11. The figure also shows that the decision replace at the end of 

the horizon changes to replace within the horizon as -r and a, increase. There is 

also a slight difference between Figure 4.15 (162 =0.5) and Figure 4.14 

(, 82 
-,, ý 0.5 5 ). 

Figure 4 . 16 shows straightforward behaviour of the optimal policy that 

the decision is always to replace within the horizon; it is more economical not to 

keep the current equipment until the end of the horizon. Figure 4.16 also shows 

that how the optimal policy is affected by the length of the horizon compared with 

that illustrated in Figures 4.8 and 4.12. 

On the whole, we can see that as h increases it is more likely that it is 

optimal to replace within the horizon. This is likewise for 82 > 61 and a2 > Ctl ' 

Thus the behaviour of optimal policy is as expected. The figures also illustrate the 
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non-smooth behaviour of optimal policies for these replacement models. This is 

their major drawback. 
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Figure 4.5. The behaviour of optimal policy for A1 P2 >I and h= 10 years. 
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103 

h=15years 
01=0.5, P2=0.55, ir--2 

h= 15 years 
01 -0.5, P2=0.55, i=D 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

0.8 

0.6 

0.4 

0.2 

0 

0.5 0.8 1.1 1.4 1.7 2 

aI Ax2 

(a) 

0.8 

cc 1 =20 
0.6 

al=30 IV 

a1 --40 
0.4 

0.2 

o 

0.5 0.8 Ll 1.4 1.7 2 

aI /a2 

(b) 

h= 15 years 
01=0.5,02=0.5, T=8 

0.8 

0.6 

0.4 

02 

0 
0.5 0.8 1.1 1.4 1.7 2 

alla2 

(c) 

0.8 

(x 1 =20 0.6 

al=30 04 

ctl=40 0.2 

0 
0.5 0.8 1.1 1.4 1.7 2 

al/a2 

(d) 

Figure 4.11. The behaviour of optimal policy for 8,1)62 =I and h= 15 years. 
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Figure 4.12. The behaviour of optimal policy for 6,1 
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Figure 4.13. The behaviour of optimal policy for P, / 162 >I and h= 20 years. 
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Figure 4.14. The behaviour of optimal policy for A1 
'82 <I and h= 20 years. 
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Figure 4.15. The behaviour of optimal policy for A1 
#82 =I and h= 20 years. 
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Figure 4.16. The behaviour of optimal policy for 8,1,82 >I and h= 20 years. 
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4.8. Finite planning horizon models of variable length 

In addition to the fixed planning horizon modelling, we can consider the 

behaviour of variable length finite horizon models. This is done by considering 

models with a fixed number of cycles, and focusing on the form of maintenance 

cost per unit time for the current and future plant, and the replacement costs. For 

variable planning horizon models with a fixed number of cycles the situation 

considered is, given a plant currently aged T years, when should it be replaced? 

That is how much longer the plant should be operated until replacement? This 

decision is the most important task for decision-makers. The on-going 

requirement for a plant is represented by subsequent replacement cycles (Christer 

& Goodbody, 1980). We start with a simple one cycle model before focusing on 

the two-cycle model of principal interest. 

4.8.1. Notation and assumptions 

Consider a planning horizon for which the length is a function of decision 

variables (lengths of replacement cycles). Also a resale and replacement are 

imposed at the end of each cycle. For simplicity we assume that: 

(i) an equipment of age -T is currently being used and a typical new equipment is 

of age zero on replacement; 

(ii) the cost of the new equipment is R; 

(iii) the maintenance cost per unit time of the equipment is a116, where a> 0, 

0 <, 8: 5 1; (see Figure 4.4). 

(iv) the discount rate is unity. 
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4.8.2. One cycle replacement model 

Here, we assume a plant of age T and it is required to operate it until a certain time 

n before replacement, so we seek the optimum value of n, which minimises the 

cost. Figure 4.17 illustrates the model outline. 

run 

Now 

4 op. 

Figure 4.17. One cycle replacement behaviour. 

The average cost per unit time is then 

I 
[n 

C(n) =- ff(t +, r)dt +R 
n0 

time 

(4.33) 

where f (r + t) is the maintenance cost per unit time of the existing equipment of 

current age r; R is the purchase cost new. For the maintenance cost per unit time 

in the forin a (r + t) -8 , the cost ftinction is as follows: 

C(n) = 
l[a(n+r)"" 

+R 
n (p + 1) 8+1 

1. 

When r#0 we obtain 

nC(n) 
a(n+r)fl" 

_arfl+l +R (fl+I) fl+l 

I. 

Setting dC / dn =0 we obtain 

(4.34) 
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C(n *) = a(n *+ r)6, 

then from equation (4.34) we have 

I a(n + r), O" ar 16" 
a(n* + r), 6 =-+R . (, 6+1) 

'6+1 

11 
(4.35) 

as a non linear equation of n* so that we move to the case r=0. 

Putting r=0 in equation (4.35) we obtain 

a(n*), 6 =I* 
Fa(n*)fl" 

+R (4.36) 
nL(, 8 + 1) 

1, 

hence, 

R/ a(l -I /(, B + 1)), (4.37) 

from which we get 

[R(, 6 + 1) / afl]"(fi+'), 

where n* is the optimal time at which replacement should be made. This result is 

the same as the result obtained from infinite cycle model given by equation (4.2). 

Thus n* is the economic life of the existing equipment. 

Notice that equation (4.37) indicates that n* exists when 

(, 8+ 1)) > 0, so 8>0 is the condition for existence. 

For 6=0.7, a= 25, R= 450 and t measured in years, it is optimal to 

replace at n* =9.2 which is the same as the infinite cycle model as expected. 

4.8.3. Two-cycle replacement models 

In this section we consider a model with two cycles. The aim is to determine the 

time at which the current equipment should be replaced, that is the length of the 
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first replacement cycle. The on-going requirement for an equipment is represented 

by the second cycle (Christer & Goodbody, 1980). Figure 4.18 shows the model 

outline. 

buy 
run buy 

run buy 

sell 
sell 

Now time 
4 10 

Figure 4.18. Two-cycle replacement procedure. 

4.8.3.1. Like-with-like replacement 

Here the new equipment is of the same type as the current equipment. The current 

equipment is operated for K years until resale (the first replacement cycle), the 

new equipment is purchased and run for L years (the second replacement cycle). 

Finally, a new equipment is purchased at the end of the second cycle. This model 

has a finite planning horizon of variable length K+L. We seek K* and V 

which minimise the total cost per unit time (or alternatively the equivalent rent). 

The average cost per unit time over the two cycles is given by: 

C(K, L) 
[K 

f (t + r)dt +f (t)dt + 2R (4.38) 
(K+L) 00 
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where f (t) is the maintenance cost per unit time of the equipment of age t; and 

R is the purchasing cost new. Using the maintenance cost per unit time function 

of the form f (t) =aI fl, we obtain 

C(K, L) =I 
a(r + K) "+' ar "+' 

I 
aLp+l + 2R (4.39) 

I. 

Thus we obtain 

(K + L)C(K, L) a(r+K)"+' 
_ 

ar"+' +- CCLP+l + 2R (4.40) 
W+ 1) (18 +1) (16 +1) 

1. 

Differentiating both sides with respect to K and L we obtain 

(K + L) 
ac 

+ C(K, L) = a(K + -r), 6, 
aK 

(K + L) 
ac 

+ C(K, L) = aL'6. 

aL 
L*) is the solution of aC / aK = aC / aL = 0. Hence 

C(K*, L*)=a(K *+ I-) fi, (4.41) 

and 

QK *L*)= a(L*)fl. (4.42) 

Solving equation (4.4 1) and equation (4.42) simultaneously we obtain 

+r=L*. 

Note that this implies that the ages at replacement for each cycle are the same and 

is a consequence of equal maintenance costs per unit time. 

Substituting in equation (4.39) for QK *, V) we have 

a(r +K*)6=I 
2a(r+K*)16" ar, 

6" 

+ 2R], 
(2K* + r) 

[ 

(, B+I) ('8+1 
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which is a nonlinear equation in K* and may be solved murnerically to determine 

K 

When r= 0 we seek the decisions variables K* and V by following the 

typical steps for minimizing C(K, L). Whence a(K*)16 =a(L*), 6 from which 

K*=V. Hence we obtain 

a(K *) 16 = [a(K *) 8" + R(, 8 + 1)] /K*(, 8 + 1), 

hence 

K*= [R(, 8 + 1) / a, 8]"('8+1) = L*, 6>0. (4.43) 

Thus K* and V are just the economic life of the equipment. This is the same 

result obtained from the infinite cycle replacement model in section 4.2 as 

expected. 

Notice that the value of K* and V in equation (4.43) is obtained when 

replacement is imposed at the end of the second cycle. Notice that if replacement 

is not imposed at the end of the second cycle then the difference is purchasing 

only once at the end of the first cycle. This results in 

JR(, 6 + 1) / 2a, 61" *0+1 = L*, 8> 0. (4.44) 

Therefore, not including the replacement cost at the end of the second cycle 

affects the decision. This is not the case in the fixed planning horizon models. 

4.8.3.2. Non-like-with-like replacement 

Here, we follow the same assumptions as mentioned earlier in section 4.3.1, thus 

the average total cost per unit time over the two cycles is given by: 
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I [K L 
C(K, L)=- fa(t+r)"dt+fpctt, dt+2R], 

(K+L) 00 

Here p is a factor representing the ratio of the maintenance cost per unit time for 

the current equipment to that for the new equipment, so a2 =Pa and a, =a. 

Proceeding as in section 4.8.3.1, we have that: 

C(K, L) =I 
[a(r + K)6" 

- 
az-, 8+' 

+, 
paL, 8+' 

+ 2R (4.45) 
(K + L) (, 8+1) (P + 1) 68 + 1) 

1. 

Thus we obtain 

(K + L)C(K, L) a(r + K)"+' 
- 

ar, '+' POE, 
6+1 

+ 2R (4.46) 
(P + 1) (fl + (, 8 + 1) 

1. 

Differentiating both sides with respect to K and L we obtain 

(K + L) 
ac 

+C(K, L)=a(K+r)-8, 
aK 

(K + L) 
aC 

+ C(K, L) = apL, 8 

aL 
(K *, L*) is the solution of aC / aK = aC / aL = 0. Hence 

QK *, L*) = a(K *+ r) ", (4.47) 

and 

QK *, L*) = ap(L*), 6. (4.48) 

Solving equation (4.47) and equation (4.48) simultaneously we obtain 

p"-6L*. 

From equation (4.45) we have that 

(4.49) 

(, 6 + I)p(L*)6 =I 
[(L* ) '6+lp(l+pll'6)-i-, 6+1 +2Ra-'(, 6+1)]. 

(I+P ]/, o )L* -r 

(4.50) 
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Again this is a nonlinear equation of L* so that it must be solved numerically to 

determine L* and consequently K*. Therefore, we move to the easily interpreted 

case when r=0. 

Putting r=0 in equation (4.50) we obtain 

I 
pa(L*) 

[a(p 
' L*) P" + pa(L*) 16+' + 2R(, 8 + 1)] 1(, 6 + 1), 

from which we obtain 

V= [2R(, 
6 + 1) / ap, 6(l +p (4.51) 

Substituting from equation (4.5 1) and putting r=0 in equation (4.49) we obtain 

0,11/(ß+1). K* =p! 
[2R(ß+1)lapß(l+p') 

(4.52) 

This shows that K*> L* when p>I and vice versa. The existence of K* and L* 

is satisfied for 8>0. Also if p>I then for 8=0.7, a= 25, R= 450, p =2 and t 

measured in years, we have that the length of the planning horizon is 15.8 with 

11.5 and L* = 4.3. Also for the same values used above, but p=I/ 2(2 / 3), 

we find that K*=6.4 and L* = 17.3 for p= 1/ 2, but K*=7.6 and L* = 13.6 

for p=2/3. 

Note that there is a condition on r for the existence of V in equation 

(4.50). This condition may be given explicitly when 8=1, when equation (4.50) 

simplifies to 

(L* )2 2L. 72 4R 
0. 

l+P p(1 + p) ap(1 + p) 
(4.53) 
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A solution to equation (4.53) exists provided r' < 4(l + p)Ra-'. The condition 

for K*, L* >0 is stronger: namely r2< 4pRa -'. For 

4pRa -1 :! ý r2< 4(l + p)Ra -1, 

optimum policy would be replace immediately. A similar condition for K*, L* >0 

holds in the case of like-with-like replacement (p = 1) in which case 

< V-2- x (economic life). 

For the case . 
8, '= 82 =0 the average total cost per unit time is given by 

KL 

C(K, L) =1f adt +f padt + 2R 
(K + L) 

10 

0 

from which 

C(K, L) =I [aK + paL + 2R]. 
(K + L) 

Differentiating with respect to K and L we obtain that 

W/ aK = ja(l - p)L - 2RI I(K + L)2, 

and 

aC / aL = fa(p - I)K - 2RI I(K + L)'. 

Therefore for K, L >0 there is no solution for aC / aK = aC / aL =0 and the 

variable planning horizon replacement decision model is degenerate. 

In fact for p>I 

C(K, L) =I [aK + aL - (I - p)aL + 2R], 
(K + L) 

(I - p)aL + 
2R 

K+L K+L' 
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=a+ 
(p - I)aL 

+ 
2R 

K+L K+L' 

which decreases to a as K -+ oo for any L. So it is optimal to operate the current 

equipment as long as possible. 

For p<I 

C(K, L)=-' -[paK+paL+aK-paK+2R], (K+L) 

1 [pa(K + L) + aK(I - p) + 2R], 
(K+L) 

ap+ 
aK(I - p) + 

2R 
K+L K+L' 

which decreases to ap as L --+ oo for any K. In a practical context this implies 

we should take K*=0. However when searching for an optimal in the range 

KE [0, K, ], Le [0, L, ], the result K*=0 is not guaranteed. 

For p=l 

C(K, L)=a+ 2R 
K+L' 

which decreases to a as K -> oo and/or L -* oo. 

4.9. An insight into fixed and variable horizon models 

Now we look at optimum policies for fixed planning horizon model if h is treated 

as a decision variable, that is if the fixed planning horizon model is treated as a 

variable planning horizon model. 

In the case of a simple fixed planning horizon model of like-with-like 

replacement, the cost function as given earlier is 
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x h-x 
f a(t + -r)-8dt + fat'6dt + 2R, 0:! ý- x<h, 

h 
Qx) 00 

fa(t + r), 6dt + R, x=h, 
10 

In this case h is fixed and x is variable. If we consider h as a decision variable 

and consider the cost per unit time, the cost function will be 

I [x h-x 

Qx, h) 
h 

fa(t+r)-8dt+ fcrt, dt+2R Osx<h. 
00 

11 

For simplicity we consider r=0 and that gives the following form: 

Qx, h) =I[ 
ax, 6" 

+a 
(h - x), 8 

2R 0 :ýx<h. (4.54) 
h8 +1 8+1 

11 

In order to achieve the minimum cost we differentiate C with respect to x 

and h as follows 

MC I o'x=axfl -a(h-x)16. 

Setting 6C /&=0 we get: 

x= h -x. 

Also 

h6CIA+C=a(h-x)fl 

Setting X/A=0 we have that: 

C =a(h -x)ß. 

Substituting in equation (4.54) we obtain 

ax 
axfl+l 

+R. 
'8+1 

from which we obtain: 

(4.55) 

x= [Rla(l-llp+1)1'6+' 
=h-x. (4.56) 
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Compared with the variable planning horizon model of like-with-like 

replacement in which the cost function equation was as follows 

C(K, L) =I 
FaKl6" 

+ 
aLl6" 

+ 2R 
(K + L) L (, B + 1) ('6 + 1) 

11 

from which we obtain K=L and 

K= IR / a(l - 11(, 6 + 1))I#'+l = L, (4.57) 

which is the same as in equation (4.56) but with K=x and L=h-x. 

Also in the simple case of non-like-with-like replacement in which 

a, * a2, the cost function was as follows 

x h-x 
fa(t+r)"dt+ fpctt, 6dt+2R, 0: ý x<h, 

Qx) o 
fa(t + r) 16 dt + R, x=h, 

10 

Considering x and h as variables the cost function takes the following fonn: 

I [x h-x 

C(x, h)=- fa(t+r), 6dt+ fpctt-8dt+2R 0: 5 x<h. h00 

Again r=0 gives 

Qx, h) ax 10+1 
+ pa(h - x), 6+' 

+ 2R (4.58) 
h (, 8 + 1) (P + 1) 

from which we get: 

MC / ox = aro - pa(h - x) 

Setting 6C / ox =0 yields: 

pllß(h- x), (4.59) 

and also 

hX I A+C = pa(h-x)16 
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Setting X /A= 0 gives: 

C= pa(h - x) ". 

Substituting in equation (4.5 1) we obtain 

'o =Ix 
'8+1 x '6+1 

ax (I +I/P,,,, )x 

[a 

'8+1 +, )Pi+ilg 
+2R], 

from which we obtain: 

]/, 6+1 [2R I a(l+ II pll'6)(1-11(, 8+1))] (4.60) 

In the case of variable planning horizon model of non like-with-like 

replacement the cost function equation was: 

C(K, L) = 
[a(Kfl++ 

pL, 6+')+ 2R(, 6 +I)V(K+L)(fl +1). (4.61) 

Also we obtained 

K= p"16L, (4.62) 

I/#+I 
K= [2R / a(l +I/ p'1'6)(I -1 + 1))] (4.63) 

Thus the results from the variable planning horizon model are identical to 

the results presented in equation (4.59) and equation (4.60). So the two models are 

mathematically equivalent. The fixed horizon model has fixed h, variable x and 

variable number of cycles; the variable planning horizon model has variable 

h=K+L, variable K and fixed number of cycles. 

