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ABSTRACT

The research described in this thesis, relates mainly to the

current method of design of steel portal frame structures.

The study is divided into two major parts, first being the

full-scale test on a 24 metre span frame and the second

deals with the problems of lateral-torsional buckling in the

haunch region of the frame.

Detailed accounts of the full-scale testing on the 24 metre

span frame and the experimental results are given.

Supplementary tests on beams cut out from the tested frame

in order to establish the strain-hardening factor are also

presented.

A literature survey on the published material pertinent to

the lateral torsional-buckling of a tapered member was

undertaken. Different methods of treatment for the elastic

stability of tapered members and any evidence from previous

research in this area were reviewed.

Details of an appropriate finite element and the

corresponding computer programme are given. This section

describes the assumptions and the Finite Element

formulations adopted in the computer programme. The earlier

work on this analysis dealt only with prismatic members and

this was extended to solve tapered sections. Therefore, a

full calibration of the finite element formulation for a

tapered member was carried out.



The stability clauses in BS 5950 are introduced

systematically. Theoretical work which leads to the

formulation of the clauses in Appendix G is also described.

These stability clauses were assessed by the analysis of

selected prismatic and tapered members using the finite

element formulation. From this assessment some modifications

to the clauses are proposed. The results of the modified

clauses are compared with those given by the finite element

analysis and the original clauses. Lastly, the modified

clauses are checked with the results of the portal frame

tested, to confirm its validity.

This study leads to the proposal for some amendments in the

clauses in Appendix G and Clause 5.5.3.5. of BS 5950.
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1
CHAPTER 1

1.0 Introduction

1.1. General

1.1.1. The Steel Portal Frame.

The steel portal frame structure is probably the most

frequently designed structure in the United Kingdom. It has

become the natural choice for most single story factory or

warehouse buildings and is also used in other structures

ranging from small agricultural buildings to sports halls

with spans of 50 metres or more. This is because steel

portal frame structures offer a practical and economical

solution in providing a large, clear, uninterrupted space

under cover and are therefore suitable for multipurpose use.

The modern portal frame construction, as shown in figure 1.1

is made up of universal beams, bolted together to make a

frame. It is normal practice to provide haunches at the

eaves and apex connections to accomodate the large moments

that occur at these locations. Bolted connections are always

preferred due to practical considerations especially

transportation and ease of erection at the site. There have

also been many other developments resulting in the modern

portal frame structure being built with different types of

structural elements, such as cold formed purlins, roofing



2

and various types of connections. These together with new

materials are being incorporated in the whole structural

system and influence the behaviour of the structure. It

would be unjustified therefore, to assume that the behaviour

of the modern portal frame structure, with its various

features, is entirely dependent on its main frame only.

1.1.2. Brief History of Steel Portal Frame Design and

Development

1.1.2.1 The Evolution of Steel as Structural Material

The use of metal as structural material began with cast-iron

used on a (30m) arch span which was built in England in 1777

- 1779 (1.1). Several cast-iron bridges were built during

the period 1780 - 1820, mostly arch-shaped with girders

consisting of individual cast-iron pieces forming bars or

trusses. Cast-iron was also used for chain links on

suspension bridges until about 1840.

Wrought-iron began replacing cast-iron soon after 1840, the

earliest important example being the Britannia Bridge over

the Menai Straits in Wales which was built in 1846 - 1850.

This was a tubular girder bridge having spans of 70 - 140 -

140 - 70 metres, which was made from wrought-iron plates and

angles.
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The process of rolling various shapes was developing as

cast-iron and wrought-iron received wider usage. Bars were

rolled on an industrial scale beginning about 1780. The

rolling of rails began about 1820 and was extended to

I-shapes by the 1870s.

As the production methods and technology improved, in

particular with the Bessemer Process (1855), more iron ore

products were being used as building materials. Since 1890,

steel has replaced wrought-iron as the principal metallic

building material. Today, steel having a yield stress

ranging from 165 to 690 N/mm2 is available in various forms

for structural uses.

1.1.2.2. Development of Portal Frame Construction

The development of steel portal frame construction goes hand

in hand with the progress and development in the material

itself, (i.e, from the cast-iron era to wrought-iron and

then to the rolled steel era), and has brought rapid

development to the portal frame construction that we know

today.

The earliest portal frame built was dated back to

approximately 1880. The frame was built with moulded

cast-iron and incorporated sculpture in the columns and in

the haunches. It had dimensions of 15 feet span, 10 feet
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high at eaves and 15 feet high at the ridge. The stability

of the structure was achieved by pseudo-rigid joints.

However, this type of construction was not adequate for

large span buildings, and in those days, larger spans were

achieved by incorporating the same type of column with

triangulated trusses.

In the early part of the 20th century, the riveted frame

became popular especially in the USA where they were used as

small railway bridges. In this type of construction, the

frames are pieced together from different "panels". Each of

the panels is shaped and splices are riveted to them. The

panels are joined to the adjacent ones through the splices

and connected by rivets to obtain the structural continuity

of the frame. Because of this, a massive amount of splices

and rivets are required in the construction. Later, with the

use of carbon steel as the material of construction, the

designers were able to build similar frames with larger

spans.

Further development took place in 1930, with the

introduction of electric arc welding for connections in the

structures. This has led to the downfall of popularity of

riveted joints in portal frame construction. The use of

electric arc welding has enabled designers to improve the

structural continuity and get aesthetic benefits, as well as

the ability to build larger span buildings.
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None the less, this technique of construction had its

disadvantages. Usually, the entire frame was manufactured in

the workshop where good quality control of the welded joints

could be achieved. However, as the length became larger, the

designers had to opt to introduce site welding of joints.

Since it was difficult to control the quality and obtain a

satisfactory standard of welded joints at site, several

solutions were sought in order to establish a compromise.

This could well mark the beginning of today's portal frame

construction, when features like systems of rivets with

splices, and bolts with end plates were introduced into the

structures together with the welded connections.

It has to be mentioned that the design philosophy that was

adopted by the designers in those days was that of "the

working stress design". The main objective was to maintain

the working stress within the elastic limit of the material.

The 1950s however, marked the introduction of a new design

philosophy known as "plastic theory". Since the late 1950s,

most steel portal frames have been designed by the plastic

design concept. This is because it was evident that the

application of plastic design produced lighter and more

economical structures than similar rigid frames designed by

elastic theory.

In plastic design, it is assumed that the structure is

capable of reaching its ultimate strength by the formation

of "plastic hinges" without premature failure occurring.
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However, as the span of the beams increases and as the

structure becomes more slender, the problem of instability

may become the main design concern. It is therefore very

important for the relevant code of practice to provide

proper guidance for preventing premature instability.

1.2. Review of Some Research Work and Tests on Portal Frames

Research in portal frame construction can be traced back

more than fifty years. Perhaps the most notable early

research on portal frame design was conducted in Bristol by

Baker and Roderick (1936) who carried out several tests on

small portal frames. These tests, despite their scale and

simplicity, helped to confirm the findings of earlier

research by Maier-Leibnitz (1927) in Germany (1.2). The work

by Maier-Leibnitz stipulated that the collapse load of a

simple beam structure depends on its full plastic moment,

however Baker and Roderick extended the work to cover the

collapse of rigid frames.

Their report published in 1938 (1.3) described in detail

their investigations on portal frame stability and the tests

confirmed their finding that the strength of a rigid frame

depends on the plastic moment capacity of its members

provided that premature failure was prevented. This report

became the first document describing an experimental

investigation into the plastic collapse of rigid frames.
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The work at Bristol led Baker to realise the potential of

what came to be known as the limit state design philosophy.

One aspect of this method is commonly known as "plastic

design". In 1943, Baker and Roderick embarked on a very

important research programme, involving both experimental

and theoretical work, which lasted for more than ten years.

Further tests on pitched roof portal frames were carried out

but this time at Cambridge and with larger frames. The tests

at Cambridge (1.4) conducted in the early 1950s can be

considered as the first full scale tests on portal frames.

These tests investigated the development of plastic hinges

in a real frame and the eventual failure of the frame as a

collapse "mechanism". The frame, as shown in figure 1.2, was

loaded with a vertical point load at the apex and a

horizontal side load at one eaves' point. Results of the

tests conducted show good correlation with the theoretical

predictions that were based on manual calculations, thus

confirming the validity of the plastic theory.

In these investigations however, the frames were stiffer and

there was less risk of member instability than there is in

current construction. This was because, in those days, the

purlins were made of hot rolled sections, and the member

sections were the same size throughout. The members were

also relatively compact and fully welded. Furthermore, the

column bases were idealised as fixed bases or connected to

piled foundations. Nevertheless, they observed signs of

member instability towards the end of each test after the
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formation of a collapse mechanism.

Around the same period, similar work was carried out in the

USA, notably by Beedle (1.5) at Lehigh University and

Greenberg & Prager (1.7) at Brown University, Providence. A

series of full scale tests to failure was conducted at

Lehigh using larger scale frames compared to the Cambridge

tests. An example of the test arrangement for a rectangular

frame is shown in figure 1.3. However, the tests were set up

so that in-plane load was applied to the frame and, with the

prevention of out-of-plane movement, the complete collapse

mechanism was achieved before ultimate failure. These tests

therefore, in view of current portal frame construction, do

not simulate the real behaviour of portal frames in modern

buildings.

The effort required to simulate the actual loading

conditions on portal frames showed clearly in 1953 and 1954.

This was when Baker, Eickhoff and Roscoe carried out full

scale tests (1.8, 1.9) on three pairs of north light type

portal frames. In these tests the loading patterns were more

in accordance with the actual practice and four point loads

were used to simulate the vertically distributed load. The

frames were built up on piled foundations in order to

introduce more realistic base conditions.

The effect of strain-hardening on the collapse load of a

rigid frame was investigated by Vickery (1.10) in Sydney,
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Australia in 1960. Tests on both miniature and full scale

pitched roof portal frames were conducted. Satisfactory

agreement between observed and theoretical results were

obtained for the two full-scale tests. This shows that the

approximate analysis proposed by Vickery could allow a rapid

and reasonably accurate estimate of the influence of

deformation and strain-hardening on the collapse behaviour

of rigid frames.

An investigation to study the effect of gross distortion on

portal frame behaviour was conducted by Charlton (1.11) in

1960. He conducted a full scale test on a pair of pitched

roof portal frames with short stanchions. He used four point

loading and predicted the collapse mechanism by simple

plastic theory. He also conducted tests on beam specimens

cut from an undeformed portion of the rafter after the test

in order to investigate the plastic characteristics of the

section. He concluded from the test results that the reason

for the increased value of the load at collapse was due to

the effect of strain-hardening.

A series of full-scale tests on pitched roof portal frames

incorporating tapered members was carried out by Vickery

(1.12) in 1962. These tapered members were prepared from

standard R.S.Js by cutting diagonally along the web, turning

the pieces end for end and rejoining by welding along the

cut edge. In this study he investigated the advantages of

using tapered members in portal frames and also studied the
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behaviour of tapered frames at collapse as compared with

rectangular frames. He concluded that the use of tapered

members could result in considerable economy in material.

However, many problems with regard to instability had to be

solved.

Bates, Bryan and El-Dakhakhni (1965) reported their full

scale tests (1.13) on a pitched roof portal frame shed. The

shed, had a 46 m span and was about 100 m long. Directed by

Bryan, they studied the stiffening effect of cladding and

roof sheeting on the frame. Tests were conducted during

various stages of construction of the shed and the results

show the remarkable influence of the sheeting on the

deflections and on the bending moments.

Horne and Chin (1966), (1.14) investigated the use of high

tensile steel (to BS 968) in the plastic design of portal

frames. In this investigation, they carried out tests on

four pitched roof portal frames. The results of the tests

were compared with two theoretical models that were

developed by Davies (1.15) and Chin (1.16) and also with

some design charts they themselves produced in B.C.S.A.

publication no: 29 (1.17). Since the digital computer was

already available then, the two theoretical models that

consider second order deformation and strain-hardening

required calculation using computers. The conclusion derived

in their investigation was that the use of high strength

steel helped to increase the strength. However, the
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deflections were also increased due to the reduced stiffness

of the members.

The effect of secondary structural elements on the overall

stability of portal frames was also investigated at the

University of Canterbury in New Zealand (1.18). This took

place when a new welded-steel portal frame laboratory wing

at the University was under construction. Measurements of

the stresses induced in the main structural members were

made during different stages of construction and after the

completion of the building. The investigation also compared

the experimental stress distribution with the theoretical

stress distribution obtained by elastic computer analysis.

Good correlation was obtained between the measured and

theoretical stress distributions for the bare frame.

However, at the stage of construction when the roof was put

in place, considerable interaction between the portal

frames and other elements of the building was evident.

Four full-scale tests on 12 metre span portal frames made of

built-up sections were reported by Halasz and Ivanyi (1978)

(1.19). These tests were conducted as part of the general

investigation undertaken for the preparation of a new

version of the Hungarian steel specification for plastic

design. As one purpose of these tests was to find

appropriate measures to exclude premature lateral torsional

buckling, various types of restraints were used on the

frames at various stages of loading. Tests were conducted by
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loading the frames using a spreader beam technique that

allowed the jacks to follow the frame in sway, and side

loading was applied using a tension rod connected to the

strong floor. These tests are interesting in the sense that

they constituted the first attempt to test non-tapered, up

to date portal frames. These tests confirmed the importance

of the positional restraints since they do have influence on

the failure load of the frame.

A massive testing programme involving the testing of 30

frames between 21m and 30m span was initiated in 1980 under

the direction of Dowling (1.20,1.21 and 1.22) at Imperial

College, London. The portal frames were made of tapered

members fabricated from welded steel plates as shown in

figure 1.4. The design philosophy of this form of

construction is radically different from that of the

hot-rolled I-section portal frame. The test programme was

sponsored by Ward Bros (Sherburn) Ltd. and was devoted to

the development of their "ATLAS SYSTEM". Since economical

aspects were one of the priorities of the project, much of

the research was directed in this perspective. Information

about the details of the tests are inadequate, probably due

to commercial interests. However, it seems that, provided

adequate bracing was incorporated in the design, the overall

response of the frames was good. The economy achieved is

also impressive, with the claim that this method of

fabrication can save up to 30% of weight compared with

conventional hot-rolled construction.
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The most recent test on a full scale portal frame was

reported in 1986 when Elvidge (1.23) tested a pitched roof

portal frame with haunches at Bradford University. The frame

tested was 14m span, 3 metres high at the eaves and had a

10 0 roof slope. It was fabricated from Universal Beam

sections and constructed with bolted end plate connections

and pinned bases. The set up of the test is shown in figure

1.5, where it is shown how another identical frame was

constructed and placed next to the test frame. Purlins and

cross-bracing members made up of light gauge steel sections

were connected to both of the frames in order to restrain

the test frame. Prior to the final test to destruction,

physical tests were performed in the elastic range to obtain

load-deflection curves under different loading regimes. In

the final test it was observed that the frame collapsed

after several plastic hinges had formed. It was found that

the collapse load of the frame was 20% greater than that

predicted by rigid plastic analysis. This according to the

author was due to the omission of several factors from the

analysis including the actual value of yield stress and the

strain hardening parameter. This test appears to be the only

test that is in line with current industrial practice.

From this brief review of previous work on portal frames, it

becomes evident that there is little experimental data

available on the performance of the modern portal frame.

Consequently, there is an urgent need for new experimental

data to be collected using realistic structures.
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1.3. Research on Portal Frames at University of Salford

A major research project was carried out by The Universities

of Salford and Manchester in which the behaviour of steel

portal frames up to failure was investigated. In this

project, three full scale portal frame tests were conducted

at Salford University under the direction of Professor J.M.

Davies while a finite element analysis programme was

developed at Manchester University led by Dr. L.J. Morris.

Supplementary studies were also conducted and they include

second-order elastic-plastic frame analysis, the effect of

connection flexibility and a detailed study of the

elastic-stability clauses of the current British Code, BS

5950. Part 1.

The main aim of this research project is to provide valuable

information on the true behaviour of the modern portal

frame. Earlier, full scale tests conducted by Professor J.F.

Baker at Cambridge decades ago led to the inclusion of

plastic design in the British Standard. Since then, there

have been many developments in the design and construction

of steel structures. Many of these developments directly

affect portal frame construction, whose apparent simplicity

conceals some practical design problems that were not

covered by the earlier tests. This project is aimed at

fulfilling the urgent requirement for tests on full-scale

portal frames of modern construction in order to investigate

the real behaviour of these structures.
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It is only very recently that the necessary computer power

and numerical methods of analysis have become available so

that the full non-linear, three dimensional analytical

problem can be attempted. Previous research work on portal

frames had indicated that the finite element method was able

to simulate the behaviour of parts of a frame with

reasonable success. The mathematical model, however reliable

and proven, cannot be developed without the aid of

comparable test results, and these were not available at the

commencement of the project. Therefore, the joint research

project is approaching the problem experimentally and also

analytically. In broad terms, that is to say that the

results of the tests at Salford are being used to calibrate

the finite element programme at Manchester.

The work at Salford involved the testing of two structures

of 12 metres span and a third of 24 metres span. The frames

were heavily instrumented in order to collect as much data

as possible and, because of that, they had to be carried out

indoors. The structural laboratory at Salford offers

excellent facilities for testing such a large assembly and

very few other laboratories in the U.K. are capable of work

on this scale.

This project was initiated in late 1985 and is jointly

funded by the Science and Engineering Research Council

(SERC) and several commercial sponsors amounting to over

£100,000 in total.
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1.4. Contribution of the Author in the Project

The author joined the research team in Salford in 1988 when

the full-scale test on the 24 metre span frame was just

starting. He spent the first few months working with the

rest of the team to carry out the full-scale test on the

frame. After the completion of the test, the author

conducted a series of bending tests on beam specimens cut

from the unyielded part of the rafter and column members of

the 24 metre frame. The objective of these bending tests was

to obtain the strain-hardening charateristics of each of the

frame elements so that this information could be considered

in the elastic-plastic analysis.

During the full-scale frame test it was found that the

problem of lateral torsional buckling especially at the

haunch region was indeed very serious. The frame that was

designed according to the code BS 5950: Part 1 (1.24) failed

prematurely by lateral-torsional buckling in the haunch

region of the rafter. This code provides clauses for the

design of tapered steel members including portal frame

haunches. At the vicinity of the haunch in modern portal

frame constructions are purlins and sheeting that, as a

system, can produce a fairly complete positional restraint

at those points. The code BS 5950 provides a method of

design for this situation notably in clauses in Appendix G

of the code. However, this provision has proved to be

complicated to apply especially with the introduction of
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several new parameters. The problem is augmented by the many

checks to be performed and this has made the use of the

computer inevitable. The results of analysis of the actual

conditions at collapse showed that Appendix G had predicted

the failure by lateral-torsional buckling at a lower load.

It was also shown that the actual bending stress at collapse

at the most critical point of the haunch was 1.75 times the

allowable buckling stress. This led to the conclusion that

Appendix G had provided an over-safe design.

A parametric study was therefore undertaken, using the

"SPACE" Finite Element computer programme that is described

in chapter 4, to investigate the problem of lateral-

torsional buckling in tapered members, particularly in the

haunched region of a portal frame. This study allows the

various design recommendations given in the steel code BS

5950 pertaining to lateral-torsional buckling to be assessed

in relation to the overall performance of the portal frame.

The clauses in Appendix G of the code and its alternative

"Clause 5.5.3.5." were studied in detail. Recommendations

for some amendments to the clauses in BS 5950 are suggested.

The "SPACE" Finite Element computer programme that was used

in the analysis of the tapered member was developed by Nemir

(1.25). This is a new finite element formulation that is

superior to the one developed by Barsoum and Ghallagher

(1.24) in the sense that it contains new terms representing

the bimoment influence and is valid for any cross-section
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shape. However, when the author obtained the computer

programme, it was in six different versions that contained

many changes from the original described in Nemir's thesis.

Since no authenthic programme was available, the author had

to make corrections to the programme and because of that it

was thought that the programme had to be verified again.

In so far as the numerical work is concerned, Nemir had

worked on prismatic members only. The author has extended

the work to cover tapered members and members with restraint

to one flange.

1.5. The Scope of the Thesis

The research described in this thesis is divided into two

major parts, the first one being the full-scale test on the

24 span frame. The second part deals with details of the

problems of lateral-torsional buckling in the haunch region.

In this second part the provision for lateral-torsional

buckling in the code of practice is scrutinised.

In chapter two, a detailed account of the full-scale testing

of the 24 metre span frame and the experimental results are

given. Design calculations of the frame in accordance with

BS 5950 for the design of the frame are also given.

Supplementary tests on beams cut from the tested frame in

order to establish the strain-hardening factor (k) are also

presented in this chapter.
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In chapter 3, a literature review of the lateral-torsional

buckling of tapered members is given. Particular attention

to tapered members is given because a proper treatment on

this subject is required to verify the (SPACE) Finite

Element computer programme. The SPACE Finite Element

computer program is then used as a tool for the analysis of

the elastic buckling problems in this project. Various

alternative methods of treatment for the elastic stability

of tapered members are studied in detail.

Chapter 4 of the thesis, presents the details of the SPACE

Finite Element programme. It describes the assumptions and

the Finite Element formulations adopted by Nemir in the

computer programme.

In chapter 5, details of the verification of the SPACE

Finite Element program are given. Only verification using

tapered members is given in this chapter, whereas

verification for prismatic members is given in the Appendix

2.

In chapter 6, the stability clauses in BS 5950: Part 1 are

introduced systematically. The stability clauses for

prismatic and non-uniform members are described in detail.

Theoretical work which leads to the formulation of the

clauses in Appendix G is also given. This chapter also

describes Clause 5.5.3.5 that is an alternative to Appendix

G provided within BS 5950.
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Chapter 7 assesses the stability clauses by means of the

SPACE Finite Element program. Several prismatic beams and

haunched beams fabricated from Universal beam sections are

analysed and the results compared with the provisions of the

stability clauses.

In chapter 8, the stability clauses in Appendix G and Clause

5.5.3.5 are scrutinised further. Both the cases of Elastic

and Plastic Stability are checked and some modifications to

these clauses proposed and then analysed. The results of

these analyses are compared to the results of analysis by

the original clauses and the Finite Element method. This

study leads to the proposal for some amendments to be made

in the clauses in Appendix G and Clause 5.5.3.5.

Finally, conclusions are drawn with suggestions for further

research work in chapter 9.
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Figure 1.2 The Cambridge Test Frame

.,

Figure 1.3 The Lehigh Test Frame
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Figure 1.5 The Bradford Frame Test
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CHAPTER 2

2.0. Full Scale Test on a 24m Portal Frame

2.1. Introduction

The behaviour of a portal frame in a building can only be

studied in detail if tests on complete structures, including

secondary members, purlins, bracing, lateral restraints and

cladding are conducted. The technique used to apply the

loading is also very important and must simulate the real

conditions.

The work described in this chapter forms part of a research

programme in which the behaviour of steel portal frames up

to failure was investigated in considerable detail. In the

experimental part of the project, 3 full-scale portal frame

structures in a three-dimensional test assembly were tested

in the structures laboratory of the University of Salford.

The frames tested were;

Frame 1. (span = 12m)

Frame 2. (span = 12m) Agricultural building,

Frame 3. (span = 24m) Industrial building.

Since the author was only involved in the testing of frame

3, this chapter will describe the details of this particular

test. The design of the frame, details of the test assembly,

test procedures and results of the test are discussed.

Descriptions of the tests on all of the frames are also
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available in other references (2.1, 2.2, 2.3, and 2.4).

2.2. Description of Portal Frame 3

2.2.1 General Description

The basic arrangement of portal frame 3 is shown in figure

2.1. It has a span of 24 metres and a roof slope of 6.56°.

This frame was designed in accordance with BS 5950: Part 1

(2.5) by the fabricator and was fabricated in a standard

workshop by a standard contractor. The frame was identical

to those fabricated by the manufacturer for normal

construction. The frame was designed on the assumption that

the bases were pinned and the loading pattern was uniformly

distributed vertical load. Table 2.1 gives details of the

loading assumptions and the dimensions of the frame.

In figure 2.1, it is shown that the rafter was made up of a

Universal Beam UB 356x127x33, incorporating a long shallow

haunch. The two haunches were fabricated by cutting a

section of the Universal Beam diagonally along the web and

welding along the bottom rafter flange. At the larger end,

the eaves connection was made by welding the resulting

haunch onto an end plate. The column was a Universal Beam

type UB 406x178x54 with a base plate of 425x230x15mm. This

was in line with the current practice allowing the use of

different section sizes for column and rafter members. The

roof sheeting consisted of steel sheet type R.M.F. RS 3255.
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This sheet profile was chosen in order to avoid sheeting

failure during the test. The purlins were cold formed light

gauge steel Zed sections of the type METSEC 20218, with

sleeves. A similar section of purlin with circular solid

cross bracing (16mm diameter) was provided to ensure

stability at the eaves. The standard bracing cleats shown in

figure 2.2 were used on this frame.

2.2.2 Member and Material Properties of the Frame

The steel used for the fabrication of the frame was an A43

grade to BS 4360 with a nominal yield stress of 275 N/mm2.

However, in order to investigate the real behaviour of the

frame the actual member and material properties of the frame

must be known. Previous research into member instability

(2.6) had shown the importance of detailed measurement of

geometric and material imperfections if accurate theoretical

behaviour was to be estimated.

A lot of supplementary experimental work and accurate

measurement was therefore necessary in this project. These

included the accurate measurement of cross-sections and lack

of straightness of individual members and the measurement

of stress-strain characteristics from coupon tensile tests

obtained from different locations in the cross-section. The

measured material and dimensional properties of the test

members are tabulated in table 2.2(A) and 2.2(B).
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Details of bending tests on lengths of the unyielded

material cut from the frame and the results are described in

section 2.7.

2.3 Design of Frame 3

2.3.1 Design Procedures in Accordance With BS 5950: Part 1

British Standard BS 5950: Part 1 entitled "The Structural

use of Steelwork in Building", deals with the design in

simple and continuous construction using hot rolled

sections. Portal frame design is specifically covered in

section 5.5 of the code. In the code, steel portal frames

can be designed using either the elastic and plastic methods

of analysis.

The design procedures for portal frames provided by this

code are very rigorous and comprehensive. A study of the

design procedure shows that the code always refers to

general clauses or conditions before the detailed aspects of

the design are considered. For instance in the case of

plastic design of portal frames (i.e clause 5.5.3.1),

reference is made to the clause in section 5.3 that deals

with plastic design in general.

Important aspects of the design of portal frames include the

stability of the frame and stability of the members. In the
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case of the frame stability, treatment of in-plane stability

are considered for both cases of sway stability and snap

through stability. These are given in clauses 5.5.3.2 and

5.5.3.3 respectively. Two alternative methods of design are

given in clause 5.5.3.2 to deal with sway stability.

In the case of member instability, it is important that the

general requirements for all members of the frame must first

be emphasized. These are;

(1) The load capacity of any members cross-section must

comply with the conditions given in clauses 4.8.2 and

4.8.3.2(b)

(2) Plasticity should not occur in the haunch length. It

is important that the haunch portion remains

completely elastic, otherwise instability becomes a

problem.

(3) The bending moment at the end of the haunch should be

less than 0.85 times the full plastic moment of the

rafter. The value of 0.85 adopted is the approximate

ratio between the elastic modulus Z e and the plastic

modulus Z p . The moment at the haunch/rafter

intersection should be less or equal to 0.85 M p , in

order to avoid yielding of the extreme fibres of the

section.

Reliable stability of members is only possible if a number

of practices are adhered to. The code specifies that

restraints should be provided where plastic hinges form or

not further than D/2 from the plastic hinge position (where
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D is the depth of the member). In addition, the code also

provides the following guidance

(1) Purlins provide intermediate lateral restraint to the

outer (tension) flange.

(2) Fly braces provide torsional restraint at specific

locations. These members are to be designed to resist

a couple derived from the lever arm equal to depth

between centroids of flanges and a force equal to not

less than 1% of the maximum factored compression

flange force of the restrained member.

(3) When the purlins and their connections are capable of

providing torsional restraint to the top flange of the

rafter, it can be assumed that a virtual torsional

restraint is present at the point of contraflexure.

The code of practice distinguishes two types of length

between lateral restraints, namely 'restrained' and the

'unrestrained' lengths. The design checks for lateral

stability are carried out in terms of critical lengths of

member between restraints. The following critical lengths

are used in BS 5950: Part 1;

Lt = Effective length for calculations according to

Section four of the code. (This covers the cases

of unrestrained length with no plastic hinge

formation for both prismatic and tapered members) .

L = Maximum distance from plastic hinge restraint to

adjacent restraint. (This covers the cases of
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unrestrained length with plastic hinge formation

for both prismatic and tapered members -

Clause 5.3.5)

Lt = Maximum distance between compression flange

restraints. (This covers the cases of members with

restraints positioned on the tension flange for

both prismatic and tapered members with and

without plastic hinge formation - Clause 5.5.3.5

or Appendix G).

2.3.2 Detailed Design of the Frame

The details of the frame are as shown in figure 2.1. The

design was based on gravity load condition i.e., snow + dead

load. Both the geometries of the frame and the applied

loading were symmetrical about the apex. The frame had a

span of 24 in and the rafter slope was 6.56°. The column

height was 4 in from the column base to the intersection of

rafter/column. The frame was designed assuming pinned bases.

The haunch length was 2.4 m from the inner column flange to

the end of the haunch, i.e., 10% of the span. The haunch

region was detailed so that the ends of the inclined haunch

flanges at the haunch rafter intersection had not been

welded to the rafter. Also the column head panel had a web

stiffener of about 80% of the depth of the column web at the

compression zone. There were also small stiffeners in the
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tension flange welded to the inner column flange. Details of

these are shown in figure 2.1.

There were 14 lines of purlins which spanned 5 m between the

gable frames and the test frame. These purlins distributed

the vertical load applied to the test and gable frames while

providing lateral restraints to the outer flange of the

rafter. The outer flanges of the columns of the test frame

and the gable frames were connected together b y means of

three rows of sheeting rails. Lateral stays (fly braces)

were also provided to the frame at locations shown in figure

2 .1.

2.3.3 Design Checks

The original design of the portal frame assumed a steel

yield strength of 275 N/mm2 and nominal sectional

properties. A design check was conducted using the

properties of the members from tables 2.2(A) and 2.2(B) on

the basis of simple elastic and plastic analyses. Details of

the design of the frame in accordance with BS 5950: Part 1

are given in Appendix 1.

A check on member properties shows that the capacity of

column web for shear moment, Mo was 325 kNm. This value was

greater than the nominal plastic moment of the column

(Mix=288 kNm), so that the plastic hinge would form first.
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The reason for this was that the use of a deep haunch to

provide a large lever arm had the effect of reducing the

shear stress to acceptable limits. The nominal capacity of

the rafter was Mpr =148 kNm, but considering the purlin

spacing of 1.795 metres and the stress reduction factor of

0.80 at the apex region, the moment resistance in that

vicinity was 115 kNm.

Stability of individual members namely the column and the

haunch region were also checked. By making use of Clause

5.5.3.5(a) in BS 5950: Part 1, the required distance between

full lateral restraints Lt was calculated to be equal to

2.962 m. Since the maximum length between lateral restraints

in the column (Figure 2.8) was 2.0 m, then this length of

column should remain stable.

A check on the stability of the haunch region was also

conducted by means of Appendix G and Clause 5.5.3.5. of the

design code. Based on the nominal yield strength of 275

kN/ mm2 and the ultimate design load of 1.5 kN/m 2 , the

calculation by the method of Appendix G shows that the

haunch should fail by lateral-torsional buckling at a lower

load. A check by clause 5.5.3.5 shows that the maximum

allowable length of the haunch was 1.577 m, but the design

provided 2.408 m. This shows that there was a strong

possibility that premature failure by member instability in

the haunch region could develop before the development of

the collapse mechanism. However, the complete collapse
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mechanism would occur at an ultimate design load of 1.5

kN/m2 (or 7.52 kN/m), by the formation of plastic hinges at

the haunch rafter/junction and in the rafter at the purlin

adjacent to the apex. The design check conducted shows the

existence of some deficiencies in the design of frame 3.

Some of the rules on member stability were not followed in

accordance with BS 5950.

2.4 The Test Assembly

2.4.1 Details of Test Assembly

It has been stated earlier that the tests on full scale

frames carried out in the past gave little experimental data

to deal with modern portal frame construction. This is

especially true for tests that subject the frame to in-plane

applied load. Consequently, the decision was taken at the

planning stage that the tests must simulate as realistically

as possible, the actual conditions to which a portal frame

could be subjected. In the actual situation, "snow" loading

is applied through the sheeting and thence via the purlins

to the frame. These secondary members not only apply the

load but also offer restraint against lateral-torsional

buckling of the frame members.

The requirement of simulating these conditions leads to the

development of a 3-dimensional test assembly. That is the
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only way that a realistic degree of structural interaction

between the secondary members and the main frame can be

reproduced. Meanwhile, the effect of any stressed-skin

action (2.7) within the plane of the roofing must not induce

any unknown restraint to the frame. Furthermore, it was also

necessary to design the complete test assembly to fit the

available area of strong floor in the structures laboratory.

Figure 2.3 shows the details of the test rig. It consisted

of three frames with the central test frame connected at

rafter level by cold-formed purlins to the two "gable"

frames. The gable frame members were chosen to be stiffer

and stronger than the test frames. They were designed to

incorporate suitable extension pieces within the rafter so

that the span could be increased from the original 12m to

24m. This degree of flexibility was required so that after

the first two tests on 12m span frames the assembly could

then be used to test this 24m span frame. Lateral movement

of the gable frames was restrained by bracing them back to

the stanchions of the laboratory walls.

The effect of stressed-skin action must be eliminated since

this study is not directed to that particular aspect of the

behaviour. Therefore it was decided that the gable frames

must be made to follow the movements of the test frame. This

required that the joints in the gable frame should be pinned

and the associated column bases had knife-edge supports. The

effect is that the gable frame could behave like a rigid
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link mechanism as shown in figure 2.4a. With this

arrangement, any movement of the test frame could be

reproduced by the gable frame. The vertical movement of the

apices of the gable frames was controlled using hydraulic

push-pull jacks. Figure 2.4b shows the jack positioned

underneath the base support of the central posts. The spread

of the eaves, including the sway movement of the gable frame

was controlled by a horizontal push-pull jack positioned

near the top of one outer post (see figure 2.4c). Thus, two

jacks that were operated manually, controlled the shape of

each articulated gable frame at any stage of the loading

regime. At each load increment, the nodal deflections of the

test frame were measured and the articulated gable frames

were then adjusted until their corresponding deflections

coincided with those of the test frame.

The column base system of the test frame was designed to

provide the same rigidity as a typical foundation and also

to allow the measurement of forces transmitted to the

foundation by the structure. The arrangement of the column

base is shown in figure 2.5 and is made up of a highly

reinforced concrete slab, to which the column base is

anchored using two holding down (HD) bolts. This arrangement

represents the "pinned" base condition in practice. Each

base was supported on three load cells arranged in a pattern

so that the vertical load and any moments induced into the

base about the two major axes could be measured. In

addition, a horizontal load cell was positioned to measure
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any horizontal force exerted by the base and to prevent any

significant horizontal movement. By placing a set of linear

needle roller bearings under each vertical load cell, any

horizontal movement of the base should not have had any

effect on the operation of these load cells.

2.4.2. The Roof Loading System

A realistic condition of loading applied to the roof

sheeting is uniformly distributed load simulating snow or

wind load. One method of testing that would allow this

condition is to apply load using sandbags. However, for

practical reasons, this method is difficult to apply for a

large structure. It was therefore decided to adopt the

spreader beam technique, that had been successfully used by

Bryan and Davies (2.7, 2.8) and Lawson (2.9) for the full

scale testing of buildings of stressed-skin design at

Salford University.

In this system of loading, the uniformly distributed load

was approximated by a large number of point loads applied to

the sheeting via a series of timber spreaders. The load was

supplied to the timber spreaders by hydraulic jacks anchored

to the strong floor, using a system of beams and hangers.

Details of the loading system and the general layout of the

timber spreaders is shown in figures 2.6 and 2.7

respectively. Each spreader applied six points locally to
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the sheeting. A total of 96 points were controlled by each

jack giving a total of 576 load points for the whole test

arrangement. The maximum test capacity of the system was 2

kN/m2 . This loading capacity plus the self weight of the

frame, purlins and sheeting and the weight of the loading

system itself was sufficient to ensure failure of the test

frame.

The actual load being transferred from the sheeting into the

test frame could not be assumed to be directly related to

the applied load. This is because the relative stiffnesses

of the various components making up the test assembly would

determine the magnitude of the actual load being imposed on

the test frame. Furthermore, the precise distribution of

load on the frame could not be readily assessed by simple

analysis, and it was later found that the distribution was

varying during the test. That was why the arrangement of the

four load cells per concrete base was necessary, as it would

allow the actual load acting on the test frame to be

measured.

2.4.3. Instrumentation of the Test Frame

It has been the philosophy of this research project to be

able to collect information concerning the behaviour of the

frame during the test as thoroughly as possible. This

information regarding the test frame was essential for both
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direct interpretation of the frame's behaviour and the

calibration of the mathematical model developed at

Manchester. Measurement of the member and material

properties of the frame was discussed in section 2.3. This

section describes the method in which data was collected

during the test.

To control the several parameters involved, many measurement

points were defined on the test rig. The measuring devices

used were electrical resistance strain-gauges, electrical

displacement transducers, electronic load-cells and

inclinometer or rotation gauges. 250 strain-gauges, 20

transducers and 8 load cells were used to instrument the

frame. Because of the large number of measurements that

needed to be recorded, a sophisticated data logging system

with interlinked computers was used to collect and analyse

the test data.

Three microcomputers were used as the basis of the data

logging system. These three microcomputers had the

capability of recording all the strain-gauge readings as

well as the measurements from 20 linear displacement

transducers and 8 load cells.

This data processing system was backed up by a PDP computer

linked to the PRIME mainframe computer. The purpose of this

set up was to produce test data in graphical form as quickly

as possible using a programme "TRACADERO" (2.4) written by



39

P. Engel, another member of the research team. This enabled

complete sets of graphs depicting the variation of the

recorded measurements against load to be available within 24

hours of the completion of the test. Furthermore, this

system also ensured that a permanent and accurate record of

the measured results at any stage of the loading regime

could be made. This system can also make direct conversion

of some of the recorded parameters into a more useful form.

For example, linear strain can be converted into bending

moments, enabling the behaviour of the frame to be quickly

checked.

The strain-gauges were positioned in a symmetrical pattern

on either side of the ridge. This enabled the exact bending

moment distributions of the frame to be recorded, even if

the behaviour became unsymmetrical during testing. When

detailed examination at certain sections was required, such

as at the haunch regions, they were required to be fully

strain-gauged. Even the bolts in the end plate connection at

the eaves and the HD bolts at the bases of the test frame

were strain-gauged in order to obtain information regarding

the development and magnitude of loads in the different

bolts. Rotation gauges were also used to obtain information

regarding the relative rotations in the eaves' connection

zones.

In addition, some regions of the frame were coated with

brittle lacquer prior to the test so that some visual
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observations could be made. This was most effective

particularly with regard to the onset and spread of

plasticity.

2.5 Test and Behaviour of Frame 3

2.5.1 The Full-Scale Test

After the setting up of the test frame the whole test rig

was then squared and levelled in order to avoid initial

deflections prior to the test. The loading system was then

constructed, after that the test rig was levelled a second

time in order to compensate for the deflections due to the

loading system.

The analysis of the test results was first carried out by

performing a linear regression on the three first

experimental points that allowed extrapolation in order to

obtain the origin of the curves. The loading on the roof was

gradually applied and the increments were determined taking

into account the true load recorded by the load-cells.

Considering the true value of the yield stress of the

members of the frame, the elastic limit of loading was

assessed to be 1.3 x the working load. Since the loading

system represented 0.6 x the working load the possible

amplitude of loading in the elastic range was 0.58 kN/m2.
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In the first loading session the frame was loaded up to

1.312 x the working load in six increments. At each

increment the nodal displacements of the gable frames were

adjusted in order to release any stressed skin action. This

procedure, with a waiting period of 15 minutes after every

adjustment was followed throughout the test. At the end of

this first loading session a transducer measurement at the

apex showed a residual vertical deflection of 10 mm. A

second loading session was conducted in five increments in

which the frame was loaded to 1.370 x working load. A

further 8 mm residual vertical deflection was recorded at

the apex. These values maybe compared with the maximum apex

deflection of 185 mm noted during the two tests.

After these two loading sessions, the frame was loaded in

increments until the stage at which the last increment

caused the initiation of elastic member instability in one

of the haunch regions. Immediately after the application of

the final increment, there appeared to be no effect.

However, after a few minutes the whole of the haunch region

failed suddenly by lateral-torsional instability. The test

was then terminated immediately in order not to cause any

further damage to the test assembly. The collapse of the

frame took place at the load factor of 1.668. The resulting

load-apex deflection charateristic of the test is shown in

figure 2.8 and the distorted shape of the haunch is

illustrated in figure 2.9. Details of all the results of the

test can be found in reference (2.4 ).
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2.5.2 The Load-Deflection Curves

The deflections of the frame during the test were recorded

by means of transducers located at various points on the

frame. Since the deflection at the apex was charateristic of

the behaviour of the frame and the magnitude of this

displacement was relatively large, it has been used to

compare the various theoretical analyses. The experimental

load deflection curve at this point is shown in figure 2.10

together with 4 theoretical curves obtained using a powerful

computer program written by Davies (2.11). In the

theoretical analyses, the actual measured geometrical and

material properties of the member were used in the input

data of the programme.

The four analyses were computed using the following

hypothesis:

Curve 1: Elastic-Plastic Analysis.

This curve is the result of analysis using the

first order elastic-plastic analysis with an

average yield stress ay equal to 300 N/mm2

Curve 2: Elastic-Plastic Analysis with P-A Effects.

This curve is the result of a second order elastic

plastic analysis where the geometrical non-

linearity is additionally considered.

Curve 3: Full Second Order Elastic-Plastic Analysis.

This curve is the result of a second order analysis

for both the geometry and the material. Strain-
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hardening is introduced into discrete plastic

hinges using the formulae derived by Davies

(2.12).

Curve 4: Analysis with Base Fixity.

This curve is the result of introducing semi-fixity

at the column bases. These base fixities were

determined using the bending/rotation relationship

at the base recorded during the test.

2.5.3 Bending Moment Distribution in the Frame

The experimental bending moment diagram was obtained by

means of computation of the strain-gauge readings. This was

done directly by the computer programme "TROCADERO"

mentioned earlier. Using this approach two different

computations were conducted. The first was the calculation

of the bending moment by considering only the readings given

by the strain-gauges situated at mid-flange. The second was

the calculation of the bending moment by fitting a straight

line to the three readings on each flange and then

interpolating for the strains at mid-flange. Details of this

methodology is given in reference (2.4).

The bending moment distributions for frame 3 are shown in

figures 2.11 and 2.12. The bending moment diagram in figure

2.11 shows a comparison between the theoretical solutions

obtained with the model producing the curve 4 in figure 2.10
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at a load factor close to the working load. It can be seen

that both the experimental and the theoretical values agree

reasonably well. The same comparison is made in the bending

moment diagram shown in figure 2.12 but with load factor

very close to the collapse load. It shows again that the

experimental and theoretical values agree reasonably well.

This confirms that the control of the load applied to the

frame using the load-cells gives good results and also

proves that the computer modelling is accurate.

The experimental bending moment can also be evaluated by

considering the plots of load/bending relationship at the

sections which have been strain-gauged. In the tests the

strain-gauges were positioned at selected places including

those where plastic hinges were likely to occur. This

enabled the analysis of the rate of increase of the bending

moment at a specific sections to be checked and the non-

linear behaviour at potential plastic hinges to be detected.

In figure 2.13, the bending moment computed from the strain-

gauge readings illustrates the behaviour of the frame. It

can be seen that the load/bending curves remain linear until

the penultimate increment when suddenly the curves of the

bending moment at sections C and R (i.e, the top section of

each column) show a non-linear rise. This change of slope at

sections C and R indicates the on-set of plasticity

occurring in those sections at a load factor of about

1=1.64. In figures 2.14 and 2.15 where the load/stress

curves of the relevant strain-gauges are shown, this same
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phenomenon can also be observed.

2.5.4 The Frame's Sway Mechanisms

It could be argued that because of the formation of the two

plastic hinges at the top of the column the frame failed by

a "sway mechanism". In this case however, the frame was

symmetrical with a symmetrical loading and the direction of

rotation of one of the plastic hinges in the "sway

mechanism" was in the opposite sense to the bending moment

producing the hinge. Consequently sway movement cannot take

place without one of the hinges unloading and thus becoming

locked. Therefore the "sway mechanism" is "false" in this

case.

This problem of false mechanisms is quite difficult to

tackle in a computer analysis. Davies (2.13) pointed out the

problem demonstrating that a false mechanism occurring in an

elastic-plastic analysis could result in a wrong estimation

of the collapse load. In this present case the two plastic

hinges were formed mathematically at the same time, thus the

determinant of the stiffness matrix becomes zero. Unless

corrected this causes the analysis to terminate at the wrong

collapse load. The correct mechanisms for the case of Frame

3 and some "false" mechanisms are shown in figure 2.16.
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2.6 The Bending Tests

2.6.1 The Effects of Strain-Hardening

The simple theory of plasticity assumes that the material is

perfectly plastic. This assumption ignores the elastic

deformation, in which, when the yield stress is attained the

deformation follows a regime of pure plastic flow, as shown

in figure 2.17. In reality, when the strain e s in figure

2.17 is reached, the extreme fibre stresses start to

increase and thus the theoretical value of the plastic

moment at the plastic hinge is exceeded. This phenomenon is

called strain-hardening and it is present in mild steel and

is even enhanced in high tensile steel.

The effect of strain-hardening in relation to instability

was first given by Horne (2.10), in which he introduced a

method termed the "rigid-plastic-rigid" theory. In this

approach, the plastic hinges could be augmented by the

concept of a plastic zone (see figure 2.18), where the

spread of plasticity is a direct consequence of strain-

hardening. Thus, when the strain-hardening takes place, the

collapse load in the particular case of a simply supported

beam is increased. Horne presented expressions relating the

strain-hardening effects in terms of the extra virtual work

done by the hinge.

Home's model of strain-hardening however, does not provide
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any information regarding the collapse load of the

structure. The method is qualitative and indicates only the

stability of the load deflection curve at collapse. Davies

(2.12, 2.13) extended the model proposed by Horne by

developing a theory suitable for inclusion in the stiffness

matrix method. This method is powerful and made strain-

hardening applicable to a wide range of steel structures. In

this method, the elastic and the plastic components of the

curvature and deflection are kept separate. Thus, the theory

can be applied in any elastic-plastic problem, where the

plastic hinges are assumed to be discrete with linear

strain-hardening properties. In Davies's approach the

plastic moment at the ith hinge (M0 ) could be substituted by

an equivalent moment Mm including the effect of strain-

hardening.

mili.±(m) _ _I En ie

kb) Hi
	  (2.1)

where;

= Modulus of Elasticity (N/mm2)

k = Strain-hardening parameter (values between 8 and 20)

M = Plastic moment of the section (kNm)

° Hi= Current rotation of hinge i (radian)

h = The equivalent cantilever of hinge, which is obtained

by plotting the tangent in an equivalent cantilever

diagram from the section of maximum bending moment.

In the above expressions, the values of strain-hardening

parameter, k, are invariably obtained from bending tests. It

then followed that at a given plastic hinge i the
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modification to the corresponding term in the global

stiffness matrix of the structure (2.13) is;

1r3n7+1,.3m+i = 1"3n7+1,.3m+i(-g) 	  (2.2)
1`11 i

Therefore in the well known matrix equation of the stiffness

matrix method (6)=[Y s ] 1 (P), the stiffness matrix [Ys ] will

be substituted by a modified stiffness matrix [Y s p which

incorporates modifications to the leading diagonal terms

corresponding to plastic hinges.

2.6.2 The Bending Tests on Beam Specimens

Bending tests were carried out on unyielded beam specimens

cut from the rafter and column members of the frame when the

full-scale test was completed. In this case, 5 bending tests

on simply supported beams loaded with a single point load up

to failure were conducted. Of the 5 beam specimens tested,

4 were cut from the rafter section and 1 from the column

section. The tests were carried out using a 500 kN Denison

universal testing machine. The specimens were tested in

accordance with the procedure given in reference (2.4).

Figure 2.19 shows the arrangement of the beam specimen on

the test rig. Beam specimens were placed on top of the test

rig on a specially fabricated simple support system. The

support also provided side restraint and the whole system
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could be adjusted to cater for the different lengths of

specimen. With the use of timber packings and roller-

bearings, the ends of the specimens were prevented from

longitudinal torsional displacement. Lateral-torsional

buckling was also prevented at the centre of the beam by a

similar arrangement in order to ensure that failure of the

beam was delayed until long after the full plastic moment

was reached. Nine dial gauges were positioned at the region

in the centre and both ends of the specimens (figure 2.19)

in order to record the deflections and movement of the

specimen during the test.

The specimens were first loaded up to about 60% of the

calculated failure load in increments of 10 kN and then

unloaded in the same manner. During this process, the

readings of the dial gauges were taken. This procedure was

carried out in order to allow 'bedding in' in the system.

The specimens were then loaded again in the same load

increments and dial gauge readings were taken. A plot of

load-deflection was also made during the test. At the point

when the load deflection graphs showed the first non-linear

behaviour, the creep observation procedures were carried

out. At this point a load increment of 5 kN was applied, and

the readings of the dial gauges were taken immediately and

at intervals of 2, 8, 12 and 20 minutes before the next

incremental load was applied. This procedures were followed

until failure occured.
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2.6.3 Results of the Bending Tests

Table 2.3 summarises the results of the bending tests and

figures 2.20 and 2.21 show the moment deflection curves of

one	 of the	 rafters	 and the column section tested.	 The

strain-hardening perameter k was obtained using Davies'

(2.12) theory by the following expression;

k-
3
W(
A

	 (2.3)
w/

where;

k is the strain-hardening parameter

w is load within the elastic range (kN)

A is the corresponding elastic deflection (mm)

w' is load within the plastic range (kN)

A' is the corresponding plastic deflection (ram)

The values of these variables are obtained from the

load/deflection curves drawn for a particular beam test.

2.7 Summary and Conclusion

A full-scale test on a 24 in span pitched roof portal frame

made of hot rolled steel sections was conducted. The frame

was loaded uniformly using a total of 96 hangers connected

to the timber frames spreading the load over an array of 576

discrete points. After the construction of the loading

system, the frame was gradually loaded up to collapse by

means of six hydraulic jacks.
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Checks on the design of the frame show some poor design

features which could be eliminated by using the design code

meticulously. The column was designed satisfactorily for

both elastic and plastic criteria. In the case of the

rafter, the member length adjacent to the plastic hinge near

to the ridge was more than twice the permitted value Lm . The

rafter was also found to be unstable in the elastic part of

the rafter. This is not the only aspect of the design rule

which was not observed in the design. In the haunch region

of the frame, a check using Appendix G and Clause 5.5.3.5

showed that it was unstable at the collapse load.

Consequently, the frame failed by lateral-torsional buckling

at one of the haunches at a load factor of 1.668.

The behaviour of the frame was closely monitored by means of

the instrumentation provided during the test. The bending

moment distribution on the frame was investigated in detail.

The comparison made between the experimentally determined

moments and those based on the best mathematical solution

was good at all levels. The theoretical elastic-plastic

plane frame analysis has proved to be accurate enough to

predict satisfactorily the load/deflection curve and the

collapse load of the structure.

