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NOMENCLATURE.

trom Total range of motion

rom Range of motion.

FORFT Forefoot segment

Ank/Stj Ankle joint and sub talar joint complex
MTJ Mid tarsal joint

RFC Rearfoot Complex.

Order of predominance  Indicates the relative values of the ranges of motion in the
frontal, transverse and sagittal body planes. The first in the
order of predominance is the plane in which the largest range
of motion took place, the second the plane in which the
second largest range of motion took place and the third the

plane in which the smallest range of motion took place.

Frt Frontal plane
Tm Transverse plane
Sag Sagittal plane
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ABSTRACT.

During normal weight bearing the ankle, sub talar and mid tarsal joints function as a
kinematic chain and their motions are interdependent. This chain has three important
characteristics. Firstly, the motion in one of the components (joints) produces motion at
the other components (joints). Secondly, the three joints are interdependent because the
function of each is dependent on the position and motion at the other joints. Thirdly,
the pattern of motion between the joints during weight bearing motion is fixed. The
aim of this investigation was to determine the functional characteristics of the combined

ankle, sub talar and mid tarsal joints (the rearfoot complex).

A non invasive in vivo kinematic assessment was conducted to determine the relative
rotations at the ankle/sub talar complex, the mid tarsal joint and the rearfoot complex,

during weight bearing internal and external rotation of the leg in 25 subjects.

The results confirm that the rearfoot joints operate as a kinematic chain. The motion at
the ankle/sub talar complex suggests that the ankle is capable of a considerable range of
transverse plane motion. The axes of rotation for the mid tarsal joint described in this
thesis are the first for this joint quanﬁﬁed from a kinematic assessment and thus
supersede the theoretical axes for this joint described in the literature. The predominant
motion in the overall rearfoot complex is transverse plane motion. This would suggest
that the primary function of the foot is to permit transverse plane rotations of the leg and
proximal structures whilst maintaining the foot in a stable position of the floor. In
contrast to some of the literature, the ability of the foot to accommodate the transverse

plane motion of the leg is a function of all three rearfoot joints.
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INTRODUCTION
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The joints of the rearfoot, the ankle, sub talar and mid tarsal joints, are traditionally
considered separately. Popular biomechanically orientated texts often describe the
motion at each joint with no reference to the motion occurring at the others joints. The
weight bearing movements in the rearfoot do not, however, support this approach to
rearfoot mechanics. The motions at the ankle, sub talar and mid tarsal joints are
coupled and the rearfoot joints function as a kinematic chain where motion in one joint
is accompanied by motion in the other joints. These motions within the foot are
coupled with transverse plane rotation of the leg proximally. Conversely, the transverse
plane rotation of the leg during normal walking, which is an essential component of
achieving the desired forward displacement of the contralateral foot, will always be

accompanied by motion within foot.

The characteristics of the movements in each component of the kinematic chain and in
the overall chain can be described using the range and direction of motion displayed in
each cardinal body plane, the axis of rotation around which motion takes place and any
changes in these during the total range of motion in the chain. Clearly, these should be

derived through scientific assessment and used to develop a model of rearfoot function.

There is considerable published work that collectively is improving our understanding
of rearfoot mechanics and contributing to the scientific basis upbn which the model of
rearfoot function is based. This literature most frequently involves an in vitro study and
there are several important points regarding such experiments and the relevance of the
subsequent data. To provide a realistic description of rearfoot motion akin to that in

vivo the cadavers must be loaded to simulate the normal in vivo situation. Some
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studies, however, do not load the cadavers whilst others have used loads below those
which the foot would be subjected to during normal function. The movements in a
cadaver foot must be produced by a process akin to that in vivo. Some studies record
the motion of the foot relative to the leg (the position of which is fixed), whereas a
combination of the leg moving relative to the foot and the foot moving relative to the
leg occurs during most activities. Some studies induce motion in the rearfoot by
applying load to sectioned muscles or by rotating the leg in the transverse plane,
whereas a combination of muscle, ligament, ground reaction forces and proximal
movements produce motion during normal function. The motion through which the
rearfoot moves must be similar to that through which it moves in vivo. Some studies,
however, measure rearfoot kinematics during dorsiflexion and plantarflexion of the
foot, internal and external rotation of the leg and inversion and eversion of the foot,
whereas these occur simultaneously during normal function. Also, the sample number
in cadaver studies is usually restricted to below ten, which does not represent an

acceptable sample size.

The in vivo investigations in the literature have involved invasive methods to derive the
necessary kinematic data. The most popular method is to implant small metal beads
into the tarsal bones and to track their three dimensional position using X ray. This is
clearly unacceptable given the dangers of repeated exposure to radiation. This too

reduces the numbers of subjects that can be investigated.

The work presented in this thesis addresses some of these issues by recording the
motion of the rearfoot kinematic chain in vivo using a non invasive method during

weight bearing transverse plane rotation of the leg. The data has not only been used to
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describe the motion at the individual joints but also the combined function of the ankle,
sub talar and mid tarsal joints and thus the kinematic chain. In vivo studies have the
advantage that the rearfoot is functioning under a realistic load, the influence of active
muscles and ligaments on the joint motions are included and the sample size can be
increased in comparison to the cadaver based studies. This study builds on the
techniques of in vitro studies and assesses the overall characteristics of the rearfoot in

addition to those of its individual components.

The initial purpose of this study was to design a non invasive in vivo method which
would allow the functional characteristics of the rearfoot kinematic chain to be
determined. This description could be used to categorise individuals according to the
functional characteristics of their rearfoot complex and investigate any relationship
between each category and the incidence and type of lower limb pathology. In
particular, the mechanism by which transverse plane leg rotation is accommodated by

the rearfoot was of interest because of its supposed link to knee pathology.
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REVIEW OF THE REARFOOT

COMPLEX
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2.1 INTRODUCTION.

The rearfoot complex is a model of rearfoot function that consists of the talus,
calcaneus, navicular and cuboid, and thus involves the ankle, sub talar and mid tarsal
joints. The weight bearing function of these joints has been described as a kinematic
chain where the movements in the individual joints are interdependent with each
other. The concept of interdependency is further illustrated by the fact that the
correct function of each joint is required for the rearfoot complex to perform its
principal function of allowing transverse plane motion of the tibia whilst the foot
remains relatively fixed on the floor. These points are discussed in more detail in
section 2.3. First, however, it is necessary to review the anatomy and functional

characteristics of the individual joints in the complex.

2.2 REVIEW OF THE INDIVIDUAL JOINTS IN THE REARFOOT

COMPLEX.
2.2.1 THE ANKLE JOINT.

The ankle joint, or talocrural joint, is Aformed by the articulations between the body of
the talus and the distal ends of the tibia and fibula. The joint has three sites of
articulation. Laterally, the fibula base articulates with the large triangular facet
which dominates the lateral side of the talar body. Medially, a smaller and comma
shaped facet on the medial side of the talus articulates with the lateral aspect of the
medial malleolus. Superiorly, the trochlea surface articulates with the inferior aspect

of the tibia, the tibial plafond. The trochlea surface is convex from posterior to
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anterior and concave from medial to lateral. In addition, it is wider anteriorly than

posteriorly and so has a wedged appearance.

There are multiple co-lateral ligaments of the ankle and, along with the strong
syndesmosis between the fibula base and tibia, they are responsible for the frontal
plane stability of the joint. Laterally there are three distinct bands; the anterior and
posterior talofibular ligaments and, central to these, the calaneofibular ligament.
These three ligaments restrain inversion of the talus relative to the tibia. In addition
they prevent excessive anterior and posterior displacement of the talus relative to the

tibia.

Medially the co-lateral ligaments are less distinct. Although separate bands are
present, the general appearance it that of a single large triangular ligament. The
medial ligament is considerably stronger than the lateral ligaments. It has a single
origin on the inferior aspect of the medial malleolus and an extensive insertions on
the navicular (naviculotibial portion), the central aspect of the calcaneus
(calcaneotibial portion), the medial aspect of the talar neck (anterior talotibial
portion) and the posterior and medial aspect of the talus (posterior talotibial
ligament). The medial ligament is responsible for restraining eversion of the talus

relative to the tibia.

2.2.1.1 Motion at the Ankle.

The principal characteristic of ankle joint motion has been well defined. All the

literature describes the predominant motion at the ankle as dorsiflexion, motion of
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the talus towards the anterior aspect of the tibia, and plantarflexion, motion of the
talus away from the anterior aspect of the tibia. Coupled with this predominant

sagittal plane motion are small degrees of frontal and transverse plane motion.

The general orientation of the ankle joint axis reflects this sagittal plane domination.
Isman and Inman (1969) conducted a two dimensional analysis of the ankle joint in
46 cadaver specimens to determine the orientation of the joint axis when the talus
was manually dorsiflexed and plantarflexed through its full range of motion. They
consistently found the ankle joint axis slightly distal to both malleoli. The average
axis was orientated 80° (SD 4°) from the long axis of the tibia and 84° (SD 7°) from
the mid line of the foot. These results were in agreement with the earlier qualitative
studies of Barnett and Napier (1952) and Hicks (1953) who both described the axis
as being close to the malleoli. Lundberg et al (1989a) calculated ankle joint axes for
30° of plantarflexion and 30° of dorsiflexion of the foot using roentgen
stereophotogrammetry. The mean ankle joint axis passed through both malleoli in
the transverse plane view and was angled 7.33° relative to the transverse plane

(pointing down and laterally).

Van Langelaan (1983) assessed tibiotalar motion during external rotation of the leg
in 10 loaded cadavers (Figure 2.1). He reported ankle joint axes angled between

86.3° and 107.5° (mean 99°) relative to the sagittal plane and -4.6° and 25.9° (mean

11.5°) relative to the transverse plane. Lundberg et al (1989a) compared ankle joint
axes determined for the motions of dorsiflexion and plantarflexion of the foot, to
ankle joint axes determined for the motions of internal and external rotation of the

leg. They commented that there were multiple directions of ankle axes and that the

7
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axes for dorsiflexion and plantarflexion of the foot were different from those for
internal and external rotation of the leg. Like Van Langelaan (1983), Lundberg et al
noted that the orientation of the ankle joint axis was different for each stage of ankle
motion, suggesting that the axis was not fixed in position or orientation but was a
constantly varying instantaneous axis of rotation. A previous two dimensional
radiographic study had described multiple centres of rotation for the ankle

(Sammarco 1973) suggesting that multiple axes existed.
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Figure 2.1

Transverse (A), frontal (B) and sagittal plane (C) views of the ankle
joint axes calculated by Van Langelaan (1983) for one cadaver, during
external rotation of the leg from an internally rotated position in 6 phases.

Phase 1 corresponds to the first part of the external leg rotation and
phase 6 to the last part.
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The concept of an ankle joint axis whose orientation was not fixed during the range
of motion had been suggested earlier by Barnett and Napier (1952). They described
two distinct arcs on the medial facet of the talus that would produce two distinct
centres of rotation during ankle motion. They deduced that during dorsiflexion the
ankle axis was inclined downwards in a lateral direction and during plantarflexion
the axis was inclined downward in a medial direction. The detailed analysis
conducted by Van Langelaan (1983) and Siegler et al (1988) has confirmed the
concept of multiple axes of rotation for the ankle joint, though neither study

suggested that there were distinct axes for dorsiflexion and plantarflexion.

The ankles in Lundberg et al’s (1989a) study, however, did display a pattern
suggesting distinct ‘dorsiflexion’ and ‘plantarflexion’ axes when the foot was
dorsiflexed and plantarflexed. Plantar flexion axes were inclined downward in a
medial direction or were close to the horizontal when compared to the dorsiflexion
axes, which tended to be inclined downward in a lateral direction (Figure 2.2). The
angle between the dorsiflexion and plantarflexion axes when projected onto the
frontal plane was, on average, 37°. In the transverse plane projection the axes were
all close to the centres of the malleoli and in all projections all axes crossed each

other at a central point within the talus.

10
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Figure 2.2

Frontal and transverse plane views of the ankle joint axes
calculated by Lundberg and Svensson (1989a). In the
frontal plane view the distinct laterally and downward
orientated axes are the dorsiflexion axes, those orientated
horizontally or downward and medially are
plantarflexion axes. In the transverse plane view all axes

pass through both malleoli.

It is reasonable to suggest that the ankle might possess different axes for dorsiflexion
and plantarflexion of the foot because of the non spherical nature of the trochlea
surface. Furthermore, McCullough and Burge (1990) found that some degree of
transverse plane rotation of the talus within the ankle mortise is possible and it is
reasonable, therefore, to suggest that there are different axes of rotation when the
ankle is moved by dorsiflexion and plantarflexion of the foot compared to when it is
moved by transverse plane rotation of the tibia. A further point on this issue is that
during gait the sagittal plane motion of the ankle and the transverse plane motion of

the leg take place simultaneously and thus some further axis or axes might exist.

11
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There is some evidence of variation between individuals in the orientation of the
plantarflexion/dorsiflexion ankle joint axis. Isman and Inman (1969) reported axes
ranging from 68° to 88° relative to the long axis of the tibia and 69° - 99° relative to
the mid line of the foot in 46 cadavers. In Lundberg et al’s (1989a) sample of 8
subjects the mean angle made by the ankle axis to the transverse plane, calculated for
30° of foot plantarflexion and 30° of foot dorsiflexion, varied between -2° and 14.3°.
In Van Langelaan’s (1983) work, where ankle joint axes were calculated during
transverse plane rotation of the tibia, the angle of the mean ankle joint axis varied
between individuals by 21.2° relative to the sagittal plane and 30.8° relative to the
transverse plane in § subjects. Significantly, despite all these individual variations the

principal motion at the ankle joint was dorsiflexion and plantarflexion.

The range of motion available at the ankle joint also shows variation between
individuals. This reflects not only real individual variations but also the variety of
methods employed to deduce the range of motion and the choice of reference
positions. Some investigators have measured motion between the talus and tibia,
others the sagittal plane motion of the plantar surface of the foot relative to the leg,
claiming this to be a measure of ankle joint motion. However, since both the sub
talar and mid tarsal joints are capable of some sagittal plane motion, any investigator
must be confident that they can stabilise both these joints during such measurements.
This is questionable. The choice of measuring device also varies, some using
radiographs, and others goniometers. Unfortunately no method of assessing ankle
joint motion has been universally accepted. ~Rome (1997) illustrated the effect of

using different protocols on the clinical measurement of ankle motion. Factors such

12
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as whether the subject was weight bearing or non weight bearing, sitting or standing,
prone or supine and whether motion was actively or passively produced were all

shown to affect clinical measurements.

Hicks (1953) measured the range of motion between the talus and tibia in 10
cadavers. He described an average total range of sagittal plane motion as 50°. Using
X-rays Sammarco (1973) measured the range of motion in 21 weight bearing ankles.
The total range of sagittal plane motion varied from 24° to 75°, with an average of

43°.  The mean range of dorsiflexion was 21° and that of plantarflexion 23°.

Lundberg et al (1989a) calculated an average of 54.1° of principally sagittal plane
ankle motion when the foot was moved from 30° of plantarflexion to 30° of

dorsiflexion.

2.2.2 THE SUB TALAR JOINT.

The sub talar joint is formed by the three facets on the inferior surface of the talus
and three corresponding facets on the superior surface of the calcaneus. The
contours of all six articular areas are complex and all are angled relative to each
other. The posterior articulation is the largest and has a separate joint capsule from
that of the anterior and middle articulations. The anterior'and middle facets are
smaller and sometimes continuous with each other. They share their joint capsule
with the talonavicular joint. Separating the posterior articulation from the anterior
and middle articulations is the sinus tarsi. This is a tunnel formed by the sulcus
calcanei and the sulcus tali running from posterior/medial to anterior/lateral. Within

the sinus tarsi is the interosseous talocalcaneal ligament that runs from inferior/lateral

13
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to superior/medial. This ligament functions to maintain the close association
between talus and calcaneus during joint motion. Lateral to the sinus tarsi is the
cervical ligament that runs from the dorsal superior aspect of the calcaneus to the
inferior/lateral aspect of the talar neck. The cervical ligament tightens during

supination of the foot.

2.2.2.1 Motion at the Sub Talar Joint.

Sub talar joint motion is a complex tri-planal motion described as pronation, a
combination of eversion, abduction and dorsiflexion, and supination, a combination
of inversion, adduction and plantarflexion. During closed chain sub talar joint
supination the talus abducts, dorsiflexes and everts relative to the calcaneus. During
closed chain sub talar joint pronation the talus adducts, plantarflexes and inverts

relative to the calcaneus.

Motion at the sub talar joint takes place around an axis that is angled relative to all
three cardinal body planes. The specific orientation of the sub talar joint axis has
been extensively investigated. In 1966 Root et al modified Manter’s (1941) earlier
experimental set up in an attempt to determine the orientation of the sub talar joint
axis in 22 amputated feet. Pins of adjustable length were inserted into the body of
the talus and the plane of motion of the pins was identified using a flat surface. The
flat surface was then placed within a box whose sides represented the cardinal body
planes and the angle of the axis relative to these planes determined. This assumed
that the axis for the total range of sub talar joint motion was perpendicular to the

plane of motion. The results confirmed the data of previous investigators (Elftman

14
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and Manter 1938, Manter 1941, Hicks 1953). The investigators described an average
axis making an angle of 17° to the sagittal plane, range of 8° to 29° (SD 2.23) and an
angle of 41° to the transverse plane, range of 22° to 55° (SD 8.36). These are now
the accepted figures for the angulation of the sub talar joint axis relative to the
cardinal body planes and form the basis of the current model of sub talar joint
function. Subsequent investigations have confirmed that these figures are generally

correct (Isman and Inman 1969, Van Langelaan 1983, Benick 1985, Engsberg

1987, Lundberg and Svensson1993).

All the literature describing the motion at the sub talar joint highlights individual
variation in the orientation of the sub talar joint axis. Isman and Inmans’ (1969)
work involving 47 cadavers revealed marked individual variations in the orientation
of the sub talar joint axis. The angle of the axis to the sagittal plane varied by 43°
and the angle of the axis to the transverse plane by 48° within the sample. Van
Langelaan (1983) found the angulation of the axis to the sagittal plane to vary
between 5.4° and 32.3°, mean 23.5°, and the angulation of the axis to the transverse
plane to vary between 23.2° and 56.4°, mean 41.9°, in his sample of ten cadavers.
Like Van Langelaan (1983), Lundberg and Svensson (1993) analysed the motion of
metal beads implanted in the bones of the tarsus and leg using X-rays. The specific
axis orientation for each individual was not documented, but the authors commented
that variation between subjects was considerable. Work by Manter (1941) and

Engsberg (1987) has documented similar results.

If, as the literature suggests, the orientation of the axis varies between individuals,
two sub talar joints whose axes are at opposite ends of the range of orientations will

15
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possess very different functional characteristics. For example, with regard to the
transverse plane orientation of the axis, as the angle between the transverse plane and
the axis increases the range of transverse plane sub talar joint motion per degree of
sub talar joint motion will increase and the range of frontal plane sub talar joint
motion will decrease. The reverse is the case when the axis makes a smaller angle
to the transverse plane. A sub talar joint with an axis angled 16° from the sagittal
plane and 20° from the transverse plane, for example, would display 9.0° of eversion,
3.4° of abduction and 2.6° of dorsiflexion for 10° of pronation around the axis.

However, if the transverse plane orientation was 65°, 10° of sub talar joint pronation

would produce 4.1° of eversion, 9.1° of abduction, and 1.2° of dorsiflexion. The
present model of sub talar joint function, which is based on the averaged sub talar
axis, might not be suitable in such instances because the two sub talar joints would
function differently to each other and to a sub talar joint with the average axis. The
variation in sagittal plane orientation might not produce such significant changes in
sub talar joint function. The range of angles relative to the sagittal plane (5.4° —
47°) means that the angle is rarely more than 45°. Consequently, with regard to the
angulation of the axis to the sagittal plane, the predominant motion will be frontal
plane motion for almost all the population and two sub talar joints with axes at
opposite ends of the range will retain more similar characteristics of motion. That is

not to infer, however, that the change in sagittal plane angulation is of no

significance.

The degree of individual variation in axis orientation quoted in the literature (Figure
2.3) would suggest that the use of an average sub talar joint axis to represent a
population may not be satisfactory, since a proportion of the population will possess

16



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex. Chapter 2

a sub talar joint axis whose orientation differs significantly from the average.
Furthermore, such wide variation could result in significantly different rearfoot
movements and consequently different foot and lower limb pathologies being
associated with different sub talar joint axis orientations. Root et al (1966) stated,

“ the range of variance in the direction of the axis of the sub talar

joint motion should have considerable clinical significance”.

17
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A further complication in the model of sub talar joint function is the fact that the
orientation and position of the sub talar joint axis has been found to change
throughout the range of joint motion. Van Langelaan (1983) calculated the
orientation of the sub talar joint axis at various stages of supinatory motion in 10
cadavers. The sub talar joint axes he deduced changed orientation during the range
of motion, tending to move from a low pitch and medial orientation in pronation, to
a high pitch and forward orientation in supination. When the axes for each stage of
supination were superimposed on each other they formed a bundle of axes. The
angle between the first and last axes in a bundle was also variable between
individuals, ranging from 4.4° to 24.8° in the case of the sagittal plane orientation
and 2.8° to 26.3° in the case of the transverse plane orientation. The axis was
consistently angled closer to the sagittal plane and further from the transverse plane
as the sub talar joint supinated. Thus, not only does the axis change orientation
during the range of motion, the extent to which its orientation changes in variable

between individuals (Figure 2.4).
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Transverse (A), frontal (B) and sagittal plane (C) views of the
sub talar joint axes calculated by Van Langelaan (1983) for one
cadaver, during external rotation of the leg from an internally
rotated position. Phase 1 is the initial external rotation, phase

6 is the last phase near the maximum externally rotated position.
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Benick (1985), using the same equipment as Van Langelaan (1983), and later
Lundberg and Svensson (1993) have documented similar results. Siegler et al
(1988), who also analysed motion of the talus and calcaneus in cadavers, also stated
that the sub talar axis was not a fixed axis of rotation though they did not state the
specific orientations of the joint axes. Considering the variable orientations of the
sub talar joint axis during its range of motion, and the changes in the functional
characteristics of the joint this reflects, it might not be appropriate to use a single
joint axis orientation to represent an individual. Certainly, calculating the orientation
of the sub talar joint axis from the total range of sub talar motion may not reflect the
axis around which the joint rotates during gait, since only a proportion of the full
range is used during gait. Determining the portion of sub talar motion used during
gait and calculating an axis of rotation for this part of the total range of motion would

enable a more relevant axis orientation to be calculated.

The range of motion at the sub talar joint is usually assessed by measuring the range
of supination and pronation separately. The so-called neutral position of the sub talar
joint is used as a reference position from which the respective ranges of motion can
be measured. This position is said to be the point of maximum joint congruency and
can be found by a number of palpation methods (Cook et al 1988). However, the
poor inter observer reliability for the determination of the neutral position puts into
question the validity of subsequent measurements and makeé comparisons between
different studies difficult (Ball and Johnson 1993, Pierrynowski et al 1996). Despite
this there is general agreement that there is more supination than pronation at the sub
talar joint. The ratio of these motions is traditionally said to be 2:1 although

clinically this is often found not to be the case.
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The total ranges of sub talar joint motion quoted show some variation between
authors. Hicks (1953) reported 24° of sub talar motion from 10 cadaver specimens.
Van Langelaan (1983) recorded a minimum of 15.5° and a maximum of 30°, average
23.6°, during external rotation of the leg from an internally rotated position. Ball and
Johnson (1993) measured the frontal plane angle between the heel and leg and
reported a mean total range of motion of 37.3°, range 28° - 48° (SD 5.4°) in 25 prone

subjects.

Care must be taken when interpreting some investigators’ results because what may
be described as sub talar joint motion may in fact only be the frontal body plane
component of sub talar joint motion, or even the frontal plane component of the
ankle and sub talar joints. Strictly speaking, sub talar joint motion is that which takes
place around the sub talar joint axis. Since the axis is angled relative to each cardinal
body plane, the range of motion cannot be observed from any single cardinal body
plane. Further problems may arise because not every foot has the same predominant
motion. Thus, if one foot has less frontal plane motion than another it is not correct
to assume that the range of sub talar joint motion is less in that foot. Measuring
frontal plane sub talar motion in isolation does not describe sub talar joint function
adequately (Engsberg et al 1988). Also, sub talar joint function is that between the
talus and the calcaneus and, since the talus cannot be asgessed clinically, most
methods of measuring sub talar motion assume the talus to be immobilised in the
ankle mortice. This is questionable (McCullough and Burge 1980, Ahl et al 1987)
and variable depending upon an examiner’s ability to stabilise the ankle joint. In
addition, Ball and Johnson (1993) have shown that the protocol for measurements of

sub talar motion is very important. They illustrated that the position of a subject
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(prone, sitting or kneeling), the method of producing passive sub talar joint motion
(either moving the heel or the whole foot) and whether the motion was actively
produced by the subject all have significant effects on the measured range of motion.
As with measures of ankle joint motion, no method of measuring sub talar joint

motion has received universal acceptance.

2.2.3 THE MID TARSAL JOINT.

The mid tarsal joint is a conceptual functional unit comprising the calcaneocuboid
and talonavicular joints. The calcaneocuboid joint is formed by the articulation
between the anterior surface of the calcaneus proximally and the posterior surface of
the cuboid distally. The posterior surface of the cuboid is concave from medial to
lateral and convex from superior to inferior. The talonavicular joint is formed by the
anterior surface of the talus head proximally, and the posterior surface of the
navicular distally. The posterior surface of the navicular is concave, both in a
medial/lateral and superior/inferior directions. The smooth talar head is convex in
both medial/lateral and superior/inferior directions. The navicular and cuboid are
joined by a fibrous joint that allows little movement of either bone in relation to the

other and thus are considered to be one unit.

2.2.3.1 Motion at the Mid Tarsal Joint.

The current model of mid tarsal joint motion is based on two separate conceptual
axes of rotation around which motion takes place synchronously. Manter (1941)
described the oblique axis of the mid tarsal joint, which was angled 52° from the

transverse plane and 57° from the sagittal plane (Figure 2.5). Motion around the axis
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produces combined plantarflexion, inversion and adduction (supination) and
dorsiflexion, eversion and abduction (pronation). In a foot with this axis, 10° of
pronation would produce 7.9° of abduction, 5.1° of dorsiflexion and 3.4° of eversion.
This was consistent with similar descriptions of this axis in earlier work (Elftman and

Manter 1938, Fick 1911 - cited by Manter 1941).

The second conceptual axis at the mid tarsal joint is the longitudinal axis. Manter
(1941) described its position as 15° from the transverse plane and 9° from the sagittal
plane (Figure 2.5). Motion around the average axis would produce 9.5° of eversion,
2.6° of abduction and 1.5° of dorsiflexion for every 10° of pronation. Since this
early work few other investigations appear in the literature concerning the motion at
the conceptual oblique and longitudinal axes of the mid tarsal joint. The model
based on these axes has however been accepted regardless of the apparent lack of

evidence concerning the function of the joint in relation to these conceptual axes.
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Longitudinal axis Oblique axis

Figure 2.5

Orientation of the conceptual longitudinal and oblique mid tarsal

joint axes (from Manter 1941).

Huson (1991) believed that the talonavicular and calcaneocuboid joints were
sufficiently independent to question the existence of a single functional unit such as
the mid tarsal joint. He used Van Langelaan’s (1983) results to justify his argument.
Van Langelaan described a mean talonavicular axis angled 14.1° to the sagittal plane
and 38.5° to the transverse plane. The mean calcaneocuboid axis was angled 2.7° to
the sagittal plane and 51.9° to the transverse plane. These results show that the
calcaneocuboid and talonavicular joints had different axes of rotation. Also, Van
Langelaan described relative motion between the cuboid and navicular of between
3.9° and 9.9° (mean 6.8°) during external rotation of the leg from an internally
rotated position. Thus, the navicular and cuboid are not rigidly fixed relative to each
other. It is clear from these results that within any pronation or supination around the
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conceptual mid tarsal joint axes the cuboid and navicular undergo some motion
relative to each other. However, the conceptual mid tarsal joint provides a model that
describes the principal motions of the navicular and cuboid relative to the calcaneus
and talus. The principal motions of the navicular and cuboid are always in the same
direction and some degree of relative motion between the cuboid and navicular in a
direction other than that of the principal motion does not contradict the concept of a

single functional mid tarsal joint.

Furthermore, the axes Van Langelaan (1983) determined for the separate
talonavicular and calcaneocuboid joints reflect the conceptual mid tarsal joint axes.
As a generalisation, the individual joint axes have the sagittal plane orientation of the
conceptual longitudinal mid tarsal joint axis and the transverse plane orientation of
the conceptual oblique mid tarsal joint axis (Figure 2.6 and Figure 2.7). From this
we can clearly see where the motions at the conceptual oblique and longitudinal mid
tarsal joint axes originate. We can also conclude from the actual rotation axes that
the two joints undergo very similar motions and, since they always take place in the
same direction and have strong anatomical linkage, can be considered a single
functional unit. Thus, Huson’s (1991) suggestion that the talonavicular and

calcaneocuboid joints must be considered separately can be rejected.
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Figure 2.6

Transverse (A), frontal (B) and sagittal plane (C) views
of the talonavicular joint axes calculated by Van
Langelaan (1983). All axes calculated during the stepped
external rotation of the leg from an internally rotated
position. Phase 1 is the initial internally rotated position,
phase 6 the last phase near the maximum external
rotation.
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Figure 2.7

Transverse (A), frontal (B) and sagittal plane (C) views of
the calcaneocuboid joint axes calculated by Van
Langelaan (1983). All axes calculated during the stepped
external rotation of the leg from an internally rotated
position. Phase 1 is the initial external rotation, phase 6 the

last phase near the maximum externally rotated position.
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The range of motion available at the mid tarsal joint has not been conclusively
determined. Hicks (1953) is the only author to quantify the motion around the
separate oblique and longitudinal axes, although his experiments were conducted
using unloaded cadavers and methodology not fully explained. Around the oblique
axis he measu;ed a total range of motion of 22° and around the longitudinal axis he
measured 8° of motion. Van Langelaan (1983) described a mean of 43.1° of
talonavicular motion (range 29.9° to 50.7°) and a mean of 15.8° of calcaneocuboid
motion (range 8.8° to 25.3°) during external rotation of the weight bearing leg from
an internally rotated position.  This motion occurred around the longitudinally
orientated axes in figures 2.6 and 2.7. During 30° of external leg rotation Lundberg
and Svensson (1993) measured a total of 23° of talonavicular motion around
similarly orientated axes. It is difficult to interpret the results of the latter two
authors’ work in relation to Hick’s earlier work. The primitive methodology
employed by Hick, and the lack of weight bearing tests, means that the work by Van
Langelaan (1983) and Lundberg and Svensson (1993) is the best quantitative

indicator of mid tarsal joint motion documented to date.

A further point must be considered when assessing the range of motion at the mid
tarsal joint: the total range of motion at the mid tarsal joint is variable and depends
ﬁpon the position of the sub talar joint. The mid tarsal joint is described as locked
when it is fully pronated around both the oblique and longitudinal axes. The point at
which the mid tarsal joint becomes locked changes as the sub talar joint pronates and
supinates. As the sub talar joint pronates the range of mid tarsal joint pronation

increases. Thus, as the sub talar joint pronates the locked position is found with the
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forefoot in an increasingly everted position relative to the rearfoot. As the sub talar
joint supinates the range of mid tarsal joint pronation decreases and the locked
position is found with the forefoot in an increasingly inverted position relative to the
rearfoot.  Philips (1983) quantified the change in the locked position of the mid
tarsal joint. He found an exponential increase in the range of forefoot eversion

relative to the rearfoot with increasing sub talar pronation.

Elftman (1960) suggested that the locking mechanism at the mid tarsal joint was a
consequence of changes in the position of the individual talonavicular and
calcaneocuboid joint axes. He suggested that when the sub talar joint pronated, the
axes of the talonavicular and calcaneocuboid joints converged to produce motion in
similar planes. This would allow a greater freedom of mid tarsal joint motion. In
contrast, sub talar supination would increase the angle between the two joint axes
and result in conflicting talonavicular and calcaneocuboid motions. In this instance
there would be less mid tarsal joint motion available since the conflicting motions
would reduce the freedom of mid tarsal joint motion. Elftman used what appear to
be approximate bisections of the talar head and calcaneal facet of the calcaneocuboid
joint to describe the joint axes. This is a fundamental flaw in Elfman’s theory
because he uses conceptual axes of rotation. The actual axes of rotation of the
talonavicular and calcaneocuboid joints determined by Van Langelaan (1983) and
Lundberg and Svensson (1993) (talonavicular only) are not orientated obliquely
across the talar head and calcaneal facet. Furthermore, Elfman states that the
orientation of the axes of the individual joints become more similar as the sub talar
joint pronates. Van Langelaan, and Lundberg and Svensson’s results both contradict

this. The axes of the individual joints are more similar when the sub talar joint is
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supinated and become relatively dissimilar in pronation. From this it is possible to
conclude that the convergence of the talonavicular and calcaneocuboid axes, or the
increasing similarity of talonavicular and calcaneocuboid motions, is not the factor
producing the locking and unlocking of the mid tarsal joint. In fact, because the
individual talonavicular and calcaneocuboid joint axes are relatively similar
throughout the range of sub talar pronation and supination, the direction of motion at

the individual joints might not be factor in the locking mechanism.

