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Abstract 

A central problem in case based reasoning (CBR) is how to store and retrieve 

cases. One approach to this problem is to use exemplar based models, where only 

the prototypical cases are stored. However, the development of an exemplar based 

model (EBM) requires the solution of several problems: (i) how can a EBM be 

represented? (ii) given a new case, how can a suitable exemplar be retrieved? (iii) 

what makes a good exemplar? (iv) how can an EBM be learned incrementally? 

This thesis develops a new model, called a probabilistic exemplar based model, 

that addresses these research questions. The model utilizes Bayesian networks 

to develop a suitable representation and uses probability theory to develop the 

foundations of the developed model. A probability propagation method is used 

to retrieve exemplars when a new case is presented and for assessing the proto- 

typicality of an exemplar. 

The model learns incrementally by revising the exemplars retained and by 

updating the conditional probabilities required by the Bayesian network. The 

problem of ignorance, encountered when only a few cases have been observed, 

is tackled by introducing the concept of a virtual exemplar to represent all the 

unseen cases. 

The model is implemented in C and evaluated on three datasets. It is also 

contrasted with related work in CBR and machine learning (ML). 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Case based reasoning (CBR) is a problem solving paradigm that has attracted 

a lot of interest from both academics and practitioners. CBR has been de- 

fined [Riesbeck & Schank 1989] as a paradigm that solves new problems by 

adapting solutions that were used to solve similar problems in the past. It has 

been applied to a wide range of domains including planning, medical diagnosis, 

legal reasoning, design, and education [Marir & Watson 1994, Watson 1997, Allen 

1994, Leake 1996]. Some notable applications are as follows. 

" CLAVIER: This is a CBR system that provides interactive support to oper- 

ators in the process of configuring the layout of composite parts for curing 

in a large convection heater, called an autoclave [Mark 1989, Barletta & 

Hennessy 1989, Mark et al. 1996]. 

" FormTool: This is a CBR system that is used for colour matching in a 

plastic production process. FormTool determines the colorants and load- 

ing to use for producing a specific colour of plastic and aims to minimise 

cost [Cheetham & Graf 1997]. 

1 



CHAPTER I. INTRODUCTION 2 

" SMART: This is a CBR system that helps to diagnose and repair hardware 

and software problems. SMART is a help desk assistant. The user describes 

his or her problem and the CBR system retrieves cases that can help in the 

solution of the problem [Acorn & Walden 1992]. 

" Large customer service: This is a CBR system that is part of an inte- 

gral system of customer service. The CBR system, which does not have 

a name, provides consistent and high quality customer service support to 

non-technical customers [Thomas et al. 1997]. 

9 MEDIC: This is a medical diagnosis CBR system that helps in the planning 

and execution of a sequence of actions for diagnosing lung diseases [Turner 

1989]. 

As these applications suggest, CBR has already resulted in substantial ap- 

plications since its initial development by Schank and his group in the early 

80's [Schank 1982]. However, several researchers have pointed out that there 

are significant issues that still have to be resolved before these systems achieve 

their full potential [Kolodner 1993, Riesbeck 1996]. The issues raised by these 

researchers can be classified into the following three categories. 

1. The first category comprises the fundamental issues of indexing, case repre- 

sentation and manipulating cases [Kolodner 1993, Kolodner 1996, Riesbeck 

1996]. For example: 

" determining the optimal level of abstraction for indices, 

9 developing well defined indexing methodologies to reduce the costs of 
developing and applying indexing vocabularies, 

" developing (semi)automated index selection, 
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" determining general purpose indexing vocabularies that can be utilised 

in different domains, 

" determining the size and the optimal level of abstraction of the cases, 

9 elaborating methods in order to adapt cases for new domains or tasks. 

2. The second category comprises the knowledge engineering issues of build- 

ing CBR systems more easily. This involves the development of tools 

that enable more people to implement CBR applications quickly and re- 

liably [Kolodner 1993, Watson 1997, Riesbeck 1988]. 
. 

3. The third category comprises the technological issues. In this category, the 

main issue is that of scaling up [Kolodner 1993]. How can a current retrieval 

algorithm that works with a few cases (perhaps hundreds) be extended so 

that it works efficiently for thousands of cases? Currently, some researchers, 

notably Veloso (1996), Kitano & Shimazu (1996), and Jabbour et al. (1988), 

have been addressing this problem and they have shown that the current 

technology can, in some cases, be extended to support large case bases. 

The work presented in this thesis addresses the problems in the first of these 

categories. This category presents several challenges to the CBR research com- 

munity, including the following. 

" What is a case? 

9 How are the cases represented? 

" How are the cases organised and indexed in the memory? 

" What is the process of retrieving similar cases from the memory? 

" What is the process of adapting the solution? 
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" How should the new solution be evaluated? 

4 

" How does a CBR system determine if the new case should be retained in 

memory? 

Answers to the last four questions describe the main processes of all CBR 

systems [Aamodt & Plaza 1994]. Figure 1.1 shows these four main processes: (i) 

retrieving similar cases from memory that help in the solution of a new case, (ii) 

reusing or adapting selected similar cases to solve the new case, (iii) evaluation of 

the new solution and (iv) determining if the new case should be retained in the 

case memory. As can be seen in Fig. 1.1, the central part of these processes is 

the case memory. Thus, the organisation and management of the memory have 

an important role in the development of CBR systems. 

Retrieval Adaptation 

case memory 

Retention Evaluation 

Figure 1.1: Processes in a case based reasoning model. 

Organising and indexing cases in memory requires the solution of two prob- 
lems. The first problem is the selection of those features that can be used to 

index and retrieve similar cases. The second problem is the organisation of the 

case memory so that the retrieval process is efficient and accurate. 
A simple approach is to store a flat database of cases and scan all the cases 

to identify the most similar cases. Although simple, this approach has been 
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successfully used in a number of small applications of CBR [Barletta & Hennessy 

1989, Mark 1989]. For applications where many more cases are involved, this 

simple organisation can be expected to be slow [Kolodner 1993]. 

A more sophisticated method is to partition the cases into clusters and or- 

ganise them hierarchically. The hierarchy can then be searched more efficiently 

by following a path depending on the features of the new case. Different types 

of hierarchies have been proposed leading to different approaches. One approach 

is to use decision trees so that the leaf nodes contain the cases and where the 

internal nodes contain questions that can be used to partition the cases. So for 

example, systems like ReMind [Althoff et al. 1995] provide a tree induction algo- 

rithm that can be used to avoid examining all the cases. This kind of approach is 

particularly useful when large databases of cases are already available. However, 

when cases are not available in advance, and the domain is not well defined this 

approach is more difficult to apply. 

Another approach is to use an abstraction hierarchy where each internal node 

is an abstraction of the cases represented by its children. These hierarchies are 

known as discrimination networks or redundant discrimination networks when the 

nodes represent overlapping regions of cases. The systems MEDIATOR [Kolodner 

& Simpson 1989], JULIA [Hinrichs 1989], and CASEY [Koton 1988] have used 

this approach and their outcomes have shown its utility. However, these systems 

require much more memory to store the network and the procedures for adding 

new cases are very expensive since the abstraction process needs to examine many 

nodes and the abstraction hierarchy may need to be restructured [Kolodner 1993]. 

Thus current approaches to CBR work well in some situations, but also have 

problems in other situations. In particular, for domains, sometimes called weak 

domains [Porter et al. 1990], where: (i) the categories or concepts are difficult to 

define by necessary and sufficient features, (ii) the categories can be non-disjoint, 
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(iii) the data are not structured, (iv) all the data do not exist in advance, and 
(v) there is uncertainty in how the categories are represented by cases, these 

approaches have the following problems: 

" Most of these approaches require all the features and examples in advance. 

So for instance, the tree induction algorithms that have been used are de- 

scendants of ID3 [Quinlan 1996] that requires a fixed width table. 

" Most of the commercial CBR tools are not incremental. For example, the 

tree induction algorithm used by ReMind requires all the cases in advance. 

Although academic systems such as MEDIATOR, JULIA, and CASEY are 

incremental, they require expensive and complex procedures to store new 

cases which can become impractical as the number of cases increases. 

Most of the approaches do not handle uncertainty explicitly. Most systems 

use a weighted sum of the differences between the new case and an existing 

case as a measure of similarity. This measure can result in overfitting in the 

presence of noisy data and can be sensitive to the weights selected [Tirri et 

al. 1996a]. In addition, this measure is difficult to justify theoretically. 

An alternative approach, that is perhaps more applicable to weak domains, 

is to store only prototypical cases. This approach, known as the exemplar based 

model has its basis in cognitive theories, which postulate that concepts can be 

represented by exemplars [Rosch & Mervis 1975, Smith & Medin 1981, Medin & 

Schaffer 1978]. Exemplar based models do not necessarily require all the features 

or all the cases in-advance. Hence, this thesis focuses on developing an exem- 

plar based model. The next section describes the main problems of developing 

exemplar based models and presents the objective of this thesis. 
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1.2 The Problem and Thesis Objective 

As mentioned above, an exemplar based model only stores prototypical cases. To 

understand the idea of exemplar based models, consider Fig. 1.2 which shows two 

categories, A, B (the solid lines) in a weak domain. The figure also shows some 

exemplars, e, that represent regions (the dashed lines) that contain cases (the 

dots). 

A 11 
exemplar 

category e319 91 

J ý" 
"i 

»ie4B 

.N e2 

0/ 

case 

Figure 1.2: Cases, exemplars and categories in a weak domain. 

In this example, the category A is represented by the exemplars el, e2, and e3 

and the category B is represented by the exemplars e3 and e4. Also suppose that 

the exemplars el, e2, e3, and e4 currently represent 4,2,3, and 2 cases respectively. 

Now suppose that a new case is given. The following two functions must be 

performed by an exemplar based model: 

1. Determine the exemplar that best classifies a new case given the available 

information. 

2. Determine how knowing the new case and its classification can be used to 

improve the accuracy of the model. 
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The first of these functions is a classification task, while the second can be 

viewed as a supervised learning task [Aha 1991]. 

The best known exemplar based model is encoded in the Protos system [Bareiss 

1989]. It is therefore worth summarising the main characteristics of Protos (Chap- 

ter 5 describes Protos in more detail). Protos is a case based classification and 

case based knowledge acquisition model. The model uses a cognitive approach 

based on exemplars to represent concepts [Smith & Medin 1981]. Protos organ- 

ises the case memory in a semantic network where the nodes represent categories, 

exemplars and features. The arcs represent the relationships between categories, 

exemplars and features. Protos uses different kinds of relations to relate its com- 

ponents. In the training phase, Protos learns these relations from user provided 

explanations. Based on the explanation, Protos uses heuristics to assign default 

weights to each relation. So for example, the functional relation "enables" has a 

weight of 0.9 and the definitional relation "is equivalent to" has a weight of 1.0. 

Furthermore, each relation can have an associated set of qualifiers, where each 

qualifier has a strength in the relation. For example, the qualifier "moderately" 

has a strength of 0.7 and the qualifier "sometimes" has a strength of 0.6. The 

values assigned to the qualifiers are also heuristically determined. So, when a 

relation is used in an explanation, Protos heuristically computes its actual weight 

as a function of its default weight and its associated qualifiers. 

Remindings, censors, prototypicality, and difference links are the indices that 

Protos uses to classify new exemplars. Remindings are used to associate features 

with categories or particular exemplars. Censors are used as negative remind- 

ings. Prototypicalit"is used to provide a partial ordering on exemplars within 

a category and difference links are used to record important featural differences 

between exemplars. Protos also uses heuristics to attach weights to the remind- 

ings and censors in each category. These weights are used when new cases are 
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classified. 
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Protos learns when it either fails to classify a new case, or it misclassifies a 

case. The main learning operation is to retain a new case as an exemplar if it is 

not classified correctly and to update the remindings. 