An interesting aspect of this test is the manner in which

the haunch failed by lateral-torsional buckling as predicted

by Appendix G and Clause 5.5.3.5. of BS 5950. Although

superficially this prediction was proved correct, in actual
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fact the calculations show that the failure should have

occurred at a much lower load. Based on this finding, it can

be said that there is a certain amount of "over-design" in

the Appendix G. The rest of this thesis sets to study the

problem of lateral-torsional buckling at the haunch region

and to investigdte Appendix G in more detail.
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Figure 2.3 An Artist's Impression of the Test Rig
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(a) Rigid Link Mechanism (Undeformed)
	

(b) Symmetrical Spread At Eaves

(c) Sway Deflection at Eaves

Void

Concrete
Slab

Figure 2.4 Articulated Gable Frame

Column Base Plate

iHold ng Down Bolts

Load Cells	 Steel Plate

Figure 2.5 Column Base Detail
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(b) Loading Arrangement
per Hydraulic Jack

\\
Figure 2.6 Detail of Loading System

(a) Timber Spreader
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Figure 2.8 Experimental Result -Frame 3

Figure 2.9 Member Instability - Frame 3
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Figure 2.11 Experimental Bending Moment Diagram Near Working
Load Compared With the Theoretical Solution
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Bending Moments
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Figure 2.13 Computed Experimental Bending

Moment - Column 1 and 2
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Collapse of Frame 3
Section C (Top Column 1)

Measured Load Factor
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Figure 2.14 Load/Stress Curves for the Strain-Gauges at C
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Figure 2.15 Load/Stress Curves for the Strain Gauges at R



(b) Correct (Overcomplete) Collapse Mechanisms

(c) Correct Complete Mechanisms
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(a) False Mechanisms in Pinned-Base Portal Frames

Figure 2.16 Collapse Mechanisms for Frame 3
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Figure 2.18 Plastic Hinge and Plastic Zone Concept
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(a) Position of Dial GaugesTimber Packing
Timber Packing

i 

(c) Detail of Lateral Restraint
at the centre

(b) Detail of End Support

Figure 2.19 Arrangement of Bending Tests

Results of Bending Test

Load (kN)
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Figure 2.20 Load/Deflection Curve For
Beam Specimen Cut From Rafter of Frame 3
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Figure 2.21 Load/Deflection Curve of
Beam Specimen Cut From Column of Frame 3
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Table 2.1 MAIN PARAMETER OF FRAME 3

Parameter Frame 3

Span at column center line 24.00	 (m)

1Height at eaves intersection 4.00	 (m)

Roof slope	 (degree) 6.56'

H apex / H eaves	 (ratio) 1.349

Bay spacing 5.00	 (m)

Purlin spacing 1.795	 (m)

Stanchion type UB 406x178x54

Rafter type UB 348x125x33

Self-weight 0.217 kN/mm2

Super load 0.750 kN/mm2

Dead load factor 1.40

Live load factor 1.60

Mean, Dead load + Live load factor 1.55

Factored Dead + Live load 7.519 kN/m

Uniformly Distributed Load, Lamda = 1 0.967 kN/mm2
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TABLE 2.2(A) MEMBER AND MATERIAL PROPERTIES OF FRAME 3
(PROPERTIES OF COLUMNS)

PROPERTIES	 LEFT COLUMN	 RIGHT COLUMN

WIDTH	 177.2	 mm	 177.1	 MP 

THICKNESS	 10.6	 mm	 10.5	 TM 

TOP FLANGE	 YIELD STRESS	 298	 N/mm2 298	 N/mm2

ULTIMATE STRESS	 508	 N/mm2 508	 N/mm2

YOUNG'S MODULUS	 210000 N/mn2	210000 N/imm2

178.1	 mm	 177.7WIDTH

BOTTOM	 YIELD STRESS	 294	 N/mm2 294	 N/mm2

FLANGE	 ULTIMATE STRESS	 488	 N/mm2 488	 N/mm2

YOUNG'S MODULUS	 200000 N/mm2	200000 N/mm2

40	 40

p/e

WIDTH	 407.0	 mm	 407.2

THICKNESS	 7.8	 DIM	 7.7

YIELD STRESS	 333	 N/mm2	 333	 N/mm2

ULTIMATE STRESS	 540	 N/mm2 540	 N/mm2

YOUNG'S MODULUS	 207800 N/mm2	207800 N/mm2

E/E,

WEB
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TABLE 2.2(B) MEMBER AND MATERIAL PROPERTIES OF FRAME 3
(PROPERTIES OF RAFTERS)

PROPERTIES LEFT RAFTER RIGHT RAFTER

WIDTH 125.1	 mm 125.1	 mm

THICKNESS 8.4	 mm 8.2	 mm

TOP FLANGE YIELD STRESS 298	 N/mm2 298	 N/mm2

ULTIMATE STRESS 507	 N/mm2 507	 N/mm2

YOUNG'S MODULUS 195500 N/mm2 195500 N/mm2

E/E, 40 40

e	 live	 Y 6 6

BOTTOM

FLANGE

WIDTH 126.3	 mm 125.7

THICKNESS 8.5	 mm 8.5

YIELD STRESS 295	 N/mm2 295	 N/mm2

ULTIMATE STRESS 500	 N/mm2 500	 N/mm2

YOUNG'S MODULUS 195500 N/mm2 195500 N/mm2

E/E, 45 45

e	 _/er	 r 10 10

WEB

WIDTH 352.3	 mm 352.0	 mm

THICKNESS 6.5	 mm 6.5	 mm

YIELD STRESS 325	 N/mm2 325	 N/mm2

ULTIMATE STRESS 511	 N/mm2 511	 N/mm2

YOUNG'S MODULUS 206500 N/mm2 206500 N/mm2

E/E, 45 45

e	 _/er	 Y 10 10

TABLE 2.3 BENDING TESTS RESULTS

Test
BEAM
SPECIMEN

BEAM'S
IDENTITY

SPAN
(m)

MAX
LOAD
(kN)

STRAIN-
HARD'NG
FACTOR
k

Mp

(kNm)

1 RAFTER
348.5x125xUB33

L 3.0 290 14.24 186.8

2 RAFTER
348.5x125xUB33

STR-GAUGE
58,59,60

3.0 254 14.64 166.5

3 FAFTER
348.5x125xUB33

STR-GAUGE
64,65,66

2.5 320 15.75 175

4 RAFTER
348.5x125xUB33

STR-GAUGE
86,87,88

2.5 332 15.06 186.3

5 COLUMN
406x178xUB54

STR-GAUGE
6,7,8

3.4 485 7.49 375

a
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Plate 2.1 Assembly of the Test Frame Prior to
Sheeting

Plate 2.2 The General View of the Assembly During
Testing
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Plate 2.3 Internal View Showing the Loading
Arrangement

Plate 2.4 Detail of the Haunch Failed by Lateral-
Torsional Buckling



74

CHAPTER 3

3.0 Literature Review of the Lateral-Torsional Buckling of

Tapered Members.

3.1 Introduction.

In the design of steel portal frame structures, greater

economy can be achieved if member sections in the regions of

low bending moment are reduced. In order to achieve this,

the members may be tapered or haunched in order to suit the

bending moment distributions. The aim in that exercise is to

vary the cross-section so that a more uniform stress is

obtained along the members.

However, economy in the design can only be fully realised if

the strength of the member is governed by the full plastic

moment capacity of the section. In most cases, especially

for members with I-section, the tendency is for

lateral-torsional buckling to occur before the full plastic

moment is significant if the lateral support is not

adequate. This problem of premature failure can become

particularly acute with the use of deep sections. This

typically arises in the haunch region of the modern portal

frame. At the deep part of the haunch, often the web may

have a depth to thickness ratio several times the value for

a standard I-section. Hence, stability of the rafter and

column with respect to lateral-torsional buckling is
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frequently a ruling factor in the design of portal frame

structures. This has been shown by the results of the full-

scale test on Frame 3, when the frame failed by lateral-

torsional buckling at the haunch. Therefore it is important

to derive efficient solutions to the lateral-torsional

buckling problems involved so that the design capacity of

these members can easily be determined.

The design rules provided by the codes are often based on

theoretical and experimental findings. It is important

therefore to understand the behaviour of the structures

undergoing lateral-torsional buckling in order to address

the problems in design stage. In this chapter a review of

the theoretical studies of the problem of lateral-torsional

buckling of tapered members is presented. It is divided into

two parts namely;

(i) The historical background to the study of tapered

members, and

(ii) Review of various methods used to analyse lateral-

torsional buckling of tapered I-beams.

3.2 Historical Background to the Study of Tapered Member.

The elastic-flexural-torsional buckling of prismatic

I-sections under transverse loading has been examined and

documented since the early work of Timoshenko (3.1).

Research in this area includes simply supported beams,
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cantilevers, and continuous beams (3.2, 3.3). Subsequently,

comprehensive treatments of this subject are available in a

number of texts (3.4, 3.5, 3.6, 3.7).

However, the stability of tapered members has been less well

studied and a limited number of investigations to study the

corresponding behaviour of tapered I-sections have been

made. The literature search conducted as part of the present

investigation revealed that the work on tapered members can

be traced back to 1908, when Timoshenko (3.1) studied the

buckling of bars of varying cross-section. In 1917, Morley

(3.8) studied the critical loads of long tapering struts. In

the late 1920s, Dinnik (3.9) presented a method of design

for columns of varying cross sections. This was followed in

the 1930s by Nakagawa (3.10) who studied the buckling of

columns with tapering parts. Little progress in this area of

study seems to have prevailed during 1940s but it gathered

momentum again in the 1950s. The outbreak of the Second

World War could be the reason for the interruption of this

study in the 1940s. For more detailed consideration, the

study of tapered members can conveniently be divided into

four areas namely, beams, columns, beam-columns and frames.

These are considered in the following sections.

3.2.1 Previous Studies of Tapered Beams.

In 1952 Boley and Zimnoch (3.11) 	 reported their
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investigations of the application of a numerical method that

they had developed for the problem of the lateral buckling

of tapered members. They found the analysis by either

differential equations or energy considerations proposed by

Timoshenko (3.1) for uniform members to be difficult to

apply to tapered members. The approach that they adopted was

to make use of influence coefficients to derive a set of

simultaneous linear algebraic equations and, from these, the

buckling load was calculated. This method was used in a

number of examples for both uniform and tapered cantilever

beams with various loading conditions. Satisfactory results

were obtained in all examples when six degrees of freedom

were used and they concluded that the buckling load

calculated by this procedure are on the safe side.

In 1956, Lee (3.12) reported an analysis which he had made

of tapered I-beams in non-uniform torsion. In his analysis,

he considered a tapered I-beam to consist of three tapered

plates of rectangular cross section with the two flanges

subjected to both bending and torsion. In this case the web

was assumed to take only part of the Saint Venant Torsion.

In his analysis of the tapered plates he found that, for

small values of the angle of taper, the expression for

longitudinal stress coincided with that given by the

elementary beam formula. Similarly the moment-curvature

relationship along the centre line could be closely

approximated by the elementary beam formula. He also

verified through experiments that the variation of the angle



78

of twist agreed almost exactly with that determined by the

modified Saint Venant torsional relationship for members

under uniform torsion. His analysis of the tapered I-beam

was based on those two considerations.

In his analysis, Lee first established the condition for

rotational equilibrium which is the summation of the Saint

Venant torque, the sum of the x-components of the bending

moments in the flanges and the shear couple developed by the

bending in the flanges. Since he considered the tapered

I-beam as an aggregate of the three tapered plates he could

then use the relevant expressions to determine the

components of the rotational equilibrium and thus he

established the differential equation for torsion. He then

used a power series to solve this differential equation.

In 1959, Krefeld, Butler and Anderson (3.13) reported their

investigation of the formulation of criteria predicting the

load carrying capacity of steel cantilever beams having

tapered flanges and webs. Their work essentially narrowed

down to the experimental determination of the critical

stresses at which such beams buckle elastically. They

conducted tests on beams having both I and channel sections,

with various dimensions, span lengths and degrees of taper.

They also conducted load tests on straight untapered beams.

An empirical relationship for predicting the load capacity

of the tapered cantilever beam was obtained by comparing the

load producing elastic buckling of a tapered beam, with that

of a straight beam having the same section at the support.
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The ratio of capacities, called a "reduction factor," was

expressed as a function of the support dimensions and the

degree of taper. Their investigation established this

empirically-derived "reduction factor" for tapered

cantilever beams which permitted prediction of the critical

elastic-buckling stress at the support for beams with any

taper, when the critical stress for an untapered beam having

the same support section is known.

In the same year, Lee (3.14) studied the case of elastic

lateral buckling of a tapered rectangular beam subjected to

pure bending in its plane. He approached the critical moment

and the corresponding angular rotation expressions by

considering the familiar equilibrium method used in

stability analysis. He derived differential equations to

determine the longitudinal deformation of the beam based on

the moment-curvature and torque-rotation relationships for

tapered rectangular plates (3.12). These equations were

found to be similar to the analogous system of equations for

a beam of constant cross section (3.7) except for the

variation of the flexural rigidities and the torsional

rigidity to account for the tapering along the member.

Homogeneous linear equations were established and solved for

the boundary conditions before arriving at the results.

Venkayya (3.15), in 1961 investigated the stability of an

I-beam whose depth increased parabolically from the centre.

He considered cases of beams loaded by central concentrated
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loads or uniformly distributed loads. He allowed for the

effect of continuity with adjacent beams and restraining

moments in the same way as Austin, Yegian, and Tung (3.16).

In his analysis, he made some simplifying assumptions about

the variation of the torsional rigidity and tabulated his

solutions obtained by the Ritz variational technique.

In 1966, Butler (3.17) presented results of an experimental

investigation which studied the influence of lateral and

torsional bracing on the elastic buckling strength of tip

loaded, tapered, cantilever I-beams. The results of these

tests provided some empirical information on bracing

requirements.

Lee and Szabo (3.18), in 1967 derived a differential

equation of torsion for a tapered I-beam. They derived the

differential equation starting from first principles and

taking into account Saint Venant's torsion, warping, and

secondary torsional stiffnesses. They also showed that the

well-known differential equation of torsion developed by

Timoshenko (3.7) is a special case of this differential

equation. The boundary conditions of the mathematical

problem were established for some practical cases. They

obtained an analytical solution for a uniformly loaded,

linearly tapered, cantilever I-beam and found that the

results given by this solution were in close agreement with

those obtained by finite difference methods. They also

obtained a number of finite difference solutions for both
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prismatic and tapered I-beams subjected to a variety of end

constraints.

In 1972, Kittipornchai and Trahair (3.19) reported the

findings of their studies on the elastic buckling of tapered

I-beams considering the effects of transverse loads and

their points of application in relation to the shear

centres. They developed a general method of analysis which

can be applied to the elastic buckling of any tapered I-beam

with any type of loading. They then used this method to

study the effect of tapering flange widths, flange

thicknesses, and web depths on the theoretical elastic

critical loads of simply supported I-beams. Experimental

investigations conducted on beams with flange width or

thickness taper or web-depth taper gave results in

reasonable agreement with the theoretical predictions.

In the same year Lee, Morrell and Ketter (3.20) developed

buckling solutions for linearly web-tapered beams with

idealised simple supports. By using the Rayleigh-Ritz method

they formed the total potential energy equation accounting

for the sloping flange resistance and the critical moment.

The displacements were approximated by polynomial series.

In 1974, Lee and Morrell (3.21) improved the allowable

bending stress equation proposed in their earlier work

(3.20) for web tapered beams by incorporating the total

resistance to lateral buckling and the restraining effects
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of adjacent spans. They investigated the design

approximation for the allowable critical stress suggested by

the Column Research Council Guide to Compression Members

(3.5) for a simply supported beam and proposed a new

equation for allowable bending stress that included

relevant parameters for tapered members. They used the

finite element method to investigate the restraining effects

of adjacent beams. They noted that the finite element

solutions were more accurate and that the Raleigh-Ritz

method was potentially unsafe.

The work on tapered members was continued by Horne,

Shakir-Khalil and Akhtar (3.22). In 1979, they reported an

investigation on the elastic critical behaviour of tapered

and haunched I-beams restrained at intervals on a

longitudinal axis near the tension flange, causing buckling

to occur by twisting about the restrained axis. They

proposed approximate formulae for estimating the critical

loads of haunched members subjected to arbitrary bending

moment distribution and justified it by reference to

examples for which accurate solutions had previously been

obtained. They also extended this approximate treatment to

the derivation of the maximum permissible slenderness ratio

appropriate to haunched rafters, laterally supported on the

top flange by purlins, when the rafter is assumed to contain

a plastic hinge at the end of the tapered part.

They conducted tests on tapered and haunched beams (3.23),



83

supported at intervals along the tension flange in order to

check the ability for the beams to undergo plastic

deformation without significant reduction in the moment of

resistance. The beams were designed to be near the limiting

slenderness judged to be satisfactory for this purpose on a

theoretical basis. In the test program, three tapered and

eight haunched beams were tested to check the validity of

the method they had suggested (3.22) for determining the

maximum permissible unbraced length of an inelastic beam.

The tapered beams were subjected to unequal end moments and

were provided at the end with supports which satisfied the

boundary conditions generally assumed in theoretical

analysis. The haunched beams were tested as cantilevers

loaded at the shallower end which was laterally braced, and

the support at the deeper end represented the condition at

the column-rafter joint of a pitched portal frame. All of

the test beams were provided with discrete point lateral

restraint along the tension flange, corresponding to the

form of restraints against lateral movement provided in

practice by roof purlins. The results of the tests conducted

indicated that the theoretical approach adopted was

satisfactory.

Brown (3.24) in 1981 studied the lateral-torsional buckling

behaviour of tapered beams of both simply supported and

cantilever form. He determined the critical loads using the

finite difference method. In his study he also paid

particular attention to the location (with respect to the
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centroid) of the transverse load. In his analysis he derived

the displacement equations for a buckled I-section and

worked out the buckling strain equations. From energy

considerations he developed the equations for the total

change in the potential energy. A series of differential

equations were developed and approximated using finite

differences leading to a matrix eigenvalue equation of

quadratic form. Using the direct solution (3.24) of the

quadratic characteristic equation, the effects of load

placed either above or below the centroid were also

included. The problem was then solved by a conventional

eigenvalue program.

In 1988, Bradford (3.25) examined the proposals of the

British and Australian limit states design codes for the

instability limit state of tapered I-beams. He pointed out

that the provisions of the codes were based on a limited

analysis of only a few geometrical and loading conditions

and are therefore approximate. In his study, he used the

finite element method that he had developed earlier (3.26)

to derive parametric solutions for the elastic lateral

buckling of tapered beams. This method was shown to be

accurate and to converge rapidly. He then proposed a method

of design, based on inelastic buckling, which transformed

the accurate elastic solutions into member strengths. He

worked out an example and demonstrated that little

additional effort is required to use the accurate design

curves than is needed in the codes.
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3.2.2 Previous Studies of Tapered Columns

Gatewood (3.27) in 1954 presented curves for the buckling

coefficient for columns of variable cross section for all

taper ratios and for variations of the moment of inertia

between constant and sixth power. He also presented curves

for the lateral buckling coefficients of cantilever beams

with the same variations as for the column case and gave

interaction curves for buckling coefficient under combined

lateral and compression loads on the beam.

In 1962, Gere and Carter (3.28) presented formulae and

graphs for the determination of elastic critical buckling

loads of uniformly tapered columns having different values

of the end depth ratio and shape factors for columns with

pinned ends, fixed-free ends, fixed-pinned and fixed ends.

In their study, they first defined the shape factor and this

can be found readily when the dimensions of the end cross-

section of the column are known. For columns with wide

flanged shape i.e I-section, or closed box sections, it was

found that the shape factor tended to be between n=2.1 and

n=2.6 for all columns of realistic cross-sectional

proportions and taper.

They considered various methods for determining the

theoretical buckling loads of columns including solutions of

the differential equation of the deflection curve and the
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method of successive approximation of the deflection curve

(3.7). They carried out the successive-approximation

calculations on a computer.

The general solution of the differential equation of the

deflection curve of a slightly bent, ideal column was

obtained in terms of Bestl functions. After applying the

appropriate boundary conditions, these provided a means of

obtaining an equation for critical buckling load. Most of

these solutions were highly transcendental and must be

solved by trial-and-error or iterative methods. They solved

all of the cases under consideration using such methods (in

combination with successive-approximation calculations) thus

providing duplicate sets of numerical results that were used

in plotting the graphs of the buckling load. Critical

elastic buckling loads for uniformly tapered columns having

various end conditions may be obtained directly from the

graphs plotted.

In 1963, Butler and Anderson (3.29) presented the results of

their tests to determine the elastic buckling strength of

tapered steel I-beams under pure axial thrust and under

combined bending and thrust. The results of their pure

thrust tests showed excellent agreement with Nakagawa's

theoretical solution (3.10) for the elastic buckling of

tapered columns appropriate to the test conditions and

specimens employed.
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In 1984, Olowokere (3.30) reported his numerical work on the

development of the lateral-torsional buckling load equation

for linearly tapered I-section members with unequal flange

areas. He used a finite element method to solve the

equations. Solutions were obtained for different flange area

ratios and taper ratios. These solutions were used to

develop an interaction relationship for tapered unequal

flanged steel structural columns subjected to both axial and

bending stresses. In order to check the accuracy of the

results obtained, some special cases were considered and

compared with the AISC design formulae. From the comparison

it was shown that the results from the study underestimated

the load carrying capacity of the member, although there was

an adequate comparison for practical purposes.

Emorpoulos in 1986 (3.31) examined the case of tapered bars

axially compressed by concentrated loads applied at various

locations along their axes. On the basis of linear stability

analysis he derived the buckling equations of axially

compressed tapered bars. The axial compressive loads were

concentrated and applied at several points on the

centre-line of the bar. The law of stiffness variation which

he used covers mainly members of steel structures and is

also valid for I-sections.

From the buckling equations, the determination of the

critical loads of the bars was achieved. He derived three

sets of equations for three different boundary conditions.
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By solving the critical buckling equation, dimensionless

critical loads were evaluated as functions of the parameters

for all the three cases considered. Graphs of the

dimensionless critical load against the aforementioned

parameters were also plotted. From this study, he concluded

that for every combination of parameters considered and for

all of the support conditions examined, estimates of the

critical load of an axially loaded tapered bar can easily be

made.

Most recently, in 1989, Williams and Aston (3.32) presented

curves that enabled buckling loads to be found for tapered

columns with a uniform compressive axial force applied over

the length L or over all except BL of their length, where BL

is a length measured from the smaller end. These curves

covered six combinations of end conditions; with r=0.05 and

1, B=0 and 0.9, and h=2, 3, and 4. Where, r is the ratio of

the second moment of area at the smaller end to the second

moment of area at the larger end and h is the power which

governs how the second moment of area varies along the

length of the column.

Their evaluation of the accuracy of the method, which uses

the curves to obtain lower bound approximations to the

critical load factor c for a stepped distribution of axial

force, shows that, for the majority of practical problems,

the error will be below 10%. However, even if the error is

larger, it will always be on the safe side and so will only
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cause loss of economy, not loss of safety.

3.2.3 Previous Studies of Tapered Beam-Column.

The work of Butler and Anderson (3.29) in 1963 which

determined the elastic buckling strength of tapered steel I-

beams under combined bending and stress had led to the

establishment of a bending-thrust interaction curve for

tapered I-beam-columns. This curve was essentially

independent of the amount of taper. The results gave good

agreement with other theoretical results (3.33) obtained for

beams of uniform cross-section.

In 1968, Culver and Preg (3.34) investigated the behaviour

of tapered beam-columns with unequal end moments. They

derived differential equations for determining the critical

combinations of axial load and end moments for tapered WF

beam-columns. This derivation was based on an equilibrium

analysis of the buckled deflected shape of the beam column.

They evaluated the critical end moments for tapered beams

and the critical load for tapered columns by the method of

finite differences. These critical moments and loads can be

used in an interaction formula which can then be solved for

the critical load and moment combination for beam-columns.

The experimental work by Krefeld, Butler and Anderson (3.29,

3.13) was extended by Prawell, Morrell and Lee (3.35) to
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include the effect of axial inclination of cantilevered

beam-columns and the effect of intermediate lateral

restraints on simply supported beams. Their report, which

was published in 1974 summarized the results of an

experimental program to determine the bending and buckling

strength of several linearly tapered members whose

cross-sectional dimensions were similar to those found in

practice. In that research program they also attempted to

find information relating to the effect of the fabrication

process, namely the behaviour of members made of oxygen cut

plates and shear cut plates.

As an integral part of the project, an analytical procedure

to predict the inplane behaviour of tapered beam-columns was

also developed. The major effort of this part was the

development of families of moment curvature curves for

tapered members. With the availability of these curves, the

bending deformation could be obtained by a simple double

integration process. A computer program was also developed

to compute the beam-column deformation by a step by step

integration of the moment curvature relationship. The

results of the tests indicated that the procedure used in

the fabrication process of a tapered member has a decisive

effect upon the elastic response of the member. Members cut

using the oxygen flame appear to have a higher inelastic

lateral buckling strength. The results also pointed out that

local buckling in the compression flange near the end of the

member generally led directly to failure. The larger the
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angle of taper, the more pronounced was the local buckling

effect. The analytical procedure developed satisfactorily

predicted the inplane bending behaviour of the tapered

member up to the point at which buckling occurred.

In 1980, Salter, Anderson and May (3.36) reported a test

program conducted to test web-tapered steel columns which

were subjected to axial load and major axis bending moment.

They tested eight members each being half to one-third full

size web-tapered I-section column specimens fabricated from

plate by welding. In the tests the specimens were subjected

to compressive axial load together with a major axis moment

applied at the deep end of each member. No applied moment or

rotational restraint was provided about either principal

axis at the shallow end. These conditions represent those

arising in the column of a pinned based portal frame, for

which the ratio of the end moments is zero. In the tests,

full rotational freedom was allowed at the deep end of each

of the test columns. However, twisting and warping were

prevented at both ends as joint details in tapered frames

usually include endplates that approximate to such

restraints. The ends of the columns were also held against

sway about both principal axes. The parameters that varied

in the tests were angle of taper, the ratio of axial load to

the Euler load, member length and the position of

intermediate restraints.

The results of the tests conducted showed that the five



92

columns without intermediate restraint failed by lateral or

lateral-torsional inelastic buckling. These results show

reasonable agreement with the computed failure load given by

a biaxial non-linear elasto-plastic analysis program (3.37)

which was originally written for a uniform member. From the

analyses of the results they also pointed that the load

capacity given by BS 449 and the then Draft British Limit

State Standard were on the conservative side.

In 1984, Shiomi and Kurata (3.38) reported their numerical

analysis and experimental investigation into the ultimate

strength of tapered beam-columns in order to obtain

information concerning practical design formulae. An

interaction formula for the ultimate strength of tapered

I-shaped and box-shaped beam-columns was presented for use

in practical design. Tapered members subjected to axial

compression force or bending moment were analysed by a

non-linear inelastic computer program using the transfer

matrix method. An equivalent length factor was then

developed in order to permit the extension of an empirical

interaction equation for prismatic beam-columns to tapered

beam-columns using a statistical technique.

Their numerical analysis was performed based on the

following idealisations:

1) The tapered member was divided into 30 segments,

and each segment was assumed to have a uniform

cross-section and to be subjected to uniform
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moment.

2) The perfectly elastic stress-strain curve was used

as a stress-strain relationship and strain

hardening was neglected.

3) The flexural rigidity and warping rigidity of the

segments were estimated using the tangent modulus

theory and torsional rigidity was estimated by

plastic flow theory.

4) The pattern of residual stress distribution was

idealised from actual measurements.

They separately studied the cases of centrally loaded

tapered columns and tapered beams with end moments applied

at the larger end.

For the case of centrally-loaded, tapered columns, they

derived the conditional equation for inelastic buckling and

found it to have a similar form to that for elastic

buckling. The buckling strength of the member was obtained

from this equation. They conducted analyses on a large

number of specimens that were chosen by considering the

combination of the slenderness ratio L/r about the x axis

based on the smaller end section and the ratio of the member

depth at both ends. For the case of tapered beams with end

moments applied at the larger end, they used the

differential equation proposed by Galambos (3.6) in order to

express the lateral torsional buckling of a segment

subjected to uniform bending moment. From the solution the

necessary function can be arranged in a matrix form. The
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conditional equation for buckling can then be expressed. The

critical moment for inelastic buckling was obtained in the

same way as for the column. Again, a large number of

specimens were chosen for this computer analysis in a

similar way as for the column.

From the numerical results, the equivalent length factor was

determined by a statistical method in order to substitute a

prismatic member for a tapered one. They worked out the

equivalent length for both tapered beams and columns. They

also extended the work in order to study the interaction

formula for the ultimate strength of the prismatic

beam-column, subjected to thrust and moments acting at both

ends. They found that the formula remains applicable since

the tapered beam-column can be transformed to an equivalent

beam-column.

In their experimental studies they tested 24 full size

I-section beam-column specimens. Each of the specimens was

fabricated by double fillet welding of the flange plates

along the edges of web plate.

Their load deflection curves indicated that under smaller

loads the location of the maximum deflection coincided with

that obtained using elastic calculation. Under larger loads,

however, the maximum deflection occurred at a point deviated

from the centre of the member towards the smaller end.
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A comparison of the test results with the results from the

equivalent beam-column equation showed that the scattering

of test points was not very great and this led to the

conclusion that the equation provided a safe estimate of the

lower bound to the test results.

In 1988, Bradford and Cuk (3.26) presented a finite element

method of analysis that is capable of making accurate

predictions of the elastic buckling load of tapered,

monosymmetric I-section beam-columns. The finite element

method that they presented was superior to the use of

uniform elements, in that it correctly caters for the

effects of non-uniformity. This was achieved by abandoning

the usual shear centre and centroidal axis system in the

development of the line element. The element used a

convenient and arbitrary Cartesian axis system passing

through the mid-height of the web as the reference axis for

lateral displacement and twists. The stiffness and

stability matrices were easily calculated by making the

assumption of an arbitrary axis of twist. The accuracy of

the method was shown by comparison with independent

solutions. It converged rapidly when compared with a finite

element representation that used uniform elements.

Furthermore very few elements were required to obtain an

accurate solution. They concluded that the tapered element

may therefore be employed to study parametrically the

stability of tapered beams, columns and beam-columns.
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3.2.4 Previous Studies of Portal Frames with Tapered and

Haunched Members

Chapter 1 of this thesis reviewed some of the experimental

research on portal frame structures carried out in the past

fifty years. However, the specific subject of portal frames

with tapered and haunched members was not thoroughly dealt

with. This section covers some of the work which was

mentioned in that review.

Perhaps the first full scale test on a tapered portal frame

was that conducted by Leeming and Redshaw (3.39) in 1939.

However, their test was not directly applicable to low rise

buildings but to portal frame bridges. The test was carried

out on portal frame girders for the Kiddington Canal Bridge

in Oxfordshire, with the objective of finding out how far

the thrust, stresses and deflections observed agreed with

those calculated in the course of the design. They tested

two portal frame girders simultaneously. These were

positioned horizontally on greased rails, foot to foot, and

bolted together with a tie plate between the base plates.

The results of their tests showed some agreement with the

calculated values. However, they observed higher compressive

stresses in the region around the knee than calculated, even

when curved bar theory was used. They concluded that the

method of design which was based on Mohr's theorem could be

used with some confidence but called for more work to study

the problem of stress concentration around the knee.
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It was described that the work on portal frames in the early

days concentrated on the elastic behaviour of the structure

and therefore no conclusion can be made regarding the

collapse behaviour. The work on portal frame structures

shifted in another direction in the early 1940s and early

1950s when research at Cambridge led by Baker (3.40, 3.41,

3.42) concentrated on the plastic range of behaviour and the

collapse mechanisms of the frames. Miniature frames with

fixed bases were often used in these studies. This work led

to the successful development of the plastic design method.

In 1977, Just (3.43) formulated stiffness matrices which he

used in the analysis of tapered beams and which he later

used to solve pitched portal frames composed of tapering

thin I-sections subjected to point loads. Instead of

adopting the then common approach to the study of tapering

beams, which considered the member to be approximately

equivalent to a number of prismatic portions, he used the

exact stiffness matrices in his analyses. This was made

possible because the matrices, which do not depend on

subdivision for their accuracy, could be obtained since the

variation of the transverse and axial displacements can be

expressed exactly. These displacement functions are

dependent on the second moment of area and the cross-

sectional area of the section. He also gave the expressions

for the geometrical properties for both the thin and thick

classes of box or I-sections. In order to obtain these

matrices, the displacement function must be expressed in
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terms of the geometry of the section and this consideration

led to the general formulation of the exact stiffness

matrices for linear elastic analysis. He verified the

accuracy of the elements produced by comparing the analyses

of two propped cantilevers of tapering I-section with a

number of convergence solutions. To demonstrate the power

and versatility of the approach the matrices were then used

to solve a pitched portal frame structure composed of

tapering thin I-sections subjected to point loads. The frame

that was analysed had a span of 24 in with height to eaves of

24m and height of the ridge from eaves of 5m. The breadth of

the sections was 300 mm while the depth varied from a

minimum of 400 mm to a maximum of 1200 mm. The web and

flange thicknesses were 15 mm, thus the section was

classified as thin.

The frame was analysed under two loading configurations

namely

(1) A vertical point load of 100 kN at the crown, and

(2)A lateral point load of the same magnitude at an eaves

point.

A five-joint analysis was carried out using the matrix

derived for the thick section, that derived for thin

sections and the approximate matrix obtained from the

superposition of two solid sections. In addition, each

member of the frame was considered to be of constant depth,

and a solution obtained for the resulting prismatic frame.



99

The results obtained for both the thin and thick class of

section were almost identical and the values obtained from

the approximate matrix by superposition were also fairly

accurate, while larger difference occurred when the members

were considered to be prismatic.

In 1979, Al-Sarraff (3.44) reported his investigation of the

elastic instability of frames with uniformly tapered

members. He developed modified stability functions for

uniformly tapered beam-columns having wide flanges, box

sections and other cross-sectional shapes and tabulated the

results for different values of axial parameters, end depth

ratios and shape factors. From these tables rapid

predictions of the elastic critical loads of structures with

non-prismatic members can be calculated. He demonstrated

this by solving two numerical examples of frames with

tapered members.

In 1983, Fraser (3.45) reported a parametric study of the

buckling of tapered members and haunched member frames.

These were both rectangular and pitched roofed. His approach

was to develop formulae that would allow the conversion of

the non-uniform frame into an equivalent uniform frame with

the same buckling load. In this study, he only considered

completely symmetrical frames with pinned or fixed bases.

The equivalent frame was visualised as retaining the same

geometry as the real non-uniform frame by substituting a
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uniform section for the non-uniform section. He presented

conversion formulae for four types of frames. They were as

follows:

(1) Tapered member frame - fixed base

(2) Tapered member frame - pinned base

(3) Haunched member frame - fixed base

(4) Haunched member frame - pinned base

He demonstrated the application by considering two numerical

examples one of the examples gave a result comparable with

that obtained using the AISC method (3.33).

3.3 Review of Available Methods to Analyse the Lateral

Buckling of Tapered I-Beams

3.3.1 General

The buckling solutions previously obtained for tapered I-

beams and beam-columns have been numerical. The methods that

have been used are the Finite Integral Method, the Finite

Element Method, the Finite Difference Method and a Power

Series Method. In this section, the available flexural

torsional buckling methods of analyses mentioned are

summarised and one is chosen for further study.
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3.3.2 Solutions by Finite Integral Method

The finite integral method is an approximate technique for

solving complex differential equations. The method is based

on considering the differential equation as an integral

equation in the highest derivative of the dependent variable

f(x). The length 1 of the beam is divided into a number of

equal parts n of length b, where b=1/n. The integral

equation is then replaced by a finite number of homogeneous

equations one for each point. The dependent variable f(x)

and its lower derivatives are replaced by a combination of

the values of highest derivatives of f(x).

The application of this method in the study of buckling of

a tapered I-beam can be illustrated by the work of

Kitipornchai and Trahair(3.19) . They considered a case of a

beam as shown in figure 3.1, where a central concentrated

load P is applied at a distance above the shear centre.

The ends of the beam are free to rotate about the major and

minor axes, but are restrained against rotation about the

longitudinal axis, so that the angle of twist remains zero

at the ends. The cross sections of the beam at the end are

free to warp.

The governing differential equations for buckling of the

beam were obtained by considering the deflected shape shown

in figure 3.2. A computer program was then prepared to solve

the differential equations for the critical load parameter
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y by using finite integral solutions.

In the finite integral method, it is assumed that the

variation of the dependent function If, is approximately

parabolic with 'x' so that a parabola f=ax2 + bx + c can be

fitted to three adjacent values f i , f11 f- f. Assuming

the corresponding values x i , x 1+1 , x 1+2 , of x are equally

spaced so that x 1 .,2 - x i+1 = x,. 1 - x i = L the interval size,

then the expressions for a, b and c can be obtained in terms

of f and x. The integral f was then derived from the

if theapproximating parabola by Simpson's rule. Thus

integral 1 of the function f is defined by;

11=1 h
i

fdx 	  (3.1)

this can be approximated by matrix equation;

where [1] is the vector [1 0 , 1 1 , 12,....1n], [f] is the vector

[fO f f 1 1 f 2/ 	fn], and the integral operator N is a square

matrix of size n+1.

The function 1, like f, may be approximated by a series of

parabolas so that the second integral m of function f

defined by

jh	 jh f x
m	

1 d• •
x =i	 f.dx dx 	  (3.3)

o 	 o	 o

can be approximated by

h3
[m] .= 

144 
[N] [1n1] [f] 	  (3.4)



103

Hence by employing this technique an approximate solution

can be obtained.

3.3.3 Solutions by the Finite Element Method

Presently, the most widely used numerical methods for

statically analysing structures with non-uniform beams is

the finite element method. Nethercot (3.46), Karabalis and

Beskos (3.47) and Bradford (3.25, 3.26) . have used this

method to solve buckling problems of tapered beams. Since

the first application of finite element analysis, many

different elements have been developed to predict

realistically the physical behaviour of material, elements,

components and structures. In this section, only the "beam"

element (figure 3.3) is considered and therefore all

discussions are directed to this type of element. Nemir

(3.48) studied the stability of thin-walled steel structures

by this finite element method and developed a formulation

which can also be used for lateral-torsional buckling of

tapered beams. This finite element formulation which was an

advancement of the work of Barsoum and Ghallagher (3.49) was

originally based on Vlasov's concept (3.50) on the general

behaviour of thin-walled members. It is valid for any cross-

sectional shape and since it also includes new terms

representing the bimoment influence, therefore it is valid

for sections with no axes of symmetry. This formulation
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which is used in the study of tapered I-beams in this thesis

is discussed in chapter 4.

In the finite element method, a tapered member is broken

into a number of uniform beam elements (stepped

representation) with known stiffnesses, which are

superimposed to produce the stiffness of the member. A set

of displacements is used to describe approximately the

deformed state of the structure in terms of the

displacements at the nodal points. The solution is then

formulated for each typified unit and then combined to

obtain the solution for the whole beam.

In the conventional analysis of an elastic linear structure

by the finite element method, the energy concept is often

used to derive the first order stiffness matrix of the

element. The energy concept can also be employed in elastic

buckling problems to establish the second order load

displacement relationship. In elastic buckling problems, the

conventional linear stiffness matrix EKE] is supplemented by

another matrix py called geometric (stability) matrix. This

matrix represents the elastic effect of the applied loads on

the buckling deformations.

For a condition of stable equilibrium, where the load factor

is of a value less than its critical value, the element

stiffness equation given by the first variation of the

potential energy expression becomes;
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(P)= [KE] . {A}. + . [KG] .{M 	  (3.5)

in which (A) is the nodal displacement vector. Equation 3.5

represents the second order behaviour of the element.

In elastic stability problems it is usually assumed that

pre-buckling deformations have taken place and that the

analysis is being conducted at a near buckling state.

Equation 3.5 can be then modified to,

{dPt.=.[[KE] . + . [KG] . (dA) 	  (3.6)

in which, (da) is the matrix of vanishing small increments

of the displacements and (dP) is the matrix of corresponding

forces.

At the critical load, more than one equilibrium state is

possible and the deformation of the structure corresponding

to a given load factor can reach infinite values for

arbitrarily small load increments. Thus at the buckling

stage equation 3.6 becomes,

[ EKE] . + .	 [ KG] .1. (c1A) =o 	  (3 . 7 )

where (dA) represents the buckling deformations and A is an

instability parameter (i.e., eigenvalue).

The analysis begins with a chosen value of the applied load

from which the individual element end forces are calculated

through a pre-buckling analysis. These end forces can then

be used to formulate the geometric matrix [K G ]. The critical
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load is equal to the instability parameter A c times the

chosen value of the load factor. The instability problem

then becomes an eigenvalue problem of finding the

instability parameter lc from the non-trivial solution of

equation 3.7. Such a solution exists when,

I RSI +. l c . I KCI = 0	 (3.8)1

in which,	
IKE I 

and IK
G	

are the two determinants

corresponding to the stiffness matrices tY0 and

respectively.

3.3.4 Solutions by the Finite Difference Method

The finite difference method is yet another approximate

method for solving complex differential equations. This

method can be applied to stability problems to give

approximate values for buckling loads. The method is based

on replacing the differential equation, which is applicable

over a certain range of an independent variable x, by a

finite number of algebric equations, one for each of a

number of points within the range of x. At each point, the

differential operators of the dependent function f(x) are

represented by finite difference approximations which can be

given as combinations of the value of f(x) of neighbouring

points, assuming some polynomial shape for the f(x) values.

The boundary conditions of the differential equations are

represented in the same way. The solution of the resulting
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homogenous equations gives the desired unknowns of the

problem.

The application of the method to buckling problems for

tapered beams can be illustrated by the work of Brown

(3.24). He studied the cases of tapered beams and

cantilevers and obtained the solutions of the differential

equations using the finite difference method. The eigenvalue

equation of structural stability for a doubly symmetric I-

section was developed by displacement functions and energy

considerations.

The differential equation obtained from the exercise was

approximated by using central finite differences (3.51),

leading to a matrix eigenvalue equation of the form;

[C]	 -p. [p]	 -p2. [A] .{0	 0 	 (3.9)

This equation is of quadratic form and therefore does not

lend itself to the normal eigenvalue extraction techniques.

It may, however be solved by the introduction (3.37) of;

Pre-multiplying equation 3.9 by IAI -1 and combining equation

3.9 and 3.10 results in the equation;

ii131 _	 /01
I. [A]	 [C] - [A] -1 [13 .11131 • • P • 113-1

	 (3.11)

from which eigenvalues can be extracted using any

conventional eigenvalue program.
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3.3.5 Solutions by Power Series Method

Lee, Morrell and Ketter (3.20) examined the use of the power

series method to solve some problems of tapered I-sections.

They considered a doubly symmetric tapered I-section for the

general analysis. From consideration of the deformation

parameter, they established the equation for virtual

displacement of the beam, satisfying the prescribed

geometrical boundary conditions for the beam in question.

Assuming that the bending rigidity of the member about the

Y axis was constant, the bending component of the first

variation in the strain energy was established. The

expression for non-uniform torsion was also established. It

contains two sets of terms representing the flange bending

strain energies due to warping and the pure torsional strain

energy.

Given the specified linear variation in depth of the member,

the first variation component of the non-uniform torsional

strain energy was established. Considering the case of

loading shown in figure 3.4 and relating the moment by a

non-dimensional parameter, the equation of the external work

done during the virtual displacement was established.

To obtain a solution to the inplane deformational and

lateral stability behaviour of tapered members, the above

mentioned equation could be used to established the

differential equation and the appropriate boundary
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conditions. However, due to the complicated non-geometrical

boundary conditions that are required to handle the torsion

problem, and also because of the many difficulties that

frequently are encountered when attempting to obtain direct

solutions for these types of differential equations,

Rayleigh-Ritz procedures are normally used to solve these

equations.

3.3.6 The Selection of Method of Analysis

Four methods of analysis for buckling of tapered members

have been summarised in the previous sections. Except for

the finite element method, the other three methods provide

solutions by means of approximate techniques for solving

complex differential equations of the actual physical

system.

In the finite element method a modified structural system

consisting of discrete (finite) elements is substituted for

the actual continuum and thus, the approximation is of a

physical nature. Furthermore, there needs to be no

approximation in the mathematical analysis of this

substitute system. By intelligent modelling, various

parameters of tapered members can be substituted for the

actual physical ones and a wide range of studies can be

carried out. Different properties of materials can also be

incorporated in the modelling thus, rendering it into a very
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versatile and powerful tool for the analysis.

3.4 Summary and Conclusions.

This chapter has reviewed previous work relating to the

stability of tapered members. Whereas some experimental work

has been reported, most the work is theoretical/numerical in

nature.

The available methods of analysis for lateral-torsional

buckling of tapered members have also been reviewed with a

particular interest in the finite element method. This

method appears to be suitable for the study undertaken in

this thesis. Previously this method was confined to

mainframe computer systems using some commercial Finite

Element packages. However, the method can now be easily

available on a PC-based system and proved to be cost

effective for both the hardware and software.

In the next chapter, the finite element formulation and the

computer program that is used in this study is described.
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(b) The Mathematical Idealization

Figure 3.3 The 7 Degree-of-freedom 2-faded Beam Element

Figure 3.4 Loading Presumed by Lee, Morell and Ketter (3.20)
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CHAPTER 4

4.0 The Finite Element Formulation and the SPACE Computer

Programme

4.1 General

The basic formulation of the finite element method in

structural analysis has been widely publicised, with many

applications (4.1, 4.2, 4.3). The use of the finite element

method to solve lateral buckling problems has been actively

pursued for the last twenty years. Barsoum and Gallagher

(4.4) and Powell and Klinger (4.5) developed one-dimensional

line elements assuming the coincidence of the axis of twist

with the shear centre which is parallel to the centroidal

axis. They derived the stiffness matrices in the finite

element formulation for torsional and lateral-torsional

instability analysis based on an approximate representation

of the flexural and torsional displacement of the member.

The stiffness matrix [Ks ] and the geometric matrix [KG ] were

derived using the energy concept. The validity and adequacy

of this approximate formulation for structural behaviour was

measured by comparative analyses of problems for which exact

or highly accurate solutions had been derived by alternative

means. The formulation derived was able to provide solutions

for a variety of problems and the results showed excellent

agreement with the exact solution for both prismatic beams

and columns. The same procedure was then followed by many
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researchers to analyse the elastic torsional flexural

buckling of continuous beams (4.5, 4.6), unbraced and braced

portal frames (4.7) and one bay symmetrical frames loaded at

the tops of the columns (4.6). A similar uniform element was

also used by Nethercot (4.8) to study the lateral-torsional

buckling of tapered members.

The finite element presented by Barsoum and Gallagher

however lacked generality and consistency. These

formulations are applicable only to members with doubly

symmetrical cross-sections. Furthermore the effect of

external bimoments, which may be very important in, for

instance, the light gauge steel members, has not been

considered. In view of this situation Nemir (4.9), presented

a new finite element formulation that was based on Vlasov's

concept (4.10) of the general behaviour of thin-walled

members. This formulation which was based on uniform line

element is also valid for any cross-sectional shape. Since

it includes new terms representing the bimoment influence

for sections with no axes of symmetry, this formulation is

considered to be superior to the one developed by Barsoum

and Gallagher.

In this thesis, the finite element formulation that was

presented by Nemir (4.9) has been used in the numerical

analysis conducted. This chapter describes this finite

element and the corresponding computer program called the

SPACE finite element program.
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4.2 The Finite Element Formulation

4.2.1 Basic Assumptions

The development of this finite element formulation for the

elastic three dimensional buckling behaviour of thin-walled

members was based on the theory of torsional-flexural

behaviour as described by Vlasov (4.10). Vlasov showed that

self-balancing longitudinal forces applied to cross sections

of a thin-walled beam-column member can distort the cross-

section. The warping of the cross section by either

longitudinal or transverse load applied eccentric to the

shear centre can cause normal stresses in the cross-section.

The generalised force corresponding to this effect is called

a "bimoment".

In the analysis presented, it was assumed that, at the

moment of buckling, the structure passes from a torsional-

flexural equilibrium state to another torsional-flexural

equilibrium but critical state. The bimoment stresses are

included as the fourth term to be added to the conventional

three terms of the equation of normal stresses.

In the derivation of the elastic matrix and the geometric

matrix describing the behaviour of the element, the energy

concept was used. The derivation of these matrices was based

on the small deformation theory. Pre-buckling deformations

were considered as very small, in comparison to the buckling
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deformations and so their effects were neglected.

4.2.2 Bimoment Mechanism of Buckling of I-section Beams

A thin-walled member exhibits warping displacements when it

is twisted by a uniform torque. If the flanges at the end

cross-sections have no longitudinal restraints, warping is

the same for all cross-sections. In this case the only

stresses produced are the shearing stresses at each cross-

section of the member. Figure 4.1 shows warping of the

cross-section of a twisted I-beam. The behaviour is one in

which plane sections do not remain plane, only the web

remains plane while the flanges rotate bodily in two

opposite directions.

If some longitudinal restraint is applied to the flanges at

any cross-section, or if the torque varies along the length

of the member, the flanges will be forced to take up a

curvature in the longitudinal direction. Figure 4.2 shows a

cantilever beam twisted by a concentrated torque 'T' applied

at the free end. The curvature of the flanges varies along

the member and the flanges appear to be subjected to two

equal, but opposite bending moments, acting in their own

plane. This combination of the two bending moments induced

in the flanges as the result of the non-uniform torque is a

bimoment. The longitudinal stresses caused by the bimoment

can be very large and must be considered in the analysis.
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The bimoment caused by either an eccentric longitudinal

force or by a non-uniform torsion (fig 4.2) is given by the

expression,

B=hrF .h 	  (4.1)

where B is the bimoment, MF is the flange in-plane bending

moment, and h is the distance between centroids of the two

flanges. In terms of the normal stress a x in the cross-

section, the bimoment 'B' can also be given by,

B=1.

A 

ax .T.SdA 	  (4.2)

in which 0 is the sectorial co-ordinate.

If the bimoment Bx acting at a given cross-section (x =

constant) is known, the longitudinal normal stresses aB

caused by this bimoment can be evaluated from the

expression,

B.
szy

B
— 	  	  (4.3)

in which, I w is the warping constant of the cross section.

4.2.3 The Strain Energy

Consider a prismatic element with an arbitrary chosen cross-

section shown in figure 4.3. From figures 4.4 and 4.5, the

longitudinal displacement um at an arbitrary point 'm' can

be given by,
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0 / -
um =	 z-v y-	 	  (4 .4)

where, u is the average longitudinal displacement of the

cross-section (the longitudinal displacement caused by

central thrust), and (75 is the sectorial co-ordinate with

respect to the sectorial origin. The longitudinal normal

strain can be expressed by the equation,

e = u /- "z -vlly- 0,,(7.) 	  (4.5 )

The total strain energy U s for the element is the sum of

strain energy due to normal stresses U 1 and strain energy

due to shear stresses U2 and is given by;

U5 = 1 f 1 (EAu f2 +EIywil2 +EIzvm +EIwex112 +GJI3x/ 2 ) dx 	  (4 . 6 )

4.2.4 The Potential of Applied Load

The general expression of the normal stresses a x acting on

the cross-section x=constant in the precritical state is,

	

PM 	 Mz	 Ba	 w

	

x A Iy	 Iz	 Iw

	  (4.7)

in which, Px is the axial thrust, My and Mz are the two

bending moments about the principal axes oy and oz

respectively, and B is the bimoment.

The shear stress r is given by;
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M	 B"Hz/ .	 	  ( 4 . 8)
tiy Y

where t is the thickness of the cross-section at the point

where r is considered. M', M' and B' are the first
Y

derivatives of the bending moments and ;and the bimoment

B. Sy and S x are the static moments of the considered part of

the cross-section about oy and oz axes and S w is the

sectorial static moment of the same part. The static moments

of area are given by,

Sy= f
o 

t.y.ds

Sz = fo s t z ds 	  (4.9)

Sw= f s t.w. ds

The transition of the element from the stable equilibrium

state to the critical state is associated with the

appearance of the critical deformations. At the critical

state, the effect of the initial normal stresses ax acting

on the deformed cross section can be presented by three

fictitious loads. They are, the fictitious distributed loads

in y and z directions and fictitious distributed torque

about the shear centre's longitudinal axis. The potential of

the applied load VT is the sum of the potentials of these

three fictitious loads. This potential can be obtained from

the expressions;
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VT=V1 +V2 +173=1(f1Px(-W.WW-V.V11-Y0(W.0-03x.WW)
 2 o

+ zo (ve+Ox . VII ) -i,t0x0x")

-My (011 +vex11+B yexexll)

-My (2 ex/ v+By0xØ,C) -Myexv

+Mz (0,0,11 +wex11-Bzexex")

Mix (2 0 w-B 00) +m/z0,,,

BB.Ox0xll+B /13.0x0x1 ] dx

	 (4.10)

in which, io is the polar radius of gyration about shear

centre.

4.2.5 Potential Energy in Terms of the External Joint Load

Consider figure 4.6 which shows each end of the element

being subjected to the action of seven forces. These forces

are the bending moments My and Mz , the shearing forces Qy and

Qz , twisting moment Mx , Bimoment B, and Axial force P. The

subscript shows the position of the loads at ends 1 or 2.

The average bending moment My in the element as shown in

figure 4.7 can be written as;

M = —1 
(M -M ) +—Qx+ —1

Q (1-x) +P e
3' 2	 YI y2	 2 zi	 2 z2	 x z 	  (4.11)

The average bending moment Mz as shown in figure 4.8 is;
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,

	

Piz= —	 Q„,x+—Q, 1x+- . Q 2 ( 1-x) +P e 	  (4.12)

	

2	 2 ,- 2	 x y

By considering e xv" =v(i x " and Ow' =w0." and substituting for

the end forces from equation 4.11 and 4.12 and their

derivatives, the applied load becomes;

1 1
VT= —2 Pxf0 (-v. v-11-w.	 vilex+2C . wile -Co	 . e ll ) C1X

1 j1

y	 x	 x x

-	 (My1-My2+Qz1x+0,2(1-x)) (2vilex+110x8x")dx

+1 f l (,1 -Mz2+QylX+ Qy2 (1-X) ) ( 2 wifex - p zoxe) dx4 J 0

—41 rol (Q 1 -Q 2 ) (20x/ v+13yeA)

(0y1 -0y2 ) ( 2 0,Cw- (3 ze ix8x ) dx

+	 1 (Bexe+Biexe,C) clx

(4.13)

where Cy= ( ey-y0 ) , Cz= (ez- z 0 ) and C0=i02+eyi3y+ezfiz.

4.2.6 Derivation of the Element Matrices

The derivation of the element matrices requires a suitable

functional representation of the displaced behaviour of the

element. The general form of each displacement function is

given by;

8 =di . A i 	  (4.14)

in which, 5 is the displacement component, d i is the shape
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function which often takes the form of polynomials of

coordinates x and A i is a set of nodal displacements.

By considering the shape function and the displacement

components of an axial and flexural behaviour of the

element, the expression of the total strain energy in

equation 4.6 can be written as;

us= f ,{e) T [D] {e}dv 	  (4.15)

in which, (e) is the strain vector, {e} T is the transpose of

the strain vector and [D] is the matrix representing the

generalised Hookean constant.

Substituting for the strain e from equation 4.14 the strain

energy Us becomes;

uf,={A i) T [lc] {A 1} 	( 4,16)

where, [Kt ] is the element stiffness matrix which can be

evaluated from the integration,

[K2?]	 f {di } T [I)] {d i )clv 	  (4.17)

Following the same procedure, the potential of the applied

load V can be written by the expression;

V= -{A i} T [KG] i ) 	 (4 18)

in which [KG] is the element geometric matrix which can be
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written as

[KG] =f{di } T [P]fclildv 	  (4.19)

where, [P] is the matrix of the applied external loads. The

total potential energy Up of the element is then given by
the expression,

up=(Ayt [lc] + [KG] i{e) 	 (4.20)

Applying Castigliano's first theorem, the element stiffness

equation becomes,

{P}=[ [lc] + [KG]	 	  (4.21)

The condition of elastic instability is when the buckling

load of the second variation of the total potential energy

of the system is equal to zero. This condition leads to an

expression for the buckling criterion which is given by,

I 1 EIIKG I =  0 	 (4.22)

in which I KE I is the determinant of the stiffness matrix,
_

E KE ], NI is the determinant of the geometric matrix [KG],
and A is the instability parameter (eigenvalue).
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4.2.6.1 Stiffness Matrix

By substituting for the derivatives of the shape functions

d i in equation 4.17 and integrating with respect to the

volume of the element V the elastic stiffness matrix can be

given by;

1/1 V1 W1 ° xl 4)1 4r1 X1 U2 v2 W2 °x2 4) 2 lir 2 X2

all

a22

a33

add
a53	 a 55

a62
	

a66

a74	 a77

b1.1	 C11

b22	 b26	 C22

b33	 b35	 C33

b44
	

b4
	 C44

b55	 C53	 C55

b66	 C62	 C66

b74	 b77
	 C74

(4.23)

C77

where,
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EAall =	 C11 =a 11	 b11=-a11 	
•

12E1,
a22 - 	

1 3 	
b22=-a22 	 C22 =a22

•
12E1
	 b33—a33 	 c33 =a33a

33= 1 3

•

a44- 
1.2GJ 12EI, 

. • .b44 —a44...c44=a44+ 	
13

•

a -  
4E.Ty
	 b - 2E1y
	 c55 =a 5555	 1	 55	 1

4E1,	 2EIz
a66 - 	 1 	 b66	 1 • • ' • C66 =a66

....(4.24)

a _2GJi .„  4E7,	 Gjl

77	 15	 1 • " . 1377-- 30 +2 / ' • • • C77 =a77

a53=-
6E1
 2 ' 	 b"=a" 	 c53=-a53

/

6EIz
a62 =-	 	 b62=a62 	 c62 =-a62

1 2

Gir 6EI,,
a74 =	 	 b74=a74 	 c74—a74

10 12

b35—b35 	 	 	 1)47-44

4.2.6.2 Geometric Matrix

By substituting for the derivatives of the shape factor di

and the external end forces in equation 4.19 and integrating

with respect to the volume of the element v the geometric

stiffness matrix can be given by;
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[KG] =

U1 V1	 W1

d22

d33

d42 d43

d53

d62

2d13

e22

e33
e42	 e43

e53

e62
e72	 e73

0X 1

d4,

d54

d64

d74

e24

e34

e44

e54
e6 4e64
e74

CI)1

d55

e35
e45

e55

e75

xv,

d66

d77

e 26	 e27
e37

e46	 e47

e57
e66	 e67
e76	 e77

u2 T12	 w2	 ex2	 4)2	 *2	 X2

1.22
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f42	 1.43	 144

153 154 155

1.64	 f66

fn fn 174 fn fn fn

.(4.25)

Details of the expressions in this matrix are given in

Appendix 5.