Possible explanations for the locking mechanism include tightening of the soft
tissues around the mid tarsal joint. When the sub talar joint supinates the talus everts
but the navicular inverts. Consequently, the joint capsule that they share will
undergo a twist in the frontal plane which one would expect to increase the tension in
the capsule and potentially restrict talonavicular motion. If the locking mechanism
is osseous in nature it is more likely to originate at the calcaneocuboid joint, since the
relatively smooth contours of the talar head could not realistically provide any
osseous restraint to motion. At the calcaneocuboid joint the medial extension of
the cuboid is positioned under the superior extension on the calcaneal facet. It is
conceivable that when the sub talar joint pronates and the calcaneus everts, the
change in the frontal plane position of the calcaneal facet releases the medial
extension on the cuboid facet, facilitating a superior sliding motion of the cuboid on
the calcaneal facet, with a subsequent increase in the range of calcaneocuboid, and
thus mid tarsal joint, pronation. The locking mechanism of the mid tarsal joint

requires further investigation.

30



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex. Chapter 2

2.3 THE REARFOOT COMPLEX.

2.3.1 REARFOOT COMPLEX MOTION.

The primary function of the rearfoot complex during normal walking is to allow
transverse plane rotation of the tibia to take place whilst the foot is in contact with
the ground. The transverse plane tibial rotation is an integral part of more proximal
transverse plane rotations which allow the swinging limb to move forwards of the
weight bearing limb, initiate the next step and thus maintain the forward motion of
the body during ambulation. Motion in the rearfoot complex is driven by transverse
plane leg rotation which, by moving the talus, forces the calcaneus, navicular and
cuboid to articulate. The resulting rearfoot complex motion is described as pronation
(combined dorsiflexion, abduction and eversion) and supination (combined
plantarflexion, adduction and inversion) although the motion at the individual ankle,

sub talar and mid tarsal joints is different.

During closed chain rearfoot complex pronation the talus adducts, plantarflexes and
inverts relative to the calcaneus. The calcaneus everts, abducts and dorsiflexes
relative to the talus. This sub talar pronation and ankle plantarflexion distribute
forces medially under the forefoot, which, it is assumed, abducts and dorsiflexes the
mid tarsal joint around its oblique axis and inverts the mid tarsal joint around its
longitudinal axis. During closed chain rearfoot complex supination the talus abducts,
dorsiflexes and everts relative to the calcaneus. The calcaneus plantarflexes, adducts

and inverts relative to the talus. Weight is shified laterally under the foot producing a
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pronatory and locking moment around the mid tarsal joint axes. The mid tarsal joint
undergoes relative supination around both its axes in response to the dorsiflexion of

the talus and relative plantarflexion of the calcaneus.

2.3.2 RATIONALE FOR THE REARFOOT COMPLEX.

The concept of a model of rearfoot function which is based on motion resulting from
three separate articulations differs from the current rearfoot model which considers
the motion at the ankle, sub talar and mid tarsal joints separately and often
concentrates solely on the function of the sub talar joint. It is necessary, therefore,
to justify this concept prior to accepting and investigating the model. The rationale

for the rearfoot complex model is that:

o all three rearfoot joints are required for the rearfoot to perform its
primary function of allowing the essential rotations of proximal
structures in the transverse plane to take place whilst the foot is
weight bearing on the floor;

e the motions in the complex are interdependent, meaning that the
correct function of each joint is dependant on the correct function of
the other two joints;

o the pattern of interdependent motion between the joints is fixed and

thus will always be the same.

There is considerable evidence to substantiate these statements.
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2.3.2.1 All three rearfoot joints are required for the rearfoot to perform
its primary function of allowing the essential rotations of
proximal structures in the transverse plane to take place whilst

the foot is weight bearing on the floor.

The mechanism which allows the tibia and other proximal structures to rotate in the
transverse plane whilst allowing the foot to remain in a fixed position on the floor
requires the correct function of all three rearfoot joints. Importantly, for each joint,
correct function is dependent upon the position and motions of the other two joints in
the complex. Thus, the joints are functionally interdependent. For example, the
adduction, plantarflexion and inversion motions of the talus during internal leg
rotation are inseparable. Thus, the contributions of the ankle (plantarflexion
component) and sub talar joints (adduction, plantarflexion and inversion
components) to leg rotation are inseparable. Furthermore, since preventing motion at
one of these joints will decrease the motion available in the other, neither the ankle
nor the sub talar joint alone could permit the degree of transverse plane leg rotation
seen during gait. The contribution of the mid tarsal joint to leg rotation has been
described by Sanner (1986). He noted that the leg continued to internally rotate even
when sub talar pronation (indicated by movement of the heel) had ceased. He
attributed this to pronation around the mid tarsal joint oblique axis. Lundberg et al’s
(1989¢) results confirm the contribution of the mid tarsal joint. He observed only
1.2° of sub talar motion during the initial stages of externally rotating a leg from a
20° internally rotated position. Though some of this motion may have occurred at the

ankle, the mid tarsal joint too must have contributed to the range of leg rotation
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available. However, since mid tarsal joint function is dependent upon the position of
the ankle and sub talar joints, it too cannot permit the degree of transverse plane leg
rotation required during gait. Clearly then, neither the motion at the ankle, sub talar
nor mid tarsal joint is solely responsible for the conversion of leg rotation into

rearfoot motion.

2.3.2.2 The motions in the complex are interdependent, meaning that
the correct function of each joint is dependent on the correct

function of the other two joints.

The interdependent motions in the complex can be illustrated by considering the
interactions between the individual joints in the rearfoot complex and thus how the
function of one joint can influence that of another. Motion at the sub talar joint
influences that at the mid tarsal joint. The plantarflexion of the talus and relative
dorsiflexion of the calcaneus during weight bearing sub talar pronation lowers the
navicular, everts the mid tarsal joint, distributes pressure medially under the forefoot
and consequently creates a supinatory moment, due to the ground reaction force,
around the longitudinal axis and a pronatory moment around the oblique axis. Sub
talar joint pronation also unlocks the mid tarsal joint increasing its range of pronation
and allowing joint to pronate around the oblique axis. This also forces the mid tarsal
joint to supinate around the longitudinal axis. In contrast sub talar joint supination
inverts the mid tarsal joint, creates a pronatory moment at the longitudinal axis due to
the ground reaction force and reduces the range of mid tarsal joint pronation (Philips

1983).
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Motion around the mid tarsal joint oblique axis is able to influence sub talar joint
motion. Weight bearing pronation at the mid tarsal joint oblique axis cannot take
place unless the talar head moves plantarly and so pronates the sub talar joint.
Conversely, supinating the mid tarsal joint around the oblique axis moves the talar

head dorsally and supinates the sub talar joint.

The locked or unlocked status of the mid tarsal joint also has some effect on sub talar
joint function. In its locked position the mid tarsal joint is unable to provide any
eversion of the forefoot, which might be required when walking on uneven terrain
for example. The rigidity of the locked mid tarsal joint allows the eversion moment
to be referred back to the sub talar joint. The necessary eversion will be provided
here if the range of sub talar motion is sufficient. In its unlocked position the mid
tarsal joint contributes to the range of internal rotation of the talus and calcaneus,
which in turn increases the range of internal tibial rotation. This is an important role
because it increases the range of transverse plane motion in the rearfoot and reduces

the torsional stresses that would otherwise be placed on the ankle and sub talar joints.

Clearly, the sub talar and mid tarsal joints have considerable influence on each
other’s function and the two joints are wholly interdependent. The function of the
ankle joint, however, is not wholly dependent on the positions and motions of the
other joints involved in the rearfoot complex. The function of the ankle joint is
interdependent with the function of the sub talar and mid tarsal joints because it is
influenced by their function. However, since the ankle is able to undergo additional
motion that is independent of sub talar and mid tarsal joint function, it may also be

considered as independent of the rearfoot complex. For example, during closed
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chain rearfoot complex pronation the plantar flexion of the talus occurs at the ankle.
This increases the functional range of ankle dorsiflexion. In addition, because
adduction of the talus is accompanied by internal rotation of the leg the ankle joint
axis also internally rotates. Subsequent ankle joint motion will display a greater
proportion of sagittal plane motion because the ankle axis makes a greater angle to
the sagittal plane. Closed chain sub talar joint supination will have the opposite effect
and reduce both the functional range of ankle dorsiflexion and the proportion of
sagittal plane motion occurring at the ankle. However, motion may also take place at
the ankle without pronating or supinating the rearfoot complex, by forward or
backward motion of the tibia, which does not force the talus to move. Thus, the ankle
has two mechanisms of operation. In one mechanism it is interdependent with the
rearfoot complex (because the talus moves relative to the tibia as the rearfoot
complex articulates). In the second mechanism the ankle is independent of the
rearfoot complex (because the tibia is moving relative to the talus for which the
rearfoot complex does not have to articulate). The ability of the ankle joint to operate
independently of the rearfoot complex should not lessen the significance of the ankle
joints contribution to rearfoot function, however, since loss of ankle motion will

disrupt both sub talar and mid tarsal joint functions.

The interplay between the interdependent and independent functions of the ankle
joint is evident during normal ambulation. Between the periods of heel strike and
forefoot loading the whole foot plantarflexes relative to the leg and the rearfoot
complex pronates. The talus will plantarflex in order to lower the forefoot onto the
ground. However, as a component of the rearfoot complex pronation the talus will

undergo additional plantarflexion relative to the tibia to allow the sub talar joint to
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pronate and the mid tarsal joint to unlock. Thus, if the angle between the tibia and
the plantar surface of the foot increases from 90° at heel strike to 110° at forefoot
loading (so the ankle appears to have plantarflexed by 20°), the talus will in fact have
plantarflexed by 20° independently of the rearfoot complex, plus an additional
number of degrees as a component of rearfoot complex pronation (Figure 2.8).
Clearly, the two mechanisms by which the ankle joint operates act synchronously

during gait.

If the relationship between the sub talar and mid tarsal joints is described as two way
(i.e. in the normal rearfoot complex both joints influence and can be influenced by
the function of the other), the relationship of these joints with the ankle is
comparatively one way, because the talus, and therefore the ankle, is influenced by
their function but the ankle is unable to have any effect on sub talar and mid tarsal

joint function.
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a = the angle of talar plantarflexion as a component of rearfoot

complex pronation. The actual position of the talus is 20° + a’

plantarflexed.
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Clearly, the motions of the individual joints in the rearfoot are interdependent.
Huson described the rearfoot joints as a closed kinematic chain, which implies that
motion in one part of the rearfoot produces or influences motions in the rest of the
rearfoot. This concept fits well with the influence that the function of the ankle, sub
talar or mid tarsal joints have on each other. The fact that motion in one joint, or
one part of the kinematic chain, produces motion in the rest of the rearfoot was
illustrated by Van Langelaan (1983). He assessed the motion of the individual
bones in the rearfoot of 10 cadavers during external rotation of the leg from an
internally rotated position. All three rearfoot joints moved throughout the range of
leg rotation. No joint remained in a fixed position whilst the others in the complex
moved. Thus, motion in one of the joints i1s always accompanied by motion in the

other joints, which is consistent with the kinematic chain concept.

2.3.2.3 The pattern of interdependent motion between the joints is fixed.

A further characteristic of a closed kinematic chain, with which Huson (1991)
likened the rearfoot, is that the pattern of motion, under given constraints, occurs in a
fixed pattern. In the case of rearfoot complex function the constraint is that the foot
is load bearing. Given this constraint, the pattern of motion between the rearfoot
joints is fixed. Benick (1985) assessed the motion of the individual rearfoot bones
during transverse plane rotations of two cadaver legs. He found the motions of the
bones were almost identical during external leg rotation and internal leg rotation
(Figure 2.9 and Figure 2.10). He also assessed the effect of vertical loading and the

speed of leg rotation on the tarsal movements. Neither had a significant effect.
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Benick compared the pattern of tarsal motions during phased rotation of the leg (in
approximately 10° steps) and continuous rotation of the leg. Here too, no significant
difference was found between the tarsal movements. Thus, the pattern of motion is
independent of the direction of motion, speed of motion, vertical segmental loading
and the method by which motion is induced. The pattern of motion, therefore, at the

individual ankle, sub talar and mid tarsal joints is fixed during rotation of the leg.

Figure 2.9

The motion of a single metal bead in the calcaneus,
the path of the bead during external leg rotation
(rearfoot complex supination) is almost identical to
that during internal leg rotation (rearfoot complex

pronation). From Benick (1985).
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cm

Figure 2.10

Talocalcaneal joint axes calculated by Benick (1985). Axes a,b and ¢
are calculated during external rotation of the leg from and internally
rotated position. Axes e, f and g are calculated during internal rotation
of the leg from an extemally rotated position. The axes for the

rotations in two different directions are almost identical.
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Since each joint must rotate for the rearfoot to perform its primary function, all joint
rotations are interdependent and the three rearfoot joints will always undergo the
same rotations during internal and external rotation of the leg, it is reasonable to
suggest that the three joints could be considered as a whole and not individually.
These characteristics of the motion at the ankle, sub talar and mid tarsal joints
provide a sound scientific basis for the concept of the rearfoot complex.
Furthermore, the rearfoot complex provides a model of rearfoot function that
supersedes the current model, because it considers the contribution of the three joints

in the function of the rearfoot collectively and not individually.

2.3.3 DEVELOPING A CONCEPTUAL MODEL OF THE REARFOOT

COMPLEX.

The literature review thus far depicts the rearfoot complex as a kinematic chain in
which transverse plane rotation of the leg drives the rotations at the ankle, sub talar
and mid tarsal joints, to produce the pronation and supination of the rearfoot
complex. When adopting the kinematic chain concept Van Langelaan (1983) termed
the transverse plane rotation of the leg as the input rotation to the kinematic chain.
Thus, in a conceptual model of the rearfoot complex transverse plane leg rotation is
the single input rotation which produces a fixed pattern of rotations in the three

joints, and which must therefore produce an output rotation.

The fact that during gait, and in the rearfoot complex model, transverse plane leg
rotation is the principal rotation driving rearfoot complex motion becomes clear

when the inability of sagittal and frontal plane leg motion to drive the rearfoot
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complex is considered. The sagittal plane motion of the leg required during gait is
accommodated at the ankle joint, independent of the rearfoot complex, and thus
cannot drive the rearfoot complex into motion. Very little frontal plane motion is
required during gait since only small medial/lateral shifts in the position of the body
mass are required. The necessary medial/lateral shift of the body mass is produced
principally by frontal plane motion at the hip. Thus, there is little frontal plane
motion of the leg and thus little rotation which could drive the rearfoot complex
although the rearfoot complex must accommodate the frontal plane angulation of the

leg relative to the floor.

In contrast, the ability of proximal transverse plane rotations to drive rearfoot
complex motion and the importance of the transverse plane motion capabilities in the
foot, can be illustrated when the principal function of motion in the transverse plane
during gait is considered. The transverse plane rotation of the pelvis, femur and
tibia, take place to allow the non weight bearing limb to move from behind to in front
of the weight bearing limb, thus allowing forward progression of the body. This is
only possible if the weight bearing limb has a stable base of support which
accommodates the necessary transverse plane motion of the proximal segments. If
the foot could not perform this function the foot would need to rotate relative to the
floor, generating significant frictional forces on the plantar surface of the foot, and
losing the stable base of support. The foot thus serves as a support base but also a
pivot point for the body’s transverse plane rotations. Thus, as the non weight
bearing limb is moved from behind to in front of the weight bearing limb, the pelvis,
femur and tibia all rotate in the transverse plane and the foot must accommodate (and

is thus driven into rotation) the total range of proximal transverse plane rotations.
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This ensures that foot strike of the non weight bearing limb occurs sufficiently far
forward to maintain the desired distance of travel for each step. The foot does not
have such a relationship with the frontal and sagittal plane rotations of the lower
limb, further confirming that the rearfoot complex input rotation, or driving rotation,

is principally transverse plane rotation of the leg.

The preceding discussion has established that the principal rotational movement
driving rearfoot complex motion is transverse plane rotation of the leg, as opposed to
sagittal or frontal plane motion of the leg. This input rotation to the rearfoot complex
will force the ankle, sub talar and mid tarsal joints to rotate in a fixed pattern and
produce an output rotation from this kinematic chain. Here we have the beginnings
of a conceptual model of the rearfoot complex. Transverse plane rotation of the leg
serves as the input rotation to the kinematic chain. This chain has three links, or
three points of further rotation (the ankle, sub talar and mid tarsal joints), which,
when driven by the input rotation, produce the output rotation. In such a model, for a
given input rotation the output rotation will always be the same because the rotations
in the kinematic chain are fixed (see section 2.3.3.2). Thus, the relationship between
the input and output rotation provides information about the nature, or
characteristics, of the kinematic chain. Since the literature review has highlighted
that the characteristics of the three rearfoot joints, in particular the sub talar joint, are
variable between individuals, it is not necessarily the case that the relationship
between the input and output rotations will be the same for every individual in the

population.

The output rotation of the rearfoot complex has not yet been defined. It is usual to
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use the motion of the distal segment relative to the proximal segment as a basis for
describing the characteristics of a joint, or complex of joints. Thus, the motion of the
femur relative to the pelvis defines the characteristics of the hip. Similarly, the
rotation of the tibia relative to the femur describes the characteristics of the knee.
Thus, for the rearfoot complex, the rotation of the most distal segment relative to the
proximal segment describes its characteristics. In the conceptual model developed
thus far, the distal segment is the output rotation of the rearfoot complex and the
proximal segment the input rotation to the rearfoot complex. The proximal segment
can be defined as the leg and the distal segment as the navicular and cuboid. Hence,
for a given transverse plane rotation of the leg (input rotation) we will observe a
given rotation of the cuboid and navicular (output rotation) relative to the tibia,
which results from the combined rotations of the ankle, sub talar and mid tarsal
joints. The plane of motion of the output rotation is complex and depends on the
functional characteristics of the rearfoot complex, and the changes in these
characteristics during the range of rearfoot complex motion. Thus, the relationship
between the transverse plane rotation of the leg and the resultant rotation of the

navicular and cuboid describes the characteristics of the rearfoot complex.

All the necessary components of the conceptual model for the rearfoot complex are
now defined. We have the input rotation, the closed kinematic chain and the output
rotation defined. The model, therefore, comprises an input rotation which drives the
motion of a kinematic chain, which has three points of articulation and whose pattern
of rotation is fixed, resulting in an output rotation. The relationship between the
input and output rotation for an individual is fixed, since the components and pattern

of rotation in the kinematic chain is fixed. However, the literature suggests that the
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characteristics of the individual components of the kinematic chain are not fixed
between individuals. Thus, if the components of the kinematic chain vary the
relationship between the input and output rotation is likely to vary in a similar

manner and therefore not be the same for every individual.

If a method could be developed to determine the relationship between the input and
output rotations of the rearfoot complex, the functional characteristics of the rearfoot
complex could be described. Also, the suggestion that there exists individual
variation in the functional characteristics of the rearfoot complex could also be

investigated.

2.3.4 PREVIOUS ATTEMPTS TO QUANTIFY THE FUNCTIONAL

CHARACTERISTICS OF THE REARFOOT COMPLEX.

The functional characteristics of the rearfoot complex describe the type of motion the
complex displays, in terms of the proportion of motion displayed in each cardinal
body plane, the direction of motion in these three planes, the orientation of the axis
around which the rotations take place and the pattern of any changes in these. The
rearfoot complex has not previously been considered as a kinematic chain with a
specific input and output rotations that represent the characteristics of the complex,
as described in section 2.3.3. Thus, any previous attempts to assess the functional
characteristics of the rearfoot complex by other authors do not correspond to the

model presented here.

Downing et al (1978) was the first investigator to measure the motion resultant of the
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combined ankle, sub talar and mid tarsal joints and thus attempt to describe the
functional characteristics of the rearfoot complex. The investigators measured the
rearfoot complex motion in the cardinal body planes and determined an axis of
rotation for the rearfoot complex. This axis was said to be the axis around which the
motion resultant of the three individual joints took place. The axis represents the
functional characteristics of the entire complex because its orientation is determined
by the motion resultant of the motion at the three individual joints. This concept is
ideal for representing the characteristics of several joints combined, because it gives
a single measure as opposed to a separate measure for each joint which would

require more complex interpretation.

Downing et al (1978) measured the range of transverse plane rearfoot complex
motion using the rotation of the tibia relative to the floor as indicated by a pin
extending anteriorly from the tibia. Frontal plane rearfoot complex motion was
measured using the angle between the posterior surface of the calcaneus and the
floor. The sagittal plane rearfoot complex motion was measured using the angle
between the floor and a line from the navicular tuberosity and the medial malleolus.
Angular measures in each plane were taken with the rearfoot maximally supinated,
with the sub talar joint in its neutral position and with the rearfoot maximally
pronated. The authors described a mean composite rearfoot complex axis (for the
total range of rearfoot complex motion) angled 18° to the sagittal plane and 51°
relative to the transverse plane from a sample of 42 individuals (72 feet). The angle
of the composite axis relative to the sagittal plane varied from 7° to 42° within the
sample and the angle to the transverse plane from 32° to 62°. In addition to an axis

calculated from the total range of rearfoot complex motion, axes were also
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determined for the separate movements from maximum supination to sub talar
neutral and from neutral to maximum pronation. The average supinatory axis (for the
motion between maximum supination and sub talar joint neutral) was angled 39°
from the transverse plane and 16° from the sagittal plane. The average pronation axis
(for the motion between sub talar joint neutral and maximum pronation) was angled
65° from the transverse plane and 27° from the sagittal plane. Thus, the functional
characteristics of the rearfoot complex during supination included a predominance of
frontal plane motion. In contrast, the functional characteristics of the rearfoot
complex during pronation included a predominance of transverse plane motion.
Clearly, a further functional characteristic of the complex is that the functional

characteristics change during its range of motion.

In principle Downing et al’s (1978) method should be highly satisfactory since the
measurements are simple to take, do not require expensive apparatus and are non
invasive. However, there are serious sources of error in the measurement protocol
which retract from the validity of Downing et al’s work. Firstly, the method used to
measure the range of frontal plane rearfoot complex motion is flawed. The
investigators used the angle between the heel and the floor for this angular measure.
This angle will alter as the rearfoot complex pronates and supinates because the heel
inverts and everts during these motions. However, the angls: of the heel relative to
the floor can also be altered if the leg moves relative to the floor in the frontal plane,
which it may do so without rearfoot complex motion. This is clearly the case in the
investigators work (Figure 2.11). Thus, the frontal plane measures were invalid and
the results probably incorporate more frontal plane rearfoot complex motion than

actually took place. Also, any frontal plane motion occurring at the mid tarsal joint
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would not be reflected in the frontal plane motion of the heel. Consequently, the
frontal plane measurements only indicate the ankle/sub talar component of frontal

plane rearfoot complex motion, but even then are invalid since they relate to the floor

and not the leg.

Figure 2.11

From Downing et al's 1978 paper: measuring the frontal plane
rearfoot complex motion. The measurement is prone to error

because the leg is able to move in the frontal plane independent

of the rearfoot complex, as is clearly illustrated in the

photograph

The transverse plane measure too was flawed. Using a measure of the transverse
plane rotation of the tibia relative to the floor as the authors did, they assumed that
the foot, or at least the forefoot, was fixed relative to the floor. They did not attempt
to assess whether the forefoot moved in the transverse plane relative to the floor or

attempt to provide physical constraints on the forefoot to prevent it moving in the
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transverse plane. Also, taking measurements of the position of a pin extending
anteriorly from the tibia relative to the floor is susceptible to error if the tibia rotates
in a plane other than the transverse plane. Again, the authors made no attempt to

control or measure the rotation of the tibia in planes other than the transverse plane.

Finally, the measurement of sagittal plane rearfoot complex motion was also flawed.
The authors attached drawing pins to the medial malleolus and navicular tuberosity
to define a line which, when related to the floor, gave an angular measure of sagittal
plane rearfoot complex motion. These drawing pins were held in place using rubber
straps. Clearly, the tension in these straps made them liable to move relative to the
skin and thus relative to the malleolus and navicular tuberosity. This is highly
important since the range of sagittal plane motion recorded was very small (mean
8.7°) and even small errors such as 1° are significant as a proportion of the total
range. Also, the concept that this measurement represents the sagittal plane motion in
the rearfoot complex was not justified. The angle would change as the tibia was
moved vertically during rearfoot complex pronation and supination, but this only
indicates elevation of the tibia, not necessarily sagittal plane rearfoot complex

motion.

Given the substantial errors in the experimental design of Downing et al’s (1978)
work, it is difficult to determine what exactly was measured and what the calculated
‘rearfoot complex axis’ relates to. Furthermore, Downing et al did not document any
repeatability work relating to their method.- The repeatability of measuring heel
position in the frontal plane is known to be poor, particularly when using the sub

talar joint neutral position (Freeman 1990, Menz 1995). Considering the use of two
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dimensionally projected lines for the transverse plane measures and the general poor
quality of measurements which include pen lines drawn on paper and subsequently
measured with a protractor, the results documented by Downing et al should be

considered unreliable.

No other work has been published which attempts to measure the motion resultant of
all three rearfoot joints. Consequently, considering the poor quality of Downing et
al’s work, to date there has not been a reliable description of the functional
characteristics of the rearfoot complex. However, some authors have measured the
ratio of transverse plane tibial rotation to frontal plane heel motion, which gives
some indication of the functional characteristics of the ankle/sub talar component of
the rearfoot complex. These provide some indication of what the characteristics of
the rearfoot complex might be and serve as a valuable comparison to any description

of the rearfoot complex.

The work of Bowden and Bowker (1995) illustrates the degree of individual
variation in the functional characteristics of the ankle/sub talar component of the
rearfoot complex. The authors measured the range of tibial rotation and the frontal
plane motion of the leg and heel between the positions of maximum weight bearing
rearfoot supination and maximum weight bearing rearfoot pronation, using a laterally
wedged supporting surface to force the rearfoot to pronate. They determined the
ratio of tibial rotation to rearfoot motion (Tibial Rotation/Rearfoot motion) (using the
frontal plane angle between the leg and heel for the latter) in 27 subjects. The
average TR/RC ratio was 1.29 but a wide range of values were evident in the 27

subjects tested (0.39 - 2.26) (Table 2.1).
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Subject Subject Non-
(Control (patellofemoral ~ Painful painful
group) Right leg Left leg pain group) leg Leg
Cl 1.41 1.18 Il 1.50 1.32
C2 0.84 0.66 12 1.26 1.13
C3 2.11 2.26 I3 1.21 1.23
C4 0.66 0.39 14 1.10 0.46
C5 0.80 0.81 I5 0.92 0.85
Cé 1.18 1.96 16 1.17 1.52
C7 1.08 1.64 17 0.93 1.01
C8 0.97 1.47 I8 1.99 1.32
C9 1.98 1.36 I9 1.28 1.79
C10 1.39 2.02 110 1.54 1.24
Cl1 1.04 1.22 I11 0.74 1.02
C12 1.21 1.2 112 1.47 1.19

113 1.46 1.93

114 1.25 1.74

115 1.73 1.55
Table 2.1

Ratio of transverse plane leg rotation to frontal plane
heel/leg motion in 12 pain free control subjects and 15

subjects with patello-femoral pain

Other authors have carried out similar work. Olerud and Rosendahl (1987) reported
an average of 0.4° of external leg rotation per 1° of foot supination (using the frontal
plane angle between the heel and leg to indicate supination) and Lundberg et al

(1989b) described an average of 0.2° external tibial rotation per 1° of foot supination
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(also using the frontal plane heel to leg angle as an indicator of supination).

These results suggest that different individuals possess ankle/sub talar complexes
with different functional characteristics as reflected in the ratio of tibial rotation to
frontal plane heel to leg motion. This is not surprising considering the individual
variation in the functional characteristics of the sub talar joint highlighted in section
2.1.2.1. If such individual variations were reflected in the functional characteristics
of the rearfoot complex, then a rearfoot complex model based on the functional
characteristics of the average rearfoot complex would be inappropriate. A proportion
of the population may possess a rearfoot complex whose functional characteristics
are not accurately described by the model based on an average rearfoot complex. The
extent of the individual variation in the functional characteristics of the rearfoot
complex may necessitate that contrasting rearfoot complexes be considered
separately. This could be achieved by categorising rearfoot complexes according to
their functional characteristics. The criteria for a category would ideally be a single
quantitative measure of the functional characteristics of the rearfoot complex. The
concept of a rearfoot complex axis, as suggested by Downing et al (1978), would
meet this criterion. This single quantitative measure of the functional characteristics
of the rearfoot complex would allow simple comparison between individuals. The
model of rearfoot function would then comprise two or more categories and include
those individuals whose rearfoot complex varies, in terms of its functional
characteristics, from the average rearfoot complex. This would be a significant
improvement on the present model of rearfoot function that is based on the functional

characteristics of the average rearfoot and does not account for individual variation.
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Since the rearfoot complex displays different functional characteristics during
different stages of its range of motion, a rearfoot complex axis derived from the total
range of rearfoot complex motion may not adequately describe the functional
characteristics of the complex. Furthermore, the rearfoot complex rarely utilises its
total range of motion dynamically and without some knowledge of which part of its
total range of motion it moves through during gait it is impossible to deduce a
meaningful rearfoot complex axis orientation. Thus, it is preferable to assess the
functional characteristics of a rearfoot complex whilst it moves through the part of its

total range of motion which is used during gait.

2.4 SUMMARY.

The rearfoot complex comprises the ankle, sub talar and mid tarsal joints. The
general characteristics of the ankle and sub talar joints have been described. The
ankle allows predominantly sagittal plane motion around a series of instantaneous
axes of rotation. The sub talar joint also has a variable axis orientation throughout its
range of motion, but also displays considerable individual variation in the orientation
of this axis. The characteristics of the mid tarsal joint are poorly described in the
literature. The only reliable evidencé suggests a balance of frontal and transverse

plane motion.

The concept of the rearfoot complex as a model of rearfoot function has been
validated on the basis that: the correct function of each joint is needed for the
rearfoot to perform its primary function; the rotations in the rearfoot complex are

interdependent; and the pattern of rotation between the joints is fixed. A conceptual
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model to describe the function of the rearfoot complex has been developed. This
describes the rotations in the ankle, sub talar and mid tarsal joints as a closed
kinematic chain, driven by transverse plane leg rotation, and producing an output

rotation in the form of navicular and cuboid motion.

With regard to the conceptual model developed in section 2.3.3, there has been no
attempt to quantify the functional characteristics of the rearfoot complex reported in
the literature. Related literature suggests that the functional characteristics of the
rearfoot complex may vary between individuals, which would not be surprising
given the individual variation in the three components of the complex. If it exists, the
individual variation should be described in the model of rearfoot complex function.
This would be a further improvement on the current model of rearfoot function. The
axis of rotation for the rearfoot complex could be used as a single quantitative
measure of the functional characteristics. Using the conceptual rearfoot complex
model developed here, this axis is the axis around which the navicular and cuboid
rotate relative to the tibia and is thus the axis around which the combined rotations at

the ankle, sub talar and mid tarsal joints take place.
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CHAPTER 3

AIM OF INVESTIGATION AND

METHODOLOGY
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3.1 AIM OF INVESTIGATION.

In chapter 2 a model of rearfoot function was described which incorporates all three
rearfoot joints and is based on the weight bearing functional characteristics of the
combined joints. The model assumes that transverse plane rotation of the leg is the
input rotation to a kinematic chain, which comprises the ankle, sub talar and mid tarsal
joints, and that this produces an output rotation in the form of navicular and cuboid

motion.