The remindings are heuristically learned from the feature-to-category expla- 

nations provided by a user. For example, given the relation "a cat has four legs", 

Protos regards "has" as a strong relationship and records a reminding from "four 

legs" to the category cats. Alternatively, Protos assumes that weaker relations 

such as "is sometimes consistent with" should not lead to remindings. For ex- 

ample, "the cat is sometimes ill" does not result in a reminding from ill to the 

category cats. 

As this summary of Protos indicates, there are many heuristics that were used 

in the implementation of Protos. Some of these heuristics are hard to justify and 

lack foundation. For example, it uses a number of weights and a scheme for cal- 

culating the similarity, both of which are subjective [Porter et al. 1990]. Further, 

as the above example suggests, a classification task is required that involves un- 

certainty. Uncertainty management is a field within Artificial Intelligence (AI) 

and Statistics which has a long history. Amongst, the many methods of handling 

uncertainty, Bayesian networks have become respected and widely used [Pearl 

1988, Neapolitan 1990, Dean et al. 1995, Jensen 1996]. 

Objective 

Given the above background and motivation, the objective of this thesis is to 

develop an exemplar based model with foundations in Bayesian networks. 

In particular, the developed model will address the following main questions: 
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1. Given an exemplar based representation of a weak domain, where the infor- 

mation is not well defined and there is uncertainty, determine the exemplar 

that best classifies a new case. 

2. Determine how an exemplar based representation can improve its accuracy 

knowing a new case and its classification. 

The thesis also aims to place the developed exemplar based model in the 

context of related CBR research and to evaluate the model empirically. 

1.3 Organisation of the Thesis 

To accomplish the above objective, this thesis is organised as follows. 

Chapter 2 provides the background knowledge and describes the necessary con- 

cepts that are used in the thesis. First, approaches to concept representa- 

tions are used to provide some background to the thesis, and then Bayesian 

networks are introduced and formally defined. 

Chapter 3 develops the probabilistic exemplar based model. It first describes 

the representation used to organise the memory. Then it develops the classi- 

fication and learning procedures by utilising Bayesian models. The chapter 

concludes with an example that illustrates the complete model. 

Chapter 4 presents an empirical evaluation of the exemplar based model and the 

results of the evaluation. It starts by describing the test environment devel- 

oped for the experiments and the experimental method. Then, it presents 

an evaluation of the different aspects of the model on several data sets. 

Chapter 5 contrasts the work presented in this thesis in the context of other 

related work. In particular it describes CBR and exemplar based models, 

inductive learning models, and Bayesian probabilistic approaches. 
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Chapter 6 presents the conclusions of this thesis and describes the fields of 

research that have arisen during the development of this theory. Also, 

possible enhancements to the algorithm are briefly outlined. 

This thesis is complemented with two appendixes. Appendix A presents a 

detailed illustration of the model and Appendix B presents a summary of the 

experimental results. 

- -S" 



Chapter 2 

BACKGROUND 

KNOWLEDGE 

This chapter explains the basic concepts which are utilised in this thesis. Sec- 

tion 2.1 provides a description of approaches for concept representation which 

includes (i) their structure, (ii) their use for classifying new members, and (iii) 

the main challenges in utilising them. Section 2.2 describes the main concepts 

that must be understood in probabilistic reasoning. Subsection 2.2.1 describes the 

definitions and basic concepts up to the definition of the Bayes rule, which is the 

heart of Bayesian reasoning. Subsection 2.2.2 formally defines Bayesian networks 

and Subsection 2.2.3 describes the inference or probability propagation mecha- 

nism used for a subclass of networks that are singly connected. Subsection 2.2.4 

describes an algorithm that is used for propagation in arbitrary networks and 

that utilises the propagation algorithm for singly connected networks. Finally, 

Subsection 2.2.5 describes part of a more specialised Bayesian model commonly 

utilised in diagnosis problems, and which is used in this thesis. 

Much of the material presented in this chapter is based on the texts by Pearl 

(1988), Neapolitan (1990), Dean et al. (1995), and the article by Pearl et al. 

(1990). Readers, who are familiar with these concepts may omit the details of 

12 
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this chapter. 

2.1 Concept Representation 

13 

Concepts are the manner by which human beings classify things. Concept for- 

mation is a process that human beings use to define concepts. This process has 

been studied with different approaches in cognitive science [Bolton 1977, Smith & 

I Iedin 1981, Wittgenstein 1953, Cassirer 1953] and machine learning [Carbonell 

1990] and continues to be an active research area in the development of intelli- 

gent systems. An important issue in concept formation is how the concepts are 

represented. Smith & Medin (1981) defined the following three types of concept 

representation schemes. 

1. The classical. 

2. The probabilistic. 

3. The exemplar based. 

The classical representation assumes that all members of a concept must share 

a set of features which are necessary and sufficient to belong to the concept. This 

assumption has a dominant position that is not adequate for weak domains, where 

the knowledge in the domain is not previously defined in an exact manner required 

by the classical approach [Porter et al. 1990]. For example, in representing the 

concept of a bird, the feature flies cannot be necessary since birds such as chickens 

and penguins cannot fly. However, that feature must be relevant in the concept 

representation since the majority of birds fly. Since the classical approach is not 

appropriate for weak domains, it is not described in any further detail in this 

section. 
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Both the probabilistic and exemplar based representations are used in this the- 

sis and the following two subsections describe them together with their strengths 

and weaknesses. - 

2.1.1 Probabilistic representation 

A probabilistic representation is a summary description of all members that de- 

scribe the concept. This representation is defined by the set of features that have 

a high probability of occurring in members of the concept. When a feature is 

chosen as a part of the concept representation, a weight is associated with that 

feature. Normally, the weight given to the features is the conditional probabil- 

ity P(feature I concept) that the feature is contained in the members of the 

concept. For example, suppose that it is required to represent the concept of 

furniture given the following 3 items of furniture. 

Chair 

fi (physical object) 

f2 (rigid) 

f3 (has backrest) 

f4 (has seat) 

f5 (has legs) 

fs (small size) 

Bookshelf 

fl (physical object) 

f2 (rigid) 

f7 (has crosspiece) 

f8 (has large boxes) 

f9 (large size) 

Desk 

fl (physical object) 

fz (rigid) 

fs (has legs) 

f8 (has large boxes) 

flo (for office) 

In (medium size) 

Assuming that the features are independent, a possible probabilistic represeri- 

tation of the furniture concept could be the following. 
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Furniture: 

Feature Weight Feature Weight 

A 1.0 f7 0.33 

f2 1.0 f$ 0.66 

f3 0.33 f9 0.33 

A 0.33 flo 0.33 

fz 0.66 fl1 0.33 

fs 0.33 

15 

The summary description of this representation is based on the assumption 

that all features are important in the representation of the concept. The weight 

of each feature was computed by dividing the number of times that the feature 

appears by the number of members. 

In order to determine, if a new member is classified in a concept, a process 

must be executed. For example, in the general features model proposed by Smith 

& Medin (1981), the classification of a new member is based on determining if the 

sum of the weights of features that match is greater than or equal to the threshold 

value. Smith and Medin's general featural model used the classification algorithm 

shown in Fig. 2.1. 

As can be appreciated in this simple example, the strengths of this repre- 

sentation are: (i) the concept representation is not limited to a set of features 

necessary and sufficient that all members of the concept must share, and (ii) a 

new member is classified in the concept through a classification process. However, 

the main challenges that this representation has are: (i) how to determine the 

features and their weights so that the best represent a concept and (ii) how to 

establish a classification procedure that is accurate. 
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The above describes a probabilistic approach. Its main weakness is that when 

information is converted from the cases to the features, information about typical 

instances of a class is lost. The following subsection describes exemplar based 

models, where this information is retained. 

Classification algorithm. 

Input: Summary description SD and new member i. 

Output: boolean variable b, 0=not, 1=yes. 

b=0 

While i has features { 

if f; matches ff E SD{ 

Add weight to accumulator acc 

if acc > threshold then b=1 

} 

} 

Figure 2.1: The classification algorithm of the general features model. 

2.1.2 Exemplar based representation 

In an exemplar based representation, a concept is described by a collection of 

exemplars where an exemplar can be an instance or a representation of a subset 

of instances in the concept. For example, in the above example, the members: 

chair, bookshelf, and desk that describe the furniture concept are subsets of the 

furniture concept. Figure 2.2 shows the exemplar based representation of the 

furniture concept. 
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Chair 

f1 (physical object) 
f2 (rigid) 
0 (has backrest) 
M (has seat) 
f5 (has legs) 
f6 (small size) 

Furniture 

Bookshelf 

f1 (physical object) 
Q (rigid) 
f7 (has crosspiece) 
18 (has large boxes) 
1`9 (large size) 

Desk 

f1 (physical object) 
f2 (rigid) 
f5 (has legs) 
f8 (has large boxes) 
f10 (for office) 
f11 (medium size) 

Figure 2.2: Exemplar based representation of the furniture concept. 

1? 

If a new example needs to be classified in this representation, a match process 

between the new example and all the exemplars that represent the concept must 

be done. In the features approach, two exemplars are similar if they have more 

common features than different ones. That is, the similarity of two exemplars 

is increased by the number of shared features and decreased with the number 

of different features [Tversky & Gati 1989]. Then, classifying a new example in 

this representation depends on the similarity between the new example and the 

exemplars that represent the concept. If the similarity between the new example 

and one exemplar in the concept is greater than a threshold value, then the new 

example belongs to the concept. 

The main strengths of this representation are: (i) the concept representation 

is not limited to a set of necessary and sufficient features that all members of the 

concept must posses and (ii) a new member is classified in the concept through 

a matching process. However, its main challenges are: (i) how to determine the 

exemplars that best represent the concept and (ii) how to establish the similarity 

measure between two exemplars. 

In this thesis, these challenges are tackled by utilising Bayesian networks which 

are described in the next section. 
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2.2 Probabilistic Reasoning 

Probabilistic reasoning is an approach that it is supported by probability theory. 

The aim of probability theory is to provide a coherent account of how a belief 

should change in the light of partial or uncertain information [Pearl 1991]. This 

section presents one approach for the use of probability theory in AI, namely 

Bayesian networks that is used in this thesis. Bayesian networks, also known 

as probabilistic, causal or belief networks, are graphical representations of the 

dependencies between random variables in a specific application domain. This 

representation allows the codification of knowledge in the form of dependencies 

and independencies, and also allows inferences in the form of probabilistic prop- 

agation based on a graphical representation. 

2.2.1 Basic concepts: Bayes rule 

Probability is formally defined as follows [Neapolitan 1990]. 

Definition 2.1 Let iZ be the set of outcomes, called sample space, of an experi- 

ment, Fa set of events relative to 1, and Pa function which assigns a unique 

real number to each AEJ. Suppose P satisfies the following axioms: 

0< P(A) <1 

P(Q) =1 

P(A or B) = P(A) + P(B) (2. i) 

if A and B are disjoint subsets of T. Then the triple (S2, 
. P, P) is called a proba- 

bility space and P is called a probability measure on F. 

In a probability space (S2, 
. 
T, P), a set of events {B1, B27 """, B�} are mutually 

exclusive and exhaustive if for each i0j: 
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BinB; =NULL 

Bn 
61 ... 

A 

B2 B3 B4 

n 

and UBi=SZ 
i=1 

S 
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Figure 2.3: An example of events mutually exclusive and exhaustive in a space 
S. 