In comparison with the geometric matrix presented by Barsoum

and Gallagher (4.4), or that derived by Tebedge (4.6), or

those presented by Powell (4.5), the above Geometric Matrix

includes more terms. These matrices can be used to analyse

members having monosymmetric cross-sections since they

include the geometric characteristics that reflect the

effect of monosymmetry on the buckling behaviour of the

member. The effect of bimoment caused by the external load

is also included. By making use of a transformation matrix

given in equation 3.59 of reference (4.9), the formulation

can also be used for a three dimensional buckling analysis.



127

4.2.7 Prediction of the Buckling Load (Buckling Criterion)

The following equation gives the second-order behaviour of

a framed structure having n joints.

{F}=[[ic„]+[Kgg] ](An) 	  (4.26)

where, (Fn ) is the column vector of the external loads

acting at the joints of the frame, [K ee ] is the overall

elastic stiffness matrix of the frame, [ Kgg ] is the overall

geometric matrix, and (A n ) is the joint displacement vector.

The term [ [Kee]+[Kgg]] which represents the second order

matrix of the structure can be obtained from the

transformation operation,

FIC„] [Kgg] ] =E [Ti] pc] + [KG] [Ti ] 	 (427)

in which, (Kr] and [KG ] are the member stiffness and

geometric matrices in the local co-ordinate system, [t i ] and

[t i ] T are the member transformation matrix and its transpose.

In an elastic stability analysis, the applied load on the

structure is regarded as a fixed loading pattern multiplied

by some factor 1. The critical load Fcr can be defined as the

load F multiplied by the smallest value of 1 at which the

displacements of the structure become indeterminate

(bifurcation of equilibrium).



128

4.2.8 Solution for the Elastic Critical Load

The solution for the above problem is given by,

I Keel +1 1 Kgg1 =0 	  (4.28)

in which, 1Keel and 1K gl are the determinants of the

stiffness and geometric matrices repectively.

Equation 4.28 is similar to the general eigenvalue equation,

thus it can be treated as an eigenvalue problem and the

critical load found as the lowest eigenvalue. The buckling

load can also be predicted from the load displacement curve.

This method is based on performing a second-order analysis

of the structure and predicting the critical load from the

load-displacement relationship. A suitable prediction

routine can be based on the Southwell method. This method

was first used to estimate the Euler buckling load of a real

column using the load-deflection plot from a non-destructive

test. It was later refined and applied by many investigators

to predict the buckling loads for different types of

buckling problems. The equation for the critical load can be

written by;

a—P„.	 	  (4.29)

Equation 4.29 describes the standard Southwell plot which is

shown in figure 4.9. The critical buckling load Pcr can be

calculated from the slope of the plot.

Figure 4.10 shows an alternative representation of equation
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4.9. This plot is known as the modified Southwell plot. The

plot represents a linear relationship between P/6 and P. The

critical load Pc, is given by the intercept with the P axis,

while the inverse slope gives vl.

The modified Southwell plot is used in the Finite Element

computer programme to predict the buckling load from a

second order analysis.

4.3. The Computer Programme

The main routines of the SPACE Finite Element computer

programme used in this thesis were already developed by

Davies (4.11). Nemir (4.9) modified the computer program to

include the geometric matrix presented earlier. He also

included the transformation matrix for three dimensional

problems.

The computer programme can be used for the following types

of analysis:

(a) Conventional elastic analysis of framed structures

with a maximum of seven degrees of freedom at each

joint

(b) Second-order torsional-flexural analysis of

framed structures.

(c) Torsional-flexural buckling analysis of framed

structures.
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4.3.1. The Input Data

The data to run the computer programme is presented in batch

mode (as opposed to interactive mode) and the basic format

for a job is independent of the type of problem under

consideration. The basic format is shown in Appendix 2, in

which tables of particular parts of the data are presented

schematically by two rows of spaces and single quantities by

a single row of spaces. All data is fixed format and the

particular task to be undertaken is determined by the

integer value of "Mode" in line 2.

The preparation of the data in the input file involves the

translation of the properties of the member and its loading

into logical numerical form. This is done in order that it

can be understood by the computer. It is vital that all the

data for a given job is presented in consistent units. These

units can be, for instance, (i) Tons and inches, (ii) Kips

and inches, or (iii) kN and centimetres.

The input data for a given problem consists of the

following:

(1) Joints: Each joint of the structure, including the

supports, has to be numbered and identified by

its co-ordinates with respect to the adopted

global system of co-ordinates. Degrees of

freedom must also be given according to the

restraining conditions at the joint.
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(2)Members: The members connected by the joints are divided

into groups according to their elastic and

cross-sectional properties. Each member is

identified by four integer numbers. The first

refers to the group of the members, the second

and third identify the two end joints of the

member. The fourth number specifies a third

joint chosen to define the principal plane of

the member.

(3) Loads:	 The applied loads are identified in the data

sheet by the number of loaded joints, the

direction at which the load is applied and by

the value of the load. The direction of the

load is specified by an integer between 1 and

6.

4.3.2 Programme Subroutine

The flow chart of the computer programme is shown in figure

4.12. The programme consists of the following sub-routines,

(a) Main subroutine
	 (d) Subroutine BARS

(b) Subroutine MAPP
	

(e) Subroutine SOLVE, and

(c) Subroutine SPACE
	

(f) Subroutine STORE.

The main sub-routine contains the basic organisation and the
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interaction process to calculate the elastic critical load

using the modified Southwell plot.

The procedure of calculating the torsional-flexural buckling

load for a given structure starts by applying a small value

of the load factor. Then, solving for the displacements, the

largest component of the deflection can be identified. An

infinitesimal value of the load can then be applied at the

critical joint in the critical direction to start the

buckling displacements.

The instability problem is linearized by carrying out a

doubly iteractive process. At each load level the

singularity of the determinant [Kee ] + 1[Kgg ] is checked. At

each load level, also, an inner iteration is performed to

find out the correct value of the displacement. This

operation is carried out by solving repeatedly the second

order equation for the displacements. It stops when the

percentage difference between the two consecutive values of

the critical displacement is less than the adopted value for

the tolerance. This step is shown in figure 4.11.

Figure 4.13 shows the flow chart of the inner iteration

technique to calculate the correct value of the critical

displacement Acr of a given value of the load factor. The

prediction of the critical load factor Acr using the modified

Southwell plot is illustrated by the flow chart in figure

4.14. The procedure continues until the percentage
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difference between two consecutive predictions of kr becomes

less than the tolerance (0.0005) .

The method used to solve the linear matrix equation is based

on making use of the sparse nature of the stiffness matrices

and operating on the non-zero elements only. This method has

the advantage because the exact size of each submatrix

generated storage is evaluated before the actual solution

starts. This helps in the planning for the storage reserve.

The basic theory of the method will now be explained in more

detail.

The load displacement relationship for an elastic structure

having n joints can be described by the stiffness equation,

F=K.6. This equation can be expanded and re-written as:

K11 K12 • • • Kin

K21 K22 " K2n

Kn1 Kn2 . . . K

where, the individual K terms are submatrix associated with

the n joints of the structure.

For the part of the structure which is shown in figure 4.15,

the submatrix equation of this part is given by,
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Fb

Fd

Fe

Ft.

Kbb	 Kbt

Kcc	 Kct

Kdd	 Kdt

Kee Kat

Ktb Kt, Ktd Kt. Ktt.

8 b
45c,

8.

at

ad 	 (4.31)

where, the K submatrices of the above equation are of a size

depending on the number of degrees of freedom of the joints.

Equation 4.30 can be re-written in a partitioned form as

follows;

Katir al

•[FFati[KKataa Ktt 8t
	  (4.32)

By eliminating joint t from the analysis (figure 4.16) the

following relationships are obtained,

KL=K„-Kat •K;•Kta 	  (4.33)

Fa * =Fa -Kat .	 Ft 	  (4.34)

After calculating d a , d t can be evaluated by substituting for

68 in equation 4.31. By repeating the application of

equation 4.32 and 4.33 the number of joints in the analysis

reduces until for the last joint the displacement can be

calculated from the following equation,

8,2 =ie	 	  (4.35)

The sparse matrix Kaa is replaced by the dense matrix leaa • As

the stiffness matrix is symmetrical, Kat is the transpose of



135

Kta so that it is sufficient to store only one of them. The

elimination equations (equation 4.33 and 4.34) show that it

is only necessary to store the two matrices Ktt -1 and Kta (or

their product).

The solution starts with a simple operation to establish a

list of the joints at the near optimum order of elimination

together with the joint connections which will be created

during the solution. The order of elimination and the

connection list do not include the joints with no degree of

freedom.

The elimination order is performed by selecting, at each

stage, to eliminate next the joint, or one of the joints,

with the lowest sum of degrees of freedom for the joints to

which it is connected. The connection list is contained in

a two-dimensional integer array, MAP. The number of degrees

of freedom for a given joint in is specified in a one

dimensional array JS. Another array NM, is used to specify

the sum of the number of the degrees of freedom of the

joints connected to joint m. The integer array JDF is used

to specify, in a binary form, the active degrees of freedom

at each joint. During the preliminary mapping the solution

process continues updating the array MAP and NM up to the

last joint of the structure.

The subroutine SPACE includes the formulation of the elastic

stiffness matrix and the transformation matrix given by
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Jennings and Majid (4.12). It can be used for first-order

analysis of framed structures provided that six degrees of

freedom are considered at each joint.

The subroutine BARS includes the formulation of the elastic

stiffness and geometric matrices for the second order and

stability analysis of thin-walled structures. It also

contains the formulation of the transformation matrix, which

was discussed earlier, for performing a three dimensional

stability analysis of frames.

The addresses of the stiffness and load matrix elements are

stored in two linear arrays in the working store, namely

ADDR, and WADDR respectively. Having completed the mapping

operation, the complete stiffness matrix for the structure

is built up, member by member, in the form of submatrices

which are entered at the appropriate addresses. The solution

then proceeds by eliminating the joints one at a time

according to the previously arranged elimination list using

equation 4.33 and 4.34. During the elimination process,

stiffness terms of the form K" / and K8t•Ktt -1 and the modified

load submatrices F:, are written up to the backing store.

These terms are required for the evaluation of the joint

displacements and member forces.

The joint displacements and member forces are evaluated

using equation 4.34 and 4.35. These calculations are

performed using the subroutine SOLVE.
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Figure 4.1 Warping of Doubly Symmetry I-Beam
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Figure 4.2 Torsion with Restrained Warping
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Figure 4.3 The Prismatic Member
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Figure 4.4 Torsional Flexural Displacement of Point m

Figure 4.5 Normal and Tangential Displacements
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IS IT A FIRST OR SECOND
ORDER ANALYSIS ?

PRINT

Figure 4.12 Flow diagram of the computer program
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Figure 4.13 The flow chart of the computer operations to

find the value of A ct at a given load factor.
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END

Figure 4.14 The flow chart of the prediction of Acr
from the modified Southwell plot.

Figure 4.15 Joint connecting	 Figure 4.16 Imaginary connections
part of structure	 after eliminating

joint t
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CHAPTER 5

5.0 Verification of the "SPACE" Finite Element Computer

Programme for the Analysis of Non-Uniform Members

5.1 Introduction

The Finite Element formulation and the "SPACE" Finite

Element computer programme used in the numerical analysis in

this thesis were discussed in Chapter 4. Appendix 2 of this

thesis reports on the initial verification of the computer

programme by conducting numerical tests on prismatic

members. It was first proved that the Finite Element

formulation was valid in solving most of the conventional

lateral-torsional buckling problems for prismatic members.

Rapid convergence was achieved even with the use of

4-elements but the accuracy of the solution was greatly

enhanced by the use of an 8-element model. However, the

Finite Element formulation had not been verified for

lateral-torsional buckling of tapered members.

In this chapter, the Finite Element formulation is verified

by the analysis of various cases of tapered beams and

cantilevers. Since this Finite Element formulation was based

on a prismatic beam or line element, modelling of tapered

members was achieved by a stepped representation. This

procedure by which the tapered member was approximated by a

series of uniform elements is shown in figure 5.1. The
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geometrical properties of each element, such as the moment

of inertia, area etc., were chosen at the centre of the

element.

The verification starts with the analysis of some cases of

narrow rectangular sections and is then followed by

I-section members. The results of the Finite Element

analysis were compared with the results of other available

accurate methods of analysis of tapered members. The case of

tapered beam-columns is considered later in this chapter.

In all of the cases considered, the values of E, Young's

Modulus and G, the Shear Modulus used were 210 kN/mm 2 and

80.5 kN/mm2 respectively, unless otherwise stated. In the

Finite Element analysis a 10-element model was used since

earlier verification of the program had shown that this

number of elements was sufficient to achieve accurate

results.

5.2 Beams with Rectangular Cross-Section

5.2.1 Simply Supported Tapered, Narrow Rectangular

Beam

Lee (5.1) studied the case of the elastic buckling of

tapered narrow rectangular beams subjected to pure bending.

He considered a simply supported tapered beam under simple
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lateral restraint at the ends as shown in figure 5.2. At a

certain critical value of the applied moment M the beam

buckles laterally.

This critical moment Mu., which is the minimum value of M

necessary to keep the beam in equilibrium in a slightly

buckled form was given by Lee as;

6 	 po co
bicr 1oge (14)	 1 	  (5. 1)

where Bo f Co and (1+6) are the flexural and torsional

rigidities at the origin of the beams and the ratios of the

depth at the two ends of the beams. The flexural and

torsional rigidities are given as, B=(hb3/12)E and

C0= (hb3/12)G respectively.

In this study, a beam with 300 cm. length, h=15 cm., and

different cases of depth ratios, 6=1, 0.8, 0.6, 0.4 and 0.2

was considered. Equation (5.1) was used to calculate the

critical moments for the cases mentioned above.

The beam was also analysed using the "SPACE" Finite Element

computer programme. In this case, the boundary condition was

that the beam was simply supported with torsional

displacement prevented at both ends.

The results of the analysis are presented in table 5.1 and

figure 5.3. These results show that there is a close

agreement between the results of the analysis by equation
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(5.1) and the Finite Element formulation. However, the

Finite Element formulation gave prediction of slightly

underestimated values of the critical moments compared to

equation (5.1). This was true for all cases except for the

case when 6=1 in which the Finite Element method gave

slightly over-estimated results. The actual error band

was -2.9% to 0.85%.

From these results it can be said that the Finite Element

formulation was able to predict accurately the critical

buckling moment for a narrow rectangular tapered beam.

5.2.2 Simply Supported Narrow Rectangular Double Tapered

Beam

Massey (5.2) studied the case of the lateral stability of a

narrow rectangular double tapered beam. He considered the

beam shown in figure 5.4 which is simply supported at each

end in the vertical and horizontal planes, but the end

supports prevent rotation about the longitudinal axis.

Since the beam is narrow, the vertical rigidity is large

compared with the lateral rigidity. The lateral rigidity B

and the torsional rigidity C are assumed to vary linearly

but independently from each end to the centre of the span

about which the beam is symmetrical. Hence for, 0<z<L/2;
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Bz=B+azB 	  (5.2)

and

Cz =C+bzC 	  (5.3)

where B and C are the rigidities at z=0 and it is assumed

that warping rigidity Cw has negligible effect since in this

case CL2/Cw > 300.

The equation of equilibrium was established by Massey for

the above conditions as;

(B+azB) u ll= Pzcl) 	  (5.4)
2

Pzu l P (b-u) 
(C+bzC)(1)=-	 -	 	  (5.5)

2	 2

where 6 is the midspan lateral deflection and the primes

denote differentiation with respect to z.

Differentiation of equation 5.5 and substituting, gave the

following equation;

4)11 (1+bz+az+abz 2 ) +4) / ( b+abz) +  k2 z24) -0 	  (5.6)
4L4

where,

k2 -  P2 ' L4 	  (5.7)
BC

The approximate solution for equation 5.6 for a range of

values can then be worked out. This gave the values of k

expressed to the first decimal place for values of a and p

ranging from 0.25 to 10. In this case, a is defined as the

ratio of the lateral rigidity at either end and p as the
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similar ratio for torsional rigidity. By making use of the

values of k for a particular problem within the range of the

analysis, the value of critical load P, was calculated.

In this present analysis, beams with 3000 mm length, depth

at the centre of the beam equal to 300 mm and thickness of

25 mm, and with the taper ratio taken as 1, 1.5, 2, 3, 4 and

6 for both a and p were considered. The values of critical

load were calculated for the cases under consideration using

equation 5.7 and values of k from the table or graph in

reference (5.2).

The beams were also analysed by the Finite Element method

and the boundary conditions were simply supported with

torsional restraints in the longitudinal direction at both

ends. An initial load of 10 kN was applied at the top of the

centre of the span.

The results of the analysis are shown in table 5.2 and

figure 5.5. It shows that there is a close agreement between

both the analysis by the method of Massey and the Finite

Element Formulation. However as shown in table 5.2, the

Finite Element Method gave a slightly higher prediction of

the critical load by a margin of 1.2% to 2.3%.

These results indicate that the Finite Element formulation

used in this Finite Element computer programme gave an

accurate prediction of critical buckling load for the case
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of the simply supported narrow rectangular tapered beam

which was considered.

5.3 Lateral-Torsional Buckling of Tapered I-Beams and

Cantilevers

5.3.1 Simply Supported Tapered I-Beam

5.3.1.1 Double Taper I-Beam

Figure 5.6, shows a simply supported double tapered I-beam

loaded by central concentrated load P acting at the top

flange. Brown (5.3) used the finite difference method to

solve the differential equation for the stability of the

member.

The equation for critical load is given as;

yiVE/yoGKo
Par-	 L2

	 (5.8)

or

y 2 VEryoGKo
Circr	

L3

where y i is a non-dimensional critical load parameter, Iyo is

the moment of inertia of the deepest section and K o is the

Saint Venant's torsion constant at the deepest section. The
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boundary conditions at z=0 and z=L were, u = u" = = 13" =0.

The values of critical loads for cases where only the beam

depth varies, the flange width and thickness and the web

thickness remaining constant, were obtained. In his

analysis, Brown used the section that was an idealised

I-section with a maximum depth of 610 mm. Flange width and

thickness were 152 mm and 13 mm respectively and the web

thickness was 9.5 mm.

A table of coefficient y i , for critical midspan concentrated

load for a 6.10 in span simply supported beam, for the case

of load applied at the top flange, the centroid and the

bottom flange are presented in table 1 of reference (5.3).

The table gave the coefficient y i , for the taper ratio a

equal to 0.167, 0.333, 0.5, 0.667, 0.833 and 1. (i.e.,

a=ratio of depth of shallow end to depth at midspan.)

The critical load was calculated for the above beam for the

case where the load was applied at the centroid by equation

5.8, with the values of y l , from table 1 of reference (5.3)

for the cases of taper ratio mentioned.

The beam was also analysed for the critical load by Finite

Element method. The boundary conditions imposed were simply

supported at the ends and torsionally restrained but free to

warp.

The results of the two analyses are shown in table 5.3 and
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figure 5.7. These show that the results are in close

agreement with each other. The difference of the two results

varies from 3.75% with a=0.167, to 0.04% with a=0.5 and

increase again to 1.63% when a=1. The graphs in figure 5.7

intercept at a value of a =0.55. Therefore the present

analysis shows the validity of the Finite Element

formulation in solving centrally loaded double tapered

I-beams.

5.3.1.2 Flange Breadth Tapered I-Beams

Kerensky, Flint and Brown (5.4) studied the case of a simply

supported flange breadth tapered I-beam with load applied at

the centroid. Figure 5.8 shows the beam with uniform flange

thickness but the breadth curtailed linearly from B to VB,

V being the ratio of the minimum flange area to the maximum

flange area.

Consider that the beam has a span L ,and is subjected to a

load P at the shear centre of mid span. The support

conditions were simply supported i.e., there is no restraint

to bending action, but with rotation of the end sections

about the longitudinal axis prevented. The load was assumed

to be free to move laterally during buckling, remaining

parallel to the y axis.

When the critical value of P is reached, the system remains
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in a state of equilibrium defined by the condition that the

total potential energy of the system is stationary. This

means that it does not vary with small displacements of the

beam. In this situation the critical load may be defined by;

2
( U+V) =f Lf GK(B / ) 2 +C(e 11 ) 2 +Pp [0]	

viee
p2 L-	 x -aMx (0 1) 2 dz... (5.10)

0	 Ely

The neutral equilibrium equation 5.10 is satisfied if;

fL/2[
GK2 (0 1) 2 + -

Eh2
I (0 11) 2	 Z2021dZ=0 	  (5.11)

4 Yz	 4E1-

where the origin is taken at one support.

In this case the lateral second moment of area and the

torsion constant may be expressed as ;

JC,=/y[v+2 (1+v) z/Lr 	  (5.12)
•

K2=1,1[(n-1)+2(1-V,Z//4-11 	  ( 5.13)

By employing equation 5.11 and integrating the last function

graphically, a solution in the form of equation 5.14 was

obtained.

137t2EIyh2

	

Pc,it =-47ra 	
GK 1+ 	

	

L 2	 4GKL2
	  (5.14)

Values of the coefficients for a and p for this case are

found in figure 9 of reference (5.4).
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Kitipornchai and Trahair (5.5) used the finite integral

method to predict the lateral buckling of the flange breadth

tapered I-beam shown in figure 5.8. Assuming the same

support conditions as Kerensky, Flint and Brown (5.4), and

by considering the deflected shape given in figure 5.9, they

obtained the governing differential equation for buckling of

the beam using the following equations,

paL2

Y2 	 	
(EIyGJ) L/2

K2.712(  ars,

GJL2 )142

uV( ETy )L/2

Y21,
•

(1)=4(G1-7)L/2

Z=zL

A AL

The differential equations of minor axis flexure and torsion

become;

d2V__ §_z

dz2 k1 2
	 (5.16)

{i 4. —K2(3
– A2 ks A 1 dk3 )14_ 1 dk3 R-2 d24)_k3 R-2 d34)

" — -"—
ir 2 ks k2 dz dz k2 dZIt 2 dZ 2 k2 n2 dz3

.. (5.17)
[u _u+z _dUl + Y 2K 1  2a  ,&Y

2 k2 L' 2	 dz 2n k2 12L12 PL. 2

respectively, where
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ki(z)-  
EI

Y
(Z)

El-y (1,i 2)

k(Z) CJ(z) 
2 

aT(L/2)

EI(z) k3(z)- EI,(L/2)

	  (5.18)

The boundary conditions for equation 5.16 and 5.17 are

z=0,

4)=u=s-t4 4-A0A =0
dz2	dz
	  (5.191

I

d4).dU.0

dz dz

By using the finite integral method of solution, the

critical load parameter was obtained from equations 5.16,

5.17 and 5.18. This was done with the help of a computer

programme written in the Algol language.

An aluminium beam with the dimensions shown in figure 5.10

was analysed for the critical load for taper ratios equal to

0.2, 0.4, 0.6, 0.8 and 1 by Kerensky, Flint and Brown's

method and by Kitipornchai and Trahair's finite integral

method. The values of Young's modulus and Shear modulus used

in the analysis were 64 kN/mm2 , and 26 kN/mm2 respectively.

The same analysis was made for the above beam by using the

Finite Element formulation that is being verified. The

boundary conditions were simply supported at the ends with

torsion restrained in the longitudinal direction but the

ends were free to warp. The beam was loaded with a
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concentrated load at the centroid.

The results of the three different methods of analysis are

shown in figure 5.11 and Table 5.4. It can be seen in Table

5.4 that all the results show a similar pattern. However the

Finite Element Method predicted lower elastic critical loads

when the taper ratio is less than 0.8. The Finite Element

Method on the other hand predicted higher values of critical

load when compared to the other two method of analysis at

taper ratios more than 0.8 but less than 1. An interesting

feature of the graph in figure 5.11 is that at the taper

ratio of 0.8, all the three analyses gave results in very

close agreement with each other. Furthermore, both Kerensky,

Flint and Brown, and Kitipornchai and Trahir's method

appear to be in agreement with each other in all the

predictions of the critical load. It can therefore be said

that the Finite Element formulation of the SPACE programme

can predict the critical load for the beam under

consideration, however it tends to give a more conservative

prediction at the lower taper ratios.

5.3.2 Lateral Buckling of Tapered I-Cantilever

5.3.2.1 Web Depth Taper

The case of lateral buckling of tapered I-cantilevers loaded

at the end, as shown in figure 5.12, was investigated by
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Brown (5.3) and Nethercot (5.6). Brown used the same method

described in section 5.3.1 to arrive at equation 5.8 that

was also used for this specific tapered I-cantilever. The

values of y i used for this case were tabulated (Table 3) in

reference (5.3). The boundary conditions at z=0, were

u=u/---013/=0 	  (5.20)

and at the free end, z=L, were

u ll= (EILM 1= 13"= 13"1=0 	 (5.21)

Nethercot (5.6) proposed the use of a reduction formula

(equation 5.22) to predict the critical moment for lateral

buckling of the tapered cantilevers shown in figure 5.12.

The critical moment equation for this case is;

_ Ye 	

	

L1,1(EIyGJ) 	  (5.22)

where Mu. = maximum moment in the beam i 	 e., moment at the

root.

EI = minor flexural rigidity

GJ = Torsional rigidity

L = span

Ye = Lateral coefficient

He obtained the value of ye for various cases of tapered

cantilever using the Finite Element formulation for lateral

buckling first introduced by Barsoum and Ghallenger. His

results include the case of depth taper, flange breadth

taper and flange thickness taper. The values of ye were

tabulated (Table lc) in reference (5.6) for three different
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positions of loading, namely end load at the top flange,

centroid and at the bottom flange.

A cantilever beam with a length L=6100 mm and with the

section properties at the root shown in figure 5.13, were

analysed for values of critical load at the centroid of the

free end for different taper ratios of 0.167, 0.333, 0.5,

0.667, 0.835 and 1. The beam was analysed by both Brown's

method and Nethercot's reduction formula.

In the analysis by the Finite Element method the ends of the

beam were modelled to be completely fixed at one end while

the other end was free. Vertical load was applied at the

centroid of the free end.

The results of the these analyses are presented in figure

5.14 and table 5.5. It shows that each of the methods

produced a straight line almost parallel to each other. By

comparison, the prediction of Nethercot's method gave higher

values, followed by Brown's, while the Finite Element

formulation predicted lower values. These types of results

were consistent throughout the analyses.

It can be said that the Finite Element formulation in the

SPACE Finite Element computer programme is valid in

predicting the values of critical load of a Web tapered I-

cantilever with sufficient accuracy.
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5.3.2.2 I-Cantilever with Flange Breadth Taper

Nethercot (5.6) also analysed the case of an I-cantilever

with the flange breadth taper shown in figure 5.15. The

critical moment Mu was also predicted by using equation

5.22, but making use of the values of y e tabulated in table

la of reference 5.5.

The beam in figure 5.15 with L=4000 mm, t i=8.5 mm, bf0=125.4

mm, tw=5.9 mm and de=360 mm was analysed for lateral

torsional buckling using Nethercot's method. The analysis

was carried out for flange breadth taper ratios v of 0.2,

0.4, 0.6, 0.8 and 1.

In the Finite Element analyses conducted the beam were

modelled to be completely fixed at one end while the other

end was free. Vertical load was applied at the centroid of

the free end.

The results of the two methods of analysis are shown in

figure 5.16 and table 5.6. It shows that the results of both

analyses agree with each other at taper ratio v=0.6, however

below the value of this ratio the Finite Element formulation

gave slightly higher values. At higher value of the taper

ratio, Nethercot's prediction gave slightly higher results.

It can be said that the Finite Element formulation in the

SPACE computer programme is able to predict fairly
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accurately, the critical lateral buckling load for an I-

cantilever with flange breadth taper, loaded at the centroid

of the end.

5.3.2.3 Taper I-Cantilever by Other Finite Element

Formulations

Karabalis and Beskos (5.7) proposed a Finite Element

methodology for the static, free flexural vibration and

stability analyses of linear elastic plane structures

consisting of tapered beams. The method was based on the

development of flexural stiffness, axial stiffness,

geometric stiffness and consistent mass matrices for a beam

element of constant width and linearly varying depth.

They conducted parametric studies to test numerically the

accuracy of the Finite Element formulation that they

presented. Stability analysis was conducted on a linearly

tapered cantilever beam of constant width and of I-section.

The geometric and material characteristic of the cantilever

beam are as shown in figure 5.17. The depth of the support

was kept constant at 50.8 mm, while the depth at the free

end was of the values of 25.4, 12.7 and 10.16 mm to produce

taper ratios d2/d1 of, 2, 4 and 5 respectively.

In their analysis of the stability problems of the

cantilever beam shown in figure 5.17, they compared the
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results of the analysis using their formulation (Sij*-N*)

with that of (Gij-N) and (Sij-N), where Sij * , Gij and Sij

were stiffness coefficients for linearly tapered elements,

general tapered elements and uniform elements respectively,

while N and N* stand for geometric stiffness coefficients

for uniform elements and for linearly tapered elements

respectively (5.7).

The I-Cantilever under consideration was also analysed for

elastic stability by the Finite Element Formulation that is

being verified. For this purpose of comparison, a taper

ratio d2/d1=5.0 was analysed. The boundary conditions were

completely fixed at one end while the other end was free.

Vertical load was applied at the centroid of the free end.

The results of the analysis by the SPACE Finite Element

formulation are compared with those obtained by Karabalis

and Beskos. The results of these stability analyses are as

shown in figure 5.18 and table 5.7. Figure 5.18 shows that

while all the results computed by Karabalis and Beskos

converge to a critical load in the region of 24 kN, the

SPACE Finite Element Formulation converges to a load of

around 28.0 kN. It can also be seen that an 8-element model

was required for the SPACE Finite Element Formulation

whereas the others converged sufficiently using 5 or 6

elements.

Therefore it can be said that the SPACE Finite Element
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Formulation gave less conservative results when compared to

the Finite Element formulations by Karabalis and Beskos.

However, it also shows that the SPACE Finite Element

formulation converges with sufficient accuracy for this

tapered member using only 8 elements.

5.4 Lateral Buckling of Tapered I-Section Beam-Columns

5.4.1 Governing Equation for Buckling Of Beam-Columns

Culver and Preg (5.8) studied the case of the beam-column

shown in figure 5.19 and derived the critical combinations

of axial load and end moment. The beam column under

consideration was subjected to an axial load P and moment M

applied in the y - z p/ane. When the load was applied, the

beam-column initially deflected in the y - z plane. Upon

reaching a certain critical combination of P and M, however,

bifurcation of equilibrium became possible and lateral

torsional buckling occured.

Culver and Preg, formulated the differential equation for

determining the critical loads by using Vlasov's method

(5.9) for a beam-column of uniform cross-section. They

modified it to account for the variation of cross sectional

properties along the length of the member.

Denoting by u, v and 0, the deflections of the buckled beam-
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column configuration in the x and y directions and the angle

of twist about the shear centre respectively, the

equilibrium conditions of the beam can be derived as ;

4.T„(z)vilr=qy 	  (5.23)

Epy(z)ul ll=qx 	  (5.24)

EfI ( z) e1"+44  Iw (z)
 4'J 	 z) 41 /=m 	  (5.25)

z2

Equations 5.23 and 5.24 were the familiar beam equations

according to Bernoulli-Euler Theory whilst equation 5.25 was

obtained by converting Lee's (5.10) equation for non-uniform

torsion of tapered beams to the notation now used. In these

equations, qx and qy equals to the magnitudes of additional

transverse load per unit length induced during buckling.

These loads were the results from the projection of stresses

acting on the infinitesimal element dz=1, in the pre-buckled

state onto the same element in the buckled state.

The normal stresses at any cross section of the pre-buckled

beam-column can be represented as ;

M(z)y(z) 
a (z)-- 

A(z)	 Ix(z)	
	  (5.26)

M(z) =M4(l-11) (	 	  (5.27)

It was assumed that the angle of taper a was small when

using equation 5.26. Using this normal stress equation

(5.26 and 5.27), and following Vlasov's procedure, the

expression for additional transverse loads and torque was

established as;
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z-a
qx= -Pu lli-M21 (1-1)) -1-111/1"1-2 mis2 [( 1 -11 )]11 / 	  (5.28)

0,=-Pvil

	

	  (5. 29)

PI (z) A
m=4101.2{ ( 1 - ) ( Z_t) +niull-

A(z) wil
	  (5.30)

The differential equation which governs the elastic

deformation behaviour of the beam-column can then be

established by equations 5.23, 5.24, 5.25, 5.28, 5.29 and

5.30, and it becomes ;

E[I„ ( z) villl+p0= 0 	  (5.31)
•

Etry (z) ulll + Pu ll —m2[(1-11) (	 )+1114)"—fri.21 —, l	 2)(5.3iv=0 	

1-z),,i_Gpc.(z)41  A(z)  4„1,44Ap(,) 	  4),PIp (z)	 I (z)1/
EtI „( z) VI/ + 4 E{ 	

2 1.

_m21 (1 _1)) ( z L-a ) +Tquil=0	 (5.33)

u=u ll=4:1)=4 /4-24) /= 0

  

These equations were solved by finite difference method

using the appropriate boundary conditions as follows;

For pinned end,

(5.34)

For fixed end,

u=ui=4)=4)/=0 	  (5.35)

In order to obtain a solution for the above expressions

applicable to a broad class of problems, the equation was

non-dimensionalised using the critical load and moment for

uniform beam-columns. This results in a more useful form of

expression of the critical loads for tapered beam-columns.
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Using the energy approach, the critical combination of the

axial load P and end moments M2=M, M i=nM, for the tapered

beam-column can be given as

	

[1-1-pye l.[1.--P-p 11—iti4 1 	  (5.36);	 r 

In equation 5.36 P	 P
T
 and M

cr 
are the Euler buckling

y 

loads and the critical moment under no thrust for a tapered

column. In order to use the interaction equation (i.e.

equation 5.36), to find the critical combination of axial

load P and end moment M, for a particular tapered beam-

column, it was first necessary to evaluate P y* , P1* , and Mcr

for the same column. These values have been solved by the

finite difference method and presented in tables and graphs

in reference 5.8. Four types of combinations of end

conditions namely, pinned-pinned ends, pinned-fixed ends,

fixed-fixed ends and fixed-pinned ends were considered.

5.4.2 Analysis of Tapered Beam-Columns

Two cases of beams with two different boundary conditions

were studied in this section in order to compare the results

of the analysis by Culver's method and that of the SPACE

Finite Element formulation. The two cases were as follows;
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5.4.2.1 Case of a Tapered Beam-Column with the Small End

Pinned and the Large End Fixed

The tapered beam-column under consideration is shown in

figure 5.20. It is subjected to an axial load of P kN and an

applied moment M at the larger end which caused lateral-

torsional buckling. The beam was supported by a roller at

the smaller end while the large end was fixed. Four cases of

this beam-column were studied for the taper parameters

d2/d1 =2, 1.8, 1.5 and 1.3. In all the cases considered,

Culver's method was used to calculate the critical moment

applied at the larger end when a known axial load was

applied at the smaller end. The procedure was first to

establish the critical loads for an untapered section based

on the section properties of the large end. From the table

in reference 5.8 the critical loads and moments for the

untapered section were determined. From these values the

critical values for tapered beam-columns were obtained.

Inserting the critical values obtained, and the known axial

load, in the interaction equation (equation 5.36), the

critical value of end moment can be calculated.

The same four cases of beam-column, were analysed by the

SPACE Finite Element formulation. Two sets of results were

obtained for each case, namely by modelling with 10-elements

and 20-elements. This was done to check the convergence and

the accuracy of the results as affected by the number of

elements used in the model.
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Figures 5.21, 5.22, 5.23 and 5.24 show the results of the

analysis for different values of the taper parameter, i.e,

d2/d1=2, 1.8, 1.5 and 1.3 respectively. Figure 5.21 shows

that the curves were almost parallel. However, Culver's

curve gave a smaller predicted critical moment for the same

axial load when compared with the Finite Element curves.

Furthermore, the results of the 20-element analysis in the

Finite Element method gave more critical results than the

10-element cases.

Figure 5.22 shows the results for the case of a taper

paramater d2/d1=1.8. The predictions of critical moment by

Culver '.ere higher for axial load below 80 kN when compared
to the prediction of Finite Element method. However, above

this value of axial load, the Finite Element method

vredictied higher value of critical moment. It can be said
that close agreement between Culver's and the Finite Element

Method was achieved between the axial load range of 50 kN to

100kN.

Figure 5.23 shows the results of analysis for the case of a

taper parameter d 2/d1=1.5. The results are similar to those

in figure 5.22. However, in this case the difference between

the gradient of Culver's curve and that of the F.E.M. curves

was even greater. It was also observed that the difference

in the value of critical moment between Culver's and the

Finite Element method appeared to be greater at low value of

axial load.
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Figure 5.24 shows the results of analysis for the case of a

taper parameter d2/d1 =1.3. It can be seen that the results

are in same form as those of the previous case. However, in

this case the Finite Element method shows a higher value of

critical moment for values of axial load below 180 kN. Above

this value of axial load the Culver's curve gave higher

critical moment.

It can be said therefore, that for the case of tapered

beam-column with small-end pinned, and large-end fixed, the

SPACE Finite Element formulation was able to predict good

and fairly accurate critical loading.

5.4.2.2 The Case of Tapered Beam-Column with

Pinned-Pinned-Ends

The tapered beam-column under consideration is shown in

figure 5.25. It is subjected to an axial load P kN and a

moment M applied at the larger end. The beam is supported by

a pin joint at the large end and roller at the small end.

This case was investigated in a similar manner to the case

in the previous section in which tapered parameters of

d2/d1=2, 1.8, 1.5 and 1.3 were considered. Analyses were

conducted by Culver's Method and the Finite Element Method

using 10-and 20-element models. However, in this case the

boundary conditions for the Finite Element model were that
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no torsional restraint was provided at both ends but

longitudinal movement was imposed at the large end.

The results of the analyses are shown in figures 5.26, 5.27,

5.28 and 5.29. Figure 5.26 shows the results of the analysis

for the case of taper parameter d2/d1=2. It can be seen that

Culver's curve had a steeper gradient than the Finite

Element curves. Similar curves were observed for the other

three cases considered. It also appeared that the

differences in the value of critical moments between

Culver's and and the Finite Element method were greater at

lower value of axial load.

Therefore, it can be deduced that for the case of tapered

beam-columns with both ends pinned, the SPACE Finite

Element formulation was able to give fairly accurate results

for elastic buckling. It appears that in all the cases

considered, the Finite Element method gave lower values of

critical moment than Culver's method. It can also be seen

that the value of critical moment at axial load P, increases

with the increase in the value of the taper parameter.

Comparing the case of fixed-pinned in section 5.4.2.1 with

that of the pinned-pinned end in this section, it has been

shown that the case of pinned-pinned end gave a much lower

critical moment for the same axial load than the fixed-

pinned end cases.
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5.5 Summary and Conclusion

An assessment of the Finite Element Formulation described in

chapter 4 and used in the SPACE Finite Element computer

program was carried out against published theoretical

evidence for tapered members. This present assessment was

done by modelling selected specimens from the literature and

showing whether or not the Finite Element model could

simulate accurately the behaviour associated with elastic

buckling of the specimen.

Consideration was first given to narrow, tapered rectangular

cmoss-sectior‘ beams. This was followed by tapered I-section

beams and cantilevers. An investigation was also conducted

in this section to check the convergence of the SPACE Finite

Element formulation with other selected Finite Element

formulations. Tapered beam-columns were treated at the end

of the chapter.

It was shown in section 5.2. that the elastic buckling of a

tapered, narrow beam with rectangular cross-section could be

predicted very accurately. A double taper model was also

considered and its ability to analyse different types of

taper conditions was demonstrated.

Lateral-torsional buckling of tapered I-beams and

cantilevers was treated in section 5.3. Again, comparisons

of the theoretical results and the Finite Element models



171

produced very good agreement. However, the Finite Element

model tends to produce slightly more conservative

predictions especially at lower taper ratios.

Investigation on the convergence of the Finite Element

Formulation in the case of I-cantilevers revealed that an 8-

element model was required to achieve accurate results for

tapered members. The convergence for the case of beam-

columns showed that 20-element models achieve more accurate

results than the 10-elements.

Fairly accurate results were obtained for the case of

tapered beam-columns. Modelling in this case was more

crucial in deciding the results since the accurate factor

must first be established for the axial load and the end

moment.

The Finite Element formulation being verified appeared

capable of predicting accurately the elastic buckling

behaviour of tapered members. The investigation into the

behaviour of modern portal frame construction, particularly

the results of testing of Frame 3 showed the importance of

checking for lateral-torsional buckling in the haunch area.

The following chapters deal in detail with the design

aspects for lateral-torsional buckling. This Finite Element

Formulation is used to analyse lateral-torsional buckling

problems at the haunch section of the modern portal frame.
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LATERAL TORSIONAL BUCKLING OF I-BEAM
(CENTRAL LOAD AT TOP FLANGE; REF 5.3)
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Figure- 5.7 Comparison of Brown and
Finite Element Method
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Figure 5.9 Deflected Shape of Buckled Beam
Considered by Kitipornchai & Trahir (5.5)



Elastic Critical Load (kN)
1400 -

- • KITIPORNCHAI & TRAHR —{— KERENSKY, FLINT & BR 	 FEM

1200

1000

800

600

400

200

—IB • 31.55 mrn1—
- 3.11

75.871
m	

2.13 mm
m 

--- r- 3.11 mm

0 I 0

P777"	 x-aection at centre

Of beam

Figure 5.10 Properties of Beam used in the Analysis for Pcr

BUCKLING OF FLANGE BREADTH TAPER
SIMPLY SUPPORTED I-BEAM CENTROIDAL LOAD

0	 0.2	 0.4	 0.6	 0.8	 1	 1.2
Taper Constant (BETA)
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Figure 5.12 Tapered I-Cantilever
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Figure 5.15 I-Cantilever with Flange Breadth Taper
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Figure 5.16 Comparison of Results
of Analysis by Nethercot and The
Finite Element Method
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Figure 5.19 Tapered I-Section Beam-Column
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Figure 5.20 Fixed-Pinned Tapered Beam-Column
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Figure 5.23 Comparison of Results of
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Figure 5.26 Comparison of Results of
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With Finite Element Method
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TAPER RATIO y LEE (EQUATION 1)

kNm

FINITE ELEMENT METHOD

kNm ERROR %

1 76.75 77.41 0.85%

0.8 72.40 70.26 - 2.9%

0.6 67.91 66.22 - 2.48%

0.4 63.24 62.08 -1.8%

0.2 58.35 57.95 -0.68%

TABLE 5.2 PROPERTIES OF BEAM AND RESULTS OF ANALYSIS

BEAM PROPERTIES
(THICKNESS OF BEAM 25 mm)

MASSEY
P„ (kN)

F.E.M
P, (kN) ERROR

a=1	 1
13= 1	 300

T

P
4,

190.7 195 2.09
J

a=1.5
0=1.5 ipm

P

300mm

T

163 165 1.22

a=2	 i_
13=2 	1507

P

300 ns.n 147 149.5 1.7

a=3	 i
B= 3	 mo

IF
3oom., 129 131 1.55

a=4
B=4	 75r 300 mw,

118.7 121 1.93

a=6
B= 6	 so 300 rnm

106.5 109 2.34
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TABLE 5.3 RESULTS OF ANALYSIS OF SIMPLY SUPPORTED DOUBLE TAPER

I-BEAM

TAPER RATIO a T.G BROWN
P„ (kN)

F.E.M
P, (kN) ERROR

0.167 120.0 115.5 3.75

0.333 127.9 125.8 1.64

0.500 135.1 135.08 0.01

0.667 141.6 142.7 0.77

0.833 147.6 150.7 2.1

1.000 153.2 155.7 1.63

NOTE: a=ha/hb	Pt

ha	 hb

TABLE 5.4 RESULTS OF ANALYSIS OF FLANGE BREADTH TAPER I-BEAM

TAPER RATIO fl KITIPORNCHAI
& TRAHIR

P„	 (N)

KERENSKY,
FLINT & BROWN

P„	 (N)

F.E.M

P, (N)

0.2 638 667 540

0.4 811 825 725

0.6 970 956 916

0.8 1114 1110 1116

1.0 1267 1290 1329

NOTE: fl=b/B

	  1520 mm



360 mm

bfo fl

TABLE 5.5 RESULTS OF ANALYSIS OF TAPERED I-CANTILEVER
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TAPER RATIO a T.G BROWN
P, (kN)

NETHERCOT
P, (kN)

F.E.M
P, (kN)

0.167 44.34 48.27 43.64

0.333 45.60 47.90 44.60

0.500 46.80 49.188 45.67

0.667 48.06 50.69 46.65

0.833 49.14 52.10 47.61

1.000 50.28 53.40 48.54

NOTE: a=ha/hb

TABLE 5.6 RESULTS OF ANALYSIS OF FLANGE BREADTH TAPER I-
CANTILEVER

TAPER RATIO v NETHERCOT

P,	 (kN)

F.E.M

P,	 (RN)
ERROR

0.2 9.51 11.26 18.4

0.4 15.32 16.54 7.90

0.6 21.69 21.88 0.87

0.8 28.58 27.54 3.60

1.0 36.16 33.60 7.07

NOTE: v=bn/bfa

bft	 bf0=125.4
8.5 mm

5.9 mm
	 360 mm

8.5 mm	 	 II
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TABLE 5.7 COMPARISON OF RESULTS OF VARIOUS FINITE ELEMENT

FORMULATIONS

NO OF
ELEMENTS

SPACE	 KARABALIS
F.E.M	 Sij'-N

Pr.,	 ()N)	 Pr,	 (kN)

KARABALIS
Gij-N

P„	 (kN)

KARABALIS
Sij-n

Pri.	 (kN)

1 8.44	 24.9 23.39 19.7

2 18.5	 24.15 24.02 20.54

3 23.2	 24.06 24.14 21.84

4 25.36	 24.04 24.03 22.64

5 26.5	 24.03 - 23.1

6 27.2	 - - 23.35

7 27.55	 - - -

8 27.81	 - - -

9 27.96 - - 1	
-

10 28.09 - - -

NOTE : d2/d i = 5

d2 = 2"
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CHAPTER 6

6.0 Design for Lateral-Torsional Buckling to BS 5950:

Part 1

6.1 Introduction

When an unrestrained beam is subjected to inplane bending it

will not only suffer inplane deflection but also an out-of-

plane deformation and twist about its longitudinal axis.

This effect is magnified as the load is increased until the

beam buckles at an applied moment which may be less than the

moment of resistance of the section. This effect is known as

lateral-torsional buckling.

Although the basic theory of lateral-torsional buckling

provides an adequate description of the behaviour of the

beam under very carefully controlled laboratory conditions,

it does not cater for several factors which, affect the

lateral stability of the beam in an actual structure. Some

of these factors such as the presence of residual stresses

or geometrical imperfections, can affect the behaviour of

the real beam.

BS 5950 (6.1) is the main British Code of Practice for steel

design which superseded BS 449. The design for hot-rolled

sections in simple and continuous construction is contained

in Part 1 of the code and Part 2 covers the specification
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for materials, fabrication and erection.

This chapter deals with the study of the design procedure

laid down in BS 5950: Part 1 for the design of members

subjected to lateral-buckling. The code specifies two types

of length between torsional restraints, which are:

(1) An Unrestrained Length, i.e., no intermediate

restraints are positioned between the lateral-

torsional restraints, and

(2) A Restrained Length, i.e., at least one restraint

has been positioned between the lateral-torsional

restraints.

From these two basic situations, 8 relevant cases can be

identified and these are shown in table 6.1. The following

are studies considered for each of those cases, however, the

general theoretical basis for design for lateral-torsional

buckling is first presented.

6.2 Theoretical Basis of Design for Elastic Lateral-

Torsional Buckling of Beams

6.2.1 The Basic Problem of Lateral-Torsional Buckling

The basic problem used to illustrate the theory of lateral-

torsional buckling is shown in figure 6.1. in which, the

perfect elastic beam is loaded with equal and opposite end

moments. The beam's end conditions are simply supported in



(6.1)
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the lateral plane with, twist and lateral deflection

prevented, and no rotational restraint in plan.

The problem may be regarded as analogous to the basic pin-

ended Euler strut. When the beam is placed in a buckled

position, the magnitude of the moment necessary to hold it

in that position is determined by equating the disturbing

effect of the end moments, acting through the buckling

deformation, to the internal (bending and torsional)

resistance of the section. The elastic critical buckling

moment given in standard texts (6.2, 6.3, 6.4) is;

71VE_TyG1+
1 

TOEIT,
M=-E 	  

GJL2

where EI y is the minor axis flexural rigidity, and EI w is the

warping rigidity of the beam. The presence of the flexural

(EIy) and torsional (GJ and EI w) stiffness of the member is

the direct consequence of the lateral and torsional

components of the buckling deformations. The relative

importance of the two mechanisms for resisting twisting is

reflected by the second square root term. Length is also an

important factor, influencing the first term directly and

indirectly in the second term via the r2EIw/L2GJ term.

6.2.2 Extension of the Theory for Application to Other Cases

6.2.2.1 Loading Pattern on Member

The basic solution for lateral-torsional buckling described
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in the previous section is the most severe case of loading

that can be imposed on the beam. Since the basic terms are

the same for other cases or loading, this solution can be

conveniently compared with other cases of loading pattern.

For example, consider the beam subjected to a central load

acting at the level of the centroidal axis shown in figure

6.2. In this case the critical moment, i.e., maximum moment

when the beam is on the point of buckling is given in

standard texts as;

E 2E1

	

c,- 

4.24 	 	
	  (6 .2)M	 si (EI GJ) ,\1(1+ 	

L2 . GJ

The ratio of the constants of equations 6.1 and 6.2 is

r/4.24 = 0.74 is often termed the 'equivalent uniform moment

factor' m, which is a direct measure of the severity of the

particular pattern of moments relating to the basic case.

Other cases of loading pattern can also be conveniently

compared with the basic solution giving different values of

m. Some approximate solutions for the maximum moment limax at

elastic buckling for simply supported beams are shown in

table 6.2.

6.2.2.2 Position of Loading

Figure 6.3. shows a simply supported beam with a central

concentrated load P acting at a distance a above the shear

centre axis of the beam. When the beam buckles by deflecting
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laterally and twisting, the line of action of the load moves

with the central cross section, but remains vertical. When

the load is applied at either the top or the bottom flanges,

the solution of equation 6.2 may still be used providing the

numerical constant is replaced by a variable, the value of

which depends upon the ratio L2GJ/EI, shown in figure 6.4

Load which acts above the shear centre is more critical than

load applied at the shear centre. This is because additional

torque which equals to Pam 1.12 increases the twisting of the

beam and decreases the resistance to buckling. It can be

seen that the condition becomes more significant as the

depth of the section increases and/or the span reduces,

i.e., as L2GJ/EIw becomes smaller.

6.2.3 Conditions of Lateral Support

Lateral stability of a beam can be improved by an

arrangement of lateral support which may inhibit the growth

of buckling deformation. Similarly, lateral stability may be

reduced by less effective lateral support. Any arrangement

of the lateral support can be considered provided the

appropriate boundary conditions can be incorporated in the

analysis.
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6.2.3.1 Rigid Restraints at Support

A practical case of interest is the cantilever. The support

conditions of cantilever are different from the simply

supported beam described earlier. A cantilever is usually

completely fixed at one end and completely free at the

other. The elastic buckling solution for a cantilever beam

acted upon by a uniform bending moment M applied at the end

and centroid of the cross section is given by equation 6.1

for simply supported beams by replacing the beam length L by

twice the cantilever length 2L, whence,

1/(E/y .GJ) \	
L2G

	  I(1+  n2E.I1
Afc-n 	

2L	 4J
	 (6.3)

Results of analysis of a case of buckling of a cantilever

(6.3) in comparison with a simply supported beam under

uniform moment is shown in figure 6.5. It can be seen that

the cantilever under end moment is less stable than the

similar, simply supported beam.

6.2.3.2 Effective Lengths

In the basic problem of lateral-torsional buckling it was

assumed that the beam was supported laterally only at its

ends. When the same beam is provided with additional rigid

support at its centre, which prevents lateral deflection and

twist, then the buckled shape as given in (6.4) is,
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7741L- -  1	 -sin nz 	  (6 .4)
‘ Wi L/4 ‘ U/ L/4	 L/2

and its elastic critical moment M c is given by

M L/2	 7t2EI,,, )
	 	 - 71\1 (1+

11(EIy .GLT) GJ. (L/2) 2
	 (6.5)

In general, the elastic critical moment Mcu of a restrained

beam with equal and opposite end moments can be expressed as

Mcw/ 	_n\I (1+  7t2EI,)

il ( E I y . GJ)	 GLT . 1 2 )
	 (6.6)

in which the effective length 1 is related to the span L by

1=kL 	  (6.7)

in which k is the effective length factor.

Thus the critical moment of a simply supported I-beam is

substantially increased when a restraint is provided, which

prevents the centre of the beam from deflecting laterally

and twisting. This restraint however, need not be completely

rigid, but may be elastic, provided its translational and

rotational stiffness exceeds a certain minimum value as

specified by the relevant design code.

6.2.4 Inelastic Beams

Theoretically expression 6.1 for the critical moment is only
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valid while the beam remains elastic. In a short span beam,

yielding occurs before the ultimate moment is reached, and

significant portions of the beam are inelastic when buckling

commences. The portions which yield will reduce the rigidity

and consequently, the critical moment of the beam is also

reduced.

For beams with uniform moment, the distribution of yield

across the section does not vary along the beam, and in the

absence of residual stresses, the inelastic critical moment

can be calculated by modifying equation 6.1. In this case

the 'reduced' flexural and torsional rigidity quantities,

which are active at buckling are used for the actual ones.

Estimates of these rigidities can be obtained by using the

tangent modulii of elasticity (6.18), which are appropriate

to the varying stress levels throughout the section. This

method thus determines the lower bound estimate of the

critical moment.