The aim of this investigation is to quantify in vivo the functional characteristics of the
rearfoot complex using non invasive techniques. It will thus involve quantifying the
functional characteristics of the combined ankle, sub talar and mid tarsal joints,
ankle/sub talar complex and the mid tarsal joint. Quantifying the characteristics of the
composite function of the three rearfoot joints will provide a description of the proposed
model of rearfoot function. Describing the characteristics of the ankle/sub talar
complex and mid tarsal joint will explain how the characteristics of the composite
function of the three rearfoot joints are derived. The functional characteristics can be
defined as the range of motion in each cardinal body plane displayed by the joint, the

axis around which joint rotations take place and the changes in these characteristics.
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This assessment of rearfoot function will build on the methods used in the literature

reviewed in chapter 2 in that it will:

1. be a three dimensional in vivo assessment;
1l. be a non invasive assessment;
1ii. involve an assessment of the rearfoot during continuous motion, as opposed to

the assessment of rearfoot motion in increments;

iv. consider the part of the total range of rearfoot motion that is used during gait;

V. describe the functional characteristics of the combined three rearfoot joints;

Vi. describe the contribution of the ankle/sub talar complex and mid tarsal joints to
the characteristics of the rearfoot complex;

vii.  enable a single quantitative measure of the functional characteristics of the

rearfoot complex and its components to be determined (rearfoot complex axis).

The advantage of describing the composite characteristics of the three rearfoot joints is
that it is not necessary to assess the function of the individual joints, but only to measure
their combined motion. This approach avoids many of the problems associated with
not being able to isolate joints individually because the talus is not accessible and the
palpation of bony landmarks for each joint is difficult. Also, even if it were possible to
assess the function of each joint individually, their combined function would still have
to be estimated as opposed to measured. Finally, assessment of each joint individually
is only possible using cadavers or invasive techniques in vivo, which are clearly
undesirable. In contrast, assessment of the combined function of the three rearfoot
joints can be achieved using non invasive in vivo techniques and does not require the

individual joints to be identified.
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3.2 METHODOLOGY.

3.2.1 OVERVIEW OF METHODOLOGY.

It is proposed that the motion of the leg and the motion of the navicular and cuboid be
assessed during static, weight bearing rearfoot complex pronation and supination using
a camera based three dimensional motion analysis system to track the position of
reflective markers attached to each segment. The rotation of the navicular and cuboid
relative to the leg will serve as a description of the functional characteristics of the
rearfoot complex since these are the input and output rotations of the rearfoot kinematic
chain. In addition, the three dimensional motion of the heel will be assessed. This will
provide data to describe the ankle/sub talar complex (motion of heel relative to leg) and
the mid tarsal joint (navicular and cuboid relative to the heel). It will allow the
relationship between the ankle/sub talar complex and the mid tarsal joint components of
the rearfoot complex and the function of the entire complex to be investigated. This will
provide a measure of the functional characteristics of the rearfoot complex, and also
provide a description of the contribution of these two components to the characteristics

of the composite function of the three rearfoot joints.

In accordance with the proposed model of the rearfoot complex, the motion of the leg,
which is the input rotation to the rearfoot complex, must be mechanically constrained to
transverse plane motion. The subjects must perform internal and external rotations of
the leg to produce pronation and supination of the rearfoot complex. In line with

accepted methods of kinematic analysis, the leg, the heel and the navicular and cuboid
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will be defined using position data describing the motion of three points on their surface
relative to a global co-ordinate system, and through the definition of local co-ordinate
systems for each segment. The absolute rotations (angular motion with respect to the
global co-ordinate system) and relative rotations (angular motion with respect to
another segment) of the segments will be calculated using Euler angles. This

component of the investigation is the static rearfoot complex assessment.

The rotations in the three cardinal body planes will be incorporated into the
trigonometric equations used by Downing et al (1978) to compute the orientation of an
axis of rotation for the absolute and relative rotations of the different segments. This
will provide a single measure to quantify the functional characteristics of the rearfoot

complex and each of its components.

Finally, to ensure that the part of the range of rearfoot complex motion that is used
during gait is assessed within the static assessment data, the part of the total range of
rearfoot complex motion through which the segments move during gait is to be
identified within the data from the static rearfoot complex assessment. This will be
achieved by assessing the range of rearfoot complex motion during gait and is the basis
of the dynamic rearfoot complex assessment. A detailed description of the

investigation now follows.
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3.2.2 DATA COLLECTION.

Twenty five subjects with no history of lower limb fractures, previous ligament injuries
or other pathology affecting the musculoskeletal system were recruited from the
population at Salford University. All 25 under went both the static and dynamic
rearfoot complex assessments. Since the methodology involved in the static assessment
was unique and untested in vivo, the static rearfoot complex assessment was repeated
on 4 of the 25 subjects (8 limbs in total). These two males and two females completed a
second series of static assessments at least 1 week after the first static assessment (range

1 week — 4 weeks).

Standard subject parameters were also taken; age, height and weight, and are listed in

table 3.1.
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Subject sex age height weight Data used
number (cm) (kg) left right
1 m 36 172.0 71.8 yes yes
2 m 27 184.5 78.0 yes yes*
3 m 23 192.5 87.2 yes yes
4 f 34 169.0 61.6 yes yes
5 m 21 178.0 65.0 yes yes
6 m 22 176.5 79.8 yes no
7 f - 28 168.0 71.4 yes yes
8 f 21 154.0 53.4 yes yes
9 f 44 159.0 53.6 yes yes
10 m 22 181.5 94.6 yes yes
11 f 24 161.0 59.2 yes yes
12 f 22 163.5 63.2 yes yes
13 f 23 152.0 54.2 yes yes
14 m 22 167.5 66.6 yes yes
15 f 21 158.0 58.0 yes yes
16 m 25 178.0 76.0 yes yes
17 m 34 169.0 82.0 yes yes
18 f 27 177.5 77.0 yes yes
19 f 26 165.0 59.8 yes yes
20 f 28 160.0 60.0 yes yes
21 m 21 177.5 422 yes yes
22 m 41 167.0 58.2 yes yes
23 f 21 161.0 50.4 yes no
24 f 21 154.5 72.8 yes yes
25 m 27 163.5 60.4 yes yes
MEAN / 26.4 168.4 66.3 / /
Female 13 262 1617 61.1
Male 12 26.8 175.6 71.8
total 25 / / / 25 23
total / / / / 48
Table 3.1

Table gives details of the 25 subjects used in this study. The right
limb data of subjects 6 and 23 was excluded because no valid
reference position could be determined due to lost data files. * =the
data from the dynamic assessment were judged invalid (see section

4.2) but data from static assessment were valid.
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3.2.2.1 Static rearfoot complex assessment.

3.2.2.1.1 Experimental rig.

It was necessary to design and build a device that allowed the leg to rotate in the
transverse plane, but constrained its motion in the frontal and sagittal planes. This
ensured that the input rotation to the rearfoot complex during the assessment was solely
transverse plane rotation of the leg, as described in the rearfoot complex model. This
aspect of the investigation was very similar to the experiments carried out by Van
Langelaan (1983) and Benick (1985) and consequently their experimental protocols
were examined. These two authors used the same piece of experimental equipment.
They built a mechanical rig which allowed the foot of a below knee cadaver specimen
to be placed with the plantar surface of the foot in contact with the ground and the ankle
at approximately 90° i.e. tibia was vertical. The transverse plane motion of the leg was
induced by electrical motors that turned a mechanical ring. The mechanical ring was
mounted on bearings that constrained its rotation to the transverse plane and the tibia
was fixed to the inner surface of the mechanical ring using screws. The transverse plane
motion of the forefoot of the cadavers was constrained using a metal bar on the lateral
side of the forefoot. = Using this rig the investigators had been able to constrain the

input rotation to the rearfoot complex to transverse plane tibial rotation.

A similar rig was designed for this investigation. This consisted of a horizontally
orientated platform mounted above a wooden board (0.8m x 1m) using three steel
supports. The height of the platform from the board was adjustable between 15¢m and
40 cm. Within the platform a ring was mounted on three bearings, restricting rotation of

the ring to a plane parallel to the supporting surface (Figure 3.1).
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Figure 3.1

Experimental rig used in the static rearfoot complex assessment.
It comprises a steel platform mounted parallel to the supporting
surface on three steel poles. Mounted within the platform on three
bearings is a ring that rotates in a plane parallel to the supporting
surface.
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The mechanical ring mounted in the platform was 20cm in diameter. This rig allowed a
subject to stand on the board with one leg inside the ring and the other adjacent to it in a
normal stance position. The motion of the leg in the frontal and sagittal planes was
restrained by packing the space between the inner surface of the ring and the leg with

blocks of plastozote (Figure 3.2).

Figure 3.2

Packing the space between the leg and the ring with plastozote
blocks restricted movement of the leg relative to the rotating

ring.
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Since the subjects were to induce rearfoot complex motion by rotation of the leg in the
transverse plane, it was important that the axis of rotation of the leg was aligned as
close as possible to the axis of rotation of the rotating ring. This would allow the leg to
move in a manner as natural as possible. The centre of rotation of the ring was
determined by first projecting the inner surface of the ring onto the surface of the
wooden board using a plumb line. By taking the perpendicular of several lines
intersecting the projection of the inner ring at two points, the centre of rotation of the
ring relative to the wooden board was determined. The general position of the axis of
rotation of the leg during Van Langelaan’s (1983) study was consistently positioned
slightly posterior to the posterior surface of the tibia in the sagittal plane view and
centrally placed relative to the tibia in the frontal plane view. In vivo, this position is
slightly posterior to the medial malleolus in the sagittal plane view and slightly medial
of the centre of the posterior surface of the leg in the frontal plane view. Thus, to align
the rotation axes of the leg and the axis of rotation of the mechanical ring, the foot was
positioned so that in a sagittal plane view the medial malleolus was slightly anterior to
the centre of rotation of the rotating ring, and the centre of the posterior surface of the
leg was slightly lateral of the centre of rotation of the rotating ring (Figure 3.3 and
Figure 3.4). These positions were assessed visually and maintained during the

experiments by the plastozote blocks.
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Figure 3.3

The sagittal plane alignment of the leg and foot relative to the
centre of rotation of the ring, indicated by the cross hair (partially

obscured under heel) on the wooden board.
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Figure 3.4

Frontal plane alignment of the foot and leg relative to the centre of
rotation of the ring, indicated by the cross hair (partially obscured

under heel) on the wooden board.

It was also important that the position of the foot on the board was such that the rotation
angles subsequently calculated related to the anatomical planes of the foot. The angular
rotations of all the segments were calculated relative to the x, y and z axes of the global

co-ordinate system (Figure 3.5).
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y

Figure 3.5

Global co-ordinate system used in this investigation.
X axis = anterior/posterior axis, y axis = vertical axis, z

axis = medial/lateral axis).

For these angular rotations to have anatomical bearing, the anatomical cardinal body
planes must align with those of the global co-ordinate system. An accepted method of
achieving this alignment is to align the x axis of the global co-ordinate system
(anterior/posterior axis) with a line from the centre of the plantar surface of the heel
through the second metatarsal head (Figure 3.6). This aligns the anatomical sagittal
plane with the plane defined by the x and y axes of the global co-ordinate system. This
in turn aligns the anatomical frontal plane with the plane defined by the z and y axes of
the global co-ordinate system. The anatomical transverse plane automatically aligns
with the plane defined by the x and z axes of the global co-ordinate system since both

are perpendicular to the other two planes.
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To ensure that the foot remained in the correct position during the assessment, two
adjustable boards, which prevented the forefoot from slipping in the transverse plane,
were attached to the wooden base. This maintained the alignment of the plane defined
by the x and y axes of the global co-ordinate system with the line from the centre of the
plantar surface of the heel through the second metatarsal head, which is used to define

the sagittal plane of the anatomical system (Figure 3.6).

Figure 3.6

Two wooden boards were used to prevent the forefoot slipping in
the transverse plane and thus maintain the alignment of the

anatomical planes and the global co-ordinate system.
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3.2.2.1.2 Describing the motion of the navicular and cuboid, the heel and the leg.

As with any two rigid body segments, the motion of the navicular and cuboid relative to
the leg can be assessed if the positions of three points on each segment are known.
Position data for three points on the surface of each segment can be derived from an
image based motion capture system if the three points are identified with reflective
markers. Subsequently, local co-ordinate systems for each segment can be defined

using the three known points and the angular motion of the segment described.

This approach clearly assumes that the navicular and cuboid are a single rigid segment.
Whilst, strictly speaking, this is not the case, the reason why they can be considered
rigid has been explained in section 2.1.3.1. Briefly, this is because the two bones are
firmly bound together with ligaments and during rearfoot complex motion the two
bones always move in the same direction as each other. Thus when the talonavicular

joint pronates so too does the calcaneocuboid joint and vica versa for supination.

A number of practical problems exist in defining this distal segment of the rearfoot
complex. The positions of three points can be identified with reflective markers and
these can be used to describe the motion of the segment. However, the nature of
camera based motion analysis systems that detect and track the position of such markers
requires that the markers be sufficiently spaced to allow clear definition of the three
separate points. Also, the markers themselves must be of a reasonable size to achieve
accurate determination of the positions. Due to the size of the navicular and cuboid, the
size of reflective markers which can be attached to them and the spacing of markers is
significantly restricted. However, it is generally considered that the navicular and

cuboid together with the cunieforms and middle three metatarsals are a rigid unit.
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Whilst without doubt there is some relative movement between these bones, their
general motion is, like that of the navicular and cuboid, principally in the same direction
and anatomically they too are tightly bound together. When the navicular and cuboid,
and thus mid tarsal joint, supinates, the metatarsals too supinate. Incorporating the
metatarsals into the rigid body model of the distal segment of the rearfoot complex
increases the surface area over which three points describing the position of the segment
can be identified. This makes the process of identifying the position of the individual
markers much easier for the motion analysis system. The distal segment of the rearfoot
complex model was therefore extended to include the cunieforms and the middle three

metatarsals, which is in effect a segment comprising the forefoot.

In addition to achieving reasonable size and spacing of markers, where possible
markers should be physically displaced away from the segment. This increases the
amount by which the markers physically move. The greater the displacement of the
marker away from the segment, the greater the physical movement of the marker and
the more accurate the description of the path of motion and the angle of rotation

subsequently calculated (Panjabi and Goel 1982).

To define the forefoot segment with three markers that were sufficiently spaced, were
of reasonable size and were projected away from the segment, a molded platform was
designed for attachment to the forefoot segment. The platform was made from Hexalite
mouldable plastic material, moulded to the navicular/cuboid and second metatarsal area
of the forefoot segment. Attached to this platform were three 40mm plastic wands

projecting dorsally. Each wand had a 15mm diameter reflective marker attached to its
tip (Figure 3.7).
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Figure 3.7

Hexalite platform used to project and space three markers on the
forefoot segment. Proximal aspect of the platform was mounted
on the navicular and cuboid and the forward extension over the

second metatarsal shaft.

The definition of the heel was achieved using a similar technique. A heel cup was
made by moulding a piece of Hexalite to a heel and three 40mm wands were attached to
the cup. The three wands were projected posteriorly, medially and laterally and 15mm
markers were attached to the tips of the wands. This achieved the necessary spacing
and projection of markers (Figure 3.8). The heel cup was secured to the heel using

double sided sticking tape.
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Hexalite heel cup used to mount three markers on the heel.

The definition of the leg was similar to that of the heel. The three markers were spaced
and projected away from the segment by attaching them to the ends of three 80mm
wands which were attached to a piece of Hexalite moulded to the shape of the posterior
calf. The attachment on which the markers were mounted was positioned in the distal
half of the leg because the platform of the mechanical rig obscured the top of the leg in
the view of the motion analysis system cameras. The markers were projected
posteriorly, medially and laterally (Figure 3.9) and the attachment secured on the leg

using elasticated velcro straps.
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Markers attached to the leg via a Hexalite platform and
elasticated strapping held in place with Velcro.

3.2.2.1.3 Three dimensional motion analysis system.
An infra-red motion analysis system (MacReflex) with four cameras was used to track
the positions of the 15mm markers attached to the leg, heel and forefoot segments at a

sampling frequency of S0Hz.

The cameras were set up in a near symmetrical set up around the experimental rig
(Figure 3.10). Two cameras were in front of the rig and two behind the rig. This
enabled the experiments for the left and right limbs to be carried out without the

experimental rig or cameras being moved.
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Figure 3.10

Arrangement of the four MacReflex cameras used in the static

rearfoot complex assessment around the experimental rig.

The arrangement of the cameras was determined by two factors. Firstly, the markers
attached to the leg, heel and forefoot needed to be seen by at least two cameras during
the experiments in order for their three dimensional position to be determined. The
position of the cameras in respect of this factor was deduced by trial and error.
Secondly, the position of the cameras relative to the calibration frame used to define the
global co-ordinate system is important since this influences the quality of the calibration

and the accuracy of subsequent measurements.

The motion analysis system was calibrated using a 9 marker calibration frame. The
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measurement volume of the frame was 55¢cm x 26cm x 30cm (length x height x width)
and the markers were 20mm in diameter. The frame defined the position of the global
co-ordinate system within the field of view of the cameras. The origin of the global co-
ordinate system was defined by the central marker, which was placed over the centre of
rotation of the rotating ring when projected on to the wooden board. This ensured that
the movements of the markers attached to both the left and right limbs took place within

the calibrated volume. (Figure 3.11)

Figure 3.11

The 9 marker calibration frame used to define the global co-ordinate
system in the static rearfoot complex assessment. The frame was
positioned so that the origin of the global co-ordinate system (the
most central marker) was over the centre of rotation of the ring (the
cross hair on the wooden board), ensuring that all motion took place
within the calibrated volume.
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3.2.2.1.4 Performance of the motion analysis system.

A previous assessment of the accuracy of measurements made with the MacReflex
system had reported average angular errors of 0.3° over sixty three different static and
dynamic tests, and using two different camera configurations (Nester and Bowker
1999). These tests were performed using five MacReflex cameras and a calibration
frame of volume 190cm x100cm x 100cm (length x height x width). The work
illustrated the excellent accuracy of measurements made with the MacReflex system,
but highlighted that a difference in camera arrangement can influence the repeatability
of measurements without influencing the accuracy or precision of measurements. Since
the camera arrangement to be used in this study involved only four cameras and these
were arranged differently than in the previous work, the performance of the MacReflex

system was tested.

The principal aim of the tests was to assess the repeatability of measurements, since it
was this variable that was affected by changing camera arrangement in the previous
study, although accuracy and precision measures (actual measurement error and

standard deviation) were also calculated.

Static and dynamic tests were conducted using two 15mm markers mounted 100mm
apart on a steel pin that was 30cm in length. Ten consecutive five second recordings
were made with the markers stationary in the centre of the calibrated area. Two
dynamic recordings were then made during which the pin was moved through the
calibrated volume in a figure of eight formation. Each dynamic recording lasted fifteen

seconds.
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The mean distance between the two markers was calculated for each of the static and
dynamic tests (tables 3.2 and 3.3). The mean measurement error was excellent at
0.24mm in the static tests and 0.1lmm in the dynamic tests. Also, the standard
deviations indicate that measurements do not vary considerably during a recording,
although there are occasional significant deviations from the mean value of the
measurement. Figure 3.12 presents typical results from the tests. These significant
deviations are always due to one or two data points having values significantly different
than the rest and it would be expected that appropriate filtering of the data would
remove these values. These occasional data points are believed to result from the
markers passing behind the metal structures of the experimental rig, obscuring the view

which the cameras have of the markers.

Clearly, the accuracy and precision of the measurements taken using the cameras in this
arrangement is acceptable. The variation in the distance measured between the ten static
tests is an indicator of the repeatability of system measurements, the principal
performance parameter under investigation. The distance measured varied by only
0.04mm between the ten static tests, illustrating that repeatability of measurements is

acceptable using this camera arrangement.

Mean distance
Trial (mm) SD
Dynamicl 100.12 0.53
Dynamic2 100.10 0.25
MEAN 100.11 0.39
Table 3.2

The mean distance between two markers during two
fifteen second dynamic recordings with four MacReflex
cameras. Actual distance was 100mm.
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Mean Distance
Trial (mm) SD
Static 1 100.23 0.01
Static 2 100.27 0.22
Static 3 100.26 0.21
Static 4 100.25 0.16
Static 5 100.23 0.08
Static 6 100.25 0.18
Static 7 100.23 0.09
Static 8 100.24 0.12
Static 9 100.25 0.15
Static 10 100.24 0.12
Mean 100.24 0.13
Minimum 100.23 0.01
Maximum 100.27 0.22
Range 0.04 0.21

Table 3.3

The mean distance between two markers during 10 five
second static recordings with four MacReflex cameras.

Actual distance was 100mm.
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Graph A
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Graphs illustrate the variations in the distance between two
markers measured using four MacReflex cameras. Graph A
is an example of one of the static tests , Graph B is an

example of one of the dynamic tests.
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These tests confirm that the particular arrangement of cameras used in this investigation
and the use of a smaller calibration frame have not compromised the accuracy,
precision or stability of the MacReflex system. Overall, the system is capable of

measurements sufficiently reliable for the intended use.

3.2.2.1.5 Experimental procedure for the static rearfoot complex assessment.

The wooden board, experimental rig and four MacReflex cameras were set out as in
figure 3.10 and the MacReflex system calibrated. The subject was instructed to stand
with one limb placed inside the mechanical ring of the rig and the other adjacent to it on
the wooden platform. The foot of the limb inside the ring was aligned with the centre
of rotation of the rig and in the anatomical position, as described in section 3.2.2.1.1,
whilst the subject stood in their relaxed standing position. The boards on either side of
the forefoot were then moved up to the medial and lateral sides of the forefoot and
secured in position. The subject was asked to confirm that their foot was secure

between the two boards.

The forefoot, heel and leg marker sets were attached as described in section 3.2.2.1.2.
To ensure that each marker could be seen by at least two cameras a test recording was
taken. This also provided an opportunity for the subject to practice the rotational
movements that were to be performed. The subject was told to rotate their pelvis in an
outward direction and rotate their foot outwards so that they were stood on the outside
(lateral) border of their foot. This was the position from which the motion sequence to
be completed during each test started (figure 3.13). They were then instructed to rotate
their pelvis and the entire lower limb inwards as far as was pain free. This produced

internal leg rotation and rearfoot complex pronation (figure 3.14). The subjects then
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rotated their limb outwards until they returned to the start position. The investigator
demonstrated the movements to assist in the explanation. Subjects were given eight
seconds to perform this movement but were instructed to move at the pace most

comfortable to them.

Once the markers were in the correct place the leg was secured into the ring using
plastozote blocks. Four sets of blocks were placed around the leg. One set on the
anterior and lateral aspect, one on the anterior and medial aspect, another on the
posterior and lateral aspect and the fourth on the posterior and medial aspect (Figure

3.2).

The subject was then asked to practice the rotational movements of the limb again to
ensure that they were comfortable in their posture and were able to exploit a sufficient
range of motion of the limb and foot. A sufficient range of motion was characterised
by: in the start position the foot being supinated to the extent that the first metatarsal
was non weight bearing; the subject forcibly achieving maximum internal limb rotation
by rotation of proximal structures and without obvious muscular effort in the foot and

leg; and the original start position being reached again at the end of the movement.
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Figure 3.13

Typical position of a subject at the start of the motion
sequence. The limb is externally rotated, the rearfoot
supinated and the first metatarsal none weight bearing.
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Figure 3.14

Typical position of a subject at the mid point of the motion
sequence. The limb is maximally internally rotated and the

rearfoot pronated.
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Once the subject was comfortable in their posture and able to exploit a sufficient range
of limb and foot motion the experimental test recordings were made. Ten recordings of
the subject performing the motion sequence were taken consecutively. A single
reference recording was then taken. During this two second recording the subject stood
in their relaxed standing position (Figure 3.15). The position of the body in this stance
is determined by the body’s anatomy, body weight, ground reaction and muscular
forces, which interact to produce a stable posture. These factors are relatively constant
and consequently so too is the relaxed standing position. This is in contrast to
alternative reference positions, such as the sub talar joint neutral position, which require
palpation, manipulation and subjective positioning of joints, and have been shown to be

unreliable (Ball and Johnson 1993, Pierrynowski et al 1996).

Figure 3.15

Typical position of a subject in the relaxed standing position

during the static rearfoot complex assessment.
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This entire procedure was then repeated for the other leg. Within the sample of 25

subjects the order in which the limbs were tested was randomised.

3.2.2.2 Dynamic rearfoot complex assessment.

The aim of the dynamic rearfoot complex assessment was to measure the range of
rearfoot complex motion during gait relative to the same reference position that was
used during the static assessment. If the dynamic and static assessments of the rearfoot
complex use the same reference position, then the motion relative to this position in one
assessment can be related to the motion relative to this position in the other assessment.
This would allow the part of the total range of rearfoot complex motion that was used
during gait to be identified within the total range of motion measured during the static

assessment.

Since rearfoot complex motion is coupled with transverse plane leg rotation, the pattern
of internal and external rotation of the leg relative to the foot indicates the pattern of
rearfoot complex motion. When the leg internally rotates the rearfoot complex is
pronating, when the leg externally rotates the rearfoot complex is supinating. The
transverse plane rotation of the leg relative to the foot can be measured as the angle
between a position vector from the centre of the ankle joint and the fifth metatarsal
head, and a local co-ordinate system of the leg (Kadaba et al 1990). The transverse
plane position of the foot (the entire segment) in the static assessment is fixed and its
position can be represented by the global co-ordinate system. The rotation of the leg
relative to the foot in the dynamic assessment, defined as a local co-ordinate system and

a position vector respectively, is therefore the same as the rotation of the leg relative to
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the global co-ordinate system (absolute leg rotation angle) in the static assessment.

A 13 marker system, based on that described by Kadaba et al (1990) (Figure 3.16), was
used to define the pelvis and femur of both limbs as local co-ordinate systems, and the
leg and the foot of both limbs as local co-ordinate systems and a position vector
respectively. This full lower limb system was used because of restrictions imposed by

the data processing software.

r 6
9 8
\ L
11 E 10
13 ¢ w12
1 - sacral 6 - right knee 10 - right ankle
2 -right ASIS 7 - left knee 11 - left ankle
3 - left ASIS 8 - right shank 12 - right Sth metatarsal
4 - right thigh 9 - left shank 13 - left 5th metatarsal
5 - left thigh
Figure 3.16

The 13 marker set up used in the dynamic rearfoot complex

assessment. The marker positions are based on a similar

marker set up described by Kadaba et al (1990).
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A five camera MacReflex motion analysis system was used to capture the motion of the
13 markers attached to the lower limb at a sampling frequency of 50Hz. The cameras
were arranged as in figure 3.17. The MacReflex system was calibrated using a nine
marker calibration frame of volume 190cm x 100cm x 100cm (length x height x width).
The accuracy of the system in this set up has been tested previously and averaged 0.3°

(Nester and Bowker 1999).
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Figure 3.17

Arrangement of the five MacReflex cameras used in the dynamic

rearfoot complex assessment.
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3.2.2.2.1 Experimental procedure for dynamic rearfoot complex assessment.

Prior to conducting the dynamic rearfoot complex assessment the width of the knee
across the femoral condyles and the width of the ankle across the malleoli were
measured using sliding calipers whilst the subject was supine. All anatomical landmarks
were found through manual palpation. All subjects wore shorts and T-shirt during the

dynamic rearfoot complex assessment.

Fight of the thirteen 30mm markers were attached to the subject using double sided
sticking tape. These were attached to the following sites on both limbs: anterior superior
illiac spines; lateral femoral epicondyle; lateral malleolus; and head of the fifth
metatarsal. The position of these anatomical landmarks was determined by manual
palpation. The additional five markers were all mounted on 15cm wands and attached
to the subject using straps. The most proximal was a wand mounted on and projecting
posteriorly from the sacrum. A wand was attached to the lower one third of each thigh
projecting laterally. These femoral wands were aligned in the transverse plane parallel
to a line between the lateral and medial femoral epicondyles, which were found by
manual palpation. A wand was attached approximately half way down each leg and

aligned in the transverse plane parallel to the femoral wands.

The subject was then instructed to walk around the gait laboratory for approximately 30
seconds to ensure that none of the markers or wands were too loose or too tight. When
subjects were comfortable, they were instructed to walk down the gait laboratory
walkway in time to a metronome set at 108 steps per minute. This speed was chosen
based on reports of normal walking speeds in the literature, which were summarised by

Craik and Dutterer (1993). Walking speed needed to be controlled because it influences
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the kinematics of gait and without all the subjects walking at the same speed subsequent
comparison of data between subjects is unreliable. Subjects had several practice walks
until they could consistently walk at the desired pace and consistently walk over the two
force platforms in the gait walkway. Force plate data was being collected for another
piece of research work but also gave valuable information regarding the timing of heel
strike. Only when the subjects could meet these criteria and were relaxed in the gait
laboratory did data collection start. A minimum of ten barefoot walking trials was
recorded, each starting with right foot strike of the third or fourth step and finishing five
seconds later. This gave at least one gait cycle for each limb. Additional trials were
recorded if the subject appeared not to be walking at the correct speed or if they
appeared to be targeting the force plates. At the end of the barefoot walking trials a
reference file was recorded. During this the subject stood in their relaxed standing

position for two seconds.

3.2.3 DATA PROCESSING.

3.2.3.1 Calculation of angular rotations from static rearfoot complex data.

The motion data were tracked using the MacReflex software. This enables the markers
to be numbered in a consistent pattern. For this investigation, markers 1-3 were those
on the leg, markers 4-6 were the markers on the heel and markers 7-9 those on the
forefoot. It was necessary for some parts of some of the recordings to interpolate data
where marker data were missing. This was a consequence of a marker only being seen
by one camera for a number of frames. The interpolation calculations are

predetermined by the MacReflex software and are based on a cubic spline interpolation
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routine described by Nakamura (1991). The accuracy of this interpolation process has
been tested using position data for markers on the lateral malleolus and anterior superior
illiac spine during normal walking. The mean results are presented in figure 3.18. The
results suggested that up to seven missing data points could be interpolated with a mean
error of less than 2mm. When more than seven points were interpolated, the error in the
marker data was less consistent, though often below 3mm. Following interpolation the
raw kinematic data were smoothed using an 8" order Butterworth filter with a cut off
frequency of 4Hz (Figure 3.19). The order and frequency cut off of the filter where
chosen through a trial and error process and visual comparison of the smoothed and raw
kinematic data. This combination provided the most appropriate smoothing of the raw

kinematic data without modification of the actual motion pattern.

Mean errors in the X, y and z values of the interpolated data

18.00
16.00

14.00 /

E 12.00 / X
‘é 10.00 / oy
S 8.00
g 6.00 / A -z
4.00 A AN
2.00 s ~/
0.00 . . . . . : . .

3 5 7 9 11 13 15 17

number of data points interpolated

Figure 3.18
Graph illustrates the relationship between the number of motion data
points interpolated and the mean error in the interpolated data

compared to the actual motion data, for the x, y and z co-ordinates.
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Figure 3.19

Graph of vertical co-ordinate of a marker on the leg segment, raw and filtered
data (8th order Butterworth filter set at 4hz). This marker was chosen as an
example because its actual physical displacement is small (approximately 5Smm)

and the effect of noise in the data would therefore be most evident.
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To calculate the angular rotations of the forefoot relative to the leg (rearfoot complex
motion), the heel relative to the leg (ankle/sub talar complex motion), and the forefoot
relative to the heel (mid tarsal joint motion) the three markers on each of the segments
were used to define a local co-ordinate system for each segment. The absolute angular
position of each of the segments (angular position relative to the global co-ordinate
system) was deduced using Euler rotations, calculated using the conventional rotation
sequence of rotation around the z axis (sagittal plane motion), the x axis (frontal plane
motion) and the y axis (transverse plane motion). The angles calculated were the
motion of each segment in the three orthogonal planes defined by the global co-ordinate
system. The relative motion between the segments in each cardinal body plane was
calculated by subtracting the angular position of the proximal segment of interest from
that of the distal segment of interest. Thus, the transverse plane position of the heel
relative to the leg (indicating the position of the ankle/sub talar complex) was calculated
by subtracting the transverse plane angle of the leg relative to the global co-ordinate
system from the transverse plane angle of the heel relative the global co-ordinate
system. Since the absolute angles were the motion in the three orthogonal planes
defined by the global co-ordinate system, so the relative angles were the motion in these
same planes. The anatomical body planes of each subject had been aligned with these
planes during the experimental procedure and so the absolute and relative angular data

was motion in the sagittal, frontal and transverse cardinal body planes.

It is conventional in kinematic gait analysis to use a joint co-ordinate system to define
the axes of rotation for a joint or joint complex. This approach is not appropriate for
this investigation. The joint co-ordinate system approach would produce angles

describing rotations that take place in planes perpendicular to the axes around which the
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rotations were calculated. These axes are deduced from the positions of the axes of the
local co-ordinate systems that define each segment. Typically, the flexion/extension
(sagittal plane motion) axis of the joint co-ordinate system is the z axis of the proximal
local co-ordinate system. The internal/external (transverse plane motion) axis of the
joint co-ordinate system is the y axis of the distal local co-ordinate system. The
abduction/adduction (frontal plane motion) axis of the joint co-ordinate system is a
floating axis whose position is the cross product of the z and y axes of the joint co-

ordinate system.