One of the principal ideas of this thesis is that the at-most-two- 

replacements fixed planning horizon model is a natural alternative to the variable 

planning horizon two-cycle model of Christer and Goodbody (1980). The fixed 

horizon model behaves sensibly even when 8=0, and also is a natural choice 

when management set the planning horizon in a strategic plan. 
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4.10. Fixed planning horizon models: a Dynamic programming approach 

4.10.1. Introduction 

Dynamic programming (DP) is a particular approach to optimisation. It is not a 

particular algorithm in the sense that the simplex method for linear programming 

is one. Rather, DP is a way of structuring certain problems so that a particular 

methodology can be used. The name dynamic programming evolved because of 

its use with applications involving decision making over time. However, other 

situations which are static can also be solved successfully by DP. Dynamic 

programming is a way of looking at a problem, that may contain a large number 

of interrelated decision variables, in which the problem is regarded as if it 

consisted of a sequence of problems, each of which required the determination of 

only one (or few) variables. Whenever it is possible to structure a problem in this 

way, it is usually the case that very much less computational effort is required. 

The computations at the different stages are linked through recursive 

computations in a manner that yields an optimal solution to the entire problem. 

Put simply, the DP approach transforms or considers an n -dimensional problem 

as n sequential one-dimensional problems. This transformation of the problem to 

one that requires much less computational effort is one of the main advantages of 

DP and will be discussed later in this section. 

Problems to which DP has been applied are usually stated in the following 

terms. A physical, operational, or conceptual system is considered to progress 

through a series of consecutive stages. At each stage the system can be described 

or characterised by a relatively small set of parameters called the state-variables. 

At each stage, and no matter what state the system is in, one or more decisions 
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must be made. The decisions may depend on either stage or state or both. It is 

usually assumed that the past history of the system, i. e., how it got to the current 

stage and state, are of no importance. In other words, the decisions are assumed to 

depend only upon the current stage and state. When a decision is made a return 

(value of the relevant part of the objective function) or reward is obtained and the 

system undergoes a transformation or transition to the next stage. The return is 

determined by a known single valued function of the input state. Similarly, the 

transformed state results from a known single-valued function of the decision 

acting upon the current state. The overall purpose of the staged process is to 

maximise or minimise some function of the state and decision variables. 

Therefore one can say that the key elements one associates with a DP problem are 

stages, states, decisions, transformations, and returns (Cooper. L& Cooper. M. W, 

1981). 

The principle or point of view that enables us to carry out the 

transformation we have just discussed is known as the principle of optimality. It 

was first enunciated by (Bellman, 1957). This "principle of optimality" is: An 

optimal policy has the property that whatever the initial state and the initial 

decision are, the remaining decisions must constitute an optimal policy with 

respect to the state which results from the initial decision. 

One of the advantages of DP is that it determines absolute (global) 

maxima or minima rather than relative (local) optima. DP programming can be 

applied to problems whose initial mathematical representations are quite different. 

The disadvantage of DP is that although a problem can be decomposed 

properly, a numerical answer still may not be attainable because of the complexity 
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of the optimisation process at each stage. We must point out, however, that in 

spite of this disadvantage, the solution of many problems has been facilitated 

greatly through the use of DP. 

To put in context what has been discussed above, a simple equipment 

replacement example is: Let us suppose that we have a system in operation which 

is one year old. If a decision is made annually to keep the current system or to 

replace it, what is the policy that minimises the total cost or maximises the profit 

over the next five years?. We wish to find a sequence of five annual decisions, 

i. e., to keep or to replace which minimise the total cost from five years of 

operations. This analysis can be facilitated by numbering the stages backward, 

i. e., stage I means we have one year left. Hence we start with stage 5. Figure 

(4.19) indicates the notation using (tj) for system age and dj for decisions which 

are keep (K) or replace (R). 

ififii 

Figure 4.19. Stages of the decision problem. 

it can be seen that tj is given by 

ti = tj, l +I, 
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if the decision is to keep the system, and tj =I if the system is replaced. Figure 

(4.20) explains the above notation and conventions in further detail. 

j th. Period 
of operation 

tj+l = age of unit 

at the (j + I)st. 

period operation 

Decision 
dj =K or R 

tj =age at end 

of j th. period 
(tj+1 + 1) : (K) or 
(1) : (R) 

Figure 4.20. Decision problem notation. 

For our study, we now describe a replacement model in which we are no 

longer restricted to the model of at most two replacements. This latter restriction 

has been used in the earlier sections. A drawback of the at most two replacements 

model is that we cannot presume that this will give us an "optimal" solution to the 

problem of interest. However for reasonably chosen h (the fixed planning 

horizon), we would not expect more than two replacements. However it is still 

important to attempt to determine a "globally" optimal policy, which may be done 

using a dynamic programming approach. The difficulty with this approach is that 

we can only investigate the behaviour of optimal policy numerically. Essentially, 
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the solution obtained in the dynamic programming approach will not give insight 

into the problem in same way as the economic life models earlier in this chapter. 

4.10.2. Like-with-like replacement 

Here the planning horizon h is divided into N equally spaced time periods of 

length Ah. The current equipment is of age r time periods. R is the purchase 

cost of new equipment and resale value is zero. Note that, because the DP 

procedure is computational we need not assume zero resale value. 

The maintenance cost per period at age m time periods is 

mAh 0" [(mAh)6" 
- ((m - (4.64) M(M) fcrt'6dt 

'8+1 (m-I)Ah 

We have two decisions at the end of each period, that is, either keep (K) or 

replace (R) the current equipment. This decision minimises the cost incurred when 

there are n time periods remaining in the horizon and the current equipment is of 

age m time periods. A translation of the preceding paragraph, with the addition of 

choosing whichever total cost is smaller, give us a set of recurrence relations 

which solves the problem of minimising the total cost over a total time of N 

periods. These recurrence relations are 

V(n, m) nin 
r(K): M(m + 1) + V(n - 1, m+ 1) 

(4.65) =' L(R): M(I)+V(n-1,1)+R 

11 

1,2 ....... r+N-n). 

V(n, m) is the total cost over n remaining periods when the current age of the 

equipment is m. 

We also require the relation 

127 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

V(O, m)=R ( m=1,2 .................... r+ N). (4.66) 

Notice that replacement is imposed (by convention) at the end of the horizon h 

and equation (4.66) represents this fact. 

At a particular epoch, the optimal policy is that decision (keep or replace) 

which minimises V(n, m). Over the complete horizon, optimal policy will consist 

of a sequence of keep (K) or replace (R) decisions at each epoch. This will imply 

an optimal number of replacements N* over the planning horizon and optimal 

times to replacement (for each replacement epoch), x, * ....... xN*.. This should be 

compared with earlier policies (at most two replacements) with optimal policy 

(N*, x*) (N* = 1,2; x* = h, x* < h). 

4.10.2.1. Computational examples for like-with-like replacement 

In this section we implement the like-with-like replacement using the dynamic 

programming approach. We determine the optimal policy over a fixed planning 

horizon h that is divided into equally spaced periods. To give an insight about the 

dynamic programming approach for solving the replacement problem we use 

different values for the fixed planning horizon h (say, h= 10, h= 15 and 

h= 20). Also we use different values for the maintenance cost per period 

parameters (as and fis ). Because the computations are large for h= 15 and 

h= 20 we present two computational examples for h= 10 with different cts and 

flas. The computations results are shown in Tables 4.13 and 4.14. The FORTRAN 

77 program is given in appendix 1. 
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From Table 4.13 we can determine the optimal 10-year policy. If we 

currently have an equipment of age zero (new) at the beginning of the horizon we 

enter the table at m=0 and n= 10, since we wish to calculate the optimal 10- 

year policy. We see that the minimum total cost is 871.6 and we keep the 

equipment one year more. We now move over to n=9 and m=I since the 

equipment is now one year old. We see that the optimal policy is to keep the 

equipment one year more. Thus throughout the table one can follow the same way 

until reaching the last column (n =I) to obtain the optimal policy actions and 

results over the 10 years. Therefore with the condition that replacement is 

compulsory at the end of the horizon one can observe that the optimal policy 

actions are (KKKKKKKKKK) with optimal policy results N* =I (number of 

replacements over the horizon) and x, * =h= 10 (time to replacement) with 

minimum total cost V(I 0,0) = 871.6. Note that in this case there is only one 

replacement that is compulsory at the end of the horizon, so that N* = 1. 

Similarly if we start with equipment of age 2 years old from Table 4.13 we 

can find that the optimal policy actions are (KKKKKKKKKK) and also N* =I 

and xj* =h= 10 with minimum total cost V(10,2) = 966.5. 

If we start with an equipment of age 4 years old at the beginning of the 

horizon ftom the table we can see some change in the optimal policy obtained 

above. We enter the table at m=4 and n= 10, since we wish to calculate the 

optimal 10-year policy. We see that the minimum total cost is 1287.2 and we keep 

the equipment one year more. Again by following the same way as in the cases 

-r =0 and r=2 one can find that at n=7 and m=7 the equipment must be 

replaced and this will lead to year 6 (n = 6) with the equipment of age one year 

129 



CHAPTER 4 The Behaviour of Optimal Policy for Simple Capital Replacement Models 

old (m = 1). Starting from n=6 and following the same way as mentioned above 

we can obtain the optimal policy. Therefore the optimal policy actions are 

(KKKRKKKKKK) with optimal policy results N* = 2, x, * =7 and x2* =h=10 

with minimum total cost V(l 0,4) = 1287.2. 

Similarly we can determine the optimal policy from Table 4.14. In the case 

of r=0 we have the actions (KKKKKKKKKK) with optimal policy results 

N* =I and x, * =h= 10 with minimum total cost V(10,0) = 1335. In the case of 

r=2; (KKKKRKKKKK); N* = 2, x, * =6 and x2* =h= 10 with minimum total 

cost V(10,2) = 1584.9. Finally in the case of r=4; (KKKRKKKKKK); N* = 2, 

x, =7 and x2* =h= 10 with minimum total cost V(10,4) = 1678.4. 

The computations results for h= 10, h= 15 and h= 20 with different 

maintenance cost per period parameters (as and fis ) and different current ages 

(-r ) of the existing equipment are surnmarised in Tables 4.15,4.16 and 4.17. 

From the previous results we notice that for reasonable values of a and 

,8 there is at most two replacements over the planning horizon. Also we notice 

that the number of replacements N* =3 takes place only when h, a and, 8 greatly 

increase. 
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Table 4.13. The results of optimal policy over the planning horizon h= 10 years divided into 10 

periods each of one year length. The maintenance cost per period parameters are a= 20 and 

,8=0.5; the replacement (purchase) cost R= M$450K. The numbers represent the minimum 

total cost over remaining periods and K and R represent the action takes place at each period; that 

is K keep the equipment and R replace the equipment. 

Number of periods remaining, n. 

Age 

1 2 3 4 5 6 7 a 9 10 M 

0 463.3 487.7 519.3 556.7 599.1 646.0 696.9 751.7 810.0 871.6 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

1 474.4 505.9 543.3 585.8 632.6 683.6 738.4 796.7 858.3 923.1 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

2 481.6 519.0 561.4 608.3 659.2 714.0 772.3 833.9 898.7 966.5 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

3 487.4 529.8 576.7 627.7 682.4 740.7 802.4 867.2 935.0 1273.6 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

4 492.4 539.3 590.3 645.0 703.3 765.0 829.8 897.6 1236.2 1287.2 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

5 496.9 547.9 602.6 660.9 722.6 787.4 855.2 1193.8 1244.8 1299.6 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

6 501.0 555.7 614.0 675.7 740.5 808.3 1146.9 1197.9 1252.7 1307.4 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

7 504.8 563.1 624.7 689.51 757.3 1096.0 1146.9 1201.7 1256.5 1314.8 

(K) (K) (K) (K) (K) (R) (R) (K) (K) (K) 

8 508.3 569.9 634.7 702.6 1049.1 1096.0 1146.9 1201.7 1260.0 1318.3 

(K) (K) (K) (K) (R) (R) (R) (R) (K) (K) 

9 511.6 576.4 644.3 1006.7 1049.1 1096.0 1146.9 1201.7 1260.0 1321.6 

(K) (K) (K) (R) (R) (R) (R) (R) (R) (K) 

10 514.8 582.6 969.3 1006.7 1049.1 1096.0 1146.9 1201.7 1260.0 1321.6 

(K) (K) (R) (R) (R) (R) (R) (R) (R) (R) 

11 517.8 937.7 969.3 1006.7 1049.1 1096.0 1146.9 1201.7 1260.0 1321.6 

(K) (R) (R) (R) (R) (R) (R) (R) (R) (R) 
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Table 4.14. The results of optimal policy over the planning horizon h= 10 years divided into 10 

periods each of one year length. The maintenance cost per period parameters are a= 30 and 

,8=0.7; the replacement (purchase) cost R= M$450K. The numbers represent the minimum 

total cost over remaining periods and K and R represent the action takes place at each period; that 

is K keep the equipment and R replace the equipment. 

Number of periods remaining, n 

Age 

1 2 3 4 5 6 7 8 9 10 M 

0 467.6 507.3 564.2 636.3 722.2 821.1 932.3 1055 1189 1335 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

1 489.7 546.6 618.6 704.6 803.5 914.7 1037.6 1171.8 1316.8 1472.4 
(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

2 506.9 578.9 664.9 763.8 875.0 997.9 1132.1 1277.1 1432.7 1584.9 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

3 522.1 608.0 706.9 818.1 941.0 1075.2 1220.2 1375.8 1528.0 1639.2 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

4 535.9 634.8 746.0 869.0 1003.1 1148.2 1303.7 1456.0 1567.2 1678.4 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

5 548.9 660.1 783.0 917.2 1062.2 1217.8 1370.1 1481.2 1592.4 1715.3 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

6 561.2 684.1 818.3 963.3 1118.9 1271.1 1382.3 1493.5 1616.4 1739.3 

(K) (K) (K) (K) (K) (R) (R) (K) (K) (K) 

7 572.9 707.1 852.1 1007.7 1172.2 1271.1 1382.3 1505.2 1628.2 1762.3 

(K) (K) (K) (K) (R) (R) (R) (K) (K) (K) 

8 584.1 729.2 884.8 1050.6 1172.2 1271.1 1382.3 1505.2 1639.4 1773.6 

(K) (K) (K) (K) (R) (R) (R) (R) (R) (K) 

9 595.0 750.6 916.4 1086.3 1172.2 1271.1 1382.3 1505.2 1639.4 1784.5 

(K) (K) (K) (R) (R) (R) (R) (R) (R) (K) 

10 605.6 771.4 1014.2 1086.3 1172.2 1271.1 1382.3 1505.2 1639.4 1784.5 

(K) (K) (R) (R) (R) (R) (R) (R) (R) (R) 

11 615.8 957.3 1014.2 1086.3 1172.2 1271.1 1382.3 1505.2 1639.4 1784.5 

(K) (R) (R) (R) (R) (R) (R) (R) (R) (R) 
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Table 4.15. The results of optimal 10-year policy for different maintenance cost per period 

parameters (as and fis ) and different current ages of the existing equipment. N* is the number 

of replacements over the horizon of 10 years length divided into 10 periods. Xj* (i =I....... N*) are 

optimal times to replacements take place over the horizon. 

h=10 

0 r=2 r =4 

,8=0.5 
N* = 1; N* =1; N* = 2; 

x, =h=10; x, * =h= 10; x, * = 7, x2* = 10; 

Min. cost--871.6 Min. cost--966.5 Min. cost--1287.2 
a=20 - 

,6=0.7 
N* = 1; N* =1; N* =2; 

x, =h=10; x, * =h= 10; x, * = 7, x* = 10; 2 

Min. cost--1039.6 Min. cost--1215.7 Min. cost--1418.9 

,6=0.5 
N* = 1; N* = 1; N* =2; 

x, =h=10; x, * =h= 10; x, * = 7, x2 = 10; 

Min. cost--1082.5 Min. cost--1224.8 Min. cost--1480.8 
a=30 - 

,8=0.7 
N* = 1; N* =2; N* =2; 

x, =h=10; xl* = 6, x2* =10; 1* = 7, x2* = 10; X, 

Min. cost-- 1334.5 Min. cost--1584.9 Min. cost--1678.4 

,6=0.5 
N* = 1; N* = 1; N* =2; 

x, =h=10; x, * =h= 10; x, * = 7, x2 = 10; 

Min. cost--1293.3 Min. cost--1483.1 Min. cost-- 1674.4 
a= 40 1 

,8=0.7 
N* = 2; N* =2; N* =2; 

x, = 5, x2= 10; x, * = 6, x2* =10; x, * = 7, *= 10; X2 

Min. cost--1625.9 Min. cost--1813.2 Min. cost--1937.8 
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Table 4.16. The results of optimal 15-year policy for different maintenance cost per period 

parameters (cts and A) and different current ages of the existing equipment. N* is the number 

of replacements over the horizon of 15 years length divided into 15 periods. xi I ....... N )are 

optimal times to replacements take place over the horizon. 