6.2.5 The Behaviour of A Real Beam

The case of a simply supported beam with uniform moment

which has an initial curvature and twist is given in (6.4)

by

U.. .sin z
6. 0. 	  (6.8)

in which the central initial lack of straightness 5. and



8. _	 frf,

0. Ery/L2
(6.9)

(6.10)

	 (6.11)
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twist 0, are related by

The deformation of the beam is given by;

u 0 . nz
-6 =-6- =Sin

in which

6 _ e _  MIME
8 0 00 1-AVAIE

The graph of the equation 6.11 plotted non-dimensionally for

central deflection d/8 0 and twist 0/0 0 , as in figure 6.6,

which shows that deformation begins at the commencement of

loading and increases rapidly as the critical moment Mcr is

approached. The simple load-deformation relationship of

equations 6.10 and 6.11 are of the same form as that of an

imperfect strut (6.4), i.e., compression members with

sinusoidal initial curvature. Therefore the Southwell plot

technique for extrapolating the elastic critical loads of

compression members from experimental measurements may be

used for the beams.

The real beam therefore differs from the ideal beam analysed

earlier in much the same way as do real compression members.

Its behaviour can be represented by curve A in figure 6.7.

For the case of a beam with imperfections such as residual

stresses or variations in material properties, the behaviour

can be represented by curve B, while the behaviour of a real
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beam having both types of imperfection can be represented by

curve C. It can be seen that its behaviour shows a

transition from the elastic behaviour of a beam with

equivalent curvature and twist to the elastic post buckling

behaviour of a beam with equivalent residual stresses.

6.3 Design Approach for Lateral-Torsional Buckling

6.3.1 General

The theoretical approach to the problems of lateral-

torsional buckling previously discussed could not be

directly used for design since significant differences exist

between the assumptions, which form the basis of the theory

and the characteristics of the real beam. Furthermore the

formulae involved are too complex for routine use. A

realistic approach therefore is to consider both theory and

experiment in deriving a design method.

A comparison (6.4) of a typical set of lateral-torsional

buckling test data obtained using an actual hot-rolled

section with the theoretical elastic critical moment given

by equation 6.1 is shown in figure 6.8. Three distinguished

regions of beam behaviour can be observed and they are;

1. Stocky beam; (VME ) 1/2<0.4 for which the moment Mp is
attained.
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2. Beams of intermediate slenderness;

0.4<(M 1/ME ) 112<1.2, which collapse through

the combined effect of plasticity and

instability moment behaviour NEE or M.

3. Slender beam; (Mp/ME ) 1/2>1.2, which buckles at moment

approaching ME.

The beams categorised as stocky beams are not prone to

lateral-torsional buckling. Beams of intermediate

slenderness, which covers much of the practical range of

beams without lateral restraint, will either suffer elastic

or inelastic buckling. Therefore beams in this category must

be designed based on consideration of inelastic buckling

suitably modified to allow for imperfections.

Assessment of the buckling test data for hot-rolled sections

was carried out by various researchers (6,5, 6.6, 6.7, 6.8)

in order to establish approximate lower bound values, which

are suitable for design. The work of Fukumoto and Kubo (6.5,

6.6, 6.7) produced satisfactory agreement with test results,

however it precludes the use of the full plastic capacity

concept. Taylor et al (6.8) have eliminated this deficiency

by the formulation of ultimate strength (M u ) relationship

for hot-rolled beam as follows;

( 148-Af.0) ( Afp-m..)	 	  (6.12)

in which

ri=0.007n\I (41)(,(-A;1-0 .410 	  (6.13)ry
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This defines the slenderness range of 0<j(Mp/ME)<0.4.

Equation 6.12 has been adopted as the basis of the design

code in BS 5950 : Part 1, for hot-rolled sections in the

design of elastic lateral-torsional buckling, in which case

Mu0=Mb . This imperfection parameter n was adopted to produce

a reasonable agreement between the values of M rio and the

ultimate moment capacity Mu obtained from tests, such as

those shown in figure 6.9 for beams in near uniform bending.

In plastic design, account must be taken of the plastic

rotation requirements which may affect member stability. An

example of this problem is the inelastic deformation due to

plasticity in bending about the major axis of an I-section

caused the warping resistance to decrease more drastically

than St Venant torsional resistance. In regions of low

moment gradient, due to its greater elastic rotation

capacity, the rotation requirements are less severe than in

regions of high moment gradients. Furthermore, the effect of

reduction in the full plastic capacity must also be

accounted for.

6.3.2 Design for Lateral-Torsional Buckling of Beams With

Unrestrained Length in BS 5950: Part 1

Design methods for laterally unrestrained beams should

provide a clear relationship between the strength of the

beam and the major parameters necessary to describe the
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problem. In elastic design, the condition of member

stability is assessed simply by reference to the forces and

corresponding stresses derived from an elastic analysis of

the frame. Before the introduction of BS 5950, the stability

of the uniform members or parts of uniform members, not

containing plastic hinges, could be readily checked by using

conventional allowable stress limitations as given in BS 449

(6.30) or the design charts given in the BCSA publication No

23 (6.31) using factored loading. In BS 5950, the moment

capacity Mb as the most appropriate measure of strength is

given by;

Mb=PbSx 	  (6.14)

in which pb = bending strength allowing for susceptibility

to lateral-torsional buckling, S x = plastic section modulus

for compact section.

For the case of hot-rolled I-beams subjected to uniform

bending, Mb is calculated from the equation;

,	 2
Mb 1+ (1+n)ME/Mp)_\1[(  1+ (l+n)ME/Mp) MEIn 	 (6.15)

2	 2

which is a derivative of equation 6.12. The evaluation of

equation 6.12 is simplified through the introduction of a

lateral slenderness ratio Au (6.8, 6.9, 6.10), defined by;

1 LT=\1 (-7Z 'LT 	  (6.16)

where /LT = j(M" ) (see figure 6.10).
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202

In the absence of instability, equation 6.14 permits the

full plastic moment capacity, i.e the beam strength is

controlled by the development of full plasticity at the most

heavily stressed cross-section, thus identifying the

limiting condition of the members. However, for slender

beams, pi) , is a function of 10.

In BS 5950 Au , termed as equivalent slenderness may be

evaluated from

XLT=nuvl 	  (6 .17 )

sin which u=[(4S x2y)/( A2ti 2 ) 1 /4 is the buckling parameter,

x=0.566hs(A/J) v2 is the torsional index, y=(1-Iy/Ix),

v=[1+(1/20)(A/x) 2i-114, 1=L/ry and n is the slenderness

correction factor. A safe approximation for value of u is

0.9 for hot-rolled sections (UBs, UCs and Channels) and 1

for all other sections. Thus the use of this equivalent

slenderness caters for all the variables for loading and

restraint conditions.

The elastic buckling moment M E is related to the design

strength Mt by the Perry equation (6.11)

MElvfp
	  (6.18)

(1)B+V(4B-ME1fp)

where

14p+OILT+1)14E
"3-	 2

in which the Perry Coefficient n o for a rolled section is
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given by n=0.007[kr-°•41(72E/Py)]•

Alternatively, the determination of moment capacity 2 .% of

equal flanged hot-rolled beams in uniform bending is given

in BS 5950 by tabulations of pb=4110/s x for given values of py

(yield stress), A=L/r and x=D/T. These are based on the

approximation ;

T2 1ME m 25000000 .\[114. 1( L 1j..Aiffing
Zp	 (L/ry)2 	 20 r 'D

	 (6.20)

where Z is the plastic section modulus.

BS 5950 also provides guidance on the choice of suitable

effective length (1) values as a means of allowing for

different lateral support conditions for beams and

cantilevers. In cases where beams, or segments of beams

between points of lateral support, are subjected to non

uniform moments, direct use of the equivalent uniform moment

factor, m, described earlier as a means of comparing the

relative severity of different moment patterns in elastic

lateral-torsional buckling is permitted. This provision is

given in Clause 4.3.7.2 of the code in which the lateral

stability is checked for an equivalent moment M given by:

Nr=mArmim 	  (6.21)

in which m = 0.57+0.33/3+0.10p 2 -0.43 and
p = mmirimn,(1•0 �p � -1•0)

The design checks for lateral-stability for a beam with



204

unrestrained length can therefore be carried out in terms of

critical lengths of member between restraints. Four cases

have been identified to be under this category and they are;

(1) Uniform member with unrestrained length containing

no plastic hinge, (It),

(2)Non-uniform member with unrestrained length containing

no plastic hinge, (It),

(3) Uniform member with unrestrained length containing

plastic hinge, (Lm) and,

(4)Non-uniform member with unrestrained length containing

plastic hinge, (Lm)•

6.3.2.1 Stability of Uniform Member with Unrestrained Length

Containing No Plastic Hinge

The design for lateral-torsional buckling of a uniform

member with unrestrained length containing no plastic hinges

is given in Section 4.3 of BS 5950. The derivation of the

formulae within this clause is based on the theoretical

consideration just described. The equivalent slenderness

given in Section 4.3.7.5 (i.e., equation 6.17) is determined

first, and in this case, the value of I t, which is dependent

on the end conditions (table 9 of the code) will affect the

results via the relationship A=It/ry. Table 11 of the code

is used to find the bending strength Pb for a chosen design

strength py , once the equivalent slenderness A u has been

calculated. However, the convenient way of calculating ALT
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will sacrifice accuracy as several approximations were made

in setting up the table concerned. More accurate calculation

of Au can be carried out as described earlier and given in

Appendix B in BS 5950.

The buckling resistance moment, Mb is then calculated as in

equation 6.14 above. The check must ensure that the value of

does not exceed Mb.

6.3.2.2 Stability of Non-Uniform Member with Unrestrained

Length Containing No Plastic Hinge

A non-uniform or tapered I-beam of doubly-symmetric cross

section is designed in BS 5950 by a modification of the

rules for uniform members. This provision is given in

Section 4.3.7.5 in the code, which also refers to Appendix

B. The elastic critical moment Mt given in Appendix B is

calculated from

Ain 2E
A4— P	 	  (6.22)

A2L7Py

in which M is the full plastic moment of the section at the

point where the factored applied moment is the greatest, and

where ALT the familiar 'equivalent slenderness'. In

calculating the equivalent slenderness (equation 6.17) for

tapered members, the effective length I t is used for

calculating the slenderness A and n is a coefficient related

to the degree of tapering given by •
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n=1 . 5-0 . (A„/Alin) >1.0 	  (6.23)

in which Asm and A tm are the flange areas at the points of

smallest and largest moment.

The elastic buckling moment ME is related to the design

strength Mb of the tapered beam in the similar manner as the

uniform member by equation 6.18 and 6.19. The calculation of

Mb can also be achieved by the appropriate tables in BS

5950. When tables are used, for a given slenderness ratio X,

only the quantities of 1/x and n need to be calculated.

6.3.2.3 Uniform Member with Unrestrained Length

Containing Plastic Hinge

In the case when a design considers moments greater than

My=Z xpy , but less than N. the plastic moment, lateral

buckling is likely to occur. The code of practice BS 5950

inherently requires lateral bracing at locations where

plastic hinges are expected to occur in the failure

mechanism. Upon reaching a plastic hinge at any section, the

extreme fibres will be strained near or into the strain

hardening region.

Some of the studies of inelastic lateral buckling reported

include those of Galambos (6.12), Lay and Galambos (6.13,

6.14), Massey and Pitman (6.15), Hartmann (6.16), Nethercot

and Trahair (6.17) and Trahair (6.18).



207

Several methods exist by which the stability of members in

plastically designed structures may be ensured; and these

always result from rather different approaches to the

problem. In the US, most researchers approached the problem

by assuming that the rigidities EI y and GJ are taken to

include the values in the inelastic range as well as the

elastic range, thus the equilibrium equation for pure moment

(equation 6.1), may also be used for the plastic range.

Since for beams where plastic moments are assumed to

develop, the distances between lateral support points will

be relatively short, it has been determined (6.13) that the

term involving torsional rigidity GJ may be neglected. Thus

equation 6.1, neglecting terms with GJ becomes;

"cr -

Since Mcr must	 reach

n 2E	 T (6.24)

Mp=Sxpy for Ma..	 Also

-Fs—r y 	
L2

MI) ,	 substitute

Iw=Iyh2/4 and Iy=Ary2 .

maximum slenderness

L =

Solving equation

ratio,

6.24

(6.25)

then gives the

ry
n2E(hA) 	
2ply	 .5,

for uniform plastic moment. The extreme fibre strain will be

approaching or already into the strain hardening range; thus

the strain hardening modulus should be used instead of

modulus of elaticity E in equation 6.25. Furthermore, for

situations of non-uniform moment or other variables, the

modifed equation may be multiplied by some factors. Thus in

the US, the AISC requirement for 'compact section' was

based on the modified version of equation 6.25.
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Prior to the introduction of BS 5950 in the UK, a design

procedure for checking the stability of uniform members with

plastic hinges at the ends has been available. This design

procedure made use of design charts, the basis of which was

given by Horne (6.20). In using the charts, the uniform

member is assumed to be subjected to end moments that act

about the major axis only, the larger moment causing a

plastic hinge to form at one end. For such members subjected

to a linear moment gradient, the BCSA publication No. 23

(Horne, 6.21) gives a direct checking procedure. To use the

charts it is necessary to know the slenderness ratio l/ry,

where 1 is the length of the member being considered, and

the torsion constant T (-AGK/Z x2 ) a property of the cross

section of the member. The Constrado publication, "Plastic

Design" (6.22) also provides values of T, which are given as

properties for both the universal sections and the RSJs.

Although BS 5950 does not refer directly to this approach,

or indeed to any other methods, it effectively permits the

use of any reasonable approach. A formula is given in Clause

5.3.5 of BS 5950 for the expression for the maximum distance

between points of restraint l in as;

L,
38r

	

Y	 	  (6.26)

	

[ j: ; py 2	 1/221

[1304(275)(
x-

36)]

in which fc = compressive stress due to axial load (N/mm2)

pt,, = design strength (N/mm2)

x = torsional index
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For a beam (i.e., fc=0) of Grade 43 steel having the fairly

high value of x of 36, equation 6.26 gives a limit of 38ry,

which is in line with values specified in several overseas'

codes.

The theoretical treatment of equation 6.26 was based on the

work of Baker (6.32) in which the maximum unsupported length

is given by

Lm

	

	 	
43 ry
	 (6.27)

113100 +( 2P4Y0 )2( 3x6 )21

Equation 6.27 gives the limiting slenderness curve indicated

on design charts, as illustrated by figure 6.11. It was

shown that at a slenderness below this limiting curve, full

plastic action may be assumed in the member for design

purposes, irrespective of the ratio of end moments. Thus

equation 6.27 gives the safe permissible spacing of supports

to the compression flange whatever the ratio of end moments

and the degree of plasticity, provided there is no

destabilising force acting on the compression flange between

the support.

On the same basis equation 6.26 was derived, however taking

into consideration the higher strength of the present day

steel being manufactured.
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6.3.2.4 Non-Uniform Member with Unrestrained Length

Containing Plastic Hinge

It has been shown that for non-uniform members, the

equilibrium equation for pure moment is more complicated

than for uniform members. Due to the complicated nature of

the equation involved, the solution has been mostly

numerical (6.17, 6.18).

The approach in BS 5950 is to use the same empirical formula

given in Clause 5.3.5 (i.e., equation 6.26) but for non-

uniform members the values of r and x used are dependent on

the following rules;

(1) Where a member has unequal flanges, r y should be

taken as the lesser of the values for the

compression flange only or for the whole section,

(2)Where the cross section of the member varies within

the length L 	 minimun value of ry and the

maximum value of x should be used.

6.3.3 Design for Lateral-Torsional Buckling of Beam With

Restrained Length in BS 5950 : Part 1

6.3.3.1 Introduction

In the design of portal frames, conditions by which sheeting

rails and purlins are attached to the mainframe members are
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always encountered. Purlins attached to the compression

flange of a main member would normally be acceptable as

providing a full restraint; where purlins are attached to

the tension flange they should be capable of providing

positional restraint to that flange but are unlikely to be

able to prevent twisting. The earlier code of practice BS

449, ignored the effect of the presence of purlins and

sheeting rails in providing positional restraints and

treated the member as completely unsupported laterally

between points of support. Realising the benefit of the

presence of the purlins has led to several research projects

in the study of buckling of laterally restrained members.

A study on members with lateral restraints provided on one

flange was reported by Dooley (6.23, 6.24) in 1967. He

studied the buckling of eccentrically loaded columns

attached at intervals to sheeting rails that were capable of

providing positional restraint. His study showed that it was

practical to regard a series of discrete restraints as the

same case as continuous restraints. In 1969, Singh (6.25)

proposed an empirical method of predicting the elastic

critical buckling loads of uniform I-sections restrained at

one flange and subjected to inplane loads giving arbitrary

bending moment distribution about the major axis. In the

same year, Horne and Ajmani (6.26), reported the findings of

their study on uniform I-section columns with restraints at

intervals along one edge. This work, which gave a treatment

of the torsional buckling of columns having the major axis
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of bending varying linearly along the length of the member,

was then adopted as the basis of a design procedure (6.27).

This work was also extended to cover plastic design and in

1971 Horne and Ajmani (6.28) proposed a complete design

procedure.

The current code of practice BS 5950: Part 1, gave

consideration for members with such restraint conditions and

provided clauses for the design of uniform and non-uniform

members. The four cases which have been identified earlier

come under this category and they are covered in Appendix G

in BS 5950. Before details of each case is considered, the

theoretical approach of the work mentioned above will first

be described.

6.3.3.2. Stability of Uniform Members Restrained Along the

Tension Flange

6.3.3.2.1 Elastic Stability of Restrained Uniform Member

Horne and Ajmani (6.26, 6.27) presented an expression for

the critical length of a laterally restrained uniform beam

under its yield moment My, as;

1	 Tc2E/
My= GLT+ -E (a 2 4. d2

	  (6
2a	

.28)

	

L,r2	 4

where a=a 1 -1-c1/2, the distance between the centroid of the



{1+0.75(1- tt)1(14.)
d	 d

(--41+0 :25(1 -	 .226( tf )(1+ tf)
d	 d

Lc

r
r=3.27 	 (6.29)

1/2
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section and the axis of restraints. The loading condition

considered (figure 6.13) was for a symmetrical I-section
eras

memberksupported against lateral deflection in both flanges

and subjected to uniform moments. The ends are assumed free

to rotate about the minor axis of the section with no

restraint against warping. Also the section is assumed to be

restrained by the rails at intervals of s along the axis AB

and the ratio of a/d is 0.75.

The value of Lcr can be derived entirely in terms of non-

dimensional geometric constants D/t v d/b and titf • By

taking G/E=0.4 and assuming only the economic UB section,

i.e d/b=2.5 and t w/tf=0.6, the expression for kr becomes,

where r is the minor axis of gyration.

The critical slenderness ratios calculated from equation

6.29 for values of D/tf covering the full range of UB

sections for f=250 N/ mm 2 and 350 N/mm2 are given in figure

6.14. Singh (6.25) also obtained a similar curve, however,

his results gave slightly higher values since he used a

different expression for the torsion constant J. These two

sets of curves are shown in figure 6.14.

An empirical expression for the elastic critical slenderness

ratio is given by Horne, Shakir-Khalil and Akhtar (6.29) as;



Lcr _ 8.0+150 ( fyi E) (DI tf) 
ry [4.4 (fy/E) (DI tf)2-1]'/2

	  (6.30)
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	 (6.31)

They stipulated that equation 6.30 is easier to use than

equation 6.29 and gives results, which are in close

agreement.

An elastic design procedure for design of a restrained

column similar to figure 6.13 loaded by axial thrust P and

terminal moments M; and mx" was proposed by Horne and Ajmani

(6.27). The design criterion was that the yield stress

should not be exceeded in the extreme fibres anywhere in the

member. The criterion is satisfactory on condition that

P+fx/ .Py

P+fx" . Py

where p is the mean axial stress, C I and f: are the major
axis bending stresses at the ends and p y is the yield

stress. In this case, fx 1 =Mx . /Z x and f:=M:/Z x , where Z x is the

elastic section modulus about the major axis.

In this design procedure, the applied non-uniform major axis

moment is replaced by an 'equivalent' uniform moment Mx=AMxl.

The value of A is chosen so that, under a given axial thrust

P, the elastic critical load will be reached under unequal

terminal moments AM; and AM: or a uniform major axis moment

AMx where A is the load factor. It was shown (6.26) that the

equivalent uniform moment factor A depends only on the ratio

of terminal moment 13 and a non-dimensional quantity a, which
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expresses the ratio of net torsional rigidity about the axis

of restraint. This relationship shows that as a approaches

a large value, the member tends to fail by pure torsional

buckling in the immediate vicinity of the larger terminal

moment and p=1 for all values of p.

The maximum allowable stress on the member is calculated

taking into consideration the effect of magnification of

lateral displacements and the bending stress f o due to

initial imperfection. This method of elastic desicgn ex‘ahle.s

members to be designed with any ratio of end moments, but

when a hinge exists at one end, the method fails to give

results as the ratio of end moments approaches +1. This is

because, as the critical uniform moment is approached, it is

impossible to attain full plasticity at or near the end

because of the destruction of lateral stiffness due to the

spreading of the plastic zone along the member. Therefore,

the design method leads to zero permissible slenderness

ratio when 0.7<p � 1.00, whatever the axial thrust may be.

The approximate design criterion for uniform moment after

considering the typical sections of Universal Beams can be

given by

(Py-fx)

2p4 1010r )

[	 til  /  220- 0.065py-30006
100r)

(6.32)
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Singh (6.25) had developed a satisfactory method of

calculating the critical elastic buckling conditions for a

restrained uniform member, subjected to non-uniform moment,

in the absence of axial load. He considered the elastic

extreme fibre stresses f i , f2 , f3 , f4 and f5 due to applied

moments M i , M2 , 143, M4 and M5 respectively at 4 equal

intervals as shown in figure 6.15(d), where M1 and 145 are the

moments at the ends, M3 is the moment at mid-length and M2

and M4 are the quarter point moments. A factor k is

calculated where

1k —  
12py

[f1 +3f2 +4f3 +3f4 +f5 +2 ( f s — fEina,)] 	 (6.33)

The elastic stresses f smax and fEmx are the maximum span and

end stresses, respectively. The stresses f l to f5 , and fsmax

and f mx are positive if they correspond to compression in

the outstand flange, otherwise they are zero. Similarly, the

quantity ( f5- f Emax) is only included if it is positive. In

this analysis, if Lcr is the critical buckling length of a

member subjected to a uniform moment producing extreme fibre

stress of py , then the critical buckling length for the

given moment distribution is L' cr where

	  (6.34)
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6.3.3.2.2 Plastic Stability of Restrained Uniform Member

The design criterion established earlier (6.26, 6.27) was

not suitable for plastic design. Horne and Ajmani (6.28),

then investigated the elastic plastic post-buckling

behaviour of I-section beams and columns, laterally

restrained near one flange and subjected to a uniform major

axis bending moment, using the concept of a complex plastic

hinge situated at mid-height of the column. By considering

also the elastic response curve in the presence of initial

imperfections, they derived a complete elastic-plastic load

deformation relationship.

The relationship between the applied moment M and the angle

of twist 0 of the central section of a beam, provided with

lateral restraints at a distance a from the shear centre of

the beam is shown in figure 6.16. This is based on the

assumption that the material of the beam has an elastic-pure

plastic stress-strain relationship and that the beam has an

initial central twist of 0co• The maximum moment attained in

this case is denoted by Mf . Because of strain-hardening, an

actual beam would have a moment versus central twist curve

AJK, with a peak moment Mj greater than Mf.

Theoretical calculations for curves AGFH and AJK are

difficult, but the two curves AGC and DB, intersecting at E

are more readily obtained. AGC represents the elastic

behaviour of the beam with initial central twist while
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DB is the 'plastic mechanism curve' obtained by assuming the

formation of a plastic hinge at the central section with no

spread of plasticity and no initial twist. The relationship

AEB would therefore present the behaviour of an idealised

elastic-plastic beam having initial central twist 0„ in

which plasticity was confined to the central section. The

moment Me at E, although should be higher than M f , is closely

related to it and to M. The extent to which M e falls below

M is a good measure of the importance of instability. It

was then established that a suitable criterion to be used

for a beam in a plastically designed structure is that Meat

intersection point E should not be more than 4% short of Mp.

Using the same type of analyses presented by Horne and

Ajmani (6.28) for the derivation of both the plastic

mechanism and elastic response curves for a restrained I-

section member subjected to uniform moment and axial load,

and with some approximations, the limiting slenderness ratio

Iiii/ry at the point E such that Mc=0.96Mp , can be established.

Lower limiting slenderness curves applicable to loading in

the plastic range with any ratio of end moments p are also

derived by considering post-buckling behaviour. In producing

design charts it is again assumed that a/d is 0.75. Using

this value, then the limiting slenderness between restraints

to the compression flange while allowing plastic action is

given by



Lm[5.4+0.7( P
4
I'
02 

)]X

ry	x 2( p

\IR12.3)1240)-1.1

(6.35)
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(6.36)

Assuming grade 43 steel, then equation 6.35 becomes

Lm_ 	 6.1x 

rY NI{(1:.3)2-1]

A typical example of the resulting design chart is shown in

figure 6.17.

6.3.3.3. Stability of Non-Uniform Members Restrained Along

the Tension Flange

6.3.3.3.1 Elastic Stability of Non-Uniform Members

Restrained Along the Tension Flange

The theoretical approach in the study of stability of non-

uniform members restrained along one flange has been mainly

concentrated on the tapered and haunched members of portal

frames. The haunch member in a portal frame is normally

three-flanged (figure 6.12), and Horne and Morris (6.33)

studied the stability of these types of haunched members and

the two flanged member as shown in figure 6.18. It was shown

that treatment for a three-flanged haunched member is more

complicated and that it was safe to assume two-flanged

members in the design.
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In their study of the two-flanged case, it is assumed that

restraint is provided at intervals along the flange AB in

figure 6.18 and the outstand flange is laterally restrained

at points C and D, or point E. They assumed the design

condition in equation 6.32, and referred to the deepest

section of the haunch rafter for the relevant geometrical

properties and k is calculated from equation 6.33, based on

the induced compression stresses in the outstand flange.

This approach involves many assumptions, especially in using

equation 6.33 to calculate for the value of k and equation

6.34 to obtain the elastic critical length L'cr.

Horne, Shakir-Khalil and Akhtar (6.29) considered the

elastic critical behaviour of tapered and haunched I-beams

with the restraints as shown in figure 6.15(a). The beam has

a length L, of which a uniform depth dl extends over the

length q'L. The depth of the beam increases uniformly to d2

over the haunch length qL. The ratio of the deeper depth to

the shallower depth is defined as r (i.e r=d2/d1). For

tapered beam as shown in figure 6.15(c), the same notation

is used but q'=0 and q=1.

A moment varying uniformly from M at the shallower end to PM

at the deeper end was applied to the beam. It was assumed

that the beam was free from imperfection and that the cross

section of the original shape is retained during buckling.

Another assumption made was that the value of I x was much

greater than I enabling the effect of curvature about the
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major axis to be neglected. The end conditions of the beam

prevented lateral displacement and rotation about the

longitudinal axis, but allowing freedom to warp and rotate

about the minor axis.

The beam is restrained at intervals along the length against

lateral displacement, with the axis of restraints being at

a distance a l from the tension flange. It was also assumed

that for a non-uniform member under non-uniform load, the

effect of discrete lateral support is the same as for

uniform member under uniform moment. This is with the

provision that the supports are placed at sufficiently close

intervals to prevent unrestrained lateral torsional buckling

between supports.

From the assumptions and the approximations made, terms and

expressions (6.29) for the buckled state of the beam were

presented. The governing differential equation for twisting

about the restraint axis was established by equating the

internal resistance of the section of the beam to the torque

due to the applied forces. By further differentiation and

arrangement, the differential equation in equation 6.37 was

arrived at.
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[bi + (z-eL) tana] 2 d 4 4) +[B[bi + ( z-griL) tana] tanal d24)
2 i	 1 de	 dz2

d2(1)+N1+ L12-ilL2) [fl + (z-grI.L) tana] - [ C1+kw(z-crIL)]]
dz 2

z)tana+
B- 	 k1)[1,1+,z_

qIL) tana] -kd-c-1.42 +1y1)=0+Ni+132-2:—L,
L	 az
	  (6.37)

Horne et al (6.29) solved equation 6.37 by the finite

difference method and they checked the results for validity

with results obtained from energy solution using fourier

sine series. It was shown that the greatest difference

between the results was 1.3% and hence they concluded that

manner in which the finite difference procedure was applied

was regarded as satisfactory.

By using this finite difference procedure, Horne,

Shakir-Khalil and Akhtar presented a semi-empirical method

to calculate the permissible length of the restrained

tapered and haunched beam.

In the semi-empirical method presented, the maximum stable

length Ls' of a haunched beam can be expressed as:

where Ls is the reference length, equal to the maximum

stable length of a uniform beam subjected to a uniform

moment with a section equal to the base section. It

represents either the length for elastic critical buckling

or the limiting length for plastic action. The factor c
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allows for the variable section of a tapered or haunched

member and the factor k allows for arbitrary distribution of

bending moments.

In using equation 6.38 for checking against lateral

instability, the length Ls is made equal to the critical

buckling length Lcr and in this instance, equation 6.30 can

be used.

The shape factor c is a ratio of the elastic critical length

of a haunched or tapered member, subjected to a moment just

sufficient to cause yield in the extreme fibres at each

cross-section, to the critical length Lcr of a uniform

member of the base section subjected to a uniform moment

just sufficient to cause yield at its extreme fibres. Horne,

Shakir-Khalil and Akhtar solved the differential equation

for torsional buckling of a haunched beam by the finite

difference method. After successive approximations, the

value of c can be expressed by an empirical equation;

3 c=l+ 	  (r-1)213F2- 	  (6.39)
(D/ tf) -9

The coefficient k in equation 6.38 depends on the bending

moment diagram of the beam concerned. The expression to

obtain the value of k, which was used by Horne,

Shakir-Khalil and Akhtar (6.29) was adopted from the

empirical method used by Singh (6.25) for uniform members

discussed earlier. The expression for uniform members can
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also be written in the form;

1	
k-	 [M,+3M2+4M3+3M4+M5+2(Msmax-Mena„)] 	  (6.40)12Md -

where, M1 , M2 , M3 , M4 and M5 are values of bending moments at

the ends, quarter points and midspan, Msnm is the maximum of

the span moment 112 , M3 , and M4 and Menm is the greater of the

end moments M i and M5 . For elastic critical loads, Md is the

yield moment My and when considering plastic design Md is

the plastic moment Mp. In evaluating k from equation 6.41

only moments producing compression in the outstanding flange

are included, with the rest taken as zero. Furthermore the

term (Ms -Me ) is only considered when Ms >Me .ffk3X	 MaX

For haunched and tapered beams, equation 6.40 was modified

to allow for the variation of Md along the beam. Hence the

expression for k for a tapered or haunched beam is written

as;

k. [ MI. 3M2 4M3 3M4 + M5 
+ 2'(
	 ( Me

12 Mdi M 	 Md4 Md5	 Mds -Mde)
	 (6.41)

where Mcm , Md2 , Ma, Md4 , and M5 are the values of My or Mp at

the section corresponding to the moment M1 , M2 etc.

6.3.3.3.2 Plastic Stability of Non-Uniform Members

Restrained Along the Tension Flange

In the case of maximum permissible length fin of a haunched
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beam for plastic design, Horne et al (6.29) suggested the

following equation

Lm
m = 	 	 (6.42)

c/k

The value of Lim is obtained from the limiting slenderness

ratio they proposed and is given by

Lm	 (5 . 4 +600Fy/E) (D/ t) 

ry [ 5.4 (fy/E) (D/tf) 2_11 1/2 	 (6.43)

In the evaluation of k, eqution 6.41 can be used. The factor

c is determined from equation 6.39.

Experimental confirmation of equation 6.43 was limited to

cases where plastic hinges formed at the haunch/rafter

intersection while the moment at the springing of the haunch

does not exceed the yield value. If a plastic hinge is

allowed to form within the taper, it is difficult to ensure

satisfactory plastic rotation capacity because of

sensitivity to instability of deepened I-sections. In order

to develop a plastic hinge at the haunch/rafter

intersection, full depth web stiffeners are required in that

position. This was confirmed by Morris and Nakane (6.34).



226

6.3.3.4 Design of Members with Restrained Length in

Accordance with BS 5950: Part 1

6.3.3.4.1 Design of Uniform Member with Restrained Length

Containing No Plastic Hinge in BS 5950: Part 1

The elastic design of laterally restrained Universal Beams

is given in Clause 5.5.3.5 in BS 5950 : Part 1. This clause,

which deals with rafter stability considers restraints

provided by the purlins. The clause states that where the

tension flange is restrained at intervals, the maximum

length between restraints to the compression flange L t (as

shown in figure 6.19) may be conservatively taken as

Klryx

(7 2x2-1 0 4)1/ 2

for grade 43 steel, or

	 ( 6 .44)

K2IyX

( 9 4X2 -10 4 ) 1/2
	  (6.45)

for grade 50 steel.

In equation 6.44 and 6.45;

r is the minimum radius of gyration of the raftery

section,

x is the torsional index of the rafter section, and

Kl and 1<2 have the following values;

Depth of haunch/depth of rafter

= I;	 Ki = 620,	 1<2 = 645

= 2;	 K = 495,1	 K2 = 515

= 3;	 K= 445,1	 K2 = 465
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This clause however is valid only for the following

conditions;

(1) the rafter is a UB section,

(2) the haunch flange is not smaller than the rafter

flange,

(3) the depth of haunch is not greater than 3 times the

depth of the rafter,

(4) the buckling resistance is satisfactory when checked

by clause 4.3 using an effective length It equal to

the spacing of the tension flange restraints.

However, where conditions of equation 6.44 or 6.45 are not

met, or where conditions provided other than those mentioned

in the clause, then Appendix G in BS 5950 should be referred

to.

The provision of clause 5.5.3.5, specifically the derivation

of the empirical equations 6.44 and 6.45, was based on the

work of Horne and Ajmani (6.26, 6.27) based on inelastic

stability, as given in equation 6.35. In the case of grade

43 steel, equation 6.36 was simplified and made more

conservative.

When reference is made to Appendix G in BS 5950, the code

specifies for elastic stability of uniform members

F	 3? ,..,
	  (6.46)

PC Mb

In the absence of axial load, the condition of elastic
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stability becomes M�Mb . This condition is then similar to

the basic condition laid down in clause 4.3.7.7. However, in

this case the equivalent uniform moment is M=mtMA where, mt

is the equivalent uniform moment factor (clause G.3.4) and

MA is the maximum moment on the member or portion of the

member under consideration. The value of m t which is a

measure of severity of the loading is taken as 1.0 when

intermediate loads are applied between the effective

torsional restraints, otherwise it must be obtained from

table 39 of the code. This value of m t is different from the

value in given in clause 4.3.7.6 for unrestrained members.

The determination of buckling resistance Mb is based on

mb=Pbsx which is also general to the problems of lateral-

torsional buckling covered by the code. However, due to the

effect of the lateral restraint on the tension flange, the

calculation of the bending strength pt, is also determined in

accordance with clause 4.3.7 except that the equivalent

slenderness should be taken as 1TB and this is given in

clause G.3.3. The expression for values of An is as follows;

1. 773=n tuvt cl. 	  (6.47)

where the factors;

nt is the slenderness correction factor taken as 1.0

where there are no intermediate loads, or given by

Clause G.3.6

u is a buckling parameter, taken as 0.9 for U.Bs and 1

for tapered members;

vt is a slenderness factor given in equation 6.42
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c is the shape factor which is taken as 1 for uniform

members

A is the slenderness L/r between the member's effective
Y

torsional restraints.

The expression for v t is as follows;

4a/ hs 
CV i

1+ (2a/ hs) 2 +1/ 20 (1/x) 2

11/2

	  (6.48)

where, x is the torsional index for the section, the value

of which is obtained from section B.2.5.1 of the code or

from published tables. The value is close to D/t f (i.e D is

equal to overall depth of the section and t f is the

thickness of the flange),

a is the distance between reference axis to

restraint axis, and

hs is the distance between the shear centres of

the flanges.

Thus it can be said that the provision of Appendix G for

design of uniform members with restrained tension flange

containing no plastic hinge is to a large extent based on

the design criterion in the theoretical treatment by Horne

and Ajmani (6.26, 6.27).

6.3.3.4.2 Design of Non-Uniform Member with Restrained

Length Containing No Plastic Hinge in BS 5950 :

Part 1

The elastic design of tapered members with restrained length
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is covered in Clause G(a)(2). The condition at any section

of the beam given in the clause is

FM
—A +—Sx �Pb 	 (6.49)

where, F is the applied axial load where present

M is the applied moment at the section considered

A is the cross sectional area under consideration

Sx is the plastic modulus at the section considered

pb is the lateral-torsional buckling resistance

A similar method is used for the calculation of the factors

for calculating Pb as for uniform members, however, in this

case the tapering effect is considered. The subsequent

computation for the values of Pb, which consider the

variation in the value of yield moment due to the tapering

shape, made use of expressions which have been based on the

work of Horne et al (6.26, 6.27, 6.28, 6.29) and Singh

(6.25).

A haunched member with ratio of depth of haunch/depth of

rafter equal 2 or 3 can also be designed using clause

5.5.3.5 discussed earlier. The relevant values of K i and 1(.2

are used in equations 6.44 or 6.45 in accordance with the

code.

6.3.3.4.3 Design of Uniform Member with Restrained Length

Containing Plastic Hinge in BS 5950 : Part 1

The conditions for plastic stability covered in Appendix G
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in clause G.2(b) apply to restrained members which contain

plastic hinge locations. For uniform members, clause

G.2(b)(1) or (2) are applied. Thus for lengths without

lateral loads clause G.2(b)(1) specifies;

Lk 	 M  )1/2

L,- 	  (6.50)
FCAMpz.+aF

where; Lk is the limiting length,

is the equivalent uniform moment factor,m t

Mp =pySx

PyS X (Sm is the reduced plastic modulus due toMpr =

axial load)

applied axial load where present

a distance between reference axis and restraint axis

The expression for Lk is the same as equation 6.43 proposed

by Horne et al (6.29). They also suggested that the effect

of an axial force on the stability of the member may be

allowed for by adding P(a1+d/2) to the moments M1 , /42 ...145 in
equation 6.40. It is quite difficult to pinpoint exactly

where the equation in clause G.2(b)(1) originated from.

However, it is mainly based on the theoretical treatment by

Horne et al mentioned earlier.

For lengths with lateral loads clause G.2(b)(2) specifies;

where;	 Lt is the maximum permissible length

Lk is the limiting length calculated for the
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smaller section (i.e., given in equation 6.43)

is the taper parameter or the shape factor

nt is the slenderness correction factor

It can be seen that this clause is entirely based on the

work of Horne et al (6.29). Equation 6.51 is the same semi-

empirical approach they suggested (equation 6.42), while the

taper parameter c is given in equation 6.39. The slenderness

correction factor nt is the same as the square root of

equation 6.41 which they proposed.

6.3.3.4.4 Design of Non-Uniform Member with Restrained

Length Containing Plastic Hinge in BS 5950:Part 1

Appendix G of BS 5950 specifies that plastic stability for

a tapered member with restraint along the tension flange is

to be designed by clause G.2.(b)(2). The way in which this

clause is applied and its origin was described in the

previous section.

6.3.4 Conclusion

An assessment of the clauses related to lateral-torsional

buckling found in BS 5950: Part 1, is made. The approach to

the generalised method of design for lateral-torsional

buckling was discussed on the basis of a real beam. Clauses

related to unrestrained members were discussed in the light

of the generalised method of design. Particular attention is
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given to Appendix G in which the stability of members

restrained along the tension flange is treated. It was shown

that the contribution of Horne et al (6.26, 6.27, 6.28,

6.29) in the development of the clauses in Appendix G is

tremendous.
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Figure 6.2 Buckling of a Beam with a Central Transverse Load
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Table 6.1 Various cases for member between restraints in

BS 5950 : Part 1
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Table 6.2 Equivalent Uniform Moment Factors, m,
for Simply Supported Beams
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CHAPTER 7

7.0 Assessment of the Lateral Stability Clauses in BS 5950

7.1 Introduction

The basic design principles and the clauses for lateral

stability in BS 5950 have been presented in chapter 6. In

this chapter those stability clauses discussed earlier are

assessed by the Finite Element "SPACE" computer programme,

described in chapter 4.

The assessment is divided into three parts. The first part,

deals with the design for lateral stability of prismatic

sections. In this part, five different types of universal

beam were chosen for the analysis and the details of the

properties of the sections selected are given in table 7.1.

The second part of the assessment, deals with the design for

tapering members. In this case, beam specimens shown in

table 7.2 were investigated by considering a linear moment

distribution with zero moment at one end.

The third part of the assessment, considers the design

clauses for beams with restrained tension flanges and

unrestrained compression flanges as given in Appendix G. In

this assessment, both the cases of prismatic sections and

haunched sections were considered. The section properties of
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the beam specimens considered is as shown in table 7.2.

In the assessment by Finite Element Method, a 10-element

model was used for the analysis of uniform members, while a

20-element model was used for the analysis of tapered and

haunched members. The design strength of P y=275 N/mm2 was

used in all the calculations.

7.2 Assessment 1: General Clause for Lateral Buckling of

Prismatic Members

In this section the design of five unrestrained prismatic

members consisting of selected universal beams with

properties shown in table 7.1 was considered. The following

design cases were studied;

(1) simply supported beam with uniform bending moment,

(2) simply supported beam with moment gradient,

(3) simply supported beam with destablising concentrated

load at the centre,

(4) cantilever with destablising load at the free end.

7.2.1 Design of Simply Supported Beams with Uniform Moment

A simply supported beam with uniform moment was used for the

basis of design in BS 5950 for lateral stability of a beam

with other loading conditions. It has been shown in the
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previous chapter that the beam moment capacity Mb is

calculated in BS 5950 using the relationship between the

elastic critical moment, Mur and the full plastic moment M.

Imperfections were considered in the design formulation by

the introduction of an imperfection parameter n, which was

adopted so as to produce reasonable agreement between the

values of Mb and the ultimate moment capacities M u obtained

from tests. Assessment in this section will therefore be

used only to prove that point.

Analyses were conducted for the universal beam section shown

in table 7.1. by BS 5950 and the Finite Element Method.

Details of the calculation are given in Appendix 3.1. and

the graphs of strength against slenderness ratio Wr y for

all the beams considered are presented as shown in figures

7.1. to 7.5.

The curves in figures 7.1. to 7.5. follow a similar pattern

indicating the consistency of the results obtained by both

methods. Since the Finite Element curve gave the basic

formula for lateral torsional buckling, it shows that the

design curve gave more conservative results due to the

consideration of material imperfection and residual stresses

in the design expressions.

7.2.2 Design of Simply Supported Beam with Moment Gradient

For a simply supported beam with moment gradient, BS 5950
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gives a condition that the equivalent uniform moment M must

be less than the buckling resistance moment Mb . The value of

M was obtained by multiplying m, equivalent uniform moment

factor to the value of the maximum moment on the beam under

consideration.

For each of the beams shown in table 7.1., the moment

capacity and buckling moment for different lengths were

calculated for beams with moment gradients in accordance to

BS 5950. The moment ratios p=0.5 and p=-0.5 were considered

in the calculations. An example of these calculations are

shown in Appendix 3.2.

The beams were also analysed by using the Finite Element

computer programme. For moment ratio (3=0.5, modelling for

this effect was achieved by applying an initial moment of 10

kN.cm at one end and -5 kN.cm at the other. Modelling for

moment ratio p=-0.5 was done by applying the initial moments

of 10 kN.cm at one end and 5 kN.cm at the other end.

The results of the critical moments in the analyses by both

methods are shown in figures 7.6 to 7.10. Figures 7.6 to

7.10 show similar a pattern of behaviour for all the beams

under consideration. Based on the moment ratio given in

table 18 of BS 5950, it can be seen that the results of the

design curve with p-o.5 gave a generally higher strength

capacity. This is due to the smaller value of in (i.e., 0.43)

given in table 18 of the code that resulted in a higher
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value of modified slenderness. The whole curve seems to have

been shifted due to this factor. In the case of p=0.5 the

design curve adopted the value of m=0.76, however the

reciprocal of this gave a smaller value for the modified

slenderness.

Comparing the Finite Element curves with that of the design

curve when P=0.5, it shows that the design curve gave a

lower strength than the F.E.M. However, for p=-0.5, the

values of the modified slenderness more than 1.2, the design

curve gave a higher strength when compared with that of the

F.E.M.

It can be concluded that for all the cases of beams with

moment gradient p=0.5, analysis by BS 5950 gave safer

results for short beams but as the beam gets longer the

results seem to be the same as F.E.M. In P=-0.5, analysis

by BS 5950 gave a safer design for shorter beams but as the

beam gets longer F.E.M. gave safer results.

7.2.3 Simply Supported Beam with Destabilising Concentrated

Load at the Centre

Calculations of the buckling moment capacity for the case of

a simply supported beam subjected to destablising transverse

load at the top flange were carried out for different

lengths of beam shown in table 7.1.
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Clause 4.3.5. of the code stated that the length L used in

the calculation of the moment capacity was to be increased

by 20%. Clause 4.3.7. stated that for a member subjected to

destabilising load, both the values of the factors m and n

used in the calculation must be equal to 1. An example of

the calculation is shown in Appendix 3.3.

The beams were also analysed by Finite Element computer

programme. The models for the analysis use the same boundary

conditions as the above cases. In this case, the load was

applied at the top flange of the beam model.

Results of the analysis by method of the code and that of

Finite Element are presented in figures 7.11 to 7.15. The

strengths of the beams were presented by dimensionless

moment Mb/Mp and Me/Mp in the Y axis and against the

modified slenderness /(Mp/Me) in the X axis.

It can be seen in all the cases considered that the BS 5950

curves for Me/Mp are in exact agreement with that of the

Finite Element curves for Me/Mp. The design curves for Mb/Mp

showed lower moment capacity than that of the Finite Element

Method thus providing allowances for the effect of yield and

geometrical imperfection of the strength of the real beam.
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7.2.4 Cantilever with Destabilising Load at Free End

Calculation for the buckling capacity for a cantilever beam

subjected to destabilising load at the free end were carried

out for different lengths of beam sections shown in table

7.1 by the method of BS 5950 and by the Finite Element

Method.

Cantilevers which are free to deflect laterally and twist at

the unsupported end are treated by clause 4.3.6.2 BS 5950 as

equivalent beam with transverse loads. However, the length

used in the calculation for the moment capacity is increased

by 150%. Further, as given in clause 4.3.7.6. the values of

the factors m and n used in the calculation must be equal to

1. An example of the calculation by the code is given in

Appendix 3.4.

The Cantilevers are also analysed by the Finite Element

computer programme. The boundary conditions used for the

model were that the fixed end was completely fixed (i.e.,

zero displacement, rotation and warping) and the free end

was free to displace and rotate in the x, y, and z

directions, and was free to warp. An initial load of 10 kN

was applied at the top of the flange at the free end.

Results of the analysis by the method of BS 5950 and that of

the Finite Element are presented in figures 7.16 to 7.20.

The strengths of the beams are presented by dimensionless
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moment ratios Mb/Mp and Me/Mp on the vertical axis and

against the modified slenderness /(Mp/Me) on the horizontal

axis.

It can be seen that the results are similar to the previous

case. The BS 5950 curves for Me/Mp are in exact agreement

with the Finite Element curves for Me/Mp. The design curves

for Mb/Mp showed lower moment capacity than that of the

Finite Element Method thus providing allowances for the

effect of yield and geometrical imperfection on the strength

of the real beam.

7.3 Assessment 2: The General Clauses for Lateral Stability

of Unrestrained Non-Uniform Member

In this section, the design of haunched beams without

restraints, in accordance with BS 5950 was assessed by the

Finite Element computer programme. The geometry of the

haunched beams considered in this analysis are shown in

table 7.2.

A total of 30 haunched beam specimens from 5 different base

universal beams were analysed by method of BS 5950 for

lateral stability. Calculations were made for different

lengths of haunched beams for each beam specimen with major

axis bending moment acting at the larger end and zero moment

at the smaller end.
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In the BS 5950 rules, only the geometries of the large end

and the small end of the beam are considered. Therefore,

results in the graphs can only be produced one for each case

of ratio of depth of large end to shallow end, r (i.e., r=3

and 2). Furthermore the rules in BS 5950 do not

differentiate the values of q, the ratio of the tapered

length to the total length. An example of the calculation by

the method of the code is shown in Appendix 3.5.

In the assessment by the Finite Element method, the

different lengths of the haunched beam shown in table 7.2

were analysed. This analysis required the use of a 20-

element model in order to obtain accurate results since the

beam model contained two parts, namely the uniform section

and the tapered section. The beam was assumed to be simply

supported with its ends restrained from rotation about the

X axis but free to warp. An initial bending moment of 100

kN.cm was applied at the larger end only.

The results of both analyses are presented in the form of

the graphs of critical moment against length shown in

figures 7.21 (A and B) to 7.25 (A and B). It can be see that

all the design curves gave lower buckling moments compared

to those given by the Finite Element Method. This was due to

the considerations of materials and beam imperfections in

the design formulae.

The design and the F.E.M. curves were used to find the
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critical length of the haunched beam. This was done when the

critical bending moment to cause yield at the point of

intersection of the tapered part and the uniform part were

known. Based on a linear distribution of moment (figure

7.26), the moment at the larger end to cause buckling can be

calculated by simple geometry. It shows that by this method,

for the same type of base section (i.e., same yield stress)

the factor of q will control the critical moment. This is

shown in table 7.3 where the buckling moments are highest

when q=0.6 and lowest when q=0.3.

The values of the critical lengths for all of the beam

specimens considered are given in table 7.3. This shows

that, for all the cases considered, the cases when r=3 gave

a percentage error between 30% to 40%. Whereas for the cases

Ihen m=2, the error is in the lower region of 16 to 20%.

The results show that there is a linear decrease in

percentage error with decrease value of q (the ratio length

of tapered section to the total length) for the same value

of r. In simple terms it can be said that longer critical

length can be achieved if the value of q is small for

haunched beams with the same value of r. On the other hand

the results show that beams with the same value of q but

with smaller value of r give a longer critical length for

the analysis by BS 5950 while the Finite Element results

show otherwise.
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7.4 Assessment 3: The Assessment of Appendix G

In this section the design of both prismatic and tapered

sections with restraints to the tension flange designed in

accordance with Appendix G of BS 5950: Part 1 were assessed

by the results of the Finite Element methods.

The first part of this section deals with 12 different types

of universal beams subjected to moment gradient, with fl=0.5

and with restraints on the tension flange.

The second part deals with 30 haunched specimens with

restraints to the tension flange which were designed in

accordance with Appendix G of BS 5950 and whose results were

compared with F.E.M..

The third part deals with the assessment of Appendix G by

comparison with clause 5.5.3.5. of BS 5950.

7.4.1 Analysis of Prismatic Sections in Accordance with

Appendix G and F.E.M.

Twelve different universal beams with properties shown in

table 7.4 were analysed by Appendix G for the cases of

loading shown in figure 7.26. In the analyses the beams are

assumed to be restrained laterally at both ends but free to

warp. The tension flanges are restrained laterally by the
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presence of the purlins. The beams are subjected to bending

moment gradient with the moment ratio of the smaller moment

to the greater moment at the ends, p=0.5. An example of the

calculation with the help of a mathematical software package

(7.1) for the critical length for elastic and plastic

stability is shown in Appendix 3.6. A similar analysis was

also carried out by a computer programme "APG8" that was

written by Engel (7.2) specifically for design by Appendix

G.

The beams are also analysed by the Finite Element computer

programme. In this case the boundary conditions used for

each model were that the ends were restrained from rotation

but free to warp. The tension flange was restrained by

"restraint elements" spaced at regular intervals. Different

lengths of beam specimens were analysed for which the

results are presented graphically showing the predicted

critical moment against length of the specimen. From these

graphs the critical length at a moment equal to the yield

moment of the beam can be obtained.

Results of the critical length by the methods mentioned

above are given in table 7.5. In table 7.5, it is shown that

both the results of calculation by computer programme APG8

and by the mathematical software (i.e., appendix 3.6) gave

similar results and are consistent. This finding verified

the programme "APG8". Comparing the results of the elastic

stability analysis by Appendix G with that of Finite Element
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Method, the error is between 39 to 53% for all the cases

considered. There is also no correlation between torsional

index D/t with that of the percentage error.

Figure 7.27 shows the second moment of area about the minor

axis, (Iy), plotted against the critical length at which

buckling occurred, for both the results of Appendix G and

Finite Element method. It shows that there is a good

relationship between I. and the critical length for the

values of I greater than 1000 cm 4 . For values of I less

than this, the relationship was not so good.

7.4.2 Analysis of Restrained Haunch Members by Appendix G

and the Finite Element Method.

7.4.2.1 General

Five universal beam base sections with six different taper

parameters making a total of 30 haunch beam specimens were

analysed in this section. Details of the beam properties are

shown in table 7.2. In the analysis values of fy=250 N/mm2

and E=200x103 N/mm2 were used.

The beams were analysed by the method of Appendix G and the

Finite Element method. Results of analysis by Finite

difference method obtained by Horne et al (7.3) on similar

types of haunch specimen are presented for comparison.



259

Analysis of an alternative method to Appendix G i.e., clause

5.5.3.5 was also conducted and results were compared with

those given by the Finite Element method.

7.4.2.2 Analysis of Haunched Beams by the Method of

Appendix G

Based on the provision of Appendix G of BS 5950: Part 1,

critical lengths of the beam were calculated using the

computer program "APG8" and by the calculations shown in

Appendix 3.7. In the calculations the haunched beam

specimens were divided into 29 sections and the stresses at

each section of the haunched beam were calculated. A

critical length was met when the applied stress at one

section exceeded the allowable buckling stress at that

particular section. The method of calculation for the

applied stress and the allowable buckling stress is given in

the previous chapter. In the calculation, the applied moment

at the larger end of the haunched beam was known. This

loading condition was represented by considering the

haunched member to be subjected to moment varying uniformly

from zero at the small end. A common design situation was

one in which the yield moment /#1, of the base section was

just reached at the junction of the uniform and tapered

parts. By simple geometry, the values of the bending moment

at the larger end of the beam can be calculated when the

yield moment was known.
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The results of the analysis by method of Appendix G for the

haunched beams for elastic stability are given in table 7.6.

7.4.2.3 Analysis of Haunched Beams by the Finite Element

Method

Finite Element analysis was also carried out on the beam

specimen by using the SPACE Finite Element computer

programme. The beam was modelled with restraints provided at

intervals along the top flange A.B. shown in figure 7.28.

The effective point of resistance is a=0.75xD min . Points G

and E of the outstand flange were also restrained from

lateral displacement. The minimum number of elements used in

the modelling was 20 and, depending on the value of q, the

number of equal lengths of element allocated for the tapered

parts were at least 12. The sectional properties of the

elements were based on two flanges, ignoring the presence of

middle flange in the tapered region. An initial moment of

100 kNcm was applied at the first node at the larger end of

the specimen. This caused tension at the top flange and

compression at the bottom flange.