Nov, suppose that B1, B27'. ", B� are a set of events mutually exclusive and 

exhaustive in a probabilistic space S as shown Fig. 2.3. Let A be another event 

in the same space. Then, 

A=An S=An(BiUB2u"""UB, a)=(AnBI)u(AnB2)u"""u(AnB�) 

Then, by the third axiom of the definition of probability 1, 

P(A) = P(A, B1) + P(A, B2) + ... + P(A, B,, ) (2.2) 

In general, equation 2.2 can be written as: 

n 
P(A) _ P(A, B=) (2.3) 

.t. 
Conditional probability is defined with the following equation: 

P(A I B) = 
P(A, ) 

(2.4) 

'In the following, the notation (A, B) means the conjunction (A fl B) of events 
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Where P(A ( B) is read as the probability of A given B. 

Now, from equation 2.3 and the definition of conditional probability in equa- 

tion 2.4, the following formula is obtained: 

n 

P(A) _ P(A I B; )P(B; ) (2.5) 

This equation, which is known as the addition rule, provides the basis for 

hypothetical reasoning. For example, the probability of an event A is a weighted 

sum over the probabilities in all the distinct ways that A might be realised. 

Another important rule to manipulate events involving probabilities is the 

chain rule. This rule enables one to factor a joint distribution into a product of 

conditional probabilities. The chain rule is defined as follows. 

Given a set of n events, the probability of a joint event (El, E21 ... I En) can 

be written as a product of n conditional probabilities: 

P(Ei, E2, ... , E. n) = P(EE 1 E�-1,..., E2, E1) ... P(E2 1 Ei)P(E1) (2.6) 

Then, applying the chain rule to the joint probability P(A, B) (i. e., P(A, B) = 

P(B A)P(A)), and the definition of conditional probability in equation 2.4: 

P(A, B) = P(B I A)P(A) = P(A I B)P(B) (2.7) 

so the formula called the Bayes rule is obtained as: 

P(A B} = 
P(B I A)P(A) 

(2.8) 
P(B) 

In probabilistic reasoning, Bayes rule is very useful. For example, suppose an 

uncertain domain whore there is a hypothesis H and evidence E then equation 2.8 

gives: 

P(H I E) 
P(E I H)P(H) (2.9) 

This establishes that the probability of the hypothesis given certain evidence is 

obtained by multiplying the conditional probability P(E I H) by P(H). Both 
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these probabilities, the conditional probability P(E I H) and the hypothesis 

prior probability P(H) can be obtained from experts or from data based on the 

previous knowledge. P(E) is a normalising constant. In the following, P(H) is 

called the prior probability, and P(H I E) is called the posterior probability. This 

rule can be extended so that a recursive updating of the posterior probability 

can be made, once new evidence has been obtained. This is calculated with the 

formula: 

P(H I E(n), E) = P(H I E(n)) 
P(E I E(n), H) (2.10) 

P(E I E(n)) 

where E(n) denotes the evidence observed in the past, and P(H I E(n)) assumes 

the role of prior probability in order to compute the new posterior P(H I E(n), E), 

i. e., the probability of H given all the past evidence and the new data observed 

E. 

The generalisation of the Bayes rule of equation 2.8, for a set of n mutually 

exclusive and exhaustive hypotheses {Hl, H2,.. 
., H, ti} is referred to as Bayes 

theorem in the literature and expressed as: 

P(Hj I E) _ 
P(E I H; )P(H3) 

(2.11) ff- 
1 P(E I Hi)P(H1) 

Although the Bayes theorem and rule (equations 2.11 and 2.8) were very 

popular in the first expert systems utilised for diagnosis [Gorry & Barnett 1968, 

Dombal et al. 1974], they are difficult to apply to real problems. This is because 

they assume that: (i) all the hypothesis are mutually exclusive and exhaustive, 

and (ii) all the pieces of evidence are conditionally independent from each other 

given a hypothesis. 

These assumptions restrict the expressivity of probabilistic reasoning for more 

realistic applications. A realistic application is typically interested in looking for 

relationships among a large number of hypothesis and evidences (variables). Nev- 

ertheless, to make probabilistic reasoning on a large set of n variables X1, X2,..., Xn 

requires the definition of a joint distribution function P(X1, X2i ... , Xn) that 
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would require a table with 2' entries to store the probability distribution. The 

next subsection presents the Bayesian network formalism that allows the repre- 

sentation of more, realistic applications. 

2.2.2 Bayesian networks 

A Bayesian network is a graphical model that efficiently encodes the joint distri- 

bution of a large number of variables [Heckerman 1995]. A Bayesian network for 

a set of variables X1, X2,..., X,, is formed of: 

1. a directed acyclic graph (DAG) that encodes a set of conditional indepen- 

dence assertions about the variables, and 

2. a set P of local probability distributions associated with each variable. 

First, an explanation of the notation followed in this thesis is given. Capital 

letters, e. g., X, represent variables while lower case letters designate the values 

that the variables may have, for example X=x and Y=y. Additionally, 

this subsection presents the set of axioms for the probabilistic relation: X is 

independent of Y given Z where X, Y and Z can be a single variable or sets 

of variables. Second, the relation between probabilistic models and graphical 

representations of DAGs is established. Finally, this subsection presents a formal 

description of the properties of Bayesian networks. 

Definition 2.2 Let U be a finite set of variables with discrete values. Let X, 

Y, and Z be three disjoint subsets of variables of U. X and Y are said to be 

conditionally independent given Z if 

P(x I y, z) = P(x I z) whenever P(y, z) >0 (2.12) 

This independence will be denoted as I(X, Z, Y). Thus, 

I (X, Z, Y) if f P(x 1 y, z) = P(x 1 z) (2.13) 
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where x, y, and z are any assignment of values to the variables in the sets X, Y 

and Z respectively. 

This definition holds in a numeric representation of the probability P. It 

is interpreted as follows. Knowing the state of Z, the knowledge of Y does 

not change the belief already gained in X. Now, in order to characterise the 

conditional independence relation as a logical condition, the following axioms are 

required' [Pearl et al. 1990]: 

Symmetry: 

I (X, Z, Y) I (Y, Z, X) (2.14) 

Decomposition: 

I(X, Z, YUW) = I(X, Z, Y) & I(X, Z, iv) (2.15) 

Weak union: 

I(X, Z, YUW)=I(X, ZUIV, Y) (2.16) 

Contraction: 

I(X, ZuY, IV) & I(X, Z, Y) = I(X, Z, YUtiV) (2.17) 

Intersection (for P strictly positive): 

I(X, ZUtiV, Y) & I(X, ZUY, IV) I(X, Z, YUTV) (2.18) 

These axioms allow the derivation of theorems that may not be obvious from the 

numerical representation of probabilities. The next step is to relate these axioms 

with graphical representations. 

A directed acyclic graph (DAG) D= (V, E) is characterised by a set of nodes 

(or vertices) V and a set of edges E that connect certain pairs of nodes in V. 

2Normal logical operators are needed, e. g., is the implication, and & is the conjunction. 
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Nodes in V represent the random variables while the edges or arcs represent 

conditional dependence relations between the nodes linked. A model M is said to 

be graphically represented by D if there exists a direct correspondence between 

the elements in the set of variables U of M and the set of vertices V of D such 

that the topology of D reflects the properties of M. The correspondence between 

I (X, Z, Y) and a DAG is made through a separability criterion called d separation 

that is defined as follows. 

Definition 2.3 If X, Y, and Z are three disjoint subsets of nodes in a DAG D, 

then Z is said to d separate X from Y, denoted <XIZIY >D if along every 

path between a node in X and a node in Y there is a node 6V satisfying one of 

the following two conditions: (i) IV has converging arrows and none of IV or its 

descendants are in Z, or (ii) IV does not have converging arrows and IV is in Z. 

For example, consider the DAG of Fig. 2.4. If X= {B} and Y= {C}, they 

are d separated by Z= {A} but they are not by aZ= {A, E}. In both cases, 

there is one trajectory between B and C, which is through D. Since this unique 

trajectory has converging arrows, condition (i) is satisfied when Z= {A} and it 

is not satisfied when Z= {A, E}. In the first case, B and C are d separated since 

DEZ. In the second case, B and C are not d separated since EEZ. 

, ý. 

Figure 2.4: A DAG for exemplifying d separation. 
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The following definitions complete the formal description of Bayesian net- 

works. 

Definition 2.4 A DAG D is said to be an I map of a dependency model M 

if every d separation condition displayed in D corresponds to a valid conditional 

independence relationship in M, i. e., if for every three disjoint sets of nodes X, 

Y, and Z, the following holds: 

<X1Z1Y >D = 1(X, Z, Y)Ar. (2.19) 

A DAG is a minimal I map of M if none of its arrows can be deleted without 

destroying its I mapness. 

Definition 2.5 Given a probability distribution P on a set of variables V, a DAG 

D= (V, E) is called a Bayesian network of P if D is a minimal I map of P. 

In other words, given a set of variables with a probabilistic model P, a 

Bayesian network is a graphical representation which permits the representation 

of the dependencies and independencies between the variables. The structure 

of the network represents knowledge about the variables of the process. This 

knowledge consists of two sets of probabilities: (i) conditional probabilities of 

every node given all its parents, and (ii) prior probabilities of the root nodes. 

Figure 2.5 presents an elementary Bayesian network and its relation with Bayes 

rule (equation 2.8). In this case, the hypothesis happens to be the root node, and 

the evidences are the=leaf nodes but this is not a restriction in Bayesian networks. 

In this case, prior probabilities P(H) are required in the roots of the networks. 

The other nodes require an associated matrix of conditional probabilities between 

each one of them and their parents (the upper extreme of the arcs). Thus, the 

evidence nodes are observed, and the question is to infer the new value of the 
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Hypothesis ) P(H) - 

P(e I H) 

evidence 

Figure 2.5: A simple Bayesian network. 

26 

probability of the hypothesis, i. e., P(H I e). Notice that, in general a node can 

contain either evidence node or be a hypothesis. Different algorithms have been 

developed to propagate these probabilities given new evidence. 

Beyond the definitions, several theorems have been published in order to 

formalise Bayesian networks (e. g. [Geiger & Pearl 1988], [Geiger et al. 1989]). 

The following theorem, called Strong completeness [Geiger & Pearl 1988] includes 

many of the previous theorems and legitimises the use of DAGs as a language 

for representing probabilistic dependencies. The complete proofs can be found in 

the indicated reference. 

Theorem 2.1 Strong completeness 

For every DAG D, there exists a distribution P such that for every three 

disjoint sets of variables X, Y, and Z the following holds: 

<XIZIY >D iff I (X, Z, Y)p (2.20) 

Summarising the formal definition of Bayesian networks, definition 2.2 in- 

troduces the notion-of conditional independence and establishes the notation 

I(X, Z, Y). In graphical representations, definition 2.3 establishes a condition 

that holds between nodes (or subsets of nodes) in a directed graph. Definition 2.4 

relates the notion of conditional independence I (X, Z, Y) in a model M with the 

d separation property of directed graphs. Next, definition 2.5 explains what a 
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Bayesian network is. Finally, the theorem 2.1 states that Bayesian networks can 

be used to perform probabilistic reasoning mechanism in a sound manner. 

It is important now to distinguish three kinds of Bayesian networks: 

Trees: This is a DAG where any node can have at most one parent. Figure 2.6(a) 

shows a typical network considered as a tree. 

Singly connected networks (polytrees): This is a DAG which contains one 

and only one path between any pair of nodes in the network. An example 

is shown in Fig. 2.6(b). 

Multiply connected networks: This is a DAG without the restrictions of trees 

or polytrees. Figure 2.6(c) is multiply connected since there are two paths 

between two nodes. 

abc 

Figure 2.6: Examples of Bayesian networks. (a) is a tree, (b) is singly connected 
and (c) is multiply connected. 

The multiply connected network is the most general and expressive when 

modelling specific processes. However, propagation (and therefore, reasoning in 

multiply connected networks) is known to be NP hard [Cooper 1990]. Trees and 

singly connected networks are less expressive but the probability propagation 

algorithms for them are more efficient than multiply connected networks. 