h 15 

0 r2 4 

P=0.5 N*=I; N* =1; N* = 2; 

x, =h=15; xl* =h= 15; x, * = 9, x2* =15; 
Min. cost--1224.6 Min. cost--1346.9 Min. cost--1575.0 

a=20 1 

,8=0.7 
N* = 1; N* =2; N* =2; 

x, =h=15; x, * = 8, x2* =15; xl* =9, x2* =15; 
Min. cost--1624.7 Min. cost--1758.2 Min. cost-- 1858.4 

'0 = 0.5 N* = 1; N* =1; N* =2; 

x, =h=15; x, * =h= 15; x, * = 9, x2* = 15; 
Min. cost--1611.9 Min. cost--1795.3 Min. cost--1912.5 

a=30 - 
P=0.7 N* =2; N* =2; N* =2; 

x, =7, x2 = 15; x, * =9, x2* =15; x, * = 9, x2* =15; 
Min. cost-- 1987.6 Min. cost--2187.3 Min. cost--2337.6 

,8=0.5 
N* = 2; N* =2; N* =2; 

x, = 7, x2 = 15; x, * = 8, x2 = 15; x, * =9, x2* =15; 
Min. cost--1997.3 Min. cost--2148.0 Min. cost--2249.9 

a=40 

,6=0.7 
N* = 2; N* =2; N* =3; 

x, =7, x2 = 15; x, * = 8, x2* =15; x, * = 6, x2* =12, 
Min. cost--2350.1 Min. cost--2616.4 x* = 15; 3 

Min. cost--2734.4 
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Table 4.17. The results of optimal 20-year policy for different maintenance cost per period 

parameters (as and )% ) and different current ages of the existing equipment. N* is the number 

of replacements over the horizon of 20 years length divided into 20 periods. X, * (i =I....... N*) are 

optimal times to replacements the times for replacements take place over the horizon. 

h 20 

0 r2 4 

ß=0.5 N*=1; N* = 1; N* =2; 

x, =h=20; x, * =h= 20; x, * = 12, x2* = 20; 

Min. cost--1642.6 Min. cost--1788.1 Min. cost--1901.9 
a= 20 1 

ß=0.7 N* =2; N* =2; N* =2; 
x, = 10, x2* = 20; x, * = 11, x2* = 20; x, * = 12, x2* = 20; 

Min. cost--2079.3 Min. cost--2248.5 Min. cost--2383.6 

ß=0.5 N* =2; N* =2; N* =2; 
x, = 10, x2* = 20; x, * = 11, x2* = 20; x, * = 12, *= 20; x2 

Min. cost--2164.9 Min. cost--2302.8 Min. cost--2402.8 
= 30 a 

ß=0.7 N* =2; N* =3; N* =3; 
x, =10, x2* = 20; x, * = 7, x2 = 14, x, * = 8, x2* =l6, 
Min. cost--2668.9 x3* = 20; x3* = 20; 

Min. cost--2862.6 Min. cost--2979.4 

ß=0.5 N* =2; N* =2; N* =2; 
x, = 10, x2* = 20; x, * = 11, x2* = 20; x, * = 12, x2* = 20; 

Min. cost--2586.6 Min. cost--2770.3 Min. cost--2903.7 
a=40 - 

ß=0.7 N*=3; N* =3; N* =3; 

x, =6, x2 = 13, x, * = 7, x2 = 14, x, * = 8, x2* =l6, 
X3 = 20; x3* = 20; x3* = 20; 

Min. cost--313 1.0 Min. cost--3366.7 Min. cost--3522.6 
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4.10.3. Non-like-with-like replacement 

We now make the same assumptions as above in the like-with-like replacement 

but that there are j equipment types (j =I....... N). For the current equipment 

1. The maintenance cost per period at age m time periods for the 

jth. equipment type is 

Mi (M) =a ýL- 
[(mAh) ((m - I)Ah)'Ol (4.67) 

, 8j +1 

We suppose that at jth. replacement we replace with type j +I. Again we have 

the keep or replace decision for each period. Minimising the total cost when there 

are n time periods remaining in the horizon and the current equipment is of age 

m time periods leads to the recurrence relations 

Vj (n, m) = min 
(K): Mj (m + 1) + Vj (n - 1, m+ 1) 

(4.68) 
[(R): 

Mj+l (1) + Vj., (n - 1, I) + Rj+ 

m=1,2,...., r+N-n; j=1,2 

We also require the relation 

Vj(0, m)=R, ( m=I, 2 ...... r+N; j=I, 2 ...... N). (4.69) 

Again replacement is compulsory at the end of the horizon h. 

As we mentioned in the previous section the optimal policy will consist of 

two possible actions at each period (keep or replace with the different type j) 

which minimises Vj (n, m). Therefore over the whole horizon, optimal policy will 

consist of a sequence of keep (K) or replace (R) decisions at each epoch. This will 

imply an optimal policy (N*, x, * ....... xN*. ) with number of equipment types 

N* + 1. To make this approach practical, we need to model the cost of as many 
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equipment types as there are replacements. This is difficult unless we assume 

some functional form for technological improvements or cost reduction at each 

replacement as in Elton and Gruber (1976). Given such a model to describe 

technological change, a DP approach to this replacement problem can then be 

fon-nulated and solved in a similar manner to the like-with-like case. 

4.11. Discussion 

This chapter has been concerned with studying the behaviour of optimal policy of 

simple capital replacement models. This behaviour was described by determining 

the value of the decision variable x* (the time for first replacement) and the range 

of values of the control variable h (the length of the planning horizon) for which 

there would be two replacements over the planning horizon. Difficulties arise 

when studying the behaviour of optimal policy for non-like-with-like replacement. 

To overcome these difficulties some approximations for the maintenance cost per 

unit time function were used. A numerical study of the behaviour of optimal 

policy of non-like-with-like replacement was presented graphically for particular 

values of the cost parameters, and illustrates the alternative decisions: replace 

within the horizon; or replace at the end of the horizon. It should be noted that 

when we say replacement within the horizon we include the case x=0 

(immediate replacement); thus within the horizon means xE [0, h). The behaviour 

of optimal policy was also compared with that of the variable planning horizon 

model. Sensible results can be obtained for the fixed horizon model when P=0 

although this is not guaranteed for the variable planning horizon model. We 

describe also the relation between the fixed planning horizon model and variable 
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planning horizon model. Finally, a dynamic programming approach is presented 

for like-with-like and non-like-with-like replacement with implementation for the 

like-with-like case. 

Much of the work considered in this chapter is summarized in Scarf and 

Hashem (2000). 
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CHAPTER 5 

The Behaviour of Optimal Policy for a Mixed Fleet 

5.1. Introduction 

Here we are concerned with studying the behaviour of optimal replacement policy 

for a mixed fleet over a fixed planning horizon. The case we are concerned with is 

the mixed fleet with many subfleets, say n subfleets, and each subfleet consists of 

a single item/equipment. In the simplest case, the mixed fleet consists of two 

subfleets and each subfleet consists of a single item/equipment. In the more 

general problem the mixed fleet consists of many subfleets and each subfleet 

contains many items/equipment. We wish to consider costs over a certain fixed 

planning horizon. We assume that individual items/equipment fulfil the same 

function : for example, a computer laboratory contains computers of the similar 

capability; or a transport company runs a number of subfleets of buses 

(characterised by make and model say) and all buses are used for city transport 

without discrimination. In general it is required to determine which of the 

subfleets to replace first. In practice the alternative choices for the replacement 

policy over the planning horizon in the many subfleets single item case are: 

replace nothing, replace item i (i =I ....... n) of the n items. The replacement 
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decision is taken on the basis of which alternative gives the minimum cost over 

the same fixed planning horizon. Consequently, we can consider different 

replacement scenarios, each of them is related to one of the n items/equipment. 

The study can be generalised to the case of many subfleets each with many items. 

Throughout we adopt the convention that a subfieet is replaced at the end 

of the planning horizon. 

5.2. Many subfleets case 

In this section we consider n equipment operating over a certain fixed planning 

horizon and it is required to study the behaviour of optimal policy for different 

replacement scenarios. For example we consider the scenario i (i =I....... n) to 

replace subfleet/equipment i within the planning horizon. We number the new 

subfleets/equipment as n+1, n+2. We assume that if we replace a subf1eet 

within the horizon, then we replace another subfleet at the end; that is, there are at 

most two replacements. This need not to be the case in general; however for the 

range of maintenance costs and replacement costs associated with typical 

equipment in practice this is likely to be the case. For clarity and brevity, we 

confine ourselves to likely scenarios. 

For scenario i(i =I ....... n) the total cost over [0, h] given replacement of 

subfleet i with subfleet n+I at x, . is 
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h Xi h-XI 

fMj (t + rj)dt + fMi (t + ri)dt + fM,, 
+, 

(t)dt + 
j=l o00 

h 
fMj (t +, rj)dt + R,,,, + Rn+2, Ci (xi) 0:: ý x, < h, (5.1) 

j=i+l 0 

h 
fMj (t + -rj)dt + R,,,,, 

j=l o 
x, = 

where Mj is the maintenance cost per unit time of equipment j (j =I n); 

is the maintenance cost per unit time of the new equipment n+1; R,, +, 
is 

the purchase cost of the new equipment n+I; R, +2 
is the purchase cost of the 

new equipment n+2; z-j is the current age of equipment j; x, is the time of first 

replacement for equipment i and h is the length of the planning horizon. 

5.2.1. The behaviour of optimal policy 

Using the maintenance cost per unit time form M(t) = ca", the cost function of 

replacing equipment i takes the following form 

i-i h Xi h-xj 

Ela, (t+r, )ßldt+fa, (t+r, )ßldt+ fa��tß, *ldt+ 
j=I 000 

h 

Ci (xi) fa, (t + rj) ßi dt + R�., + R�+2,0< x, < h, (5.2) 
j=i+IO 

,h 
1: faj (t + -rj ) ß' dt + R�� , xi = 

To study the behaviour of optimal policy in the case of mixed subfleet we 

assume that the maintenance cost per unit time forms are applied with different cts 

and equal 8s to obtain theoretical results simply. Therefore, the total cost over 

planning horizon if we replace equipment i takes the following form 
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i-I h X, h-x, 

I faj (t + rj ), 6 dt + fai (t + ri ), 6 dt + fa,, 
+, t -6 dt + 

j=l o00 
nh 

Ci (xi) Z faj (t +, rj) 16 dt + R,, 
+, + R,, 

+2 9 0:! ý xi < h, (5.3) 
j=i+l 0 

h 
faj (t + rj) fl dt + R,, 

+,, 
j=l o 

Differentiating C, with respect to x, we obtain 

ýC-' 
= ai (xi + ri)lo - a,,,, (h - x, )16. 

axi 
Setting dC, / dx, =0 we obtain 

xi + ri =(a,,,, / ai) " -8(h - xi), 

= Ai (h - xi). 

Hence 

xi 

Aih - i-i 
Ai +1 

(5.4) 

is now the local minimum for C, but not necessarily the global minimum. The 

condition for x, to be the global minimum is that 

Ci (xi) < C(h). (5.5) 

If inequality (5.5) is true then the global minimum of C, is x: = x; otherwise 

x, * = h. Inequality (5-5) can be written as 

Xi h-x, h 
fai(t+r, )fldt+ fan+lt" dt < fai (t + ri), 8dt + Rn+2 

000 

This simplifies to 

a, a,, +, _ aj 
](, 

ri + h) + R,, +2 
68 + 1) < ol 

(Ai +1), 8+1 
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from which we obtain that 

a. A. "' +a,, +, h> Rn+2 + 1) 1(ai - '(Ai 
), 6+1 (5.6) 

Inequality (5.6) represents the values of the fixed planning horizon as a 

control variable over which equipment i would be replaced within the planning 

horizon and another equipment at the end of the planning horizon. Therefore, the 

value of h given is the planning horizon over which there are two replacements, 

one within the horizon and the other at the end of the horizon. If 

h:! ý Rn+2(, 8 + 1) 1(ai - 
ai Ai+a. 

+l Ti (Ai + I) P+1 )I 
(5.7) 

then there is only one replacement at the end of the horizon. 

2 to determine which Now we can compare C, * (xl*) , C2 * (X2 
-*ýC, 

*, (X, 

subfleet to replace first. 

5.2.2. Comparison between the two replacements in the two subfleets case 

In the two subfleets case we consider two equipment operating over a certain 

fixed planning horizon and it is required to study the behaviour of optimal policy 

for different replacement scenarios. For example the first scenario is to replace the 

first subfleet numbered by equipment I within the planning horizon and the 

second scenario is to replace the second subfleet numbered by equipment 2 within 

the planning horizon and these scenarios are illustrated in Figures 5.1 and 5.2. We 

number the new subfleet by equipment 3. 
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4 xI h _______________ 4 

Figure 5.1. Replacement scenario for replacing subfleet I within the planning horizon. 

Figure 5.2. Replacement. scenario for replacing subfleet 2 within the planning horizon. 

We are thus concerned with comparing the cost functions C, (x) and 

C2(x). The aim is to determine which subfleet/equipment should be replaced first. 

We would choose the subfleet/equipment which gives the minimum cost 
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according to the model parameters. The results are presented in Tables 5.1-5.12 

for various values of the control variable h(h= 10,15) and maintenance cost per 

unit time parameters a, (al=20,30,40), a2(a2=20,25,30), a3(a3=20,30,40) 

and current ages of the equipment r, (r, =0,2,4,6,8) and 'r2 ( "2=0,2,4,6,8) 

respectively. 

Tables 5.1-5.4 show that for a, = 40, a2 = 30 and a3= 20 there is a 

difference between the results when r, : ý'1'2 and the results when", < r2 
. This 

difference appears because of the great influence of the current ages of equipment 

I and equipment 2 on the behaviour of optimal policy. Thus, when 'r , "" , r2 it is 

optimal to replace subfleet 2 first but it is optimal to replace subfleet I first when 

TI > 'r2 . The conclusion of these results is that when T, < r2 the maintenance cost 

per unit time of equipment 2 becomes expensive gradually so that it is optimal to 

replace it first when the cost C2* (x2*) is minimum compared with the cost C, * (x, *) 

of replacing equipment 1. When", ýý' T2 obviously the cost per unit time of 

equipment I becomes very expensive so that it is optimal to replace it first. 

Tables 5.5-5.8 show that when a, = 20, a2 = 30 and a3 = 40 it is optimal 

to replace equipment I at the end of the horizon when r, = 0,1-2 =2 and 'r, = 2, 

*r2 -,, ý 0 because equipment I is still cheap so that it is optimal to keep (operate) it 

as long as possible. On the other hand, the policy changes for the other values of 

and T2 leading to replace equipment 2 first when rl < r2 
. (the maintenance 

cost per unit time of equipment 2 becomes expensive gradually) and replace 
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equipment I first whenT, > r2 (the maintenance cost per unit time of equipment 1 

becomes expensive gradually). 

Tables 5.9-5.12 show that although a, (a, = 20) is close to a2 (a2 = 25) 

the optimal policy is the same as the optimal policy obtained from Tables 5.1-5.4. 

These results show that the optimal policy is influenced by the conditions 'r, 'ýý "2 

andr, > *r2 leading to replace the more expensive equipment first. 