The results of the analysis by Finite Elements are shown in

figures 7.29 (A & B) in which the critical moments predicted

by computer were plotted against the lengths. It shows that

all the graphs plotted gave smooth curves indicating

consistency of the results obtained.
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Based on a linear distribution of moment shown in figure

7.28, the critical bending moment for a particular beam can

be obtained. This was "controlled" by the yield moment of

the base section at the point of intersection of the tapered

and the uniform section. The curves in figures 7.29 (A & B)

to 7.33 (A & B) then can be used to obtain the critical

length when the critical bending moment was known. The

critical lengths of the haunched beam obtained by this

method are shown in table 7.6.

Table 7.6 also gave results of analysis of the same haunched

beams by the finite difference method. The critical lengths

of the beam were established in the same manner as the

finite element cases mentioned earlier. It can be seen that

the results of analysis by finite difference method are in

close agreement with that of the finite element method. This

proved that the the finite element formulations and

modelling of the haunched beams were valid.

7.4.2.4	 Assessment of Clause 5.5.3.5

Clause 5.5.3.5. of BS 5950 is an alternative to that of

Appendix G for checking the limiting length of members with

restraints on the tension flange but unrestrained on the

compression flange. Details of clause 5.5.3.5. are given in

chapter 6. For all the haunched beams under consideration,

the conditions for the validity of using clause 5.5.3.5. are
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met. This clause is simple to use and quick results can be

obtained without the need for extensive computation. Details

of the data used in the calculation and the results of

analysis by clause 5.5.3.5 are given in table 7.7.

In table 7.7 it is shown that the results of analysis by

clause 5.5.3.5. were less conservative than those of

Appendix G. Furthermore the expression in the clause does

not include the taper length parameter q, although it

considers the depth parameter r. Therefore, when using the

expression in this clause for the same type of beam,

different values of r gave different results. In all the

cases considered, the results of the critical lengths

obtained by method of clause 5.5.3.5. were larger than that

of Appendix G. However, when compared to results by Finite

Element method, the values obtained by clause 5.5.3.5 can

give a rough estimate of the results of Appendix G.

7.4.3 Assessment of Appendix G for Plastic Stability of

Haunch Beam

Besides the assessment for elastic stability, the haunch

beam specimens given in table 7.2 were also assessed for

plastic stability. The beams were calculated for plastic

stability in accordance with the clauses in Appendix G. An

example of the calculation is given in Appendix 3.8. Results

of the analysis are given in table 7.8. The finite element
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results are provided to give an idea of the difference in

the results obtained.

The result shows that the values of the Limiting length Lt

are always lower than the results of analysis by finite

element method. The finite element results however, are for

elastic buckling only and therefore direct comparison

between the two results are not appropriate.

In table 7.8, it is shown that the values of Lt are

controlled by the factors c and n t . The values of Lk are the

same for one base section. In all the cases considered it is

shown that, for the same ratio of tapered length to the

total length q, higher values of critical length were

obtained for specimens with smaller ratios of depths r.

The results of the finite element method and the elastic

stability analysis of the same beam specimen appear to be

similar and it was found that they gave more conservative

results than the analysis for plastic stability by Appendix

G.

7.4.4 Summary of the Assessment

The assessment of the general clauses for lateral stability

of BS 5950 gave very satisfactory results compared with the

results of analysis by the Finite Element Method. The
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same,is true for unrestrained non-uniform members in which

the results are acceptable. However it seems that the

analysis by Appendix G gave some interesting findings. For

uniform members, Appendix G gave deleberately oversafe

results in the region of 39% to 53% as compared to the

results by Finite Element methods. This large percentage

error when using the design code, even after taking

consideration of imperfections and residual stresses is

unacceptable. Modification of the design formulation should

be aimed at reducing this percentage error based on the

F.E.M. results to a more acceptable value.

In non-uniform members, it is shown that the results of

analysis by Finite Element method gave very close agreement

to that of Finite difference method. However, the results

obtained by Appendix G gave a much lower critical length.

The percentage error when compared to F.E.M. is in the

region of 70%. It can therefore be said that Appendix G gave

an oversafe design. Clause 5.5.3.5, is less conservative

than Appendix G, with the percentage error in the region of

65%.

Therefore modification to clauses in Appendix G and clauses

5.5.3.5. must be aimed at reducing the percentage error to

the lower values of (say) 30% to 40%.



265

7.5 Conclusion

From the analysis and comparison of the results obtained

within this chapter, it shows that the general aspects of

design for lateral buckling as assessed in section 7.2.

agrees with analysis by Finite Element method. The result

shows that some aspects of the real beam properties such as

imperfections and residual stresses that were considered in

the formulation of the design equation are acceptable.

From the analysis and comparison of the general clause on

elastic stability for non-uniform members, it has been shown

that (table 7.31 the code gave lower values of critical

length compared to the Finite Element results. Indeed a

larger percentage error was observed for cases of r = 3 than

that for r = 2. However for all the cases considered, the

largest percentage error observed was only 40% indicating

that the provision for imperfections and residual stresses

in the design equations are sufficient and that the design

equations are acceptable.

In Appendix G, the comparison made on the results of Finite

Elements and Finite Difference method shows clearly that the

clauses of Appendix G gave an oversafe design. However, it

must be stressed that the provisions in Appendix G were

based on analyses that assumed several approximations and

therefore the results were approximate. In the same manner

the results of design by an alternative method to Appendix
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G i.e., clause 5.5.3.5. show that the provision for the

design for both prismatic and non-uniform beams with tension

flanges restrained, produce oversafe designs, however, it

was less conservative than Appendix G.

From these findings it is thought that some modifications to

Appendix G can be made in order to make the results more

acceptable. The next chapter is devoted to the study of

approaches to modifying Appendix G and Clause 5.5.3.5. and

proposals for the ammendments are forwarded.

The assessment of the lateral torsional buckling clauses of BS

5950 using the finite element analysis described in chapter 4

Involves the comparison of the elastic critical buckling

capacity with the actual design capacity predicted by BS 5950

which incorporates yield, residual stresses and geometric

imperfections in addition to buckling effects.

Some difference between the two methods is therefore

inevitable. In order to progress the work and make the

comparison, the author has judged that a difference of 30 -

40% is more acceptable than the present discrepency.

Chapter 7 demonstrates this difference in analysis, and

chapter 8 and 9 follow from the above judgement.
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Table 7.1 Properties of universal beams used in the assessment
for the general clause in the design for elastic
stability for prismatic member.

UB1
203X133
XUB30

UB2
254X102
XUB28

UB3
305X102
XUB25

UB4
406X140
XUB46

UB5
457X191
UB98

D	 (mm) 206.8 260.4 304.8 402.3 467.4

b	 (mm) 133.8 102.1 101.6 142.4 192.8

tw	 (mm) 6.3 6.4 5.8 6.9 11.4

tf	 (mm) 9.6 10 6.8 11.2 19.6

A	 (cm2 ) 38.1 36.2 31.4 59.0 125.3

r	 (mm) 7.6 7.6 7.6 10.2 10.2

Ix	 (cm') 2900 4008 4387 15647 45717

‘ Iy	 (cm') 383.3 178 120 539 2343

Zx	 (cm3 ) 279 307.9 287.9 777.8 1956

Zy	 (cm3 ) 57.4 34.9 23.6 75.7 243

Sx	 (cm3 ) 313 353.4 337.8 888.4 2232

Sy	 (cm3 ) 88.05 54.84 37.98 118.3 378.3

ryy	 (cm) 3.2 2.22 1.96 3.02 4.33

J 9.455 8.9 4.024 17.49 117.92

H 37260 27800 26390 206100 1174000

E
(kN/cm2)

20500 20500 20500 20500 20500

G 8000 8000 8000 8000 8000

D/tf 21.5 26 45 35.9 24
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TABLE 7.2 GEOMETRY OF HAUNCHED MEMBER

q r Dmax
(mm)

Dmin
(mm)

tf_
(mm)

tw
(mm)

b
(mm)

BASE
SECT

HON1 0.6 3.0 620.4 206.8 9.6 6.3 133.8 203
HON2 0.5 3.0 620.4 206.8 9.6 6.3 133.8 X
HON3 0.4 2.0 413.6 206.8 9.6 6.3 133.8 133
HON4 0.4 3.0 620.4 206.8 9.6 6.3 133.8 X
HON5 0.3 2.0 413.6 206.8 9.6 6.3 133.8 UB30
HON6 0.3 3.0 620.4 206.8 9.6 6.3 133.8

HON7 0.6 3.0 781.2 260.4 10.0 6.4 102.1 254
HON8 0.5 3.0 781.2 260.4 10.0 6.4 102.1 X
HON9 0.4 2.0 520.8 260.4 10.0 6.4 102.1 102
HON10 0.4 3.0 781.2 260.4 10.0 6.4 102.1 X
HON11 0.3 2.0 520.8 260.4 10.0 6.4 102.1 UB28
HON12 0.3 3.0 781.2 260.4 10.0 6.4 102.1

HON13 0.6 3.0 778.8 259.6 12.7 7.3 147.3 254
H0N14 0.5 3.0 778.8 259.6 12.7 7.3 147.3 X
HON15 0.4 2.0 519.2 259.6 12.7 7.3 147.3 146
HON16 0.4 3.0 778.8 259.6 12.7 7.3 147.3 X
HON17 0.3 2.0 519.2 259.6 12.7 7.3 147.3 U343
HON18 0.3 3.0 778.8 259.6 12.7 7.3 147.3

HON19 0.6 3.0 1395.3 465.1 18.9 10.7 153.5 457
HON20 0.5 3.0 1395.3 465.1 18.9 10.7 153.5 X
HON21 0.4 2.0 930.2 465.1 18.9 10.7 153.5 152
H0N22 0.4 3.0 1395.3 465.1 18.9 10.7 153.5 X
H0N23 0.3 2.0 930.2 465.1 18.9 10.7 153.5 UB82
H0N24 0.3 3.0 1395.3 465.1 18.9 10.7 153.5

H0N25 0.6 3.0 1402.2 467.4 19.6 11.4 192.8 457
H0N26 0.5 3.0 1402.2 467.4 19.6 11.4 192.8 X
H0N27 0.4 2.0 934.8 467.4 19.6 11.4 192.8 191
H0N28 0.4 3.0 1402.2 467.4 19.6 11.4 192.8 X
H0N29 0.3 2.0 934.8 467.4 19.6 11.4 192.8 UB98
H0N30 0.3 3.0 1402.2 467.4 19.6 11.4 192.8
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TABLE 7.3 RESULTS OF ANALYSIS FOR LATERAL STABILITY OF HAUNCHED
MEMBER

q r
YIELD
MOMENT
AT F

BUCKLING
MOMENT

MB

BS5950
CRIT

LENGTH

F.E.M
CRIT

LENGTH ERROR
(kNm) (kNm) _	 L L

(in) (in)

HON]. 0.6 3.0 77 192 2.27 3.85 40%
HON2 0.5 3.0 77 153.6 2.7 4.3 37%
HON3 0.4 2.0 77 128 3.6 4.55 20.8%
HON4 0.4 3.0 77 128 3.05 4.82 36%
HON5 0.3 2.0 77 110 3.97 4.91 19%	 l
HON6 0.3 3.0 77 110 3.29 5.08 35%

HON7 0.6 3.0 85 212 1.67 2.72 38%
HON8 0.5 3.0 85 169.3 1.94 2.92 34%
HON9 0.4 2.0 85 141.1 2.61 3.14 17%
HON10 0.4 3.0 85 141.1 2.2 3.3 33%
HON11 0.3 2.0 85 121 2.93 3.45 16%
HON12 0.3 3.0 85 121 2.47 3.53 30%

HON13 0.6 3.0 139 347.5 2.51 4.24 40%
HON14 0.5 3.0 139 278 2.97 4.80 38%
HON15 0.4 2.0 139 231.6 3.93 5.08 23%
HON16 0.4 3.0 139 231.6 3.38 5.3 36%
HON17 0.3 2.0 139 198.6 4.58 5.73 20%
HON18 0.3 3.0 139 198.6 3.79 5.87 35%

HON19 0.6 3.0 428 1070 2.6 4.17 37%
HON20 0.5 3.0 428 856 3.03 4.57 34%
HON21 0.4 2.0 428 714 3.9 4.73 17%
H0N22 0.4 3.0 428 714 3.27 4.86 33%
HON23 0.3 2.0 428 612 4.36 5.18 16%
H0N24 0.3 3.0 428 612 3.64 5.3 31%

H0N25 0.6 3.0 538 1345 3.16 5.2 39%
H0N26 0.5 3.0 538 1076 3.82 5.84 34%
H0N27 0.4 2.0 538 897 5.0 6.13 18%
H0N28 0.4 3.0 538 897 4.18 6.18 32%
HON29 0.3 2.0 538 769 5.4 6.4 16%
HON30 0.3 3.0 538 769 4.7 6.8 31%

: THE YIELD STRESS USED IN THE ABOVE CALCULATIONS IS
Py = 27.5 kN/cm2.
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TABLE 7.4 DATA FOR PRISMATIC MEMBERS USED IN THE CALCULATION
FOR APPENDIX G

11MB-1
203X133
XUB30

UMB-2
254X102
XUB28

UMB-3
254X146
XUB43

UMB-4
305X102
XUB33

UMB-5
305X127
XUB48

UMB-6
305X
165X
UB54

D	 cm 20.68 26.04 25.96 31.27 31.04
_

31.09

a	 cm 18 19 19 19 19 19

A cmA 2 38.1 36.4 55.4 42 61.4 68.6

tf cm 0.96 1.0 1.27 1.08 1.4 1.37

b	 cm 13.38 10.21 14.73 10.24 12.52 16.68

tw cm 0.63 0.64 0.73 0.66 0.89 0.77

Iy cm4 383.3 177.4 676.5 193.3 457.9 1059.6

Ix cm4 2900.1 4038.2 6617.5 6553.3 9630.7 11777

hw cm 18.76 24.04 23.42 29.11 28.24 28.85

hs cm 19.72 25.04 24.69 30.19 29.64 30.22

PY
kN/cm2

25 25 25 25 25 25

E
kN/cm2

21000 21000 21000 21000 21000 21000

, Sxl
cm3

314.5 356 573.1 484.3 715 849.2

ry cm 3.2 2.2 3.5 2.1 2.73 3.93

Ma
kNcm

6982 7697 12632 10375 15310 18832

13 0.5 0.5 0.5 0.5 0.5 0.5

Zx
cm3 

279.3 307.9 505.3 415 612.4 753.3

Ma Yield moment
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TABLE 7.4 DATA FOR PRISMATIC MEMBERS USED IN THE CALCULATION
FOR APPENDIX G

(CONTINUE)

UMB-7
356X127
XUB39

UMB-8
356X171
XUB67

UMB-9
406X140
X13B46

UMB10
406X178
XUB74

UMB11
457X152
XUB82

U1'1B12
457X
191X
UB98

D	 cm 35.28 36.4 40.23 41.28 46.51 46.74
_

a	 cm 18 19 19 19 19 19

A cm^2 49.2 86.1 58.9 96 105.8 126.6

tf cm 1.07 1.57 1.12 1.60 1.89 1.96

b	 cm 12.64 17.32 14.24 17.97 15.35 19.28

tw cm 0.65 0.91 0.69 0.97 1.07 1.14

Iy cm4 356.7 1359.5 539 1547.4 1139.3 2341.1

Ix cm4 10057.8 19698.2 15637.4 27685.2 36801.3 46418.

hw cm 33.14 33.26 37.99 38.08 42.73 42.82

hs cm 34.21 34.83 39.11 39.68 44.62 44.78

py
kN/cm2

25 25 25 25 25 25

E
kN/cm2

21000 21000 21000 21000 21000 21000

Sxl
cm3

651.4 1223.1 887.6 1552.7 1827.1 2263.7

ry cm 2.69 4.0 3.0 4.0 3.3 4.30

Ma
kNcm

14295 26825 19445 33100 38925 48900

13 0.5 0.5 0.5 0.5 0.5 0.5

Zx
cm3

571.8 1073 777.8 1324 1557 1956

Ma Yield moment
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TABLE 7.5 RESULTS OF ANALYSIS OF PRISMATIC MEMBER
BY APPENDIX G AND FINITE ELEMENT METHOD

(1)
BEAM

(2)
TOR
INDX
D/tf

(3)
PLAST.
STABIL
APG8
Lt
(cm)

(4)
PLAST.
STABIL
MCAD
Lt
(cm)

(5)
ELAST.
STABIL
APG8
L
(cm)

(6)
ELAST.
STABIL
MCAD
L
(cm)

(7)
FINITE
ELEMEN
METHOD
L
(cm)

UMB-1 21.54 339 341.5 332.5 332.5 585
(42%) (42%) (43%) (43%)

UMB-2 26.04 211.7 216.6 225.2 223 396
(46%) (45%) (43%) (43%)

UMB-3 20.4 379.7 379.8 367.2 367.2 690
(45%) (45%) (47%) (47%)

UMB-4 28.95 205.6 201.2 215.5 211.0 377
(45%) (46%) (43%) (44%)

UMB-5 22.17 283 282.4 296.2 293.5 591
(52%) (52%) (50%) (50%)

UMB-6 22.69 406.5 408 395 395 743
(45%) (45%) (47%) (47%)

UMB-7 32.97 253.5 253.2 256.5 256.5 428
(41%) (41%) (40%) (40%)

UMB-8 23.18 406.4 408.5 411.5 405 756
(46%) (46%) (46%) (46%)

UMB-9 35.92 281.9 279.4 288.5 283.7 485
(42%) (42%) (41%) (41%)

UMB10 25.8 397 395.1 416.5 405 790
(50%) (50%) (47%) (48%)

UMB11 24.60 325.6 326.5 369.5 344.5 776
(58%) (58%) (52%) (55%)

UMB12 23.84 433.6 433.1 482.5 441.5 840
(48%) (48%) (43%) (47%)
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TABLE 7.6 RESULTS OF ANALYSIS OF HAUNCHED MEMBER BY THE METHOD
OF APPENDIX G. (ELASTIC STABILITY)

q r Dmax Dmin
BS

5950
APP-G
(cm)

FINITE
ELEM.

METHOD
(cm)

FINITE
DIFF.

METHOD
(cm)

H1 0.6 3.0 620.4 206.8 148.5 447.0 450.0
H2 0.5 3.0 620.4 206.8 141.5 507.0 520.0
H3 0.4 2.0 413.6 206.8 149.5 545.0 529.0
H4 0.4 3.0 620.4 206.8 155.0 595.0 588.0
H5 0.3 2.0 413.6 206.8 159.0 588.0 593.0
H6 0.3 3.0 620.4 206.8 158.0 648.0 648.0

H7 0.6 3.0 781.2 260.4 113.5 308.0 316.0
H8 0.5 3.0 781.2 260.4 111.0 340.0 359.0
H9 0.4 2.0 520.8 260.4 112.0 347.0 356.0
H10 0.4 3.0 781.2 260.4 120.0 358.0 396.0
H11 0.3 2.0 520.8 260.4 118.0 378.0 389.0
H12 0.3 3.0 781.2 260.4 121.5 382.0 423.0

H13 0.6 3.0 778.8 259.5 160.5 520.0 500.0
H14 0.5 3.0 778.8 259.6 157.5 582.0 580.0
H15 0.4 2.0 519.2 259.6 166.0 625.0 594.0
H16 0.4 3.0 778.8 259.6 173.0 678.0 659.0
H17 0.3 2.0 519.2 259.6 175.5 692.0 672.0
H18 0.3 3.0 778.8 259.6 175.0 770.0 733.0

H19 0.6 3.0 1395.3 465.1 170.5 475.0 476.0
H20 0.5 3.0 1395.3 465.1 167.5 551.0 542.0
H21 0.4 2.0 930.2 465.1 171.0 540.0 539.0
H22 0.4 3.0 1395.3 465.1 180.5 603.0 600.0
H23 0.3 2.0 930.2 465.1 180.0 600.0 591.0
H24 0.3 3.0 1395.3 465.1 183.0 630.0 643.0

H25 0.6 3.0 1402.2 467.4 215.0 618.0 613.0
H26 0.5 3.0 1402.2 467.4 211.0 730.0 700.0
H27 0.4 2.0 934.8 467.4 218.0 725.0 699.0
H28 0.4 3.0 1402.2 467.4 228.0 785.0 777.0
H29 0.3 2.0 934.8 467.4 230.0 810.0 769.0
H30 0.3 3.0 1402.2 467.4 232.0 865.0 838.0
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TABLE 7.7 RESULTS OF ANALYSIS OF HAUNCHED MEMBER BY THE METHOD
OF CLAUSE 5.5.3.5 OF BS5950 (ELASTIC STABILITY)

1

1

1
q r K1 X ry

CLAUSE
5.5.3.5

Lt
(cm)

BS
5950

APP-G
(cm)

FINITE
ELEM.

METHOD
(cm)

,
H1 0.6 3 445 22.35 3.2 197.5 148.5 447.0
112 0.5 3 445 22.35 3.2 197.5 141.5 507.0
113 0.4 2 495 22.35 3.2 219.7 149.5 545.0
H4 0.4 3 445 22.35 3.2 197.5 155.0 595.0
H5 0.3 2 495 22.35 3.2 219.7 159.0 588.0
H6 0.3 3 445 22.35 3.2 197.5 158.0 648.0

H7 0.6 3 445 28.5 2.2 126.7 113.5 308.0
H8 0.5 3 445 28.5 2.2 126.7 111.0 340.0
H9 0.4 2 495 28.5 2.2 140.9 112.0 347.0
H10 0.4 3 445 28.5 2.2 126.7 120.0 358.0
1111 0.3 2 495 28.5 2.2 140.9 118.0 378.0
H12 0.3 3 445 28.5 2.2 126.7 121.5 393.0

1113 0.6 3 445 21.55 3.5 219.2 160.5 520.0
1114 0.5 3 445 21.55 3.5 219.2 157.5 582.0
H15 0.4 2 495 21.55 3.5 243.8 166.0 625.0
H16 0.4 3 445 21.55 3.5 219.2 173.0 678.0
1117 0.3 2 495 21.55 3.5 243.8 175.5 692.0
1118 0.3 3 445 21.55 3.5 219.2 175.0 740.0

H19 0.6 3 445 27.80 3.3 191.1 170.5 475.0
1120 0.5 3 445 27.80 3.3 191.1 167.5 551.0
1121 0.4 2 495 27.80 3.3 212.6 171.0 540.0
1122 0.4 3 445 27.80 3.3 191.1 180.5 603.0
1123 0.3 2 495 27.80 3.3 212.6 180.0 600.0
H24 0.3 3 445 27.80 3.3 191.1 183.0 630.0

H25 0.6 3 445 26.15 4.3 252.6 215.0 618.0
H26 0.5 3 445 26.15 4.3 252.6 211.0 730.0
H27 0.4 2 495 26.15 4.3 281.0 218.0 725.0
1128 0.4 3 445 26.15 4.3 252.6 228.0 785.0
H29 0.3 2 495 26.15 4.3 281.0 230.0 810.0
1130 0.3 3 445 26.15 4.3 252.6 232.0 865.0
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TABLE 7.8 RESULTS OF ANALYSIS FOR PLASTIC STABILITY FOR HAUNCHED
MEMBERS TO APPENDIX G:BS5950 PART 1.

4 r nt c Lk APP G F.E.M
(cm) PLAST (cm)

STAB.
Lt
(cm)

H1 0.6 3.0 0.825 1.281 285 269 447
112 0.5 3.0 0.811 1.256 285 279 507
H3 0.4 2.0 0.774 1.145 285 321 545
H4 0.4 3.0 0.756 1.229 285 306 595
H5 0.3 2.0 0.759 1.125 285 333 588
H6 0.3 3.0 0.737 1.199 285 322 648

H7 0.6 3.0 0.818 1.192 184 189 308
H8 0.5 3.0 0.798 1.175 184 196 340
119 0.4 2.0 0.764 1.099 184 219 347
H10 0.4 3.0 0.744 1.157 184 214 358
H11 0.3 2.0 0.749 1.085 184 226 378
H12 0.3 3.0 0.725 1.136 184 223 393

1113 0.6 3.0 0.824 1.298 318 297 520
H14 0.5 3.0 0.81 1.272 318 309 582
H15 0.4 2.0 0.774 1.154 318 357 625
H16 0.4 3.0 0.755 1.244 318 339 678
H17 0.3 2.0 0.758 1.133 318 371 692
H18 0.3 3.0 0.736 1.211 318 357 740

1119 0.6 3.0 0.815 1.20 275 281 475
H20 0.5 3.0 0.795 1.182 275 293 551
H21 0.4 2.0 0.761 1.103 275 328 540
H22 0.4 3.0 0.741 1.163 275 319 603
H23 0.3 2.0 0.747 1.089 275 339 600
1124 0.3 3.0 0.723 1.141 275 334 630

1125 0.6 3.0 0.82 1.218 364 365 618
H26 0.5 3.0 0.802 1.199 364 379 730
H27 0.4 2.0 0.767 1.112 364 427 725
1128 0.4 3.0 0.748 1.178 364 414 785
H29 0.3 2.0 0.752 1.097 364 441 810
H30 0.3 3.0 0.729 1.154 364 433 865
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CHAPTER 8

8.0 Amendments to Appendix G and Clause 5.5.3.5 BS 5950:

Part 1.

8.1 Introduction

In the previous chapter it has been shown that the general

provisions of BS 5950 for the lateral torsional buckling of

both prismatic and non-uniform members were satisfactory and

within acceptable practical limits. However, Appendix G,

which is for the design of members, or portions of members

between effective torsional restraints, provided with

intermediate restraints in the tension flange but leaving

the compression flange unrestrained are shown to be over-

safe. For that reason a more detailed study of the clauses

of Appendix G and clause 5.5.3.5. was conducted in order to

investigate the deficiencies in those clauses and how to

improve them.

In this chapter some possible amendments to the clauses in

Appendix G and clause 5.5.3.5. are investigated and analysed

in the light of the prismatic and non-uniform members

already discussed in chapter 7. Results given by these

amended or modified expressions of Appendix G and clause

5.5.3.5. are compared with those of Appendix G and the

Finite Element method. Analyses were also made based on the

results of the full-scale test on Frame 3 to further check



299

the validity of these amended expressions. Based on these

analyses some recommendations are proposed.

8.2 Elastic and Plastic Stability of Prismatic Members

8.2.1 General

The analysis according to Appendix G of twelve prismatic

members with properties as shown in table 7.4. was given in

chapter 7. The results for beams with and without plastic

hinges loaded with moment gradient /3 =0.5 as shown in table

7.5, indicated that there was little difference in the

results. When compared with the results of the Finite

Element Method, it was shown that the clauses in Appendix G

for elastic and plastic stability are safe. The results

produced indicated an error in the critical buckling length

of 40% to 50%. In this section a study is conducted to look

into the possibility of amending the clause so that this

percentage error is reduced while ensuring that the beam

remains safe.

8.2.2 Amendment to Appendix G for Elastic Stability of

Prismatic Member

In dealing with the lateral-torsional buckling of

unrestrained members, BS 5950 gives consideration to the
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effective length of the member concerned and this is given

in clauses 4.3.5. and 4.3.6. The effective length is

dependent upon the conditions at the support and the loading

conditions. In simply supported beams with a normal loading

condition and various conditions at the supports, the

effective length varies from 0.7L to 1.2(L+2D) in which L is

the length of the beam between restraints and D is the depth

of the beam. For the same beam with a destabilising load

condition the effective length ranges from 0.85L to

1.4(L+2D).

Based on the results of Finite Element analysis, it has been

shown that restraining the tension flange will contribute an

improvement to the lateral stability of the beam. This is

because lateral buckling involves two deformation

components, lateral deflection and twist and restraints

against either action may be used to increase a beam's

stability.

In the design of prismatic beams with restraints on the

tension flange, Appendix G considers the effect of the

restraints by modifying the slenderness of the beam using

equation 8.1.

Am=n tuvtcl 	  (8.1)

in which;

U is a buckling parameter and conservatively taken as

0.9.

C is equal to 1 for prismatic members
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vt is a slenderness factor given in clause G.3.3.

In the expression for v t the restraining effect of the

tension flange is considered. The limiting condition for

elastic stability in a prismatic member given in Appendix G

is;

F 
+

2,1 <1 	  (8.2)
Pc 141,

M is equal to the actual moment MA acting on the beam

multiplied by the equivalent uniform member factor, m t . The

manner in which mt is obtained is given in clause G.3.4. It

is a factor that is dependent on the loading condition and

the slenderness factor Y. Table 39 of BS 5950 contains the

values of mt with reference to the slenderness factor Y and

load ratio p.

Mb , the buckling moment is calculated from the product of

plastic modulus Sx and the buckling stress pb• Pb is obtained

from table 11 of BS 5950 when / TB has been calculated from

equation 8.1. Results of the analysis of prismatic members

by Appendix G are shown in table 7.5, which indicate a 40 -

50% error when compared to the results obtained from the

Finite Element method.

The above discussion shows that to increase the critical

length of the beam, while maintaining the ratio of M and Mb

in expression 8.2 equal to 1, is to modify A n of equation
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8.1. This is because the value of Mb depends on pt) that in

turn depends on ln . Looking into the detailed derivation of

ln it is found that most of the relevant factors have been

considered except the factor for the full end restraint.

Therefore it is proposed in this section to include a new

factor k L I to be called the "effective length with full

restraint" (ELR) factor in the calculation for slenderness

A, in the form;

A=k. -±- 	  (8.3)
ry

The introduction of the ELR factor into A is to consider the

full restraints provided at the end supports. This new value

of A (with the ELR factor) is used in all the calculations

to find other factors such as v t and mt . In this study the

values of 1( 1=0.9, 0.8, 0.7 and 0.6 were used in the

calculations. The calculations then followed exactly the

procedure laid down in Appendix G.

A detailed example of calculation for this case with zero

axial load is shown in Appendix 4. The analysis shows

that, by adopting this procedure, the value of / TB achieved

has a similar value to Appendix G (see Appendix 3.6.) and

that the buckling stress Pb still has the same value and yet

an increased buckling length is achieved.

Results of analysis by this method for the ELR value of



Lk (  Alp 	
112

L,<

sir M +aFl t	 pr
	  ( 8 4)
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1( 1 =0.9, 0.8, 0.7 and 0.6 for the prismatic beams shown in

table 7.4 are shown in table 8.1. This shows that by

adopting k=0.9, 0.8, 0.7 and 0.6, the error has been

reduced to (38-47%), (28-36%), (19-32%) and (7-21%)

respectively. Figure 8.1 shows the relationship between

critical length and the second moment of area I y , for all

the beams under consideration. It shows that results of

analysis by Appendix G formed the lower bound and the F.E.M.

is the upper bound limit. It is therefore proposed that the

ELR factor to be used in the calculation is k L=0.8 which

gives results consistent with reasonable safety.

8.2.3 Amendment to Appendix G for the Case of the Plastic

Stability of a Prismatic Member

The condition for the plastic stability of a prismatic

member without lateral loads is given in Appendix G of BS

5950 by the expression,

where Lk is the limiting length, Mp is the plastic moment,

Mpr is the reduced plastic moment in the presence of axial

load, F is the axial load, a is the distance between the

shear centre of the beam and the axis of restraint and m t is

the equivalent uniform moment factor. In the absence of

axial load the value of Lt is dependent on Lk and mt.
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The value of m t is calculated in the same manner as in the

analysis for elastic stability. The value of the limiting

length Lk is given by clause G.3.5. as,

(5.4+6001)ryx
Lk- 	  	  ( 8.5)

(5.425fx2-1)112

The results of analysis for plastic stability of the beams

under consideration are shown in table 7.5. In this section,

the ELR factor discussed earlier was introduced into k, the

slenderness of the beam, and the rest of the calculations

follow the method as given by Appendix G. The prismatic

beams shown in table 7.4 are analysed by this method.

The results of analysis for plastic stability by the

introduction of the ELR factor are shown in table 8.2. The

analysis according to Appendix G gave a buckling length with

errors between 41 - 52%. Table 8.2 shows that there is no

effect on the critical length for plastic stability by the

introduction of ELR factors of 0.9, 0.8, 0.7 and 0.6 to the

slenderness of the beam. This is because Lt is dependent on

the value of LI, and mt and the ELR factors introduced do not

affect the 11, and mt values. A sample of this calculation is

shown in Appendix 4.

It is now clear that the value of Lt can only be increased

by introducing another factor into the expression for Lk.

However the empirical expression for 11( in equation 8.5. was
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developed by Horne (42) based on analysis of both the

plastic mechanism and elastic response curve for a

restrained I-shaped member. Home's work showed that the

ratio of the limiting slenderness Lir to the elastic

critical slenderness Luiry was found to vary between 0.63

and 0.71. In his treatment of the corresponding problems for

unrestrained beams, he proposed a ratio of 0.6 between the

limiting slenderness and the elastic critical slenderness

given by ignoring the warping rigidity, so resulting in the

effective ratio less than 0.6. The higher ratio obtained for

restrained beams occurred because of the relative importance

for this case of St. Venant torsion as compared with warping

torsional resistance.

The basic approach adopted by the author is to reduce the

error in the results of analysis by Appendix G from 41-52%

to about 30-40%. To do this a factor must be included in the

expression for Lk. Since the expression for Lit is based on

the limiting slenderness equation, the most appropriate form

of amendment is to include the ELR factor in the expression

for Lit as follows

(5.4+600JK)r_x
E ' 

Lk -
ki 175.4 ( ) x2-1)
	  (8.6)

Analyses were conducted for values of L it with ELR factors

kl= 0.9, 0.8, 0.7 and 0.6 and the values Lt were calculated

using equation 8.4. The results of this analysis are shown
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in table 8.3. The results show that there is an increase in

the critical length with decreasing values of k i . By using

values of 1(1=0.9, 0.8, 0.7 and 0.6, the error or the safety

reserve compared to F.E.M. is in the region of 35-45%, 30-

38%, 18-29% and 5-20% respectively. It therefore can be

safely said if a recommendation were to be made for an

amendment to the plastic stability clause, then the most

appropriate thing to do, is to include an ELR factor of 0.9

in the calculation of the limiting length. Otherwise the

clause should be maintained as it is.

8.3 Elastic and Plastic Stability of Non-uniform Members

8.3.1 General

The way in which Appendix G deals with haunched members is

to define the buckling stress at all sections such that all

the stresses (combined stresses in the presence of an axial

load) due to the applied load must not exceed the value of

the buckling stress at each section. This necessary

condition is given by clause G.2.a (2) in Appendix G as;

AS sPb 	  (8.7)

The results of analyses conducted previously for haunched

members are shown in table 7.6. The details of the

calculation for the example of beam case H1 are given in
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Appendix 3.7. The results show that, by comparison with

results of analysis by the Finite Element method and Finite

Difference method described in chapter 6, analysis using

Appendix G gives an oversafe design.

In the calculation of the critical length of a haunched

beam, the loading conditions considered were represented by

considering the moment to be varying uniformly from zero at

the point of contraflexure. A common design situation is one

in which the yield moment My of the base section is just

reached at the junction of the uniform and tapered parts.

Based on this situation the moment at the larger end of the

haunched beam was calculated. The results in table 7.5. were

obtained after a series of lengths were tried.

The calculation in Appendix 3.7. was done for beams which

were divided into 29 sections. The section at the point of

intersection of the tapered and the uniform part was always

the most critical. Since the values of the maximum applied

moments on the beam were fixed, it follows that the stress

due to the applied load (M/Sx) will remain the same

irrespective of the length being either increased or

decreased. The behaviour of the buckling stress Pb during

the analysis however, showed that it will increase if the

beam length is decreased and decrease when the beam length

is increased. Therefore the critical length for each beam

was obtained when the most critical section reached almost

the same stresses (i.e, Pb = M/Sx).
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Observations of the results of computer analysis compared

with those given by Appendix G shows that the reason it gave

an "oversafe" design was due to the low value of allowable

buckling strength pb at the region of the critical section

(i.e., at the point of intersection of the uniform to

tapered part). Further increase in length would only reduce

the value of pb further. Since the criteria for stability in

this case was that of stress, it therefore follows that the

critical length of the haunched beam can only be increased

by increasing the allowable buckling stress pb. The

following methods were investigated to increase the

allowable buckling stress pb•

8.3.2 Increasing Allowable Buckling Stress to the Average

of Buckling and Yield Stress

The results of the calculations in accordance with Appendix

G for the haunched members under consideration showed the

presence of a critical section of the beam where buckling

was likely to occur. This section of the beam, where the

stress due to the applied load tended to exceed the

allowable buckling stress, was located at the point of

intersection of the uniform and the tapered parts of the

beam. It can also be seen that the allowable buckling stress

at that point will always be less than the yield stress.

Assuming the actual buckling stress lies between the yield

stress and the allowable buckling stress, a possible
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estimate of the actual buckling stress will be the average

of these two stresses. An analysis is carried out to check

the possibility of increasing the critical length of the

haunched beam by this method.

This new condition for elastic stability is therefore;

A Computer programme "APG8" mentioned earlier was modified

to include these proposed changes and was used in the

analysis. It was observed that when beams with lengths equal

to those given by earlier analysis according to Appendix G

were used, the allowable stress at the critical section was

increased to the value of pav= (pb+py)/ 2. When the length of

the specimen was increased, this value of the p. v was

reduced, however, the actual stress due to the applied load

remained the same.

Different lengths of specimens were analysed, and the

critical lengths were obtained when the stresses at the

critical point were almost identical. There was no problem

with the rest of the member because the actual stress will

always be lower than the allowable stress pm,. Since

increasing the length will reduce the allowable buckling

stress at each section the analysis shows that by this

method the critical length of the haunched beam can be

increased. Results of the analysis shown in table 8.4. and
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table 8.6. showed the details of the actual stresses.

8.3.3 Increasing the Allowable Buckling Stress by A Stress

Factor

Related to the idea that the allowable buckling stress Pb

should be increased to the average of the buckling stress

and yield stress, (p.,), a similar effect can be obtained by

employing an allowable buckling stress factor. In this

study, three stress factors of the values 1.11, 1.25 and

1.66 were employed, these being based on the reciprocals of

0.9, 0.8 and 0.6 respectively.

By including these stress factors, the stability conditions

become;

F M71 + .-Tx � 1.11 pb 	  (8.9a)

F M-i i-v1.25 pb 	  (8.9b)

—F +—M sl.66 pb 	  (8.9c)

For these analyses, the computer programme APG8 was again

used, after first modifying it to suit these new conditions.

In the calculation of the buckling stress for different

lengths of beam, it was observed that the pattern of stress

behaviour was the same as in the earlier case in which, by

increasing the length the allowable stress was reduced and

vice versa. By employing the same technique as before, the
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critical lengths of the beams under consideration were

obtained. Results of the analysis for the different stress

factors are shown in table 8.4, and the details of the

stresses are shown in tables 8.6 to table 8.9.

8.3.4 Analysis of Results

Table 8.4. shows the results of analysis by the methods

described above. It shows that the methods employed were

able to increase the critical length of the haunched beam

under consideration.

Comparing all the results of critical length obtained,

clearly the critical lengths have been most effectively

increased by equation 8.9c. and followed by equation 8.9b

and equation 8.8. Equation 8.9a appears to give the least

increase in the critical length in all the cases considered.

Indeed the results of analysis by equation 8.8. and 8.9b

appear to be quite close to each other. Table 8.5. shows the

percentage error or percentage safety reserve for all the

cases considered. It showed that using equation 8.9c gave

the most effective results in reducing the percentage error

from the region 65-75% to 35-50%.

Tables 8.6. to 8.9. show details of the stresses at the

critical sections of the beams under consideration. They

show that in all the cases considered, the maximum actual
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stress and allowable stress reached was 22.2 kN/cm2;

however, in most cases the stresses are in the region of 21

kN/cm2 . These values were about 84% to 89% of the yield

stress (i.e., 25 kN/cm2).

Regarding percentage increase, from that of the results of

analysis by Appendix G it was found that by employing

equation 8.8, the increase was between 26 and 40%. In

equations 8.9a, 8.9b and 8.9c, the increase was 16-21%, 36-

44% and 76-100% respectively.

Figures 8.2(a) to 8.2(e) shows the relationships of the

ratio q of the tapered part to the total length of the

haunched beam, to the critical length for the analysis by

equations 8.8, to 8.9(a), 8.9(b) and 8.9(c). These graphs

show that Appendix G does not give significantly different

values of critical length for different values of q. The

Finite Element Method, however, gave significant differences

to the results for different values of q. Modifying Appendix

G by including the stress factors will increase the critical

lengths. This graph helps to explain why the results of

percentage error in table 8.5 are always highest for q=0.3

and q=0.4, whereas they are always lower for q=0.6 and 0.5.

As mentioned earlier, when employing equation 8.9c, the

safety reserve was reduced to 35-50% and this appears to be

within the acceptable safety limit. Therefore it is

recommended that equation 8.9c be used for the amendment to
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the elastic stability clauses for non-uniform members in

Appendix G of BS 5950.

8.3.5 Amendments to Plastic Stability Clauses in Appendix G

Plastic stability conditions for non-uniform members are

given by Appendix G in the form:

Lk
Ls 	  	  (8.10)C. fl

where Lk is the limiting length (equation 8.5), c is the

shape factor and n t is the slenderness correction factor.

Results of analysis by this method for the haunched beam

under consideration are given in table 7.7. A study was

carried out to include the ELR factor in the expression for

Lk to investigate its effect on the critical length of the

beam. The expression given by equation 8.6 was used, however

only values of 3( 1=0.9 and 0.8 were considered.

The results of analysis using expressions 8.6 and 8.10 with

k t=0.9 and 0.8 are shown in table 8.13. In the table these

results are compared to the results given by Appendix G.

Table 8.14 shows the percentage error or the safety reserve

for the treatment given. It shows that the original method

of Appendix G gave a safety reserve of 40-50%, whereas when

using k i=0.9 and 0.8, the reserve in safety is 35-45% and

25-40% respectively. This shows that the method of Appendix
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G, will result in a safe design. Introducing an ELR value

equal to 0.9 will reduce the safety reserve slightly but it

will remain on the safe side. It is therefore recommended

that an ELR value of 0.9 be used in equation 8.6.

8.3.6 The Application of the Amended Expressions to the

Haunch of Portal Frame 3

It has been shown that analysis according to Appendix G

correctly predicted the failure by lateral-torsional

buckling at the haunch of Portal Frame 3. In this study it

has been shown that Appendix G provides an over-safe design.

Further checking of the details of the analysis and the

experimental results of frame 3 showed that Appendix G

predicted the haunch to fail at a much lower load factor.

Indeed, at the design load (i.e., at load 1.5 kNN) the

actual stress was about 1.75 x the allowable buckling

stress. This therefore confirms the finding that Appendix G

gives an over-safe design. In this section the amended

expressions studied earlier are applied to the haunch of

Portal Frame 3 to "test" the validity of the amended

expressions.

In order that the expressions 8.8, 8.9a, 8.9b and 8.9c can

be examined in detail with regard to the haunch of frame 3,

different types of analysis were carried out. These are;

(i) Analysis at the Ultimate load (1.5 kN/m 2 ) with
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values of Young's Modulus E =205x103 N/mm2 and Yield

Stress Py=275 N/mm2.

(ii) Analysis at the Ultimate load with the actual

measured value of E and Py.

(iii) Analysis at the Actual Collapse load with

actual measured Value of E and Py.

8.3.6.1 Analysis of the Haunch of Frame 3 at the Design Load

with Nominal Values of E and Py

The haunch of frame 3 was analysed at the design load by the

method of Appendix G and the amended expressions. The

computer programme "APG8" was used in the analysis of

Appendix G and the modified versions of the programme were

used for the analysis with the amended expressions. The

results of the analyses are shown in row number 1 of table

8.17. This shows that for all the cases considered, Appendix

G gave the highest ratio of the bending stress to the

allowable buckling stress. All the methods predicted that

the haunch would fail. However, Appendix G predicted that

failure would occur at a much lower load than the rest.

8.3.6.2 Analysis of Haunch of Frame 3 at the Ultimate Load

with Actual Measured Values of E and Fy

The haunch of frame 3 was analysed at the ultimate load by
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the method of Appendix G and the amended expressions. The

computer programme HAPG8" was used in the analysis of

Appendix G and the modified versions of the programme were

used for the analysis with the amended expressions. The

actual measured values of E and Py used in the calculation

were 206x103 N/mm2 and 295 N/mm2 . The results of the analyses

are shown in row number 2 of table 8.17. This shows that

analysis by Appendix G gave the highest ratio of bending

stress to the allowable buckling stress, indicating its

estimation of elastic buckling to occur at a much lower

load. Although all the results indicate failure at the

haunch at that load, the analysis by expression 8.9c gave

very satisfactory design criteria. Therefore it can be said

that there is a tendency for expression 8.9c to give

slightly overestimated values of allowable buckling stress.

8.3.6.3 Analysis of Haunch of Frame 3 at the Collapse Load

with Actual Measured Values of E and Py

The same procedures were conducted as in the previous

section with the values of E and Py used equal to 206x103

N/mm2 and 295 N/mm2 respectively. The results of the analyses

are shown in row number 4 of table 8.17. The results here

are very interesting because they show the validity of the

expressions used in the analysis. The analysis according to

Appendix G showed the highest ratio of bending stress to the

allowable buckling stress and therefore predicted elastic
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buckling to occur at a much lower load when compared to the

other expressions. It is interesting to see that expressions

8.8 and 8.9c did not predict elastic buckling in the haunch

at the collapse load. However, expressions 8.9a and 8.9b

predicted elastic buckling to occur at a higher load than

predicted by Appendix G. Expression 8.9b gave the closest

prediction of the failure. It predicted buckling failure at

a stress of 18.4 N/mm2 and the actual bending stress at

collapse was 18.8 N/mm2.

8.3.6.4 Recommendations for the Modification of Appendix G

The analyses therefore showed that in all the cases of

loading, Appendix G gave the highest ratio of bending stress

to the allowable buckling stress at the most critical part

of the haunch. This ratio can be taken as an indicator of

buckling occurrance. When the ratio is less than unity

elastic buckling will not occur at the haunch at that

particular load. This ratio must be more than unity for the

prediction of elastic buckling. In section 8.3.6.3.,

Appendix G and all the other amended expressions were

"tested" against the collapse conditions of the haunch of

Frame 3. The results showed that only Appendix G, Expression

8.9a and Expression 8.9b were valid. However, Expression

8.9b provides the most accurate prediction of failure at

collapse. It can therefore be said that Appendix G gave a

lower-bound solution and Expression 8.9b gave an upper-bound
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solution.

It is recommended that both Expressions 8.9a and 8.9b should

be included in Appendix G. Whereas the original expressions

in Appendix G can be used to calculate the requirement for

restraints, the inclusion of these modified expressions can

give a more accurate prediction of buckling failure.

8.4. Amendment to Clause 5.5.3.5

8.4.1 General

The Code BS 5950 allows an alternative to Appendix G in

dealing with elastic stability for members with the tension

flange restrained at intervals. This is by clause 5.5.3.5.

This clause was discussed in detail in chapter 6 in section

6.7. In chapter 7 the results of analysis of haunched beams

by this clause were discussed in the light of Appendix G and

the Finite Element Method. In this section, a method to

amend this clause is studied in detail. However, only

expressions for grade 43 steel in Clause 5.5.3.5 are

considered since a similar effect is expected for grade 50

steel. The expressions obtained can be applied to the haunch

of frame 3. By comparing them with the test results for

frame 3, an amendment to Clause 5.5.3.5 is proposed.
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8.4.2 The Effect of the Factor q

It is evident from table 7.8 that the expression used for

the limiting length L t in clause 5.5.3.5. does not

adequately consider the effect of the taper parameter q.

From F.E.M. analysis it was clear that the effect of q is

significant, therefore, it was decided that the factor q

must be included in the expression in this clause. The

amended expression, for grade 43 steel that includes the

factor for q is as follows;

Klryx
L t-

	

	 	  	  (8.11)
Vq(72x2-104)

where q is the ratio of the length of the tapered part to

the total length of the beam and all other variables are as

given by clause 5.5.3.5. of BS 5950.

Equation 8.11 was used to analyse the haunched beam under

consideration and the results are as shown in table 8.10.

This shows that by employing equation 8.11 the limiting

length Lt was increased, thus reducing the percentage error

or the safety reserve when compared to the Finite Element

Method.

8.4.3 The Inclusion a Factor f in Equation 8.11

To study the effect of the relationships of q to the

critical length in more detail, expression 8.11. was further
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modified. The factor f that has a similar effect as an

"effective length" is included in the expression as shown in

equation 8.12.

figry
L - 	

x	
	  (8.12)

Vq(72x2-104)

Expression 8.12 was evaluated for values of f=1.1, 1.15, 1.2

and 1.25. Table 8.11 shows the results obtained when

expression 8.12 is used to analyse the haunched beam under

consideration.

Figures 8.3A to 8.3E show the results for the limiting

length as a function of the different values of q used in

the equation. They show that the curve for clause 5.5.3.5.

is a horizontal straight line indicating no difference for

different values of q. However the curves given by equations

8.11 and 8.12 show how the value of q effects the critical

length of the haunched beam.

Considering the results obtained by using equation 8.11 and

that obtained by using equation 8.9c, shows that in all the

cases considered, values of critical length obtained for

q=0.6 were higher for equation 8.9c. However, the results

from equation 8.11 gradually get higher than those given by

equation 8.9c, at the value of q=0.3 all the cases

considered show values of the limiting length or the

critical length to be higher for equation 8.10. Figures 8.3

(A to E) show that the graphs obtained from equations 8.11
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and 8.12 gave almost parallel lines to the graph of the

results of the Finite Element analysis whereas figures 8.2

(A to E) show that the graph for equation 8.9c is parallel

to the graph of Appendix G.

It can therefore be said that equation 8.11 gave a more

realistic account of the behaviour of the haunched beam than

the other clauses. Therefore it is recommended that clause

5.5.3.5. should be amended to include the effect of q.

8.4.4 Comparison of Results of Frame 3 with the Amended

Expressions 8.11 and 8.12

Expressions 8.11 and 8.12 are used to analyse the haunch of

Frame 3. This is done so that the expressions can be tested

for the real case and therefore realistic design expressions

can be proposed. However in the case of the haunch of Frame

3, the analysis was for a value of q=1. Therefore, results

of analysis by clause 5.5.3.5 and that of expression 8.11

will be the same.

Nevertheless, comparison can be made between the results of

Clause 5.5.3.5 and expression 8.12 with values of f=1.1,

1.15, 1.2 and 1.25. Table 8.18 compares the results of the

analyses with the actual length of haunch of Frame 3. Table

8.18 shows that the critical length by these two methods

gave the same critical length of 1574 mm (i.e., 67% of
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actual length). In Expression 8.12, increasing the value of

f led to an increase in the critical length. At a value of

f=1.25 the critical length is 1968 mm i.e., 83% of the

actual length. Therefore it can be said that Expression 8.12

is valid for the haunch of Frame 3.

8.5 Conclusions

In this chapter, some possible amendments to Appendix G and

Clause 5.5.3.5 were investigated and analysed. Results given

by these modified expressions were compared with the results

given by the original clauses and by finite element analyses

for both prismatic and non-uniform members.

In the case of the elastic and plastic stability of

prismatic members, it was shown in chapter 7 that the

methods of Appendix G provide safe designs. Detailed study

of these design methods indicate safety reserves of 40%-50%

of the actual buckling load. In section 6.2.2 amendment to

the clauses in Appendix G relating to the elastic stability

of prismatic members were proposed to reduce this safety

reserve or increase the critical length. A new factor, with

values less than unity, called the ELR or "Effective length

with full restraint" factor in the calculation of the

slenderness A was introduced. However, the method of

calculation used in Appendix G was maintained. The results

of analysis considering this new factor achieved the desired
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reduction in the safety reserve. Based on the analysis of

selected beams it was proposed that an ELR factor k 1=0.8 can

be introduced in the manner described, in this clause of

Appendix G.

In section 8.2.3., a slightly different treatment was given

to the plastic stability of prismatic members. The ELR

factor was also introduced but in this case into the

expression for the limiting length, L k . Analysis of this

amended clause showed that, the introduction of the ELR

factor achieved the desired reduction in the safety reserve

when compared with the results of analysis by Finite Element

Method. Subsequently, an ELR factor of k=0.9 was proposed

for introduction into this clause of Appendix G, but

otherwise it should remain as it is.

In the earlier chapter, it was also shown that Appendix G

provided oversafe designs for tapered or haunched members.

In elastic stability, the bending stresses produced and the

buckling stresses allowed by the design were analysed

thoroughly to reduce these oversafe conditions. Based on

this analysis, it was found that the critical length could

be increased by increasing the allowable buckling stress.

Thus four alternative methods were proposed and analysed.

Comparing the results with analysis by the Finite Element

Method showed considerable improvement to the situation.

These amended expressions were then tested against the

results of the full-scale test conducted on Frame 3 to check
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their validity. From this analysis, recommendations for

amendments to the clauses for the elastic buckling of non-

uniform members in Appendix G of BS 5950 were made.

In the case of the plastic stability of non-uniform members,

the analysis in section 8.3.5. showed that by the

introduction of an ELR factor k=0.9 into the expression for

limiting length reduced the safety reserve slightly but

maintained it on the safe side. Hence, it was recommended

that this value of ELR factor be introduced in the relevant

clause in Appendix G.

Finally amendments to clause 5.5.3.5., of BS 5950 were

addressed in section 8.4. In the treatment of this clause,

two approaches were studied namely the introduction of q,

the ratio of the tapered length to the total length and in

addition, the introduction of a factor f. Results given by

the modified expressions were compared with those given by

the Finite Element Method. It was shown that inclusion of

the factor q in the original expressions made the behaviour

of the beam more realistic. The inclusion of a factor f

increased the critical length. A check with the actual case

of Frame 3 had shown that the amended expressions were valid

and on the safe side. Therefore, the expressions were

proposed to be introduced into Clause 5.5.3.5.



FEM
	

APP G
	

ELR kl•0.9

ELR kl•0.8
	

ELR k.0.7	 —0— ELR

F.E.M

— 1.11Pb

- APP G

— 1.25Pb

- 0.5(Pb+Py)

— 1.66Pb

325

FIG 8.1 THE RELATIONSHIP BETWEEN
CRITICAL LENGTH AND SECOND MOMENT

OF AREA OF MINOR AXIS ly

LENGTH m
10

8

6

4

2

0
0 500 1000	 1500

	
2000

ly cm"4
2500

,E1e10111•MMIIIMINPMC.:,

BASED ON RESULTS FOR A PRISMATIC MEMBER
WITH MOMENT GRADIENT (B-0.5)

FIG 8.2(A) GRAPH OF RELATIONSHIP OF
q TO CRITICAL LENGTH APP G AND THE

MODIFIED CLAUSES OF APP G.

LENGTH m
700	 -

600

500 -

400 -

300-	 -	

200
Ipr

100 -

0
0	 0.1	 0.2	 0.3	 0.4	 0 5	 0.6	 0.7

CASE OF HAUNCHED BEAM 203x133xUB30.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.