Although, the proposed model in this thesis uses a multiply connected Bayesian 

network to determine the best exemplars, the probability propagation method in 
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a singly connected network is also explained since it facilitates understanding 

of the complex algorithm for propagation in multiply connected networks. So, 

the following two-subsections describe probability propagation methods for these 

networks. 

2.2.3 Probability propagation in a singly connected net- 

work 

In order to understand the propagation algorithm for singly connected networks, 

consider a typical node as shown in Fig. 2.7. 

This figure shows a node X that has m parents Z1,. .., Z.. and n children 

Yi,... , Y,,. Consider that the node X can take k discrete values xl, x2i ... , xk. 

Now, suppose that some nodes have been instantiated, i. e., their values have been 

observed. Let e= ex U ex denote the evidence, where ex represents the evidence 

contained in the subtree rooted at X, and ex represents the evidence from the rest 

of the network. In Fig. 2.7, the subtree rooted at X is a portion of the network 

containing only the nodes X and all its descendents Y. The rest of the network 

corresponds to the structure formed by all nodes minus XU descendents(X). 

Ei 
Zý 

r 

ýRl 

X 

Ei 

Y, Yn ; 

Figure 2.7: A typical node in a singly connected network. 
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Thus, the goal is to find the posterior probability P'(x) given the observed 

evidence e, i. e., 

Pa(x) = P(x 1 e) = P(x I ex, ex) 

Using Bayes rule gives 

P, (X) = 
P(eP ex +) 

(x x) 

Since ex- and ex are independent given X, this becomes 

po(x) = 
p(ex 1 x)p(ex I x)P(x) 

p(ex, ex) 

by Bayes rule again and the definition of conditional probability, 

P(e x)P(x ex)P(ex) 
P(ex+e x) 

Pa(x) = aP(ex I x)P(x I ex) (2.21) 

where P'(x) represents the posterior probability of X=x given all the evidence 

provided, and a= [P(e- I 4)]-1 is a normalising constant to obtain E. Pa(x) _ 

1. 

Notice that this formula corresponds to a vector, with one element for each 

possible value of X. Now, let the following functions be defined: 

A(x) = P(ex 1 x) (2.22) 

and 

ir(x) = P(x 1 4) (2.23) 

Vector A(X) represents the diagnostic support that node X receives from its 
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descendants, while 7r(X) represents the causal support attributed by all non de- 

scendants of X, and received through its parents. Then, the updated belief in 

X=x can be obtained by fusing these two supports and equation 2.21 becomes: 

P(x I e) = aa(x)ir(x) (2.24) 

Since a(x) represents the support that X receives from all its descendants, it 

is necessary to fuse the support from each one of its descendants. For example in 

Fig. 2.7, )t(x) corresponds to the evidence provided by nodes Y1,. .., Y, a. Thus, 

equation 2.22 can be rewritten as: 

A(x) = P(ex 1 x) 
= P(eyl, 

... , ey, x) 

=P(eYJ1x)... P(eYnIx) (2.25) 

since ejl, ... , e}ýn are conditionally independent given x. Furthermore, renaming 

these terms as: 

AY. (x) = P(eY 1 x) 1<i: 5 n (2.26) 

then, equation 2.25 can be expressed as: 

A(x) = Il AY1(x) (2.27) 
i-1 

Similarly, the causal support that X receives from its non descendants, through 

its parents Zl, ... , 
Zm (equation 2.23) can be expressed as: 

7r(x), - P(x Ix 

= P(x 1 eZl,..., ezm 
= P(x 1 Zi,..., Zm)P(Zi,...,. Zn,. 1 ex) 

_E P(x l zl,..., zm)i17r (4i) (2.28) 
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where P(x z1,... , z,,, ) will be an element of the matrix obtained as previous 

knowledge, and stored in the node X. irx(z; ) = P(a ý e4, ) is calculated in node 

Z; and sent as causal-support to X. Thus, substituting equations 2.27 and 2.28 

in equation 2.24, the following is obtained: 

nm 
P'(x) = aJJ. y, (x) E P(x l zl,..., zm) fl7rx(zi) (2.29) 

i=1 z1,..., Zm i=1 

Equation 2.29 summarises Pearl's algorithm for probability propagation. It 

is best known as the message passing algorithm since )y, (x), and rx(zi) can 

be seen as messages that other nodes send to node X in. order to update its 

probability vector. Thus, this posterior probability can be calculated from the 

previous knowledge P(x I z1, ... , z�, ), the messages AY; (x) from its children and 

a message 7rx(zi) from its parent Zi. 

The detailed algorithm can be consulted in the book by Pearl (1988), and 

easily readable in the book by Neapolitan (1990). 

2.2.4 Probability propagation in trees of cliques 

This subsection presents an approach for probability propagation in multiply con- 

nected networks called propagation in trees of cliques [Lauritzen & Spiegelhalter 

1988]. Other algorithms for propagation in networks are given by Cooper (1984), 

and by Horvitz et al. (1989). The propagation algorithm presented in this sub- 

section is used in Chapter 3. A reader already familiar with this propagation 

algorithm may skip this subsection. 

The basis of this method is the following formula3: 

P 

P(V) = li f O(WW) (2.30) 

where V designates a finite set of propositional variables, and P represents a 

joint probability distribution of V. K represents a constant and let { ti 1 such that 

3The material of this section was taken from the book by Neapolitan (1990). 
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1<i< p} be a collection of subsets of V. Also, % is a function which assigns a 

unique real number to every combination of values of the propositional variables 

in W;. Then ({W such that 1<i< m}, ') is called a potential representation 

of P, and W are called cliques. A clique is defined as a subset of nodes in which 

every pair of nodes of the clique is connected. Also, the subset must be maximal, 

i. e., there is no other complete set which is a subset [Golumbic 1980]. 

The algorithm developed by Lauritzen & Spiegelhalter (1988) indicates: (i) 

how to obtain the collection W1 of subsets of V, and (ii) how to compute the 

functions b(W; ). In other words, this method modifies the original multiply 

connected network in order to obtain a tree of cliques, from which probability 

propagation can be made utilising the functions '(1V ). This propagation is 

similar to Pearl's algorithm for trees, which is a subset of the algorithm described 

in Subsection 2.2.3. The following subsections describe these two parts of the 

algorithm. 

Obtaining a tree of cliques 

The cliques tiV, of equation 2.30 must follow a series of conditions. The procedure 

of Fig. 2. S obtains the set of cliques with the required properties. 

These steps are better explained with the aid of an example taken from the 

book by Neapolitan (1990). 

Figure 2.9 presents the original Bayesian network. Notice that it is multiply 

connected since there is more than one path between node F and H. This network 

requires, as all the Bayesian networks, the prior probability of the roots and the 

conditional probability matrices of the other nodes given their parents. The first 

step in the procedure of Fig. 2.8 is trivial, i. e., only delete the direction of the 

arcs. The second step, the moralization, is obtained when the pairs of parents 

of all nodes (if they exist) are married. This is done with the addition of an 
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1. Delete the direction of the arcs, i. e., the DAG is 

converted to an undirected acyclic graph. 

2. Moralize the graph. 

3. Triangulate the graph. 

4. Order the nodes according to a criterion called the 
maximum cardinality search. 

5. Determine the cliques of the triangulated graph. 

6. Order the cliques according to their highest labelled 

vertices to obtain an ordering of the cliques with the 

running intersection property. 

Figure 2.8: Procedure to convert a network in a tree of cliques. 

33 

Figure 2.9: Original multiply connected network. 



CHAPTER 2. BACKGROUND KNOWLEDGE 34 

arc between these parent nodes. Figure 2.10 presents the moral DAG which is 

obtained by adding the arc between nodes B and E (parents of C), and the arc 

between C and G (parents of H). 

Figure 2.10: Undirected moralized graph. 

Next, the triangulation step takes place. An undirected graph is called trian- 

gulated if every simple cycle of length strictly greater that 3 possesses a chord. 

In the original network, after the moralization, the nodes [F, E, C, G] form a sim- 

ple cycle of size 4. Thus, in order to triangularize the undirected graph, the arc 

between E and G is added. Figure 2.11 shows the triangularized graph. 

6 A 

s B 

e 

4 C 

7r D IH4 8 

Figure 2.11: Triangulated and ordered undirected graph. 

This figure also show the ordering step indicated in the procedure of Fig. 2.8 

which is now explained. An order of the nodes, according to a criterion known 

as the maximum cardinality search, is obtained as follows. First, 1 is assigned to 

an arbitrary node. To number the next node, select a node that is adjacent to 

the largest numbered node, which breaks the arbitrary ties. In Fig. 2.11, number 
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1 was assigned to node F. Number 2 has to be assigned to one of the adjacent 

nodes to F, i. e., E or G (two nodes are adjacent if there is an arc between them). 

Node E was chosen arbitrarily. Number 3 was assigned to node G (could be B or 

C), and so on until all the nodes are numbered. The next step, to determine the 

cliques of the triangulated graph, is now described. A clique is a subset of nodes 

which is complete, i. e., every pair of nodes of the clique is adjacent. Also, the 

subset must be maximal, i. e., there is no other complete set which is a subset. 

In the triangulated graph of Fig. 2.11, the following cliques are found: {A, B}, 

{B, E, C}, {E, G, F}, {C, D}, {E, C, G}, and {C, G, H}. ' 

Finally, the ordering of the cliques is required. An ordering [Clgl, C1g2, 
.... Clgp] 

of the cliques has the running intersection property if for every j>1 there exists 

an i<j such that 

C1q; n (Cigl U C1g2 U ... U C1q; _1) 9 C1q,. (2.31) 

In the example, an ordering of the cliques according to their highest number is 

the following: C1gl = {E, G, F}, C1g2 = {E, C, G}, C1q3 = {B, E, C}, C1q4 _ 

{A, B}, Clqs = {C, D}, and Clgs = {C, G, H}. This ordering has the running 

intersection property. For example: 

C1g4 n (Clgl U Clq2 U Clq3) _ {B} C Clq3 (2.32) 

Clq; n (Clgl U Clq2 U Clq3 U Clq4) _ {C} 9 Clq2 

Before defining the structure of the tree of cliques, two parameters need to be 

defined. *" 

S; = C1gj n (Clgl U Clq2 U ... U C1q; _, 
) 

R1=Clq; -S;. 

These parameters will be used in the propagation of probabilities and in the 
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definition of the structure. As an example, S4 = {A, B} fl {B, C, E, G, F} _ {B} 

and R4={A, B}-S4={A}. 

Once the set of ordered cliques has been obtained, the next step is the defini- 

tion of the structure of the tree of cliques. The first clique is the root of the tree. 

Now, for the rest of the nodes, i. e., for each i such that 2<i<p, there exists at 

least one j<i such that 

Si = C1gi n (Cigl U C1g2 U ... U C1q; _1) c Clq;. (2.33) 

Then C1g1 is a parent of Clq;. In the case of more than one possible parent, the 

choice is arbitrary. 

Figure 2.12: Resultant tree of cliques. 

Figure 2.12 shows the final modification of the Bayesian network of Fig. 2.9 

into the tree of cliques. The next subsection briefly describes the algorithm for 

probability propagation in this tree of cliques. 

Probability propagation 

The cliques obtained in the previous subsection are the Wi subsets indicated in 

equation 2.30. The functions 0 are defined by the following theorem. 