Table 5.1. The results of replacing the two subf1eets over a planning horizon 

h= 10, a, = 40, a2 = 30, a3 = 20, fl = 0.5 & r, < r2 * 

TI T2 Cý X, * C2 
X; C(h) x First replacement 

0 2 2133.0 5 1856.5 4 2019.9 4 Subfleet 2 

2 4 2503.1 4 2221.3 3 3220.7 3 Subfleet 2 

4 6 2841.3 3 2556.9 2 3771.1 2 Subfleet 2 

_6 
8 3169.0 12 2876.2 2 3801.8 2 Subfleet 2 

Table 5.2. The results of replacing the two subf1eets over a planning horizon 

h= 15, a, = 40, a2 = 30, a3 = 20, P=0.5 & r, < r2 * 

T2 C1 X, * C2 X2 C(h) X* First replacement 

0 2 4420.3 6 3730.4 4 5495.1 4 Subfleet 2 

2 4 5212.3 4 4544.4 3 6925.0 3 Subfleet 2 

4 6 5960.2 3 5287.1 3 8292.3 3 Subfleet 2 

6 8 6680.0 3 6011.1 2 9637.8 2 Subfleet 2 

147 



CHAPTER 5 The Behaviour of Optimal Policy for a Mixed Fleet 

Table 5.3. The results of replacing the two subfleets over a planning horizon 

h= 10, a, = 40, a2 = 30, a3 = 20, fi = 0.5 & r, > r2 * 

T 1 
T2 C 1 X, C, X* 2 C(h) X* First replacement 

2 0 1856.5 4 2133.0 4 2019.8 4 Subtleet 1 

4 2 2221.3 3 2503.1 3 2632.5 3 Subfleet I 

6 4 2556.9 2 1 2841.3 2 3220.7 2 Subfleet 1 

8 6 2876.2 2 3169.0 2 3801.8 2 Subfleet I 

Table 5.4. The results of replacing the two subfleets over a planning horizon 

h= 15, a, = 40, a2 = 30, a3 = 20, P=0.5 & r, ý" r2 * 

2 Cý x 1 C 2 X* 2 C(h) X* First replacement 

2 0 3730.4 4 4420.3 6 5443.1 4 Subfleet 1 

4 2 4544.4 3 5212.3 4 6876.5 3 Subfleet I 

6 5287.1 3 5960.2 3 8245.0 3 Subfleet 1 

_8 
6 6011.1 2 6680.0 3 9591.1 2 Subfleet I 

Table 5.5. The results of replacing the two subfleets over a planning horizon 

h= 10, a, = 20, a2 = 30, a3 = 40,, 6 = 0.5 & r, < r2 * 

T2 C, x 1* 
C2 X2 C(h) X* First replacement 

0 2 2257.9 6 2029.0 5 2019.8 10 Once at the end of h 

2 4 2675.5 5 
I 

2435.1 4 
I 

2632.5 4 Subfleet 2 

4 6 3055.1 4 2796.2 4 3220.7 Subfleet 2 

6 8 3408.2 4 3142.4 3 3801.8 3 Subfleet 2 
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Table 5.6. The results of replacing the two subfleets over a planning horizon 

h= 15, a, = 20, a2 = 30, a3 = 40,6 = 0.5 & r, < r2 * 

T2 X, C2 * X2 C(h) First replacement 

0 2 4748.4 7 4131.3 6 5495.1 6 Subfleet 2 

2 4 5613.3 6 5000.3 5 6925.0 5 Subfleet 2 

4 6 6416.2 5 5791.6 5 8292.3 5 Subfleet 2 

6 8 7184.5 5 6544.3 4 9637.8 4 Subfleet 2 

Table 5.7. The results of replacing the two subfleets over a planning horizon 

h= 10, a, = 20, a2 = 30, a3 = 40,8 = 0.5&r, ""r2 * 

'r2 C, X14 
C2 X2 C(h) X* First replacement 

2 0 2029.0 5 2257.9 6 1985.9 10 Once at the end of h 

4 2 2435.1 4 2675.5 5 2600.8 4 Subfleet I 

6 4 2796.2 3 3055.1 4 3189.7 4 Subfleet I 

8 6 3142.4 2 3408.2 4 3771.1 3 Subfleet I 

Table 5.8. The results of replacing the two subfleets over a planning horizon 

h= 15, a, = 20, a2 = 30, a3 = 40,8 = 0.5 & r, > r2 * 

TI T2 C, X. C2 
X* 2 C(h) First replacement 

2 0 4131.3 6 4748.4 7 5443.1 6 Subf1eet 1 

4 2 5000.3 5 5613.3 6 6876.5 5 Subf1eet I 

6 4 5791.6 5 6416.2 5 8245.0 5 Subfleet 1 

8 6 6544.3 4 7184.5 5 9591.1 4 Subf1eet I 
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Table 5.9. The results of replacing the two subfleets over a planning horizon 

h=10, a, =20, a2 =25, a3 =30, fl=0.5&, r, 'Cr2 * 

TI T2 C1 X, * C2 X2 C(h) X* First replacement 

0 2 2204.6 6 1954.5 4 2019.9 4 Subfleet 2 

2 4 2601.1 4 2337.2 4 2632.5 4 Subfleet 2 

4 6 2957.1 4 2684.6 3 3220.7 3 Subfleet 2 

6 8 3996.7 3 3018.9 3 3801.8 3 Subfieet 2 

Table 5.10. The results of replacing the two subf1eets over a planning horizon 

h=15, al =20, a2 =25, a3 =30,, 0=0.5&r, '"2 * 

r 1 
"2 C 1 X1 C2 X2 C(h) X* First replacement 

0 2 4597.5 7 3946.6 5 5495.1 5 Subfleet 2 

2 4 5428.5 5 4788.6 4 6925.0 4 Subfleet2 

4 6 6204.5 4 5552.6 4 8292.3 4 Subfleet 2 

6 8 6945.5 4 6291.6 3 9637.8 3 Subfleet 2 

Table 5.11. The results of replacing the two subfleets over a planning horizon 

h= 10, a, = 20, a2 = 25, a3 = 30, P=0.5 & r, > T2 ' 

T, 'r2 C, 
X* I 

C2 X2 C(h) X* First replacement 

2 0 1954.5 4 2204.6 6 1985.9 4 Subfleet 1 

4 2 2337.2 4 2601.1 4 2600.8 4 Subtleet I 

6 4 2684.6 3 2957.1 3 3189.7 3 Subfleet 1 

8 6 3018.9 3 3996.7 3 3771.1 3 Subtleet I 
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Table 5.12. The results of replacing the two subfleets over a planning horizon 

h= 10, a, = 20, a2 = 25, a3 = 30,6 = 0.5 & r, > T2 ' 

TI T2 C, X, C2 X2 C(h) x First replacement 

2 0 3946.6 5 4597.5 7 5443.1 5 Subfleet 1 

4 2 4788.6 4 5428.5 5 6876.5 4 Subfleet I 

6 4 5552.6 4 6204.5 4 8245.0 4 Subfleet 1 

8 6 6291.6 3 45.5 69 4 9591.1 3 1 Subfleet I 

5.2.3. Influence of cost parameters on number of replacements 

In this section we refer to inequality (5.6) which describes the number of 

replacements according to the cost parameters. Thus, inequality (5.6) represents 

the values of h (the length of the planning horizon) over which there are two 

replacements and there is only one replacement for the values of h satisfying 

inequality (5.7). Assuming given cost parameters and using the two inequalities 

mentioned above, the number of replacements can be determined. 

For a, = 30, a2= 20, a3= 20, p=0.5, R= 450, and t measured in years 

and equipment I would be replaced first, Table 5.13 shows the results of replacing 

equipment I for different values of r, (the current age of equipment 1). For 

example Table 5.13 shows that at r, =0 it is optimal to replace twice if h> 13.7 

otherwise replace once only at the end of the horizon. Also the table shows that 

for h> 13.7, say h= 14, the decision will be replace within the horizon at x=4 

and replace once again after 10 years. For r, =2 years it is optimal to replace 

twice if h> 11.7 otherwise replace once only at the end of the horizon. Therefore, 

for h> 11.7, say h= 12, the decision will be replace within the horizon at 

x=2 and replace once again after 10 years. 
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Obviously, these results show the effect of r, (the current age of 

equipment 1) on the value of h to be chosen and the value of x* (the first 

replacement time). 

For a, = 30, a2 = 20, a3= 30,8 = 0.5, R= 450, and t measured in years 

and equipment I would be replaced first, Table 5.14 shows the results of replacing 

equipment I for different values of -r, (the current age of equipment 1). For 

example Table 5.14 shows that at r, =0 it is optimal to replace twice if h> 18.1 

otherwise replace once only at the end of the horizon. Also the table shows that 

for h> 18.1, say h= 19, the decision will be replace within the horizon at x=9.5 

(x =h/2 as in the case of like with like replacement when r=0; section 4.3.2) 

and replace once again after 9.5 years. For -r, =2 years it is optimal to replace 

twice if h> 16.1 otherwise replace once only at the end of the horizon. Therefore, 

for h> 16.1, say h= 17, the decision will be replace within the horizon at x=7.5 

(h - r) /2 as in the case of like with like replacement when r#0; section 

4.3.2) and replace once again after 9.5 years. 

Again, the results show how r, (the current age of equipment 1) affects the 

value of h and the value of x*. 

For a, = 30, a2 = 20, a3 = 40,6 = 0.5, R= 450, and t measured in years, 

Table 5.15 shows the results of replacing equipment I for different values of r,. 

For example Table 5.15 shows that at r, =0 it is optimal to replace twice if 

h> 23.3 otherwise replace once only at the end of the horizon. Also the table 

shows that for h> 23.3, say h= 24, the decision will be replace within the 

horizon at x= 15.4 and replace once again after 8.6 years. For r, =2 years it is 
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optimal to replace twice if h> 21.3 otherwise replace once only at the end of the 

horizon. Therefore, for h> 21.3, say h= 22, the decision will be replace within 

the horizon at x= 13.4 and replace once again after 8.6 years. 

The case of different Bs is presented in chapter 4 for studying the 

behaviour of optimal policy for simple fleet. It is not straightforward to obtain 

theoretical results in two subfleets case for different 8s. 

Table 5.13. The number of replacements related to the length of the planning horizon affected by 

cost parameters for replacing equipment 1; a, = 30, a2 = 20, a3 = 20, fl = 0.5, R= M$450K . 

x Two re2lacements One re]21acement 

0 4 h> 13.7 h< 13.7 

2 2 h >1 1.7 h 11.7 

4 0 h >9.7 h 9.7 

6 
10 Lh 

>7.7 
1h7.7 

Table 5.14. The number of replacements related to the length of the planning horizon affected by 

cost parameters for replacing equipment I; a, = 30, a2 = 20, a, = 30,0 = 0.5, R= M$450K. 

rl x Two re2lacements One re2lacement 

0 9.5 h >1 8.1 h 18.1 

2 7.5 h >16.1 h 16.1 

4 h >14.1 h 14.1 

61 1 3.5 h >12.1 h:! g I 
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Table 5.15. The number of replacements related to the length of the planning horizon affected by 

cost parameters for replacing equipment 1; a, = 30, a2 = 20, a3 = 40,8 = 0.5, R= M$450K. 

x Two replacements O! ILLSplacement 

0 15.4 h >23.3 h 23.3 

2 13.4 h >21.3 h 21.3 

11.4 h >19.3 h 19.3 

IL 6 9.4 h >17.3 h< 17.3 

5.3. Many subfleets problem with up to two replacements within the 

planning horizon 

in the case of many subfleets with up to two replacements within the horizon the 

replacement scenario (see Figure 5.3) for replacing equipment i (i =I....... n) and 

equipment j (j =I....... n) with cost function Qx, , xj ) is as follows 
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nh 
Efm 

k 
(t + 'rk)dt + R�l, x, = h, , x, >h or x, > h� xj = h, 

k4 0 

h X, h-xi 
fMk (t +, rk)dt + fMi (t + ri)dt + fMn+I (t)dt + 

k=I 000 

h 
fMk (t + rk )dt + R,, 

+, + Rn+2 x, < h, xj 
k=i+lo 

C(xj, xj) =. 

j-1 h Xi h-xi 
E fMk (t +rk)dt + fMj (t + rj)dt + fM,, 

+, 
(t)dt + 

k=l 000 
h 
jMk (t + rk)dt + R,,,, + Rn+2 

xi =h, xj <h, 
k=j+l 0 

i-i h Xi h-xj 
Z IMk (t +rk)dt + fMi (t + -r, )dt + IM�+, (t)dt + 
k=l 000 

j-i Xi h-xi 
EMk(t+rk)dt 

+ fMj (t + rj)dt + 
fM�+2(t)dt 

+ 
k=! +l 00 

h 
fMk (t +rk )dt + R,., + Rn+2 + Rn+3 xi <h, xj <h, 

k=j+l 0 

(5.8) 

whereMk is the maintenance cost per unit time of equipment k (k =In+ 2); 

R,,,, is the purchase cost of the new equipment n+1; R, 
+2 

is the purchase cost of 

the new equipment n+2; R, 3 is the purchase cost of the new equipment n+3; 

rk is the current age of equipment k; xi is the time of first replacement that is 

related equipment i; xj is the time of second replacement that is related to 

equipment j and h is the length of the planning horizon. 
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R,, +, 
Rn+2 R,, 

13 

xj 10 

xi 

4h ________ 

Figure 5.3. Replacement scenario for two replacements within the horizon. 

Here xi is time to first replacement, xj is time for the second replacement 

and a replacement is made at the end of the planning horizon. We have that 

C. (x, =h, x, >horx, >h, xj =h)=Co, 

C(xj, x 
C, C, 

< ü'% 
C, (x,; x, h) = C, (x, ), 

(7.. 77 

C� (x, < h, xj < h) = C� (x� xj), 

Now the cost function is a surface with discontinuities and it would be 

possible to find the local minima of each of the functions C, C,, Cj and Cij * 

The global minimum would then be found in a similar manner to that described in 

section 5.2.1. 

The optimal policy has cost which is the minimum of (CO 9 Cj, Cj 9 Cj). If 

CO is the minimum of (CO, Ci, Cj 9, Cj) then (x, = h, xj > h) or (x, > h, xj = h) 

is the optimal policy. If C, is the minimum of ( CO 9 C, 9 Cj 9 Cjj ) then ( h, x* ) is the 
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optimal policy. If C is the minimum of (CO, Ci, C -, C. ) then (h, x*) is the iiYi 

optimal policy. If C is the minimum of (CO 9 Ci 9C-, C.. ) then (x*, x*) is the ii iYii 

optimal policy. 

For these replacement scenarios, the behaviour of optimal policy becomes 

complex. This may be an interesting area for further study. Conditions on a, ,a2ý 

a3 and h will be difficult to obtain. 

5.4. Many subfleets problem with many items case 

We now suppose that the mixed fleet consists of n subfleets and each subfleet 

contains many items. Also we assume that there are at most two replacements. If 

the n subfleets have sizes rk (k =I....... n) then the cost of replacing subfleet i 

first is 

h xi h-xj 
nh 

lfj (t)dt + ffi (t)dt +f f�, 1 (t)dt + 1: ffj (t)dt + 
j=I 000 j=i+IO 

Ci (x) = r,. +i R�+i + rn+2R�+29 0: 9xi <h, (5.10) 
nA 

Z ffj (t)dt+ rn+, R�+, x, = h, 
j=I 0 

where 

r, 
fi(t) =I: Mj(t + 1*jk) 

k=l 

where f is the maintenance cost per unit time of subfleet j; Mj is the i 

maintenance cost per unit time of each equipment in subfleet: j; R., is the 

purchase cost of the new items in subfleet n+1; R-. 2 is the purchase cost of the 

new items in subfleet n+2, rik is the cuffent age of equipment k in subfleet 
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j.; xi is the time of the first replacement and h is the length of the planning 

horizon. 

Essentially, the maintenance costs per unit time are summed over all items 

in the subfleet as discussed in Scarf & Bouarnra (1994). We then proceed as in 

section 5.2.1. 

Obviously, it is difficult to make a theoretical study on the behaviour of 

optimal policy for the case of many subfleets with many items because there are 

so many parameters relating to maintenance costs per unit time. A numerical 

study could be undertaken. A dynamic programming approach, in which the 

number of replacements is not restricted could be used. The three subfleets, 

problem with many items in each subfleet was considered by Scarf & Hashem 

(1997) and applied to the Malaysian bus fleet (see chapter 6). 

5.5. Discussion 

Studying the behaviour of optimal policy here is an attempt to improve the current 

practice of modelling replacement and optimum number of replacements over the 

fixed planning horizon by considering different subfleet problems. The models 

considered can provide meaningful decision support for the operator for a number 

of decisions. For example, if the fleet consists of many subfleets then the optimal 

cost of replacing one of the subfleets; within the horizon can be calculated 

indicating which subfieet should be replaced first. 

We presented the many subfleets case with single items for theoretical 

study of the behaviour of optimal policy for different replacement scenarios. The 

results of theoretical study provided the value of the length of the planning 
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horizon (control variable) over which we would expect to carry out a replacement 

within the planning horizon. 

To choose the optimal policy among different scenarios of replacement, a 

numerical study has been done on the two subfleet case with two different 

replacement scenarios. This numerical study is concerned with comparing the 

different results related to different ages and maintenance cost per unit time 

parameters of the current equipment. 

For more flexible view we described the many subfleets problem with the 

possibility of up to two replacements over the fixed planning horizon although 

here it is difficult to make progress with a description of the behaviour of optimal 

policy. Finally, we present the many subfleets, problem with many items in each 

subfleet. 
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CHAPTER 6 

Application of a Fixed Planning Horizon Model 

6.1. Background 

Data are very important for work on replacement modelling to be carried out. It is 

assumed that data relating to maintenance cost are available and adequate for 

modelling purposes. Typical data are age related operating costs, such as fuel 

costs and failure costs. In the maintenance area it has been found that too little 

attention is paid to data collection and to consideration of the usefulness of 

models for solving real problems through model fitting and validation (Ascher 

and Feingold, 1984). Much attention is paid to the invention of new models rather 

than to the applicability of the models. Thus, the question is: "How is 

mathematical modelling in replacement to develop if it is to be justified by its 

success in tackling real problems when the information available to judge this 

success is sparse? " (Scarf, 1997). 

In this chapter we describe a case study in which replacement modelling 

is carried out for a complex fleet of vehicles. Express National Berhad operates 

inter-city bus services in Malaysia. We have monthly data for a period of 4 years 
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up to the time of study (early 1995) on 6 models (Mercedes, Isuzu CSA, 

Mitsubishi, Isuzu CJR, Cummins and MAN) of varying ages. The number of 

buses of each model is different with 36 Mercedes, 37 Isuzu CSA, 30 Mitsubishi, 

33 Isuzu CJR, 16 Cummins and 44 MAN. The MAN is the most recently 

introduced model. The purpose of the study considered here was to determine 

which subfleet to replace first (described theoretically in chapter 5). We also 

illustrate the main economic role that the fixed planning horizon model plays in 

the decision problem. The work considered in this chapter was published in Scarf 

& Hashem (1997). 

6.2. A fixed planning horizon model for a mixed fleet 

We consider an extension of the model discussed in section 3.4 in which we have 

a variable number, N, of operate-sell-and-buy cycles. We also consider a discrete 

time model for computational simplicity. 