800

600

400

200

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7

	F.E.M	 —1— APP G
	

0.6(Pb+Py)

	

— 1.11Pb	 —"— 1.26Pb
	

-4— 1.66Pb

0

FIG 8.2(B) GRAPH OF RELATIONSHIP OF
	 326

q TO CRITICAL LENGTH FOR APP G AND
THE MODIFIED CLAUSE OF APP G.

LENGTH cm
400

300

200

100

0
0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7

F.E.M
	

-4- APP G
	

—*— 0.6(Pb+Py)

1.11Pb
	

—x— 1.26Pb
	

1.66Pb

CASE OF HAUNCHED BEAM 264x102xUB28.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.

FIG 8.2(C) GRAPH OF RELATIONSHIP OF
q TO CRITICAL LENGTH FOR APP G AND THE

MODIFIED CLAUSE OF APP G.

LENGTH cm

CASE OF HAUNCHED BEAM 264x146xUB43.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.



	0

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7

700

600

500

400 -

	

300 	

200

100

	

0 	
0

1

f	

0	 0.1	 0.2	 0.3	 0.4	 0.5
	

0.6	 0.7

F.E.M	 APP
	

0.6(Pb+Py)

1.11Pb	 1.26Pb
	 --- 1.66Pb

1000

800

600

400

200

0

327
FIG 8.2(D) GRAPH OF RELATIONSHIP OF

q TO CRITICAL LENGTH FOR APPENDIX G
AND THE MODIFIED CLAUSE OF APP G.

LENGTH cm

F.E.M	 APP
	

0.6(Pb+Py)

1.11Pb	 1.26Pb6
	

---4-- 1.66Pb

CASE OF HAUNCHED BEAM 467x162xUB82.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.

FIG 8.2(E) GRAPH OF RELATIONSHIP OF
q TO CRITICAL LENGTH FOR APPENDIX G

AND THE MODIFIED CLAUSE OF APP G.

LENGTH cm

CASE OF HAUNCHED BEAM 467x191xUB98.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.



LENGTH m

	

700 	

	

600 	

	

500 	

	

400 	

	

300 	

200 -

100 -

	

0 	
0 0.4	 0.5 0.6	 0.70.30.1	 0.2

500 	

400

	

300 r 	

200h

100

328

FIG 8.3(A) GRAPH OF RELATIONSHIP OF
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FIG 8.3(C) GRAPH OF RELATIONSHIP OF

q TO CRITICAL LENGTH FOR CLAUSE 5.5.3.5
AND THE MODIFIED CLAUSE.

LENGTH cm
800

600

400

200

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7

F.E.M	 CLAUSE 6.6.3.-6*— Lt(1.0)	 Lt(1.1)

Lt(1.16)	 Lt(1.2)	 Lt(1.26)

CASE OF HAUNCHED BEAM 264x146xUB43.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.

FIG 8.3(D) GRAPH OF RELATIONSHIP OF
q TO CRITICAL LENGTH FOR CLAUSE 5.5.3.5

AND THE MODIFIED CLAUSE.

LENGTH cm

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7

F.E.M	 CLAUSE 6.6.3.64— Lt(1.0)	 Lt(1.1)

—"— Lt(1.16)	 Lt(1.2)	 Lt(1.26)

CASE OF HAUNCHED BEAM 467x162xUB82.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.
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FIG 8.3(E) GRAPH OF RELATIONSHIP OF
q TO CRITICAL LENGTH FOR CLAUSE 5.5.3.5

AND THE MODIFIED CLAUSE.

LENGTH cm

-

-

0 i I	 I

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7
q

— F.E.M

' Lt(1.16)

---e- CLAUSE 6.6.3:9c- Lt(1.0)	 -G-- L1(1.1)

--4-- Lt(1.2)	 -4.-- Lt(1.26)

CASE OF HAUNCHED BEAM 467x191xUB98.
q IS THE RATIO OF TAPERED LENGTH TO
TOTAL LENGTH OF THE HAUNCHED BEAM.
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TABLE 8.1 RESULTS OF NUMERICAL ANALYSIS FOR ELASTIC STABILITY OF
PRISMATIC MEMBERS BY AMMENDMENT TO APPENDIX G (BY
INTRODUCING THE ELR FACTOR kl, IN CALCULATING FOR THE
SLENDERNESS ?n OF THE MEMBER BETWEEN EFFECTIVE
TORSIONAL RESTRAINTS TO BOTH FLANGES).

APP G. ELAST. ELAST. ELAST. ELAST. FINITE
ELAST. STABL. STABL. STABL. STABL. ELEMENT
STABL. kl=0.9 kl=0.8 k1=0.7 k1=0.6 METHOD

L L L L L L
(cm) (cm) (cm) (cm) (cm) (cm)

UMB-1 332.5 365 410 475 545 585
(43%) (38%) (30%) (19%) (7%)

UMB-2 225.5 245 275 315 365 396
(43%) (38%) (31%) (20%) (8%)

UMB-3 367.2 395 440 503 595 690
(47%) (43%) (36%) (27%) (14%)

UMB-4 215.5 229 260 298 340 377
(43%) (39%) (31%) (21%) (10%)

UMB-5 296.2 314 355 415 472 591
(50%) (47%) (39%) (29%) (20%)

UMB-6 395 428 475 540 635 743
(47%) (42%) (36%) (27%) (15%)

UMB-7 256.5 278 313 358 418 428
(41%) (35%) (27%) (16%) (3%)

UMB-8 411.5 440 497 565 665 756
(46%) (42%) (34%) (25%) (12%)

UMB-9 288.5 310 349 398 465 485
(41%) (36%) (28%) (18%) (4%)

U1'IB- 416.5 450 505 575 670 790
10 (47%) (43%) (36%) (27%) (15%)

UMB- 369.5 395 445 505 585 740
11 (52%) (46%) (40%) (32%) (21%)

UMB- 482.5 510 576 650 768 840
12 (43%) (39%) (31%) (23%) (9%)
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TABLE 8.2 RESULTS OF NUMERICAL ANALYSIS OF PRISMATIC BEAM FOR
PLASTIC STABILITY BY AMMENDMENT TO APPENDIX G (i.e BY
INCLUDING THE ELR FACTOR kl, IN THE CALCULATION FOR
SLENDERNESS 1 THE MEMBER BETWEEN EFFECTIVE TORSIONAL
RESTRAINTS TO BOTH FLANGES)

I I

APP G. PLAST. PLAST. PLAST. PLAST. F.E.M
PLAST. STAB. STAB. STAB. STAB. ELAST
STAB. kl=0.9 kl=0.8 kl=0.7 kl=0.6 STAB.

Lt Lt Lt Lt Lt L
(cm (cm) (cm) (cm) (cm) (cm)

UMB-1 341.5 341.5 341.5 341.5 341.5 585
(42%) (42%) (42%) (42%) (42%)

UMB-2 216.6 216.6 216.6 216.6 216.6 396
(45%) (45%) (45%) (45%) (45%)

UMB-3 379.8 379.8 379.8 379.8 379.8 690
(45%) (45%) (45%) (45%) (45%)

UMB-4 201.2 201.2 201.2 201.2 201.2 377
(46%) (46%) (46%) (46%) (46%)

UMB-5 282.4 282.4 282.4 282.4 282.4 590
(52%) (52%) (52%) (52%) (52%)

UMB-6 408.0 408.0 408.0 408.0 408.0 743
(45%) (45%) (45%) (45%) (45%)

UMB-7 253.2 253.2 253.2 253.2 253.2 428
(41%) (41%) (41%) (41%) (41%)

UMB-8 408.5 408.5 408.5 408.5 408.5 756
(46%) (46%) (46%) (46%) (46%)

UMB-9 279.4 279.4 279.4 279.4 279.4 485
(42%) (42%) (42%) (42%) (42%)

UMB-10 395.1 395.1 395.1 395.1 395.1 790
(50%) (50%) (50%) (50%) (50%)

UMB-11 326.5 326.5 326.5 326.5 326.5 740
(56%) (56%) (56%) (56%) (56%)

UMB-12 433.1 433.1 433.1 433.1 433.1 840
(48%) (48%) (48%) (48%) (48%)

NOTE: RESULTS SHOWS NO EFFECT TO THE CRITICAL LENGTH
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TABLE 8.3 RESULTS OF NUMERICAL ANALYSIS OF PRISMATIC BEAM FOR
PLASTIC STABILITY BY AMENDMENT TO APPENDIX G (i.e BY
INCLUDING THE ELR FACTOR kl, IN THE CALCULATION FOR
LIMITING LENGTH Lk;

(5.4+600-EK)ryx
Lk-

k//(5 .4 (1),c2-1)

APP G.
PLAST.
STAB.

Lt
(cm

PLAST.
STAB.
kl=0.9

Lt
(cm)

PLAST.
STAB.
kl=0.8

Lt
(cm)

PLAST.
STAB.
kl=0.7

Lt
(cm)

PLAST.
STAB.
kl=0.6

Lt
(cm)

F.E.M
ELAST
STAB.

L
(cm)

UMB-1 341.5 379.0 427.0 487.0 569.0 585
(42%) (35%) (27%) (17%) (3%)

UMB-2 216.6 240.0 271.0 309.0 361.0 396
(45%) (39%) (32%) (22%) (	 9%)

UMB-3 379.8 422.0 475.0 543.0 633.0 690
(45%) (39%) (31%) (21%) (	 8%)

UMB-4 201.2 223.0 251.0 288.0 336.0 377
(46%) (41%) (33%) (24%) (11%)

UMB-5 282.4 313.0 353.0 404.0 471.0 590
(52%) (47%) (40%) (32%) (20%)

UMB-6 408.0 453.0 510.0 583.0 680.0 743
(45%) (39%) (31%) (22%) (	 8%)

UMB-7 253.2 281.0 316.0 362.0 422.0 428
(41%) (34%) (26%) (16%) (	 1%)

UMB-8 408.5 454.0 511.0 584.0 681.0 756
(46%) (40%) (32%) (23%) (10%)

UMB-9 279.4 310.0 349.0 399.0 466.0 485
(42%) (36%) (28%) (18%) (	 4%)

UMB-10 395.1 439.0 494.0 565.0 659.0 790
(50%) (44%) (38%) (29%) (17%)

UMB-11 326.5 363.0 409.0 467.0 545.0 740
(56%) (51%) (45%) (37%) (26%)

UMB-12 433.1 481.0 541.0 619.0 722.0 840
(48%) (43%) (36%) (26%) (14%)
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TABLE 8.4 RESULTS OF ANALYSIS BY INCRESING THE ALLOWABLE
BUCKLING STRESS IN EXPRESSION G.2.(a).2 OF APPENDIX
G. THE CASE OF ELASTIC STABILITY OF HAUNCHED BEAMS.

q r MOMENT
AT END

APP G
ELAST

F/A+
M/Sx

F/A+
M/Sx

F/A+
M/Sx

F/A+
M/Sx

(kNcm) STAB. < < < <
0.5Pb 1.11Pb 1.25Pb 1.66Pb

+0.5Py

L(cm) L	 (cm) L (cm) L (cm) L	 (cm)

H1 0.6 3 17455 148.5 187.0 173.0 203.0 270.5
H2 0.5 3 13964 141.5 179.5 171.5 202.0 271.5
113 0.4 2 11636 149.5 195.0 182.0 216.0 298.0
H4 0.4 3 11636 155.0 203.0 184.5 215.5 286.5
H5 0.3 2 9970 159.0 212.0 191.5 226.0 311.0
H6 0.3 3 9970 158.0 207.0 188.0 226.0 292.5

H7 0.6 3 19200 113.5 150.5 133.0 154.5 203.5
118 0.5 3 15394 111.0 143.5 131.0 153.0 203.0
H9 0.4 2 12830 112.0 150.5 134.5 157.5 212.0
H10 0.4 3 12830 120.0 161.0 140.0 161.5 212.0
H11 0.3 2 10990 118.0 162.0 140.5 163.5 219.0
1112 0.3 3 10990 121.5 162.5 142.0 164.5 216.0

H13 0.6 3 31580 160.5 208.0 190.5 222.5 296.0
1114 0.5 3 25264 157.5 200.5 189.0 222.0 297.5
1115 0.4 2 21050 166.0 219.5 202.0 240.0 332.0
1116 0.4 3 21050 173.0 228.0 203.5 237.5 315.0
H17 0.3 2 18045 175.5 239.0 212.5 251.0 346.0
1118 0.3 3 18045 175.0 231.5 207.5 242.0 321.0

1119 0.6 3 97313 170.5 230.0 200.5 232.0 304.0
1120 0.5 3 77850 167.5 220.0 198.0 230.5 304.0
H21 0.4 2 64875 171.0 234.0 204.5 238.5 320.0
1122 0.4 3 64875 180.5 244.0 211.0 243.5 318.0
H23 0.3 2 55607 180.0 251.5 213.0 247.5 330.0
H24 0.3 3 55607 183.0 250.5 214.0 247.0 323.0

1125 0.6 3 122250 215.0 287.0 254.5 295.5 389.5
H26 0.5 3 97800 211.0 276.0 252.0 294.0 390.0
H27 0.4 2 81500 218.0 292.5 261.0 306.5 414.0
H28 0.4 3 81500 228.0 310.0 269.0 311.5 408.5
H29 0.3 2 69850 230.0 315.5 273.0 318.5 429.0
1130 0.3 3 69850 232.0 315.5 273.0 316.5 416.0
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TABLE 8.5 COMPARISON OF PERCENTAGE ERROR/PERCENTAGE SAFETY
RESERVE FOR VARIOUS AMMENDMENTS TO APPENDIX G, THE
CASE FOR ELASTIC BUCKLING. (PERCENTAGE WITH REFERENCE
TO RESULTS OF FINITE ELEMENT METHOD).

FINITE
ELEMENT
METHOD

APP G
ELAST
STAB.

FIA+
M/Sx

<

0.5Pb
+0.5Py

F/A+
M/Sx

<

1.11Pb

F/A+
M/Sx

<

1.25Pb

F/A+
M/Sx

<

1.66Pb

L(cm) % % % % %

H1 447.0 67% 58% 61% 55% 39%
H2 507.0 73% 64% 66% 60% 46%
H3 545.0 73% 64% 67% 60% 45%
H4 595.0 74% 66% 69% 64% 52%
H5 588.0 73% 64% 67% 62% 47%
H6 648.0 75% 68% 71% 66% 55%

H7 308.0 63% 51% 57% 50% 34%
H8 340.0 67% 58% 61% 55% 40%
H9 347.0 68% 57% 61% 55% 39%
H10 358.0 67% 55% 61% 55% 41%
H11 378.0 69% 57% 63% 57% 42%
H12 393.0 69% 59% 64% 58% 45%

H13 520.0 69% 60% 63% 57% 43%
H14 582.0 73% 65% 68% 62% 49%
H15 625.0 73% 65% 68% 62% 47%
H16 678.0 74% 66% 70% 65% 54%
H17 692.0 75% 65% 70% 64% 50%
H18 740.0 76% 69% 72% 67% 57%

H19 475.0 64% 52% 58% 51% 36%
H20 551.0 70% 61% 65% 59% 46%
H21 540.0 68% 57% 62% 56% 41%
H22 603.0 71% 60% 66% 60% 48%
H23 600.0 71% 60% 66% 61% 47%
H24 630.0 70% 59% 65% 60% 47%

H25 618.0 65% 54% 59% 52% 37%
H26 730.0 71% 62% 65% 60% 47%
H27 725.0 70% 60% 64% 58% 43%
H28 785.0 71% 61% 66% 60% 48%
H29 810.0 72% 61% 66% 61% 47%
H30 865.0 73% 64% 68% 63% 52%
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TABLE 8.6 STRESSES AT THE CRITICAL SECTION WHEN ANALYSED BY
INCREASING THE ALLOWABLE BUCKLING STRESS IN EXPRESSION
G.2.(a).2 OF APPENDIX G BY EXPRESSION F/A + M/Sx <
(Pb+Py)/2.

MOMENT
AT END
(kNcm)

F/A+M/Sx
<0.5(Pb)
+0.5(Py)

LENGTH
INCR.
OVER
APP G

CRIT.
SECTION
ON THE
BEAM

STRESS
DUE TO
APPLIED
MOMENT

ALLOW-
ABLE
BUCKL.
STRESS

L	 (cm) % kN/cm2 kN/cm2

H1 17455 187.0 26% 12 21.8 21.8
H2 13964 179.5 27% 15 22.2 22.2
H3 11636 195.0 30% 18 22.0 22.0
H4 11636 203.0 31% 18 21.5 21.5
H5 9970 212.0 33% 20 21.5 21.5
H6 9970 207.0 31% 20 21.5 21.5

H7 19200 150.5 32% 12 21.2 21.2
H8 15394 143.5 29% 15 21.6 21.6
H9 12830 150.5 34% 18 21.4 21.4
H10 12830 161.0 34% 18 20.9 20.9
H11 10990 162.0 37% 20 20.9 21.0
H12 10990 162.5 34% 20 20.9 21.0

H13 31580 208.0 29% 12 21.6 21.7
H14 25264 200.5 27% 15 22.0 22.0
H15 21050 219.5 32% 18 21.8 21.8
H16 21050 228.0 32% 18 21.8 21.8
H17 18045 239.0 36% 20 21.4 21.4
H18 18045 231.5 32% 20 21.4 21.4

H19 97313 230.0 35% 12 20.9 20.9
H20 77850 220.0 31% 15 21.3 21.3
H21 64875 234.0 27% 18 21.1 21.1
H22 64875 244.0 35% 18 20.6 20.7
H23 55607 251.5 40% 20 20.7 20.7
1-124 55607 250.5 37% 20 20.7 20.7

H25 122250 287.0 33% 12 21.2 21.2
H26 97800 276.0 31% 15 21.6 21.6
H27 81500 292.5 34% 18 21.4 21.4
H28 81500 310.0 36% 18 20.9 20.9
1129 69850 315.5 37% 20 20.9 20.9
1130 69850 315.5 36% 20 20.9 20.9
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TABLE 8.7 STRESSES AT THE CRITICAL SECTION WHEN ANALYSED BY
INCREASING THE ALLOWABLE BUCKLING STRESS IN EXPRESSION
G.2.(a).2 OF APPENDIX G BY EXPRESSION F/A + M/Sx <
1.11 Pb

MOMENT
AT END
(kNcm)

F/A+M/Sx
<1.11 Pb

LENGTH
INCR.
OVER
APP G

CRIT.
SECTION
ON THE
BEAM

STRESS
DUE TO
APPLIED
MOMENT

ALLOW-
ABLE
BUCKL.
STRESS

L	 (cm) % kN/cm2 kN/cm2

H1 17455 173.0 16% 12 21.8 21.8
H2 13964 171.5 21% 15 22.2 22.2
H3 11636 182.0 22% 18 22.2 22.2
H4 11636 184.5 29% 18 22.5 21.5
H5 9970 191.5 20% 20 21.5 21.5
H6 9970 188.0 19% 20 21.5 21.5

H7 19200 133.0 17% 12 21.2 21.2
H8 15394 131.0 18% 15 21.6 21.7
H9 12830 134.5 20% 18 21.4 21.4
H10 12830 140.0 17% 18 20.9 20.9
H11 10990 140.5 19% 20 20.9 21.0
H12 10990 142.0 17% 20 20.9 21.0

H13 31580 190.5 19% 12 21.6 21.7
H14 25264 189.0 20% 15 22.0 22.0
H15 21050 202.0 21% 18 21.8 21.8
H16 21050 203.5 18% 18 21.3 21.4
H17 18045 212.5 21% 20 21.4 21.4
H18 18045 207.5 19% 20 21.4 21.4

H19 97313 200.5 17% 12 20.9 20.9
B2D 77850 198.0 18% 15 22.3 21.3
H21 64875 204.5 20% 18 21.1 21.1
H22 64875 211.0 17% 18 20.6 20.6
H23 55607 213.0 18% 20 20.7 20.7
H24 55607 214.0 17% 20 20.7 20.7

(

H25 122250 254.5 18% 12 21.2 21.2
H26 97800 252.0 19% 15 21.6 21.6
H27 81500 261.0 20% 18 21.4 21.4
H28 81500 269.0 18% 18 20.9 20.9
H29 69850 273.0 19% 20 20.9 20.9
H30 69850 273.0 18% 20 20.9 21.0
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TABLE 8.8 STRESSES AT THE CRITICAL SECTION WHEN ANALYSED BY
INCREASING THE ALLOWABLE BUCKLING STRESS IN EXPRESSION
G.2. (a) .2 OF APPENDIX G BY EXPRESSION F/A + m/sx <
1.25 Pb

MOMENT	 F/A+M/Sx
AT END	 <1.25 Pb
(kNcm)

-
LENGTH
INCR.
OVER
APP G

CRIT.
SECTION
ON THE
BEAM

STRESS
DUE TO
APPLIED
MOMENT

ALLOW-
ABLE
BUCKL.
STRESS

L	 (cm) % kN/cm2 kN/cm2

H1 17455	 203.0 37% 12 21.8 21.8
H2 13964	 202.0 43% 15 22.2 22.2
H3 11636	 216.0 44% 18 22.0 22.0
H4 11636	 215.5 39% 18 21.5 21.5
H5 9970	 226.0 42% 20 21.5 21.5
H6 9970	 220.0 43% 20 21.5 21.5

H7 19200	 154.5 36% 12 21.2 21.2
H8 15394	 153.0 38% 15 21.6 21.7
H9 12830	 157.5 41% 18 21.4 21.4
H10 12830	 161.5 35% 18 20.9 20.9
H11 10990	 163.5 39% 20 20.9 21.0
H12 10990	 164.5 35% 20 20.9 21.0

H13 31580	 222.5 39% 12 21.6 21.7
H14 25264	 222.0 41% 15 22.0 22.1
H15 21050	 240.0 44% 18 21.8 21.8
H16 21050 237.5 37% 18 21.3 21.3
H17 18045 251.0 43% 20 21.4 21.4
H18 18045 242.0 38% 20 21.4 21.4

H19 97313 232.0 36% 12 20.9 20.9
H20 77850 230.5 38% 15 21.3 21.3
H21 64875 238.5 39% 18 21.1 21.1
H22 64875 243.5 35% 18 20.6 20.6
H23 55607 247.5 38% 20 20.7 20.7
H24 55607 247.0 35% 20 20.7 20.7

H25 122250 295.5 37% 12 21.2 21.2
H26 97800 294.0 39% 15 21.6 21.6
H27 81500 306.5 40% 18 21.4 21.4
H28 81500 311.5 37% 18 20.9 20.9
H29 69850 318.5 38% 20 20.9 21.0
H30 69850 316.5 36% 20 20.9 20.9
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TABLE 8.9 STRESSES AT THE CRITICAL SECTION WHEN ANALYSED BY
INCREASING THE ALLOWABLE BUCKLING STRESS IN EXPRESSION
G.2. (a) .2 OF APPENDIX G BY EXPRESSION F/A + m/sx <
1.66 Pb

MOMENT
AT END
(kNcm)

F/A+M/Sx
<1.66 Pb

LENGTH
INCR.
OVER
APP G

CRITICAL
SECTION
ON THE
BEAM

STRESS
DUE TO
APPLIED
MOMENT

ALLOW-
ABLE
BUCKL.
STRESS

L	 (cm) % kN/cm2 kN/cm2

H1 17455 270.5 82% 12 21.8 21.8
H2 13964 271.5 92% 15 22.2 22.2
H3 11636 298.0 99% 18 22.0 22.0
H4 11636 286.5 85% 18 21.5 21.5
H5 9970 311.0 95% 20 21.5 21.5
H6 9970 292.5 85% 20 21.5 21.5

H7 19200 203.5 79% 22 21.2 21.2	 (
H8 15394 203.0 83% 15 21.6 21.7
H9 12830 212.0 89% 18 21.4 21.4
H10 12830 212.0 77% 18 20.9 20.9
H11 10990 219.0 86% 20 20.9 21.0
H12 10990 216.0 78% 20 20.9 21.0

H13 31580 296.0 84% 12 21.6 21.7
H14 25264 297.5 89% 15 22.0 22.1
H15 21050 332.0 100% 18 21.8 21.8
H16 21050 315.0 82% 18 21.3 21.3
H17 18045 346.0 97% 20 21.4 21.4
H18 18045 321.0 83% 20 21.4 21.4

H19 97313 304.0 78% 12 20.9 21.0
H20 77850 304.0 81% 15 21.3 21.3
H21 64875 320.0 87% 18 21.1 21.1
H22 64875 318.0 76% 18 20.6 20.6
H23 55607 330.0 83% 20 20.7 20.7
H24 55607 323.0 76% 20 20.7 20.7

H25 122250 389.5 81% 12 21.2 21.2
H26 97800 390.0 85% 15 21.6 21.6
H27 81500 414.0 90% 18 21.4 21.4
H28 81500 408.5 82% 18 20.9 20.9
H29 69850 429.0 87% 20 20.9 21.0
H30 69850 416.0 79% 20 20.9 21.0
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TABLE 810 RESULTS OF ANALYSIS OF HAUNCHED MEMBER BY MODIFICATION
OF THE LIMITING LENGTH EXPRESSION IN CLAUSE 5.5.3.5
OF BS5950. THE NEW EXPRESSION IS;
Lt = (K1 ry X)//(q(72 X2 - 104))

' q r K1	 _. X ry
CLAUSE
5.5.3.5

Lt
(cm)

NEW
EXPRE

Lt
(cm)

FINITE
ELEM.

METHOD
(cm)

H1 0.6 3 445 22.35 3.2 197.5 255 447.0
H2 0.5 3 445 22.35 3.2 197.5 279 507.0
113 0.4 2 495 22.35 3.2 219.7 347 545.0
114 0.4 3 445 22.35 3.2 197.5 312 595.0
H5 0.3 2 495 22.35 3.2 219.7 401 588.0
H6 0.3 3 445 22.35 3.2 197.5 360 648.0

117 0.6 3 445 28.5 2.2 126.7 164 308.0
118 0.5 3 445 28.5 2.2 126.7 179 340.0
119 0.4 2 495 28.5 2.2 140.9 223 347.0
H10 0.4 3 445 28.5 2.2 126.7 200 358.0
1111 0.3 2 495 28.5 2.2 140.9 257 378.0
1112 0.3 3 445 28.5 2.2 126.7 231 393.0

1113 0.6 3 445 21.55 3.5 219.2 283 520.0
H14 0.5 3 445 21.55 3.5 219.2 310 582.0
1115 0.4 2 495 21.55 3.5 243.8 385 625.0
1116 0.4 3 445 21.55 3.5 219.2 346 678.0
1117 0.3 2 495 21.55 3.5 243.8 445 692.0
1118 0.3 3 445 21.55 3.5 219.2 400 740.0

H19 0.6 3 445 27.80 3.3 191.1 247 475.0
H20 0.5 3 445 27.80 3.3 191.1 270 551.0
H21 0.4 2 495 27.80 3.3 212.6 336 540.0
H22 0.4 3 445 27.80 3.3 191.1 302 603.0
H23 0.3 2 495 27.80 3.3 212.6 388 600.0
H24 0.3 3 445 27.80 3.3 191.1 349 630.0

H25 0.6 3 445 26.15 4.3 252.6 326 618.0
H26 0.5 3 445 26.15 4.3 252.6 357 730.0
1127 0.4 2 495 26.15 4.3 281.0 444 725.0
H28 0.4 3 445 26.15 4.3 252.6 399 785.0
H29 0.3 2 495 26.15 4.3 281.0 513 810.0
H30 0.3 3 445 26.15 4.3 252.6 461 865.0
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TABLE 811 RESULTS OF ANALYSIS OF HAUNCHED MEMBER BY MODIFICATION
OF THE LIMITING LENGTH EXPRESSION IN CLAUSE 5.5.3.5
OF BS5950. THE NEW EXPRESSION IS;
Lt	 = f(K1 ry X)//(q(72 X2 - 104))aWHERE f = 1, 1.1, 1 15, 1.2, AND 1.25

CLAUSE
5535
Lt
(cm)

NEW
EXPR
Lti
(cm)

NEW
EXPR
LtLi
(cm)

NEW
EXPR
Lt 1.15
(cm)

NEW
EXPR
Lt L?
(cm)

NEW
EXPR
LtLr
(cm)

FINITE
ELEM.

METHOD
(cm)

H1 197.5 255 280 293 305 318 447.0
H2 197.5 279 307 321 335 349 507.0
H3 219.7 347 382 399 416 434 545.0
H4 197.5 312 343 359 374 390 595.0
H5 219.7 401 441 461 481 501 588.0
H6 197.5 360 396 414 432 450 648.0

H7 126.7 164 180 188 196 204 308.0
H8 126.7 179 197 206 215 224 340.0
H9 140.9 223 245 256 267 278 347.0
H10 126.7 200 220 230 240 250 358.0
H11 140.9 257 283 296 309 322 378.0
H12 126.7 231 254 266 277 289 393.0

H13 219.2 283 311 325 340 354 520.0
H14 219.2 310 341 356 372 388 582.0
H15 243.8 385 424 443 463 482 625.0
H16 219.2 346 381 398 416 433 678.0
H17 243.8 445 490 512 534 557 692.0
H18 219.2 400 440 460 480 500 740.0

H19 191.1 247 271 284 296 308 475.0
H20 191.1 270 297 311 324 338 551.0
H21 212.6 336 370 386 403 420 540.0
H22 191.1 302 332 347 363 378 603.0
H23 212.6 388 427 446 466 485 600.0
H24 191.1 349 384 401 419 436 630.0

H25 252.6 326 359 375 391 408 618.0
H26 252.6 357 393 411 429 446 730.0
H27 281.0 444 489 511 533 555 725.0
H28 252.6 399 439 459 479 499 785.0
H29 281.0 513 564 590 616 641 810.0
H30 252.6 461 507 530 553 576 865.0
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TABLE 8.12 PERCENTAGE ERROR/SAFETY RESERVE TO THE RESULTS OF
ANALYSIS OF HAUNCHED MEMBER BY MODIFICATION OF THE
LIMITING LENGTH EXPRESSION IN CLAUSE 5.5.3.50F BS5950
TO RESULTS OF ANALYSIS BY FINITE ELEMENT METHOD. THE
NEW EXPRESSION IS;
Ltm = f(K1 ry X)//(q(72 X2 - 10 4 ))
WHtRE f = 1, 1.1, 1.15, 1.2, AND 1.25

CLAUSE
5535

%

ERR

NEW
EXPR
Lt 

1
%ERR

NEW
EXPR
LtLl
%ERR

NEW
EXPR
Lt115
%ERR

NEW
EXPR
LtL2
%ERR

NEW
EXPR
LtL25
%ERR

FINITE
ELEM.

METHOD
(cm)

H1	 56% 43% 37% 34% 32% 29% 447.0
H2	 51% 45% 39% 37% 34% 31% 507.0
H3	 60% 36% 30% 29% 24% 20% 545.0
H4	 67% 48% 42% 40% 37% 34% 595.0
H5	 63% 32% 25% 22% 18% 15% 588.0
H6	 70% 44% 39% 36% 33% 31% 648.0'	 (

H7	 59% 47% 42% 39% 36% 34% 308.0
H8	 63% 47% 42% 39% 379- 349- 340.0
H9	 59% 36% 29% 26% 23% 20% 347.0
H10	 65% 44% 39% 36% 33% 30% 358.0
H11	 63% 32% 25% 22% 18% 15% 378.0
H12	 68% 41% 35% 32% 30% 26% 393.0

H13	 58% 46% 40% 38% 35% 32% 520.0
H14	 62% 41% 41% 39% 36% 33% 582.0
H15	 61% 38% 32% 31% 26% 23% 625.0
H16 68-% 49% 44% 41% 39% 36% 678.0
H17 65% 36% 29% 26% 23% 20% 692.0
H18 70% 46% 41% 38% 35% 32% 740.0

B29 60% 48% 43% 40% 38% 35% 475.0
H20 65% 51% 46% 43% 41% 39% 551.0
H21 61% 38% 31% 29% 25% 22% 540.0
H22 68% 50% 45% 42% 40% 37% 603.0
H23 64% 35% 29% 26% 22% 19% 600.0
H24 70% 45% 39% 36% 33% 31% 630.0

H25 59% 47% 42% 39% 37% 34% 618.0
H26 65% 51% 46% 44% 41% 39% 730.0
H27 61% 39% 33% 30% 26% 24% 725.0
H28 68% 49% 44% 42% 39% 36% 785.0
H29 65% 37% 30% 27% 24% 21% 810.0
H30 71% 47% 41% 39% 36% 33% 865.0
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TABLE 8.13 RESULTS OF ANALYSIS FOR PLASTIC STABILITY FOR HAUNCHED
MEMBERS BY INCLUDING ELR FACTOR IN EXPRESSION FOR Lk.
IN APPENDIX G. COMPARISON ARE MADE FOR RESULTS OF
Lt(08) 1 Lt(0.9) AND APPENDIX G).

nt c APP G
Lk
(cm)

APP G
Lt
(cm)

Lk0.8

(cm)

Lt 0.8

(cm)

Lk 0.9

(cm)

Lt0.9

(cm)

H1 0.825 1.281 285 269 356 337 317 300
H2 0.811 1.256 285 279 356 349.5 317 311
H3 0.774 1.145 285 321 356 402 317 358
H4 0.756 1.229 285 306 356 383 317 341
H5 0.759 1.125 285 333 356 417 317 371
H6 0.737 1.199 285 322 356 403 317 358

117 0.818 1.192 184 189 230 236 202 207
118 0.798 1.175 184 196 230 245 202 216
H9 0.764 1.099 184 219 230 274 202 241
H10 0.744 1.157 184 214 230 267 202 235
H11 0.749 1.085 184 226 230 283 202 249
1112 0.725 1.136 184 223 230 279 202 246

1113 0.824 1.298 318 297 398 372 352 330
H14 0.81 1.272 318 309 398 386 352 342
H15 0.774 1.154 318 357 398 446 352 395
1116 0.755 1.244 318 339 398 424 352 375
H17 0.758 1.133 318 371 398 464 352 411
H18 0.736 1.211 318 357 398 447 352 396

H19 0.815 1.20 275 281 344 352 305 311
H20 0.795 1.182 275 293 344 366 305 325
H21 0.761 1.103 275 328 344 410 305 364
H22 0.741 1.163 275 319 344 399 305 354
H23 0.747 1.089 275 339 344 423 305 375
H24 0.723 1.141 275 334 344 417 305 370

H25 0.82 1.218 364 365 455 456 404 404
H26 0.802 1.199 364 379 455 474 404 420
1127 0.767 1.112 364 427 455 534 404 474
H28 0.748 1.178 364 414 455 517 404 458
H29 0.752 1.097 364 441 455 552 404 489
1130 0.729 1.154 364 433 455 541 404 480
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TABLE 8.14 PERCENTAGE ERROR/RESERVE OF SAFETY FOR PLASTIC
STABILITY FOR HAUNCHED MEMBERS BY INCLUDING ELR FACTOR
IN EXPRESSION FOR Lk IN APPENDIX G. PERCENTAGE ARE
BASED ON THE RESULTS OF RESULTS FOR ELASTIC STABILITY
BY FINITE ELEMENT ANALYSIS

FINITE
ELEMENT
METHOD

APP G
--(PLASTIC
STABILITY

Lt0.8 Lt0.9

(ELASTIC Lt %

STABIL.) (cm) ERR Lt % Lt
L	 (cm) (cm) ERR (cm) ERR

H1 447 269 (40%) 337 (25%) 300 (33%)
H2 507 279 (44%) 349 (31%) 311 (39%)
H3 545 321 (41%) 402 (26%) 358 (34%)
H4 595 306 (49%) 383 (36%) 341 (43%)
H5 588 333 (43%) 417 (29%) 371 (37%)
H6 648 322 (50%) 403 (38%) 358 (45%)

H7 308 189 (39%) 236 (23%) 207 (33%)
H8 340 196 (42%) 245 (28%) 216 (36%)
H9 347 219 (37%) 274 (21%) 241 (31%)
H10 358 214 (40%) 267 (25%) 235 (34%)
H11 378 226 (40%) 283 (25%) 249 (34%)
H12 393 223 (43%) 279 (29%) 246 (37%)

H13 520 297 (43%) 372 (29%) 330 (37%)
H14 582 309 (47%) 386 (34%) 342 (41%)
H15 625 357 (43%) 446 (29%) 395 (37%)
H16 678 339 (50%) 424 (37%) 375 (45%)
H17 692 371 (46%) 464 (33%) 411 (41%)
H18 740 357 (51%) 447 (40%) 396 (46%)

H19 475 281 (41%) 352 (26%) 311 (35%)
H20 551 293 (47%) 366 (34%) 325 (41%)
H21 540 328 (39%) 410 (24%) 364 (33%)
H22 603 319 (47%) 399 (34%) 354 (41%)
H23 600 339 (44%) 423 (30%) 375 (38%)
H24 630 334 (47%) 417 (34%) 370 (41%)

H25 618 365 (41%) 456 (26%) 404 (35%)
H26 730 379 (48%) 474 (35%) 420 (42%)
H27 725 427 (41%) 534 (26%) 474 (35%)
H28 785 414 (47%) 517 (34%) 458 (42%)
H29 810 441 (46%) 552 (32%) 489 (40%)
H30 865 433 (50%) 541 (37%) 480 (45%)
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TABLE 8.15 RESULTS OF ANALYSIS FOR ELASTIC STABILITY FOR
HAUNCHED MEMBERS BY USING Lk VALUE FROM HORNE'S
EQUATION (HORNE, SHAKIR-KHALIL AND AJMANI, 1979)
NOTE; THE REST OF THE PROCEDURE FOLLOWS APP. G.

Lk = ([8.0+(150 Py/E)]ry x)/(j[4.4(Py x2/E) - 1])
Lt < = Lk/(c nt)

q r

-

nt c Lk
cm

APP G
(HORNE'S
EQU. Lk)

APPENDIX
G BS5950.

F
E
M

Lt	 % LENGTH	 % L
(cm) ERR L(cm)	 ERR cm

H1 0.6 3.0 0.825 1.281 443 419	 6% 148.5	 67% 447
H2 0.5 3.0 0.811 1.256 443 435	 14% 141.5	 73% 507
H3 0.4 2.0 0.774 1.145 443 500	 8% 149.5	 73% 545
H4 0.4 3.0 0.756 1.229 443 477	 20% 155.0	 74% 595
H5 0.3 2.0 0.759 1.125 443 519	 12% 159.0	 73% 588
H6 0.3 3.0 0.737 1.199 443 501	 23% 158.0	 75% 648

H7 0.6 3.0 0.818 1.192 276 282	 8% 113.5	 63% 308
H8 0.5 3.0 0.798 1.175 276 294	 14% 111.0	 67% 340
H9 0.4 2.0 0.764 1.099 276 328	 5% 112.0	 68% 347
H10 0.4 3.0 0.744 1.157 276 320	 11% 120.0	 67% 358
1111 0.3 2.0 0.749 1.085 276 339	 10% 118.0	 69% 378
1-112 0.3 3.0 0.725 1.136 276 335	 15% 121.5	 69% 393

1113 0.6 3.0 0.824 1.298 495 463	 11% 160.5	 69% 520
H14 0.5 3.0 0.81 1.272 495 481	 17% 157.5	 73% 582
1115 0.4 2.0 0.774 1.154 495 555	 11% 166.0	 73% 625
H16 0.4 3.0 0.755 1.244 495 527	 22% 173.0	 74% 678
1117 0.3 2.0 0.758 1.133 495 577	 17% 175.5	 75% 692
H18 0.3 3.0 0.736 1.211 495 556	 25% 175.0	 76% 740

H19 0.6 3.0 0.815 1.20 417 426	 10% 170.5	 64% 475
H20 0.5 3.0 0.795 1.182 417 443	 20% 167.5	 70% 551
1121 0.4 2.0 0.761 1.103 417 496	 8% 171.0	 68% 540
H22 0.4 3.0 0.741 1.163 417 483	 20% 180.5	 70% 603
H23 0.3 2.0 0.747 1.089 417 512	 15% 180.0	 70% 600
H24 0.3 3.0 0.723 1.141 417 505	 20% 183.0	 71% 630

H25 0.6 3.0 0.82 1.218 554 555	 10% 215.0	 65% 618
1126 0.5 3.0 0.802 1.199 554 576	 21% 211.0	 71% 730
H27 0.4 2.0 0.767 1.112 554 650	 10% 218.0	 70% 725
H28 0.4 3.0 0.748 1.178 554 629	 20% 228.0	 71% 785
H29 0.3 2.0 0.752 1.097 554 672	 17% 230.0	 72% 810
H30 0.3 3.0 0.729 1.154 554 659	 24% 232.0	 73% 865
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TABLE 8.16 RESULTS OF ANALYSIS FOR ELASTIC STABILITY
FOR HAUNCHED MEMBERS BY HORNE'S METHOD (HORNE,
SHAKIR-KHALIL AND AJMANI, 1979)

Lk = ([8.0+(150 Py/E))ry x)/(/[4.4(Py x2/E)-1])
Lt < = Lk/(c nt)

q r nt c Lk
cm

HORNE'S
ELASTIC
STAB.

APPENDIX
G BS5950
CRIT.

F
E
M

Lt	 % LENGTH	 % L
(cm) ERR L(cm)	 ERR cm

H1 0.6 3.0 0.847 1.294 453 413	 8% 148.5	 67% 447
H2 0.5 3.0 0.861 1.268 453 415	 18% 141.5	 73% 507
H3 0.4 2.0 0.821 1.151 453 479	 12% 149.5	 73% 545
H4 0.4 3.0 0.801 1.240 453 456	 23% 155.0	 74% 595
H5 0.3 2.0 0.804 1.131 453 498	 15% 159.0	 73% 588
H6 0.3 3.0 0.781 1.208 453 480	 26% 158.0	 75% 648

H7 0.6 3.0 0.839 1.216 284 278	 10% 113.5	 63% 308
H8 0.5 3.0 0.858 1.198 284 276	 19% 111.0	 67% 340
H9 0.4 2.0 0.820 1.111 284 311	 10% 112.0	 68% 347
H10 0.4 3.0 0.799 1.177 284 302	 16% 120.0	 67% 358
H11 0.3 2.0 0.803 1.096 284 322	 15% 118.0	 69% 378
H12 0.3 3.0 0.779 1.153 284 316	 20% 121.5	 69% 393

H13 0.6 3.0 0.847 1.322 514 453	 13% 160.5	 69% 520
H14 0.5 3.0 0.860 1.294 514 462	 21% 157.5	 73% 582
H15 0.4 2.0 0.821 1.166 514 537	 14% 166.0	 73% 625
H16 0.4 3.0 0.801 1.263 514 508	 25% 173.0	 74% 678
H17 0.3 2.0 0.804 1.144 514 559	 19% 175.5	 75% 692
H18 0.3 3.0 0.781 1.228 514 536	 27% 175.0	 76% 740

H19 0.6 3.0 0.837 1.236 435 421	 11% 170.5	 64% 475
H20 0.5 3.0 0.857 1.216 435 418	 24% 167.5	 70% 551
H21 0.4 2.0 0.819 1.122 435 474	 12% 171.0	 68% 540
H22 0.4 3.0 0.799 1.193 435 457	 24% 180.5	 70% 603
H23 0.3 2.0 0.803 1.105 435 491	 18% 180.0	 70% 600
H24 0.3 3.0 0.779 1.167 435 479	 24% 183.0	 71% 630

H25 0.6 3.0 0.841 1.248 575 548	 11% 215.0	 65% 618
H26 0.5 3.0 0.859 1.227 575 546	 25% 211.0	 71% 730
H27 0.4 2.0 0.820 1.128 575 623	 14% 218.0	 70% 725
H28 0.4 3.0 0.800 1.203 575 598	 24% 228.0	 71% 785
H29 0.3 2.0 0.804 1.111 575 645	 20% 230.0	 72% 810
H30 0.3 3.0 0.780 1.176 575 628	 27% 232.0	 73% 865
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Table 8.17 Results of Analysis of Haunch of Frame 3 by
modified expressions

APP-G EXP EXP EXP EXP
(8.8) (8.9a) (8.9b) (8.9c)

ULTIMATE LOAD
(NOMINAL
DESIGN
VALUES)

1) BENDING
STRESS Mb 25.2 25.2 25.2 25.2 25.2

2)	 BUCKLING
STRESS Pb 14.2 20.8 15.8 17.7 23.6

3)	 DESIGN
CRITERIA NOT OK NOT OK NOT OK NOT OK NOT OK

4) Mb/Pb 1.77 1.21 1.59 1.42 1.06

ULTIMATE LOAD
(ACTUAL
MEASURED
VALUES)

1) BENDING
STRESS Mb 25.2 25.2 25.2 25.2 25.2

2) BUCKLING
STRESS Pb 15.18 22.1 16.4 18.4 24.5

3)	 DESIGN
CRITERIA NOT OK NOT OK NOT OK NOT OK NOT OK

4) Mb/Pb 1.66 1.14 1.54 1.37 1.03

WORKING LOAD
(ACTUAL
MEASURED
VALUES)

1)	 BENDING .
STRESS Mb 12.6 12.6 12.6 12.6 12.6

2)	 BUCKLING
STRESS Pb 15.19 22.2 16.4 18.5 24.6

3)	 DESIGN
CRITERIA OK OK OK OK OK

4) Mb/Pb 0.83 0.56 0.77 0.68 0.51

COLLAPSE LOAD
(ACTUAL
MEASURED
VALUES)

1)	 BENDING
STRESS Mb 18.8 18.8 18.8 18.8 18.8

2)	 BUCKLING
STRESS Pb 14.7 22.2 16.4 18.4 24.6

3)	 DESIGN
CRITERIA NOT OK OK NOT OK NOT OK OK

4) Mb/Pb 1.27 0.85 1.15 1.02 0.76

NOTE: (1) Value of stress; N/mm. (11) OK - buckling is not
predicted. (iii) NOT OK - buckling is predicted.
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Table 8.18 Results of Analysis of Haunch of Frame 3 by Clause
5.5.3.5 and the Expressions 8.11 and 8.12.

f=1.1 f=1.15 f=1.2 f=1.25

CLAUSE 1577 - - - -
5.5.3.5 (mm)

EXPRESSION 1577 - - - -
8.11 (mm)

EXPRESSION - 1735 1813 1892 1971
8.12 (mm) (mm) (mm) (mm)

ACTUAL 2364 - - - -
LENGTH (mm)
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CHAPTER 9

9.0 Conclusions

9.1 Summary of Research

A full scale test on a 24 m span industrial portal frame was

conducted. The method of testing described in this thesis is

completely new. The set up of the test was essentially to

allow the realistic behaviour of the frame to be observed.

The effects of the secondary members such as the purlins and

sheeting that enhanced the stability of the frame were

considered. This was done by a special test rig that was

designed with articulated gable frames. The test was

meticulously planned so that all aspects of the behaviour of

the frame, its secondary members and connections were

monitored and recorded. Sophisticated instrumentation and

data logging devices were used during the test. The

simulation of snow + self load was by using a total of 96

hangers connected to timber frames spreading the load over

an array of 576 points on the roof and loaded using six

hydraulic jacks.

Checks on the design of the frame showed some aspects of

poor design which could be eliminated by proper use of the

design code BS 5950. Of these, the stability of the haunch

attracted attention. The checks by Appendix G and Clause

5.5.3.5 showed that it was not stable at the collapse load.
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During the test, the frame failed by lateral-torsional

buckling at one of the haunches at a load factor 1.668.

The important aspect of this research was that initially it

was thought that Appendix G and Clause 5.5.3.5 had predicted

correctly the failure of the frame. Superficially, this

prediction was proved correct, however calculation checks

showed that Appendix G predicted failure at a much lower

load. This led to the conclusion that Appendix G provides an

over-safe design. Thus the research was then directed to the

study of lateral-torsional buckling with particular

attention to the effect of tapered members.

A literature review on the previous studies of tapered

members was carried out. In the study of the elastic

stability of tapered members, in particular with I-sections,

some experimental research was reported but most of the

research was theoretical and numerical in nature. The

available methods of analysis for lateral-torsional buckling

of tapered members were also reviewed. The finite element

method that proved to be accurate and versatile appears to

be the most suitable method of analysis for the research

undertaken in this thesis.

A finite element formulation based on a beam element that

can reproduce the structural behaviour of a three

dimensional I-beam, was described in chapter 4 of this

thesis. This element has two nodes and seven global
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displacement fields namely three translational

displacements, three rotations and one warping displacement.

A computer programme called the "SPACE" finite element

computer programme which employed this finite element

formulation was also described. This formulation, that is

valid for many cross-section shapes of prismatic members, is

also valid for non-uniform members.

In the early stages of using this finite element program,

some computational difficulties were encountered. These were

due to the changes to the program made by previous workers.

After these problems were resolved it was then decided that

the program must be verified again for prismatic members.

Further, before accepting the results of this finite element

model in simulating the behaviour of tapered members,

additional verification exercises were conducted. The

theoretical models were calibrated against various published

experimental and theoretical evidence from different

sources. Although some of the data had been obtained over

thirty years ago, the comparison between the theoretical

simulations by the finite element formulation and the

published evidence proved to be very satisfactory.

Earlier, it has been suspected that the provisions in

Appendix G of BS 5950 gave over-safe design. Therefore a

detailed study of the design approach to the problem of

lateral-torsional buckling according to BS 5950 was

conducted. In this study, the theoretical basis of design
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for elastic lateral-torsional buckling of beams was first

considered. Different cases of design for prismatic and non-

uniform members with different loading conditions were then

given. This was followed by the detailed investigation of

the clauses related to lateral-torsional buckling in BS

5950. Particular interest on this section was the detailed

study of the clauses in Appendix G.

An assessment of the clauses for lateral stability in BS

5950 was then conducted. This assessment was conducted by

the finite element computer program verified earlier. The

assessment was divided into three parts in which design for

lateral stability of a prismatic section was considered

first. This was followed by the assessment of the design for

tapering members. The third part of the assessment was

concerning Appendix G and clause 5.5.3.5. Selected

Universal Beam sections were used in this assessment.

The results of this assessment showed that the behavioral

aspects of design for lateral buckling provided by BS 5950

agreed well with the finite element method. Some aspects of

the real beam properties that were considered in the

formulation of the design equations were acceptable.

However, the assessment of the clauses in Appendix G

confirmed the suspicion that it gave an over-safe design.

Contrary to most thought, in this assessment Clause 5.5.3.5

was less conservative than Appendix G although it had other

set-backs.
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Subsequently, a more detailed study of the clauses of

Appendix G and Clause 5.5.3.5 was conducted in order to

investigate the deficiencies of the clauses and to find ways

. to improve them. Some amendments to the clauses were

investigated and the results of the analyses using these

amended expressions were compared with the original clauses

and the finite element method. The results showed some

improvement compared to the original clauses and gave safe

values when compared with the finite element method. These

amended expressions were then tested against the results of

the full-scale test on frame 3 to check the validity of

these amended expressions. Recommendations were made to

include the validified expressions into the code BS 5950.

This research has proved that theoretical development must

always be quantified with experimental verification.

Although an experimental exercise of this nature is

expensive, the large amount of results it generated will be

very useful in years to come. Furthermore, it has also

proved that it is possible to model most aspects of the

behaviour of pitched roof portal frames at low cost compared

with solutions using commercial finite element packages.

9.2 Suggested Further Studies

The recorded realistic behaviour of Frame 3 during the test

can certainly help to calibrate any sophisticated
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mathematical models of portal frame behaviour. This should

provide stimulus for further development in the software

side.

The conditions in the haunch region and column head of a

portal frame offer some interesting problems. From analysis

of the frame and the test results it was shown that this

region is susceptable to instability. In principle fly

braces can be provided by connection through the other

subsidiary members such as the purlins and the sheeting

rails. However, with the large spacing of purlins in modern

construction this becomes difficult. Further research into

the provision of fly braces in the haunch region whether by

connection through purlins or another means must be carried

out.

The finite element formulation used was based on a beam

element. Perhaps, a further study on solving elastic

stability problems of tapered members by different finite

element formulations will reveal some interesting results.

Attention is drawn to the author's assumption of an acceptable

difference of 30 - 40% between his theoretical analysis and

the design method. The empirical corrections proposed in

chapter 8 are based on this assumption, which needs further

justification.
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APPENDIX 1

DESIGN OF FRAME 3

Frame Dimension 

Span	 24.00 m

Centers	 5.00 m

Height to eaves	 4.00 m

Height to underside of haunch	 3.50 m

Loading on Plan Area 

Dead load 

Charateristic 

Cladding (Cold-formed sheet)	 0.06 kN/m2

Lining (say polyurethene liner) 	 0.01 kN/m2

Purlin (Zed purlin)	 0.030 kN/m2

Rafter and Services	 1.170 kN/m2

Total dead load	 0.217 kN/m2

Snow load	 0.750 kN/m2

Charateristic design load: 

Ultimate design load

[1.4 x 0.217] + [1.6 x 0.75]	 1.5038 kN/m2

Total Ultimate load on frame

[150 x 24 x5]
	

180.46 kN

Rafter/Column (Mp) Ratio (S x ratio) 0.515

Base Mp (pinned base)

Plastic Analysis: 

0.000

fig A.1 ,
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Internal work done	 External work done 

	

0.515 x Mp x 0.9440 = 0.4860	 180.46 x (9.482/2) x 0.5716

Mp x 1.3730 = 1.3730

	

= 1.859Mp6	 = 488.526

Therefore Mp required Mp = 488.520/1.8596 = 262.76kNm

Sections 

Rafter

Plastic Modulus Required

= 0.515 x 262.76x 103/275 = 492 cm3

Therefore try 356 x 127 x 33 UB (S x = 539.8 cm3)

Column

Plastic Modulus Required

= 262.76x 103/275	 = 955.5 cm3

Therefore try 406 x 178 x 54 UB (Sx = 1048 cm3)

The Bending Moment Diagram

Assuming gravitational load only the bending moment

distribution in the frame is calculated. Figure A1.2 shows

the bending moment diagram for frame 3 subjected to

Uniformly distributed load of 180.46 kN/m.

Checking Sway Stability of Frame (Clause 5.5.3.21 

Stanchion Inertia	 lc	 = 18626	 cm4

Rafter Inertia	 Ir	 = 8200	 cm4

Design strength of Rafter Pyr = 275 N/mm2

Span	 L	 = 24.00 m

Stanchion height	 h	 = 4.00 m

p = (2 I o/I r )(L/h) = (2 x 18626/8200)(24/4) = 27.25

Wr = Factored vertical load on rafter = 180.46 kN

Wo = Max value of W r which could cause

plastic failure of the rafter treated
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as a fixed ended beam of span L

i.e., Wo = ( Sx x Pyr x 16)/L

= (539.8 x 275 x 16)/(24 x 103 )	 = 98.96

Arching Ratio n = W r/Wo = 180.46/98.96 = 1.82

L/D = 24/0.3485	 = 68.866

Lr = Developed length of rafter

= (L/Cos 6.56°)	 = 24.158

[44/f2].[L/h].{p/(4+pLr/L)).(275/Pyr]

[44/1.82][24/4)(27.25/(4+27.25(24.158/24)}[275/275]

24.175 x 6 x 0.867 x 1 = 125.76

i.e.,	 68.866 < 125.76

Therefore section is satisfactory for sway stability

Member Stability

Checking Column Member Buckling 

From bending moment calculation the adequacy ratio a=1.082.