Theorem 2.2 Let G be the DAG representing a Bayesian network, G, the moral 

graph relative to G, G. a graph formed by triangulating Gm as discussed in the 
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previous subsection. Let {Clq; such that 1<i< p} be the cliques of Gu. For 

each node vEV, assign a unique clique Clq; such that 

vU parents(v) 9 Clq;. (2.34) 

This is always possible, since parents of the original graph are married and there- 

fore {v} U parents(v) is a complete set in Gm and thus in G. If a complete set 

is a subset of more than one clique, choose one of them arbitrarily but keeping 

each node v assigned to only one clique. Denoting as f (v) the clique assigned to 

v, and for 1<i<p, 

b(Clq; ) = II P(v I parents(v)). (2.35) 
f (v)=0191 

where f (v) = Clq; represents only the nodes v that are assigned to Clq;. If there 

is no v represented in the clique, it is assigned the value 1. Then 

({Clg2 such that 1<i< p}, 0) (2.36) 

is a potential representation of P. 

The complete proof can be found in the text by Neapolitan (1990). The function 

parents(v) represents the set of nodes which are parents of node v in the original 

network. 

For example, assigning A and B to the clique {A, B}, C to the clique {B, E, C}, 

D to the clique {C, D}, E, F and G to the clique {E, G, F}, and H to the clique 

IC, G, H}: 

5(A, B) = P(B I A)P(A) 

? k(B, E, C) = P(C I B, E) 

1'(C, D) = P(D I C) 

b(E, G, F) = P(E 1 F)P(G 1 F)P(F) 

O(C, G, H) = P(H I C, G) 

TI(E, C, G) = 1. (2.37) 



CHAPTER 2. BACKGROUND KNOWLEDGE 38 

When the new tree is defined, it is ready to accept the instantiation of variables 

as evidence, and to compute the posterior probability of all the nodes through 

probability propagation in the tree of cliques. This is done in a similar way to the 

algorithm of message passing for trees and polytrees described in Subsection 2.2.2. 

The A message that a node sends to its parents is calculated with the formula: 

aclq, (S; ) = t(Clgi) (2.38) 
R; 

where the sum is made over all the possible values of the variables in the set R; 

The r message that the nodes send to their children is computed as: 

ircrq, (Si) =E P'(C1g2) (2.39) 
crq, -s, 

where the sum is made of all the possible values of the variables in the set C1g1-S;. 

The 0 function is updated when a clique Clg3 receives aA message from its child 

C1q; as: 

t'(Clg3) = A(si) (Clgj) (2.40) 

For the root clique, the posterior probability once that all the A messages have 

been received from its children is given by 

P'(Clgrooe) = TOOt(Clgroot) (2.41) 

Finally, the posterior probability of a single variable, when the probabilities of all 

the cliques have been determined, is calculated using the formula: 

P'(v) = P(Clg1). (2.42) 

wEClq; 
wOv 

The complete alg2rithm can be consulted in the book by Neapolitan (1990). 

2.2.5 Probabilistic causal method 

Figure 2.13 shows a network known as the probabilistic causal model. It consists 

of a two level DAG where the roots are considered the causes of the manifestations 
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of the leaf nodes. Although the network looks to be simple, it presents several 

problems in the definition of its conditional probabilities. The probabilistic causal 

model was first studied by Peng & Reggia (1994), and then further developed by 

Pearl (1988) and by Neapolitan (1990). 

dl d2 d3 

ml m2 m3 m4 

Figure 2.13: A DAG representing a probabilistic causal model. 

In this network, D= {dl, d2i d3} represents the set of diseases, and Al = 

{ml, rn2i m3, m4} represents the set of manifestations4 respectively. 

di d1 d2 ... do 

ml m2 ... mit mj 

(a) (b) 

Figure 2.14: Causal relation between hypotheses or causes, and manifestations. 

Notice that there are two types of relationships between the nodes in Fig. 2.13. 

Figure 2.14(a) shows a common relationship where one disease has many mani- 

festations. However, Fig. 2.14(b) shows a relation where one manifestation can 

be caused by several diseases. For example, the high fever event in medicine is 

caused by many different diseases, e. g., influenza, tuberculosis, and kidney in- 

fection. Any of these diseases is likely to cause high fever, but the presence of 

two of these diseases is only more likely to cause fever. This relation between a 

manifestation and several causes is known as the noisy or since it remains the or 

4The names are traditionally taken from the medical domain. 
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gate utilised in digital electronics. In the probabilistic case, the noisy or relation 

is used when any member of a set of diseases is likely to cause a specific event, 

but this likelihood does not significantly change when a patient suffers several of 

these diseases. 

One of the problems in these kinds of networks is the initialisation of the 

network with the prior and conditional probabilities. Normally, the conditional 

probability for describing the arcs of the network in Fig. 2.14(b) contains 2" 

independent parameters. It would be very difficult for a physician to estimate 

the probability of high fever given influenza, no tuberculosis-and infection, or the 

probability of no influenza nor tuberculosis but with infection, and so on with 

the 8 combinations. A method for computing the conditional probability matrix 

of a disease given a set of manifestations is now explained. This method is based 

on the following two assumptions: 

Accountability. An event m3 is false, P(mj) = 0, if all conditions listed as 

causes of mj are false. 

Exception independence. If an event mi is a consequence of two conditions dl 

and d2, then the inhibition of the occurrence of mj under dl is independent 

of the mechanisms of inhibition of m5 under d2. 

Consider the example mentioned above. Influenza alone is a cause of high 

fever unless an inhibitor is present. If tuberculosis alone also causes fever except 

when another inhibitor is present, then the exception independence mechanism 

assumes that both these inhibitors are independent. Then, let qjj denote the 

probability that a manifestation mJ is inhibited when only disease d; is present, 
i. e., qjj = P(-'m3 I d; alone). Then, by the exception independence assumption: 

P(-, m, I di, d2, 
... , 

d�) = P(-im, I di)P(-'m3 I da) ... P(-+'n3 I d,, ) 

= II qi; i: d, =true 
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In general, let d be the set of assignments of the set of diseases, and let Td = 

{i : d; = true}, i. e., the set of all diseases actually present. Then, the conditional 

probability matrix can be calculated with the following formula: 

P(m3 I d) - 
MET, qij if -imj (2.43) 
1- UiETd qij if mJ 

For example, in the network of Fig. 2.13, the following are the formulas of equa- 

tion 2.43: 

P(--'mi I +di, +d2) = giiq2l 

P(-'mi I +d1, -'d2) = 9'ii 

P(-, mi -idi, +d2) = q21 

P(-'mi -di, -ds) = 1. 

where +di means d; = true and the quantities for ml are 1 minus the conditional 

for -ml. 

These equations will be utilised to obtain the parameters needed in the prob- 

ability initialisation of the proposed model in the thesis, which is described in 

Chapter 3. 

2.3 Summary 

This chapter presented the background knowledge required to follow the tech- 

niques developed in this thesis. Section 2.1 presented two approaches to concept 

representation: (i)-the probabilistic representation described in Subsection 2.1.1 

and (ii) the exemplar based representation described in Subsection 2.1.2. A com- 

bination of these two representations is utilised in the probabilistic exemplar 

based model described in Chapter 3. Section 2.2 presented the probabilistic 

theory that supports the probabilistic exemplar based model. Subsection 2.2.1 
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presented the basis of probability theory until the deduction of Bayes rule (equa- 

tion 2.8). Subsection 2.2.2 described what a Bayesian network is and presented 

the axioms and theorems that allow the utilisation of DAGs as a language for 

knowledge representation and inference. Subsection 2.2.3 presented a brief de- 

scription of the propagation algorithms for singly connected networks. Subsec- 

tion 2.2.4 described the algorithm for probability propagation in multiply con- 

nected networks. 

The propagation method for multiply connected networks (trees of cliques) 

will be utilised in Chapter 3 as the probability propagation 'method of the prob- 

abilistic exemplar based model. Subsection 2.2.5 described a technique for the 

computation of conditional probabilities in causal models utilised in diagnosis. 

This technique will also be used in Chapter 3. 

The next chapter presents the utilisation of the techniques presented in this 

chapter, for the development of a probabilistic exemplar based model. The model 

addresses the issues of retrieval, storing and learning in case based reasoning. 



Chapter 3 

A PROBABILISTIC 

EXEMPLAR BASED MODEL 

The previous two chapters of the thesis provide the motivation and theory for 

developing a probabilistic exemplar based model whose foundations are provided 

by Bayesian networks. This chapter develops such a model. First, in Section 3.1 

the problems of developing a probabilistic exemplar based model are described. 

Next, Section 3.2 describes the knowledge representation used by the proposed 

model. Then, the problems raised are tackled in Section 3.3, which develops the 

classification process, and Section 3.4 which develops the learning process. The 

chapter concludes with an illustrative example in Section 3.5 and a summary in 

Section 3.6. 

3.1 The Problem 

Chapter 1 provided the basis for the thesis by arguing that most current CBR 

tools are unable to cope with domains where knowledge is not predefined, may 

have varying features, and which contain uncertainties. This motivation leads to 

the following problem definition. 

43 
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Given a set of cases of a weak domain where: 

1. the categories or concepts are difficult to define by necessary and sufficient 

features, 

2. the categories can be non-disjoint, 

3. the data are not structured, 

4. all the data do not exist in advance, and 

5. there is uncertainty in how the categories are represented by cases. 

then, the problem is to develop an exemplar based model that addresses the 

classification and learning issues. 

That is, given an existing exemplar based model, how can it be used to de- 

termine the category of a new case. Further, given a sequence of training cases, 

which exemplar based model best represents the domain? Since in practice, not 

all the data are available in advance, the developed model must be incremental 

and its accuracy must improve as more data become available. Of course, the 

developed model should have good foundations. 

In order to provide some insight into the problem, consider the diagram shown 

in Fig. 3.1. Figure 3.1 shows a weak domain in which there are two categories A 

and B (solid lines). 

The category A has nine cases (the points) c1, c2, c3, c4, c6, c7, c8, c9, and clo, 

and the category B has five cases c3i c4, c5, c9, and c11. Note that the cases c3, c4 

and c9 are common cases that occur in both categories. 

The main problem is to proceed from a view like the one shown in Fig. 3.1 to an 

exemplar based view like the one shown in Fig. 3.2 where the exemplars e6, e8, e9, 

and ell represent sets of similar cases (dashes lines). That is, instead of storing 

all the cases, only the prototypical cases are stored. Although conceptually, this 

is an elegant idea, attempting to develop it raises the following difficult questions: 
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Ag 
C3" 

" "C4 
c9 C11 

CS (C2 

" c7 
" 

"" 
CIO c8 

Figure 3.1: Example of a weak domain. 

A . -. g 

e9 
"e11, 

e" 

e8. 

Y- 

Figure 3.2: Exemplar based view in weak domain. 
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1. What is a good representation of the model? 

2. How can a new case be classified? 

3. What notion of similarity can be adopted? 

4. What makes a good exemplar? 

5. How can the model be learned incrementally? 

The following sections of this chapter develop the model by addressing these 

questions. 

3.2 The Knowledge Representation 

One way of representing the information in Fig. 3.2 is to use a network in which 

nodes can be used to denote exemplars, features, and categories. Thus, Fig. 3.3 

shows the network representing the exemplar based model shown in Fig. 3.2. In 

this representation, the dashed lines show the relationship between categories 

and exemplars, and the solid lines show the relationship between exemplars and 

their features. So for example, category A has the exemplars e6, e8, and e9 and 

exemplar e6 has the features fl, f2i and f3. Notice that exemplars can be shared 

by categories, and features can be shared by exemplars. 