In this investigation, using the joint co-ordinate system would mean that the angles of
rotation for the ankle/sub talar complex would be calculated around different axes to the
angles of rotation for the rearfoot complex, and different again from those of the mid
tarsal joint. This would not allow the angular values of the three different relative
rotations to be compared, since the angles would relate to motion in different planes.
The joint co-ordinate approach is well suited to applications where the spatial
orientation of segments is moving significantly, such as during gait. However, in this
static assessment the spatial orientation of the segments is comparatively fixed. Since
this work is investigating the functional characteristics of the ankle/sub talar complex
and the mid tarsal joint, and their confn'bution to the functional characteristics of the
overall rearfoot complex, it was imperative that the relative angular motions be

comparable, and thus be calculated in the same planes.

The reference value for each of the absolute rotations (of the leg, heel and forefoot) and
the three relative rotations (ankle/sub talar complex, mid tarsal joint and rearfoot

complex) was calculated as the mean of the angular value from the reference trial. The
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reference values were then subtracted from the corresponding absolute and relative
rotation values. In this way, zero degrees in the angular rotation data represented the

relaxed standing position of that subject.

Each of the 10 trials for each limb of each subject was processed as described above.
Each of the 10 trials produced absolute angular rotations for the leg, the heel and the
forefoot, and relative rotations of the ankle/sub talar complex, the mid tarsal joint and
the rearfoot complex. As an illustration of the variability between the 10 trials,

examples are provided in figures 3.20 and 3.21.
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Figure 3.20

Ilustrates the variation in the range of rearfoot complex motion

in the frontal, transverse and sagittal planes across ten trials.
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Figure 3.21
Illustrates the variation in the range of forefoot motion

in the frontal, transverse and sagittal planes across ten trials.

3.2.3.2 Calculation of angular rotations from dynamic rearfoot complex data.

The motion data from the walking trials were tracked using the MacReflex software.
This allowed the 13 markers to be numbered in a consistent pattern. The raw kinematic
data were smoothed using a 4™ order Butterworth filter with the cut off frequency set at

6Hz (Winter et al 1974)

From the kinematic data the positions of the hip, knee and ankle joint centres were
calculated. The hip joint centre was calculated using the position of the three pelvis
markers (one on each anterior superior illiac spine and one on a sacral wand) and data

from Seidel (1995) relating pelvic width and pelvic depth to the position of the hip joint
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centre. Pelvic width was the distance between the two markers on the anterior superior
illiac spines. Pelvic depth was calculated as the distance between the mid point of the
two anterior superior illiac spines and the sacral marker, minus 10cm (the length of the
sacral wand). The location of the hip joint centre relative to the respective anterior
superior illiac spine was 14% of pelvic width medially, 34% of pelvic depth posteriorly
and 30% of pelvic width inferiorly. The knee joint centre was calculated using the
position of the hip centre, the lateral knee marker, the marker on the thigh wand and a
measure of knee width. The ankle joint centre was defined using the knee joint centre,

the lateral malleoli marker, the leg wand marker and a measure of ankle width.

Using the knee joint centre, the marker on the leg wand and the ankle joint centre a
local co-ordinate system was defined to represent the leg. The foot was defined using a

single vector between the ankle joint centre and the marker on the fifth metatarsal head

(Figure 3.22).

The transverse plane rotation of the leg relative to the foot was calculated as the angle
between the vector and the z axis of the local co-ordinate system when projected onto
the x z plane of the leg co-ordinate system. This angle was calculated for both limbs in
each of the ten recorded gait trials. An average curve for each limb was then calculated
for each subject, using heel strike as the first data point to normalise the data from the
ten separate trials. Heel strike was determined using the force plate data recorded
simultaneously with the kinematic data. Finally, the reference transverse plane angle
was calculated from the reference trial and subtracted from the averaged angular data.
By doing this 0° in the angle data represented the relaxed standing position of the

subject.

99



C.J.Nester, 1999. InVivo Quantification of the Functional Characteristics of the Rearfoot Complex. Chapter 3

‘m
¥
7
Local co-ordinate system
X Position Vector for foot
@ Reflective marker
=1 Joint centre
9o D
Figure 3.22

Definition of the local co-ordinate system for the leg and the
position vector for the foot from the dynamic rearfoot complex
data. Calculated angle was the angle between the position vector
and the z axis of the local co-ordinate system when projected onto

the xz plane of the local co-ordinate system.
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3.24 EXTRACTION OF RELEVANT DATA FROM STATIC REARFOOT

COMPLEX ASSESSMENT.

Since the literature suggests that the functional characteristics of the rearfoot joints
change during the range of motion, the range of motion in each cardinal body plane was
calculated for several predefined parts of the total range of motion of each of the
absolute and relative rotations. The parts of the total range of motion were: the dynamic

phase; the supination phase; the pronation phase; and the composite phase of motion

(Figure 3.23).

The dynamic phase of motion was the part of the total range of motion used during gait.
This was deduced using the dynamic rearfoot complex data (transverse plane rotation of
leg relative to the foot). The transverse plane motion of the leg relative to the foot
during the dynamic assessment relates to the absolute rotation of the leg during the
static assessment (section 3.2.2.2). In the dynamic assessment the motion of the leg
relative to the entire foot’(deﬁned as one segment using a vector between the centre of
the ankle joint and the fifth metatarsal head) is calculated. This is the same as the
absolute leg rotation in the static assessment because the transverse plane position of the
foot is fixed and thus represented by the global co-ordinate system. Furthermore,
because the static and dynamic assessments used the same reference position, the
relaxed standing position, the transverse plane rotation of the leg relative to this position
in the dynamic assessment can be related to the absolute transverse plane rotation of the

leg relative to this position in the static assessment.
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Rearfoot complex motion during rotation of leg from an extemally rotated
position to an internally rotated position
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Figure 3.23

Graph illustrates the range of motion in the frontal, transverse
and sagittal body planes, and the division of the total range of
motion into the composite, dynamic, supination and pronation
phases of motion, during rotation of the leg from an externally

to an internally rotated position.
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Using this relationship between the data from static and dynamic assessments, the part
of the total range of motion used during gait was identified in the static rearfoot

complex data (Figure 3.23).

The supination phase of motion was defined as the absolute motion of the leg from its
20° of external rotation position to 0° degrees position (relaxed standing position) to
(Figure 3.23). Twenty degrees was chosen because it was the maximum range that was

common to all the subjects in the sample.

The pronation phase of motion was defined as the absolute motion of the leg from its 0°
position to when it was maximally internally rotated (Figure 3.23). Maximum internal
rotation was chosen, as opposed to a fixed value such as 20°, because there is a definite
end point to the range of motion for each individual. This is not the case for the
supination range of motion because the maximum range of external leg rotation might
not be achievable because of the constraints of the mechanical rig. Also, the end point
of external leg rotation is far more subjective than that in the direction of internal leg
rotation. Although the range of motion is different in the pronation range for each

subject, the data are still comparable because the range is defined by two points that are
common to all the subjects, the 0° position and the end point of the range of internal leg

rotation.

Finally, the composite phase of motion was defined as the absolute motion of the leg

from a position of 20° externally rotated to a position of maximum internal rotation

(Figure 3.23).
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The frame number of the first and last data point in each of the four phases was
determined and these values used to determine the angular value in each cardinal body
plane at the start and end of each of the four phases for each absolute and each relative
rotation in each of the 10 trials. The range of motion in each body plane during each
phase was calculated by subtraction of one angular value from the other. For example,

if at the start of the supination phase the mid tarsal joint was everted by 8° and at the

end was everted by 17°, the range of motion during the supination phase was 9°.

The ranges of motion in each cardinal body plane for each of the three absolute and
three relative rotations were calculated for the rotation of the leg from an externally
rotated position to an internally rotated position and from an internally rotated position
to an externally rotated position. These values were then averaged to give an overall

measure of the ranges of motion.

A summary of the different steps in this stage of the data processing is presented in

figure 3.24.
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: Interpolate data
Raw motion data —> and filter

/

Calculate absolute and
relative angular rotations

v

Determine frame numbers in each trial to define composite,
dynamic, supination and pronation phases of motion

}

Extract angular values for each absolute and each relative rotation
at the specified frame numbers defining the composite,
dynamic, supination and pronation phases of motion

v

Calculate range of motion in each cardinal body plane for each of the 10 trials
of each absolute and each relative rotation, for the composite, dynamic
supination and pronation phases of motion, whilst the leg was rotated from an
externally to an intemally rotated position, from and intemally rotated to an
externally rotated position, and the average of these.

v

Calculate average range of motion (from 10 trials) in each cardinal body plane,
for each absolute and relative rotation and for each of the four phases of motion.

Final data:

Range of motion in the frontal, transverse and sagittal body planes for the

leg, heel, forefoot, ankle/subtalar complex, mid tarsal joint and rearfoot
complex, for the composite, dynamic, supination, pronation phases of motion,
and for the rotation of the leg from an externally to an intemnally rotated
position, from and intemally rotated to an externally rotated position, and

the average of these.

Figure 3.24

Flow diagram of the different stages of the processing of the data from
the static rearfoot complex assessment.
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3.2.4.1 Standardisation of angular rotations.

The angular rotations calculated to describe the motion of the segments and joints relate
to the global co-ordinate system. However, since the left and right feet were orientated
in different anterior/posterior directions in relation to the global co-ordinate system, the
positive/negative property of the angular values was different even though the
anatomical rotations were the same. For example, positive rotation around the z
(medial/lateral) axis of the global co-ordinate system would indicate plantarflexion of
the left heel, but dorsiflexion of the right heel. Similarly, positive rotation around the y
(vertical) axis of the global co-ordinate system would indicate internal rotation of the
left leg, but external rotation of the right leg. Positive rotation around the x
(anterior/posterior) axis, however, would indicate eversion of both left and right heels.
Unless some standardisation was imposed the two feet would be difficult to compare

and comparison to the literature would be difficult.

To produce results that were standardised between the left and right limbs, all angular
values were interpreted relative to a foot reference system defined for each limb. This
consisted of three orthogonal axes with the +x axis orientated from proximal to distal of
the foot, parallel to the x axis of the global co-ordinate system, a medial/lateral
orientated +z axis that was parallel to the z axis of the global co-ordinate system and in
a medial direction relative to the foot, and a vertical +y axis orientated upwards, parallel

to the y axis of the global co-ordinate system (Figure 3.25).
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Figure 3.25

Illustrates the left and right foot reference systems relative to the global co-

ordinate system and the respective feet.
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To convert the angular rotation values from the global co-ordinate system to the foot

reference system the following conventions applied:

For the left foot:

e Positive rotation around the x axis of the global co-ordinate system was positive
rotation around the x axis of the foot reference system.

e Positive rotation around tﬁe y axis of the global co-ordinate system was positive
rotation around the y axis of the foot reference system.

e DPositive rotation around the z axis of the global co-ordinate system was positive

rotation around the z axis of the foot reference system.

Positive rotation around the X, y and z axes of the foot reference system were eversion,

abduction (external rotation) and dorsiflexion respectively.

For the right foot:

o Positive rotation around the x axis of the global co-ordinate system was positive
rotation around the x axis of the foot reference system.

e Positive rotation around the y axis of the global co-ordinate system was negative
rotation around the y axis of the foot reference system.

e Positive rotation around the z axis of the global co-ordinate system was negative

rotation around the z axis of the foot reference system.

Positive rotation around the X, y and z axes of the foot reference system were eversion,

abduction (external rotation) and dorsiflexion respectively.
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By standardising the angular rotations relative to the foot reference systems, the same
motion sequence in the left and right feet (the same anatomical motion) produced the
same direction of motion around the axes of the foot reference system. Table 3.4

illustrates the effect of standardising the angular values.

Anatomical motion Direction of rotation Direction of rotation
relative to global co- relative to respective
ordinate system foot reference system
Axis of Left Right Left Right Left Right
rotation
X ever (+) ever (+) +) +) ever (1) ever (+)
Y abd (+) abd (+) ) ¢ abd (+) abd (+)
Z drflx (+) | drflx (+) ) 0] drflx (+) drflx (+)
Table 3.4

Table 3.4 illustrates the difference in the description of the angular
rotations when they are related to the global co-ordinate system and
the foot reference systems. Standardising the left and right foot data
ensures that the actual anatomical motions are correctly described.
ever = eversion, abd = abduction, drflx = dorsiflexion, add =

adduction, plflx = plantarflexion.

3.2.4.2 Data reduction.

The volume of data produced by the calculation of the angular rotations in the three
cardinal body planes for 4 phases of the range of motion, for 3 segments and 3 joint
complexes, during transverse plane rotation of the leg in two different directions, and
the average of the rotations in two different directions, for 48 limbs, was considerable.
Using the averaged data from each subject (averaged from up to 10 trials) the total

number of data was 10368. The rotations in the three cardinal body planes
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were to be used to calculate an axis of rotation for each segment and joint complex
(described in next section 3.2.5). This generates a further 6912 data, producing a total
of 17280 data. Such a large volume of data were difficult to analyse and interpret. To
ease data analysis, the data from the rotation of the leg from an externally rotated
position to an internally rotated position, and from an internally rotated position to an
externally rotated position was not used, but instead the average of these was used.
Only this averaged data were used to calculate the axes of rotation of the segments and
joint complexes. This reduced the volume of data by two thirds. The total number of
angular rotation values was 3456 and the total number of values describing the axes of

rotation subsequently calculated was 2304, producing a total of 5760 data items.

The fact that the characteristics of rearfoot motion were the same during rotation of the
leg from an externally rotated position to an internally rotated position, and from an
internally rotated position to an externally rotated position was confirmed by Benick
(1985). This work was described in chapter 2 (section 2.3.2.3, figure 2.9 and 2.10) to
validate the kinematic chain concept. Benick stated that the pattern of rotation of the
individual segments in the rearfoot was identical during the rotation of the tibia in the
two different directions, although the direction of motion was obviously reversed. This
pattern was also illustrated in the data calculated in this investigation. The range of
motion in each cardinal body plane was essentially identical during the rotation of the
leg from an externally to an internally rotated position, as it was during the rotation of
the leg from an internally rotated to an externally rotated position. Since this was the
case, the functional characteristics could reliably be described using the data averaged
from the rotation of the leg in the two directions. A case of a single subject is presented

to confirm this (Table 3.5, figures 3.26 to 3.31).
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Difference between EXT to INT and INT to EXT
SUBJ 11 Range of Motion (°) Angle (°) of axis to
LEFT Frt Trn Sag Trn Sag
Leg 03 0.0 1.3 1.0 11.7
0.3 0.2 0.5 2.2 10.8
0.3 0.0 0.6 1.0 19.0
0.6 0.1 0.7 14 8.4
Forefoot 2.1 1.1 1.2 5.6 2.0
0.4 0.8 0.8 15.7 11.3
0.8 0.3 03 2.1 0.1
1.3 0.8 0.9 13.0 8.9
Heel 0.6 0.8 03 1.3 1.6
0.0 1.2 04 24 23
0.0 0.7 0.4 1.8 4.9
0.6 0.1 0.6 2.7 19.2
Ank/Stj 0.3 0.8 1.0 1.6 40.1
0.3 1.0 0.1 2.9 4.5
03 0.7 0.2 1.9 3.5
0.0 0.1 0.8 0.3 12.2
MTJ 2.7 0.2 1.0 4.5 2.8
04 0.3 0.5 7.8 3.9
0.8 0.4 0.1 3.5 42
1.9 0.6 1.1 5.7 4.0
RFC 24 1.0 0.1 2.0 5.7
0.7 0.7 04 3.0 2.9
0.5 0.3 0.3 0.2 2.7
1.9 0.7 0.2 33 28.5
Mean 0.7 0.5 0.6 3.6 9.0
Max 2.7 1.2 1.3 15.7 40.1
Min 0.0 0.0 0.1 0.2 0.1
Range 2.7 1.2 1.2 15.5 40.0
Table 3.5

Table details the differences in the range of motion and
orientation of the axis of rotation between the rotation of
the leg from an externally rotated to an internally rotated
position and rotation of the leg from an internally rotated
to an externally rotated position.

EXT = external rotated, INT = internally rotated.
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Subject 11 - left leg

Frames (50/second)

=== Frontal == Transverse == Sagittal

Figure 3.26
Range of leg motion in the cardinal body planes. Starts with the leg
externally rotated, leg internally rotates and then returns to externally

rotated position.
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Figure 3.27
Range of heel motion in the cardinal body planes. Starts with the leg
externally rotated, leg internally rotates and then returns to externally

rotated position.
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Subject 11 - left forefoot

=00 frames (50/second)
== Frontal = Transverse = Sagittal

Figure 3.28
Range of forefoot motion in the cardinal body planes. Starts with the leg
externally rotated, leg internally rotates and then returns to externally
rotated position.

Subject 11 - left Ankle/Stj

45.0 - Frames (50/second)

=== Frontal = Transverse = Sagittal

Figure 3.29
Range of ankle/sub talar complex motion in the cardinal body planes.
Starts with the leg externally rotated, leg internally rotates and then returns
to externally rotated position.
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Subject 11 - left MTJ
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Figure 3.30
Range of mid tarsal joint motion in the cardinal body planes.
Starts with the leg externally rotated, leg internally rotates and then returns
to externally rotated position.
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Figure 3.31
Range of rearfoot complex motion in the cardinal body planes.
Starts with the leg externally rotated, leg internally rotates and then returns
to externally rotated position.
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3.2.5 CALCULATION OF THE AXIS OF ROTATION FROM THE STATIC

REARFOOT COMPLEX DATA.

To provide a single quantitative measure of the functional characteristics of the absolute
and relative angular rotations an axis of rotation was calculated for each. The method
of axis calculation was identical to that used by Downing et al (1978). This method
calculates an axis of rotation relative to three orthogonal planes (cardinal body planes in

this instance) using a measure of the angular rotation in each plane.

The calculation of the axis of rotation is based on the assumption that the proportion of
motion displayed in the three cardinal body planes is related to the angulation of the
axis around which those rotations took place relative to the cardinal body planes. For
example, if a joint displays solely sagittal plane motion the axis around which this
motion took place must be angled 90° to the sagittal plane, and lie in the frontal and
transverse planes. Conversely, if a joint displays solely frontal plane motion the axis
around which the motion took place must be angled 90° to the frontal plane and lie in
the sagittal and transverse planes. This illustrates a further concept that the greater the
proportion of motion displayed in any 6f the three planes, the greater the angle between
the axis of rotation and that plane. Conversely, the smaller the proportion of motion
displayed in any of the three planes, the smaller the angle between the axis of rotation
and that plane. If an axis of rotation is found to make no angle to a plane then rotation

around that axis will display no motion in that plane.

The rotations in each cardinal body plane take place around an axis that is perpendicular

to that plane. Frontal plane motion occurs around the x axis (anterior/posterior axis) of
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the co-ordinate system defining the body planes, sagittal plane motion around the z axis
(medial/lateral axis), and transverse plane motion around the y axis (vertical axis).
Since the motion in each plane occurs around an axis of the co-ordinate system, the
magnitude of angular motion in each plane can be represented by a vector directed in
each of the x, y and z directions. A vector in the x direction represents motion in the
frontal plane, a vector in the z direction represents motion in the sagittal plane and a

vector in the y direction represents motion in the transverse plane.

Downing et al (1978) described how these three vectors could be used to construct right
angled triangles with the three cardinal body planes. The vectors representing the
frontal and sagittal plane motions can be used to calculate the angle of a fourth vector
(representing the axis of rotation) relative to the sagittal plane when projected onto the
transverse plane. This represents the angle between the axis of rotation and the sagittal
plane, projected onto the transverse plane (Figure 3.32). Hereafter, this angulation is
referred to as the angle of the axis of rotation to the sagittal plane. When this angle is
known, the angle between the fourth vector (axis of rotation) and the transverse plane

can be calculated (Figure 3.32).
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Y

X

-Y
AB = Vector representing motion in frontal plane

AD = Vector representing motion in the sagittal plane

AE = Vector representing motion in the transverse plane

AE = axis of rotation

AC = Vector representing the axis of rotation projected onto the transverse plane.

o = angle of axis to sagittal plane, B = angle of axis to transverse plane

Figure 3.32
Illustration of the relationships between axes of rotation of the global co-ordinate
system (X, Y and Z), the cardinal body planes (sagittal, frontal and transverse
planes) and the orientation (angulation) of the axis of rotation (AE') calculated

using the range of motion in each of the three planes.
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The following example is for the triplanal motion of a body segment relative to the
cardinal body planes. The range of motion in the frontal plane is 20° (eversion), in the

sagittal plane -20° (plantarflexion), and in the transverse plane is 30° (abduction).

Calculation of angle between the axis of rotation and the sagittal plane (refer to figure

3.33):

e Since ABC is aright angled triangle, a can be calculated using the tangent function.

e Tan a = opposite/adjacent = BC/AB =-20/20 =-1

e To find o, we need the arctangent of -1 = tan™ (1) =-45.0°
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»
N

AD=-20
o =45 degrees

-X
AB = Vector representing the range of motion in frontal plane

AD = Vector representing the range of motion in
sagittal plane

AC = Vector representing axis of rotation
o = angle between axis of rotation

and sagittal plane

Figure 3.33

Illustrates calculation of the angle between axis of rotation and the

sagittal plane. Axes X and Y are those of the global co-ordinate system.

Vectors AB and AD represent the range of motion around these axes.
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Similarly, the angle between the axis of rotation and the transverse plane can be

calculated by constructing a further right angled triangle.

Calculation of the angle between the axis of rotation and the transverse plane (refer to

figure 3.34):

e Since CAE is a right angled triangle, B can be calculated using the tangent
function.
e Tan P = opposite/adjacent = CE'/AC

e Since AC is the hypotenuse of the right angled triangle ABC, AC can be found by

solving the following: AB%+BC% = AC?
(20) + (20)2 = AC?

800 = AC?

28.2842 =AC

e Since CE' =AE, CE'=30
e Tanp =30/28.2842=1.06

e the arctangent of 1.06 = tan™ (1.06) = 46.7°

In this example the axis of rotation is angled —45.0° relative to the sagittal plane and

46.7° to the transverse plane.
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AB = Vector representing the range of motion in the frontal plane

AD = Vector representing the range of motion in the sagittal plane
AE = Vector representing the range of motion in the transverse plane
AE' = Axis of rotation

AC = axis of rotation projected on to the transverse plane.

Figure 3.34

Illustrates the vector AB, AD and AE in relation to the global co-ordinate system
X, Y and Z. AE'is the axis of rotation for the motion which the vectors AB, AD
and AE represent. The angle between the axis of rotation and the sagittal plane

is o, the angle between the transverse plane and the axis of rotation .
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3.2.5.1 Validation of axis calculations.

Since the ‘rules’ governing the relationship between the proportion of motion displayed
in each of three orthogonal planes and the angulation of the axis of rotation relative to
these planes are known, inputting false data into the equations allows the method to be

validated.

Using the method described false data were input to the equations and the angulation of
the axis of rotation to the sagittal and transverse planes calculated (table 3.6). The
values of 10° were chosen randomly and the total range of motion around the axis (in a
plane perpendicular to it) was unknown. Due to the division component of the
equations, 0° could not be input as the range of motion in a plane and 0.0001° was used

to indicate no motion in that plane.

Motion in Angle of axis
Motion in transverse Motion in Angle of axis  to transverse
sagittal plane plane frontal plane  to sagittal plane plane
(known) (known) (known) (calculated) (calculated)
0.0001 10 10 0.0005 44,9941
10 0.0001 10 44.9417 0.0004
10 10 ~0.0001 89.9877 44,9941
Table 3.6

Table details the calculated angle between the axis of rotation and
sagittal and transverse planes from the false data. Systematically,
the motion in each plane was considered to be zero. When this
condition is true the angle between the axis of rotation and that

plane should be 0°.
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Clearly, and in accordance with the ‘rules’ governing these relationships, if there is no
motion (or effectively none (0.0001°)) in the sagittal plane, the axis of rotation for the
motion lies in that plane (or makes a very small angle to it (0.0005°)). If there is no
motion (or effectively none (0.0001°)) in the frontal plane, the axis of rotation for the
motion lies in that plane (or makes a very small angle to it (0.0123°)). If there is no
motion (or effectively none (0.0001°)) in the transverse plane, the axis of rotation for
the motion lies in that plane (or makes a very small angle to it (0.0004°)). Furthermore,
when the motion in the transverse and frontal planes is equal, the axis lies mid way
between these planes. When the motion in the sagittal and frontal planes is equal, the

axis lies mid way between these planes.

The validity of these calculations can be further confirmed by reversing the calculation,
so that the angulation of the axis is known and the proportion of motion in each plane is

calculated (table 3.7).

trom = total range of motion
e Range of transverse plane motion
= trom x sin (angle between transverse plane and axis of rotation)
e Range of frontal plane motion
= trom x cos (angle between sagittal plane and axis of rotation) x cos
(angle between transverse plane and axis of rotation)
¢ Range of sagittal plane motion
= trom X sin (angle between sagittal plane and axis of rotation) x cos

(angle between transverse plane and axis of rotation)
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Motion in Motion in Motion in Angle of axis ~ Angle of axis to
sagittal plane  transverse plane  frontal plane to sagittal plane transverse plane
(calculated) (calculated) (calculated) (known) (known)
0.00006 7.07033 7.07179 0.0005 44,9941
7.06386 0.00006 7.07825 449417 0.0004
7.07179 7.07033 0.00158 89.9877 44.9941
Table 3.7

Motion in sagittal, transverse and frontal planes calculated for 10
degrees of motion around an axis of rotation of known angulation to

the sagittal and transverse planes.

Clearly, the axis orientations calculated through the trigonometry method produce
correct results when the calculations are reversed. The motions in the frontal and
transverse planes are effectively equal when the angle between the axis and these two
planes is equal. The motions in the frontal and sagittal planes are effectively equal when
the angle between the axis and these two planes is equal. When the axis is effectively

parallel to a plane (0.0005°, 0.0004°) the motion in that plane is effectively 0°

(0.00006°, 0.00158°).

The discrepancy between the range of motion values in table 3.6 and table 3.7 (10°
versus 7.07°) is because the range of motion around the axis in the calculation of data in
table 3.6 was unknown. Clearly, it is greater than the 10 degrees used for the

calculations in table 3.7.
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3.2.6 SUMMARY OF FINAL DATA CALCULATED.

The following data were calculated for each of the 48 limbs:

e The range of motion in the frontal, transverse and sagittal cardinal body planes for
the absolute rotations of the leg, heel and forefoot, and the relative rotations of the
ankle/sub talar complex, the mid tarsal joint and the rearfoot complex. All values
were relative to the foot reference systems and angular values were averaged from
the rotation of the leg from an externally rotated position to and internally rotated

position and from an internally rotated position to an externally rotated position.

e These ranges of motion were calculated for the composite, dynamic, supination and

pronation phases of motion.

o The relationship between the different phases of motion in each plane was further

described by expressing them as a ratio.

From the ranges of frontal, transverse and sagittal plane motion the following data were

calculated:

o Axes of rotation for the absolute rotations of the leg, heel and forefoot, and the

relative rotations of the ankle/sub talar complex, the mid tarsal joint and the rearfoot

complex, for the composite, dynamic, supination and pronation phases of motion.
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CHAPTER 4

RESULTS
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4.1 INTRODUCTION.

This chapter is divided into two sections. The first section details the results of the
dynamic rearfoot complex assessment. This describes the transverse plane motion of
the leg relative to the foot during gait for each of the 25 subjects. The second section
details the results of the static rearfoot complex assessment. Only the mean numeric
data (representing the whole sample of 25 subjects) from the static assessment is
presented in this chapter. The numerical data from the individual subjects in listed in

appendix 1.

4.2 DYNAMIC REARFOOT COMPLEX ASSESSMENT.

The mean angular data curve for a single gait cycle (calculated from both left and right
limbs of all subjects) is illustrated in figure 4.1. The angular data showed a consistent
pattern throughout the sample. The rearfoot complex was supinated relative to its
position in relaxed standing prior to heel strike and pronated immediately after heel
strike to a position more pronated than the relaxed standing position. The leg externally
rotated relative to the foot (rearfoot complex supination) during the mid stance and
terminal phases of stance. During swing phase the rearfoot complex initially pronated
and then moved to a supinated position. The mean data was characterised by the
rearfoot complex being both supinated and pronated relati\VIe to is relaxed standing

position during different phases of gait.
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The total range of transverse plane motion of the leg relative to the foot (which was to
be used in the processing of the static rearfoot complex assessment data) was calculated
as the difference between the angular value at maximum rearfoot complex pronation
(Angl) and the angular value at maximum rearfoot complex supination (Ang2) (Figure

4.1).

The Angl and Ang2 values and the total range of transverse plane rearfoot complex
motion for each subject, are detailed in table 4.1 and illustrated in figure 4.2. For some
subjects the maximum supinated position (Ang2) occurred at heel strike, not during the
terminal phase of stance as the mean data suggests. This was because the rearfoot
complex did not supinate past this position during the terminal phase and the maximum

angular value during the terminal phase was less than that at heel strike.
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LEFT RIGHT
SUBJ | Angl Ang2 ROM | Angl Ang2 ROM
1 -9.2 6.0 15.2 -3.1 17.9 21.1
2 -9.6 16.1 25.7 0.0 0.0 *
3 -13.7 10.6 242 -5.4 12.9 18.3
4 -8.0 4.9 12.9 -5.6 12.2 17.8
5 -10.5 7.9 18.4 -2.8 18.2 21.0
6 -7.3 4.4 11.7 -5.0 10.3 15.2
7 -9.6 16.4 26.0 -6.1 18.3 244
8 -8.4 8.7 17.1 -1.2 16.9 18.1
9 -7.7 9.7 17.4 -3.6 14.1 17.7
10 -9.4 11.6 20.9 2.0 14.2 16.2
11 -10.8 3.1 13.9 -74 2.8 10.2
12 -19.8 -1.7 18.2 -13.0 16.8 29.8
13 -13.7 1.3 15.0 9.3 6.6 15.9
14 -5.0 9.0 13.9 =23 133 15.5
15 -7.5 8.8 16.3 -6.1 10.9 17.0
16 -7.4 7.3 14.7 -8.6 13.4 22.0
17 -7.1 10.1 17.3 -5.8 7.7 13.5
18 -34 13.3 16.7 -2.0 18.6 20.6
19 -8.3 52 13.5 -7.6 9.8 17.5
20 -6.0 5.9 12.0 -6.6 7.8 144
21 2.0 13.3 11.3 -0.6 11.0 11.6
22 -10.0 8.8 18.8 -5.9 14.8 20.7
23 -16.1 6.7 22.8 -10.8 134 242
24 -9.7 3.2 12.9 -1.7 9.9 17.6
25 -8.3 4.8 13.0 -6.0 8.4 14.3
Mean -9.0 7.8 16.8 -5.6 12.5 18.1
SD 4.1 4.4 43 32 438 44
Min -19.8 -1.7 11.3 -13.0 2.8 10.2
Max 2.0 16.4 26.0 -0.6 18.6 29.8
Range 21.8 18.0 14.7 12.5 15.8 19.7

Table 4.1
Table details the value of Angl and Ang2, and the total range of transverse
plane motion (ROM) of the leg relative to the foot for each limb of each
subject. Negative values indicate that the leg was internally rotated relative
to its position at relaxed standing (rearfoot complex was pronated), and
positive values indicate that the leg was externally rotated relative to its
position in relaxed standing (rearfoot complex supinated). The right leg of
subject 2 was excluded because it differed greatly from the general trend

(see full explanation in text).
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The angular values for the right limb of subject 2 were considerably different to the rest
of the sample, despite the pattern of motion being similar. The rearfoot complex was
pronated relative to the relaxed standing position throughout the gait cycle. The data
from this subject are presented in figure 4.3. The degree to which these data differed
from the sample as a whole, and from the left limb data of subject 2, questions its
validity. It is conceivable that the reference angle for the right limb of this subject was
invalid. The degree of error in the reference angle required to produce such a difference
could be a consequence of a reference file not being retaken after a marker had fallen
off and been reattached. Since the validity of the angular values was questionable the

dynamic data for the right limb of subject 2 were excluded from all further analysis.

Transverse plane motion of the leg relative to the foot during
stance - Subject 3

200 -
10.0 1

0.0
-10.0 1 | ‘ s

Angle (degrees)

200 - .. _ e
-30.0 - ) .