Let the inhomogeneous fleet comprise of r sub-fleets, with the current 

sub-fleets indexed by k=1,.., r. New replacement sub-fleets are indexed by 

k=r+1,.., r+N. A replacement schedule is a permutation of N. For 

convenience we consider the schedule N. That is replace subfleet I first then 

subfleet 2, then subfleet N. For a fixed planning horizon of length h, and 

given replacement schedule and choice of model for the replacement sub-fleets, 

the decision variables are then : number of cycles, N(2! 1); and time from 

beginning of A cycle to the replacement of sub-fleet i, Li (i = N). Thus the 

whole fleet is operated over cycle i, which ends with the resale of sub-fleet i and 

purchase of sub-fleet r+i (i = I, .., N). Sub-fleets need not be homogeneous and 
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the current ages of plant are denoted by rij (i = 1,.., r+N; j=1,.., ni ), ni is the 

number of buses in sub-fleet i. The fleet size may be constant (n, = n,.,, V i) or 

variable, with sub-fleet sizes n,, +, 
(i = 1,.., N) given. A more complex model may 

even consider some subset of the sub-fleets sizes n, +i 
(i = 1,.., N) as decision 

variables. The model itself is a development of earlier models (J. F. De Sousa & 

R. C. Guimaraes, 1992; P. A. Scarf & 0. Bouamra, 1995). The Scarf and Bouarnra 

model was a variable planning horizon with two cycles; the length of each cycle is 

a decision variable. De Sousa & Guimaraes model was a fixed planning horizon 

model but they were not concerned with the replacement of a mixed fleet. The 

model outline is presented in Figure 6.1. 

The model in chapter 5 also considers the mixed fleet problem but is 

somewhat simple because there is no consideration of resale values and it is not 

formulated with variable number of cycles, N although in number of cycles 

terms they are equivalent. 

Rest of fleet 
----------------------- 

New subfleet new sub fleet new subfleet 

2 
'2 

Now 
*- L, 10 *- L2 L3---Io' 4- LN---10' 

4 -- 10 

Figure 6.1. Fixed planning horizon for sub-fleet replacement. 

163 



CHAPTER 6 Application of a Fixed Planning Horizon Model 

For a given replacement schedule, the total discounted cost over the horizon h 

can be formulated as 

N 
C, 

d, 
(N, Ll,.., LN; h)=2: v-i 

jCj(tý) t-m, -112 +nR, +i - 
Si (mi (6.1) i 

where 

i 

mi = ELj. 
j=o 

Here Q. ) is the age related maintenance cost per unit time of the whole fleet in 

cycle i; Sj(. ) is the age related resale of plant in sub-fleet i; and P,,, is the cost of 

each of replacement plant in sub-fleet r+i (i = 1,.., N). Here v is the discount 

rate. (We take LO =0 for convenience). The costs Ci (. ) and Si (. ) can be 

expressed as 

r+j-1 nk 

1,.., N), Mk ( TV + Ol 

k=i j=l 

Si (rij + 1,.., N), 

where Mk(. ) is the age related maintenance cost per unit time for an individual 

plant in sub-fleet k (k = 1,.., r+ N); and si (. ) is the age related resale value for 

individual plant in sub-fleet i. (Also, r,, =0 for k> r). Appropriate penalty costs 

(A. H. Christer & P. A. Scarf, 1994), associated with failures, may be incorporated 

into the operating costs which, as we mentioned earlier, included in the 

maintenance cost. 

The objective function considered is the equivalent rent, namely 
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C, d,, 
(N, Ll,.., LN; hýl 

which is minimised subject to the constraint 

Li = h. 

We denote the minimum by C, *,,, t. Technological change is allowed for in that 

costs relating to proposed replacement plant for cycles 2,.., N, may be assigned as 

appropriate. 

The optimum replacement schedule may be obtained by minimising the 

objective function over all possible schedules. In practice the range of possibility 

for the choice of schedules would be narrowed greatly by the experience of the 

operator. Furthermore, as the decision maker will not have a firm value for the 

horizon length, the optimum policy must be "robust" to variation in h. Given that 

the fleet is mixed, both different replacement schedules and different planning 

horizon lengths will give rise to different age compositions of the fleet at the end 

of the horizon. Thus replacement policies need to be compared not just on the 

basis of cost but also on the basis of the age composition of the fleet at the end of 

the planning horizon. In fact this final age composition can be considered as 

quantifying the end-of-horizon effect. It then follows that the decision problem is 

strictly a multi-decision criteria one. 

Non-uniform usage, particularly between sub-fleets, may be allowed for 

by varying the fleet size at replacements. For example, if older plant are under- 

utilised, a smaller number of new plant would be required to meet the demand 

currently placed on an older sub-fleet. This effectively reduces the replacement 

cost for that sub-fleet by factor which is the ratio of the utilisation of the old 
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(current) to the new sub-fleet. Of course, other more complex methods of 

accounting for differing usage may be considered. Given sufficient data, 

maintenance costs could be quantified in terms of usage and optimum policy may 

be obtained given forecasts for usage of sub-fleets over the planning horizon. 

The models may be extended to the case in which sub-fleets are retired as 

spares. The number of sub-fleets would simply increase by one at each 

replacement, with the costs associated with retired sub-fleet added. Predicting 

maintenance costs for a retired sub-fleet would be difficult however, as it is likely 

that no data would be available for this. Also it is assumed that equipment is 

bought new: in principle it is a simple matter to extend equation (6.1) to the case 

in which used equipment may be purchased (see Scarf, 1994). 

Note that the formulation as presented allows for the possibility for a sub- 

fleet to be composed of a single unit of equipment. This may be appropriate if the 

fleet is small. The complexity of the computational problem increases rapidly as 

the number of sub-fleets increases. 

6.3. Maintenance cost data 

The maintenance cost data were available monthly for each bus. The behaviour of 

the data from 1990 until the end of 1994 is shown through a separate graph for 

each model. Also each graph contains two groups of data showing the data 

available until nearly 1992 (used in Scarf and Bouarnra (1995)) and the data 

available after. Thus, Figure 6.2 illustrates the maintenance cost data for the 

Mercedes subfleet. It is observed that the maintenance cost of Mercedes buses 
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was very low in 1993-1994; this is a consequence of the Mercedes sub-fleet 

having been retired as spares in 1995. 

At the time of the study the Isuzu CSA was still in use but was in partial 

retirement and therefore a candidate for immediate replacement. Figure 6.3 

illustrates the Isuzu CSA maintenance cost data. 

Figure 6.4 illustrates the Mitsubishi maintenance costs. These indicate that 

Mitsubishi was very expensive and therefore a candidate for immediate 

replacement. The Isuzu CJR sub-fleet is relatively new and cost data are shown in 

Figure 6.5. Figure 6.6 illustrates that the maintenance costs for the Cummins sub- 

fleet increased rapidly over its early life. Figure 6.7 shows the maintenance cost 

data of Man. This model costing M$450K new, was introduced recently and data 

were limited. Figure 6.8 shows the cost data of all buses including Mercedes as a 

retired subfleet. 

Merccdes from 90 to 94 
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Figure 6.2. Mercedes maintenance cost per bus per year as a function of age in months. 
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Isuzu CSA from 90 to 94 
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Figure 6.3. Isuzu CSA maintenance cost per bus per year as a function of age in months. 
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Figure 6.4. Mitsubishi maintenance cost per bus per year as a function of age in months. 
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Isuzu OR from 91 to 94 
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Figure 6.5. Isuzu OR maintenance cost per bus per year as a function of age in months. 
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Figure 6.6. Cummins maintenance cost per bus per year as a function of age in months. 
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MAN from 93 to 94 
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Figure 6.7. MAN maintenance cost per bus per year as a ftinction of age in months. 
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Figure 6.8. Maintenance cost per bus per year for all subfleets as a function of age in months over 

the period of 1990 to 1994. 

Over the period of the study there were 142 buses in late 1992; as a result of 

replacing the Mercedes and buying MAN there were 160 buses in early 1995, and 

this is illustrated in Figures 6.9 and 6.10. 
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Figure 6.9. The composition of the fleet in late 1992. 
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Figure 6.10. The composition of the fleet in early 1995. 
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The age distribution of the buses in late 1992 and early 1995 is presented in 

Tables 6. land 6.2. 
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The purchase prices new (age zero) and resale values of the models were based on 

the model Sj(r)=Rjr8" (Christer and Waller, 1987a). Discussion on this 

modelling with the company led to estimates of the parameters y and 8 of 0.613 

and 0.811 respectively and these resale functions are illustrated in Figure 6.11. 

6.4. Maintenance cost modelling 

The model of bus earmarked to be introduced as a new sub-fleet was the MAN; 

made in Malaysia and costing M$450K new. Maintenance data records on a 

yearly basis over a five year period (Figure 6.12) were used to estimate 

maintenance costs for each vehicle-type. At first sight this dataset appears 
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extensive. However, data on individual vehicle-types were not sufficient for 

obtaining the maintenance cost per unit time model for all vehicle-types. For 

example, for the MAN, only data relating to their first year of operation were 

available. Furthermore, for older vehicles the costs appeared to be decreasing. 

This could perhaps be put down to under-utilization (partial retirement) and also 

neglect of vehicles reaching the end of their useful life. It was therefore necessary 

to pool the data to obtain reasonable cost models. The fitted maintenance cost per 

unit time models for the Cummins, Isuzu CJR and MAN (Figure 6.12) were 

obtained by first fitting an overall cost model to data on vehicles up to 8 years- 

old, then scaling this model to the costs of the individual vehicle-types in the 

manner described in Christer (1988). The fitted cost models have the same 8 

value 0.72; this simplification was introduced due to lack of objective data for 

individual subfleets. The maintenance costs for the older sub-fleets, the 

Mitsubishi and Isuzu CSA, were taken as constant. 

The penalty cost for breakdown on the road was modelled as follows. 

Only limited breakdown data were available, and so the rate of occurrence of 

breakdowns was assumed to be proportional to the maintenance cost per unit time. 

The constant of proportionality was obtained using the known mean number of 

breakdowns on the road per month. Some refinement of this model is required, 

and we include it here purely to illustrate a potential method for quantifying 

penalty cost. Other age-related operating costs (e. g. fuel) were not quantified as 

no data were available. 
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Figure 6.11. Resale values and prices new for each model of bus. 
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Figure 6.12. The fitted model for each sub-fleet: 

Isuzu CSA, M(t) = 55.6; Mitsubishi, M(t) = 57.8; Cummins, M(I) = 24.71 
0.72 

0.72 0.72 Isuzu CJR, m(t) =ii. it ; Man, Af(t) = 18.4t 

6.5. Application to a bus fleet 

As mentioned above the data we have were obtained from Express National 

Berhad. which operates inter-city bus services in Malaysia with a fleet which 
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comprises of 160 vehicles of varying models (vehicle types). The composition of 

the fleet is mixed with, at the time of the study (early 1995), 5 vehicle-types of 

varying ages (see Figure 6.10 and Table 6.2). 

It was known that the Mitsubishi and Isuzu CSA sub-fleets were in partial 

retirement and also candidates for immediate replacement, capital expenditure 

permitting. The usage of sub-fleets was unknown, but it was reasonable to 

suppose that the usage level for the Mitsubishi and Isuzu sub-fleet was about half 

that of the other newer sub-fleets. This assumption led to the optimal policy: 

replace the Mitsubishi and Isuzu CSA sub-fleets as soon as possible which proved 

uninteresting from a model validation point of view. Therefore in order to 

illustrate the replacement model, we consider the following sub-problem in detail: 

to investigate replacement policy for the fleet comprising of Cummins, Isuzu OR 

and MAN, assuming a fixed fleet size (93 vehicles) and uniform usage. 

6.5.1. Results for the sub-problem of interest 

For the three sub-fleets problem, optimal policy is presented for each of the six 

replacement schedules (choice of order in which sub-fleets are replaced) in Table 

6.3. 

From Table 6.3 it can be seen that there is a significant variation in 

optimal cost and age with h, and no particular replacement schedule is 

everywhere optimal. Also, there is variation in cost and age with the length of the 

first cycle, the principal decision variable, for two particular replacement 

schedules. The table shows that for the optimum schedule over 15 years (180 

months), Cummins-MAN-Isuzu OR, a small increase in the time to first 
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replacement does not markedly affect the cost or the mean age at the end of the 

horizon (see Figures 6.13 and 6.14). This suggests that this policy is a robust one. 

Table 6.4 shows the optimum policy of the schedule, Cummins-MAN-Isuzu OR, 

as a function of the horizon h consisting of 4 cycles. 

The effect of varying the penalty cost is presented in Table 6.5. The cost 

and the mean age at the end of the horizon h are affected by varying the penalty 

cost (see Figure 6.15). Table 6.6 considers optimal policy for a horizon model 

with two replacements exactly. For particular replacement schedule, that value of 

h which minimises the cost function represents the optimum horizon length 

(LI + L2)for a two-cycle variable horizon model (see Figure 6.16). 

Table 6.3. Optimum policy for each schedule for various horizon lengths, h=120,150,180 

months; penalty cost, p= M$2000; annual discount rate, V =0.97. Cost of equivalent rent 

(MS000s per month for whole fleet), average age of fleet at end of horizon, and optimum cycle 
lengths. Replacement schedules: CIM-Cummins-Isuzu CJR-MAN, etc. 

Horizon Schedule Cost/month Age L, L2 L3 L4 

(months) (M$000s) (years) 

120 cim 745.77 7.0 6 114 
cmi 763.54 9.9 120 
ICM 816.66 8.4 120 
IMC 816.66 8.4 120 
MCI 782.10 5.1 24 6 90 
MIC 838.05 6.5 42 78 

150 cim 779.39 8.6 6 144 
Cmi 767.33 5.6 6 54 90 
IcM 844.68 4.6 54 6 6 84 
IMC 848.07 4.4 60 6 6 78 
MCI 782.82 5.7 42 6 102 
MIC 850.56 7.7 60 90 

180 CIM 787.88 6.0 18 72 6 84 
cmi 778.11 6.0 18 60 36 66 
lcm 840.97 5.2 72 6 6 96 
IMC 843.93 5.4 72 6 6 96 
MCI 794.58 6.7 54 6 120 
MCI 859.93 4.4 72 6 6 96 
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Table 6.4. Optimum policy for schedule Cummins-MAN-Isuzu CJR as a function of horizon 

length, h, penalty cost, p= MS2000; annual discount rate, V--0.97. Cost of equivalent rent 

(M SOOOs per month for whole fleet), average age of fleet at end of horizon, and optimum cycle 

lengths. 

Horizon Cost/month Age L, L2 L3 L4 

(months) WSOOOS) (years) 

60 661.19 5.8 60 
72 677.29 6.6 72 
84 696.83 7.5 84 
96 718.22 8.3 96 

108 740.62 9.1 108 
120 763.54 9.9 120 
132 765.09 5.1 6 42 84 
144 766.02 5.5 6 48 90 
156 769.21 5.9 6 54 96 
168 773.94 6.3 12 54 102 
180 778.11 6.0 18 60 36 66 

Table 6.5. Optimum policy for schedule Cummins-MAN-Isuzu CJR for various penalty costs, p 

(M $000s ); horizon length h= 120,150,180; annual discount rate, V =0.97. Cost of equivalent 

rent (MS000s per month for whole fleet), average age of fleet at end of horizon, and optimum 

cycle lengths. 

Penalty 

cost 

Horizon 
(months) 

Cost/month 
(M$000s) 

Age 
(years) 

L, L2 L3 L4 

0.0 120 625.43 9.9 120 
150 665.17 5.6 6 54 90 
180 668.27 6.3 18 60 102 

1.0 120 694.48 9.9 120 
150 716.25 5.6 6 54 90 
180 724.06 6.0 18 60 102 

2.0 120 763.54 9.9 120 
150 767.33 5.6 6 54 90 
180 778.11 6.0 18 60 36 66 

5.0 120 905.31 4.7 6 36 78 
150 916.68 5.1 6 54 36 54 
180 933.16 6.0 18 60 36 66 
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Table 6.6. Two-cycle model - optimum policy for three " best"' schedules (Cummins-Isuzu CJR- 

MAN. Cummins-MAN-isuzu OR, MAN-Cummins-Isuzu CJR) for various horizon lengths, 

h= 120.150,180 months; penalty cost, p= MS2000; annual discount rate, V =0.97. Cost of 

equivalent rent ( M$000s per month for whole fleet), average age of fleet at end of horizon, and 

optimum cycle lengths. 

Horizon 
(months) 

Schedule Cost/month 
(MSOOOS) 

Age 
(years) 

L, L2 

120 CIM 745.77 7.0 6 114 
CMI 775.83 6.2 6 114 
MCI 784.92 7.5 42 78 

ISO CIM 779.39 8.6 6 144 
CMI 804.14 7.7 6 144 
MCI 809.27 9.0 60 90 

180 CIM 818.73 10.0 18 162 
CM1 839.32 9.0 18 162 
MCI 839.32 10.5 78 102 
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Figure 6.14. Schematic diagram of "optimum" policy for h= 180: Cummins-MAN-Isuzu CJR: 4 

cycles, L, = 18, L2 ý60, L3 =36, L4 ý66. 
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Figure 6.16. Two-cycle model, for all schedules: (a) cost of equivalent rent (M$000s per month 
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6.6. Discussion 

For the fleet as a whole it is difficult to determine optimal replacement policy as 

two sub-fleets are partially retired, and usage levels are unknown. The problem is 

made more difficult because it is likely that the maintenance of these sub-fleets is 

less thorough than that for the newer sub-fleets. Under simple usage assumptions, 

the optimum PolicY is to replace the Mitsubishi and Isuzu CSA sub-fleets 

immediately. 