Using clause 5.3.5 the plastic stability for the length is

checked.

LinS 	
38 r 
y 

NI{ 130 +( 2P7Y5 )2( 3x6 )21

where py= 275 N/mm2

fo= a x 180.46/(2 x 68.4) = 14.27 N/mm2

x = torsion index = D/T = 36.93

therefore the value of Lyn = 1.357 m

Clause 5.3.5 stated that within the member containing

plastic hinge, L the maximum distance from the hinge

restraint to the adjacent restraint. The design assumed that

the hinge form here is the last hinge in the mechanism

therefore clause 5.5.3.1 can be applied, in which case no



370

restraint is required. (See figure A1.3)

Checking Buckling Capacity Between Stay Position 1 and 2 

From clause 4.8.3.3.1 and Adopting simplified approach)

F 	 m. Mx m. My  � i
Ag. Pc Mb Py•Zy

where A = 6840 mm2

Pc = { for It =L therefore 1=LE/ry = 33.7

from table 27c of BS 5950 )	 Pc = 265 N/mm2

from tables 13 and 18 m.Mx = 0.57 x 164 =93.48 kN.m

Mb=	 x Sx { Pb is obtained for Au = nuvl

for n=1 v= 0.99 and u=0.9 -(table 14)

therefore 10 = 30. From table 13 P b = 275 N/mm2)

Mb = 287 kNm

Therefore ;

(180.46)/(2x6840x265) + (0.57x164)/(287) = 0.375

i.e 0.375 < 1. Therefore, the section is OK for

buckling capacity between stay 1 and 2.

Check for Column Stability by Clause 5.5.3.5

Kr x
L,- 	 1. y• 

[72 .x2-1011/2

where, .

▪ 

K1=620

•
r =38 .5

x=D/ T=

▪

 36 .93

620x38.	 5x3

▪

 6.93 - 	 ..=2968mm
t 1/72x36.932-104

Since the maximum length between the lateral restraint in

column is 2.00 in the member should remain stable.
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Checking for Rafter Stability

Assumption; Rotational properties are required of the hinge

at the first purlin point along the ridge.

(Clause 5.3.5. Stay is provided at the first

purlin position from the apex.)

Checking Rafter Stability at the Apex

From Clause 4.3.7.5; 	 ALT = nuv).

for values of n=1, u =0.9, v=0.97, and

= 1795/25.9 =69, therefore

Au =  60. From table 11 of BS 5950 P b=213 N/mm2

1.113, = Pb Sx = 213 x 0.5398 kNm = 115 kNm.

However, moment at the first purlin is 148 kNm therefore the

region at the apex is unstable. By considering span between

purlins equal 1.795 m it can be seen that the stress is

reduced by about 22%. Therefore moment resistance at the

vicinity of the rafter is in the region of 118 kNm.

Checking Rafter Buckling at the Eaves Region

(1) The haunch section was checked for elastic stability by

the clauses in Appendix G:BS 5950 Part 1.

Results of the analysis as shown in the computer output at

the end of this appendix. The results shows that the

conditions of Appendix G was not satisfied.

(2) Check by Clause 5.5.3.5

Lt = (K1 ry x)/(J(72x2 -104 )

= (495x25.9x41)/(j(72x412-104)

= 1577 mm. Since the length of the haunch provided

was 2408 mm lateral-torsional buckling at the
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haunch is not satisfied.

Conclusion

The calculations show that at factored load of 180.46 it is

possible that the frame will collapse. The frame may fail by

lateral torsional buckling at the haunch region.
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APPENDIX 2

VERIFICATION OF FINITE ELEMENT FORMULATION AND

CORRESPONDING COMPUTER PROGRAMME FOR ANALYSIS OF PRISMATIC

MEMBERS

A2.1 GENERAL

The derivation of the finite element formulation for the

elastic torsional-flexural buckling of thin walled

structures is given in chapter 4. This section proves the

validity and accuracy of the finite element formulation by

comparing solutions for a variety of problems for prismatic

members against exact or highly accurate solutions by

alternative methods. The computer program (1) described in

chapter 4 was used to predict the buckling loads.

The verification begins by presenting solutions to some

conventional stability problems to illustrate the validity

of the modified "Southwell technique". This technique is

employed in the computer program for evaluating the

critical buckling loads. It then proceeds to establish the

accuracy of the formulation when used to analyse the

elastic buckling behaviour of the prismatic section.
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A2.2 Conventional Stability Problems

Several separate examples are discussed in this section.

These include the cases for buckling of I-beams,

cantilevers, columns, lipped and unlipped channel beams and

pure torsional buckling of members.

A2.2.1 Lateral Buckling of I-Beam

Three cases are dealt with in this section. They are:

(i) simply supported beams in pure bending

(ii) simply supported beams with a central concentrated

load, and

(iii) Cantilever I-beams.

In all the cases considered, two different beam specimens

of commercial I-section are selected for the numerical

calculation using the exact solution by Timoshenko (2). The

results of this analysis are compared with the prediction

by the finite element computer program. The details of

these beam specimens are given in table A2.1. In the

computer analysis, results were obtained for 4,8,16,20 and

24-element models.
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A2.2.1.1 Lateral Buckling of Simply Supported I-Beam in

Pure Bending

Figure A2.1 shows a simply supported I-beam specimen of

400cm length loaded by a uniform bending moment Mz.

Assuming that the ends of the beam cannot rotate about the

x axis, but are free to warp. The exact solution for this

case as given by Timoshenko (2) is:

Mc1 =1 ,\I EInC(1+
C1n2
CL2 
	  (A2.1)

where, In is the minor axis second moment of area, C=GJ is

the torsional rigidity and C i=EIw is the warping rigidity.

Table A2.2 shows the results of analysis of specimen B1 and

B2. The convergence graphs are shown in figure A2.2. For

specimen Bl, it can be seen that the 2-element solution

differs by 8.4% from the exact solution while the 4, 8, 10,

16, 20 and 24-elements, are 0.09, 0.12, 0.12, 0.13, 0.13

and 0.05% in error respectively. It can be said that all

the cases considered gave excellent agreement with the

exact solution, however the results are slightly

underestimated.

For Specimen B2, the 2-element solution gave a result that

differs by 7.3% from the exact solution while the 4, 8, 10,

16, 20 and 24-elements are 0.11, 0.08, 0.08, 0.075, 0.05,

and 0.13% in error respectively. The cases of 16 and



376

20-element models gave the closest agreement with the exact

solution and all the solutions gave over-estimated values

of buckling load. For both cases the convergence graph

(figure A2.2) showed that by using only a 4-element model

accurate results can be obtained.

A2.2.1.2 Lateral Buckling of a Simply Supported I-Beam

A2.2.1.2.1 Central Concentrated Load

Figure A2.3(a) shows a simply supported I-beam specimen of

400cm length loaded by a central concentrated load P acting

at the shear centre. It is assumed that during deformation

the ends of the beam can rotate freely about the principal

axes of inertia parallel to the y and z axes. The rotation

with respect to the x axis is prevented by some constraint.

The exact solution given Timoshenko (2) is;

y 2 V EI,C
Pcr- L2 	  (A2 .2)

in which I n is the second moment of area in the minor axis,

C is the torsional rigidity (GJ) and, y2 is a dimensionless

factor which depends upon the ratio (L2 GJ/EI w). The values

of y2 are tabulated in table 6.5 of reference 5.

Table A2.1 shows the data for specimen Cl and C2, and the

results of the analysis by exact solutions and the computer

predictions are shown in table A2.3. For specimen Cl, the

finite element solutions gave overestimated values of
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buckling load for 4 and 8-element cases. It can be seen

that the 8-element solutions differ by 1.59% from the exact

solution, while the 10, 16, 20 and 24-element, finite

element solutions are 0.82, 0.59, 0.53 and 0.17% in error

respectively. In this case, the 24-element gave the closest

agreement with the exact solution.

For specimen C2, it can be seen that the finite element

computer program gave over-estimated value of buckling load

for the 4-element solution which differs by 7.09% from the

exact solution. The 8, 10, 16, 20 and 24-element finite

element solution however, gave underestimated values which

are 0.28, 0.29, 2.72, 2.09 and 2.6% in error respectively.

The 8-element model gave the closest results to the exact

solution.

The convergence curve shown in figure A2.4 for both the

cases presently considered showed that accurate results can

be obtained with a 4-element model.

A2.2.1.2.2 Central Concentrated Load at Top Flange

Figure A2.3(b) shows a simply supported I-beam specimen of

400cm length loaded by a central concentrated load acting

on the top flange. Assuming the same boundary conditions

applied as in section A2.2.1.2.1, the exact solution given

by Timoshenko (2) is the same as equation A2.2.
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Using the same data of specimen shown in table A2.1 the

case of load acting on the top flange was analysed by exact

solution and by the Finite Element computer programme. For

the Finite Element computer programme, the specimens were

modelled with a load applied a certain height above the

centroid of the beams. In this case the beam was modelled

for 4, 8, 10, 16 and 20 elements along the length of the

beam. One perpendicular element with length equal to the

height above the centroid was positioned vertically from

the centroid of the beam. This vertical element was made

stiffer than the rest of the elements and the load was

applied on the top end of this perpendicular element.

The results for both cases of specimens Cl and C2 are shown

in table A2.4. For specimen Cl the Finite Element gave

overestimated values of buckling load for 4 and 8-element

models, while the 10, 16 and 20-element models gave

slightly underestimated values. The 8-element model gave

the closest agreement with the theoretical values. All the

cases considered giving less than 1% error, with the

exception of the 4-element case.

For specimen C2, it can be seen that only the 4-element

model gave over-estimated results whereas the other cases

considered giving underestimated results. The 8-element

model gave the closest agreement with the theoretical

value.
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It can be said that exact correlation between the

theoretical and the Finite Element formulation were

obtained by using 8 elements and more.

A2.2.1.2.3 Central Concentrated Load at Lower Flange

Figure A2.3(c) shows a simply supported I-beam specimen

loaded by a central concentrated load acting at the bottom

flange. Assuming the same boundary conditions applied as in

section A2.2.1.2.1 the exact solution given by Timoshenko

(2) is also the same as equation A2.2.

Using the same data of specimen as Cl and C2, the case of

concentrated load acting at the bottom flange was analysed

by exact solution and by the Finite Element computer

programme. The same approach of modelling by the Finite

Element method was carried out as in section A2.2.1.2.2.

However, the perpendicular element is positioned below the

centroid. The load is applied at the bottom tip of that

element.

The results for the cases of specimens Cl and C2 are shown

in table A2.5. For specimen Cl it can be seen that all the

cases gave overestimated results, however, the case of 4-

elements gave a grossly overestimated result of 12.3%. The

16 elements gave the closest agreement with the theoretical

with only 0.22% error.
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For specimen C2, the 4-element case gave overestimated

results of 10.24% and the 8 element case gave 0.59% error.

The other cases of 10, 16 and 20 elements gave

underestimated results of 0.35%, 1.42% and 1.66%. The 10

elements gave the closest agreement with the theoretical.

It can be seen that the Finite Element formulation gave

accurate results with 8 elements and more.

A2.2.1.3 Lateral Buckling of Cantilever Beam by

Concentrated Load at the Free End

A2.2.1.3.1 Load at the Centre of the Web Free End

Two types of specimens are dealt with in this section. The

specimens have the same properties as the beams discussed

earlier. Figure A2.5(a) shows a cantilever beam of 400cm

length with a concentrated load at the centroid of the free

end. The exact solution of this case was presented by

Timoshenko (2) and is similar to equation A2.2, however

the values of y is obtained from table 6.3 of reference 2.

Table A2.1 shows the data for specimen D1 and D2, and the

results of the analyses by Timoshenko and the predictions

by the Finite Element Computer Programme are given in table

A2.6. Concerning specimen D1, it can be seen that the

Finite Element solutions gave overestimated values of

buckling load when a 4-element model was used, but gave
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underestimated values for models with a higher number of

elements. The 4-element solution differs by 9.35% from the

exact solution while the 8, 10, 16, 20 and 24 elements are

3.80, 2.84, 1.70, 1.41 and 1.18% in error, respectively. In

this case, the 24-element model gave the closest agreement

of buckling load with the exact solution.

For specimen D2, it can be seen that the finite element

solution gave over-estimated values of buckling load. The

4-element solution differs by 9.67% from the exact

solution, while the 8, 10, 16, 20 and 24-element solutions

are 2.7, 1.82, 0.85, 0.61 and 0.61% in error respectively.

The 20 and 24-element models gave the closest agreement of

buckling load compared with that of the exact solution.

A2.2.1.3.2 Load at Top Flange at the Free End

The effect of load applied at the point of application

above or below the end cross section is given by;

p Y21EInc( 
1
a EIn

L2	
1-	 ....(A2.3)cr

in which, I n is the second moment of area in the minor axis,

C is the torsional rigidity (GJ) and y2 is a dimensionless

factor that depends on the ratio L2GJ/EIw . The values of y2

are given in table 6.3 in reference 2. In equation A2.3,

"a" denotes the distance of the point of application of the

load vertically above the centroid (figure A2.5(b)).
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Specimens D1 and D2 are used for the analysis by using

equation A2.3 and by the finite element method. Modelling

for the finite element method was done so that the load can

be applied at a height above the centroid. A similar number

of element models were used in the analysis as in the

previous cases.

The results of the analyses are shown in table A2.7.

Concerning specimen D1, it can be seen that the finite

element solution gave underestimated results for the 4 and

8-element models, while the 16 and 20-element models gave

overestimated results. Except the 4-element model, all

other models gave results with errors less than 1%.

Similar types of results are obtained for specimen D2. The

4 and 8-element models gave underestimated results while

the 16 and 20-element models gave over-estimated results.

Again, except the 4-element model all other models gave

less than 1% error when compared to the results of equation

A2.3.

In both cases the results of analysis by a 10-element model

gave very accurate results with 0% error.

A2.2.1.3.3 Load at the Bottom Flange

Equation A2.3 can also be used when the load is applied
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below the centroid of the free end. In this case, it is

only necessary to change the displacement "a" to "-a".

Figure A2.5(c) shows a cantilever subjected to a

concentrated load at the bottom of the flange of the free

end.

Specimens Dl and D2 are used again in this section for the

analysis by using equation A2.3 and by finite element

method. Modelling for the specimens is similar to the

previous section, but the loads are applied at the bottom

of the flange.

The results of the analyses are shown in table A2.8. For

both the specimens D1 and D2, the 4-element model gave

underestimated values while the others gave slightly over-

estimated values when compared to results of equation A2.3.

In both the cases the 8-element model gave the closest

correlation with the theoretical values. Judging from the

results of this section and the previous section, the

method of modelling for the effect of the load employed

appear to be acceptable.

A2.2.2 Pure Torsional-Buckling

Concerning how an axial compressive load may cause

torsional buckling was shown by Timoshenko (2). In his

analysis, he considered a doubly symmetric bar of

cruciform section (figure A2.6(a)) with four identical
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flanges. It was shown that under such load the strut

exhibits angular displacements only. The exact solution

presented by Timoshenko (2) is given by,

p	 A (712EI 
, cr--

,,
+GJ) 	  (A2.4)

1-0	 L 2

The cruciform section used in this analysis is shown in

figure A2.6(b) with a length equal to 400cm. The results of

the finite element solution with two numbers of elements

are compared with the closed form solution. It was found

that the results were consistent as reported by Nemir (1).

When considering C w=0, the theoretical results based on

equation 6, gave a value of 3518.7 kN. Whereas the finite

element formulation gave a result of 3518.0 kN.

The general shape of the displacement as obtained from the

results was observed to be correct. Therefore the computer

program produced results that are consistent with the

theoretical values for the specimen considered.

A2.2.3 The Elastic Buckling of Column

The study reported in this section was undertaken to

examine the validity and accuracy of the finite element

computer program for stability analysis to evaluate the

critical load of two cases of column problems for which

the exact theoretical solutions are already established

(2). The problems considered are; (1) column with built-in

base, and (2) column with hinged ends.
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A2.2.3.1 Column with Built-in Base

Figure A2.7 shows a slender, ideal column built-in

vertically at the base, free at the upper end and subjected

to an axial force P. The column is assumed to be perfectly

elastic, and the stresses do not exceed the proportional

limit.

The equilibrium equation that describes the buckling

behaviour of the column known as the Euler equation is

presented (2) as follows:

P -
n2EI

Y 	  (A2.5)
cr	 41,2

This is the smallest critical load for the column in figure

A2.7, that is, the smallest axial force that can maintain

the bar in a slightly bent shape. I y is the minimum value

of the second moment of area.

The results of the analysis are shown in table A2.9. It

shows an excellent correlation between the Euler equation

and that of the finite element method. For specimen CL1

almost accurate results were obtained even using only a

2-element model giving over-estimated results of 0.84%

error. The 4-element model gave exact results as the

theoretical whilst the 8, 10, 16, 20 and 24-element models

gave results in the margin of 0.06-0.07% error.

Similarly for for specimen CL2, the 2-element model gave an
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almost accurate result, but underestimated with an error of

0.72%. The 4-element model gave 0.01% error, whilst the 8,

10, 16, and 20-element models also gave over-estimated

results with 0.15, 0.28, 0.45, and 0.25% respectively. The

24-element model gave an underestimated result with an

error of 1.96%.

A2.2.3.2 Column with Hinged Ends

The critical load for a column with hinged ends, shown in

Figure A2.8, is obtained by substituting L/2 for L in the

Euler equation to give:

n2EIP -	 	  (A2.6)
cr L2

The case of a bar with hinged ends is probably assumed in

practice more frequently than any other, and it is called

the fundamental case of buckling of a prismatic bar.

The results of the finite element analysis shown in Table

A2.10 gave an excellent agreement with that of the

theoretical values of the critical buckling load. In both

cases of specimens CL3 and CL4 almost accurate results can

be obtained by using a 2-element model, in which they gave

over-estimated results of 0.83 and 0.74% in error

respectively. More accurate results were obtained by using

models with a larger number of elements.
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A2.2.4 Buckling Behaviour of Cold-Formed Channel Subject to

Stress Gradient

The study reported in this section was undertaken to

examine the validity and accuracy of the finite element

formulation for stability analysis of light gauge steel

beams subjected to a major axis bending moment applied to

one end. The loading on the beam produce a linearly varying

distribution of bending moment along the length of the

beam.

Leach (3) conducted tests on four different sections over

various lengths to compare the results with that of the

Generalised Beam Theory. In the tests conducted, the load

deflection characteristics of the beams were measured, as

were the failure loads. The end conditions of the beam were

simply supported but restrained against warping and cross

section distortion. Buckling was considered to have

occurred when the central rotation of the beam exceeded

0.06 radians, or overall buckling failure had occurred. The

results of the tests conducted by Leach (3) are compared

with the results of the finite element analysis.

Table A2.11 shows the dimensions of the four sections

tested and figure A2.9 shows the cross-section of a lipped

and an unlipped channel. The results obtained are shown in

figures A2.10, A2.11, A2.12 and A2.13. It can be seen that

for Series B and E, there is a close agreement between the
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tests, the Generalised Beam Theory and the finite element

method especially when the beams are longer than 350cm in

both cases. For series G and H, it can be seen that the

results of the tests and the two theoretical methods agreed

well for long beams, however, they appear to disperse as

the beams get shorter.

It can be said from this observation, that accurate results

of elastic buckling of cold-formed channels can be

obtained using the finite element formulation when the

beam specimens are long enough. Grossly over-estimated

results are obtained with short beam specimens. The graphs

show convergence of the three methods with increase in the

length of the beam specimens.

A2.2.5 Torsional-Flexural Buckling of Cold-formed Channel

Columns

This section presents a study undertaken to examine the

validity and accuracy of the finite element formulation in

analysing lateral-torsional buckling of cold-formed channel

columns.

For open thin-walled section columns, three modes of

failure are possible in the analysis of overall

instability. They are flexural-buckling, torsional-buckling

and torsional-flexural buckling. During the torsional-

flexural buckling mode, bending and twisting of the cross-
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section occurs simultaneously. The equation for buckling of

thin-walled columns are given

n 2 EI,

(4)	 as;

(A2.7)( KL ) 2

Pv-
2 Ely

(A2.8)
(KL)2

TO EC.,
P -

i( 1	 	 (A2.9)
 r 2

0 )

in which, KL is the effective length of the column. For

hinged ends, K=1; for fixed ends, K=0.5. C w is the warping

constant and ro is the polar radius of gyration of the cross

section about the shear centre. Equations A2.7 and A2.8

describe the Euler flexural-buckling load about the x-axis

and the y-axis respectively. Equation A2.9 describes

torsional buckling about the z axis.

For monosymmetric shape, such as angles, channels, hat

sections, T-sections and I-sections with unequal flanges

(figure A2.14), the equation for the critical torsional-

flexural buckling load can be given (4) as;

Pcr="*[(Px+Pz)-V(Px+Pz)2-413P1cPz] 	  (A2.10)

where /3=1-(xo/r0)2, and x, is the x coordinate of the shear

centre. The values of P x , Py and P z are given in equations

A2.7, A2.8 and A2.9 respectively.

In the analysis for flexural-torsional buckling of thin-

walled sections two types of channel profiles were
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considered. These are for both the cases of lipped and

unlipped channels. For the lipped channel specimen series

B from table A2.11 was used while for unlipped channel

specimen H was used. Equations A2.7 to A2.10 were used in

the analysis for lengths of specimen B and H equal to 200

cm, 250 cm, 300 cm, 350 cm and 400 cm.

The specimens were also analysed using the finite element

method and were modelled with 10-elements each. The results

are shown in tables A2.12 and A2.13, and figure A2.15. For

both the cases of lipped and unlipped channels, the shorter

length of specimens gave better accuracy of results

compared to the longer lengths. This is because when the

length was increased the critical loads decreased. The

percentage error tends to increase when compared to the

smaller critical load. Nevertheless the results as shown in

figure A2.15 are in closely agreement and within the

acceptable limit.

A2.2.6 Elastic Buckling of Beam-Column

Beam-columns are structural members which combine the beam

function of transmitting transverse forces or moments with

the compression (or tension) member function of

transmitting axial forces. In this section only isolated

beam-column cases are considered and then only limited to

members in axial compression. An example of a beam-column

is shown in figure A2.16.



391

When an unrestrained beam-column is bent about its major

axis, it may buckle by deflecting laterally and twisting at

a load which is significantly less than the maximum load

predicted by an inplane analysis. The flexural-torsional

buckling may occur while the member is still elastic, or

after some yielding due to inplane bending and compression

had occurred.

A2.2.6.1 Beam-Column with Equal and Opposite End Moments

Consider a perfectly straight, elastic beam-column bent

about its major axis by equal and opposite end moments M

(so that 0=-1), and loaded by an axial force P (figure

A2.16). The beam-column, is made of an I-section and

therefore doubly symmetrical. The ends of the beams are

assumed to be simply supported and free to warp, but end

twisting is prevented.

When the applied load and moments reached the critical

values P., and Mc a deflected and twisted equilibrium

position is possible. The elastic buckling combination P.

and Mc is given (5) by,
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2	 —(1---°-EP	

z	

. . (A2.11)

ro PyPz	 PY	 P

	

72EIy 	  (A2.12)loy - 	
L2

p=(11+70E-Tw)
	  (A2.13)Z rg	

GJL2

in which ro is the polar radius of gyration, and P. and Pz

are the minor axis and torsional buckling loads

respectively.

Specimen B1 which is shown in table A2.1 was analysed using

equations A2.11 to A2.13 with values of Pm/Py = 0.2, 0.4,

0.5, 0.6, 0.7 and 0.8. The same specimen of beam-column was

analysed by the finite element method. The specimens were

modelled with 10-elements each and boundary conditions as

stated above.

The results of the analysis are shown in table A2.14. It

can be seen that there is a close agreement between the

results of analysis by equations A2.11-A2.13, and that of

the finite element method. However the results of the

analysis by the finite element method appear to give a

slightly lower value. This is also shown in figure A2.17 in

which the finite element results are more conservative. The

average error in this analysis is 1-2%.

Therefore it can be said that this finite element

formulation is able to predict, accurately, the behaviour
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of beam-columns with equal and opposite moments at the

ends.

A2.2.6.2 Beam-Column with Unequal End Moments

The elastic flexural-torsional buckling of simply supported

beam-columns with unequal major axis end moments M and Am

has been investigated numerically (5). Horne (6) proposed

a conservative interaction equation which gave the

approximate equation for elastic buckling of beam-columns

in a form;

(frfc/M 2 —(1 _ Poc) (1 Poc)

M3%	
P

	 (A2.14)

Cuk and Trahir (7) however, gave a more accurate prediction

of elastic buckling of beam-columns with unequal end

moments by the following equations;

where;

1 111 1-21 3 0 40-0.23 P 	
C

.
 )+( 2 ) ( •	 -13;	

(A2.16))

' 

m ItV(E/yGJ)	  \! (1+  
112 ei 1 	  (A2.17)

L	 GJL2 -T°1-15.-Y-7C

Beam-columns with the cross-section properties of specimen
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B1 and conditions as shown in figure A2.18 were analysed

for the critical moment using equations A2.15, A2.16 and

A2.17. The values of P oz/Py used in the analysis are; 0.2,

0.4, 0.5, 0.6, 0.8 and 0.9. Similarly, the same specimens

of beam-columns were analysed by the finite element method

using 10-element models. The results of the analysis are

shown in table A2.15.

The results in table A2.15 and figure A2.19 show that there

is a close agreement between the results of analysis by the

equation A2.15 and that of the finite element method.

However, the finite element results gave a slightly higher

value. This is in contrast to beam-columns with equal and

opposite moments considered earlier, in which case the

finite element method gave results with lower values.

A2.3 Results of Verification

Tables A2.2 to A2.15 show the results of the computer

predictions of the elastic buckling loads of the models

mentioned earlier. It can be seen that the Finite Element

computer program gave accurate results when compared to the

exact solution for all the cases under consideration. The

procedure followed to predict the buckling load, which is

known as "the modified Southwell plot" has proved to be

very efficient and a straight forward technique.

One major advantage of the computer program is that it
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calculates the displacement so that the general shape of

the buckling mode can be observed.

A2.4 Summary and Conclusion

The finite element method formulation found in Reference

(1) was used to analyse varieties of torsional flexural

buckling problems using the corresponding 'SPACE' computer

program. The cases considered can be summarised as follows:

(a) Four types of conventional buckling problems were

investigated, namely,

1. Lateral buckling of a simply supported I-beam by

uniform bending;

2. Lateral buckling of a simply supported I-beam by

central concentrated load, for cases of load at the

centroid, top flange and bottom flange.

3. Lateral buckling of I-cantilevers by a concentrated

load at the free end. The cases of load at the

centroid, top flange and bottom flange were

considered.

4. Pure torsional buckling of an axially loaded strut.

(b) Two types of conventional column buckling problems were

investigated, namely;

1. Column with built-in base;

2. Column with hinged ends.

(c) Four types of cold-form channel subject to stress
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gradient were investigated. They were;

1. Cold-formed lipped channel series B;

2. Cold-formed lipped channel series E;

3. Cold-formed unlipped channel series G; and

4. Cold-formed unlipped channel series H.

(d) Cold-formed channel section column. And

(e) Elastic buckling of Beam-column.

The results of the analyses by finite element method were

compared with the results of solutions by other accurate

alternative means or tests results. All the cases

considered showed a good convergence of the finite element

solutions and in excellent agreement with alternative

solutions.

From the above discussion, it can be concluded that the

finite element formulation presented by Nemir (1) was

valid in solving most of the conventional lateral buckling

problems.
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Table A2.1 Properties of Beam Specimen

SECTION
PROPERTIES FOR
406x140x36 UB

SECTION
PROPERTIES FOR
356x127x33 UB

FLANGE WIDTH B	 (cm) 14.18 12.54

OVERALL DEPTH D	 (cm) 39.73 34.85

WEB THICKNESS t 	 (cm) 0.63 0.59

FLANGE THICKNESS T	 (cm) 0.86 0.85

AREA	 A	 (cm2) 49.40 41.80

TORSION CONSTANT J (cm4 ) 10.60 8.68

WARPING CONSTSNT C, (cm6 ) 0.155E+6 0.081E+6

2nd MOMENT AREA I 12500 8200

2nd MOMENT AREA I	 (cm4 )yv 411 280

YOUNG'S MODULUS E(kN/cm 2 ) 0.210E+5 0.210E+5

TORSIONAL RIGIDITY C (kNcm2 ) 84800 69440

WARPING RIGIDITY C1	 (kNcm4 )0 3.276E+9 1.701E+9

Table A2.2 Results of Analysis of Beam B1 and B2.
(Case of Lateral buckling in pure bending)

RESULTS SPECIMEN B1
MOMENT
kNcm	 % ERROR

SPECIMEN B2
MOMENT
kNcm	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 12353 7953

F.E.M	 2-ELEMENT MODEL 13392 (8.4%) 8536 (7.3%)

F.E.M	 4-ELEMENT MODEL 12342 (0.09%) 7962 (0.11%)

F.E.M	 8-ELEMENT MODEL 12338 (0.12%) 7960 (0.08%)

F.E.M 10-ELEMENT MODEL 12338 (0.12%) 7960 (0.08%)

F.E.M 16-ELEMENT MODEL 12337 (0.13%) 7959 (0.07%)

F.E.M 20-ELEMENT MODEL 12337 (0.13%) 7959 (0.07%)

F.E.M 24-ELEMENT MODEL 12346 (0.05%) 7964 (0.13%)
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Table A2.3 Results of Analysis of Beam Cl and C2. (Case of
Lateral buckling by central concentrated load
applied at the centroid)

RESULTS SPECIMEN Cl
LOAD
kN	 % ERROR

SPECIMEN C2
LOAD
kN	 1 ERROR

EXACT SOLUTION (TIMOSHENKO) 168.9 111.4

F.E.M	 4-ELEMENT MODEL 184.5 (9.23%) 119.3 (7.09%)

F.E.M	 8-ELEMENT MODEL 171.6 (1.59%) 111.1 (0.28%)

F.E.M 10-ELEMENT MODEL 167.5 (0.82%) 108.1 (2.91%)

F.E.M 16-ELEMENT MODEL 167.9 (0.59%) 108.4 (2.09%)

F.E.M 20-ELEMENT MODEL 168.0 (0.53%) 108.4 (2.09%)

Table A2.4 Results of Analysis of Beam Cl and C2 (Case of
Lateral buckling by central concentrated load
applied at the top flange)

RESULTS SPECIMEN Cl
LOAD
kN	 % ERROR

SPECIMEN C2
LOAD
kN	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 106.7 72.2

F.E.M	 4-ELEMENT MODEL 111.2 4.20%) 74.28 (2.88%)

F.E.M	 8-ELEMENT MODEL 106.8 (0.09%) 71.12 (1.49%)

F.E.M 10-ELEMENT MODEL 106.4 (0.28%) 70.80 (1.93%)

F.E.M 16-ELEMENT MODEL 105.9 (0.75%) 70.40 (2.41%)

F.E.M 20-ELEMENT MODEL 105.8 (0.84%) 70.38 (2.52%)

Table A2.5 Results of Analysis of Beam Cl and C2 (Case of
Lateral buckling by central concentrated load
applied at the bottom flange)

RESULTS SPECIMEN Cl
LOAD
kN	 % ERROR

SPECIMEN C2
LOAD
kN	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 267.3 169.7

F.E.M	 4-ELEMENT MODEL 300.3 (12.3%) 187.1 (10.2%)

F.E.M	 8-ELEMENT MODEL 273.5 (2.39%) 120.7 (0.59%)

F.E.M 10-ELEMENT MODEL 270.8 (1.30%) 169.1 (0.35%)

F.E.M 16-ELEMENT MODEL 267.9 (0.22%) 167.3 (1.42%)

F.E.M 20-ELEMENT MODEL 268.6 (0.48%) 166.8 (1.66%)
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Table A2.6 Results of Analysis of Beam D1 and D2 (Case of
Lateral buckling of cantilever by concentrated load
applied at the centroid of the free end

RESULTS
-

SPECIMEN D1
LOAD
kN	 % ERROR

SPECIMEN D2
LOAD
kN	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 52.15 34.00

F.E.M	 4-ELEMENT MODEL 57.03 (9.35%) 37.29 (9.67%)

F.E.M	 8-ELEMENT MODEL 50.14 (3.80%) 34.93 (2.71%)

F.E.M 10-ELEMENT MODEL 50.67 (2.84%) 34.62 (1.82%)

F.E.M 16-ELEMENT MODEL 51.26 (1.70%) 34.29 (0.85%)

F.E.M 20-ELEMENT MODEL 51.41 (1.41%) 34.21 (0.61%)

, F.E.M 24-ELEMENT MODEL 51.53 (1.18%) 34.21 (0.61%)

Table A2.7 Results of Analysis of Beam D1 and D2 (Case of
Lateral buckling of cantilever by concentrated load
applied at the top flange of the free end

RESULTS SPECIMEN D1
LOAD
kN	 % ERROR

SPECIMEN D2
LOAD
kN	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 26.00 20.37

F.E.M	 4-ELEMENT MODEL 25.10 (3.46%) 19.57 (3.92%)

F.E.M	 8-ELEMENT MODEL 25.90 (0.38%) 20.27 (0.49%)

F.E.M 10-ELEMENT MODEL 26.00 (0.00%) 20.37 (0.00%)

F.E.M 16-ELEMENT MODEL 26.11 (0.42%) 20.47 (0.49%)

F.E.M 20-ELEMENT MODEL 26.13 (0.50%) 20.50 (0.63%)
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Table A2.8 Results of Analysis of Beam D1 and D2 (Case of
Lateral buckling of cantilever by concentrated load
applied at the bottom flange of the free end)

RESULTS SPECIMEN D1
LOAD

-	 kN	 % ERROR

SPECIMEN D2
LOAD
kN	 % ERROR

EXACT SOLUTION (TIMOSHENKO) 78.26 47.67

F.E.M	 4-ELEMENT MODEL 73.56 (6.00%) 45.62 (4.15%)

F.E.M	 8-ELEMENT MODEL 78.05 (0.28%) 48.48 (1.48%)

F.E.M 10-ELEMENT MODEL 78.63 (0.47%) 48.86 (2.64%)

F.E.M 16-ELEMENT MODEL 79.26 (1.20%) 49.30 (3.57%)

F.E.M 20-ELEMENT MODEL 79.40 (1.45%) 49.40 (3.78%)

Table A2.9 Results of Analysis of Column CL1 and CL2 (Case of
column with built-in base)

RESULTS SPECIMEN CL1
LOAD
kN	 % ERROR

SPECIMEN CL2
LOAD
kN	 % ERROR

EXACT SOLUTION (EULER) 133.1 90.67

F.E.M	 2-ELEMENT MODEL 131.98 (0.84%) 90.01 (0.72%)

F.E.M	 4-ELEMENT MODEL 133.10 (0.00%) 90.68 (0.01%)

F.E.M	 8-ELEMENT MODEL 133.20 (0.07%) 90.81 (0.15%)

F.E.M 10-ELEMENT MODEL 133.20 (0.07%) 90.93 (0.28%)

F.E.M 16-ELEMENT MODEL 133.20 (0.07%) 91.08 (0.45%)

F.E.M 20-ELEMENT MODEL 133.02 (0.06%) 90.90 (0.25%)

F.E.M 24-ELEMENT MODEL 133.18 (0.06%) 88.89 (1.96%)
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Table A2.10 Results of Analysis of Column CL3 and CL4 (Case of
column with pinned-ends)

RESULTS SPECIMEN CL3
LOAD
kN	 % ERROR

SPECIMEN CL4
LOAD
kN	 % ERROR

EXACT SOLUTION (EULER) 532.00 362.7

F.E.M	 2-ELEMENT MODEL 536.40 (0.83%) 365.4 (0.70)

F.E.M	 4-ELEMENT MODEL 532.79 (0.15%) 362.9 (0.05%)

F.E.M	 8-ELEMENT MODEL 532.43 (0.08%) 362.7 (0.00%)

F.E.M 10-ELEMENT MODEL 532.42 (0.08%) 362.7 (0.00%)

F.E.M 16-ELEMENT MODEL 532.41 (0.08%) 362.7 (0.00%)

F.E.M 20-ELEMENT MODEL 532.41 (0.08%) 362.7 (0.00%)

F.E.M 24-ELEMENT MODEL 532.84 (0.16%) 363.0 (0.08%)

Table A2.11 Section properties for "Leach Test"

SERIES DEPTH
(mm)

WIDTH
(mm)

LIP SIZE
(mm)

THICKNESS
(mm)

LENGTH
(mm)

B	 * 90 50 15 1.20 1500-6000

E	 * 120 50 15 1.20 1500-6000

H	 # 90 40 0 1.90 800-3000

G	 # 120 50 0 1.90 800-300
Note ; * Lipped Channels

# Unlipped Channels

Table A2.12 Results of Analysis for Torsional-Flexural
bucxling or Lippea cnannei	 (series 15)

Length	 (cm) Theoretical P,(kN) Finite Element Method (kN)

200 26.26 26.79	 (2.01%)

250 17.69 18.13	 (2.5%)

300 13.13 13.46	 (2.51%)

350 10.20 10.62	 (4.12%)

400 8.36 8.8	 (5.26%)



413

Table A2.13 Results of Analysis for Torsional-Flexural
Buckling of Unlipped Channel (Series H)

Length	 (cm) Theoretical P„(kN) Finite Element Method (kN)

200 26.99 28.37	 (5.10%)

250 21.44 22.83	 (6.48)

300 18.22 19.88	 (9.11%)

350 16.26 18.01	 (10.7%)

400 14.81 16.81	 (13.5%)

Table A2.14 Results of Analysis of Beam-Column with Equal and
Opposite End Moments.

Pm/Py Theoretical
P (kN)	 Mr	 (kNcm)

Finite Element Method
P (kN)	 Mr	 (kNcm)

0.2 106.4 10483 105.8 10421

0.4 213 8575 211.2 8487

0.5 266 7589 263.4 7507

0.6 319.2 6567 316.4 6486

0.7 372.4 5488 369.7 5434

0.8 425.6 4313 423.7 4292

0.9 478.8 2926 476.5 2911

Table A2.15 Results of Analysis of Beam-Column with Unequal
End Moments.

Pm/Py Theoretical
Pm (kN)	 Mor (kNcm)

Finite Element Method
P.	 (kN)	 Mc),	 (kNcm)

0.2 106.4 19592 105.6 19430

0.4 212.8 16028 213.7 16091

0.5 266 14184 267.9 14279

0.6 319.2 12272 321.4 12341

0.8 425.6 8061 429.0 8108

0.9 478.8 5469 481.2 5485
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DESIGN OF PRISMATIC MEMBER FOR LATERAL STABILITY IN
ACCORDANCE TO BS5950; PART 1.

EXAMPLE OF CALCULATION FOR LATERAL-TORSIONAL BUCKLIING FOR
THE CASE OF SIMPLY SUPPORTED BEAM SUBJECTED TO EQUAL AND
OPPOSITE MOMENT AT BOTH ENDS, 	 (i.e CASE 1). 203x133xUB30.

NOTE;	 DESIGN CODE BS5950 BASED ITS DESIGN FOR LATERAL
BUCKLING FOR OTHER LOADING CONDITIONS ON THE CASE
OF SIMPLY SUPPORTED BEAM WITH UNIFORM MOMENT

PROPERTIES OF BEAM
D	 := 206.8 inm Sx := 313 cmA3
tf	 := 9.6 mm G := 8000 kN/cmA2
Ix := 2900 cmA4 E := 20500 kN/cmA2
Zy := 57.4 cmA3 tw := 6.3 mm
ryy :=3.2 cm r	 :=7.6 mm
L := 400 cm Zx := 279 cmA3
a	 := 0.5D0.1 cm Sy := 88.05 cmA3
b	 := 133.8 mm py := 275 N/MMA2
A := 38.1 cmA2 Iy := 383.3 cmA4

DESIGN CALCULATIONS TO ESTABLISH THE VALUE OF Mp, Mb AND Me

(1) CALCULATION OF TORSION CONSTANT ; CLAUSE B.2.5.1(c)

ti := tf	 t2 := tf	 bl := b	 b2 := b
hw := D - 2 tf

3	 3	 3
1 tl . b1 + t2 . b2 + tw -hw

J :=	 i.e	 J = 9.455
3	 10000	 cmA4

(2) CALCULATION OF WARPING CONSTANT H ; CLAUSE B.2.5.1(c)

hs := D - tf

2	 3	 3
hs . t1 . t2 . b1 .b2

H := 	 	 4
3	 3]6	 i.e	 H = 3.726.10

12 . [tl . bl + t2 . b2 .10

(3) BUCKLING PARAMETER u; CLAUSE B.2.5.1(b)

3 := 1 - [IY]	 i.e	 r	 0.868
Ix

0.25

[Iy.Sx2.1
u :=

	

	 i.e	 u = 0.881
2

A .H



i.e	 x = 22.404

415

(4) TORSIONAL INDEX x; CLAUSE B.2.5.1(b)

0.5
A . H

x := 1.132 [
Iy . J

NOTE ;

" APPROXIMATION OF u GIVEN IN CLAUSE 4.3.7.5 IS u=0.9
APPROXIMATION OF x GIVEN IN CLAUSE 4.3.7.7 IS x=D/tf

(5)

(6)

IS 21.542 "

SLENDERNESS FACTOR v.

N

20

CLAUSE

BS5950,

BS5950,

:=

x

RESISTANCE

0.5

2

]

B.2.5.1(d)

py=275

0.51

AND CLAUSE 4.3.5

i.e
v = 0.791

MOMENT

N/mm2	 i.e tf<16

:=

v :=

(a)

(b)

CALCULATION

ryy

[[4 • N	 (1 - N)	 +

OF BUCKLING

FROM TABLE 6 OF

FROM TABLE 7 OF

b/tf=6.97, THERFFORE THE COMPRESSION FLANGE
IS CLASSIFIED AS PLASTIC

D/tw=32.82, THEREFORE THE WEB WITH A NEUTRAL AXIS AT
MID DEPTH IS CATEGORISED AS PLASTIC

(7) PLASTIC MOMENT CAPACITY (LOW SHEAR LOAD)

FROM CLAUSE 4.2.5,
Sx

MP := PY
1000

Mp = 86.075	 kNm

(8) CALCULATION OF BUCKLING MOMENT Mb

(a) BY CONSERVATIVE APPROACH AS GIVEN IN CLAUSE 4.3.7.7

= 125

x = 22.404

FROM TABLE 19(b); THE BENDING STRENGTH pb =146 N/mm^2

THEREFORE Mb=pb*Sx/1000= 45.7 kNm
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(b) BY MORE ACCURATE APPROACH AS GIVEN IN CLAUSE 4.3.7.3

X
- = 5.579
	

N = 0.5	 v = 0.791

CLAUSE 4.3.7.5; XLT THE EQUIVALENT SLENDERNESS IS

CALCULATED. FROM TABLE 13 FOR MEMBER SUBJECTED TO

DESTABILISING LOAD, m=1 AND n=1.

n := 1

XLT := n-u-v-X	 i.e	 XLT = 87.094

FROM TABLE 11, THE VALUE OF pb IS OBTAINED

pb := 150	 N/mmA2

THEREFORE
	 Sx

Mb := pb- 	 i.e Mb = 46.95	 kNm
1000

(9) CALCULATION OF ELASTIC CRITICAL MOMENT Me

FROM CLAUSE B.2.2

2
Mp-T -E

Me :- 	
	

i.e	 Me = 83.487	 kNm
2

XLT -27.5

(10) RESULTS

FROM RESULTS OF DESIGN CALCULATIONS FOR BEAMS WITH

LENGTHS BETWEEN 100 cm TO 1400 cm, THE VALUES OF

C(Mp/Me) AND Mb/Mp WERE CALCULATED. RESULTS ARE

PLOTTED AS SHOWN IN FIGURE 7.1 IN COMPARISON WITH

RESULTS OF ANALYSIS BY FINITE ELEMENT METHOD.



[Iy.Sx2-1
u :=

2
A -H

i.e	 u = 0.881
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APPENDIX 3.2

DESIGN OF PRISMATIC MEMBER FOR LATERAL STABILITY IN
ACCORDANCE TO BS5950; PART 1

EXAMPLE OF CALCULATION FOR LATERAL-TORSIONAL BUCKLING FOR
THE CASE OF SIMPLY SUPPORTED BEAM SUBJECTED TO MOMENT
GRADIENT WITH p=-0.5, (i.e CASE 2). UB TYPE 203x133xUB30.
THE BEAM LENGTH IN THIS EXAMPLE IS 400 cm.

NOTE; WITH VALUE OF p=-0.5 TABLE 18 OF BS5950 IS REFERRED
FOR THE VALUE OF m

PROPERTIES OF BEAM
D := 206.8	 mm	 Sx := 313	 cmA3
tf := 9.6	 mm	 G := 8000	 kN/cmA2
Ix := 2900	 cmA4	 E := 20500	 kN/cmA2
Zy := 57.4	 cmA3	 tw := 6.3	 mm
ryy := 3.2	 cm	 r := 7.6	 mm

cm	 Zx := 279	 cmA3
cm	 Sy := 88.05	 cmA3
mm	 py := 275	 N/MMA2
cmA2	 Iy := 383.3	 cmA4

DESIGN CALCULATIONS TO ESTABLISH THE VALUE OF Mp, Mb AND Mc

(1) CALCULATION OF TORSION CONSTANT ; CLAUSE B.2.5.1(c)

ti := tf	 t2 := tf	 bl := b	 b2 := b
hw := D - 2.tf

3	 3	 3
1 tl -131 + t2 . b2 + tw -hw

J	 i.e J = 9.455
3	 10000	 cmA4

(2) CALCULATION OF WARPING CONSTANT H ; CLAUSE B.2.5.1(c)

hs := D - tf

2	 3	 3
hs . t1-t2 bl .b2

H:= 	 	 4
3	 3]	 6	 i.e	 H = 3.726-10

12 . [tl . b1 + t2 . b2 .10

(3) BUCKLING PARAMETER u; CLAUSE B.2.5.1(b)

:= 1 - ly
	

i.e	 F = 0.868
 LIxj

0.25

L := 400
a := 0.5 . D . 0.1
b := 133.8
A := 38.1



i.e	 x = 22.404

1
v := [[4 . 11- (1 - N) + [d .r]

20 x
i.e
v = 0.79121

0.51
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(4) TORSIONAL INDEX x; CLAUSE B.2.5.1(b)

0.5
[A.H

x := 1.132 . ----]
Iy J

NOTE ;

" APPROXIMATION OF u GIVEN IN CLAUSE 4.3.7.5 IS u=0.9
APPROXIMATION OF x GIVEN IN CLAUSE 4.3.7.7 IS x=D/tf
IS 21.542 "

(5) SLENDERNESS FACTOR v. CLAUSE B.2.5.1(d) AND CLAUSE 4.3.5

:=

	

	 N := 0.5
ryy

(6) PLASTIC MOMENT CAPACITY (LOW SHEAR LOAD)

FROM CLAUSE 4.2.5,
Sx

MP := PY
1000

Mp = 86.075	 kNm

(7) CALCULATION OF BUCKLING MOMENT Mb

FROM CLAUSE 4.3.7.3

- = 5.579
	

N = 0.5	 v = 0.791

CLAUSE 4.3.7.5; LT THE EQUIVALENT SLENDERNESS IS

CALCULATED. FROM TABLE 13 FOR MEMBER NOT-SUBJECTED

TO DESTABILISING LOAD, m=0.43 (i.e TABLE 18) AND n=1.

n := 1

:= nuvX	 i.e	 XLT = 87.094

FROM TABLE 11, THE VALUE OF pb IS OBTAINED

pb := 150	 N/mmA2
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THEREFORE
	

Sx
Mb := pb .	i.e Mb = 46.95	 kNm

1000

(8) CALCULATION OF ELASTIC CRITICAL MOMENT Me

FROM CLAUSE B.2.2

2
Mp . w • E

Me := 	
	

i.e	 Me = 83.487	 kNm
2

),LT .27.5

FROM CLAUSE 4.3.7.2 AND FROM TABLE 18 OF BS5950

m=0.43. THEREFORE THE CRITICAL MOMENT Mc IS

m := 0.43

Mc := m . Me	 Mc = 35.899

(10) RESULTS

FROM RESULTS OF DESIGN CALCULATIONS FOR BEAMS WITH

LENGTHS BETWEEN 100 cm TO 1400 cm, THE VALUES OF

f(Mp/Mc) AND Mb/Mp WERE CALCULATED. RESULTS ARE

PLOTTED AS SHOWN IN FIGURE 7.6 IN COMPARISON WITH

RESULTS OF ANALYSIS BY FINITE ELEMENT METHOD.
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APPENDIX 3 . 3

DESIGN OF PRISMATIC MEMBER FOR LATERAL STABILITY IN
ACCORDANCE TO BS5950; PART 1.

EXAMPLE OF CALCULATION FOR LATERAL-TORSIONAL BUCKLING FOR
THE CASE OF SIMPLY SUPPORTED BEAM SUBJECTED TO DESTABILISING
TRANSVERSE LOAD AT TOP FLANGE, i.e (CASE 3). 203x133xUB30.

NOTE; CLAUSE	 4.3.5	 STATED	 THAT	 THE LENGTH	 L USED IN THE
CALCULATION OF THE MOMENT CAPACITY IS INCREASED BY 20%
CLAUSE	 4.3.7.6	 STATED	 THAT FOR MEMBER	 SUBJECTED TO
DESTABILISING LOAD; m=n=1

PROPERTIES OF BEAM
D	 := 206.8 mm Sx := 313 cmA3
tf	 := 9.6 mm G := 8000 kN/cmA2
Ix	 := 2900 cmA4 E := 20500 kN/cmA2
Zy	 := 57.4 cmA3 tw := 6.3 mm
ryy := 3.2 cm r := 7.6 mm
L := 400 cm Zx := 279 cmA3
a	 := 0.5 . D . 0.1 cm Sy := 88.05 cmA3
b := 133.8 mm py := 275 N/MMA2
A	 := 38.1 cmA2 Iy := 383.3 cmA4

DESIGN CALCULATIONS TO ESTABLISH THE VALUE OF Mp, Mb AND Me

(1) CALCULATION OF TORSION CONSTANT ; CLAUSE B.2.5.1(c)

ti := tf	 t2 := tf	 bl := b	 b2 := b
hw := D - 2.tf

3	 3	 3
1 t1 . b1 + t2 . b2 + tw .hw

J :=	 i.e	 J = 9.455
3	 10000	 cmA4

(2) CALCULATION OF WARPING CONSTANT H ; CLAUSE B.2.5.1(c)

hs := D - ft

2	 3	 3
hs . t1 . t2 . b1 •b2

H
3	 3]	 6	 i.e	 H = 3.726•10

12.[tl.b1 +t2. b2 .10

(3) BUCKLING PARAMETER u; CLAUSE B.2.5.1(b)

Iy]
r := 1 - [--	 i.e	 F = 0.868

Ix
0.25

2 1
lIy . Sx •r

U :=

	

	 i.e	 u = 0.881
2

L A • H j

4



i.e	 x = 22.404

21
1

V := [[4 . N . (1 - N) +
20	 x

0.5-

i.e
V = 0.745
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(4) TORSIONAL INDEX x; CLAUSE B.2.5.1(b)

0.5
A.H

x := 1.132 [----
Iy.J

NOTE ;

It APPROXIMATION OF u GIVEN IN CLAUSE 4.3.7.5 IS u=0.9
APPROXIMATION OF x GIVEN IN CLAUSE 4.3.7.7 IS x=D/tf
IS 21.542 "

(5) SLENDERNESS FACTOR v. CLAUSE B.2.5.1(d) AND CLAUSE 4.3.5

X:= 1.2 ---	 N := 0.5
rYY

-0.5

(6) CALCULATION OF BUCKLING RESISTANCE MOMENT

(a) FROM TABLE 6 OF BS5950, py=275 N/mm2 i.e tf<16

(b) FROM TABLE 7 OF BS5950,

b/tf=13.94, THEREFORE THE COMPRESSION FLANGE
IS CATEGORISED AS SEMI-COMPACT

D/tw=32.82, THEREFORE THE WEB GENERALLY IS
CATEGORISED AS PLASTIC

(7) PLASTIC MOMENT CAPACITY (LOW SHEAR LOAD)

FROM CLAUSE 4.2.5,
Sx

MP := PY
1000

Mp = 86.075	 kNm

(8) CALCULATION OF BUCKLING MOMENT Mb

(a) BY CONSERVATIVE APPROACH AS GIVEN IN CLAUSE 4.3.7.7

X = 150

x = 22.404

FROM TABLE 19(b); THE BENDING STRENGTH pb=124.5 N/mmA2

THEREFORE Mb=pb*Sx/1000= 38.97 kNm
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(b) BY MORE ACCURATE APPROACH AS GIVEN IN CLAUSE 4.3.7.3

X
- = 6.695
	

N = 0.5	 v = 0.745

CLAUSE 4.3.7.5; XLT THE EQUIVALENT SLENDERNESS IS

CALCULATED. FROM TABLE 13 FOR MEMBER SUBJECTED TO

DESTABILISING LOAD, m=1 AND n=1.

n := 1

XLT := n•u•v . X 	 i.e	 XLT = 98.492

FROM TABLE 11, THE VALUE OF pb IS OBTAINED

pb := 127.7	 N/mmA2

THEREFORE
	

Sx
Mb := pb . ----	 i.e Mb = 39.97	 kNm

1000

(9) CALCULATION OF ELASTIC CRITICAL MOMENT Me

FROM CLAUSE B.2.2

2
Mp . w -E

Me :- 	
	

i.e	 Me = 65.282	 kNm
2

).LT .27.5

(10) RESULTS

FROM RESULTS OF DESIGN CALCULATIONS FOR BEAMS WITH

LENGTHS BETWEEN 100 cm TO 1400 cm, THE VALUES OF

r(Mp/Me) AND Mb/Mp WERE CALCULATED. RESULTS ARE

PLOTTED AS SHOWN IN FIGURE 7.11 IN COMPARISON WITH

RESULTS OF ANALYSIS BY FINITE ELEMENT METHOD.



H
3	 3]6

12 . [t1 .b1 + t2 b2 .10

4
H = 3.726 10
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APPENDIX 3 . 4

DESIGN OF PRISMATIC MEMBER FOR LATERAL STABILITY IN
ACCORDANCE TO BS5950: PART 1

EXAMPLE OF CALCULATION FOR LATERAL TORSIONAL BUCKLING
THE CASE OF CANTILEVER BEAM SUBJECT TO DESTABILISING
TRANSVERSE LOAD AT TOP FLANGE, i.e case 4. 203x133xUB30.
CANTILEVERS WHICH ARE FREE TO DEFLECT LATERALLY AND TWIST
AT THE UNSUPPORTED END ARE TREATED BY BS5950 AS EQUIVALENT
BEAMS WITH TRANVERSE LOADS, EXCEPT THAT THE LENGTH USED IN
THE CALCULATION OF THE MOMENT CAPACITY IS INCREASED BY 150%
WHEN THERE ARE DESTABILISING LOAD.