-40.0 - Time (50th of a second)

lef  ----- right

Figure 4.3

Transverse plane motion of the leg relative to the foot of
the left and right limbs of subject 2. The 0 degrees line
represents the relaxed standing position. The left limb
data are similar to that of the rest of the sample. The
right limb data are similar in terms of the pattern, but the
actual angular values suggest that the foot was constantly
pronated. These data are inconsistent with that of the rest

of the sample and were excluded from further analysis.
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4.3 STATIC REARFOOT COMPLEX ASSESSMENT.

To maintain clarity and continuity within the main text, only the mean values from the
whole sample are detailed in this chapter. Tables 4.3 to 4.14 detail the mean ranges of
motion in each cardinal body plane, the standard deviations of these values, the mean
angulation of the axis of rotation, the ratio of the mean ranges of motion and the
angulation of the axis of rotation calculated from the mean ranges of motion, for each of
the absolute rotations of the leg, heel and forefoot (forft) and the relative rotations of the
ankle/sub talar complex (Ank/Stj), the mid tarsal joint (MTJ) and the rearfoot complex
(RFC). Each of these are listed for the four phases of the range of motion: composite
(comp); dynamic (dyn); supination (supi); and pronation (pron). These are the mean
values from the whole sample of 25 subjects for the left limb and 23 subjects for the
right limb. The data for the right limbs of subjects 6 and 23 could not be used because

there was no valid reference file.

The individual data for the ranges of motion in each of the cardinal body planes
displayed by the leg, forefoot, heel, ankle/sub talar complex, mid tarsal joint and
rearfoot complex of each subject during the static rearfoot complex assessment are
detailed in tables Al.1 to A1.84 in appendix 1. The standard deviations of the range of
motion values, the ratios of the motions in the three planes, and the axes of rotation for

each of the segments and joint complexes are also detailed in these tables.
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The anatomical meaning of the positive and negative properties of the angular values

are described in table 4.2.
Segment/joint complex motion Segment/joint complex motion
during rotation of leg from an during rotation of leg from an
externally rotated position to an | internally rotated position to an
internally rotated position externally rotated position
Property

ofrange | Frontal Transverse Sagittal | Frontal  Transverse Sagittal
of motion

Positive | eversion  external dorsi- | inversion internal plantar-
(+ve) rotation  Flexion rotation flexion
Negative | inversion  internal  plantar- | eversion external dorsi-
(-ve) rotation  flexion rotation flexion
Table 4.2

Explains the relationship between the positive and negative property
of the range of motion values, and the anatomical motion of the
segment/joint complex during the rotation of the leg in the two
different directions. Relates to the data in tables 4.3 to 4.14 and the
tables in appendix 1 and 2.

It was necessary to designate some convention because if the sign of the actual angular
values calculated had been used it would produce erroneous data. For example, 12° of
eversion during absolute internal rotation of the leg had a positive sign (+12°) and 10°
of inversion during absolute external rotation of the leg had a negative sign (-10°). The
average of these would be 0.5°, whereas the actual range of motion of interest is 11°.
Thus, to produce sensible results the sign of the data during absolute external rotation of
the leg was reversed. The positive and negative signs of the data in this chapter and in
the appendices now refer to the coupling of motion in a particular plane. Positive

frontal plane motion refers to the coupling of eversion with absolute internal rotation of
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the leg and inversion with absolute external rotation of the leg. Negative frontal plane
motion refers to the coupling of inversion with internal rotation of the leg and eversion

with external rotation of the leg.

For example, the mean left ankle/sub talar complex displayed 7.2° of frontal motion,
27.4° of transverse plane motion and —1.4° of sagittal plane motion during the
composite phase. Thus, the heel everted, externally rotated and plantarflexed relative to
the leg during internal rotation of the leg, and inverted, internally rotated and

dorsiflexed relative to the leg during external rotation of the leg.

The angulation of the axes of rotation relative to the transverse and sagittal planes for
each segment and each joint complex are illustrated in figure 4.4 to 4.9 (for composite
phase of motion). These are calculated from the mean range of motion in each of the
cardinal body planes, as opposed to being the mean of the axes in the sample. This
practice was adopted because if the axes in the sample had different positive/negative
properties the mean axis calculated might not represent the typical motion taking place.
The composite phase of motion was chosen because it is an indicator of the overall
functional characteristics of the segment or joint complex, and is generally more
comparable to those characteristics reported in the literature. The sign convention

relates to the foot reference systems described in section 3.2.4.1.
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The Leg

57.0°

left limb
right limb
Figure 4.4

Rotating segment

Mean axis of rotation of the left and right leg, projected on transverse and sagittal plane
images of a left foot (calculated from mean range of motion in 3 cardinal body planes).
Angles relate to the angulation of the axis to the sagittal and transverse planes. Anatomical

position was not calculated, and is assumed from work by Van Langelaan (1983) and Benick
(1983).

140



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex. Chapter 4

The Heel

left limb
right limb

Rotating segment

Figure 4.5

Mean axis of rotation of the left and right heel, projected on transverse and sagittal plane
images of a left foot (calculated from mean range of motion in 3 cardinal body planes).
Angles relate to the angulation of the axis to the sagittal and transverse planes. Anatomical
position was not calculated, and is assumed from work by Van Langelaan (1983) and Benick
(1983).
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The Forefoot

152° f 1471°

-9'4“
-2.9°

left limb
right limb

Rotating segment

Figure 4.6

Mean axis of rotation of the left and right forefoot, projected on transverse and sagittal plane
images of a left foot (calculated from mean range of motion in 3 cardinal body planes).
Angles relate to the angulation of the axis to the sagittal and transverse planes. Anatomical
position was not calculated, and is assumed from work by Van Langelaan (1983), Benick
(1983).
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The Ankle/Sub Talar Complex

-11.2°

left limb EEE Proximal segment
right limb

Distal segment
Figure 4.7
Mean axis of rotation of the left and right ankle/sub talar complex, projected on transverse
and sagittal plane images of a left foot (calculated from mean range of motion in 3 cardinal
body planes). Angles relate to the angulation of the axis to the sagittal and transverse planes.
Anatomical position was not calculated, and is assumed from work by Van Langelaan (1983)
and Benick (1983). See section 5.3.5.5 for explanation of differeces between left and right.
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The Mid Tarsal Joint

25.9°

32.2°

left limb
right limb

Proximal segment

Distal segment

Figure 4.8

Mean axis of rotation of the left and right mid tarsal joint, projected on transverse

and sagittal plane images of a left foot (calculated from mean range of motion in 3 cardinal
body planes). Angles relate to the angulation of the axis to the sagittal and transverse planes.
Anatomical position was not calculated, and is assumed from work by Van Langelaan (1983),
Benick (1983) and Lundberg and Svensson (1993).
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The Rearfoot Complex

left limb BB  Proximal segment \\
right limb

Distal segment
Figure 4.9
Mean axis of rotation of the left and right rearfoot complex, projected on transverse
and sagittal plane images of a left foot (calculated from mean range of motion in 3 cardinal
body planes). Angles relate to the angulation of the axis to the sagittal and transverse planes.

Anatomical position was not calculated, and is assumed from work by Van Langelaan (1983)
and Benick (1983).
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The range of motion in each cardinal body plane during the composite range of motion
for each segment and joint complex and for each individual subject is illustrated
graphically in figure 4.10 to 4.15. This represents all the composite range of motion

data detailed in appendix 1.
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The angulation of the axis of rotation for the composite range of motion for each
segment and joint complex and for each individual subject is illustrated graphically in
figure 4.16 to 4.21. This illustrates all the axis of rotation data for the composite range

of motion detailed in appendix 1.
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The ratios indicating the relative values of frontal, transverse and sagittal plane motions
during the composite range of motion for each relative rotation for both left and right
limbs of each subject are detailed in figures 4.22 to 4.24. This illustrates the ratio data

for the composite phase of motion for the relative rotations detailed in appendix 1.
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4.3.1 REPEATABILITY OF STATIC REARFOOT COMPLEX ASSESSMENT.

Tables 4.15 and 4.16 detail the mean differences (of all four subjects) between the
ranges of motion in each cardinal body plane and axis orientations measured on two
separate days. This is a summary of the data presented in appendix 2. The range of
motion in each cardinal body plane and the axis of rotation subsequently calculated for
each absolute and each relative rotation, for each phase of motion and for the four
subjects used in the repeatability assessment are detailed in tables A2.1 to A2.12 in
appendix 2. The differences between the ranges of motion and axis orientations
measured on two separate days for each of the absolute and relative rotations, for each
of the four phases of motion and for each of the four subjects are detailed in table A2.13

to A2.24 in appendix 2.

The repeatability of the results was assessed in terms of the absolute differences
between days in the motion data and the resultant differences between days in the
calculated axis orientation data. The results were not subjected to statistical analysis.
Whilst the motion data could have been subjected to statistical testing this would not
have assessed whether the functional characteristics of the segments and joints was
different between days, because the motion data could be different between days but the
functional characteristics the same. For example, if the input rotation (transverse plane
motion of the leg) were different between days, this would prc;duce different ranges of
motion within the segments of the rearfoot kinematic chain between days (tables A2.13
and A2.19). However, the functional characteristics, represented by the proportion of
motion displayed in each plane, the order of predominance (see glossary) and the

orientation of the axis of rotation, should be repeatable even though the absolute ranges
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of motion were different. Also, the range of motion was sometimes very small,
particularly in the sagittal plane, and even differences between days of less than 1° can
be statistically significant in such instances. This does necessarily imply, however, that

the difference is significant in experimental or clinical terms.

In the vast majority of instances the difference between days in the ranges of motion
was below 1.5°, which should be considered acceptable. The repeatability of the axis of
rotation data was also acceptable. The relationship between the difference between
days in the range of motion in each plane and the resultant difference between days in
the orientation of the axis of rotation is complex. There were some instances when the
difference between days in the ranges of motion was very small, but the difference
between days in the axis orientation was relatively large (left mid tarsal joint of subject
22, dynamic phase, table A2.23). Conversely, there were instances when the difference
between days in the ranges of motion was relatively large but the difference between
days in the axis orientation was small (right rearfoot complex of subject 25, composite
phase, table A2.18). This is caused by two additional factors. Firstly, the magnitude of
the difference between days is important as a propoftion of the range of motion being
measured. Secondly, the range of motion between days can differ without the

functional characteristics of the motion being different.
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4.3.2 COMPARISON OF THE FOUR PHASES OF MOTION (COMPOSITE,

DYNAMIC, SUPINATION AND PRONATION).

The variation in the ratios of frontal, transverse and sagittal plane motion at the
ankle/sub talar complex, the mid tarsal joint and the rearfoot complex between the four
phases of rotation is illustrated in figures 4.25 to 4.30. These are mean data (for the
whole sample) taken from tables 4.3 to 4.14 in this chapter. The variation in the ratios
between phases for each subject is detailed in appendix 1. These illustrate how the
functional characteristics of the rearfoot joints change during different parts of the total

range of motion.
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Ratio of frontal, transverse and sagittal plane Ankle/Stj
complex motion (left limb).
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Figure 4.25
Mean ratio of frontal, transverse and sagittal plane ankle/sub talar

complex motions during the four phases of rotation - left limb only.

Ratio of frontal, transverse and sagittal plane Ankle/Stj
complex motion (right limb)
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Figure 4.26
Mean ratio of frontal, transverse and sagittal plane ankle/sub talar

complex motions during the four phases of rotation - right limb only.
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Ratio of frontal, transverse and sagittal plane MTJ motion
(left limb)
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Figure 4.27
Mean ratio of frontal, transverse and sagittal plane mid tarsal joint

motions during the four phases of rotation - left limb only.

Ratio of frontal, transverse and sagittal plane MTJ motion
(right limb)
1.2 .

1.0 1.0 1.0 1.0 1.0
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Phase
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Figure 4.28
Mean ratio of frontal, transverse and sagittal plane mid tarsal joint

motions during the four phases of rotation - right limb only.
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Ratio of frontal, transverse and sagittal plane RFC motion

(left limb)
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Figure 4.29
Mean ratio of frontal, transverse and sagittal plane rearfoot complex
motions during the four phases of rotation - left limb only.

Ratio of frontal, transverse and sagittal plane RFC motion
(right limb)
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Figure 4.30
Mean ratio of frontal, transverse and sagittal plane rearfoot complex

motions during the four phases of rotation - right limb only.
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CHAPTER S

DISCUSSION
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5.1 INTRODUCTION.

This chapter will discuss the relevant points with regard to the results presented in
chapter 4. The results of the dynamic rearfoot complex assessment will be discussed

first, followed by the results of the static rearfoot complex assessment.

5.2 DYNAMIC REARFOOT COMPLEX ASSESSMENT.

The mean total range of transverse plane motion of the leg relative to the foot for the
left and right limbs (Table 4.1) is reasonably consistent with the data from Kadaba et al
(1990). They reported a mean of 15.7° from a sample of 40 subjects walking at a
slightly faster cadence than in this study (112 steps/minute for men, 115 steps/minute
for women). This value is reasonably close to the mean of 16.8° for the left limb and

18.1° for the right limb in this study.

There were considerable individual variations within the sample of 47 limbs (Figure
4.2). The right limb of subject 12, for example, displayed almost 3 times the range of
motion displayed by subject 11 (29.8° and 10.2° respectively). The left limb of subject
7 displayed almost 2.5 times the range of motion displayed by subject 21 (26.0° and
11.3° respectively). The standard deviation for both limbs was 4.3°. These are similar
to the standard deviation that can be estimated from Kadaba et al (1990) (approximately
6.25°, taken from graph), and to other work describing the dynamic motion of the
rearfoot joints. Benedetti et al (1998) for example, described a mean total range of
frontal plane ankle/sub talar motion of 13.3° in a sample of 20 subjects, with a standard

deviation of 5.02°.
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The Angl and Ang2 values in table 4.1 are consistent with the literature in that the
maximum pronated position generally occurred when the rearfoot complex was
pronated relative to its position in relaxed standing, and the maximum supination angle
generally occurred when the foot was supinated relative to its position in relaxed
standing (Kadaba et al 1990, Scott and Winter 1991, Cornwall and McPoil 1995,
Mannon et al 1997, Benedetti et al 1998, Nawoczenski et al 1998). This characteristic
of the rearfoot complex (being both pronated and supinated relative to its position in
relaxed standing at some time during stance) was displayed in all but two subjects (left

limb of subjects 12 and 21).

The variation within the sample in the range of transverse plane motion of the leg
relative to the foot and the variation in the values of Angl and Ang2 relative to the
reference position, illustrate the importance of using data that are specific to each
subject. It would not, for example, be appropriate to use the mean Angl and Ang2
values to define the dynamic phase of motion in the static assessment data for each
individual in the sample, since Angl and Ang2 values varied considerably. Some
subjects displayed Angl and Ang2 values that illustrated that their rearfoot complex
displayed more pronation in relation to the reference position than supination (left limb
subject 13). Other subjects, however, displayed more supination relative to the
reference position than pronation (left limb subject 18). Other subjects displayed a

balance of supination and pronation (left limb subject 9).

Overall the mean range of motion values, the values of Angl and Ang2 and the

variations within the sample are consistent with available literature.
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5.3 STATIC REARFOOT COMPLEX ASSESSMENT.

This section of the discussion will deal with each of the absolute rotations (leg, heel and
forefoot) and each of the relative rotations (ankle/sub talar complex, mid tarsal joint and
rearfoot complex) separately. Firstly, however, the repeatability of the static assessment

will be addressed.

Throughout the remainder of this thesis the term order of predominance is used to
indicate the relative values of the ranges of motion in the frontal, transverse and sagittal
body planes. The first in the order of predominance is the plane in which the largest
range of motion took place, the second the plane in which the second largest range of
motion took place and the third the plane in which the smallest range of motion took

place. For example, if the heel moved 14° in the frontal plane, 25° in the transverse

plane and 3° in the sagittal plane the order of predominance would be transverse, frontal

and sagittal plane motion.

53.1 REPEATABILITY OF THE STATIC REARFOOT COMPLEX

ASSESSMENT.

‘A reliable measurement is expected to produce the same measure of a particular
characteristic on two different occasions, provided that the characteristic being
measured does not change. Repeatability is the degree to which this is achieved.
Repeatability is one component of reliability, the other being validity. The validity of a
measurement is the degree to which the measurement represents the true value of the

characteristic being measured. Issues relating to the validity of measurements in this
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study are addressed a discussion of the limitations of this study in points 4, 5 and 6 in

section 5.5.

The mean difference between days in the angular data, reported in tables 4.15 and 4.16,
suggests a good level of agreement between the measures taken on different days (range
of mean difference between days was 0.7° — 1.0°). These mean values, however, do not
reflect the wide variation in the differences between measurements taken on different
days. A realistic description of the differences might be that, in general, the differences

between measurements taken on different days are below 1.5°, can be as low as a

fraction of a degree (0.1°) and rarely exceed 3.0°.

It is important to put the difference between days in the measured range of motion into
context. The range of motion being measured, particularly in the sagittal plane, was
often very small (less than 2°). With such small movements even differences of 1.0° in
the range of motion measured on different days can have a significant effect on the
subsequent description of the joint characteristics. This is because the difference is
large as a proportion of the range of motion. This has a particularly significant effect on
the orientation of the axis of rotation calculated from the range of motion. The range of
motion for the right heel of subject 22 illustrates this fact. The difference between days
in the ranges of motion in the supination phase and difference between days in the
ranges of motion in the pronation phase were very small, and all were below 1° (Table
A2.14). The difference between days in the angulation of the axes of rotation for the
heel for the supination and pronation phases, however, is very different. The difference
in the angulation of the heel axis to the transverse plane between day 1 and day 2 was

0.6° for the supination phase and 9.0° for the pronation phase. The difference in the
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calculated angulation of the heel axis to the sagittal plane between day 1 and day 2 was
1.3° for the supination phase and 43.5° for the pronation phase. Thus, the angulation of

the axis in the pronation phase varies more between days than the angulation of the axis

for the supination phase.

The reason why the difference between days in the angulation of the axis is greater for
the pronation phase than the supination phase is that the ranges of motion in the
pronation phase are smaller than those in the supination phase. During the supination
phase there was 3.1°, —6.2° and —1.0° of motion in the frontal, transverse and sagittal
planes respectively. During the pronation phase, however, there were 0.7°, —3.9° and -
0.02° of motion in the frontal, transverse and sagittal planes respectively. For the
supination phase, the effect of the small differences in the range of motion measured on
different days on the axis of rotation subsequently calculated was less, because the
differences between days were relatively small as a proportion of the range of motion.
In the pronation phase, however, differences between days of the same magnitude were
greater as a proportion of the range of motion and therefore had a greater effect on the
orientation of the axis of rotation calculated on different days. Thus, even small
differences in the angular motions between days can produce a large difference in the

axis angulation calculated between days.

The relationship between the difference in the ranges of motion measured on different
days as a proportion of the range of motion, and the differences in the orientation of the
axis of rotation calculated from these ranges of motion is further illustrated in tables
4.15 and 4.16, summarised in table 5.1. The mean difference in the range of motion
measured on different days is very similar for the frontal, transverse and sagittal plane.

176



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex. Chapter 5

Consequently, if the difference in the range of motion measured on different days was
the only factor influencing the difference in the orientation of the axis of rotation
calculated on different days, then the difference between days in the angle of the axis to
the transverse plane and difference between days in the angle of the axis to the sagittal
plane would also be similar. However, the difference in the angulation of the axis to the
transverse plane calculated on different days was different to the difference in the

angulation of the axis to the sagittal plane calculated on different days.

Mean difference between days (°)

Range of motion Angulation of axis to
Frontal Transverse Sagittal Transverse Sagittal

Right 1.0 0.8 0.9 32 13.6

Left 0.7 1.0 0.7 34 12.8

Table 5.1

Details the mean differences between days in the ranges of motion
and angulation of the axis of rotation to the transverse and sagittal

planes.

Since there is less between day variation in the angulation of the axis of rotation to the
transverse plane compared to the angulation to the sagittal plane, an additional factor
must be involved in producing the large differences between days in the angulation of
the axis of rotation to the sagittal plane. This additional factor is the fact that the range
of motion m the sagittal plane is often very small, and the range of motion in the

transverse plane (which is not used in the calculation of the angulation of the axis to the
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sagittal plane) is consistently larger. Thus, of greater importance than the magnitude of
differences between days is the magnitude of the difference between days as a
proportion of the range of motion being measured. The greater that the differences in
the ranges of motion measured on different days are as a proportion of the range of
motion, the greater the difference in the orientation of the axis of rotation calculated on

different days.

The large differences between days in the angulation of the axes of rotation to the
sagittal plane are a consequence of the nature of the movements that this study has
attempted to measure. Measurement of small movements is hampered by difficulties
related to the natural variation in motion patterns. Varations of 0.5° to 1° in the range
of motion measured on two separate occasions are significant because they can

represent a 100% change in the range of motion measured.

These facts have implications for the interpretation of the data presented in this study.
When the range of angular motion is small, though it is difficult to precisely define
what constitutes small, the actual range of motion specified should be viewed with
caution. It might be more appropriate to describe the range of motion in a particular
plane as small, or negligible, in such instances, as opposed to quoting the precise
angular value. When the range of motion is greater, though again it is difficult to
precisely define what is a sufficiently large range of motion, the angular values can be

considered more reliable.

The performance of the motion analysis system has been shown to be as good as can be

expected (section 3.2.2.1.4), and certainly comparable to similar systems, and the
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ranges of absolute and relative motion are generally repeatable (Table 4.15 and 4.16).
Thus, the large difference between days in the sagittal plane angulation of the axes of
rotation is a consequence of the small differences between days being large as a
proportion of the range of motion being measured. They are not a consequence of poor

quality measurements or experimental protocol.

5.3.1.1 Comparison with literature.

Van Langelaan (1983), whose cadaver work this study closely resembles, provided a
minimal description of the reproducibility of the axes of rotations he deduced. He
described repeatability data for the talocalcaneal joint of one cadaver. The motions of
the joint were assessed during external rotation of the leg in 5° and 10° increments from
an internally rotated position. The leg was then internally rotated to the original
position and the experiment performed again. The axes subsequently calculated are
only illustrated in Van Langelaan’s work and no numerical values relating to the
orientation of the axis are provided. From the illustration provided in the text, the
sagittal plane angulation of the talocalcaneal joint axis appears to vary between days by
approximately 7° on average. This is better than the values in this study. Of notable
exception, however, are the first two phases of external rotation of the leg, the axes of
rotation during these phases differ more significantly between days (approximately 30°

on average).

Van Langelaan suggested that the larger differences between days for these two initial
increments was a consequence of the small range of motion (around the axis as opposed
to in a cardinal body plane) at the joint. During the first experiment the ranges of
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motion were 0.3° and 0.7° for increments 1 and 2 respectively, and during the second
experiment were 0.1° and 1.4°. Van Langelaan had shown earlier in his work that the
smaller the range of motion the less reliable was the axis of rotation subsequently
calculated. ~From the reproducibility experiments he reported, Van Langelaan
concluded that the only reliable axes were those calculated for increments 3-7 of
external leg rotation because the ranges of motion were sufficiently large (all were
greater than 3°). Table 5.1 lists the mean and maximum errors in the axes he

calculated for 6 different ranges of motion around an axis of known orientation.

Range of motion
around axis Mean error in axis ~ Maximum error in axis
(degrees) angulation angulation
0.1 98.5° 126.0°
0.3 41.6° 55.0°
1.0 11.1° 14.1°
3.0 4,0° 4.6°
10.0 1.2° 1.5°
30.0 0.4° 0.6°

Table 5.2

Table details data summarised from Van Langelaan (1983). The
effect of the magnitude of the range of motion around an axis on the

calculated orientation of the axis.
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Clearly, there in an inverse relationship between the range of motion and the error in the
calculated orientation of the axis of rotation. Panjabi and Goel (1982) also described
this relationship in their experimental and theoretical work on parameters affecting the
description of joint kinematics. Though their work is not directly comparable to the
work presented here, because they calculated the position of centres of rotation for a

planar joint, it is clear that the smaller the range of motion the larger the errors in

parameters deduced from that range of motion (Figure 5.1)
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Figure 5.1

Plot of the relationship between the range of motion (degrees)
and the error in the calculated position of the centre of rotation
(mm) for a planar joint. Dots represent experimental work, the
line represents theoretical predictions of the relationship. From
Panjabi and Goel (1982).
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A further point should be considered when interpreting the results in table 5.2 in
relation to the work in this study. Van Langelaan described the range of motion around
the axis itself, whereas in this study this range of motion has been broken down into its
frontal, transverse and sagittal plane components. Thus, the error in the calculated axis
orientation due to the measurement of small ranges of motion will be compounded in
this study because the small ranges of motion are broken down into smaller
components. For example, 1° of motion around an axis angled 16° to the sagittal plane

and 42° to the transverse plane would produce 0.7° of frontal plane motion, 0.7° of

transverse plane motion and 0.2° of sagittal plane motion. Thus, the fact that the errors

in the calculated axes of rotation are greater in this study than in that of Van Langelaan

is to be expected.

The other literature describing axes of rotation for the rearfoot joints, and to which this
work has made several references in chapter 2, has not documented repeatability data
(Manter 1941, Root et al 1966, Close et al 1967, Isman and Inman 1969, Engsberg
1987, Philips and Lidtke 1992, Lundberg et al 1989c, Lundberg and Svensson 1993).
Given the problems in this and Van Langelaan’s work and some of the relatively
unscientific methodologies used in some of these investigations, some of the axis of

rotation data in the literature should be viewed with a degree of caution.

The following points are a summary of the repeatability tests:

e The difference between days in the range of motion in each of cardinal body planes
is good.

¢ The calculated angulation of the axes of rotation to the transverse plane is generally
repeatable.
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The calculated angulation of the axes of rotation to the sagittal plane is less
repeatable than that to the transverse plane. This is because small variations in the
measured range of sagittal plane motion are a large proportion of the range of
motion and so have a large effect on the calculated axis orientation. This is
generally not the case for the frontal and transverse plane motions because the
ranges of motion in these planes are larger.

The problems associated with the small ranges of movement measured in this study
are not a consequence of the measurement system, nor the experimental protocol,
but a characteristic of attempting to measure small ranges of movement.

The variations between days in the calculated angulation of the axes of rotations
suggest that they are not the only parameter that should be used in the description of

the functional characteristics of the rearfoot joints.
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5.3.2 ABSOLUTE ROTATION OF THE LEG.

The movement of the leg was deliberately restricted by the design of the experimental
rig. It is by design then that the predominant motion of the leg was in the transverse
plane. The mean ranges of motion for both the left and right limbs (Table 4.3 and 4.9)
illustrate that the experimental rig did restrict the movement of the leg in the frontal and
sagittal planes as desired (bofh were less than 1°) whilst the leg moved freely in the
transverse plane. The largest range of movement in the frontal plane within the sample
was 4.9° (for the composite range of motion of the right leg of subject 21). The largest
range of movement in the sagittal plane within the sample was 3.3° (for the composite
range of motion of the left leg of subject 25). Despite some variation, the input rotation
into the rearfoot complex was transverse plane motion of the leg, as the proposed model

of rearfoot function detailed in chapter 2 dictated.

The direction of leg motion in the frontal, transverse and sagittal planes was coupled for
each subject but showed no pattern within the sample. Thus, whilst internally rotating
their leg some individuals everted their leg and others inverted their leg. Also, whilst
internally rotating their leg some individuals plantarflexed their leg and others
dorsiflexed their leg. These variations between subjects are expected because, unlike
those of the talus, calcaneus and navicular and cuboid, the frontal and sagittal plane

motions of the leg are not coupled with its transverse plane motions.

The ratios describing the ranges of motion in the three planes were highly variable
between different phases and between different subjects. This was because what were
actually small differences in the frontal plane angle measured between different phases
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and subjects, were large as a proportion of the total range of motion in the frontal plane

and thus produced a large change in the ratio values.

The axes of rotation for the leg had a near vertical orientation, as would be expected
with almost all motion occurring in the transverse plane (Figure 4.4). The angle
between the axis and the transverse plane varied between 80.7° and 89.3°, These
results are consistent with those documented by Van Langelaan (1983), whose
experimental rig was almost identical to that used in this study. In his sample of 10
cadavers the angle of the axis to the transverse plane ranged between 86.0° and 87.6°.
The greater range of axis orientations in this study is probably due to the in vivo nature

of the assessment. In vitro the motion of the leg can be constrained to a greater degree.

The angle between the axis of rotation of the leg and the sagittal plane showed
considerable variation within the sample (from —86.7° to 87.8°). This was expected
because small differences in the range of frontal and sagittal plane motions between
subjects produced large differences in the orientation of the axis of rotation. This is a
consequence of the differences in the range of motion between subjects being large as a
proportion of the total range of motion in the frontal and sagittal planes. @ Van
Langelaan’s (1983) results show similar variations in the angulation of the axis to the
‘sagittal plane; the angle between the axis of rotation and the sagittal plane varied

between —72.4° and 54.7° in his sample.

These characteristics were generally the same for the composite, dynamic, supination

and pronation phases of motion. The principal difference between these phases was the
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range of transverse plane motion of the leg, and thus the magnitude of the input rotation

to the rearfoot complex.

The range of transverse plane motion for the dynamic phase should always closely
match that measured in the dynamic rearfoot complex assessment. Comparison of the
total range of motion for each subject measured during the dynamic rearfoot complex
assessment (Table 4.1) with the range of transverse plane leg rotation in the dynamic
phase of the static assessment (Tables A1.1 — A1.5 and A1.43 — A1.48) reveals a close
association between the two (Table 5.3). Some discrepancy was inevitable because
when selecting the particular motion data values to define the dynamic phase within the
static rearfoot complex assessment data, the angular value closest to the Angl and Ang2
values was chosen. Only occasionally did the static assessment data contain a value that
matched the Angl or Ang2 value exactly. The principal reason why data values
matching Angl and Ang2 exactly could not be found, was because the speed of leg
rotation and sampling frequency of the motion data was such that in some subjects the

leg moved 2° or 3° in the transverse plane between data points.
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subject left right

1 -0.5 0.1
2 -0.1 *
3 -0.2 0.0
4 1.0 3.5
5 0.2 -0.1
6 1.0 *
7 -0.1 0.0
8 0.1 0.6
9 0.2 0.0
10 0.6 -0.1
11 2.0 -0.4
12 -2.5 0.8
13 -0.1 -0.4
14 -0.4 0.0
15 -0.6 0.0
16 -2.8 -0.3
17 -0.1 -0.1
18 0.3 -0.2
19 0.6 0.4
20 0.0 0.2
21 -1.7 -0.1
22 -0.2 0.0
23 0.0 *
24 2.3 2.3
25 -0.2 -0.1

mean 0.7 0.5

min 0.0 0.0

max 2.8 3.5

Table 5.3

Difference (°) between the range of transverse plane
motion -of the leg relative to the foot measured during
the dynamic rearfoot complex assessment and the range
of leg rotation in the static rearfoot complex assessment

used to define the dynamic phase of motion.
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The range of transverse plane leg rotation during the supination phase was consistently
close to 20°. Again some discrepancy was inevitable because of the difficulty in
identifying data from the static assessment that described the leg in the equivalent of its
relaxed standing position, exactly 0°, and precisely 20° externally rotated relative to the
reference position. Of particular note is the data for the left leg of subject 16, whose
supination range of motion was 24.8°. This was a consequence of the speed at which
this subject rotated their leg in the experimental rig. A similar problem is evident in the
dynamic range of motion for the left leg of this subject; the range was 17.5° (Table
A1.46) instead of the desired 14. 7° (Table 4.1). The right limb of subject 4 had a

similar pattern.

The range of transverse plane leg motion measured during the pronation phase showed
considerable variation relative to the mean values of approximately 20°. For the right
leg, the range of transverse plane leg rotation ranged from —10.8° to —33.3° and for the
left —10.3° to —28.6°. Thus, some individuals were capable of three times more

transverse plane leg motion than others during the pronation phase.

Since the range of transverse plane leg motion during the supination phase was fixed at
20°, the range of transverse plane leg motion during the composite phase showed
similar amounts of variation within the sample as the range of motion during the

pronation phase (composite phase was equal to the supination phase + pronation phase).
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5.3.2.1 Summary of the absolute rotation of the leg.

e The motion of the leg was generally restricted to the transverse plane by the
experimental rig.

e There was no pattern in the sagittal and frontal plane movements of the leg in
relation to the transverse plane movements of the leg.

o The axes of rotation for the leg were consistently angled more than 80° to the
transverse plane, but showed considerable variation in their angulation to the
sagittal plane. This is to be expected because of the small range of movement in the
sagittal and frontal planes.

e The range of transverse plane leg motion during the supination phase was generally
close to the desired range of 20°.

e The range of transverse plane leg motion during the dynamic phase was generally
close to the range of motion measured in the dynamic rearfoot complex assessment.

o The range of transverse plane leg motion during the pronation phase showed

considerable variation within the sample.
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5.3.3 ABSOLUTE ROTATION OF THE HEEL.