For the particular sub-problem relating to the Cummins, Isuzu OR and 

MAN, it appears that the optimum replacement schedule depends on the length of 

the horizon. Also, the end-of-horizon effect, as represented by the mean age of the 

fleet, also varies with the replacement schedule. The choice of "optimal" policy is 

therefore not straightforward. Over a fifteen year planning horizon, there is little 

to choose between the three schedules Curnmins-Isuzu CJR-MAN, Cummins- 

MAN-Isuzu OR and MAN-Cummins-Isuzu OR, both in terms of cost and age. 

For a planning horizon of less than 13 years, the optimal policy appears to be 

unstable. 

It is interesting to note that an alternative model with two cycles and 

variable planning horizon (P. A. Scarf & 0. Bouamra, 1995) would have indicated 

that the schedule Cummins-Isuzu OR is clearly optimal. The schedule Cummins- 

MAN leads to relatively high costs over a short time scale, but that the schedule 

Cummins-MAN-Isuzu OR has relatively low costs over a longer horizon. 

Constraining the number of replacements can therefore lead to the exclusion, on a 

cost basis, of some schedules which might otherwise be sensible. The drawback of 

lifting this restriction, by constraining the horizon length and allowing the number 
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of replacements to vary, is the necessity of choosing a suitable horizon length. A 

poorly chosen horizon length can lead to a poor replacement schedule. 

Once the appropriate schedule has been determined, the effect of varying 

the time to first replacement is relatively small. For the Cummins-MAN-Isuzu 

OR schedule, over a 15 year horizon, a delayed replacement of 12 months, from 

the optimal of 18 months, leads to an increased cost of M$2800 per month for the 

whole fleet. The effect of increasing penalty cost is simply to bring forward the 

replacement of sub-fleet. It is generally observed that optimal policy is insensitive 

to changes in discounting (Kobbacy & Nicol, 1994) and we do not investigate this 

further here. 
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CHAPTER 7 

Modelling the Challenger Problem with a Fixed 

Planning Horizon 

7.1. Introduction 

Replacement analysis involves the use of mathematical models and analysis to 

consider future provision of a service currently being provided by some existing 

asset, traditionally called the "defender" (Fraser & Posey, 1989). Alternative 

equipment, traditionally called the "challenger", could replace the defender. The 

"challenger problem" concerns which equipment should be bought to replace the 

existing equipment, the defender or the challenger. The challenger itself may be 

chosen from different available challengers. Implicitly, the challenger represents 

the most economic and effective equipment currently available (Jones & 

Tanchoco, 1987). Although it is not general, the challenger problem underlines 

the effect of technological obsolescence on the capital replacement policy 

(Tanchoco & Leung, 1987). We believe that distinguishing between the defender 

and challenger(s) requires the fixing of the horizon over which replacement policy 

is modelled. Suppose that we have two possible choices of action. The first choice 

is to replace the defender with the defender and the second choice is to replace the 
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defender with the challenger. The question arises: " can we differentiate between 

the two choices of action for replacement? ". The answer is that we cannot 

differentiate between the two choices for replacement if the "costs" of the optimal 

policies in each case extend over different periods of time. We argue that if we 

have a number of choices we can compare the optimal policy of each of them only 

if the "costs" extend over the same period of time. For example, suppose we have 

two possible actions A and B and that the results from A indicate that the cost will 

be E1200 a year for the next five years (it is not known what will happen after), 

and the results from B indicate that the cost will be flOOO a year for the next ten 

years. Thus, it is difficult to decide between the two possible actions because, 

although the cost incurred through the first action is less than that through the 

second action, the duration of the second action is longer. For this reason we 

argue that the planning horizon should be fixed globally. in this chapter we 

illustrate the fixed planning horizon model and compare it with the variable 

planning horizon modelling approach. 

7.2. The model and criteria of the challenger problem 

We now consider the challenger problem using a fixed planning horizon model. in 

our study, we apply the fixed planning horizon model with at most two 

replacements. The model is as described earlier in studying the behaviour of 

optimal policy. However here we distinguish between the replacement with the 

defender (j = I) and replacement with the challenger (j =2) so that the total cost 

over [0, h] is 
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x h-x 
fM, (t+-r)dt+ fMj(t)dt+2R, 0: 9 x<h, 

0 (j = 1,2). Ci (x) 
h 

IM, (t + r)dt + R, x=h, 
0 

Here Mj is the maintenance cost per unit time of the defender (j = 1), challenger 

2) at age t; r is the age of the current equipment; Rj is the purchase price 

new of the defender/challenger; x is the time of the first replacement and h is the 

length of the planning horizon. In order to distinguish between different available 

challengers, the model given in equation (7.1) can be modified: 

h-x 

fM, (t+r)dt+ fMj(t)dt+2R� O: gx<h, 

=00 (j n+ 1). (7.2) Ci (x) 
h 

fm, (t + r)dt + Rj x=h, 
0 

Where M, is the maintenance cost per unit time of the (defender); Mj 

(j=2,..., n+ I) is the maintenance cost per unit time of the different challengers; 

r is the age of the current equipment; Rj (j=, 2,..., n+I) is the purchase price new 

of the different challengers; x and h are as above and n is the number of possible 

challengers. The replacement problem is then to determine the optimal policy 

V, Xj* ý I, 

where j indexes that policy such that C,.. is the smallest among 

Cl. 5... 9 C�.; where C. = min C, (x) for all j; x,. = (x: C, (x) =C. 1 and i 

C* = minfC, c". 1. 

We regard the total cost C* and cost per unit time C* /h as equivalent. 

With discounting our decision criteria is the total cost over [0, h]: 
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x h-x 
fM, (t+r)v'dt+vx fM, (t)v'dt+Rj +Rju h 0: 9 x<h, 

cj(x) =ý0101 (7.3) 
h 

fM, (t + r)vtdt + Rjo hx=h, 

A 

with Mj; Rj; r; x; h and n are as above and v is the discounting factor. 

The discounted cost per unit time over a planning horizon of length h is 

given as 

cd 

j (x) 
(7.4) 

and the optimal policy with discounted cost per unit time as a decision criterion is 

written as 

(ju ,xj.., 
cj, ). 

Also with discounting the equivalent rent is 

Cd (X) 
C"(x) 

h1 (7.5) 
Y, Vi 
j=I 

the optimal policy with equivalent rent as a decision criterion is written as 

Ij r, *, Xi,., Cr, *). 

7.3. The application 

The model described above is applied to study the replacement of the light van 

Ford A0609 (defender) which performs function A with the light van Dodge S56 

as challenger. Also we consider the replacement of the heavy Van Ford TWO 

(defender) which performs function B (different from A) with the heavy van 

Bedford CF250 as challenger. It is required to determine whether to buy the 
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defender or challenger at the next replacement. The maintenance cost data is 

described in Table 7.1 and Table 7.2 as follows 

Table 7.1. Maintenance cost for the defender Ford A0609 and the challenger Dodge S56. 

Year Average maint. cost 
Ford A0609 

Average maint. cost 
Dodge S56 

I f 167 f 393 
2 353 545 
3 759 544 
4 622 
5 782 
6 969 
7 1565 
8 2287 

Table 7.2. Maintenance cost for the defender Ford T 100 and the challenger Bedford CF250. 

Year Average maint. cost 
Ford T100 

Average maint. cost 
Bedford CF250 

I f 163 f 222 
2 245 198 
3 434 
4 553 
5 687 
6 828 
7 1029 
8 1240 

The purchase prices for Ford A0609, Dodge S56, Ford TIOO, Bedford CF250 are 

E9910, E 11776, E6150 and E6215 respectively. 

7.3.1. Modelling the maintenance cost data 

The data given in Table 7.1 and Table 7.2 are the maintenance costs presented by 

Christer (1988). A power law function was fitted resulting in the form 164t'-' for 

Ford A0609 and 144t"-99 for Ford TIOO. The available data for Dodge S56 and 

Bedford CF250 are too few to establish a model for them. Since the behaviour of 
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Dodge S56 and Bedford CF250 data is close to that of Ford A0609 and Ford T 100 

respectively then we proceed as follows: use the same value of 8 obtained for 

Ford A0609 and Ford TWO respectively and different values a, andCt2 based on 

the ratio R, /R2= a, /a2. Here R, is the purchase price of the first equipment; R2 

is the purchase price of the second equipment; a, is the maintenance cost per unit 

time factor of the first equipment and a2 is that of the second equipment. 

Applying this method to both cases Ford A0609-Dodge S56 and Ford TIOO- 

Bedford CF250 led to the forms 195 P-' and 155t 0,99 for Dodge S56 and Bedford 

CF250 respectively. 

7.4. Application of the fixed horizon model 

We consider three decision criteria: the first of them is cost per unit time criterion. 

7.4.1. Results for cost per unit time criterion 

For numerical calculations the discrete form of the cost model described by 

equation (7.1) is used: 

x h-x 
EMI(t+r)+EMj(t)+2Rj, O<x<h, 

Cj(x) (7.6) h 
YMI(t+r)+Rj5 x=h. 

Results for the Ford A0609-Dodge S56 challenger problem with fixed 

planning horizons of length 10 years and 15 years are shown in Table 7.3. We 

present the cost per year for each year x over the planning horizon h. 

From Table 7.3, over a planning horizon of length 10 years, the results of 

replacing the defender with the defender indicate that the minimum value C"(x) 

191 



Chapter 7 Modelling the Challenger Problem with a Fixed Planning Horizon 

is E2466.2 occurs at x*=h =I 0. Also over the same horizon the results of 

replacing the defender with the challenger show that when perfonning only one 

replacement at the end of the horizon the cost incurred C*(x) is ; E2652.8. This 

occurs at x* =h= 10. Therefore, for a planning horizon of 10 years it is not 

optimal to replace before the end of the horizon. Therefore, there is no need to 

distinguish between the defender and challenger. Over a longer horizon of length 

15 years the results show that it is optimal to perform two replacements, replacing 

the defender Ford A0609 after 6 years and buying a new defender. Notice the 

value of x* is affected by the length of the planning horizon that when h is larger 

x* is smaller and vice versa. 

Other results considering different ages of the current equipment are 

shown in Table 7.4. From Table 7.4 the results show that over all the planning 

horizon lengths and for all current ages of the defender, the total cost per year for 

replacing the defender with defender is always less than that of replacing the 

defender with challenger. 

7.4.2. Results for the discounted cost per unit time criterion 

For numerical calculations the continuous form (7.3) is converted to the discrete 

form: 

x h-x 
EM, (t+r)v'+vx EMj(t)v'+Rj +Rjv h 0:: ý- x<h, 

Ci" W=ý 1=1 

I 

1=1 

1 

(7.7) h 

M, (t + r)v' + Rjv', x h. 
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Here v is the discount factor used to transform future costs to their present values. 

The discounted cost per unit time is defined as 

Cj (x)/ h, 

Cd where .. 
(x) is as given in equation (7.7). 

The results of the two replacement scenarios of replacing the defender 

Ford A0609 are shown in Table 7.5 with planning horizons of length 10 years and 

15 years using discounting factor v=0.95. As concluded from Table 7.4, the 

results in Table 7.5 show that over all the planning horizon lengths and for all 

current ages of the defender Ford A0609 the discounted cost per year for 

replacing the defender with defender is always less than that of replacing the 

defender with challenger (see Figures 7.1 and 7.2). 
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Table 7.3. The total cost per year for replacing the defender Ford A0609 (2 years old) with the 

defender and the challenger Dodge S56 over planning horizons h=10 and h=15; the 

maintenance cost per unit time of the defender is 164 t 1.1 and the maintenance cost per unit time 

of the challenger is 195 t 1.1 

Time New vehicle=defender New vehicle=challenger 

x h =lo h =15 h =lo h =15 

1 2847.1 2747.3 3374.6 3258.8 

2 2732.8 2588.8 3226.1 3062.1 

3 2664.1 2461.6 3127.8 2899.8 

4 2641.1 2366.1 3079.6 2772.3 

5 2664.1 2302.3 3081.6 2679.7 

6 2732.8 2270.4* 3133.6 2622.0 

7 2847.1 2270.5 3235.3 2599.3* 

8 3006.6 2302.3 3386.1 2611.4 

9 3210.5 2366.1 3585.1 2658.4 

10 2466.2* 2461.6 2652.8* 2739.9 

11 2588.8 2856.0 

12 2747.3 3006.1 

13 2936.8 3189.8 

14 3156.7 3406.5 

15 2745.4 2869.8 
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Table 7.4. The total cost per year for replacing the defender Ford A0609 (2 years old, 4 years old, 
6 years old and 8 years old) with the defender and the challenger Dodge S56 over planning 

horizons h= 10 and h= 15; the maintenance cost per unit time of the defender is 164 t1*1 and the 

maintenance cost per unit time of the challenger is 195 t 1.1 

Current 
age 

New vehicle=defender New vehicle=challenger 

h=io h =15 h =to h =15 
T Min. 

cost 
X* Min. 

cost 
X* Min. 

cost 
X* Min. 

cost 
X0 

2 2466.2 10 2270.4 6 2768.9 to 2719.8 7 

4 2904.4 3 2564.7 5 3244.3 10 2441.9 6 

6 3020.6 2 2722.8 4 3522.1 3 3114.0 5 

3092.0 1 1878.5 3 3625.7 2- 
13273.7 1 

4 

Table 7.5. The discounted cost per year for replacing the defender Ford A0609 (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over 

planning horizons h =I 0 and h= 15 using discount factor V =0.95; the maintenance cost per unit 

time of the defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 

195 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

h =io h =i5 h =io h=15 

T Min. 
cost 

X* Min. 
cost 

X* Min. 
cost 

X* Min. 
cost 

X* 

2 1731.3 10 1473.4 7 1843.0 10 1660.1 8 

4 2091.4 10 1634.9 6 2203.1 10 1842.3 7 

6 2267.0 2 
- 

1772.2 4 2574.1 10 2004.8 5 

8 2347.8 1 
rI878.5 

3 2727.7 2 2140.2 4 
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Figure 7.1. The discounted cost per year for replacing the defender Ford A0609 (maintenance cost 

per unit time 164t 1*1 and purchase price R= E99 10 ) with the defender (Ford A0609) and the 

challenger Dodge S56 (maintenance cost per unit time 1951 and purchase price R=E 11776 ) 

over fixed planning horizon h= 10. (a) r=2, (b) r=4, (c) r=6 and (d) r=8. (-0 M, 

defender with defender; -00, defender with challenger). 
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Figure 7.2. The discounted cost per year for replacing the defender Ford A0609 (maintenance cost 

per unit time 164t 1.1 and purchase price R= E99 10 ) with the defender (Ford A0609) and the 

challenger Dodge S56 (maintenance cost per unit time 195t 1 and purchase price R=f 11776 ) 

over fixed planning horizon h= 15. (a) r=2, (b) r=4, (c) r=6 and (d) r=8. (--0 M, 

defender with defender; -0 0, defender with challenger). 
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7.4.3. Results for the equivalent rent criterion 

The discrete form for the equivalent rent over a fixed planning horizon with at 

most two replacements is obtained from equations (7.5 and 7-7). The results of the 

two replacement scenarios of replacing the defender Ford A0609 are shown in 

Table 7.6, with planning horizons of length 10 years and 15 years using discount 

factor v=0.95. 

Results from Table 7.6 show that the optimal policy is the same as in the 

case of the total cost per year and discounted cost per year (see Figures 7.3 and 

7.4). Notice that the decisions are the same in Tables 7.5 and 7.6 but the costs are 

different. This because we are using two different criteria. 

Table 7.6. The equivalent rent for replacing the defender Ford A0609 (2 years old, 4 years old, 6 

years old and 8 years old) with the defender and the challenger Dodge S56 over planning horizons 

h =10 and h =15 using discount factor v =0.95; the maintenance cost per unit time of the 

defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 195 t 1.1 

Current 
age 

New vehicle=defender New vehicle=chaflenger 

h =to h =15 h =to h =15 
T Min. 

rent 
X* Min. 

rent 
X* Min. 

rent 
X* Min. 

rent 
X* 

2 2270.8 10 2167.3 7 2417.4 10 2441.9 8 

4 2743.1 10 2404.9 6 2889.7 10 2710.0 7 

6 2973.6 2 2598.6 4 3376.4 to 2948.9 5 

3079.5 1 27 3.2 3 3577.8 2 3148.1 4 
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Figure 7.3. The equivalent rent for replacing the defender Ford A0609 (maintenance cost per unit 

time 164t "I and purchase price R= E99 10 ) with the defender (Ford A0609) and the challenger 

Dodge S56 (maintenance cost per unit time 195t 1*I and purchase price R=L 11776 ) over fixed 

planning horizon h= 10 . (a) r=2, (b) r=4, (c) r=6 and (d) T=8. (--C3 M, defender with 

defender; -00, defender with challenger). 