As it stands, Fig. 3.3 is not an adequate representation of an exemplar based 

model since it does not contain any information about the degree of dependency 

between a category and its exemplars and an exemplar and its features. So for 

example, a car can-häve features such as colour, engine, and make. But, which of 

them is more relevant in the representation of a car? The above representation 

would not differentiate between the strong dependency: an object being a car 

and having an engine, and the weak dependency: an object being a car and its 

colour. 
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e6 
eg e9 e11 

f1 )( f2 )( f3 )( f4 )". " (fn-2) (fn-1 

Figure 3.3: A basic exemplar based representation. 

fn 
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Hence, to include the strengths of such dependencies, the relationships be- 

tween exemplars and features are represented as probabilistic dependencies. That 

is, each feature f3, that is a leaf node in the network, is labelled with the condi- 

tional probability P(f3 I el """ ek), where el """ ek are the exemplars that share the 

feature f3. Similarly, the importance of an exemplar in the category is represented 

by probabilistic dependencies. Each exemplar e=, which is an intermediate node 

in the network, is labelled with the conditional probability P(e, I JC), where JC 

is the joint category formed by the parents of e;. This probability is the prior 

probability of the exemplar when no evidence is available. With this additional 

information, the network of Fig. 3.3 becomes a hybrid representation. Figure 3.4 

shows this new mixed representation. The probabilistic representation, which is 

the lower network in Fig. 3.4, is a Bayesian network of the kind introduced in 

Chapter 2. The exemplar based representation, which is the upper network in 

Fig. 3.4, shows the exemplars that describe a category. 

More formally, the representation can be summarised as follows. 

9A domain has a set of categories {C1,..., C,, }. 
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P(e6 I A) P(e8 I A) 

e6 e8 

fl )( f2 )( f3 )( f4 

" P(e9 jA 
, B) P(el lI B) 

e9 e11 

... fn-2 fn-1 fn 

P(f1 1 e6) 
P(12 I e6, e8) 

P(ß I e6) 
P(f4 1 e8, e9) 

P(fn-21 e8, e11) 
P(fn-l Lei 1) 

P(fn I ell) 

Figure 3.4: A probabilistic exemplar based representation. 

"A category C; is represented by a set of exemplars and their conditional 

probabilities {ep; l, ""-, ep;,,, }, where epjj = (e; j, P(e; 2 I JC)). 

" An exemplar e; j is represented by a set of features and their conditional 

probabilities (f ptjl, """, f ptjo), where f ptjk - (f;, k, P(fijk I parents (ft, k))). 

"A case cs is represented by its features (fl, """, fp). 

For simplicity, a feature f3 is assumed to be a binary variable. However, if 

continuous variables occur, these can be discretised using a simple method such 

as dividing the range of values into a number of intervals required or a more 

sophisticated method as proposed in Dougherty et al. (1995). 

3.3 The Classification Process 

Given the above representation, how can the following questions, raised earlier, 

be addressed: 

" How can a new case be classified? 
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9 What notion of similarity can be adopted? 

The majority of current CBR systems address these questions by adopting 

a similarity metric, which is a weighted sum of the differences between a new 

case and a stored case [Kolodner 1993, Aha 1991. The main problem with this 

approach is that the weights of the similarity metric need to be estimated. Some 

applications of CBR have used expert judgement to estimate the weights. Obtain- 

ing the weights is a wide open research area. For example, some approaches adopt 

flexible weighting schemes [Aha & Goldstone 1992], statistics methods [Mohri & 

Tanaka 1994] and context sensitive feature selection algorithms [Aha & Bankert 

1994, Domingos 1997]. Obtaining the relevant features in a context and the 

weights associated with these features are the goals that these approaches are 

trying to achieve. A survey of different approaches can be found in the published 

work of WVettschereck & Aha (1995) and more recently in Wettschereck et al. 

(1997). 

In this thesis, the notion of similarity adopted is that two cases are similar if 

they are represented by the same exemplar. But how can one determine if a new 

case is represented by a particular exemplar? Since in the above representation, 

the lower network that relates exemplars and features is a Bayesian network, 

the degree to which a new case with features flnc, """, fqnc is represented by an 

exemplar e can be computed by: 

P(e I flnci ... i 
f4nc) ý3.1) 

This computation _can 
be carried out by using the propagation methods intro- 

duced in Chapter 2. 

Given this capability of calculating the extent to which an exemplar represents 

a new case, all the exemplars could be investigated, in theory at least. However, 

probabilistic propagations methods can be computationally expensive (NP-hard 
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in general) [Cooper 1990] and investigating all the exemplars is therefore not 

practical. 

Hence, first it is necessary to rank the categories in order of the likelihood 

of them containing a suitable exemplar. This ranking has to be performed in a 

way that avoids missing suitable exemplars but is computationally efficient. This 

ranking can be obtained by utilizing an observation by Smith & Medin (1981) 

who point out that: 

"the features that represent a concept are salient ones that have a 

substantial probability of occurring in instances of the concept". 

Thus, the important features will have high values of occurrence given an 

exemplar, i. e., high values of P(f? e). Hence, a reasonable way of ranking the 

categories is to obtain the contribution of the features of the exemplar that are 

present in the new case, averaged over the number of features in the exemplar e;: 

Rank(ei) _ 
Ef 

Eei P(f 1 ei) (3.2) 
nfe; 

where 

P(f I e; ) =0 when fý nc 

In this equation, nc is a new case and nf ei is the number of features in the 

exemplar e;. 

Then, the categories can be ranked in order of the rank of their exemplars. 

Once the ranking is obtained, a suitable investigation strategy can be adopted. 

For example, the list- of categories can be investigated in order of rank until 
.a 

good exemplar is found. In the context of this model, a good exemplar is one 

that has a value of P(e I nc) above a threshold that is normally dependent on the 

application. Adopting this strategy, the classification process can be summarized 

as the algorithm in Fig. 3.5. 
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Classi f y(nc) 

Input: A new case described by a set of features ne ={ f� """, fg} 
Results: the exemplar ec that best classifies the new case and 

the category list CL that classify ec 

The following local variables are used: 
H is a list of categories 
E, CE are lists of exemplars 
Cc is the current category 
done is a boolean variable 

Step 1. Determine and rank the categories (hypotheses) 

for all e., do 
ýýEý Pifýe, l 

Rank(e, ) = nlej 

where P(f I e, ) =0 when fý nc 
end(for) 
set CE to the list of candidate exemplars in descending order of rank 
set H to the list of categories ranked in descending order of rank of its best exemplar 

Step 2. Determination of an Exemplar 

ec=nil 
Cc =f irst(H) f irst(H) returns 0 when H is empty 
done = false 

while (not done) and (Ce 34 0) do begin 

In the exemplar-features Bayesian network 

for each e, E Cc do 
compute P(e, Inc) 

end(for) 
set E to the list of exemplars in Cc ranked in descending order of P(e. Inc) 

ec =f irst(E) 
if P(ec I nc) > threshold then 

done = true 
else 

Cc = next(H) 
end(if) 

end(while) 

if done then 
CL = all categories that contain (ee) 

else 
ec = nil 
CL =0 

end(if) 

return (ec, CL) 

Figure 3.5: Classification algorithm. 
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3.4 The Learning Process 

The last section described how to classify a new case given an existing exemplar 

based model and its representation. This section describes how the model and 

its representation are learned. There are two aspects of learning involved. First, 

the exemplar based model needs to be learned and second, the parameters of 

the model need to be estimated. Both aspects need to be done in an incremen- 

tal fashion. Subsection 3.4.1 develops the algorithm for learning the exemplar 

based model and Subsection 3.4.2 describes how the parameters required by the 

exemplar based model are estimated. 

3.4.1 Learning the model 

The last section described how to classify a new case given an existing exemplar 

based model and its representation. This subsection describes how the model and 

its representation are learned. In particular, the following questions, that were 

raised earlier in Section 3.1 are addressed: 

1. What makes a good exemplar? 

2. How can the model be learned incrementally? 

To answer these questions, consider the situation shown in Fig. 3.6 where there 

is a category C that is represented by three exemplars el, e2 and e3. Suppose a 

new training case with category C arrives, then there are two situations, shown 

in Fig. 3.7, that can arise: 

(a) The new case is not classified by the exemplars in C. 

(b) The new case is correctly classified by an exemplar in C. 
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-p new training case 

1 
Classification process 

C 

et 
" " " e3 

e2 

Figure 3.6: Classifying a new case in a category C. 

new training case 

C 
Cel 

0"e' 

- -(a) (b) 

Figure 3.7: Situations in the classification process. 
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In the first case, clearly the new case shoud be retained as a new exemplar 

since it must be different from the other exemplars. In the second case, which is 

illustrated in Fig_ 3.7(b), criteria need to be developed for deciding which of the 

two, the new case or exemplar, will be the best representative of all cases in the 

region. 

For exemplar based models these criteria have to be based on the notion 

of prototypicality. Before describing the measure of prototypicality used in this 

thesis, it is necessary to first describe the idea of a summary representation. In 

Section 3.2 an exemplar was represented as a Bayesian network with dependencies 

from the exemplar to its features. In general, an exemplar may not have the same 

features as all the similar cases that it represents. For example, in Fig 3.8, the 

exemplar e2 may have the features f4i f6i and f9 while the union of all the features 

of the cases it represents may be f3, f4, f6, f7, and f9. In general, a summary 

representation is a Bayesian network where all the features of the similar cases 

are included. Figure 3.8 shows the summary representation of the exemplar e2. 

summary 
representation 

e2 

ß)( f4 )( f6 )( f7 )( f9 

Figure 3.8: A summary representation of the exemplar e2. 

Returning to the notion of prototypicality, the problem can be summarised as 

shown in Fig 3.9. In this figure there are several exemplars, each with a summary 

representation, as shown on the right of the figure. The basic problem is to 

develop a measure of prototypicality so that the best prototype can be selected. 



CHAPTER 3. A PROBABILISTIC EYEMPLAR BASED . 
1IOUEL 5`"ý 

new training case 
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summary representation 

new training 
case ý prototypical 

ýý case 

" 

e2 "" 
similar case 

Figure : 3.9: A summary representation of an exemplar. 

Rosch Sc Mervis ( 19.5) argued that a case is an ideal prototype if (i. ('. it niav 

not exist): 

9 it has the highest family resemblance with other members in the same 

(ateýorv. (this is known as focalrty [Biberinati I )9T]) mid 

0; t has the least family resemblance with nnetul)ers of other caitet cries ( his 

is known as pfripü(rality [Biberelan 1995]). 

In the coiitex of the model being developed here. family i(.. r rnL1(111( iý ý ieýýeýl 

as the collection of similar cases and which have a sununarv representation. In 

terms of regions. a case that maximizes the probability of covering a region can 

be considered to have the highest family resemblance. Since the summary repre- 

sentation denotes regions. and takes the form of a Bayesian network, a suitable 

measure of focality of an exemplar e is the probability of covering a re-ion: 

Focality(ci) = P(, ''R((j) Ic i) (: 3.: 3) 

where ti'R(E; ) denotes the summary representation of the region that contains c,. 
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Likewise, a suitable measure of peripherality is obtained by working out the 

average probability of an exemplar representing regions in other categories: 
k 

Peripherality(e;, C) =k P(SR(ej) 1 e; ) Vj iEC (3.4) 
=1 

These two measures can be used to define a measure of prototypicality as 

follows. Since a good prototype is one that has the greatest focality and the least 

peripherality, the measure of prototypicality adopted here is: 

Prototypicality(e;, C) = Focality(ei) - Peripherality(e;, C) (3.5) 

This measure of prototypicality can now be used to decide which case makes the 

better exemplar in a region. 

The above considerations lead to the following learning algorithm shown in 

the Fig. 3.10. 

Y 
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Input: A training case described by a set of features nc = if 
.""", f; } and 

a set of categories L= {C1, """, Cp} to which it jointly belongs. 
Results: Updated exemplar base model. 