Phase Primary order of Other orders of predominance
predominance T_S_F F—T-S
Composite T-F-S R-9 R-12,21,24
L-4,5 L-2,12,18,24
Dynamic T-F-S R —None R-1,12,21, 24,25
L-5,11,16 L-2,7,12,18,21
Supination T-F-S R-3,4 R-1,2,12,21,24,25
L-3,4,5 L-1,2,8,13,18,21,24
Pronation T-F-S R-5,9,11,15 R-2,12,21,24

L-1,511,16

Table 5.4

L-12

Reference table. Details the primary order of predominance for

the heel and the other orders of predominance displayed within the

sample, for each phase of motion.

Numbers relate to the

individual subjects. F = frontal plane motion, T = transverse plane

motion, S = sagittal plane motion. R =right, L = left.

5.3.3.1Composite phase — ranges of motion.

The order of predominance in the mean range of heel motion during the composite

phase was transverse, frontal and sagittal plane motion. Although the mean ranges of

transverse, frontal and sagittal plane motion are distinctly different (-13.3°, 7.4° and -

0.9° for the right and -12.2°, 7.9° and -2.1° for the left), not all limbs in the sample had
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the same order of predominance (Table 5.4). In all three instances when subjects
displayed more sagittal than frontal plane motion, the range of frontal plane motion was
considerably less than the mean of the sample, and the sagittal plane angle was close to
the mean. In the subjects who displayed more frontal than transverse plane, the change
in the order of predominance was due to an above average range of frontal plane

motion.

There is a pattern to these changes in the order of predominance. When the order is
frontal, transverse and sagittal plane motion it is generally an above average range of
frontal plane motion with a generally average range of transverse and sagittal plane
motion that changes the order from that of the mean data (transverse, frontal and sagittal
plane motion). When the order of predominance is transverse, sagittal and frontal plane
motion, it is generally a below average range of frontal plane motion with a generally
average range of transverse and sagittal plane motion that causes the change in the order
of predominance. The fact that the range of frontal plane motion is more variable than
the range of transverse and sagittal plane motion is also reflected in the standard

deviations for the frontal, transverse and sagittal plane motions, 4.3°, 2.9° and 2.2°

respectively for the right and 3.6°, 2.4° and 1.8° respectively for the left.

The frontal plane motion of the heel is a good indicator of the frontal plane motion of
the sub talar joint because during sub talar joint motion the heel displays most of the
frontal plane sub talar joint motion, whilst the talus displays most of the transverse and
sagittal plane motion (Christensen et al 1996). The literature describes a variety of
functional characteristics for the sub talar joint, some displaying a predominance of

transverse plane motion, others a predominance of frontal plane motion. The variation
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in the sample investigated here shows a similar pattern. Those subjects with the largest
range of frontal plane motion are probably the equivalent of the subjects in the literature
with a predominance of frontal plane motion. Those in this sample with the least
amount of frontal plane motion are probably the equivalent of those in the literature
with a predominance of transverse plane motion. The fact that this sample contains
variations that are generally consistent with those in the literature indicates that the

sample investigated here is similar to those investigated in the literature.

The directions of frontal and transverse plane heel motions during the composite phase
were consistently positive and negative respectively. Thus, during absolute internal
rotation of the leg, the heel everted and internally rotated and during absolute external

leg rotation, the heel inverted and externally rotated.

In the sagittal plane there was a general trend of negative rotation. Thus, during
absolute internal leg rotation the heel plantarflexed and during absolute external leg
rotation the heel dorsiflexed. Some variation in the direction of the sagittal plane heel
motion is consistent with the data of Van Langelaan (1983). He reported that seven of
the 10 cadavers he investigated displayed dorsiflexion of the heel coupled with external

rotation of the leg and three displayed plantarflexion.

5.3.3.2 Dynamic phase — ranges of motion.

During the dynamic phase the order of predominance in the mean range of heel motion
was transverse, frontal and sagittal plane motion. Like the composite phase there were

several exceptions to this (Table 5.4). Some subjects displayed more sagittal than
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frontal plane motion, with transverse plane motion predominant, whilst other displayed
more frontal than transverse plane, with the smallest range of motion being displayed in

the sagittal plane.

As in the composite phase, the direction of frontal and transverse plane heel motion was
consistently positive and negative respectively. The sagittal plane motions again
showed some variation though the general trend was negative rotation. Those with a
positive direction of sagittal plane motion generally displayed a small range of motion

(the right heel of subjects 12, 13, 19 and 20 and the left heel of subject 2).

5.3.3.3 Supination phase — ranges of motion.

The order of predominance in the mean range of heel motion during the supination
phase was transverse, frontal and sagittal plane motion. Again there were exceptions to
this within the sample (Table 5.4). Some subjects displayed more sagittal than frontal
plane motion, with the predominant motion still in the transverse plane. There were a
relatively large number of instances (13, 37.5% of the sample) when there was more
frontal than transverse plane heel motion and the least range of motion in the sagittal

plane.

As with the composite and dynamic phases the direction of frontal and transverse plane
heel motion was consistent throughout the sample. The frontal plane motion was
always positive and the transverse plane motions always negative. The direction of

sagittal plane motion was generally negative, but it was again variable.
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5.3.3.4 Pronation phase — ranges of motion.

The order of predominance in the mean range of heel motion during the pronation
phase was transverse, frontal and sagittal plane motion. Again there were exceptions to
this within the sample (Table 5.4). Some subjects displayed more sagittal than frontal
plane motion, with transverse plane motion predominant. In contrast to the supination
phase there was a relatively small number of instances (5, 10.5% of the sample) when
there was more frontal than transverse plane motion and the least range of motion in the

sagittal plane.

The direction of frontal plane heel motion in the pronation phase was generally positive.
However, the right heels of subjects 9, 11 and 16 and the left heels of subjects 11, 16
and 17 all displayed negative rotations. The range of negative rotation was less than 1°
for the right heels of subjects 9 and 11 and the left heels of subjects 11 and 16. For the
right heel of subject 16 and the left heel of subject 17, however, the ranges of negative

frontal plane motion were —1.4° and —1.8° respectively.

This pattern of inversion of the heel during absolute internal rotation of the leg and
eversion of the heel during external rotation of the leg contradicts all the literature
describing the motion of the heel at the sub talar joint. It should first be remembered
that this is the motion of the heel relative to the global co-ordinate system. Thus, the
heel could be inverted relative to the global co-ordinate system by inversion of the leg
during the pronation phase. This is possible if, during the pronation phase, the heel

reaches the end of its range of eversion at the sub talar joint, and the leg, talus and

194



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex Chapter 5

calcaneus thereafter invert together in the frontal plane. The right leg of subject 16 and

left leg of subject 17, however, everted during the pronation phase.

Another possible explanation is that as the leg continued to internally rotate and evert
during the pronation phase, load was progressively transferred to the medial aspect of
the plantar surface of the heel. This would create an inversion moment at the sub talar
and ankle joints. The nature of the complex articulation and close fitting of the sub talar
joint is unlikely to allow the heel to invert whilst the talus continues to invert, adduct
and plantarflex. It is more conceivable that the inversion of the heel took place by
inversion at the ankle joint. The fact that this pattern was evident in only a few of the
sample might be due to the fact that it only occurs at the extremes of the range of
absolute internal leg rotation, and that only these subjects forcibly internally rotated

their legs to that degree.

The direction of transverse plane heel motion during the pronation phase was
consistently negative. The direction of sagittal plane heel motion was again variable
within the sample, though the general pattern was of negative rotation. There were 16
instances in which the direction of sagittal plane motion was positive rotation.
However, more than half of the heels that displayed positive sagittal plane motion
moved less than 0.5°. The other heels that displayed positive rotation in the sagittal
plane during the pronation phase displayed motion ranging from 0.6° to 4.7°. It is
possible that towards the point of maximum internal leg rotation, some individuals need
to dorsiflex the heel (at the ankle) to allow the normal eversion, dorsiflexion and

external rotation of the heel at the sub talar joint.
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5.3.3.5 Axis of rotation.

The axis of rotation for the heel calculated from the mean range of composite phase
motion was orientated downward and laterally from posterior to anterior (Figure 4.5).
There were considerable variations within the sample, as would expected given the
variations in the predominant motion already highlighted. Relative to the transverse

plane the angulation of the heel axis varied between —27.8° (left heel, dynamic phase of

subject 1) and -85.1° (right heel, pronation phase of subject 1).

It was expected that the mean angulation of the axis to the transverse plane would be
greater than 45° since transverse plane was generally the predominant motion. The
mean angles for the axis of rotation relative to the transverse plane (-60.8° and -56.2°
for the right and left heels respectively) are larger than those described by Van
Langelaan (1983) (mean was -39.1°, range —25.4° to -59.5°). The results of this study,
compared to Van Langelaan’s, suggest that a greater proportion of the heel motion
occurs in the transverse plane. The likely reason for the difference between the values
calculated in this study and those reported by Van Langelaan is the use of cadavers in
the latter. Van Langelaan made a point of restricting the transverse plane motion of the
heel during his experiments, because he needed to ensure that transverse plane rotation
of the leg produced rotations within the foot as opposed to of the whole foot relative to
the floor. To achieve this the heel was mounted on a board covered by emery paper.
There was no attempt to assess whether the degree to which the transverse plane motion
of the heel was controlled was similar to the degree to which the normal heel/floor
interface restricts the transverse plane motion of the heel. Compared to the results of

this study, the use of emery paper in Van Langelaan’s experiments might have
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excessively restricted the transverse plane motion of the heel. The in vivo method used
in this study provides a more natural environment within which to assess the kinematics
of the rearfoot joints. In particular, the limb to floor interface, for example, was normal
plantar tissue and an unpolished painted surface. This is more natural than the

ligamentous plantar surface of the heel moving against emery paper.

Relative to the sagittal plane the angulation of the heel axis varied between —88.9° (left
heel, dynamic phase of subject 11) and 83.9° (right heel, pronation phase of subject 9).
The large variations in the sagittal plane angulation are due to the differences in the
direction of sagittal plane motion. The mean angles for the axis of rotation relative to
the sagittal plane (-7.2° and —15.0° for the right and left heels respectively) are similar

to those described by Van Langelaan (1983) (mean was —6.4°, range —21.5° to 9.4°).

5.3.3.6 Comparison of phases.

The principal difference between the phases was between the supination and pronation
phases. The range of transverse plane motion per degree of frontal plane heel motion
was less during the supination phase than the pronation phase. This is a consequence of
a reduction in the range of frontal plane motion in the pronation phase compared to the
supination phase (the range of transverse plane motion in each phase is similar). This
reduction in the range of frontal plane motion in the pronation phase is probably due to
the heel becoming everted relative to the ground during the pronation phase with a
consequent medial shift in the point of application of the ground reaction force under

the heel and an increase in the supination moment at the sub talar joint opposing further
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eversion. Alternatively, the sub talar joint may reach the end of its range of frontal

plane motion at some point during the pronation phase.

5.3.3.7 Summary of the absolute rotation of the heel.

o The general order of predominance was transverse, frontal and sagittal plane motion
and less frequently frontal, transverse and sagittal plane motion.

o The range of sagittal plane motion was generally small.

e The variation between different individuals in the range of frontal plane heel motion
was greater than the variation in the range of transverse and sagittal plane motions.
This is consistent with the individual variation in the characteristics of the sub talar
joint described in the literature.

e The direction of transverse plane heel motion was consistent throughout the sample.
During absolute internal leg rotation the heel internally rotated and during absolute
external rotation of the leg the heel externally rotated.

o The direction of frontal plane motion was consistent during the composite, dynamic
and supination phases of motion. During absolute internal leg rotation the heel
everted and during absolute external leg rotation the heel inverted.

e During the pronation phase the direction of frontal plane motion was generally
consistent with the other phases (positive rotation). Some heels, however, inverted
whilst the leg was internally rotating and everted whilst the leg was externally
rotating.

e The direction of sagittal plane motion was generally plantarflexion during internal
leg rotation and dorsiflexion during external leg rotation. There were some
exceptions to this and this is consistent with comparable data in the literature.
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e The axis of rotation for the heel is orientated downwards and laterally from
posterior to anterior.

o The greatest difference between the phases was between the supination and
pronation phases. The amount of transverse plane motion per degree of frontal

plane motion was greater in the pronation phase than in the supination phase.
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5.3.4 ABSOLUTE ROTATION OF THE FOREFOOT.

Phase Primary order of Other orders of predominance

predominance F_T-S T—F-S T—S-F

Composite F-S-T R-1,3,10, 11, 12, 14,
15, 16,21, 25
L-4,14,16,25
Dynamic F-S-T R-3,10,11, 14, 15, 19,
21
L-11,12,16,25
Supination F-S-T R -3, 10, 14, 15, 19, 20,

24,25
L-5,6,7,24,25
Pronation F-S-T R-1,2,11,15,25 R-3,16 R-8
L-11,12,16,25 L-17
Table 5.5

Reference table. Details the primary order of predominance
for the forefoot and the other orders of predominance
displayed within the sample, for each phase of motion.
Numbers relate to the individual subjects. F = frontal plane
motion, T = transverse plane motion, S = sagittal plane

motion. R =right, L = left.

5.3.4.1 Composite phase — ranges of motion.

The order of predominance in the mean range of forefoot motion during the composite
phase was frontal, sagittal and transverse plane motion. Frontal plane motion was the

predominant motion during the composite phase for all subjects (Table 5.5). The mean
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ranges of motion in the sagittal and transverse planes were very similar and it is not
surprising therefore that in contrast to the mean ranges of motion, some subjects in the

sample displayed more transverse than sagittal plane motion.

The directions of frontal, transverse and sagittal plane motion during the composite
phase of motion were positive, negative and positive respectively. Thus, during absolute
internal rotation of the leg the forefoot everted, internally rotated and dorsiflexed and
during absolute external rotation of the leg the forefoot inverted, externally rotated and

plantarflexed.

The pattern of frontal plane motion was consistent throughout the sample. The
direction of sagittal plane motion was consistent with the exception of the left forefoot
of subject 25, which had -0.2° of plantarflexion. The direction of motion in the
transverse plane was less consistent than the motion in the frontal and sagittal planes.
There were instances when the forefoot displayed positive rotation though the actual

range of motion in several of these instances was very small.

5.3.4.2 Dynamic phase — ranges of motion.

The order of predominance in the mean range of forefoot motion during the dynamic

phase was frontal, sagittal and transverse plane motion. The predominant motion was in

the frontal plane for all subjects (Table 5.5). As in the composite phase, and in contrast

to the mean values, some subjects had more transverse than sagittal plane motion.
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As in the composite phase of motion the direction of frontal plane forefoot motion was
consistently positive and the direction of sagittal plane motion was generally positive.
However, the right forefeet of subjects 1, 14 and 21 and the left forefoot of subject 14
displayed negative sagittal plane rotations, though these ranged from just —0.4° to
—1.8°. The direction of transverse plane forefoot motion was generally negative
rotation, but the forefeet in 17 of the 47 limbs displayed positive rotation, though most

was less than 1°.

5.3.4.3 Supination phase — ranges of motion.

The order of predominance in the mean range of forefoot motion during the supination
phase was frontal, sagittal and transverse plane motion. The predominant motion was in
the frontal plane for all subjects (Table 5.5). Some subjects displayed more transverse

than sagittal plane motion.

The direction of frontal plane motion during the supination phase was consistently
positive. The direction of transverse and sagittal plane forefoot motion was generally

negative and positive respectively.

5.3.4.4 Pronation phase — ranges of motion.

The order of predominance in the mean range of forefoot motion during the pronation
phase was frontal, sagittal and transverse plane motion. In contrast to the composite,
dynamic and supination phases, frontal plane motion was not the predominant motion
in all subjects (Table 5.5). There were three instances of subjects who displayed an
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order of predominance of transverse, frontal and sagittal plane motion and one instance
of a subject who displayed an order of predominance of transverse, sagittal and frontal

plane motion.

The direction of motion during the pronation phase was consistent with that during the
composite, dynamic and supination phases. The frontal plane motion was always
positive, transverse plane generally negative and sagittal plane motion generally

positive.

The range of eversion of the forefoot during internal rotation of the leg (and equivalent
forefoot inversion during external rotation of the leg) in the pronation phase was
surprisingly high (8.6° for the right and 8.7° for the left). It was expected that if the
navicular, cuboid, three cunieforms and the 2™, 3™ and 4™ metatarsals were a rigid unit
once all the metatarsals were weight bearing the eversion of the forefoot would be
significantly restricted during the pronation phase. The floor would prevent any further
eversion and it was assumed that the metatarsals would stay approximately parallel to
the floor. It is a reasonable assumption that in the relaxed standing position all the
metatarsal heads are weight bearing, since this will impart greater stability to the
posture than if only some of the metatarsal heads are weight bearing. To allow the
‘forefoot’ segment as it was defined in this study to evert during internal rotation of the
leg from its relaxed standing position there is either eversion of the metatarsals relative
to the floor or relative motion between the navicular, cuboid, cunieforms and

metatarsals.
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The metatarsals do not appear to move relative to the floor to the degree to which the
forefoot everts during the pronation phase. The most likely mechanism by which the
‘forefoot’ segment everts without everting the metatarsals relative to the floor is by
rotation of the metatarsals along their longitudinal axes. In effect, when the forefoot
was inverted relative to the ground the lateral border of the weight bearing metatarsal
heads would be in contact with the ground. As the forefoot everts during internal
rotation of the leg all metatarsals become weight bearing.  Thereafter the
navicular/cuboid evert and each metatarsal also everts around its own longitudinal axis.
At the end of the range of internal leg rotation, the medial border of each metatarsal
head is in contact with the ground. This allows the navicular and cuboid to evert
without the metatarsals everting relative to the ground. Without doubt there would also
be some motion between the navicular, cuboid and the cunieforms, as Van Langelaan

(1983), Benick (1985) and Lundberg et al (1989c) reported.

Conducting the static rearfoot complex assessment whilst the foot was on a pressure
measurement system, such as a pedobaragraph, may have provided further information
regarding this mechanism. The changes in the loading of the metatarsals could have
been assessed, and whether forefoot did evert would have become apparent since it
would necessitate the more lateral metatarsals becoming non weight bearing. Also, the
lateral to medial shift of pressure on the metatarsal heads as they rotate around their

longitudinal axes could have been described.
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5.3.4.5 Axis of rotation.

The axis of rotation for the forefoot, calculated from the mean composite range of
motion, was orientated downward and medially from posterior to anterior (Figure 4.6).
There were considerable variations from the mean values in the angulation of the axis to
the transverse plane (mean values were —9.4° and -2.9° for the right and left limbs
respectively). The angulation of the forefoot axis relative to the transverse plane varied
between —48.3° (right forefoot, pronation phase of subject 3) and 18.1° (left forefoot,
supination phase of subject 7). This is to be expected given the variations in the

predominant motion and direction of motion already highlighted.

There were also considerable variations from the mean values in the angulation of the
forefoot axis to the sagittal plane (mean values were 14.1° and 15.2° for the right and
left limbs respectively). The angulation of the axis varied between —19.8° (right
forefoot, pronation phase of subject 11) and 49.3° (right forefoot, pronation phase of

subject 7).

There are no reports in the literature to which these axes of rotation can be directly
compared. This is because the particular attachment of markers and definition of the
forefoot segment used in this study is unique and so the results will differ from those of
other studies. The results of studies that have calculated axes of rotation for the
navicular and cuboid separately are of some relevance. Van Langelaan’s (1983) data
for the axes of rotation of the navicular and the cuboid differ in only one respect from
that presented here for the forefoot. The mean axes for the individual navicular and

cuboid are orientated upwards in contrast to the downward orientation found in this
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study. The degree of upward orientation in Van Langelaan’s work and the degree of
downward orientation in this study, however, are both small (mean from Van
Langelaan was 6.4° for the navicular and 5.1° for the cuboid, mean in this study was -
9.4° for the right forefoot and —2.9° for the left). Furthermore, both this study and Van
Langelaan’s described axes orientated in the opposite direction to the mean axis. Thus,
Van Langelaan described some axes orientated the same as the mean axes described in
this study, and this study describes some axes that are orientated the same as the mean
from Van Langelaan’s work. The conflicting mean results of these two studies is
probably due to the variability in the direction of transverse plane forefoot, navicular
and cuboid motion and the relatively small sample sizes, as opposed to genuinely

conflicting motion patterns of the segments.

5.3.4.6 Comparison of phases.

The principal difference between the phases was between the supination and pronation
phases. The mean range of motion values indicate a general pattern of less frontal plane
motion during the pronation phase than the supination phase. This would be expected
because during the pronation phase the metatarsal heads will all become weight
bearing, because the forefoot has been everting during the supination phase, and
thereafter further eversion is probably restricted to a greater degree than during the
supination phase. The majority of subjects (73%) display this difference between the

supination and pronation phases.
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5.3.4.7 Summary of the absolute rotations of the forefoot.

e In all phases the forefoot generally moved predominantly in the frontal plane.

e The range of transverse plane motion was generally small, and there was, on
average, slightly more sagittal than transverse plane motion.

e The direction of frontal plane forefoot motion was consistent throughout the
sample. During absolute internal leg rotation the forefoot everted and during
absolute external rotation of the leg the forefoot inverted.

e The direction of sagittal plane motion was reasonably consistent. During absolute
internal leg rotation the forefoot (iorsiﬂexed and during absolute external leg
rotation the forefoot plantarflexed.

e The direction of transverse plane motion was less consistent, through the. average
pattern was one of internal rotation during absolute internal leg rotation and
absolute external rotation during external leg rotation.

e The mean axis of rotation for the forefoot is orientated downwards and medially
from posterior to anterior.

e Due to the considerable variations in the direction of sagittal and particularly
transverse plane motion, there was considerable variation in the orientation of the
forefoot axes of rotation relative to both the transverse and sagittal planes.

o The greatest difference between the phases of motion was between the supination
and pronation phases. During the pronation phase the range of frontal plane

forefoot motion was decreased.
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5.3.5 RELATIVE ROTATION AT THE ANKLE/SUB TALAR COMPLEX.

Phase Primary order of Other orders of predominance
predominance T—S—_F
Composite T-F-S R-3,4,9,11,17
L-3,511,17,22
Dynamic T-F-S R-3,11
L-5,11,22
Supination T-F-S R-3
L —None
Pronation T-F-S R-3,8,9,11,17,22

L-1,2,5

Table 5.6

Reference table. Details the primary order of predominance for the

ankle/sub talar complex and the other order of predominance

displayed within the sample, for each phase of motion. Numbers

relate to the individual subjects. F = frontal plane motion, T =

transverse plane motion, S = sagittal plane motion. R = right, L =

left.

" 8.3.5.1 Composite phase — ranges of motion.

The order of predominance in the mean range of ankle/sub talar complex motion during

the composite phase was transverse, frontal and sagittal plane motion. Transverse plane

motion was the predominant motion during the composite phase in all subjects (Table

5.6). There were, however, 9 limbs that displayed more sagittal than frontal plane
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motion. In all of these instances the range of frontal plane motion was much smaller
than the mean value of 8.0° and 7.2° for the right and left respectively, and the range of

sagittal plane motion was close to the average.

The clear predominance of transverse plane motion is consistent with an in vivo study
of the maximum range of motion at the ankle/sub talar complex (actively produced by
free rotation of the foot by the subjects). Nigg et al (1992) described a mean total of
35.5° of frontal plane motion and 72.4° of transverse plane motion at an equivalent of
the ankle/sub talar complex in subjects aged 20-39. Thus, the range of transverse plane
motion per degree of frontal plane motion was 2.0°. This is considerably less than the
3.8° for the left and 3.4° for the right calculated in this study. This difference might
well be due to the difference methods by which the motion of the ankle/sub talar
complex was assessed. The foot was loaded but was moved relative to a stationary leg
and motion was induced actively by each subject (using muscles). The musculature
around the ankle/sub talar complex is better orientated for producing frontal plane
motion than transverse plane motion. Thus, it is unlikely that these individuals were
able to exploit the full range of transverse plane motion. In this study, where body
weight and proximal transverse plane rotations were used to produce ankle/sub talar
motions, it is more likely that the full range of transverse plane ankle/sub talar complex
motion was exploited. Thus, the ratio of transverse plane motion to frontal plane

motion would be greater.

The direction of transverse plane ankle/sub talar motion during the composite phase

was consistently positive. Thus, during absolute internal rotation of the leg the heel

209



C.J.Nester, 1999. In Vivo Quantification of the Functional Characteristics of the Rearfoot Complex Chapter 5

externally rotated relative to the leg and during absolute external rotation of the leg the

heel internally rotated relative to the leg.

The direction of sagittal plane ankle/sub talar complex motion was highly variable.
Sixty percent of the sample displayed negative sagittal plane ankle/sub talar complex
motion. Thus, the majority of subjects displayed plantarflexion of the heel during
absolute internal rotation of the heel and dorsiflexion during absolute external rotation
of the heel. Since the range of heel motion in the sagittal plane was generally small
(mean -0.9° for the right and -2.1° for the left) the effect of small sagittal plane motions
of the leg on the net ankle/sub talar complex motion was be significant. The direction
of absolute sagittal plane motion of the heel was relatively consistent in the sample,
whereas the absolute sagittal plane motions of the leg were highly variable. Thus, the
small sagittal plane movements of the leg will interfere with the description of the
sagittal plane ankle/sub talar complex motion produced by transverse plane rotation of
the leg, because the range of sagittal plane heel motion is generally of similar

magnitude.

The direction of motion in the fronf[al plane was consistently positive. Thus, during
absolute internal rotation of the leg the heel everted relative to the leg and during
absolute external rotation of the leg the heel inverted relative to the leg. There were two
exceptions to this, the left ankle/sub talar complex of subjects 3 and 11 both displayed
inversion of the heel relative to the leg during absolute internal rotation of the leg and
eversion of the heel relative to the leg during absolute external rotation of the leg. In
both these instances the absolute rotation of the heel was eversion during absolute

internal rotation of the leg and inversion of the heel relative to the leg during absolute
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external rotation of the leg. Thus, the normal coupling between transverse plane

motion of the leg and the frontal plane motion of the heel was present.

The pattern of inversion of the heel relative to the leg during absolute internal rotation
of the leg and eversion of the heel relative to the leg during absolute external rotation of
the leg must, therefore, be due to the leg moving in the frontal plane in the same
direction as the heel, but to a greater degree. It is worth noting that in these two
instances the motion of the leg was large in relation to the mean frontal plane motion of
the leg (left leg of subject 3 moved 3.4°, the left leg of subject 11 moved 4.4°, the mean
movement was 0.7°). In addition, the absolute frontal plane motion of the heel in these
two exceptions was much smaller than the mean data (left heel of subject 3 moved 2.7°,
the left heel of subject 11 moved 4.0°, the mean frontal plane motion was 7.9°). Thus,
the ankle/sub talar complex was not displaying an unusual coupling at the ankle/sub
talar complex (inversion of the heel during internal rotation of he leg) but the data is

falsified because of the unwanted frontal plane motion of the leg.

These exceptions highlight the importance of restricting motion of the leg to the
transverse plane if a description of the motion at ankle/sub talar complex in the three
cardinal body planes produced by transverse plane motion of the leg is required. The
motion of the leg in the frontal plane might not be so significant when the absolute
frontal plane motion of the heel is relatively large, but is more important for the
assessment of subjects whose absolute frontal plane motion of the heel is small. These
exceptions also highlight the fact that the leg is able, if permitted, to evert relative to an

everting heel. This presumably occurs by inversion of the leg at the ankle joint.
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The experimental rig designed for this study was intended to prevent the leg moving in
the frontal and sagittal planes whilst permitting unrestricted motion of the leg in the
transverse plane. The small amounts of frontal and sagittal plane movements of the leg
during transverse plane rotation of the leg indicate that it has achieved this to a degree
that could not be improved upon. It could not realistically be expected to restrict frontal
and sagittal plane motion to 0° in vivo. The small movements in the sagittal and frontal
planes are probably a necessary part of a living subject moving their whole body in
order to rotate through their range of transverse plane leg rotation, whilst maintaining
their postural stability. In restricting frontal and sagittal plane motion to 0° the
experimental rig would have interfered with the subjects natural movement pattern. The
variability in the pattern sagittal plane ankle/sub talar motion is thus a consequence of
the methodological difficulties associated with assessing small ranges of movement in

Vivo.

5.3.5.2 Dynamic phase — ranges of motion.

The order of predominance in the mean range of ankle/sub talar complex motion during
the dynamic phase was transverse, frontal and sagittal plane motion. Transverse plane
motion was the predominant motion during the dynamic phase in all subjects (Table
5.6). In contrast to the pattern in the mean data, some subjects displayed more sagittal
than frontal plane motion. In all of these instances the range of frontal plane motion
was much smaller than the mean value and the range of sagittal plane motion was close
to the average. Thus, as in the composite phase, these subjects displayed almost solely

transverse plane motion at the ankle/sub talar complex.
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The direction of transverse plane ankle/sub talar complex motion during the dynamic
phase was, as in the composite phase, always positive. The direction of frontal plane
motion was generally positive, with the exception of the left ankle/sub talar complexes
of subjects 3, 11 and 16. In each of these instances the motion of the heel was smaller
than average and the frontal plane motion of the leg larger than average. The net result
of this is that the heel inverts relative to the leg during internal leg rotation and everts
relative to the leg during external leg rotation, even though the heel is actually everting
and inverting during the respective transverse plane rotations of the leg. As in the
composite phase the direction of sagittal plane motion was highly variable within the

sample.

5.3.5.3 Supination phase — ranges of motion.

The order of predominance in the mean range of ankle/sub talar complex motion during
the supination phase was transverse, frontal and sagittal plane motion. There was only
one exception to this, the right ankle/sub talar complex of subject 3, which displayed
more sagittal than frontal plane motion (Table 5.6). Again, in this subject the range of
frontal plane motion was much smaller than the mean value and the range of sagittal

plane motion was close to the average.

The direction of transverse plane ankle/sub talar motion was positive in all subjects
during the supination phase. The direction of frontal plane motion was positive in all
subjects with the exception of the left ankle/sub talar complex of subject 3. As in the

composite and dynamic phases, the motion of the heel in this instance was smaller than
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average and the frontal plane motion of the leg larger than average. The direction of

sagittal plane motion was again highly variable within the sample.

5.3.5.4 Pronation phase — ranges of motion.

The order of predominance in the mean range of ankle/sub talar complex motion during
the pronation phase was transverse, frontal and sagittal plane motion. There were
several subjects who displayed more sagittal than frontal plane motion, with transverse
plane motion predominant (Table 5.6). As in the composite, dynamic and supination
phases, in all these instances the range of frontal plane motion was much smaller than

the mean value and the range of sagittal plane motion was close to the average.

The direction of transverse plane ankle/sub talar complex motion was always positive.
The direction of motion in the frontal plane was generally positive, though there were
nine subjects who displayed negative frontal plane ankle/sub talar motion during the
pronation phase. The direction of sagittal plane ankle/sub talar complex motion was, as
in the other phases, highly variable, with 42% of the sample displaying negative

rotation in contrast to the mean pattern of positive rotation.

5.3.5.5 Axis of rotation.

The axis of rotation of the ankle/sub talar complex calculated from the mean composite
range of motion was orientated upwards and close to the sagittal plane, from posterior
to anterior. The right limb axis was orientated medially and the left limb axis orientated

laterally (Figure 4.7). The actual difference in the ranges of motion between the left
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and right limbs responsible for this gross difference in axis orientation was just 1.5°.
Even differences as small as this can have a significant effect on the axis orientation if
the difference is large as a proportion of the total range of motion, as it was in this case.
The fact that the right limb axis had a positive angulation to the sagittal plane and the
left a negative angulation, is because the direction of sagittal plane motion for the right
was 0.1° of dorsiflexion and for the left was 1.4° of plantarflexion. Such minimal
differences can be explained by the absolute movement of the leg in the sagittal plane
affecting the net sagittal plane ankle/sub talar complex motion. The angulation of the

ankle/sub talar axis to the sagittal plane varied between —86.8° (left ankle/sub talar
complex, pronation phase of subject 1) to 88.3° (right ankle/sub talar complex,

pronation phase of subject 17).

The angulation of the ankle/sub talar axis to the transverse plane was consistently high,
ranging from 53.2° (left ankle/sub talar complex, dynamic phase of subject 19) to 88.9°
(right ankle/sub talar complex, dynamic phase of subject 3), and reflects the
predominance of transverse plane motion at the complex. This angulation of the axis is
greater than that of the sub talar joint. This reflects the greater range of transverse plane
motion available at the combined ankle and sub talar joints and suggests that the ankle

joint is moving a considerable degree in the transverse plane.