199 



Chapter 7 Modelling the Challenger Problem with a Fixed Planning Horizon 

3400 

3200 

3000 

Defender with challenger 2800 

2600 

2400 

2200 
Defender with defender 

2000 
123456789 10 11 12 13 14 15 

Time to first replacement, x 

(a) 

4200 

4000 

3800 

3600 

Defender mth defender 

Defender with ch>aflenger 
Is 

3400 

3200 

3000 

2800 Defender wmith defender 

2600 
123456789 10 11 12 13 14 15 

Time tofirst replacement, x 

(c) 

3600 

3400 Defender with challenger 

3200 

3000 

2800 

2600 

JD 

c fc -nd arwit. h d&c (c -nd er 

2400 
123456789 10 11 12 13 14 15 

Time tofirst replacement, x 

(b) 

5000 

4500 

9 4000 
U 

3500 

3000 
Defender with defender 

/ 
/ 

U 
. 

2500 1 
123456789 10 It 12 13 14 15 

Time tofirst replacement, x 

(d) 

Figure 7.4. The equivalent rent for replacing the defender Ford A0609 (maintenance cost per unit 

time 164t 1*1 and purchase price R= E99 10 ) with the defender (Ford A0609) and the challenger 

Dodge S56 (maintenance cost per unit time 195t 1.1 and purchase price R=f 11776 ) over fixed 

planning horizon h= 15. (a) r=2, (b) r=4, (c) r=6 and (d) r=8. (-0 0, defender with 

defender; -00, defender with challenger). 
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7.5. Application of the variable planning horizon model 

Now, for comparison purposes, we consider the two-cycle replacement model 

with the variable planning horizon of Christer & Goodbody (1980) applied to the 

challenger problem. 

7.5.1. The cost model and criterion 

Over a variable planning horizon with two cycles the total cost is 

KL 

C(K, L) = 
fMI (r + t)dt + fMj (t)dt + 2Rj, (j = 1,2). (7.8) 
00 

The discrete form of the model is represented as 

KL 

C(K, L) M, + t) + Mj (t) + 2Rj, (j = 1,2). (7.9) 

The cost per unit time is given as 

C(K, L)I(K+L). 

Here M, is the maintenance cost per unit time of the current equipment 

(defender); Mi is the maintenance cost per unit time of the challenger; r is the 

age of the current equipment; Rj is the purchase price new of the defender 

1), challenger (j = 2) ;K is the length of the first cycle and L is the length 

of the second cycle. 

7.5.2. The variable planning horizon model with discounting 

The total discounted cost is 

KL 

DC(K, L)=fM, (r+t)v'dt+v' Rj+fMj(t)t)'dt+RVL (j = 1,2), (7.10) 
010 

11 
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and in the discrete form becomes 

KL 

DC(K, L) M, (r + t)u' +VK Rj +EMj(t)v'+RUL (j = 1,2), (7.11) 

with MI; Mj; r and Rj as above. v is the discount factor. We can use two 

possible decision criteria: the discounted cost per unit time and the equivalent 

rent. The discounted cost per unit time is defined as 

DC(K, L)I(K+L), 

and the equivalent rent is defined as 

K+L 

DQK, L) 

7.5.3. Results for the variable planning horizon model 

The results for the Ford A0609-Dodge S56 defender-challenger problem without 

discounting (v =I) are shown in Table 7.7. From Table 7.7, for example, the 

results of replacing the defender Ford A0609 with the defender show that when 

the current age is 2 years it is optimal to replace after 8 years with minimum cost 

of E2332.5 per year. Also the results of replacing the defender Ford A0609 with 

the challenger Dodge S56 show that it is optimal to replace after the cycle of 9 

years length with minimum cost of E2646.0 per year. The results show that as the 

current age increases the length of the horizon (K +L) decreases and the cost of 

replacing the defender with the defender is always less than that of replacing the 

defender with the challenger but over different planning horizon lengths in each 

case. 
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The results of replacing the defender Ford A0609 based on the discounted 

cost per year criterion are shown in Table 7.8. From Table 7.8 the results of 

replacing the defender Ford A0609 with the defender show that when the current 

age is 2 years it is optimal to replace after 17 years with minimum discounted cost 

of E1065.1 per year. Also the results of replacing the defender Ford A0609 with 

the challenger Dodge S56 show that it is optimal to replace after the cycle of 20 

years length with minimum cost of f 1134.1 per year. As in the case of the total 

cost per year, the results show that as the current age increases the length of the 

horizon decreases and the horizon length varies from replacing defender with 

defender to replacing defender with challenger. It is noticed that the discounting 

factor has a large influence on the optimal policy which leads to a longer planning 

horizon than that in the case of the total cost per year (see Figure 7.5). 

The results of replacing the defender ford A0609 with discounting 

representing the equivalent rent are shown in Table 7.9. From Table 7.9 the 

results of replacing the defender Ford A0609 with the defender show that when 

the current age is 2 years it is optimal to replace after 9 years with minimum rent 

of ; C2093.2. Also the results of replacing the defender Ford A0609 with the 

challenger Dodge S56 show that it is optimal to replace after the cycle of 10 years 

length with minimum rent of E2321.2. As mentioned above, the length of the 

planning horizon is affected by the current age and varies from replacing defender 

with defender to replacing defender with challenger. It is noticed that the 

discounting factor has an influence on the optimal policy and this influence 

appears when the current age increases (see Figure 7.6). 
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Table 7.7. The total cost per year for replacing the defender Ford A0609 (2 years old, 4 years old, 
6 years old and 8 years old) with the defender and the challenger Dodge S56 over variable 

planning horizon with two cycles K and L within the range I to 20 years; the maintenance cost 

per unit time of the defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 

195 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

T Min. cost K L Min. cost K L 

2 2332.5 8 10 2646.0 9 10 

4 2527.3 7 11 2866.9 8 10 

6 2700.1 6 12 3065.3 7 11 

8 2840.7 4 12 3242.9 6 12 

Table 7.8. The discounted cost per year for replacing the defender Ford A0609 (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over 

variable planning horizon with two cycles K and L within the range I to 20 years using discount 

factor V =0.95; the maintenance cost per unit time of the defender is 164 t1-1 and the maintenance 
1.1 

cost per unit time of the challenger is 195 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

Min. cost 
I 

K* L Min. cost K* L 

2 1065.1 17 20 1134.1 20 20 

4 1208.5 15 20 1284.0 20 20 

6 1351.2 13 20 1437.2 19 20 

8 1489.7 11 20 1591.3 17 20 
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Table 7.9. The equivalent rent for replacing the defender Ford A0609 (2 years old, 4 years old, 6 

years old and 8 years old) with the defender and the challenger Dodge S56 over variable planning 

horizon with two cycles K and L within the range I to 20 years using discount factor v =0.95; 

the maintenance cost per unit time of the defender is 164 t 1.1 and the maintenance cost per unit 
1.1 

time of the challenger is 195 t 

Current 
age 

New vehicle=defender New vehicle=chaRenger 

T Minsent K L Minsent K L 

2 2087.5 9 11 2319.4 10 11 

4 2335.8 7 12 2598.8 9 12 

6 2553.0 6 13 2857.2 7 12 

8 2732.3 4 14 3080.2 6 13 

It should be noted that the results described above are obtained from 

different criteria. In these tables we are effectively presenting results for different 

values of the discount factor (v =I in Table 7.7). It is for the user to decide 

whether he discounts costs or not and to what extent he discounts costs; that is; 

the user should choose the value of the discount factor. We are merely concerned 

with the effect of discounting or otherwise on optimal policy. 
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Figure 7.5. The discounted cost per year for replacing the defender Ford A0609 (maintenance cost 

per unit time 164t 1.1 and purchase price R= E9910) with the defender (Ford A0609) and the 

challenger Dodge S56 (maintenance cost per unit time 1951 "I and purchase price R=f 11776 

over variable planning horizon of length K+L. (a) r=2, (b) r=4, (c) r=6 and (d) r=8. 
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Figure 7.6. The equivalent rent for replacing the defender Ford A0609 (maintenance cost per unit 

time 164t 1'1 and purchase price R= E991 0) with the defender (Ford A0609) and the challenger 

Dodge S56 (maintenance cost per unit time 19511 '1 and purchase price R=f 11776 ) over 

variable planning horizon of length K+L- (a) r=2, (b) r=4, (c) r=6 and (d) r=8. 
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7.6. Optimal policy results for replacing Ford T100 

Similarly the Ford T100-Bedford CF250 challenger problem yields the same 

conclusion obtained in the case of Ford A0609-Dodge S56 challenger problem 

over fixed planning horizon: replacing the defender with the defender is the 

optimal policy. For example, the results of discounted cost per year criterion are 

shown in Table 7.10 and Figures 7.7 and 7.8. 

Table 7.10. The discounted cost per year for replacing the defender Ford T 100 (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Bedford CF250 over 

planning horizons h =I 0 and h= 15 using discount factor 1) =0.95; the maintenance cost per unit 

time of the defender is 144 t 
0.99 

and the maintenance cost per unit time of the challenger is 
0.99 155 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

h =io h =15 h =io h=15 

T Min. 
cost 

X* Min. 
cost 

X* Min. 
cost 

X0 Min. 
cost 

2 1133.5 10 970.3 7 1137.4 10 988.4 7 

4 1347.8 10 1069.3 61 1351.7 10 1091.1 6 

6 1467.7 2 1151.5 4 1496.1 3 1178.1 5 

8 1515.9 1 1213.6 3 1554.8 2 1248.3 4 
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Figure 7.7. The discounted cost per year for replacing the defender Ford T 100 (maintenance cost 

per unit time 144to*99 and purchase price R= E6150) with the defender (Ford TIOO) and the 

challenger Bedford CF250 (maintenance cost per unit time 1590*99 and purchase price 
R= E6215 ) over fixed planning horizon h= 10. (a) r=2, (b) r=4, (c) r=6 and (d) r=8. 
(-D M, defender with defender; -09, defender with challenger). 
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Figure 7.8. The discounted cost per year for replacing the defender Ford T 100 (maintenance cost 

per unit time 144t 0.99 and purchase price R= L6150) with the defender (Ford TIOO) and the 

challenger Bedford CF250 (maintenance cost per unit time 155t 0.99 and purchase price 
R= E6215 ) over fixed planning horizon h= 15. (a) r=2, (b) r=4, (c) T=6 and (d) T=8 

(---D M, defender with defender; -0*, defender with challenger). 
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For the variable planning horizon model, the results representing the total cost per 

year are shown in Table 7.11. From Table 7.11 the results of replacing the 

defender Ford T 100 with the defender show that when the current age is 2 years it 

is optimal to replace after 8 years with minimum cost of F. 1527.4 per year. Also 

the results of replacing the defender Ford TWO with the challenger Bedford 

CF250 show that it is optimal to replace after the cycle of 9 years length with 

minimum cost of E1565.7 per year. The results show that as the current age 

increases the length of the first cycle decreases and the critical value of the 

horizon length is almost constant across replacing defender with defender to 

replacing defender with challenger. 

Table 7.11. The total cost per year for replacing the defender Ford T 100 (2 years old, 4 years old, 
6 years old and 8 years old) with the defender and the challenger Bedford CF250 over variable 

planning horizon with two cycles K and L within the range I to 20 years; the maintenance cost 

per unit time of the defender is 144 t 0.99 and the maintenance cost per unit time of the challenger 

is 155 t 
0.99 

Current 
age 

New vehicle=defender New vehicle=chaDenger 

T Min. cost K L Min. cost K* L 

2 1527.4 8 10 
1 

1565.7 9 10 

4 1644.6 7 11 1689.8 7 11 

6 1746.0 6 12 1796.9 6 11 

8 1831.3 4 12 1886.6 5 12 

Also for Ford T100-Bedford CF250 results obtained from the discounted 

cost per year and equivalent rent criteria indicated the same conclusion as in the 
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previous case. That either replacing defender with defender or replacing defender 

with challenger over variable planning horizon the optimal policy extends over 

different planning horizon lengths and with different minimum costs. See Table 

7.12 and Figure 7.9. 

Table 7.12. The discounted cost per year for replacing the defender Ford TWO (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Bedford CF 250 over 

variable planning horizon with two cycles K and L within the range I to 20 years using discount 

factor V=0.95; the maintenance cost per unit time of the defender is 144t 0.99 and the 

maintenance cost per unit time of the challenger is 155 t 0.99 

Current 
age 

New vehicle=defender New vehicle=challenger 

T Min. cost K L Min. cost K L 

2 676.8 20 20 687.5 20 20 

4 672.2 19 20 773.0 20 20 

6 846.9 18 20 858.2 20 20 

8 929.7 15 20 943.4 20 20 
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Figure 7.9. The discounted cost per year for replacing the defender Ford TWO (maintenance cost 

per unit time 144to'99 and purchase price R= E6150) with the defender (Ford TIOO) and the 

challenger Bedford CF250 (maintenance cost per unit time 15510'99 and purchase price 

R= E6215 ) over variable planning horizon of length K+L. (a) r=2, (b) r=4, (c) r=6 

and (d) r=8. 
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7.7. Results of replacing defender with challenger using different cost 

parameters for the chaHenger 

Notice that all the previous results have been obtained by using the estimated 

maintenance cost per unit time parameters for the defender and challenger based 

on the data given in Table 7.1 and 7.2 and the simplification that 82 and 

a2 = a, R2 IRI (see section 7.3.1). Alternative results can be obtained by 

estimating independent parameters for the challenger using the data estimated by 

Christer (1988). These data are given in Tables 7.13 and 7.14. 

Table 7.13. Maintenance cost for the defender Ford A0609 and the challenger Dodge S56. 

Year Average maint. cost 
Ford A0609 

Average maint. cost 
Dodge S56 

I f 167 f 393 
2 353 545 
3 759 544 
4 622 409* 
5 782 567* 
6 969 660* 
7 1565 1196* 

2287 1768* 

Table 7.14. Maintenance cost for the defender Ford T 100 and the challenger Bedford CF250. 

Year Average maint. cost 
Ford TIOO 

Average maint. cost 
Bedford CF250 

I f 163 f 222 
2 245 198 
3 434 445* 
4 553 568* 
5 687 700* 
6 828 844* 
7 1029 1057* 
8 1240 1274* 
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The marked data for challenger was obtained by Christer (1988). It is observed 

from the table that there are only 3 data points for the challenger Dodge S56 and 

two data points for the challenger Bedford CF250. Here, in this study we consider 

the challenger data given in Tables 7.13 and 7.14 as a real maintenance cost data. 

Power law functions were fitted to the challenger data in both cases giving 

maintenance cost per unit time forms for Dodge S56 and for Bedford CF250. 

These forms are 322to-' and 162to*9 respectively. 

An alternative approach might use regression with the defender 

maintenance cost per unit time function as perior for the challenger. 

The results of replacing the defender with defender are given in the 

previous sections. Therefore, we give results only for replacing the defender with 

the challenger based on the alternative maintenance cost per unit time function for 

the challenger. With a fixed planning horizon, the results of replacing the 

defender Ford A0609 with the challenger Dodge S56 are shown in Tables 7.15- 

7.17. Results in Tables 7.15-7.17 show that the optimal policy for the Ford 

A0609-Dodge S56 challenger problem is always buy a new defender Ford A0609 

to replace the current defender Ford A0609. 
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Table 7.15. The total cost per year for replacing the defender Ford A0609 (2 years old, 4 years 

old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over planning 

horizons h= 10 and h= 15; the maintenance cost per unit time of the defender is 164 t 1.1 and the 
0.5 

maintenance cost per unit time of the challenger is 322 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

h =io h =15 h =io h =15 
T Min. 

cost 
x Min. 

cost 
X* Min. 

cost 
X* Min. 

cost 
X* 

2 2558.3 10 2380.2 6 2768.9 10 2987.9 9 

4 2904.4 3 2564.7 51 3244.3 10 3267.3 8 

6 3020.6 2 2722.8 4 3733.6 10 3525.3 8 

8 3092.0 1 1878.5 3 4077.3 4 3765.6 7 

Table 7,16. The discounted cost per year for replacing the defender Ford A0609 (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over 

planning horizons h= 10 and h= 15 using discount factor V --0.95; the maintenance cost per unit 

time of the defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 

0.5 
322 t 

Current 
age 

New vehicle=defender New vehlcle=challenger 

h =to h=15 h =to h=i5 

r Min. 
cost 

X* Min. 
cost 

X* Min. 
cost 

X0 Min. 
cost 

x0 

2 1731.3 10 1473.4 7 1843.0 10 1706.6 15 

4 2091.4 10 1634.9 6 2203.1 10 2000.0 9 

6 2267.0 2 1772.2 4 2574.1 10 2211.5 8 

8 2347.8 1 1878.5 
1 

3 2954.1 to 2408.9 7 
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Table 7.17. The equivalent rent for replacing the defender Ford A0609 (2 years old, 4 years old, 6 

years old and 8 years old) with the defender and the challenger Dodge S56 over planning horizons 

h=10 and h=15 using discount factor v--0.95; the maintenance cost per unit time of the 

defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 322 t 0'5 

Current 
age 

New vehicle=defender New vehicle=challenger 

h =io h =15 h =io h=i5 
Min. 
rent 

X* Min. 
rent 

X* Min. 
rent 

X0 Min. 
rent 

X0 

2 2270.8 10 2167.3 7 2417.4 10 2510.3 15 

4 2743.1 
1 

10 2404.9 6 2889.7 10 2942.0 
1 

9 

6 2973.6 2 2598 -6 4 3376.4 10 3253.0 8 

1 2763.2 3 3874.8 10 3543.3 7 

With a variable planning horizon the results of replacing the defender Ford 

A0609 with the challenger Dodge S56 are shown in Tables 7.18-7.20. From Table 

7.18 the cost of replacing the defender with the challenger is always less than that 

of replacing the defender with the defender but over different horizon length in 

each case. These results differ from the previous results in Table 7.7 because of 

the difference in the value of the rate of increasing maintenance cost per unit time 

fl, which is less than that in the case of Table 7.7. Similarly, the results from 

Tables 7.19 and 7.20 are affected by the discount factor; the optimal horizon 

lengths are different from those in Table 7.18. 