NOTE; CLAUSE 4.3.6.2 STATED THAT THE EFFECTIVE LENGTH Le
USED IN THE CALCULATION OF THE MOMENT CAPACITY BECOME
2.5L (i.e FROM TABLE 10). FROM CLAUSE 4.3.7.6, FOR
MEMBER SUBJECTED TO DESTABILISING LOAD; m=n=1

PROPERTIES OF SECTION

D := 206.8 mm Iy := 383.3
tf := 9.6 mm Sx := 313
Ix := 2900 cmA4 G := 8000
Zy := 57.4 cmA3 E := 20500

ryy := 3.2 cm tw := 6.3
a := 0.5 . 0.1 . D mm r := 7.6
b := 133.8 ram Zx := 279
A := 38.1 cmA2 Sy := 88.05

py := 275

cmA4
cm,.3
kN/cmA2
kN/cmA2
mm
mm
cmA3
cmA3
N/mmA2

DESIGN CALCULATIONS

FOR THE CASE OF LENGTH L := 200 	 cm

(1) CALCULATION OF TORSION CONSTANT. CLAUSE B.2.5.1(c)

SAY,
ti := tf
	

t2 := tf	 bl := b

b2 := b	 hw := D - 2.tf

3	 3	 3
ii tl . b1 + t2 -b2 + tw .hw

J :=
3	 10000

J = 9.455	 cmA4

(2) CALCULATION OF WARPING CONSTANT H. CLAUSE

SAY,	 hs := D - tf

2	 3	 3
hs . t1 . t2 . b1 .b2
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(3) CALCULATION OF BUCKLING PARAMETER u. CLAUSE B.2.5.1(b)

r := 1 - [	 r	 0.868
Iy
-- ]
Ix

0.25
2

[Iy-Sx 
U :

2
A •H

U = 0.881

(4) CALCULATION OF TORSIONAL INDEX x. CLAUSE B.2.5.1(b)

0.5
A . H

x := 1.132 [
Iy . J

NOTE;

x = 22.404

APPROXIMATE VALUE OF u GIVEN IN CLAUSE 4.3.7.5 IS u=0.9

(5)

v

APPROXIMATE VALUE OF
i.e x=21.542

CALCULATION OF SLENDERNESS
AND CLAUSE 4.3.5

THE EFFECTIVE LENGTH
TABLE 10)

THEREFORE,

:=	 [[4 . N . (1 - N)	 +

x

1

20

:=

given

x

Le=2.5L

2.5

in clause 4.3.7.7 is x=D/tf

FACTOR v. CLAUSE B.2.5.1(d),

(i.e CLAUSE 4.3.6.2 AND

---	 AND	 N := 0.5
ryy

0.51
2]

V = 0.735

(6) PLASTIC MOMENT CAPACITY (LOW SHEAR LOAD)

FROM CLAUSE 4.2.5	 Sx
MP := PY

1000
Mp = 86.075	 kNm

(7) CALCULATION OF BUCKLING MOMENT Mb

(a) BY CONSERVATIVE APPROACH, CLAUSE 4.3.7.7

= 156.25
x = 22.404
FROM TABLE 19(b); THE BENDING STRENGTH pb=119.8

N/mm^2, THEREFORE Mb=pb*Sx/1000= 37.5 kNm
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(b) BY THE MORE ACCURATE APPROACH, CLAUSE 4.3.7.3

- = 6.974
	

N = 0.5	 v = 0.735

FROM CLAUSE 4.3.7.5 THE VALUE OF	 IS CALCULATED.
FROM TABLE 13, FOR MEMBER SUBJECTED TO DESTABILISING
LOAD; m=1 (REF. IS MADE TO TABLE 18) and n=1

n := 1

),LT :=	 THEREFORE	 ).LT = 101.14

FROM TABLE 11 OF BS5950,

pb := 123	 N/mmA2

THEREFORE,

Sx
Mb := pb

	

	 Mb = 38.499	 kNm
1000

(8) CALCULATION OF ELASTIC CRITICAL MOMENT Me

FROM CLAUSE B.2.2

2
Mp T •E

Me :- 

	

	 	 Me = 61.908	 kNm
2

.LT •27.5

(9) RESULTS

THE VALUES OF Mp, Me AND Mb ARE OBTAINED FOR DIFFERENT

LENGTHS OF CANTILEVERS. A GRAPH OF DIMENSIONLESS

STRENGTH Mp/Me AGAINST Mb/MP IS PLOTTED FOR THE

CANTILEVER. THIS IS AS SHOWN IN FIGURE 7.16 TOGETHER

WITH RESULTS OF THE ANALYSIS WITH F.E.M.
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APPENDIX 3 . 5

DESIGN OF HAUNCH MEMBER WITHOUT RESTRAINTS ON THE TENSION
FLANGE IN ACCORDANCE TO BS5950; PART 1

THE CASE OF DESIGN FOR BASE SECTION 203X133XUB30 i.e HON1

NOTES; (i) IN BS5950, DESIGN OF TAPERED I-BEAMS ARE BASED
ON MODIFICATION OF RULES FOR PRISMATIC MEMBERS.

(ii) THE CALCULATIONS HEREIN ARE USED TO PLOT A
GRAPH OF CRITICAL MOMENT Mb AGAINST LENGTH L.

(iii) ACTUAL CRITICAL LENGTH IS OBTAINED FOR HAUNCHED
SECTION FROM THE GRAPH.

DESIGN PARAMETER
(A) TOTAL LENGTH OF THE BEAM 	 L := 650
(B) MOMENT; ASSUMING LINEAR DISTRIBUTION

MOMENT AT SMALLER END	 Mse := 0
MOMENT AT LARGER END	 Me =?

(C) AXIAL FORCE	 F := 0
(D) PROPERTIES OF SECTION

CM

KN.cm

DEPTH OF BASIC SECTION	 D := 20.68	 cm
BREADTH OF FLANGE	 b := 13.38	 cm
THICKNESS OF FLANGE	 tf := 0.96	 cm
THICKNESS OF WEB	 tw := 0.63	 cm
RATIO OF TAPER/UNI SEC	 q := 0.6
RATIO OF DEPTH OF TAPER 	 r := 3
YIELD STRENGTH	 py := 27.5	 kN/cmA2
YOUNG'S MODULUS	 E := 20000	 kN/cmA2

DESIGN CALCULATIONS

(1) CALCULATION OF GEOMETRICAL PROPERTIES

ASSUMING THE WHOLE LENGTH IS TAPERED;
THEREFORE

Lt := 1 . L	 Lt = 650	 cm
Lu := L - Lt Lu = 0	 cm

(i) CALCULATION OF Ix AND Iy (SUBSCRIPT 1 FOR SMALL END
SUBSCRIPT 11 FOR LARGER END)

SAY,	 bn := b - tw

	

3	 3
(D - 2-tf)

	

Ixl := b.--	 - bn 	 	 3

	

12	 12	 Ixl = 2.846•10	 cmA3

3	 3
(Dr)	 (Dr - 2 tf)

Ixll := b 	  bn 	
12	 12	 4

Ixll = 3.537.10
cmA3
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3

SAY,	 Ay := 2.tf.--
12

3
tw

Iyl := Ay + (D - 2 . tf)	 Iyl = 383.646	 cmA3
12

3
tw

Iyll := Ay + (Dr - 2 . tf)	 Iyll = 384.508	 cmA3
12

(ii) CALCULATION OF AREA

AREA AT SMALLER END Al AND AREA AT LARGER END All

SAY,
Af := 2 . b . tf	 Aw := (D - 2.tf).tw

THEREFORE,

Al := Af + Aw	 All := Af + (Dr - 2-tf).tw

Al = 37.508	 All = 63.56A1	 cmA2

(iii) CALCULATION OF ry

lIy1
ryl :=	 jIyll

Al	 ryll :=
All

ryl = 3.198	 ryll = 2.459

(iv) CALCULATION OF FOR TAPERED SECTION

Lt	 Lt
).1 :=	 ),11 :=

ryl	 ryll

Ll = 203.241	 ).11 = 264.284

(2) CALCULATION OF OTHER CONSTANTS FOR TAPERED SECTION

(i) hsl DISTANCE BETWEEN SHEAR CENTRES OF FLANGES

hsl := D - tf	 hsll := r . D - tf

hsl = 19.72
	 hsll = 61.08	 (cm)

(ii) hw DEPTH OF WEB AT EACH SEGMENT

hwl := D - 2 . tf	 hwll := r . D - 2 tf

hwl = 18.76	 hwll = 60.12	 (cm)
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(iii) J TORSION CONSTANT, CLAUSE B.2.5.1

1 1 	 3

[3

	 1
J1 := - • L2 . tf -b + tw •hwlj

3
3

SAY,	 Jb := 2-tf -b

1	 3
J11 := [-]-	 + tw -hwll]

3

J1 = 9.455
	

J11 = 12.903	 (cmA4)

(iv) WARPING CONSTANT H 	 3

SAY,	 Hx := tf---
24

2	 26
hsl •tf -b	 1

H1 :-
12
	

3
2- tf- b

2
H11 := hsll -Hx

4
THEREFORE,	 H1 = 3.726.10
	

cm^6
5

	

H11 = 3.57510	 cm^6

(v) THE TORSIONAL INDEX x , CLAUSE B.2.5.1(b)

i.e x = 0.566*hs*1(A/J)

xl := 0.556 hsl •

	

	xl = 21.838
J1

jAll
x11 := 0.566 hs11 	 x11 = 76.733

J11

(3) CALCULATION OF PLASTIC MODULUS AT BOTH ENDS

2
Sxl := 0.25-tw•hw1 + b•tf-(hwl + tf)

Sxl = 308.73	 cm^3
2

Sx11 := 0.25 . tw-hw11 + b•tf . (hw11 + if)
3

Sx11 = 1.354 . 10	 cm^3
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(4) CALCULATION OF PLASTIC MOMENT Mp

Mpl := py . Sx1	 Mph1 := py-Sx11
3	 4

Mpl = 8.49 . 10	 Mphl = 3.723.10 (kN.cm )

(5) CALCULATION OF EQUIVALENT SLENDERNESS ),LT

).11 = 264.284

u := 1	 CLAUSE 4.3.7.5 AND G.3.3

n := 1	 SINCE THERE IS NO FLANGE TAPERING

x11 = 76.733

v :=	 1 +
{

),LT	 := n . v . 0

11
2

).11

1

--]20

-0.25

),LT = 235.238

x11

(6) CALCULATION FOR BUCKLING MOMENT

FROM CLAUSE B.2.4 THE LIMITING EQUIVALENT

SLENDERNESS )..1.0;

0.5
2

[11-	 E
),L0 := 0.4 ----]

PY

FROM CLAUSE B.2.3

ILT := 0.007-MT., XL0)

FROM CLAUSE B.2.2

)..L0 = 33.889

T., LT = 1.409

[

Me := Mp11.w
2	 E

l	

3
2 
.py	

Me = 4.829 . 10	 kNcm
XLT 

Me

	

= 48.292	 kNm
100

FROM CLAUSE B.2.1

Mph1 + (1LT + 1)-Me
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Me.Mpll
Mb := 	 	 3

0.5	 Mb = 4.008-10	 kNcm
2

clo B +	 - Me . Mp11]	 Mb
= 40.081	 kNm

100

(7) RESULTS

RESULTS BUCKLING MOMENT Mb AND LENGTH L ARE PLOTTED

AS SHOWN IN FIGURE 7.21A AND FOR r=2 IN FIGURE 7.21B

IN COMPARISON WITH RESULTS OF THE FINITE ELEMENT METHOD.

BY GEOMETRY, THE VALUE OF MOMENT AT THE LARGER END CAN

CALCULATED WHEN THE YIELD MOMENT AT THE TAPER/UNIFORM

SECTION JUNCTION IS KNOWN. FROM THE GRAPH THIS VALUE OF

MOMENT IS USED TO FIND THE CRITICAL LENGTH OF THE HAUNCH

BEAM.
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APPENDIX 3 . 6

EXAMPLE OF CALCULATION FOR PRISMATIC SECTION IN ACCORDANCE TO
APPENDIX G : BS5950 PART 1

THE CALCULATION HEREIN IS FOR SPECIMEN UMB1 (203X133XUB30).
THE BEAM IS SUBJECTED TO LOADING AS SHOWN IN FIGURE 7.26.
BOTH ENDS OF THE BEAM IS RESTRAINED LONGITUDINALLY AND
TORSIONALLY BUT THE FLANGES ARE FREE TO WARP. THE TENSION
FLANGE OF THE BEAM IS RESTRAINED BY PURLINS. THE VALUE OF p
USED IN THIS CASE IS 0.5

DESIGN CALCULATIONS

BEAM DATA

D
a
A

:= 20.68
:= 18.00
:= 38.1

cm
cm
cmA2

PY := 25	 kN/cmA2
E := 21000	 kN/cmA2
SX1 := 314.5	 cmA4

tf := 0.96 cm L := 332.5 cm
b := 13.38 cm ry := 3.2 cm
tw := 0.63 cm L
IY := 383.3 cmA4 ).	 := --
IX := 2900.1 cmA4 ry
hw := D - 2 . tf cm F := 0 kN
hs := D - tf cm MA := 6982 kN.cm

IY MA IS THE YIELD MOMENT
r:= 1 - --

Ix

(A) CALCULATION FOR ELASTIC STABILITY

APPENDIX SPECIFY THE CRITERIA FOR ELASTIC STABILITY
AS FOLLOWS

F/Pc + Mdash/MB < = 1

SINCE F=0 THE CALCULATION OF Pc IS IGNORED IN THIS CASE

(i) CALCULATION OF RELEVANT BEAM PROPERTIES

CALCULATION OF H, WARPING CONSTANT. FROM CLAUSE B.2.5.1

3
2	 b

H := hs • tf —
24
	

4
H = 3.726.10

CALCULATION OF J, THE TORSION CONSTANT. FROM CLAUSE B.2.5.1

3	 3
2 . tf • b + tw .hw

J

	

	 J = 9.455
3
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CALCULATION OF X, THE TORSIONAL INDEX. FROM CLAUSE B.2.5.1

,F1
:= 1.132 . 	 	 X = 22.404

ITY7,77
CALCULATION OF Y FROM CLAUSE G.3.2

a
+ [ 

hs
2 • —I

2
Y

11 + 2 - ---]
20

Y = 0.895

FROM THE VALUES OF Y ABOVE AND FROM CLAUSE G.3.4
THE VALUES OF mt IS OBTAINED FROM TABLE 39 OF THE CODE

mt := 0.74

(ii) CALCULATION OF Mdash

FROM CLAUSE G.2

Mdash := MA-mt	 3
Mdash = 5.167•10 	 kN.cm

(iii) CALCULATION OF MINOR AXIS SLENDERNESS RATIO, ),TB

CALCULATION OF BUCKLING PARAMETER U. FROM CLAUSE
4.3.7 5

2
[ a

hs	

1+ [
[1 2

1	

2	 r
u :=	 IY-SX1

2
A •H

U = 0.883

CALCULATION OF vt
0.5

a
4- —

hs
vt :=

2	 2
a	 1

1 + [2 . —]	
[hs	 20] vt = 0.822
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CALCULATION OF nt

FROM CLAUSE G.3.6.1

Ni := 3491 M1 := 6982.5

N2 := 4363.8 M2 := M1

N3 := 5236.5 M3 := M1

N4 := 6109.3 M4 := M1

N5 := 6982.5 M5 := M1

N4 N5
NMS := NME := --

M4 M5

1	 N2	 N3	 N4 N5
:= [1-	 + 3-	 +4. -- + 3 . -- +	 + 2 . (NMS - NME)

12 M1	 M2	 M3	 M4 M5

WHERE	 nt = 0.854	 BUT CLAUSE G.3.3 STATED THAT WHEN
THERE IS NO INTERMEDIATE LOAD nt=1

THE MINOR AXIS SLENDERNESS RATIO ),TB

c := 1	 FOR UNIFORM MEMBER (CLAUSE G.3.3)
nt := 1

),TB := nt . u . vt• c • X. • • • •
	 i.e	 = 75.398

(iv) CALCULATION OF BENDING STRENGTH pb, (CLAUSE 4.3.7.4)

FROM TABLE 11 OF BS5950 , THE VALUE OF )..TB IS USED
IN OBTAINING pb AND THEREFORE

pb := 16.5	 KN/cm2

(v) CALCULATION OF BUCKLING RESISTANCE MB

MB := pb . SX1	 (FROM CLAUSE 4.3.7.3)

3	 3
MB = 5.189 . 10	 kN.cm AND	 Mdash = 5.167 . 10	 kN.cm

(vi) ELASTIC STABILITY Mdash/MB <1

Mdash
- 0.996	 CRITICAL LENGTH	 L = 332.5	 cm

MB
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(B) PLASTIC STABILITY OF UNIFORM MEMBER IN ACCORDANCE TO
APPENDIX G

THE CONDITION FOR PLASTIC STABILITY FOR BEAM WITHOUT
LATERAL LOAD IS

	

Lk	 MP
Lt =	 r ( 	 	 ( CLAUSE G.2(b)

	

Fmt	 Mpr + aF

(i) CALCULATION OF MP

MP := PY•SX1

(ii) CALCULATION OF LIMITING LENGTH Lk

FROM CLAUSE G.3.5

PY
[5.4 + 600— .ry• x

Lk :- 	

]PY 2
5.4 . -- X -1

E

i.e	 Lk = 293.757	 cm

(iii) CALCULATION OF Lt

Lk	 MP
Lt :=

	

	
Lt = 341.486

MP + a.F

L = 332.5

SINCE Lt IS LONGER THAN L, PLASTIC STABILITY
IS SATISFIED IN THIS CASE.

THE CRITICAL LENGTH FOR PLASTIC STABILITY IS 341.5 cm



THE SPECIMEN IS RESTRAINED LATERALLY AT BOTH ENDS AND THE
TENSION FLANGE IS RESTRAINED BY PURLINS. THE BENDING MOMENT
AT THE SMALLER END IS ZERO WHILE THE BENDING MOMENT AT THE
LARGER END BML EQUALS TO 17203.4 kNcm. THIS VALUE OF BML IS
OBTAINED BY ASSUMING LINEAR DISTRIBUTION OF MOMENT AND WHEN
MOMENT AT POINT F IN FIGURE 7.28 (i.e POINT OF CHANGE OF
CROSS	 SECTIO AREA) HAS JUST REACHED YIELD MOMENT.

PROPERTIES OF BASE SECTION

q := 0.6 (RATIO OF TAPERED SECTION TO TOTAL LENGTH)
r := 3 (RATIO OF GREATER DEPTH TO LESSER DEPTH)
D := 206.8 mm	 (DEPTH OF BASE SECTION)
tf := 9.6 mm	 (FLANGE THICKNESS)
tw := 6.3 mm	 (WEB THICKNESS)
B := 133.8 mm	 (BREADTH OF FLANGE)
E := 20000 kN/cmA2	 (YOUNG'S MODULUS)
py := 25 kN/cmA2	 (YIELD STRESS)
F := 0 kN	 (AXIAL LOAD)
L := 148.5 cm	 (TOTAL LENGTH OF HAUNCEED BEAM)
Lu := 59.4 cm	 (LENGTH OF UNIFORM SECTION)
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APPENDIX 3 . 7

DESIGN OF RESTRAINED HAUNCHED MEMBER WITH UNRESTRAINED
COMPRESSION FLANGE, IN ACCORDANCE TO APPENDIX G, BS5950:
PART 1.

CALCULATIONS FOR HAUNCHED MEMBER H1 AS SHOWN IN FIGURE 7.28.
THE BASE SECTION USED IS 203X133XUB30.

DESIGN CALCULATIONS

DESIGN FOR ELASTIC STABILITY

NOTE:
THE PERMISSIBLE STRESS OF THE MEMBER WHICH IS EITHER
TAPERED OR UNIFORM IS CHECKED BETWEEN THE LATERAL-
TORSIONAL RESTRAINTS TO BOTH FLANGES ACCORDING TO THE
DESIGN CRITERIA ;

F/A + M/Sx < = pb AT ANY SECTION	 . (1)

WHERE, M = APPLIED LOAD AT THE SECTION CONSIDERED
Sx = PLASTIC MODULUS AT THE SECTION CONSIDERED
F = AXIAL FORCE
A = AREA OF THE SECTION CONSIDERED
pb = LATERAL-TORSIONAL BUCKLING RESISTANCE.

IN ORDER TO DO THE CHECK FOR EQUATION (1), THE GEOMETRICAL
PROPERTIES OF THE SPECIMEN ALONG THE LENGTH MUST BE KNOWN.
THE SPECIMEN IN THIS CASE IS DIVIDED INTO 27 ELEMENTS
GIVING 29 CROSS SECTIONS PROPERTIES.
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1 SECTIONAL PROPERTIES

(A) CROSS SECTIONAL AREA AT EACH SECTION (cmA2)

Al := 38.1	 Al, A2, A3, A4, A5, A6, A7, A8, A9,
A10, All, AND Al2 	 HAVE SAME VALUE

A := 39.3 A := 51.7 A	 := 64.2
13 21 29

A := 40.9 A := 53.3
14 • 22

A := 42.4 A := 54.9
15 23

A := 44.0 A := 56.4
16 24

A := 45.5 A := 58.0
17 25

A := 47.1 A := 59.5
18 26

A := 48.6 A := 61.1
19 27

A := 50.2 A := 62.6
20 28

(B) SECOND MOMENT OF AREA Ix AND Iy (cmA4)

Ixl,	 Ix2,	 Ix3, Ix4,
Ix5,	 Ix6,	 Ix7, Ix8,
Ix9, Ix10, Ix11, Ix12
HAVE SAME VALUE

Iyl TO Iy29
HAVE THE SAME VALUE
Iy := 383.3

Ixl := 2900.1 Ix21 := 14703.1
Ix13 := 3541.4 Ix22 := 16756.1
Ix14 := 4469 Ix23 := 18970.9
Ix15 := 5520.8 Ix24 := 21352.4
Ix16 := 6701.5 Ix25 := 23905.2
Ix17 := 8015.8 Ix26 := 26634.0
Ix18 := 9468.3 Ix27 := 29543.6
Ix19 := 11063.9 Ix28 := 32638.7
Ix20 := 12807.3 Ix29 := 35923.9

(C) ELASTIC MODULUS Zx AND Zy 	 (cmA3)

Zxl,
Zx5,
Zx9,
HAVE

Zx2,	 Zx3,	 Zx4,
Zx6, Zx7, Zx8,
Zx10, Zxll, Zx12
SAME VALUE

Zyl TO Zy29
HAVE SAME VALUE
Zyl := 57.3
Zy29 := 57.3

Zxl := 280.5 Zx21 := 694.8
Zx13 := 313.3 Zx22 := 748.3
ZX14 := 356.5 Zx23 := 803.0
Zx15 := 401.0 Zx24 := 859.0
Zx16 := 446.8 Zx25 := 916.2
Zxl7 := 493.8 Zx26 := 974.8
Zxl8 := 542.2 Zx27 := 1034.6
Zx19 := 591.8 Zx28 := 1095.7
Zx20 := 642.6 Zx29 := 1158.1
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(D) PLASTIC MODULUS Sx AND Sy (cmA4)

Sxl, Sx2, Sx3, Sx4,
Sx5, Sx6, Sx7, Sx8,
Sx9, Sx10, Sx11, Sx12
HAVE SAME VALUE

Sxl := 314.5
Sx13 := 351.8
Sx14 := 401.2
Sx15 := 452.6
Sx16 := 505.8
Sx17 := 561.0
Sx18 := 618.1
Sx19 := 677.0
Sx20 := 737.9

Syl TO Sy29
HAVE SAME VALUE
Syl := 85.9
5y29 := 85.9

Sx21 := 800.8
Sx22 := 865.5
Sx23 := 932.1
Sx24 := 1000.7
Sx25 := 1071.1
Sx26 := 1143.5
Sx27 := 1217.8
Sx28 := 1294.0
5x29 := 1372.2

(E) RADII OF GYRATION Ty (cm)

ryl := 3.2

ry	 := 3.1
13

ry	 := 3.1
14

ry	 := 3.0
15

ry	 := 3.0
16

ry	 := 2.9
17

ry	 := 2.9
18

ry	 := 2.8
19

ry	 := 2.8
20

ry	 := 2.7
21

ry	 := 2.7
22

ry	 := 2.6
23

ry	 := 2.6
24

ry	 := 2.6
25

ry	 := 2.5
26

ry	 := 2.5
27

ry	 := 2.5
28

ry	 := 2.4
29

(F) ST. VENANT CONSTANT J (cmA4)

J1, J2, J3, J4, J5, J6, J7 ,J8, J9, J10, J11
AND J12 HAVE THE SAME VALUE

J1 := 9.5	 J	 := 11.3
21

J :=9.7	 J	 := 11.5
13	 22

J : = 9.9	 J	 := 11.8
14	 23

J := 10.1	 J	 := 12.0
15	 24

J := 10.3	 J	 := 12.2
16	 25

J := 10.5	 J	 := 12.4
17	 26

J := 10.7	 J	 := 12.6
18	 27

J := 10.9	 J	 := 12.8
19	 28

J := 11.1	 J	 := 13.0
20	 29
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(G) WARPING CONSTANT H (cmA6)

H1, H2, H3, H4, H5, H6, H7, H8, H9, H10,
H11 AND H12

H1 := 37260

HAVE THE SAME VALUE

:= 165900
21

H := 47020 := 185900
13 22

H := 57920 := 207000
14 23

H := 69950 := 229300
15 24

H := 83110 := 252600
16 25

H := 97410 := 277100
17 26

H := 112800 := 302800
18 27

H := 129400 := 329600
19 28

H := 147100 := 357500
20 29

2. CALCULATIONS OF BUCKLING RESISTANCE MOMENT, Mb

IN ORDER THAT EQUATION CAN BE USED, THE VALUE OF
THE LATERAL-TORSIONAL BUCKLING STRENGTH pb MUST
FIRST BE OBTAINED FOR EACH SECTION. THE VALUE OF pb
IS DETERMINED IN ACCORDANCE WITH SECTION 4.3.7 EXCEPT
THAT THE EQUIVALENT SLENDERNESS SHOULD BE TAKEN AS
XTB.

FROM CLAUSE G.3.3, THE MINOR AXIS SLENDERNESS RATIO,
XTB IS TAKEN AS;

XTB = nt * u * vt * c * X
	

(2)

WHERE ; X = THE SLENDERNESS Wry OF THE MEMBER BETWEEN
EFFECTIVE TORSIONAL RESTRAINTS TO BOTH
FLANGES.

u = BUCKLING PARAMETER. FOR TAPERED SECTION u=1
nt = SLENDERNESS CORRECTION FACTOR, SINCE THERE

IS NO INTERMEDIATE LOADS BETWEEN RESTRAINTS
(nt=1)

2/3
c = 1 + (3(R-1) A)/(x-9)] FOR TAPERED MEMBER

2	 2
vt = [(4a/hs)/(1+(2a/hs)+0.05(X/x))] 	 (3)

FOR TAPERED MEMBER vt IS CALCULATED FOR THE
SMALLEST SECTION. (CLAUSE G.3.3)
IN EQUATION 3 ,
a = DISTANCE BETWEEN REFERENCE AXIS AND

RESTRAINT AXIS
hs = DISTANCE BETWEEN THE SHEAR CENTRES OF

THE FLANGES.



a
4 . —

hs
vt :

1+ [—s + [[—
20

2 . a]	 1 1 r
h	

al
2	 2
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(i) CALCULATION OF LIMITING EQUIVALENT SLENDERNESS ),L0

FROM CLAUSE B.2.4

2
IT -E

),IJO := 0.4-
py

= 35.543

(ii)CALCULATION OF vt

FROM CLAUSE G.3.3

a := 15.5	 cm	 hs := 19.72	 cm

X1 :=	 ]A1.H1
ryl	 xl := 1.132

Iy-J1

X1 = 46.406
xi = 22.351

THEREFORE	 vt = 0.923

(iii)VALUES OF TORSIONAL INDEX x

xl, x2, x3, x4, x5, x6, x7, x8, x9, x10
x11 and x12 HAVE THE SAME VALUE i.e 22.351

k := 13 ..29

IA .H
k k

x := 1.132.
Iy.J
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x = 25.236 x = 43.919 x = 63.362
13 19 25

x = 28.284 x = 47.16 x = 66.672
14 20 26

x = 31.332 x = 50.374 x = 70.063
15 21 27

x = 34.452 x = 53.67 x = 73.41
16 22 28

x = 37.566 x = 56.742 x = 76.826
17 23 29

x = 40.743 x = 60.024
18 24

(iv) CALCULATION OF c

cl, c2, c3, c4, c5, c6, c7, c8, c9, c10,
cll and c12 HAVE SAME VALUE i.e 1.276

3

2

3
c := 1 + (r - 1)

x - 9

C = 1.227 c = 1.106	 c	 = 1.068
13 19 25

c = 1.191 c = 1.097	 c	 = 1.064
14 20 26

c = 1.165 c = 1.089	 c	 = 1.06
15 21 27

c = 1.145 c = 1.083	 c	 = 1.057
16 22 28

c = 1.129 c = 1.077	 c	 = 1.054
17 23 29

C = 1.116 c = 1.072
18 24
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(v) VALUES OF X

VALUES OF X1 TO X12 ARE EQUAL TO

X1 := 46.406

X. • :-.-- •	 = 47.903
ry
	 13

,X	 = 53.036
13	 20

X = 55
14	 21

)4.	 =55
15	 22

X = 57.115
16	 23

X = 57.115
17	 24

= 59.4
18	 26

X	 = 59.4
19	 27

= 61.875
28	 29

(vi) VALUE OF XTB

THROUGHOUT THE UNIFORM SECTION XTB1 TO XTB12
HAVE EQUAL VALUE

THE VALUES OF n AND u IN THIS CASE ARE 1
nt := 1	 u := 1

XTB1 := nt.u-vt.ci-X1 ).TB1 = 54.655

XTB := nt.u.vt.c
k k

XTB = 54.251 XTB = 55.283
13 21

XTB = 52.66 XTB = 54.978
14 22

XTB = 53.227 XTB = 56.777
15 23

XTB = 52.313 ).TB = 56.513
16 24

XTB = 53.361 XTB = 56.302
17 25

XTB = 52.747 XTB = 58.116
18 27

XTB = 54.141 XTB = 57.951
19 28

XTB = 53.7 XTB = 60.195
20 29



2
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k
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(vii) PERRY COEFICIENT ILT

TILT1 := 0.007-(XTB1 — XL0)

LT1 TO LT12 HAVE SAME VALUE

ILT := 0.007-11TB —
Lk

TILT1 = 0.134

(viii) THE ELASTIC CRITICAL MOMENT MP AT EACH SECTION

ME1 TO ME12 HAVE SAME VALUE (kNcm)

2
py-Sxl-T -E

ME1
	

4
2
	

ME1 = 2.078-10
XTB1 -py

2
py-Sx . T -E

ME.
2

-py

(ix) FROM CLAUSE B.2

py-Sx1 + (1LT1 + 1)-ME1
01 :— 	 	 4

2	 01 = 1.571-10

551 TO 012 HAVE SAME VALUE

py- Sx + [TILT +	 ME
k	 k	 J k

(x) CALCULATION OF MB

ME1-py-Sx1
MB1

0.5
2

Ol + [orl — (ME1-py-Sx1)]

MB1 TO MB12 HAVE THE SAME VALUE
3

MB1 = 6.576-10
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ME •py•Sx
k	 k

MB :- 	
k

	

	 0.5
2

Ø + [ftr - rME • py • Sxd I
k	 k [k

(xi) CALCULATION OF pb

MB1
IAA :=	 pb1 = 20.908	 kN/cm^2

Sxl

THE VALUES OF pb1 TO pb12 ARE THE SAME

MB
k

pb :=	 pb = 20.997
k	 Sx	 13

k

(xiv) ASSUMING LINEAR DISTRIBUTION OF APPLIED
LOAD	 (kNcm)

M := 0 M := 6140 M := 12290
1 11 21

M := 610 M := 6760 M := 12900
2 12 22

M := 1230 M := 7370 M := 13520
3 13 23

M := 1840 M := 7990 M := 14130
4 14 24

M := 2460 M := 8600 M := 14750
5 15 25

M := 3070 M := 9220 M := 15360
6 16 26

M := 3690 M := 9830 M := 15970
7 17 27

M := 4300 M := 10440 M := 16590
8 18 28

M := 4920 M := 11060 M := 17203
9 19 29

M := 5530 M := 11670
10 20

(xiii) CHECK STABILITY CRITERION

Ml/Sxl < OR = pica AT SECTION 1 TO 12

M	 M
f	 k

STR :=	 STR :=-
f	 Sxl	 k	 Sx,

li
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M/Sx pb STATUS
STR	 = 0 pb	 := 20.908 OK

1 1
STR	 = 1.94 pb := 20.908 OK

2 2
STR = 3.911 pb := 20.908 OK

3 3
STR = 5.851 pb := 20.908 OK

4 4
STR = 7.822 pb := 20.908 OK

5 5
STR	 = 9.762 pb := 20.908 OK

6 6
STR	 = 11.733 pb := 20.908 OK

7 7
STR	 = 13.672 pb := 20.908 OK

8 8
STR = 15.644 pb := 20.908 OK

9 9
STR	 = 17.583 pb := 20.908 OK

10 10
STR	 = 19.523 pb := 20.908 OK

11 11
STR	 = 21.494 pb := 20.908 NO

12 12
STR	 = 20.949 pb = 20.997 OK

13 13
STR	 = 19.915 pb = 21.347 OK

14 14
STR	 = 19.001 pb = 21.222 OK

15 15
STR	 = 18.229 pb = 21.423 OK

16 16
STR	 = 17.522 pb = 21.193 OK

17 17
STR	 = 16.89 pb = 21.328 OK

18 18
STR	 = 16.337 pb = 21.021 OK

19 19
STR	 = 15.815 pb = 21.118 OK

20 20
STR	 = 15.347 pb = 20.77 OK

21 21
STR	 = 14.905 pb = 20.837 OK

22 22
STR	 = 14.505 pb = 20.44 OK

23 23
STR	 = 14.12 pb = 20.498 OK

24 24
STR	 = 13.771 pb = 20.545 OK

25 25
STR	 = 13.432 pb = 20.095 OK

26 26
STR	 = 13.114 pb = 20.143 OK

27 27
STR	 = 12.821 pb = 20.18 OK

28 28
STR	 = 12.537 pb = 19.682 OK

29	 29
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APPENDIX 3.8

CALCULATION OF THE CRITICAL LENGTH FOR HAUNCH MEMBER WITH

RESTRAINTS IN THE TENSION FLANGE IN ACCORDANCE TO APPENDIX

G, BS5950 PART 1. DESIGN FOR PLASTIC STABILITY.

FROM CLAUSE G.2.2(b) FOR PLASTIC STABILITY

Lt < or = Lk/(c.nt)
WHERE;

Lk = LIMITING LENGTH GIVEN IN G.3.5

c = FOR UNIFORM MEMBER IS GIVEN AS
2/3

i.e	 c = 1+(3*(r-1)*q)/(x-9)

nt = IS THE SLENDERNESS CORRECTION FACTOR

GIVEN IN G.3.6

THE FOLLOWING PARAMETER ARE USED IN THE DESIGN OF

HAUNCH SECTION WITH BASE SECTION 203x133xUB30.

q := 0.6 THE RATIO OF TAPERED LENGTH TO TOTAL LENGTH

(THIS PROGRAM ONLY CALCULATE FOR VALUES OF

q < 0.75)

R := 3	 THE RATIO OF LARGER TO THE LESSER DEPTHS

Py := 25	 (kN/cmA2)	 YIELD STRENGTH

E := 20000	 kN/cmA2	 THE YOUNG'S MODULUS

(A) SECTION PROPERTIES OF BASIC I-SECTION

b := 13.38	 cm. BREADTH OF FLANGE

d := 20.68	 cm. DEPTH OF I-BEAM

tw := 0.63	 cm. THICKNESS OF WEB

tf := 0.96	 cm. THICKNESS OF FLANGE

dw := d - 2-tf	 cm. ACTUAL DEPTH OF WEB AT Dl

dwl := d-R - 2 . tf cm. ACTUAL DEPTH OF WEB AT D2

ry := 3.18	 cm. RADIUS OF GYRATION
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(B) CALCULATION OF MOMENT OF INERTIA Ixo

	

3	 3
dw

Ixo := b . -- - (b - tw)

	

12	 12

(C) CALCULATION OF MOMENT OF INERTIA Iyo

	

3	 3
tw

Iyo := 2 . tf . -- + dw

	

12	 12

(D) CALCULATION OF MODULUS OF ELASTICITY OF THE BASE

SECTION, Zo

2
Zo := Ixo.-

d

(E) CALCULATION OF PLASTIC MODULUS

2
So := 0.25 . tw . dw + b . tf . (dw + tf)

(F) CALCULATION OF WARPING CONSTANT OF BASE SECTION, Cwo

3
2b

Cwo := tf . (d - tf)
24

(G) CALCULATION OF TORSION CONSTANT OF BASE SECTION, Jo

3	 3
2- b . tf + (d - tf) • tw

Jo :-
3

(H) CALCULATION OF THE AREA OF BASE SECTION, A

Ao := 2 . b . tf + dw.tw
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PROPERTIES OF BASE SECTION

AREA	 Ao = 37.508	 cmA2

3
MOMENT OF INERTIA Ixo	 Ixo = 2.846 . 10	 cmA4

MONENT OF INERTIA Iyo	 Iyo = 383.646	 cmA4

TORSION CONSTANT Jo	 Jo = 9.535	 cmA4

ELASTIC MODULUS Zo	 Zo = 275.254	 crnA3

PLASTIC MODULUS So	 So = 308.73	 crmA 3

4
WARPING CONSTANT Cwo	 Cwo = 3.726-10	 cmA4

RADIUS OF GYRATION MINOR, ry	 ry = 3.18	 cm

(I) TAPER PARAMETER x i.e d/tf

jAo Cwo
x := 1.132-

Iyo.Jo

COMPARE WITH

x = 22.126

= 21.542
tf

(J) TO CALCULATE THE VALUE OF APPLIED MOMENT, N

CLAUSE G.3.6.1,

N := Py .
Zo

68.814 kNmN =
100

Ni := Ni = 172.034 kNm
- q

N2 := 0.75.N1 N2 = 129.025 kNm

N3 := 0.5.N1 N3 = 86.017 kNm

N4 := 0.25.N1 N4 = 43.008 kNm

N5 := 0.0.N1 N5 = 0 kNm
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(K) CALCULATION OF THE VALUE OF MOMENT CAPACITIES,

Ml, M2, M3, M4 AND M5. FROM CLAUSE G.3.6.1

(i)THE VALUE OF M1

THE MOMENT OF INERTIA AT POINT 1 (cmA4)

3	 3

	

(d-R)	 dwl
Ixl : b 	 	 (b - tw)
	

4

	

12	 12
	

Ix1 = 3.537.10

THE PLASTIC MODULUS Sxl (cmA3)

2	 3
Sx1 := 0.25 . tw . dw1 + b . tf . (dwl + tf)	 Sx1 = 1.354-10

THE MOMENT CAPACITY M1 (kNm)

Sxl	 M1 = 338.458
M1 := Py

2
10

(ii)THE VALUE OF M2

[	

q - 0.25]
d2 := d + (R - 1).d

q
d2 = 44.807

dw2 := d2 - 2-tf

MOMENT OF INERTIA AT POINT 2 (cmA4)

3	 3
d2	 dw2
	

4
Ix2 := b	 (b - tw)
	

Ix2 = 1.649.10
12	 12

2
Sx2 := 0.25- tw . dw2 + b . tf- (dw2 + tf)

Sx2 = 852.886

MOMENT CAPACITY M2

Sx2
M2 := Py	 142 = 213.222

2
10
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(iii) THE VALUE OF M3

if q < 0.5 , M3 = M3a

So
M3a := Py

2
10

if q > 0.5 , M3 = M3b

[	

q - 0.5]
d3 := d + (R - 1) d

q

dw3 := d3 - 2.tf

MOMENT OF INERTIA AT POINT 3 (cmA4)

3	 3
d3	 dw3

Ix3 := b---- - (b - tw)
12	 12

PLASTIC MODULUS AT POINT 3 (cmA3)

2
Sx3 := 0.25 . tw . dw + b . tf . (dw3 + tf)

Sx3
M3b := Py

2
10

M3 := if(q > 0.5,M3b,M3a)

(iv) THE VALUE OF M4 (kNm)

So
M4 := Py

2
10

(v) THE VALUE OF M5 (kNm)

So
M5 := Py-

2

Sx3 = 397.273

M3 = 99.318

M4 = 77.182

M5 = 77.182

10
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(L) CALCULATION OF CRITICAL LENGTH OF TAPERED MEMBER TO

THE REQUIREMENT OF APPENDIX G OF BS5950: PART 1

FROM CLAUSE G.3.6

(i) GENERAL

Ni	 N2	 N3	 N4	 N5
—=0.5080.508	 -- = 0.605	 —=0.8660.866	 -- = 0.557	 —=00
Ni	 M2	 M3	 M4	 M5

Nu := [---
N1 N5

-- Ni
N1
--

 N5
if	 ,,]

M1 M5 M1 M5

[N2	 N3 N2 N3	 [114	 N4 ]
Ns := if -- >	 Ns := if -- > Ns,--,Ns

M2 M3 M2 M3	 M4	 M4

Ns = 0.866	 Nu = 0.508

(ii) CALCULATING THE SLENDERNESS RATIO Lk,

FROM CLAUSE G.3.5;

[5.4 + [600.111.ry.x

Lk := 	 	 Lk = 285.048	 cm

1[5.4 . [Pyl -

(iii) CALCULATION FOR VALUE OF c. FROM CLAUSE G.3.3;"

3	 0.666
c := 1 + [-----] (R - 1)

Lx - 9
• Fq c = 1.281
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THE SLENDERNESS CORRECTION FACTOR, nt

FROM CLAUSE G.3.6.1 , AND SECTION L.(i)H

1 NiN2 N3 N4 N5
nt :=

]
--[	

]
--•	 + 3--.

[
+ 4--. + 3--. +-- + 2 . (Ns - Nu) ]

12 M1	 M2 M3 M4 M5

nt = 0.825

(M) RESULTS.

THEREFORE THE LIMITING LENGTH Lt. FROM CLAUSE G.2.(b).(2)

Lk
Lt :=

	

	 Lt = 269.613	 cm
c-nt

Lk = 285.048	 c = 1.281	 nt = 0.825
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APPENDIX 4

PROPOSAL FOR CHANGE IN APPENDIX G : BS5950 PART 1, FOR

PRISMATIC SECTION.

EXAMPLE OF CALCULATION FOR PRISMATIC SECTION IN BASED ON

APPENDIX G : BS5950 PART 1, WITH THE PROPOSED CHANGES.

THE CALCULATION HEREIN IS FOR SPECIMEN UMB1 (203X133XUB30).

THE BEAM IS SUBJECTED TO LOADING AS SHOWN IN FIGURE 7.26.

BOTH ENDS OF THE BEAM IS RESTRAINED LONGITUDINALLY AND

TORSIONALLY BUT THE FLANGES ARE FREE TO WARP. THE TENSION

FLANGE OF THE BEAM IS RESTRAINED BY PURLINS. THE VALUE OF p

USED IN THIS CASE IS 0.5

THE CHANGES PROPOSED;

(A) ELASTIC STABILITY;

A FACTOR TO BE CALLED 'EFFECTIVE LENGTH RESTRAINT

FACTOR I OR ELR FACTOR 'kl', IS INTRODUCED. THIS ELR

FACTOR WHICH HAS A VALUE OF kl=0.9 IS USED NORMALLY

SUCH AS IN THE CALCULATIONS OF X BY,

X=kl*L/ry.

THIS VALUE OF X IS THEN APPLIED IN ACCORDANCE TO THE

REST OF THE CLAUSES FOR THIS CASE.

(B) PLASTIC STABILITY;

THE SAME EFFECTIVE LENGTH RESTRAINT FACTOR kl IS

INTRODUCED IN THE CALCULATION OF X

THIS VALUE OF X IS THEN APPLIED IN ACCORDANCE TO THE

REST OF THE CLAUSES FOR THIS CASE.
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DESIGN CALCULATIONS

BEAM DATA

D := 20.68	 cm	 PY := 25	 kN/cmA2
a := 18.00	 cm	 E := 21000	 kN/cmA2
A := 38.1	 cmA2	 SX1 := 314.5	 cmA4
tf := 0.96	 cm	 L := 365	 cm
b := 13.38	 cm	 ry := 3.2	 cm
tw := 0.63	 cm	 kl := 0.9
IY := 383.3	 cmA4	 F := 0	 kN
IX := 2900.1	 cmA4	 MA := 6982	 kN.cm
hw := D - 2 . tf	 cm	 MA IS THE YIELD MOMENT
hs := D - tf	 cm

IY	 kl. L
r:= 1 - --	 x :=

Ix	 rY

(C) CALCULATION FOR ELASTIC STABILITY

APPENDIX SPECIFY THE CRITERIA FOR ELASTIC STABILITY

AS FOLLOWS ;

F/Pc + Mdash/MB < = 1

SINCE F=0 THE CALCULATION OF Pc IS IGNORED IN THIS CASE

(i) CALCULATION OF RELEVANT BEAM PROPERTIES

(a)CALCULATION OF WARPING CONSTANT. FROM CLAUSE B.2.5.1

3
2	 b
	

4
H := hs .tf.--	 H = 3.726-10

24

(b)CALCULATION OF TORSION CONSTANT. FROM CLAUSE B.2.5.1

3	 3
2-tf • b + tw .hw

J

	

	 J = 9.455
3

(c)CALCULATION OF TORSIONAL INDEX. FROM CLAUSE B.2.5.1

1TH
X := 1.132-	 X = 22.404



2r
U :=	 IY.SX1

2
A .H

(b) CALCULATION OF vt
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(d) CALCULATION OF Y FROM CLAUSE G.3.2

a
1+ 21	 [ • H

hs 2
Y := Y = 0.897

2

[12

[ a	 [1 I
1+ 2•	

+

hs	 20

FROM THE VALUES OF Y ABOVE AND FROM CLAUSE G.3.4

THE VALUES OF mt IS OBTAINED FROM TABLE 39 OF THE CODE

mt := 0.74

(ii) CALCULATION OF Mdash, FROM CLAUSE G.2

Mdash := MA mt	 3
Mdash = 5.167 . 10	 kN.cm

(iii) CALCULATION OF MINOR AXIS SLENDERNESS RATIO, ),TB

(a) CALCULATION OF BUCKLING PARAMETER U. CLAUSE 4.3.7.5

1 u = 0.883

0.5
a

4 . —
hs

vt
2	 2

1
1 + 2 . a—] + —] • -]

[ hs	 [20 rx _ vt = 0.824
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(c) CALCULATION OF nt

N1

N2

N3

N4

N5

NMS

nt

:=

:=

:=
I

:= 3491

:= 4363.8

:= 5236.5

:= 6982.5

FROM CLAUSE G.3.6.1, WHERE,

M1 := 6982.5

M2 := M1

M3 := M1

6109.3	 M4 := M1

M5 := M1

N4	 N5
NME := --

M4	 M5

1 ]
--

[ 12
•

Ni[
--
M1

+

N2
-3•-

M2

N3
+ 4--.

M3

N4	 N5
+ 3--.	+--

M4	 M5
+ 2 . (NMS - NME) ]

i.e	 nt = 0.854	 BUT CLAUSE G.3.3 STATED THAT WHEN

THERE IS NO INTERMEDIATE LOAD, nt=1

(d) THE MINOR AXIS SLENDERNESS RATIO ),TB

c := 1	 nt := 1

FOR UNIFORM MEMBER (CLAUSE G.3.3)

XTB := ntuvtc.	 	 i.e	 = 74.669

(iv)CALCULATION OF BENDING STRENGTH pb, (CLAUSE 4.3.7.4)

FROM TABLE 11 OF BS5950 , THE VALUE OF XTB IS USED

IN OBTAINING pb AND THEREFORE

pb := 16.5	 KN/cm2

(v)CALCULATION OF BUCKLING RESISTANCE MB

MB := pb • SX1	 (FROM CLAUSE 4.3.7.3)
3	 3

MB = 5.189 . 10	 kN.cm AND	 Mdash = 5.167•10	 kN.cm

(vi)ELASTIC STABILITY Mdash/MB < 1

Mdash
= 0.996	 CRITICAL LENGTH 	 L = 365	 cm

MB
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(D) PLASTIC STABILITY OF UNIFORM MEMBER IN ACCORDANCE TO

APPENDIX G.

THE CONDITION FOR PLASTIC STABILITY FOR BEAM WITHOUT

LATERAL LOAD IS

Lk	 MP
Lt < =	 T( 	
	

(CLAUSE G.2(b)
fmt Mpr + aF

(i)CALCULATION OF MP

MP := PY.SX1

(ii)CALCULATION OF LIMITING LENGTH Lk

FROM CLAUSE G.3.5 AND BY INCLUDING THE AMMENDMENT

FOR kl;
PY

[5.4 + 600— ry . X

Lk :- 	

1PY 2
5.4 — XX - 1

E

i.e	 Lk = 293.757	 cm

(iii)CALCULATION OF Lt

Lk	 MP
Lt :=

	

	 Lt = 341.486
MP + a.F

11-171;	 L = 365

SINCE Lt IS SHORTER THAN L, PLASTIC STABILITY

IS NOT SATISFIED IN THIS CASE.

THE CRITICAL LENGTH FOR PLASTIC STABILITY IS 341.5 cm
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Appendix 5

Details of the expressions in the geometric metrix given in

chapter 4.

1.2 Pxdn- 	 1 	

1.2P
x 	LL3 3 	

1

fn -dn	 en = -dn

f33=d33	 e"=-d"

(144-1.2f0Px4.0.3[2(143,11AC2)  +Qz.z+Qz2113y

+0 .3
1
 2 ( M 1

1
-M 2) +Qyi+03,21 z4 Kb i (B11 -B2 )  +ictimxipw

e4	 d44 	 f 44=414

2Pxi
	 e55=-Px130 	 f55 d55d5 5 = 15

2PA2d" 15 	 e66 - 30 	 f66 = d66

d"
2P,

5
C0/

+
(M1-M2) 1 + zI 12 0Z212Iv

15 1.
	

15 20	 Y

(frfz1-mz2 ) 1 Qyil20Y21 2 ip z +pcb2 (B1 —B2 ) 1+1C2m,c1 2] P.	15	 60	 20

- 30
-.13xCol {(My1-142 ) 1 4. Wzi +Oz2 ) 121

	

e77-
	 120	 Py

_[ (iyz1 -friz2) 1 +  (f2Y-i +QY2) 1 2 
113 z -[K b4	 -./32 ) 1+K t4Mx1 2ip60	 120

2 PxCol +[(My1 -My2 ) 1 Qzi 12 Qz2121R

15	 15	 20	 60 "

(14,1 -M,2) 1 4. Qz1 1 2 Qz21 2
	  P z +V(bi (B1 -B2 ) 1+ KtiMx1210,15	 20 4. 60



-0 . 050y/-0.550y2

+0 .55Qyz+0.050y2

f4 2 = e42

f43=-e43

e24 -du

e34 = d43
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1. 2 P„C, 0 . 6 (Myi-My2)
	 +0 . 05 0zi +0 • 55Qz2

	

d42 - 	 1	 1

-1. 2 PC, 0 . 6 (My1-1142)	 550,1-0 • O5 Qz2

	

-	 1 1

-1. 2 P,Cy 0.6 (M1-M2)
d43 	-

1.2PXCy 4. 0.6 (M,1-M,2)
e43 -

1	 1

d62 = -0 .10Px . .

d53 = -0 .10Px . .

du 	. 10 PxCx-0 . 05 (frfy1 -My2 ) -0. 05Qz21

e72 = -0 .10 PxC, - 0 . 0 5 (141 -142 ) - o . 0 5 Qz11

1.72 = -C72 	 e27 = -C172

d73 = 0 10PxCy+0. 05 (M,1 -M,2 ) +0. 05Qy21

e73 =0 .10PxCy+0 .05 (M,1 -M,2 ) +0. 050y11

f73-e73 	 e37 -d73

d54 = 1.10P,Cy+0 .55 (Mz1 -14) +0 .100y11+0.45Qy21

e54 = 0 . 10 PxCy+0 . 05 (M,1 -M,2 ) -0. 050y/1+0 .100y21

f54 -1.10 PxCy-0 . 55 (11,1 -1+1) -0.4503,1 1-0 . 100y21

e45 = -0.10PxCy-0 .05 (M,1 -M,2 ) -0 .100y/ 1+0 . 05 Q,21

d64 = -1.10xCz-0 .55 ( My1 -My2 ) -0 .1001,11-0 .450,21

e64 =-0 . 10 PxCz -0 . 05 ( My1 -My2 ) +0. 050,11-0.100,21

f64 =1.10P,C,+0 .55 (Myi -Ply2 ) +0.450,11+0.100,21

e46 =0 .10P,C,+0 .05 (Ply1 -My2 ) +0.100,11-0.050,21

d74 = -0 .10 PzC0 -[0 . 05 ( My1 -My2 ) +0. 050,11]3y

10 . 05 (M,1 -M,2) +0. 05 Oyi 1 p z -vcb3 (B1 -B2 ) +Kt3Mx1]p.
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e74 = -0.10P,C0 -[0.05 (My1 -My2 +0 .05Qz21py

10.05 ( M 1 -M 2) +0.05Py2/ip z -[Kb3 (B1 -B2 ) +Kz3M,1]p„

174 = e74 	 e =d7 4,4

,4 -2P C/
u75 -   15 Y

(M1-M2) 1 -  0y-112-0.0503,2/2
15	 60

P,Cy1 (Mz1 -Mz2 ) 1 + Qy212
e
75- 30	 60	 60

2P„Cy1 (M1-M2) 1	 Qy212
-0.0503,i/2- 	

i-75 = 15	 15	 60

PxC3,1 +  
( M 1 -M 2 )z2 ) 1 Q 12Y1 e

"
-  

30	 60	 60

2p„Cz1 (M1-M2) 1 + Q112 +0 05Qz212
(176- 15	 15	 60

- PxCz1 (M1-M2) 1 _ 0z212

2P„Cz1 (M 1 -M 2 ) 1 
+0.05f)zi12+  

C
z
2 1 2

J-76 - 15	 + 15	 60

- PC 1 (M 1 -M 2 ) 1 Qz112
e67 -  x z -

60
Y 	 - 	30	 60

in which, Kbi , Kt12 , Kb3 , Kt4 I Kt 1 1 Kt2r Kt3 and Kt4 are the

coefficients resulting from the numerical integration of

potential energy equation of bimoment (reference 4.9).

e„-
—	 30	 60	 60
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