The literature describes a variety of functional characteristics for the sub talar joint,
including those that display more transverse than frontal plane motion and those that
display more frontal than transverse plane motion. These variations in the predominant
motion at the sub talar joint have been evident in all studies of the sub talar joint

characteristics, which have generally involved samples much smaller than the sample in
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this investigation. It is reasonable to assume, therefore, that the group investigated in
this study will also possess such variations in characteristics of the sub talar joint. The
results of the absolute motion of the heel have already suggested that the sample
investigated in this study contains variations in the characteristics of the sub talar joint
that are consistent with the literature (5.3.3.1). Assuming this is the case, then some

deductions can be made about the transverse plane motion at the ankle joint.

Some subjects, for example the right ankle/sub talar complex of subjects 12, 21 and 24
and the left ankle/sub talar complex of subjects 8, 12 and 18, displayed at least half as
much frontal plane ankle/sub talar complex motion as there was transverse plane
motion during the composite phase (the ratio value of transverse to frontal plane motion
was less than 2). Since the principal source of frontal plane motion at the ankle/sub
talar complex is the sub talar joint (Rosenbaum et al 1998), and within the sample these
subjects display the largest range of frontal plane motion, then these individuals
probably possess a sub talar joint that displays more frontal than transverse plane
motion. If this is the case, then the ankle joint must typically be moving approximately
15° in the transverse plane. For example, the right ankle/sub talar complex of subject
12 displays 19° of motion in the frontal plane and 30° of motion in the transverse plane.
It should be remembered that the range of frontal plane sub talar motion would be larger
than 19° because the talus would have moved in the frontal plane in the opposite
direction to the heel. If the majority of the 19° of frontal plane ankle/sub talar complex
motion occurred at the sub talar joint (say 17°), which is likely, and this individual has a
sub talar joint that possesses more frontal plane motion than transverse (so the

transverse plane sub talar motion was no more than say 15°), then the ankle of this

subject must move approximately 15° - 20° in the transverse plane. By the same
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reckoning the other subjects who possess a sub talar joint that displays more frontal
than transverse plane motion, must have 10° to 15° of transverse plane motion at their

ankle.

In contrast, some subjects displayed very little frontal plane motion at their ankle/sub
talar complex, even allowing for the effect of the absolute motion of the leg in the
frontal plane on the net ankle/sub talar complex motions. For example, the right
ankle/sub talar complex of subjects 3, 9, 11 and 17 and the left ankle/sub talar complex
of subjects 3, 9, 11, 14, 17 and 22 displayed at least seven times as much transverse
plane motion than frontal plane motion during the composite phase (the ratio value of
transverse plane motion to frontal was at least 7). Again, because it is reasonable to
assume that the principal source of frontal plane ankle/sub talar complex motion is the
sub talar joint, and within the sample these subjects display the smallest range of frontal
plane motion, then these individuals probably possess a sub talar joint that displays
more transverse than frontal plane motion. If this is the case, then the ankle joint must
typically be moving 20° in the transverse plane. For example, the right ankle/sub talar
complex of subject 11 displays 2.6° of motion in the frontal plane and 35° of motion in
the transverse plane. It should be remembered that the range of frontal plane sub talar
motion would be larger than 2.6° because the talus would have moved in the frontal
plane in the opposite direction to the heel. Even if the range of frontal plane ankle/sub
talar complex motion is low because of the frontal plane motion of the leg, the sub talar
joint cannot realistically have moved more than 6°. If this individual has a sub talar
joint that possesses more transverse plane motion than frontal (so the transverse plane

sub talar motion is at least say 10°), then the ankle of this subject must move

approximately 15° - 25° in the transverse plane. By the same reckoning the other
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subjects who possess a sub talar joint that displays more transverse than frontal plane

motion, must have 10° to 20° of transverse plane motion at their ankle.

McCullough and Burge (1980) have described transverse plane rotations of this
magnitude at the ankle joint. In their cadaver study eight ankles were vertically loaded
up to 50kg and the maximum range of transverse plane ankle motion measured as the
calcaneus was externally and internally rotated relative to the leg (the sub talar joint was

fixed using screws). The mean range of transverse plane ankle motion was 17.5°

(estimated from graph). Siegler et al (1988) described a mean of 26.5° of transverse
plane motion at the ankles of 15 unloaded cadavers. Clearly then, the range of
transverse plane motion through which the ankle might move, as suggested by the

results of this study, are quite feasible.

If the range of transverse plane ankle joint motion suggested here is correct, then in
general the ankle and sub talar joints contribute approximately equal amounts of
transverse plane motion to the overall function of the ankle/sub talar complex. This is
consistent with other literature that has assessed the ankle and sub talar joint separately.
Siegler et al (1988) reported 14.3° of transverse plane ankle motion and 15.7° of
transverse plane sub talar joint motion during internal rotation of the leg. Similar
figures were reported for external rotation of the leg. Rosenbaum et al (1998) described
a mean total of 11.1° of transverse plane motion at the ankle joint and 12.3° at the sub

talar joint during transverse plane rotation of the leg.

The ability of the ankle joint to move in the transverse plane is clearly an important part

of the kinematic chain which allows the leg and proximal structures to rotate in the
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transverse plane whilst the foot remains in a relatively fixed transverse plane position
on the floor. This confirms the findings of other studies that have concluded that both
the ankle joint and the sub talar joint are necessary parts of this mechanism and it is not

solely a function of the sub talar joint.

5.3.5.6 Comparison of phases.

The principal difference between the phases was between the supination and pronation
phases. During the pronation phase the range of frontal plane ankle/sub talar complex
motion was reduced compared to the supination phase with a subsequent increase in the
ratio of transverse to frontal plane motion (Figure 4.25 and 4.26). There were 81% and
83% (for the mean data for the right and left respectively) more transverse plane motion
per degree of frontal plane motion in the pronation phase than in the supination phase.
This pattern, however, was not wholly consistent throughout the sample. Figure 5.2
illustrates the differences between the ratio of transverse to frontal plane motion in the
pronation and supination phases for the left limb of each individual in the sample. A
negative value indicates that there was more transverse plane motion per degree of
frontal plane motion in the supination phase than the pronation phase. A positive value
indicates that there was more transverse plane motion per degree of frontal plane
motion in the pronation phase compared to the supination phase. Clearly, although the
majority had more transverse plane motion per degree of frontal plane motion in the

pronation phase compared to the supination phase, not all subjects followed this pattern.
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Difference between ratio in supination and

Difference in the ankle/sub talar complex ratio between the
supination and pronation phases.

30.00
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Subjects (subject number not specified)

Figure 5.2
Graph illustrates the difference between the supination and
pronation phases in the ratio of transverse to frontal plane motion.
A negative value indicates more transverse plane motion
per degree of frontal plane motion during the supination phase
than the pronation phase. A positive value indicates more
transverse plane motion per degree of frontal plane motion
during the pronation phase than the supination phase — left limb

only.
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The general trend of an increase in the range of transverse plane motion per degree of
frontal plane motion in the pronation phase compared to the supination phase is
consistent with the literature. Hintermann et al (1994), for example, found that the
resulting frontal plane motion of the heel was generally less when the leg was internally

rotated compared to when it was externally rotated.

The relative contributions of the ankle and the sub talar joints to the range of transverse
plane motion at the ankle/sub talar complex may differ in the supination and pronation
phases. All the literature that describes the axis of rotation for the sub talar joint during
different parts of its total range of motion, report that the axis is angled less to the
transverse plane in pronation than in supination (Van Langelaan 1983, Benick 1985,
Lundberg and Svensson 1993). Thus, the sub talar joint displays less transverse plane
motion during the equivalent of the pronation phase in this study, than in the equivalent
of the supination phase of this study. In addition, Lundberg et al (1989c) described a
considerable reduction in the range of sub talar joint motion when the rearfoot was
pronated, further reducing the contribution of the sub talar joint to the transverse plane

motions at the ankle/sub talar complex during the pronation phase.

In contrast, Lundberg et al (1989a) described a relative increase in the transverse plane
motion at the ankle joint during the equivalent of the pronation phase. Lundberg et al
calculated the axes of rotation of the ankle joint during three i:)hases of transverse plane
rotation of the leg. The ankle joint axes relating to the pronation phase in this study
were generally more vertically orientated than during the phase relating to the

supination phase in this study. Thus, the proportion of transverse plane motion at the
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ankle was greater when the leg was internally rotated (pronation phase) than when it

was externally rotated (supination phase).

In another publication Lundberg et al (1989c) described the changes in the range of
transverse, frontal and sagittal plane motions in the ankle and sub talar joints during the
transverse plane rotation of the leg. When the leg was externally rotated (equivalent of
the supination phase in this study), the ankle joint displayed very little transverse plane
motion, but considerable sagittal and frontal plane motion. When the leg was internally
rotated (equivalent of the pronation phase in this study) the ankle displayed almost

solely transverse plane motion.

The reason for the increased range of transverse plane ankle joint when the leg is
internally rotated might be related to the anatomical shape of the talus. When the leg is
internally rotated and the sub talar joint pronated the talus is plantarflexed relative to the
tibia. The talus is narrower posteriorly than anteriorly. Thus, as it plantarflexes its
freedom of movement within the ankle mortise increases and a greater range of

transverse plane motion will be permitted.

5.3.5.7 Summary of the relative rotation at the ankle/sub talar complex.

o The predominant motion at the ankle/sub talar complex was always in the
transverse plane.

e The second largest range of motion was usually in the frontal plane, though there
were exceptions to this in each of the phases of leg rotation. When the sagittal

plane motion is greater than the frontal plane motion it was because of a below
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average range of frontal plane motion and the ankle/sub talar complex moves
almost solely in the transverse plane.

The direction of transverse plane motion was always external rotation of the heel
relative to the leg during absolute internal rotation of the leg and internal rotation of
the heel relative to the leg during absolute external rotation of the leg.

The direction of motion in the frontal plane was generally eversion of the heel
relative to the leg during absolute internal rotation of the leg and inversion of the
heel relative to the leg during absolute external rotation of the leg.

The small range of absolute motion of the leg in the sagittal plane produced a highly
variable pattern of sagittal plane ankle/sub talar complex motion.

The axis of rotation for the ankle/sub talar complex was always orientated upwards
from posterior to anterior. The orientation of the axis of rotation relative to the
sagittal plane was variable because of the variation in the direction of sagittal plane
motion. Thus, in some individuals the axis was orientated upwards and medially
and in other individuals it was orientated upwards and laterally.

The principal difference between phases was the greater amount of transverse plane
motion per degree of frontal plane motion in the pronation phase compared to the
supination phase. This was due to a decrease in the range of frontal plane heel

motion in the pronation phase compared to the supination phase.
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5.3.6 RELATIVE ROTATION AT THE MID TARSAL JOINT.

5.3.6.1 Composite phase — ranges of motion.

The order of predominance in the mean range of mid tarsal joint motion during the
composite phase was frontal, transverse and sagittal plane motion. There were
considerable variations in the order of predominance within the sample. Table 5.7 lists
the subjects whose mid tarsal joint displayed an order of predominance different than

that of the mean data and the order of predominance that they displayed.

COMPOSITE PHASE Subject number and side

Order of predominance Right mid tarsal joint Left mid tarsal joint
T-F-S 3,4,5,13,16,17,24 2,3,4,7,13,18,19,23
T-S-F 8 10,21, 24
S-T-F 7 NONE
S-F-T 9 1
F-S-T 15 5,22

Table 5.7

Lists the number of each subject whose mid tarsal joint displayed
an order of predominance different than that of the ﬁem data, and
the order of predominance displayed. Subjects not listed displayed
an order of predominance that was the same as that displayed in
the mean data for the composite phase of motion (F — T —S).

T = Transverse plane, F = Frontal plane and S = Sagittal plane.
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The fact that the most common order of predominance in table 5.7 is transverse, frontal
and sagittal plane motion is not surprising since the values of frontal and transverse
plane motion are very similar in the mean data (11.9° and 10.0° for the right and 11.8°
and 11.2° for the left). Consequently, only a small amount of variation between
subjects in the range of motion in these two planes will produce a change in the order of
predominance. In such instances the order of predominance maybe misleading because
it suggests the existence of a definite order. A more realistic interpretation would be that
the ranges of motion are effectively equal and the order of predominance may be re

written as frontal/transverse and sagittal plane motion.

The directions of frontal and transverse plane motion at the mid tarsal joint during the
composite phase were always positive. Thus, the forefoot everted and externally
rotated relative to the heel during absolute internal rotation of the leg and the forefoot
inverted and internally rotated relative to the heel during absolute external rotation of

the leg.

The direction of motion in the sagittal plane was relatively consistent with only the right
mid tarsal joints of subjects 12 and 19 displaying negative rotation and all other subjects
displaying positive rotation. Thus, the forefoot dorsiflexed relative to the heel during
absolute internal rotation of the leg and plantarflexed relative to the heel during absolute

external rotation of the leg.

There are no descriptions in the literature of the motions at the mid tarsal joint as it has

been defined in this study as thus no data to which these patterns are directly
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comparable. Lundberg and Svensson (1993) described the rotations at the talonavicular
joint during internal and external rotation of the leg and this provides a reasonable
comparison. The order of predominance in the mean talonavicular data, as in this
study, was frontal, transverse and sagittal plane motion. The range of frontal and
transverse plane motion reported was similar to that reported here (frontal 15.5° and
transverse was 14.6°) and the direction of motion at the talonavicular joint was identical
to that described for the mid tarsal joint. Van Langelaan (1983) described adduction
and inversion motion at the calcaneocuboid joint during external leg rotation. This too

is identical to the results here.

5.3.6.2 Dynamic phase — ranges of motion.

DYNAMIC PHASE Subject number and side

Order of predominance Right mid tarsal joint Left mid tarsal joint
F-T-S 10, 11, 12, 20, 25 8,9,11,12, 14,15, 25
T-S-F 3,7,13,14,17,24 3,10, 13, 20, 21, 24
S-T-F 18 22
S-F-T None 1
F-S-T . 9,15 5,6

Table 5.8

Lists the number of each subject whose mid tarsal joint displayed
an order of predominance different than that of the mean data, and
the order of predominance displayed. Subjects not listed displayed
an order of predominance that was the same as that displayed in
the mean data for the dynamic phase of motion (T - F —S).

T = Transverse plane, F = Frontal plane and S = Sagittal plane.
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The order of predominance in the mean range of mid tarsal joint motion during the
dynamic phase was transverse, frontal and sagittal plane motion (Table 5.8). The actual
difference between the range of motion in the transverse and frontal planes, however,
was very small; 0.02° for the right and 0.3° for the left. Again, the ranges of transverse
and frontal plane motion can be considered effectively equal and the order of

predominance transverse/frontal and sagittal plane motion.

As would be expected with small differences in the range of motion in each plane there
were 12 instances when the order of predominance was frontal, transverse and sagittal
plane motion. There were a further 12 instances when the order of predominance was
sagittal, frontal and transverse plane motion. As in the composite phase there are still
further variations, with one subject displaying an order of predominance that was the
opposite of the order of predominance in the mean data. In many cases the difference

between the range of motion in the frontal and transverse planes was negligible.

The direction of motion during the dynamic phase was similar to that in the composite
phase. The frontal and transverse plane motions were always positive and the sagittal
plane motion was generally positive, with only two instances when the sagittal plane

motion was negative.

3.3.6.3 Supination phase — ranges of motion.

The order of predominance in the mean range of mid tarsal joint motion during the

supination phase was frontal, transverse and sagittal plane motion (Table 5.9). As in the
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composite and dynamic phases the actual differences between the range of frontal and
transverse plane motion was very small, 0.6° for the right and 0.2° for the left. The
order of predominance can be considered to be frontal/transverse and sagittal plane
motion. Again, variations in the order of predominant motion were considerable. There
were 16 instances when the order of predominance was transverse, frontal and sagittal
plane motion, and further instances when the order of predominance was sagittal,

transverse and frontal plane motion (the opposite of the order of predominance in the

mean data).

SUPINATION PHASE Subject number and side

Order of predominance Right mid tarsal joint Left mid tarsal joint
T-F-S 1,4,5,8,16,17,19,21,22  4,10,17, 18,19, 23,24
T-S-F 7 2,21
F-S-T 9,11,12 . 5,6,11,12,13,25
S-T-F 2 22
S-F-T 18 1,19

Table 5.9

Lists the number of each subject whose mid tarsal joint displayed
an order of predominance different than that of the mean data, and
the order of predominance displayed. Subjects not listed displayed
an order of predominance that was the same as that displayed in
the mean data for the supination phase of motion (T - F —S).

T = Transverse plane, F = Frontal plane and S = Sagittal plane.
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The direction of frontal and transverse plane mid tarsal joint motion during the
supination phase was always positive. The direction of sagittal plane motion was
generally positive, with only five instances when the sagittal plane motion was

negative.

5.3.6.4 Pronation phase — ranges of motion.

PRONATION PHASE Subject number and side

Order of predominance Right mid tarsal joint Left mid tarsal joint
T-F-S 3,4,10,13 4,6,9,16,18,21,23
T-S-F 14,24 3,10, 13,24
F-S-T 12, 15, 20, 22 1,5,17
S-T-F 7 None
S-F-T 58,9,17 None

Table 5.10

Lists the number of each subject whose mid tarsal joint displayed
an order of predominance different than that of the mean data, and
the order of predominance displayed. Subjects not listed displayed
an order of predominance that was the same as that displayed in
the mean data for the pronation phase of motion (T - F — S).

T = Transverse plane, F = Frontal plane and S = Sagittal plane.

The order of predominance in the mean range of mid tarsal joint motion during the
pronation phase was frontal, transverse and sagittal plane motion (Table 5.10). As in

the composite, dynamic and supination phases the actual differences between the range
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of frontal and transverse plane motion was very small, 1.3° for the right and 0.4° for the
left. The order of predominance can be considered to be frontal/transverse and sagittal
plane motion. Again, variations in the order of predominance were considerable. There
were 11 instances when the order of predominance was transverse, frontal and sagittal
plane motion and further instances when the order of predominance was sagittal,
transverse and frontal plane motion (the opposite of the order of predominance in the

mean data).

5.3.6.5 Axis of rotation.

The axis of rotation for the mid tarsal joint calculated from the mean range of motion
during the composite phase was orientated upwards and medially from posterior to
anterior (Figure 4.8). The angle of the mid tarsal joint axis to the transverse plane varied
between 70.0° (right mid tarsal joint, subject 3 pronation phase) and 15.9° (left mid
tarsal joint, subject 1 dynamic phase). This range reflects the variations in the
predominant motion already highlighted. The angle of the mid tarsal joint axis to the
sagittal plane varied between 67.6° (right mid tarsal joint, subject 7 pronation phase)

and —27.9° (right mid tarsal joint, subject 12 pronation phase).

There are no studies in the literature which describe an axis of rotation for the mid tarsal
joint as it has been defined here. Thus, there are no studies to which these data are
directly comparable. There are, however, several studies that have described the
characteristics of the talonavicular and calcaneocuboid joints separately and the data

from these studies is relevant.
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The upward and medial orientation for the mid tarsal joint axis described in this study is
consistent with the general orientation of the talonavicular and calcaneocuboid joint
axes described by Van Langelaan (1983) and the talonavicular axis described by

Lundberg and Svensson (1993).

In Van Langelaan’s (1983) work based on 10 cadavers, the angle of the talonavicular
axis varied from 3.8° to 21.4° (mean 14.1°) relative to the sagittal plane and 27.0° to
47.4° (mean 38.5°) to the transverse plane. The angle of the calcaneocuboid axes varied
from —15.5° to 19.9° (mean 2.7°) relative to the sagittal plane and 43.3° to 72.0° (mean
51.9°) to the transverse plane. The axes of rotation for the talonavicular joint described
by Lundberg and Svensson (1993) were for the rotation of the leg from an internally
rotated position to their neutral position and from neutral to an externally rotated
position. For the rotation from an internally rotated position to their neutral the axis
was angled 7° to the sagittal plane and 27° to the transverse plane. For the rotation of
the leg from neutral to an externally rotated position the axis was angled 22° from the

sagittal plane and 34° from the transverse plane.

The angulation of the mid tarsal joint axis to the transverse plane (37° for the right and
38° for the left) is in reasonably consistent with the axes for talonavicular and
calcaneocuboid joints (Figure 5.3). The principal difference between the results of this
study and those of Van Langelaan (1983) and Lundberg and Svensson (1993) is that the
angle of the mid tarsal joint axis relative to the sagittal plane (25.9° for the right and
32.2° for the left) is greater than that of the talonavicular and calcaneocuboid joint axes.
This reflects either a smaller range of frontal plane motion at the mid tarsal joint

compared to either the talonavicular or calcaneocuboid joints, or a greater range of
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sagittal plane motion. Both would have an identical effect on the angulation of the axis
relative to the sagittal plane. Some additional sagittal plane motion might have been
measured in this study if there was sagittal plane motion between the cunieforms and
metatarsals. Thus, whilst the navicular and cuboid dorsiflex relative to the heel, the
cunieforms and metatarsals dorsiflex relative to the navicular and cuboid. This would
increase the vertical displacement of the marker mounted over the second metatarsal
shaft and increase the range of sagittal plane motion measured at the mid tarsal joint.
This is perhaps a limitation of the marker set used in this study, but it should be
remembered that it was essential to extend the navicular and cuboid rigid body model to

allow proper kinematic analysis to take place.
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MTJ 25.9°

MTJ 32.2°

TN38,5° CC 51.9

MT]J 38.7°
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_ roxima’ Segmet | calculated in this
right limb Distal segment
study
Figure 5.3

Mean axis of rotation of the left and right mid tarsal joint determined in this study and the
axes of rotation for the talonavicular (TN) and calcaneocuboid (CC) joints calculated by
Van Langelaan (1983), projected on transverse and sagittal plane images of a left foot
(calculated from mean range of motion in 3 cardinal body planes). Angles relate to the
angulation of the axis to the sagittal and transverse planes.
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In the current literature there is no description of the axis of rotation for the mid tarsal
joint determined in an acceptable scientific manner. The first description of the oblique
axis was based on study of the articular surfaces of the joint (Elftman and Manter
1938). The longitudinal axis of the mid tarsal was based on a study of cadavers and the
methodology used was not fully described (Manter 1941), though an illustration of the
experiment questions the validity of the joint characteristics subsequently described.
‘Confirmation’ of the orientation of the oblique and longitudinal axes by Hicks (1953)
is also of questionable scientific merit. The description provided here supersedes the
description of the oblique and longitudinal axes of the mid tarsal joint in the literature
because this description is based on a kinematic assessment, whereas the currently
accepted model is based on conceptual motions (Figure 5.4). It is proposed, therefore,
that the axes of rotation described here be adopted as the basis of the model of mid

tarsal joint function.
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Figure 5.4

Mean axis of rotation of the left and right mid tarsal joint determined in this study and the
conceptual axes of rotation described by Manter (1941), projected on transverse and

sagittal plane images of a left foot (calculated from mean range of motion in 3 cardinal

body planes). Angles relate to the angulation of the axis to the sagittal and transverse planes.
Anatomical position was not calculated, and is assumed from work by Van Langelaan (1983),
Benick (1983) and Lundberg et al (1989).
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The head of the talus is convex in all directions and the talonavicular joint is somewhat
like a ball and socket joint. To this extent it is able to move in almost any direction in
which it is forced to move. When investigating the kinematic characteristics of this
type of joint it is important to derive the kinematic data from experimental work
involving the joint moving in as natural an environment and manner as possible. If the
environment interferes with the natural motion pattern at the joint then the axis of
rotation determined will be incorrect. Axes of rotation cannot be derived by assessing

the contours of the articular surface in a joint with such a freedom of movement.

The in vivo experiment conducted in this study, when compared to those in the
literature, provides a more natural environment. Thus the data is of greater relevance
than previous studies describing the mid tarsal joint (Elftman and Manter 1938, Manter
1941). This in vivo assessment includes the natural limb to floor interface, normal
weight bearing, inducement of rearfoot motion by transverse plane motion of the leg

and some influence of muscles and ligaments on joint kinematics.

5.3.6.6 Comparison of phases.

The principal difference between the phases was between the supination and pronation
phases. The ratio of transverse to frontal plane motion for the mean mid tarsal joint was
relatively similar for the supination and pronation phases (Figure 4.27 and 4.28). This
consistency, however, is not representative of the whole sample. For example, 12 of the
25 left limbs displayed more transverse plane motion per degree of frontal plane motion
in the supination phase than the pronation phase. Twelve of the left limbs displayed

more transverse plane motion per degree of frontal plane motion in the pronation phase
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than the supination phase. The range of transverse plane mid tarsal joint motion in one
left limb (subject 14) was the same in the supination and pronation phases. This pattern
is displayed in figure 5.5. Thus, the majority of individuals did have some differences
between the supination and pronation phases, the difference between the phases was

variable, and this was not evident in the mean data.

Difference in the mid tarsal joint ratio between the supination and
pronation phases

1.50

1.00

0.50

0.00

-0.50

difference between ratio in supination and
pronation phase

-1.00

-1.50
subjects (subject number not specified)

Figure 5.5

Graph illustrates the difference between the supination and
pronation phasesin the ratio of transverse to frontal plane motion.
A negative value indicates more transverse plane motion

per degree of frontal plane motion during the supination phase
than the pronation phase. A positive value indicates more
transverse plane motion per degree of frontal plane motion
during the pronation phase than the supination phase — left limb

only
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5.3.6.7 Summary of the relative rotation at the mid tarsal joint.

The order of predominance in the mean range of mid tarsal joint motion was frontal,
transverse and sagittal plane motion. However, more than 50% of the sample have
an order of predominance that was different than this, typically transverse, frontal
and sagittal plane motion. The ranges of transverse and frontal plane motion at the
mid tarsal joint were generally very similar.

The directions of frontal and transverse plane motions were always positive. Thus
the forefoot everts and externally rotates relative to the heel during absolute internal
rotation of the leg and inverts and internally rotates relative to the heel during
absolute external rotation of the leg.

The direction of motion in the sagittal plane was generally positive, with only a few
exceptions in each phase of motion. Thus, the forefoot dorsiflexes relative to the
heel during absolute internal rotation of the leg and plantarflexes relative to the heel
during absolute external rotation of the leg.

The axis of rotation for the mid tarsal joint was directed upwards and medially from

posterior to anterior.
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5.3.7 RELATIVE ROTATION AT THE REARFOOT COMPLEX.

Phase Primary order of Other orders of predominance
predominance F—T-S T_-S-F
Composite T-F-S R-12
L —None
Dynamic T-F-S R-12 R —None
L —None L-3,16
Supination T-F-S R-12
L —None
Pronation T-F-S R-12 R-7,8,9,11,16
L —None L-16,17
Table 5.11

Reference table. Details the primary order of predominance for
the rearfoot complex and the other order of predominance
displayed within the sample, for each phase of motion. Numbers
relate to the individual subjects. F = frontal plane motion, T =
transverse plane motion, S = sagittal plane motion. R =right, L =

left.

5.3.7.1 Composite phase — ranges of motion.

The order of predominance in the mean range of rearfoot complex motion during the
composite phase was transverse, frontal and sagittal plane motion. There was only one
exception to this in the sample (Table 5.11). In this instance the range of frontal plane
motion was more than twice the mean range and the range of transverse plane motion

was close to the average.
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The direction of frontal, transverse and sagittal plane motion during the composite
phase was also very consistent. Without exception, the frontal, transverse and sagittal
plane motions at the rearfoot complex were all positive. Thus, the forefoot everted,
externally rotated and dorsiflexed relative to the leg during absolute internal rotation of
the leg and inverted, internally rotated and plantarflexed relative to the leg during

absolute external rotation of the leg.

There is no literature that describes the rotation of the forefoot relative to the leg as they
have been defined in this study. The piece of work that most closely resembles this
study was completed by Lundberg et al (1989c). They described the motion of the first
metatarsal relative to the leg during external rotation of the leg from an internally
rotated position. They too were attempting to describe the composite function of the
rearfoot. The order of predominance for the motion between the metatarsal and leg, as
in this study, was transverse, frontal and sagittal plane motion. The ratio of the motion
in these three planes was also very close to that described in this study. For the total of
30° of external leg rotation the ratio of the motions described by Lundberg et al (1989¢)
was 1: 2.0: 0.5 (frontal: transverse: sagittal) compared to 1: 1.9: 0.3 and 1: 2.0: 0.3 for

the right and left limbs in this study (composite phase).

The direction of motion between the first metatarsal and leg described by Lundberg et
al (1989c¢) was also in agreement with that described in this study. The first metatarsal
internally rotated, inverted and plantarflexed relative to the leg as the leg externally

rotated.
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5.3.7.2 Dynamic phase — ranges of motion.

The order of predominance in the mean range of rearfoot complex motion during the
dynamic phase was also transverse, frontal and sagittal plane motion. There were three

exceptions to this (Table 5.11).

As in the composite phase the direction of motion in the frontal, transverse and sagittal
planes was consistently positive. There were, however, two subjects who displayed a
pattern of negative rotation in the sagittal plane (right rearfoot complex of subject 21
and left rearfoot complex of subject 14). In both these instances the range of absolute
sagittal plane forefoot motion was less than 1° and thus small sagittal plane movements

of the leg will greatly influence the direction of sagittal plane rearfoot complex motion.

5.3.7.3 Supination phase — ranges of motion.

The order of predominance in the mean range of rearfoot complex motion data during
the supination phase was also transverse, frontal and sagittal plane motion. Again the
right rearfoot complex of subject 12 was an exception to this (Table 5.11). As in the
other phases, the direction of motion in the frontal and transverse planes was always
positive and in the sagittal plane was generally positive. The right rearfoot complex of
subjects 1, 14, 19 and 21 and the left rearfoot complex of subjects 14, 17 and 23 all

displayed negative sagittal plane motion.
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5.3.7.4 Pronation phase — ranges of motion.

The order of predominance in the mean range of rearfoot complex motion data during
the pronation phase was also transverse, frontal and sagittal plane motion. There were
eight exceptions to this (Table 5.11). Seven subjects displayed an order of
predominance of transverse, sagittal and frontal plane motion. In all these instances the
range of frontal plane motion was considerably less than the average of approximately
8°, the range of sagittal plane motion was close to the average of approximately 3°. The
right rearfoot complex of subject 12 displayed an order of predominance of frontal,

transverse and sagittal plane motion.

The direction of frontal and transverse plane motion was again consistently positive
within the sample. The direction of sagittal plane motion was generally positive, with
only the right rearfoot complex of subjects 3, 11and 12 and the left rearfoot complex of

subject 12 displaying negative motion.

5.3.7.5 Axis of rotation.

The axis of rotation for the rearfoot complex calculated ﬁ'om the mean ranges of motion
was orientated upwards and medially (Figure 4.9). The angulation of the axis to the
transverse plane varied between 42.5° (right rearfoot complex, subject 12 pronation
phase) to 85.1° (left rearfoot complex, subject 11 pronation phase). The angulation of
the axis to the sagittal plane varied between —52.7° (right rearfoot complex, subject 11

pronation phase) to 80.5° (left rearfoot complex, subject 16 pronation phase). The wide
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variation in the sagittal plane angulation is to be expected since the direction of sagittal

plane motion was variable.

The only comparable data is from Lundberg et al (1989c). They measured the motion
of the first metatarsal relative to the tibia during transverse plane motion of the leg.
From the motion data documented, the axis of rotation for the total range of motion can
be calculated as angled 61.7° to the transverse plane and 24.3° to the sagittal plane.
These compare well with the means of 60.7° and 16.3° relative to the transverse and
sagittal planes for the right and 62.7° and 17.6° for the left. The difference in the
sagittal plane angle of the axis could be due to more sagittal plane motion being
measured, probably at the first metatarsal medial cuneiform joint and at the navicular

cuneiform joint.

3.3.7.6 Comparison of phases.

The principal difference between the phases was between the supination and pronation
phases. There was an increase in the range of transverse plane rearfoot complex motion
per degree of frontal plane rearfoot complex motion in the pronation phase compared to
the supination phase (Figure 4.29 and 4.30). For the right limb, the mean rearfoot
complex moved 2.1° in the transverse plane per 1° of frontal plane motion during the
pronation phase, compared to 1.7° during the supination phase. For the left limb, the
mean rearfoot complex moved 2.3° in the transverse plane per 1° of frontal plane
motion during the pronation phase, compared to 1.8° during the supination phase. This

pattern was reasonably consistent within the sample. Figure 5.6 illustrates the difference
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between the ratio of transverse to frontal plane motion in the supination and pronation

phases.

Difference in the rearfoot complex ratio between supination and
pronation phases.