1. Classi f y(nc) (as given in Fig. 3.5) 

Classification outcomes are stored in the following local variables: 
CL is a list of categories that classify the nc 
e, is the exemplar that best classifies the nc 

2. if (CL = 0) then 
ec=nc 
add_exemplar(e, C; ) for each C; EL 
return 

end(if) 

3. if L= CL then 
In the joint category JC EL do 

pec = prototypicality(e, JC) 

pnc = prototypicality(nc, JC) 
if (pnc > pec) then 

nc replaces e, in the definition of JC 
end(if) 

else 
e. =nc 
add_exemplar(e,, C; ) for each C; EL 

end(if) 

- .- 

Figure 3.10: Learning algorithm. 
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3.4.2 Learning the probabilities 

The last subsection concluded with the algorithm for learning an exemplar based 

model. However to use it, the probabilities that define the Bayesian network 

which represents the exemplars are required. Since the model is incremental, and 

the cases are not retained, estimating the probabilities in a manner that enables 

a good exemplar based model to be learned is a non-trivial problem. 

LýJ 

P(e6 A) P(e8 I A) 

e6 e8 
(e9 I AuB) P(e11 I B) 

e9 e11 

f1 )( f2 )( f3 )( f4 ) ... (fn-2) (fn-1) ( fn 

P(f1 I e6) P(f3 I e6) P(fn-2 I e8, el1) P(fn I ell) 
P(f2 I e6, e8) P(14 I e8, e9) P(fn-l I e9) 

Figure 3.11: A probabilistic exemplar based model. 

Figure 3.11 shows a Bayesian network that represents the state of the exemplar 

based model after some cases have been seen. The parameters that need to evolve 

as new cases are seen include: 

1. prior probabilities of the exemplars in the joint category P(e I JC) and 

2. the conditional probability P(f I parents(f)). 

If there are many cases available in advance, the prior probabilities can be 

easily estimated. However, since the model is incremental, the prior probabilities 
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need to start from a position of ignorance and then improve in accuracy as new 

cases arrive. The following describes how each of these probabilities is estimated. 

Computing the prior probabilties 

Estimating prior probabilities from data is a problem that has been addressed 

by statisticians. The most common and widely used method is to utilise a beta 

distribution [Lindgren 1976]. This distribution takes the following form, where x 

represents a possible value of the prior probability. 
(a+b+1)I 

/3(a b) = xa(1 - x)6 where ab>0. (3.6) 
a! b! , 

The expected value of x is the estimated value of the prior probability. It can be 

shown that if an event E occurs k times out of n then [Neapolitan 1990]: 

Prior(E) =k+a+1n+a+b+2 (3. i) 

The values of a and b determine the form of the distribution and reflect the 

confidence in the average being the prior value. In the context of this model, a 

uniform distribution must be assumed since no information is available about the 

distribution of the data. This uniform distribution, which reflects ignorance, is 

obtained by setting a=b=0. 

Thus, given a category, the following equation can be used to compute and 

update the prior probabilities: 

P (e I C) = 
number of cases in e+1 (3.8) 
number of cases in C+2 

Notice, when there are no cases, this returns a value of 0.5, which represents 

ignorance. 
s. 

Computing the conditional probabilities 

Estimating the conditional probabilities P(f lparents(f )) is much more difficult. 

To illustrate the difficulty, suppose a feature f has the exemplars el and e2 as 
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parents. Then, Table 3.1 shows the conditional probabilities that need to be 

computed. 

.., ,, �, � , ", ,11", ". 

läble J. 1: Vona1 Ituuai iuuauiiibiczo 

P(f I el, e2), 
P(- fI e1, e2), 
P(f I el, -ie2), 
P(- f el, -, e2), 
P(f I -el, e2), 
P(- fI -el, e2), 
P(f I -el, -ße2), 
P(- ffI -gel, -, e2) 

of f given el, e2. 

In general, 2"+1 probabilities need to be estimated for n parents. In particular, 

there may not be enough cases in the intersection of the parent events, even if 

there are enough cases in the regions represented by the parents. This means 

that estimates of probabilities such as P(f I gel, e2) could only be based on a 

small number of cases and would therefore be inaccurate even when many cases 

have been seen. 

To overcome this problem, the noisy or model [Peng & Reggia 1994] described 

in Chapter 2 is considered. If this model can be adopted, then instead of requiring 

P(f Iparents(f )) only P(f I e; ) is needed. To see if the noisy or model can be 

used, consider the assumptions that it makes [Pearl 1988]: 

Accountability An event m3 is false, P(m3) = 0, if all conditions listed as 

causes of mi are false. 

Exception independence If an event m1 is a consequence of two conditions dl 

and d2, then the inhibition of the occurrence of mj under dl is independent 

of the mechanisms of inhibition of m3 under d2. 

In the context of this model, the exception independence assumption can be 

interpreted as requiring that the absence of the feature given one exemplar is 
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independent of the absence of the feature given another exemplar. The extent to 

which this assumption holds depends on the way the exemplars are selected. In 

Section 3.4, the selection scheme uses a measure of prototypicality that aims to re- 

duce the possibility of selecting exemplars that represents similar regions. That is 

the selection scheme used minimizes the posibility of the exception independence 

assumption being broken. 

The accountability assumption requires that if a case is not represented by 

the parent exemplars of a feature, then that feature does not occur in the case. 

Although this may hold when an accurate exemplar based model has been learned, 

it clearly does not hold while it is still learning. To overcome this problem, an 

additional virtual exemplar is added in the representation of each category. This 

additional exemplar can be viewed as representing all the cases that have not 

yet been seen. With this additional exemplar, the revised model is illustrated in 

Fig. 3.12. As the figure shows, this introduces dependencies between the virtual 

exemplar and the features. But how can the strengths of the dependencies be 

estimated, since the virtual exemplar represents unseen cases? 

I Al 
P(e6 I A) P(e8 A P(e9 l A) 

e6 e8 e9 Ve 

f1. f2 MM... fn-2 fn-1 

P(f1 I e6, Ve) P(t3 I e6, Ve) P(fn-2 I e8, Ve) 
P(f2 e6, e8, Ve) P(f4 I e8, e9, Ve) P(fn-1 I e9, Ve) 

Figure 3.12: Virtual exemplar. 
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Estimating the strengths of these dependencies is therefore a task that requires 

predicting the behaviour of the dependencies as more cases are observed. This 

behaviour can be-expected to have the following characteristics: 

" The strengths of the dependencies should be the highest initially when no 

cases have been seen and ignorance is greatest. 

" As more cases are observed, the strengths of the dependencies can be ex- 

pected to decay since the virtual exemplar will represent fewer unseen cases. 

" There is always a small chance that a new case will be in the region repre- 

sented by the virtual exemplar even after many cases have been observed. 

There may be several functions that satisfy these characteristics. However, a 

common function that is often used to represent decay is the exponential func- 

tion. For example, it is used in modelling radio active decay and maintenance 

modelling [Chatfield 1978]. Hence, the exponential function is adopted and takes 

the form: 

P(f I Ve) = Ae-a. a. n, 
or 

0.1 if P(f I Ve) <0.1 

where n is the number of cases in a category and a is a scaling parameter that 

determines the rate of decay. The lower bound of 0.1 in this function reflects 

that a new case will be in the region represented by the virtual exemplar even 

after many cases have been seen. The parameter a can be obtained by deciding 

the minimum value of the probability (last characteristic above) and deciding the 

number of cases for which the probability should be a minimum. Then, the above 

equation can be rearranged to obtain a as follows. 

a=- 
1 

In 
Pof IV e) (3.9) 

A*nA 
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This completes the description of how the probabilities can be learned incremen- 

tally, thereby allowing the use of the classification procedure of Fig. 3.5 and the 

learning procedure given in Fig. 3.10. 

The next section gives an example that illustrates the whole process. 

3.5 An Example 

This section presents an example to illustrate the classification and learning pro- 

cesses. First, a training case is presented to show the stages of the learning process 

and second, a test case is presented to illustrate the classification process. 

Suppose that the probabilistic exemplar based model is required for learning 

whether a person in a university is a teacher or a student. These two categories 

are not necessarily disjoint. For instance, a member of staff may be studying for 

a higher degree and would therefore be a teacher and a student. 

Suppose 16 training cases have been observed, and a threshold of 0.6 is used. ' 

This results in three exemplars for the TEACHER category as shown in Table 3.2 

and two exemplars for the STUDENT category as shown in Table 3.3. 

In these tables, the numbers in the exemplars indicate the actual cases that 

have been classified and are represented by the exemplar and the numbers in the 

features indicate the frequency of the feature in the exemplar. So, for example, 

W. Philips is known to represent 6 actual cases and the feature (age old) occurs 

five times. Notice that the exemplar A. Smith is in both categories. This means 

that A. Smith is both a TEACHER and a STUDENT. 

Figure 3.13 shows the information in a more convenient format. 

'Given that the model normally retains the early cases as exemplars, a low threshold is 
needed in order to obtain a small exemplar based model suitable for illustrative purposes. 
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Table 3.2: Exemplars in the category: TEACHER. 
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Exemplar: W. Philips (6) Exemplar: L. Pintos (2) Exemplar: A. Smith (3) 
(age old) (5) -- (age adult) (2) (age old) (2) 
(attention sleeping) (6) (dressing formal) (1) (dressing formal) (3) 
(money much) (3) (money few) (2) (attention middle) (3) 
(study very-much) (3) (attention total) (2) (money few) (1) 

(study very-much) (3) 

Table 3.3: Exemplars in the category: STUDENT. 
Exemplar: L. Garcia (5) Exemplar: A. Smith (3) 
(age adult) (5) (age old) (2) 
(dressing informal) (4) (dressing formal) (3) 
(attention middle) (4) (attention middle) (3) 
(money few) (2) (money few) (1) 
(study few) (1) (study very-much) (3) 

study very-much) 

TEACHER 
(11) 

STUDENTI 
(8) 1 

Y- 

W. Philips 6 
(6) 

5 

L. Pintos 
(2) 

2 
2 

3 

A. Smith 
(3) 

L. Garcia 
(5) 

money much) 

attention sleeping) 

age old) 

; dressing formal) 

money few) 

attention total) 

age adult) 

attention middle) 

4' study few) 

dressing informal) 

Figure 3.13: Exemplars model after sixteen training cases. 
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Now, suppose that the following new training case is given. 

new training case : C. Pinan 

categories: {TEACHER} 

features : fins : (age adult) 

f2nc : (attention total) 

l3nc : (money few) 

f4nc : (dressing formal) 

f5nc : (study very-much) 

Learning process 

The proposed model learns from the new training case in two stages. In the 

first stage, it determines which exemplars best classify the new training case. In 

the second stage, two actions can be performed: (i) if the new training case was 

not classified then, the new training case will be a new exemplar in the category 

or the joint category that it represents and (ii) if the new case was classified 

by an exemplar then, the new training case will compete with the exemplar that 

classified it, in order to determine the best exemplar that will represent the subset 

of similar cases in the category. 

First stage: classification 

In the first stage, the- probabilistic exemplar based model builds a Bayesian net- 

work [Heckerman 1995] as shown in Fig. 3.14. The structure of this Bayesian 

network has two levels. The nodes in the lower level are the features (evidences) 

of the exemplars. The nodes in the top level are the exemplars (hypotheses) in 

the category. 
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(age old) 

(attention middle) (attention total) (money much) 

Figure 3.14: Bayesian network to classify a new training case. 

The prior and conditional probabilities required in the Bayesian network are 

based on the number of cases that have been used to train the model. The prior 

probabilities P(e; I CC) are computed by using Equation 3.8. 

In the above example, the prior probabilities of the exemplars, that represent 

the category TEACHER: W. Philips, L. Pintos, and A. Smith, are 7/13,3/13, and 

4/13 respectively. 

Since the noisy or model is adopted, an estimate of the conditional probabil- 

ities of the features given their parent exemplars are also required. 

In general, these conditional probabilities are computed using the following 

equation. 