217 



Chapter 7 Modelling the Challenger Problem with a Fixed Planning Horizon 

Table 7.18. The total cost per year for replacing the defender Ford A0609 (2 years old, 4 years 

old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over variable 

planning horizon with two cycles K and L within the range I to 20 years; the maintenance cost 

per unit time of the defender is 164 t 1.1 and the maintenance cost per unit time of the challenger is 

0.5 322 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

r Min. cost K L Min. cost K L 

2 2332.5 8 to 2012.5 7 20 

4 2527.1 7 11 2119.9 5 20 

6 2700.1 6 12 2206.2 4 20 

8 2840.7 4 12 2263.5 2 20 

Table 7.19. The discounted cost per year for replacing the defender Ford A0609 (2 years old, 4 

years old, 6 years old and 8 years old) with the defender and the challenger Dodge S56 over 

variable planning horizon with two cycles K and L within the range I to 20 years using discount 

factor 1) =0.95; the maintenance cost per unit time of the defender is 164 t 1.1 and the maintenance 
0.5 

cost per unit time of the challenger is 322 t 

Current 
are 

New vehicle=defender New vehicle=chaDenger 

T Min. cost K L Min. cost K* L 

2 1065.1 17 20 935.9 12 20 

4 1208.5 15 20 1060.5 10 20 

6 1351.2 13 20 1177.7 8 20 

8 1489.7 11 20 1281.2 6 20 
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Table 7.20. The equivalent rent for replacing the defender Ford A0609 (2 years old, 4 years old, 6 

years old and 8 years old) with the defender and the challenger Dodge S56 over variable planning 

horizon with two cycles K and L within the range I to 20 years using discount factor 1) =0.95; 

the maintenance cost per unit time of the defender is 164 t 1.1 and the maintenance cost per unit 
0.5 

time of the challenger is 322 t 

Current 
age 

I 
New vehicle--defender New vehicle--challenger 

'r 
I 

Min. rent K L Min. rent K* L 

2 2087.5 9 11 1856.8 7 20 

4 2335.8 7 12 2032.9 6 20 

6 2553.0 6 13 2173.8 4 20 

8 2732.3 4 14 
j 

2269.9 2 

Considering different cost parameters the optimal policy for Ford TIOO- 

Bedford CF250 (162to-9) over fixed planning horizon is the same as in the case of 

Ford TIOO-Bedford CF250 (155to, 99). For example, the total cost per year is 

shown in Table (7.2 1). 

Over variable planning horizon, the analysis of Ford T100-Bedford CF250 

(162to-') challenger problem showed that replacing the defender with the 

challenger gives different results from that obtained in the case Ford TIOO- 

Bedford (155to*'9). On the other hand the results also showed that the main 

finding (that the optimal decision occurs over different planning horizon lengths) 

is true in both cases. For example, the results of equivalent rent are shown in 

Table (7.22). 
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Table 7.2 1. The total cost per year for replacing the defender Ford T 100 (2 years old, 4 years old, 
6 years old and 8 years old) with the defender and the challenger Bedford CF250 over planning 

horizons h= 10 and h= 15; the maintenance cost per unit time of the defender is 144 t 0.99 and the 
0.9 

maintenance cost per unit time of the challenger is 162 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

h =to h=15 h =to h=15 

r Min. 
cost 

X0 Min. 
cost 

x* Min. 
cost 

X* Min. 
cost 

X0 

2 1678.1 10 1559.3 6 1684.6 10 1610.4 7 

4 1884.7 3 1671.9 5 1947.2 3 1733.5 6 

6 1155.1 2 1765.6 4 2031.7 2 1838.9 5 

8 1997.2 1 1840.4 3 2087.8 2 1926.6 
1 

41 

Table 7.22. The equivalent rent for replacing the defender Ford T 100 (2 years old, 4 years old, 6 

years old and 8 years old) with the defender and the challenger Bedford CF250 over variable 

planning horizon with two cycles K and L within the range I to 20 years using discount factor 

V =0.95; the maintenance cost per unit time of the defender is 144 t 0*99 and the maintenance cost 
0.9 

per unit time of the challenger is 162 t 

Current 
age 

New vehicle=defender New vehicle=challenger 

Min. rent K* L Minsent K* L 

2 1373.8 9 11 
1 

1375.3 9 12 

4 1525.0 8 12 1523.8 8 13 

6 1653.7 6 13 1649.5 6 14 

8 1759.6 4 14 1752.0 4 15 
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7.8. Comparison between the replacement over fixed and variable planning 

horizons 

We now want to compare the two modelling approaches (fixed horizon, variable 

horizon) in the context of these challenger problems described above. For 

example, from Table 7.8 over the variable planning horizon, replacing the 

defender Ford A0609 with the defender leads to minimum discounted cost of 

f 1489.7 per year when -r =8 over a horizon of length 31 years and replacing the 

defender Ford A0609 with the challenger Dodge S56 leads to minimum 

discounted cost of E1591.3 per year over a horizon of length 37 years. Therefore, 

it is not straightforward to choose between replacing the defender with the 

defender and replacing the defender with the challenger because each replacement 

occurs over different horizon length. Another example from Table 7.9 is that the 

minimum rent of replacing the defender Ford A0609 with the defender is E2335.8 

over a horizon of length 19 years and the minimum rent of replacing the defender 

Ford A0609 with the challenger Dodge S56 is E2598.8 over a horizon of length 21 

years. Thus, the minimum rent occurs over two different lengths of planning 

horizons making it difficult to decide between these choices (replacing the 

defender with the defender and replacing the defender with the challenger). In 

another example from Table 7.22 the equivalent rent for replacing the defender 

Ford TWO with the defender is E1653.7 over a horizon of length 19 years and the 

equivalent rent for replacing the defender with the challenger Bedford CF250 is 

E1649-5 over a horizon of length 20 years. Therefore with the variable planning 

horizon model, an extra step is required to determine the optimum policy. 
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Over the fixed planning horizon, applying the discounted cost per unit 

time criterion, the discounted cost per year of replacing the defender Ford A0609 

with the defender is f 173 1.3 over a horizon of length 10 years and the discounted 

cost per year of replacing the defender Ford A0609 with the challenger Dodge 

S56 is 1843.0 over a horizon of length 10 years as well. Therefore, we can choose 

replacing the defender with the defender because it gives the minimum of the two 

minima over the same horizon length. Similar results are found when applying the 

equivalent rent or the discounted cost criterion. 

From the previous results of replacement over fixed and variable planning 

horizons it has been noticed that fixing the planning horizon length enables the 

decision-maker to choose between different replacement choices. Therefore, it is 

easy to choose whether to replace the defender with the defender or replace the 

defender with the challenger over the same period of time. On the other hand, 

replacement over the variable planning horizon indicates that different 

replacement choices cannot necessarily be found over the same horizon length, so 

that the optimal value of the horizon length depends on the choice of vehicle to be 

replaced. Consequently, it is difficult to compare different replacement policies. 

The drawback with the fixed planning horizon approach is that h has to be 

specified. But since this has to be done in advance it should not bias the 

replacement decision. In this case, the manager and the decision maker can work 

together to choose the appropriate length of the horizon. In strategic planning the 

length of the horizon is typically specified in advance. 
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7.9. The Challenger Problem: a Dynamic programming approach 

The dynamic programming approach for representing equipment replacement has 

been discussed in some depth earlier in chapter 4 (section 4.10). In this part we 

also discuss how to use DP to represent the challenger problem. 

As we mentioned earlier in this chapter the challenger problem is a 

replacement problem with the addition of choosing between two equipment (the 

defender and the challenger) to replace the current equipment. Therefore we have 

two alternative equipment types with replacement costs Rj(j = 1,2). We have the 

maintenance cost per period for equipment of age m periods as Mj(m) (j = 1,2) 

and we aim to minimise the total cost. 

We consider the dynamic programming approach for n time periods 

remaining in the horizon h that is divided into equally spaced time periods of 

length Ah. The current equipment is of age m time periods. In this case the 

maintenance cost per period, as it is represented in chapter 4 for non-like-with- 

like replacement, is 

Mj (m) = 
a" 

- 
[(mAh)6' +1 - ((m - I)Ah) fll +1 

, 
8j +1 

The dynamic programming approach gives us a set of recurrence relations 

which solves the problem of minimising the total cost over the total time of N 

periods. These recurrence relations are 

Vj (n, m) = min 
(K): Mj(m+l)+Vj(n-l, m+l) 

(7.12) (R): min[M (1) + V. (n - 1, I) + Rj j=1,2 

1 

j=1.2 i 
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Notice that the second part of the function means replace with type I or type 2 

according to which of them gives the minimum. 

We also require the relation 

Vj (0, m) = Rj. (7.13) 

At a particular epoch, the optimal policy is that decision (keep the current 

equipment or replace with the defender or replace with challenger) which 

minimises V(n, m). Thus over the complete horizon, optimal policy will consist 

of a sequence of decisions that are keep I (the defender) or replace with the 

defender (typel) or the challenger (type 2). This will imply an optimal number of 

replacements N* over the planning horizon and optimal ages at replacement (for 

each replacement epoch), x, * ...... Ix* N' 

In general the optimal policy for the challenger problem is 

x, *), 
(82% x2* 

.)....... 
(8, *,, x, *, )) where 8, = 1,2 (i = 1,2 ....... n). But we would 

only ever expect that if the first replacement is with the challenger (defender), 

then all subsequent replacements will be with the challenger (defender). In this 

case optimal policy is (N*,, 6*, x, * ....... x, *,. ) where 

1: replace with defender at all replacements, (7.14) 
2: replace with challenger at all replacements. 

7.10. Discussion 

The work presented in this chapter describes the challenger problem which has an 

important part to play in capital replacement. The challenger problem is 

described, for two examples, with a fixed planning horizon and with a variable 
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planning horizon. Results using discounted cost, cost per unit time and equivalent 

rent criteria were obtained when applying two different approaches for the 

maintenance cost data. Results obtained from the fixed planning horizon model 

showed that replacing the defender with the defender is the optimal policy. 

Results obtained from variable planning horizon model indicate also that 

replacing the defender with the defender is optimal, but these results are obtained 

over different planning horizon lengths. Note that the results over the variable 

planning horizon show that the discounted cost changes dramatically with the 

discount factor. On the contrary the results from the equivalent rent are 

straightforward and easily interpreted. Therefore, this suggests that the equivalent 

rent criterion is the most suitable for studying the replacement problem in general. 

Our aim of this study was to compare between the results over the fixed 

planning horizon and variable planning horizon. This study shows that the fixed 

planning horizon model is a valid approach to study the challenger problem, and 

has advantages over the variable planning horizon model. 

For complete view on the challenger problem we describe a dynamic 

programming approach. In this we allow any number of replacements over the 

planning horizon. Of course in implementing this approach suppose that we are 

able to quantify costs incurred beyond the second replacement. 
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CHAPTER 8 

Conclusion 

This thesis is concerned with fixed planning horizon models and their importance 

for decision-making in capital replacement. We consider variable planning 

horizon models for comparison. Decision-support is the basic outcome of a 

replacement modelling study. The results obtained with straightforward 

interpretation provide support from the modeller to the manager/operator in order 

to decide which equipment to replace and when. 

We review capital replacement as a part of strategic planning of capital 

expenditure. In particular, the fixed planning horizon model is introduced and 

described. 

We begin our study with the behaviour of optimal policy for simple capital 

replacement models for like-with-like replacement and non-like-with-like 

replacement. It is sometimes difficult to find tractable expressions for the decision 

variables in our model. The difficulty appears in the case of non-like-with-like 

replacement. For this study in chapter 4 we used a first order approximation and a 

second order approximation to find a useful approximate value for the decision 

variable under appropriate circumstances. The advantage of these approximations 
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is that tractable expressions for decision variables can be obtained. Insight has 

been gained into the behaviour of optimal policy for none-like-with-like 

numerically, using many possible combinations of the cost parameters. The results 

are illustrated graphically. This investigation was done without considering the 

discount factor, which has little effect on the optimal policy (Kobbacy & Nicol, 

1994). 

We present some theoretical results for the behaviour of optimal policy 

for the mixed fleet. The replacement models in this case consider a mixed fleet 

with each subfleet consists of single item. Extensions to this case are discussed 

briefly. These models allow the determination of which subfleet to replace first 

and when. The case study presented in chapter 6 illustrates an application of the 

fixed planning horizon models for the mixed fleet problem and compares different 

scenarios over the same planning horizon. 

The challenger problem is concerned with which equipment to be bought 

at replacement and when. We contend that the fixed planning horizon model is the 

most appropriate model for the challenger problem. The variable planning horizon 

model can be used for this study but in some circumstances different replacement 

scenarios (defender-defender or challenger-challenger) will extend over different 

planning horizons and choices between these scenarios will not be straightforward 

as a consequence. 

We also suggest that the rent criterion is the most sensible criterion among 

those studied. The rent criterion can be thought of as a discounted cost per unit 

time in which time is also "discounted". 
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We study the behaviour of optimal policy for a replacement model with a 

fixed planning horizon to decide if this model is a sensible model for use in 

practice. We are interested in how cost parameters and the control variables affect 

optimal policy for this replacement model. In particular we are interested in the 

effect of fixing the planning horizon. We compare our models with other models 

that currently used, such as the variable horizon model (Christer & Goodbody, 

1980) and economic life model (Eilon et al., 1966). In certain circumstances these 

models are mathematically equivalent and we establish this; it is their 

interpretation that is different. There are circumstances under which the variable 

horizon two-cycle models are degenerate when fl =0 (equipment for which 

maintenance costs do not increase e. g. electrical equipment). Here, sensible results 

about optimal policy in the case of non-like-with-like, using a fixed planning 

horizon model, can still be obtained. 

In order to investigate the restriction of at most two replacements in the 

fixed horizon economic life model, we have considered a dynamic programming 

approach. We describe how this approach can be used to determine optimal 

policy, for like-with-like replacement, non-like-with-like replacement and the 

challenger problem. Implementation for the like-with-like replacement using the 

dynamic programming approach found that generally speaking at most two 

replacements was optimal over the fixed planning horizon for reasonable values of 

the model parameters. 

Throughout all this work many points can be extended for finther work. 

For example, the behavior of optimal policy taking account of discount factor can 

be studied in more detail. We could also extend our work to consider a numerical 
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investigation of the mixed fleet replacement problem over fixed planning horizon. 

Bayesian regression can be applied to the challenger problem studied in this thesis 

by using defender maintenance data as prior for information for challenger. A 

fully subjective approach has been taken in the capital replacement context, for 

example, (Apeland & Scarf, 2001). Also one can investigate numerically, the 

effect of resale value for non-like-with-like, mixed fleet replacement and the 

challenger problem. Another suggestion for future work is investigating the fleet 

size effect on the optimal policy relating to replacement problems with many 

items in the fleet. Lastly, but not least a computational investigation can be done 

using the dynamic programming approach for non-like-with-like replacement and 

the challenger problem over fixed planning horizon. 
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Appendix 1 

C: This program determines the optimal policy for like-with-like replacement 

C: over a fixed planning horizon using dynamic programming approach. 

DIMENSION VI(50,50), V2(50,50), IX(50,50), CM(50), V(50,50) 

OPEN(10, FILE='Cost. DAT') 

OPEN(I 1, FILE='Decision. DAT') 

PRINT *, 'ENTER THE PARAMETERS' 

READ *, A, B, R, DH, N, M 

DO 20 I= 1, N 

DO 30 J=O, M-1 

V(O, J+I)=R 

V(I, M)=V(1,0)+R 

IX(I, M)=O 

CM(J+I)=A*((((J+I)*DH)**(B+I))-((J*DH)**(B+I)))/(B+I) 

VI(I, J)=CM(J+I)+V(I-I, J+I) 

V2(1, J)=CM(I)+V(1-1,1)+R 

IF(VI(I, J). LT. V2(1, J))THEN 

V(I, J)=Vl(l, i) 

C: The decision is keep the equpment. 

IX(I, J)= 1 

ELSEIF(VI(I, J). GT. V2(1, J))THEN 
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V(I, J)=V2(1, J) 

C: The decision is replace the equipment. 

IX(I, J)=O 
ELSE 

V(I, J)=V2(1, J) 

C: The decision is keep or replace the equipment. 

IX(I, J)=2 

ENDIF 

PRINT*, V(I, J) 

WRITE(10, *) V(I, J) 

PRINT*, IX(Ij) 

WRITE(I 1, *) IX(Ij) 

30 CONTINUE 

20 CONTINUE 

CLOSE(10) 

CLOSE(I 1) 

STOP 

END 
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