35.00

30.00

25.00

20.00

15.00

10.00

5.00

difference in supination and pronation ratic

0.00

-5.00
Subjects (subject number not specified)

Figure 5.6

Graph illustrates the difference between the supination and
pronation phases in the ratio of transverse to frontal plane motion.
A negative value indicates more transverse plane motion

per degree of frontal plane motion during the supination phase
than the pronation phase. A positive value indicates more
transverse plane motion per degree of frontal plane motion

during the pronation phase than the supination phase — left limb

only.
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5.3.7.7 Contribution of the ankle/sub talar complex and mid tarsal joint to the

functional characteristics of the rearfoot complex.

The rearfoot complex provides an overall description of the combined function of the
ankle, sub talar and mid tarsal joints. The contribution of each component of the
rearfoot complex to the overall function of the rearfoot provides some indication of the
role and the importance of each joint within the complex. Tables 5.12 and 5.13 detail
the contribution of the ankle/sub talar complex and mid tarsal joint to the frontal,
transverse and sagittal plane motions of the rearfoot complex. These percentages were

calculated from the mean range of motion during the composite phase of each joint

movement.
RIGHT LIMB Range of motion (degrees)
Frontal Transverse Sagittal
Ankle/sub talar complex 8.0 27.0 0.1
Mid Tarsal Joint 11.9 10.0 5.8
Rearfoot complex 19.9 37.0 5.8
Contribution of ankle/sub talar
complex 40 % 73 % 1%
Contribution of mid tarsal
joint 60 % 27 % 99 %
Table 5.12

Table expresses the contribution of the ankle/sub talar complex
and mid tarsal joint to the characteristics of the rearfoot complex

as a percentage — right limb.
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LEFT LIMB Range of motion (degrees)
Frontal Transverse Sagittal

Ankle/sub talar complex 72 274 -1.4

Mid Tarsal Joint 11.8 11.2 7.5

Rearfoot complex 19.0 38.6 6.0

Contribution of ankle/sub talar

complex 38% 71 % *

Contribution of mid tarsal

joint 62 % 29 % *
Table 5.13

Table expresses the contribution of the ankle/sub talar complex
and mid tarsal joint to the characteristics of the rearfoot complex
as a percentage — left limb. * Could not be calculated because of

negative sign of ankle/sub talar complex motion.

Clearly, the ankle/sub talar complex is the principal source of transverse plane rearfoot
complex motion and the mid tarsal joint is the principal source of frontal plane motion.
This contradicts traditional descriptions of the motion in the rearfoot, which generally

describes the sub talar joint as the principal source of frontal plane motion.

The ankle/sub talar complex contributes approximately 72% of the total transverse
plane motion in the rearfoot complex. Siegler et al (1988) and Rosenbaum et al (1998)
both described the ankle and sub talar joints as having equal contribution to the range of
ankle/sub talar complex motion. If this is true, and applied to the results here, the ankle,
sub talar and mid tarsal joints have similar contributions to the transverse plane motion

of the rearfoot complex (approximately 36%, 36% and 28% for the ankle, sub talar and
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mid tarsal joints respectively). This is further confirmation that the mechanism that
allows the leg and proximal structures to rotate in the transverse plane whilst the foot is
in a relatively fixed transverse plane position of the floor is a consequence of all three

rearfoot joints. Furthermore, the joints have near equal role in this mechanism.

The percentage contributions to the overall sagittal plane rearfoot complex motions are
difficult to interpret, particularly for the left limb. It is clearly the case, however, that
the principal source of sagittal plane motion in the rearfoot complex is the mid tarsal

joint.

The percentage contributions of each of the components of the rearfoot complex
confirm that the functional capacity of the rearfoot is a consequence of the motion at

three joints and that each makes an important contribution to the overall function.

5.3.7.8 Summary of the relative rotations of the rearfoot complex.

¢ The order of predominance in the rearfoot complex during the composite, dynamic
and supination phases was transverse, frontal and sagittal plane motion. This was
the case for all but one subject, who displayed slightly more frontal plane motion
than transverse.

e The order of predominance during the pronation phase was typically transverse,
frontal and sagittal plane motion, but this was more variable within the sample due
to a reduction in the range of frontal plane motion compared to the other phases. As
a consequence the order of predominance was transverse, sagittal and frontal plane

motion for some subjects.
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The direction of motion in the frontal and transverse planes was consistently
positive. Thus, the forefoot everted and externally rotated relative to the leg during
absolute internal rotation of the leg and inverted and internally rotated relative to the
leg during absolute external rotation of the leg.

The direction of sagittal plane motion was generally positive. Thus, the forefoot
dorsiflexed relative to the leg during absolute internal rotation of the leg and
plantarflexed relative to the leg during absolute external rotation of the leg.

The axis of rotation for the rearfoot complex was consistently orientated upwards
and medially from posterior to anterior.

The amount of transverse plane motion per degree of frontal plane motion during
the pronation phase was generally greater than during the supination phase.

There was considerable variation within the sample in the ratio of transverse plane
motion to frontal plane motion.

The mid tarsal joint is the principal source of frontal plane motion and the ankle/sub
talar complex is the principal source of transverse plane motion.

The ankle, sub talar and mid tarsal joints probably have almost equal contributions
to the transverse plane motion of the rearfoot complex.

The rearfoot is a combination of three joints and each makes an important

contribution to the overall function.
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5.3.8 SUMMARY OF THE DIFFERENCES BETWEEN THE COMPOSITE,

DYNAMIC, SUPINATION AND PRONATION PHASES OF MOTION.

The review of the literature describing the rearfoot joints in chapter 2 highlighted the
fact that the characteristics of all of the rearfoot joints change during the total range of
motion. It is important to know what these changes are and when they take place in

order that a proper understanding of how the joints function can be established.

The ranges of motion and ratios of motion were different for each phase of rotation in
each segment and joint complex. The constantly varying nature of the motion at the
rearfoot joints is consistent with the literature (Van Langelaan 1983, Lundberg et al
1989a, Lundberg and Svensson 1989c). The principal differences were between the
supination and pronation phases. The dynamic phases generally had characteristics that
were in between those of the supination and pronation phase. Since the dynamic phase
typically comprised part of the supination and part of the pronation phase this was not
surprising. The functional characteristics of the composite phase were also in between
those of the supination and pronation phases. Again this was expected since the

composite phase is the combined supination and pronation phases.

At the ankle/sub talar complex the range of frontal plane motion during the pronation
phase was reduced compared to the supination phase with a subsequent increase in the
ratio of transverse to frontal plane motion. There was 81% and 83% more transverse
plane motion per degree of frontal plane motion in the pronation phase than in the
supination phase, for the right and left respectively (from mean data of composite

phase).
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At the mid tarsal joint the ratio of transverse to frontal plane motion in the mean data
was relatively consistent between supination and pronation phases. This consistency,
however, was not representative of the whole sample. Two patterns were evident in the
data, with an even distribution within the sample. Some subjects displayed more
transverse plane motion per degree of frontal plane motion in the supination phase than
the pronation phase. Others displayed more transverse plane motion per degree of

frontal plane motion in the pronation phase than the supination phase.

At the rearfoot complex there was an increase in the range of transverse plane rearfoot
complex motion per degree of frontal plane rearfoot complex motion in the pronation
phase compared to the supination phase. This pattern was reasonably consistent within
the sample. This was due to the decrease in the range of frontal plane forefoot motion

during the pronation phase compared to the supination phase.

It was intended that the functional characteristics described during the dynamic phase
would be more representative of the motion during gait. Since the motion of the leg,
heel and forefoot during gait was not determined, the degree to which the dynamic
phase achieves this cannot be determined. The functional characteristics described
during the dynamic phase cannot be used to directly represent the dynamic function of
that individual anymore than the supination or pronation phase. This is because the
assessment was static and this is a major limitation. The value of the dynamic phase is
that it confirms that the characteristics of the motion during the part of the total range of
motion used during gait are different than in the other phases (composite, supination

and pronation). Clearly, for a conclusive description of the joint characteristics the
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particular part of the total range of motion used during walking must be assessed. The
ultimate answer to this is a dynamic assessment of the ankle/sub talar complex, the mid

tarsal joint and the rearfoot complex. This should be the focus for future work.

The definition of the supination and pronation phases is dependent upon the reference
position. A different reference position would define different supination and pronation
phases within the total range of motion. The relaxed standing position was chosen as
the reference position for this study because it was believed to be more repeatable than
other possible reference positions, in particular the sub talar joint neutral position.
Other reference positions, such as aligning bisections of the posterior heel and leg
parallel to each other using some mechanical alignment system, may have provided
equal repeatability to the relaxed standing position. This would have produced
descriptions of the functional characteristics of the rearfoot complex and its components
during the supination and pronation phases that are different than those currently

presented.

53.9 SUMMARY OF THE INDIVIDUAL VARIATIONS IN THE

FUNCTIONAL CHARACTERISTICS OF THE REARFOOT.

The review of the literature describing the rearfoot joints in chapter 2 highlighted the
fact that the characteristics of all of the rearfoot joints are variable between individuals.
It is important to know in what manner the characteristics are variable and to what
degree they are variable, so that the value of a description of the mean joint or complex
can be put into context. For example, if the characteristics of the ankle/sub talar

complex were constant within the sample, then the description of the mean ankle/sub
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talar complex could be reliably used to describe any of the individuals in that sample.
However, if the characteristics varied greatly, then the description of the mean
ankle/sub talar complex would not provide an accurate description of the ankle/sub talar

complex of some of the individuals in the sample.

The order of predominance of the motions at the rearfoot joints provides a more general
description of the functional characteristics and was frequently different between
individuals. However, when the order of predominance was more consistent, such as at
the rearfoot complex during the composite phase, the ratio of the motions highlighted
considerable individual variations. Thus, both the order of predominance and the ratio
of motion were important in describing the functional characteristics of the rearfoot

joints and defining differences between individuals.

At the ankle/sub talar complex the order of predominance during the composite phase
was reasonably consistent throughout the sample. Transverse plane motion was
predominant for all subjects, however, the predominance of frontal plane motion over
sagittal plane motion was variable between individuals. The ratios of transverse to
frontal plane motion were highly variable. Some individuals displayed nearly equal
amounts of transverse and frontal plane motion, others 10 to 25 times the range of
frontal plane motion. This pattern was present in all the phases of motion and was

generally due to changes in the range of frontal plane heel motion.

At the mid tarsal joint during the composite phase the order of predominance is

variable, typically being either frontal, transverse and sagittal plane motion or
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transverse, frontal and sagittal plane motion. Within each of these sub groups there was

further variation (Figure 5.7).
Ratio of transverse to frontal plane mid tarsal joint motion -
composite phase
2.50
2.00
1.50
3
B
1.00
0.50 -
0.00 -
subjects (subject number not specified)
Figure 5.7

The ratio of transverse to frontal plane motion at the mid
tarsal joint during the composite phase. Ratio of less than
lindicates more frontal plane motion than transverse, a
ratio of greater than 1 indicates more transverse plane
motion than frontal. There are two distinct sub groups,
those with ratios less than 1, those with ratios greater than
1. Within these sub groups there is still further variation.
Data for the left limb only
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At the rearfoot complex the order of predominance during the composite phase was
consistent within the sample, with only one exception (right rearfoot complex of subject
12). The ratios of transverse to frontal plane motion, however, illustrate considerable
variations within the sample. Some subjects displayed only slightly more transverse

plane motion than frontal plane motion, whilst others display up to 4 times the range.

As an illustration of the variation within the sample figures 5.8 and 5.9 detail the ratio
of the range of motion in the frontal, transverse and sagittal planes for the ankle/sub
talar complex and mid tarsal joints of subjects 2 (left and right limbs), 16 (left only) and
3, 7 and 12 (right limb only). Subjects 3 and 16 displayed 5.9° and 16.8 ° of transverse
plane motion per degree of frontal plane motion at their ankle/sub talar complex
respectively. These are very different than subjects 2, 7 and 12 who all displayed less

than 2.7° per degree of frontal plane motion.

Data for mid tarsal joint of the same subjects illustrates further individual variation, but
also that the existence of individual differences or similarities at one joint/complex does
not necessarily relate to differences at other joints/complexes. The ankle/sub talar
complex of subjects 2 (right limb) and 16 were markedly different (figure 5.8), their
" mid tarsal joints, however, were similar (figure 5.9). In contrast, the ankle/sub talar
complex of subjects 7 and 12 were similar, their mid tarsal joints, however, were
markedly different. Range of motion data for the ankle/sub talar complex, mid tarsal

joint and rearfoot complex for each individual subject are detailed in figures 4.14 to

4.15.
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In summary, there was no clear pattern in the variations between individuals. There
were a wide variety of differences between individuals and between joints. Some
subjects displayed the same predominance of motion at the ankle/sub talar complex,
mid tarsal joint and rearfoot complex, others a mix of predominance at each
joint/complex. Overall the results suggest wide ranging individual variation in the
functional characteristics of the rearfoot joints consistent with the literature. Using mean
values to describe the characteristics of a rearfoot joint may have limited application in
clinical practice, because it is possible for patients to possess functional characteristics

at their rearfoot joints which vary considerably from the mean.
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Figure 5.8
Details the ratio of frontal, transverse and sagittal plane
ankle/sub talar complex motion for subjects 2, 16 (left limb
only) and 2, 3, 7 and 12 (right limb only).
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1.2 4
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Figure 5.9
Details the ratio of frontal, transverse and sagittal plane
mid tarsal joint motion for subjects 2, 16 (left limb
only) and 2, 3, 7 and 12 (right limb only).
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5.4 THE REARFOOT COMPLEX KINEMATIC CHAIN

This study has involved recording the motion of the leg, heel and forefoot and the
ankle/sub talar complex, mid tarsal joint and rearfoot complex during transverse plane
rotation of the leg. They provide a description of the kinematic coupling in the rearfoot
joints. The following descriptions are taken as the general patterns displayed in the

sample.

5.4.1 MOTION PATTERN.

During transverse plane rotation of the leg from an externally rotated position to

maximally internally rotated:

e The Heel:
everts, internally rotates and plantarflexes

The Forefoot:

everts, interally rotates and dorsiflexes

The Ankle/Sub talar complex:

everts, externally rotates and plantarflexes

The Mid Tarsal joint:

everts, externally rotates and dorsiflexes

The Rearfoot Complex:

everts, externally rotates and dorsiflexes.
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During transverse plane rotation of the leg from a maximally internally rotated

position to a position of external rotation:

The Heel:

inverts, externally rotates and dorsiflexes

The Forefoot:

inverts, externally rotates and plantarflexes

The Ankle/Sub talar complex:

inverts, internally rotates and dorsiflexes

The Mid Tarsal joint:

inverts, internally rotates and plantarflexes

The Rearfoot Complex:

inverts, internally rotates and plantarflexes.

There is an important difference between the description of rearfoot complex motion
here and that given earlier in this thesis (section 2.3.1). The description in chapter 2
was based on theoretical descriptions of the rearfoot joints in the literature. It stated that
during rearfoot complex pronation (internal rotation of the leg) the mid tarsal joint
pronated around its oblique axis (everted, externally rotated and dorsiflexed) and
supinated (inverted, internally rotated and plantarflexed) around the longitudinal axis.
The description of mid tarsal motion recorded in this study indicates that the mid tarsal
joint everts as the rearfoot complex pronates, not inverts as the previous description
stated. The difference in the descriptions is due to the former being based on the

conceptual oblique and longitudinal axes of the mid tarsal joint and the latter on the
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axes of rotation from kinematic analysis. This highlights the problem with the
conceptual axes of the mid tarsal joint. Clearly, a joint cannot undergo opposite

motions (inversion and eversion) at the same time, it either inverts or everts.

The reason why it was believed that the mid tarsal joint inverted was that as the heel
everted during pronation and all the metatarsals became weight bearing, further
eversion at the mid tarsal joint was thought to be impossible because this would mean
the forefoot everting relative to the ground. It was known, however, that the heel
continued to evert. Thus, if the heel everts and the mid tarsal joint ceases to evert then
the relative motion between them is inversion. It has already been explained earlier in
this chapter how the mid tarsal joint may continue to evert after all the metatarsal have
become weight bearing, by rotation of metatarsals around their longitudinal axes in a

lateral to medial rolling movement.

The primary importance of this is that the forefoot to rearfoot relationship (the frontal
plane alignment of the metatarsals to the plantar surface of the heel) is not a function
solely of the mid tarsal joint, as if often assumed. If it was and the mid tarsal joint
everted after all the metatarsals were weight bearing (as this study suggests) then the
forefoot would become everted relative to the floor. Instead, it is through motion of the
cunieforms and the metatarsals that the mid tarsal joint is able to move without
affecting the frontal plane position of the forefoot. It is by this mechanism that the mid
tarsal joint everts during rearfoot complex pronation but the forefoot becomes inverted

relative to the plantar surface of the heel.
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5.4.2 AXES OF ROTATION.

The mean axis of rotation for the heel was orientated downward and laterally from

posterior to anterior, with its downward angulation greater than its lateral angulation.

The mean axis of rotation for the forefoot was orientated slightly downwards and

medially from posterior to anterior.

The mean axis of rotation for the ankle/sub talar complex was inclined upwards more

than 45° and slightly laterally from posterior to anterior.

The mean axis of rotation for the mid tarsal joint was inclined upwards and medially
from posterior to anterior, with its upward angulation slightly greater than its medial

angulation.
The mean axis of rotation for the rearfoot complex was inclined upwards and slightly

medially from posterior to anterior, with its upward angulation slightly less than that of

the ankle/sub talar complex.
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5.5 LIMITATIONS OF THIS WORK.

1. The principal limitation of this work is that the kinematic assessment was conducted
in the static situation. This work supersedes several previous works because it was
conducted non invasively in vivo, the limbs were loaded with each individuals own
body weight, the motion was produced by motion of the leg relative to the foot and
the influence of muscles and ligaments on the joint kinematics are included. It
cannot, however, replicate the situation during walking. For example, this study did
not take into account the effect of the sagittal plane motion of the leg over the foot,
which occurs during normal walking, on the rotations in the rearfoot complex. In
this investigation the sagittal plane position of the leg was fixed. The effect of the
variations in the forces generated by the muscles of the foot and leg on joint
kinematics are not included. Finally, the externally applied load (ground reaction
force) on the limb was relatively constant in magnitude and direction, whereas

during walking the external load on the limb varies in both magnitude and direction.

Consequently, the kinematic description provided by this work must be put into
context. It provides a description of the kinematics of the rearfoot complex joints
under the constraints of the experimental protocol. The results here describe what
the rearfoot complex joints are capable of, not necessarily what they do. Static

assessment of this type cannot supersede an equivalent dynamic assessment.

2. The static nature of this assessment and the fact that the input to the rearfoot
kinematic chain model was restricted to transverse plane motion of the leg, prevent

any conclusions being applied directly to the clinical environment, which must be
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the end goal of all biomedical related research. It was hoped that by using the data
from the static assessment categories of patients could be developed, which would
relate the functional characteristic of the rearfoot complex to pathology. However,
without some knowledge of the relationship between the data from the static
assessment and the dynamic function of the foot this is impossible. An inability to
relate the findings of static assessments to dynamic foot function is a major

limitation common to many of the investigations in this area.

. The ranges of motion being measured at the segments and joints were frequently
very small. A limitation of this is that the effects of any residual noise in the
kinematic data and natural variations in motion patterns can produce highly variable
orientations in the calculated axes of rotation. The sagittal plane movements of the
heel for example are frequently below 1°. It would be inappropriate to describe the
sagittal plane motion of the heel as plantarflexion or dorsiflexion when the range of
motion is so small. Rather the description should be qualitative: the heel displays

little or no motion in the sagittal plane.

. The experimental rig designed to restrain the frontal and sagittal plane motion of the
leg whilst it rotated freely in the transverse plane did perform this role adequately.
However, in some instances when a larger than average range of sagittal or frontal
plane motion of the leg was accompanied by a below average range of sagittal or
frontal plane heel motion, the calculated range and direction of ankle/sub talar
complex motion in the sagittal and frontal planes became falsified. In these

instances the description does not provide a true description of the ankle/sub talar
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complex motion resulting from transverse plane rotation of the leg. This was also

the case for the descriptions of the rearfoot complex motion in some subjects.

. Reflective markers mounted on the skin surface are intended to represent the
position and motion of the underlying anatomical structures. Clearly, however, skin
is able to move relative to the underlying structures. Reinschmidt et al (1997) found
significant differences between the description of rearfoot motion during gait
derived from bone mounted markers and that derived from skin surface mounted
markers. The effects of skin movement on the kinematic description derived from
gait are probably greater than those in this study. This is because the relative
displacement between skin and underlying bone is probably greater the higher the
velocity of movement, and the speed at which the movements in this study took
place was much less than the speed of movements during gait. Without doubt,
however, there was some movement of the markers relative to the underlying
anatomy they are intended to represent. This was probably a greater problem with
the leg mounted markers than those on the heel or forefoot because of the greater

depth of soft tissue at this site.

Of greater influence on the position of the markers mounted on the forefoot relative
to the underlying anatomy would be changes in the tension of the long extensor
tendons on the dorsum on the foot. Contraction of the associated musculature will
cause the tension in the tendons to increase and a relative bow string effect across
the dorsum of the foot. This will move the forefoot platform on which the markers
were mounted. Whilst subjects were instructed not to consciously use the muscles

of the foot and leg to produce the rotational movements required, clearly subjects
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would need some muscular activity to maintain postural balance and joint stability.
Considering the small ranges of motion of the forefoot, particularly in the transverse
and sagittal planes, the action of the underlying tendons might have influenced the

eventual kinematic patterns.

. The strict definition of the mid tarsal joint is the movement of the navicular and
cuboid together relative to the calcaneus and talus. Ideally, then, to deduce the
characteristics of the joint the movement of both components of the distal segment
and both components of the proximal segment should be known. This study did
measure the motion of both the navicular and cuboid. However, in the proximal
segment only the motion of the calcaneus was deduced. Thus, the mid tarsal joint
defined here is the motion of the navicular and cuboid together relative to the
calcaneus. Whether this is different than if the motion was measured relative to
both the calcaneus and talus is unknown. It is not possible to measure the motion of
the talus in vivo unless invasive techniques are used. Furthermore, there is so much
movement between the talus and calcaneus that even if the motions of both were
known, it would be difficult to define them as a rigid body. This is more an issue
relating to whether the mid tarsal joint exists, since it is a conceptual as opposed to

anatomical joint defined for the purposes of modelling the kinematics of the foot.

. This work involved the description of joint motions as they occur in the cardinal
body planes defined by the global co-ordinate system. Angular rotations at each
segment and joint complex were calculated relative to the axes of the global co-
ordinate system because of the need to maintain the same rotation axes for the

different rearfoot joints. This in contrary to the recommendations for the description
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of joint kinematics specified by the International Society of Biomechanics (ISB)
(Wu and Cavanagh 1995). They proposed the use of a joint co-ordinate system to
describe the relative motion between two rigid body segments, each defined by a
local co-ordinate system. The joint co-ordinate system defines the axes of rotation
around which joint rotation angles are calculated. The joint co-ordinate system is
derived from the medial/lateral axis of the proximal segment, the inferior/superior
axis of the distal system and a floating axis that is perpendicular to the other two
axes. The joint co-ordinate system method defines different axes of rotation for each
joint and therefore the different components of the rearfoot complex would not be
comparable. Not using the joint co-ordinate system method is a limitation because
the data documented here will not always be directly comparable to other studies

that, in the main, will adopt the recommendations of the ISB.

5.6 INNOVATIONS OF THIS WORK

1. A non invasive in vivo method for determining the functional characteristics of the
rearfoot joints has been developed and tested. All previous kinematic assessments
of this type have either been in vitro or have involved the use of invasive techniques
in vivo. The results of his study are consistent with those of the in vitro and
invasive in vivo studies. Two important concepts have been confirmed. Firstly, the
rearfoot joints operate as a kinematic chain. Secondly, that the function of each
joint is important in the overall function of the complex. In particular, the ankle,
sub talar and mid tarsal joints appear to have almost equal contribution to the

capacity of the rearfoot complex to allow the leg and proximal structures to rotate in
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the transverse plane whilst the foot remains in a relatively fixed transverse plane

position on the floor.

Depending on the precise aims of the study, the use of cadavers and the use of
invasive techniques in vivo may not be necessary in future investigations. For
example, there is a considerable volume of literature describing the effects of
rearfoot surgery on rearfoot kinematics in cadavers. Using the methods described in
this work the effect of a variety of surgical procedures on rearfoot kinematics could
in future be carried out in a patient population, which would provide more

meaningful data.

This investigation has provided the first description of the functional characteristics
of the combined ankle, sub talar and mid tarsal joints during transverse plane
rotation of the leg. Previous investigations have generally focused on individual
joints or only the ankle/sub talar component of the rearfoot complex. These
characteristics have been defined by the range of motion in each of the cardinal
body planes, the ratio of the ranges of motion, the orientation of the axis of rotation
for the rearfoot complex and the changes in the characteristics of the complex

between the supination and pronation phases.

This study has provided a quantification of the functional éharacteristics of the mid
tarsal joint defined as the motion of the navicular and cuboid relative to the heel.
Theée characteristics have been defined by the range of motion in each of the
cardinal body planes, the ratio of the ranges of motion and the orientation of the axis

of rotation for the mid tarsal joint. Previous works have either determined an axis of
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rotation for the mid tarsal joint without proper kinematic assessment or described
axes for the separate talonavicular and calcaneocuboid joints. The axis of rotation
determined in this study supersedes the conceptual oblique and longitudinal axes of
rotation around which the current model of mid tarsal joint kinematics is based

because it has been derived through kinematic assessment.

The range of motion used during gait has been identified within the total range of
motion measured statically. Although the data within the dynamic phase of motion
cannot directly describe the function of the rearfoot joints during walking, it has
highlighted that the characteristics of motion during the phase are different than
those in either of the supination, pronation and composite phases. Previous
investigations have used arbitrary divisions of the total range of motion, in 10°
increments of transverse plane leg rotation for example. The part of the total range
of motion used during gait has not previously been identified within data from a

static assessment.
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CHAPTER 6

CONCLUSIONS AND

FUTURE WORK
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6.1 CONCLUSIONS.

. An experimental design and methodology can be achieved to measure the

functional characteristics of the rearfoot complex non invasively in vivo.

. The joints of the rearfoot complex operate as a kinematic chain.

. During internal rotation of the leg the heel everts, internally rotates and
plantarflexes. During external rotation of the leg the heel inverts, externally rotates

and dorsiflexes.

. During internal rotation of the leg the forefoot everts, internally rotates and
dorsiflexes. During external rotation of the leg the forefoot inverts, externally

rotates and plantarflexes.

. During internal rotation of the leg the ankle/sub talar complex everts, externally
rotates and plantarflexes. During external rotation of the leg the ankle/sub talar

complex inverts, internally rotates and dorsiflexes.

. During internal rotation of the leg the mid tarsal joint everts, externally rotates and

dorsiflexes. During external rotation of the leg the mid tarsal joint inverts, internally

rotates and plantarflexes.
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During internal rotation of the leg the rearfoot complex everts, externally rotates
and dorsiflexes. During external rotation of the leg the rearfoot complex inverts,

internally rotates and plantarflexes.

The axis of rotation for the ankle/sub talar complex is on average angled
approximately 74° to the transverse plane. This is greater than the average angle
made by the sub talar joint axis to the transverse plane and reflects the transverse

plane motion available at the ankle joint.

The axes of rotation for the mid tarsal joint are on average angled approximately
29° to the sagittal plane and 38° to the transverse plane. These axes are different
from, and supersede, the conceptual oblique and longitudinal axes previously

accepted as the axes of rotation for the mid tarsal joint.

The axis of rotation for the rearfoot complex is on average angled approximately
17° to the sagittal plane and 61° to the transverse plane. This illustrates the
considerable capacity for the rearfoot complex to allow the leg and proximal
structures to rotate in the transverse plane whilst the foot remains in a relatively

fixed transverse plane position on the floor.

The ankle, sub talar and mid tarsal joints have nearly equal contribution to the range

of transverse plane motion available in the rearfoot complex.
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All three joints are important in the mechanism which allows the leg and proximal
structures to rotate in the transverse plane whilst the foot remains in a relatively

fixed transverse plane position on the floor.

There was considerable variation within the sample in the functional characteristics
of the ankle/sub talar complex, mid tarsal joint and rearfoot complex. The mid

tarsal joint, however, was the most variable.

The most marked difference in the functional characteristics of the rearfoot complex
components was between the supination and pronation phases. The ratios for the
dynamic and composite phases are, as would be expected, generally somewhere in

between the ratios for the supination and pronation phases.

The model of rearfoot complex function proposed in this thesis is limited because
the input rotation to the rearfoot kinematic chain was restricted to transverse plane
rotation of the leg. This prevents the results of the assessment of the model being
applied in a dynamic situation, such as gait, because in such instances there are
varied inputs to the kinematic chain, in particular the effects of ground reaction and

muscular forces.

The methodology has highlighted differences between individuals that may allow
categorisation of subjects. The ratio of the ranges of motion and the orientation of
the axis of rotation are likely to be of greater value than the order or predominance

as criteria for categorisation.
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17. The issue of categorising patients according the functional characteristics of their
rearfoot complex remains unresolved. This is because the relationship between the
static measures taken in this investigation and dynamic lower limb function are
unknown, and without this knowledge the parameters for categories of patients
cannot be defined. The precise point at which the function of an individual’s
joint/joint complex is significantly different than another individual’s is not clear,

but is a key issue if categorisation is to be achieved.

6.2 FUTURE WORK.

The purpose of this study was to design a method that would allow the functional
characteristics of the rearfoot complex to be determined, with a view to categorising
individuals according to these characteristics. The next step in this process would be to
determine whether the functional characteristics measured using this static assessment
relate to the dynamic function of the rearfoot complex and the other joints in the lower
limb. If they do, then the results of the static assessment may be a useful tool for
categorising individuals. If they do not, however, then the results cannot be used as a
basis upon which to categorise individuals. Furthermore, categories of rearfoot type
could only be defined with some knowledge of at what point one rearfoot complex

becomes sufficiently different to another to warrant separate consideration.

With regard to the description of the functional characteristics of the rearfoot joints,
future work should incorporate two developments. Firstly, the computation of axes of
rotation should involve helical axes. The principal reason for this is in an attempt to

reduce the errors in the calculated positions of the axis. Helical axes are derived from
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the three dimensional segment data, not from ranges of motion in each plane. As
explained in section 5.3.1.1 this prevents the already small ranges of motion being
resolved into smaller components. These axes can also be derived for each instant in
time and so a more complete picture of the changes in the functional characteristics of

the rearfoot complex can be achieved.

Secondly, this work and that in the literature have completed almost all possible
descriptions of the movements in the rearfoot joints in a static situation. Future work,
therefore, should concentrate on dynamic assessment since this will provide the best
description of the functional characteristics of the rearfoot joints. Some work along
these lines has already been published (Siegel et al 1995, Rattanaprasert et al 1999),
though neither describe the rearfoot complex as it has been defined here. A comparison
of the static assessment performed here and a dynamic assessment using the same
definition of the leg, heel and forefoot, would provide a valuable comparison of static
and dynamic measures. This would enable the results of this and other static

assessments to be put into context.

Having achieved a satisfactory description of dynamic rearfoot kinematics and the
helical axes for the rearfoot joints only a kinetic description of the rearfoot would
remain to be achieved. Despite a large volume of literature describing the kinematics of
the rearfoot, little work has been carried out on the kinetics of the rearfoot. The
difficulties with the three dimensional description of dynamic rearfoot motion will have
hampered any kinetic description, since the kinematics must be derived if joint
moments etc. are to be calculated. When combined with the dynamic rearfoot complex

assessment and descriptions of the helical axes for the rearfoot joints, a kinetic
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description would complete the picture of the functional characteristics of the rearfoot

complex.
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A.1 INTRODUCTION.

Appendix 1 details the range of motion, standard deviations, axes of rotation, and the
ranges of motion expressed as a ratio for each absolute (leg, forefoot and heel) and each
relative (ankle/sub talar complex, mid tarsal joint and rearfoot complex) rotation of each
limb of each subject. The data is further broken down into the four rotation phases:
composite (comp); dynamic (dyn); supination (supi); and pronation (pron). The tables of
the mean data are included for completeness. Tables Al.1 to A1.42 contain the data for the

right limbs, tables A1.43 to A1.84 the data for the left limbs.
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APPENDIX 2
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A2.1 INRODUCTION.

Appendix 2 details the range of motion and axis angulation calculated from data taken on
two separate days using four subjects (tables A2.1 to A2.12). The data are separated into
right and left limbs, and the data for each absolute and each relative rotation for each
subject are presented. Tables A2.13 to A2.24 detail the differences between days in the
ranges of motion and the axis orientations for each absolute and each relative rotation, for

the right and left limbs of each of the four subjects.
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