P(-+f I parents(f)) = Il (1 - P(f I ek)) (3.10) 
ek=trueAek Eparente(f ) 

The whole matrix of the conditional probabilities of the feature (study very-much) 

is computed as follows. Suppose, for conciseness, the feature (study very-much) 

is represented by f, the virtual exemplar is denoted by VE, and the exemplars 

E. Smith and W. Philips are represented by el and e2 respectively, then: 

P(-'f Cl? C2i VE) = (1 - P(f I el))(1- P(f e2))(1 - P(f I Virtual_exemplar)) 

where (1 - P(f I ei)) is the conditional probability of the feature in the exemplar 
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P(A. Smith) 

0.307 0.693 

P(study very-much I A. Smith, W. Philips) 

(study -(study 
very-much) very-much) 

A. Smith, W. Philips 0.9247 0.0753 
A. Smith, -. W. Philips 0.8498 0.1502 
-A. Smith, W. Philips 0.6237 0.3763 
-. A. Smith, -+W. philips 

L_ 
0.2475 0.7525 

I 

Figure 3.15: Part of the Bayesian network for the feature (study very-much). 

i and P(f I virtual . exemplar) is the conditional probability of the feature in 

the virtual exemplar that represents the cases that have not been seen in the 

category. In order to compute the conditional probability of a feature given the 

virtual exemplar, Equation 3.9 is used. Thus, the negative part of the conditional 

probability is computed as follows. 

P(-f 1 +ei, +e2, VE) _ (1 - P(f 1 el))(1 - P(f 1 e2))(1 - ae'a*a*") 

P(-, f 1 +e1, -, e2i VE) = (1 - P(f 1 ei))(1 - ae'a*a*n) 

P(- f -ei, +e29 VE) = (1 - P(f 1 e2))(1 - ire-a*a*n 

P(-'f 1 -'ei, -yea, VE) = (1 - ýe-a*«*n) 

where +e; denotes the presence of e;. 

Suppose, for illustrative purposes, the parameters A and a are set to 0.4 

and 0.1 respectively. The values of P(f I e; ) are obtained by using a variation of 
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Equation 3.8. Thus, since el represents 3 cases all of which have the feature f, 

an estimate of 5 is obtained for P(f I el). Hence, the conditional probabilities 

are: 

P(-if 1 +ei, +e2, +VE) = (1 - 5)(1 - $)(1 - 0.4 * e-0.4*0.1.12) = 0.08 

P(-'f I +ei, -'e2, +VE) = (1 - 5)(1 - 0.4 * e-o. 4*0.1*12) = 0.15 

P(- fI -ei, +e2i +VE) = (1 - 18)(1 - 0.4 * e-0.4*0.1.12) = 0.38 

P(-'f 1 -ei, -'e2, -EVE) = (1 - 0.4 * e-0.4.0.1.12) = 0.75 

Notice that since the virtual exemplar is only needed for computing the effect of 

ignorance on the conditional probabilities of the features, only those situations 

where the virtual exemplar is present need to be considered. 

The whole matrix of conditional probabilities for the feature (study very- 

much) is shown in Table 3.4. 

Table 3.4: Condi tional probability of feature (si 
f -if 

+el, +e2, +VE 0.92 0.08 
+el, -'e2, +VE 0.85 0.15 
-'el, +e2, +V E 0.62 0.38 
-'el, -'e2i +VE 0.25 0.75 

udy very-much). 

In order to establish whether evidence is present (i. e. positive) or not (i. e. 

negative), the features of the exemplars are matched with the features of the new 

training case. If a feature of an exemplar matches then, the evidence is positive, 

otherwise it is negative. In the example of this section, Fig. 3.14, the positive fea- 

tures are: (dressing formal), (money few), (study very-much), (attention total), 

and (age adult), while the negative features are: (age old), (attention middle), 

(attention sleeping), and (money much). 

Once the prior probabilities of all the exemplars, the condititional probabilities 

of all the features, and the positive and negative features are known then, the 
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posterior probabilities of the exemplars given the evidence can be computed using 

the propagation method described in Chapter 2. In this example, this results in 

the following posterior probabilities . 

P(L. Pintos I 
, 
flnc, f2nc, 

J3nc, 
f4nc, f5nc) = 0.94 

P(A. Smith l flnc, f2nc, f3nc, f4nc, f5nc) = 0.17 

P(W. Philips 1 f1nc7 f2nc7 f3nc7 f4nc7 f5nc) = 0.04 

Hence, the exemplar L. Pintos classifies the new training, case. 

Second stage: learning 

As the new training case was classified by an existing exemplar then, in the second 

stage, the goal is to determine whether the new case is a better exemplar. This 

is done by computing the prototypicality measure for both the new case, and the 

exemplar that classified it: 

Prototypicality(L. Pintos, TEACHER) = 

Focality(L. Pintos) - Peripherality(L. Pintos, TEACHER) 

Prototypicality(C. Pinan, TEACHER) = 

Focality(C. Pinan) - Peripherality(C. Pinan, TEACHER) 

where focality and peripherality are defined by: 

Focality(ei) = P(SR(e; ) e; ) 

k 

Peripherality(e;, C) = EP(SR(e? ) I e; ) Vj 54i EC 
j=l 

The conditional probabilities P(SR(e3) I e; ) are obtained by propagating 

probabilities in the Bayesian network that consists of the summary represen- 

tations of all the exemplars in the category. So for example, Fig. 3.16 shows 
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the Bayesian network for the TEACHER category that includes the summary 

representations of the exemplars in that category. Notice that the summary rep- 

resentation of A. Smith includes a feature (has computer), which is not a feature 

of A. Smith but a feature of a case represented by the exemplar A. Smith. 

(money 

(age 

/ '4 vr 
(attention middle) (attention total) (money much) 

Figure 3.16: Bayesian network of the summay representation in TEACHER cat- 
egory. 

Once the propagation has been done, the following prototypicality values are 

obtained: 

Prototypicality(L. Pintos, TEACHER) = 0.95 - 0.01 = 0.94 

Prototypicality(C. Pinan, TEACHER) = 0.99 - 0.04 = 0.95 

As can be seen, the new exemplar, C. Pinan, has a prototypicality higher than 

the exemplar L. Pintos. Thus, C. Pinan will be the new exemplar that represents 

the subset of similar cases in the TEACHER category. Figure 3.17 shows the 

updated organisatior_structure after the exemplar C. Pinan is selected. 

Classification process 

Now, suppose that the model was trained with the seventeen previous cases and 

the following new test case is given. 
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study very-much) 

money much) 
3 

W. Philips attention sleeping) 
6 (6) 5 

6 age old) 
TEACHER 32 C. Pinan 2 dressing formal) 

(12) (3) 3 
3 33 money few) 

3 

3 A. Smith attention total) 
STUDENT (3) 3 

(8) age adult) 
5 2 

L. Garcia 5 attention middle) 
(5) 4 

4' study few) 

dressing informal) 
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Figure 3.17: Updated organisation structure. 
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new case : J. Perez 

features :- (age old) 

(dressing formal) 

(money few) 

(study very-much) 

The probabilistic exemplar based model also classifies a test case in two stages. 

In the first one, it determines the hypotheses, which are the categories that poten- 

tially contain suitable exemplars. In the second stage, it computes the posterior 

probabilities of the exemplars in each category given the new case. The categories 

are ranked and investigated according to the most promising exemplars. 

First stage: hypotheses definition 

First, each exemplar is ranked using the equation: 

Rank(ei) _ 
r-f 

Eei P(f 1 ei) 
nfei 

where 

P(f I e; ) =0 when fý nc 

where the conditional probability is computed using: 

P(f I ei) _ 
frequency of fin e; +1 

cases represented by e; +2 

Table 3.5 gives the conditional probabilities obtained for this example, and 

Table 3.6 presents the ranks of the exemplars. 

Nov, from Table 3.6, the rank of the categories can be determined as the rank 

of their highest ranked exemplar. So for example, the weight of the categories 
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Table 3.5: Conditional probabilities of all selected exemplars. 
selected represented 

feature f exemplar frequency cases for e; P(f I e; ) 
e; 

age(old) A. Smith 2 3 0.60 
W. Philips 5 6 0.75 

dressing(formal) A. Smith 3 3 0.80 
C. Pinan 2 3 0.60 

money(few) L. Garcia 2 5 0.43 
A. Smith 1 3 0.40 
C. Pinan 3 3 0.80 

study(very-much) A. Smith 3 3 0.80 
C. Pinan 2 3 0.60 
W. Philips 3 6 0.50 

Table 3.6: Ranking of selected exemplars. 
exemplar 
e; 

total 
weight 

features 
in e; 

rank(e) categories 

A. Smith 2.60 5 0.52 TEACHER 
STUDENT 

C. Pinan 2.00 5 0.40 TEACHER 
W. Phihps 1.25 4 0.31 TEACHER 
L. Garcia 0.43 5 0.09 STUDENT 
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TEACHER and STUDENT is 0.52 since A. Smith is the highest ranked exemplar 

in those categories. 

Once the hypotheses are established, the second stage of the classification 

process is performed. 

Second stage: hypothesis confirmation 

In this example both, the TEACHER and STUDENT categories are ranked the 

same. Suppose the TEACHER category is investigated first. The Bayesian net- 

work for the TEACHER category is shown in Fig. 3.18. This network is used to 

evaluate P(e; I J. Perez) by probabilistic propagation. 

A. Smith )CC. Pinan 

(age old) 

(attention middle) (attention total) (money much) 

Figure 3.18: Bayesian network used to classify the test case. 

After propagation in the Bayesian network of Fig. 3.18 the posterior proba- 

bilities of the examples in the TEACHER category are the following: 

Exemplar: A. Smith Prob: 0.76 

Exemplar: W. Philips Prob: 0.13 

Exemplar: C. Pinan Prob: 0.09 
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Hence, since A. Smith is a good exemplar for J. Perez, he is considerd both a 

teacher and student, since A. Smith is an exemplar in both these categories. 

3.6 Summary 

This chapter presented the development of a probabilistic exemplar based 

model whose foundations are provided by Bayesian networks as a solution to the 

classification and learning problems in weak domains. 

Section 3.1 described the following problems of developing a probabilistic ex- 

emplar based model: (i) what makes a good exemplar? (ii) what notion of simi- 

larity can be adopted? (iii) what knowledge representation can be used? (iv) how 

can a new case be classified? (v) how can the model learn incrementally? The 

subsequent sections of the chapter described how these problems were addressed 

and developed the probabilistic exemplar based model. 

Section 3.2 presented the knowledge representation used for the proposed 

probabilistic exemplar based model. The representation adopted was based on 

Bayesian networks, where the bottom layer consisted of features and a higher 

layer consisted of nodes representing exemplars. The exemplars were grouped 

into categories which were not necessarilly disjoint. 

Given the representation based on Bayesian networks, Section 3.3 described 

how to take advantage of Bayesian propagation methods to classify new cases. 

First, exemplars are ranked and categories assume the rank of their best exem- 

plar. Then the categories are investigated in order of their rank until a suitable 

exemplar is found. 

Section 3.4 presented the learning process used in the proposed model. The 

main problems addresed in this section were: (i) how can the conditional prob- 

abilities be estimated? (ii) how can the model learn incrementally? These were 
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addressed using the noisy or model and assuming a virtual exemplar to represent 

unseen cases. The model learns incrementally by considering whether a new case 

is a better prototype than an existing exemplar used to classify it. This decision 

is based on a measure of prototypicality that takes account of the focality and 

peripherality of the exemplar. The measures of focality and peripherality are 

computed by utilising the conditional probability of an exemplar representing a 

region of similar cases, which are described by a summary representation. 

The chapter concluded with an illustrative example that showed the main 

features of the model. 

ý. - 



Chapter 4 

AN EMPIRICAL 

EVALUATION OF THE 

MODEL 

The previous chapters of the thesis have developed a probabilistic exemplar based 

model. The main aim was to develop a model that learned incrementally, does 

not store all the cases, and produces accurate classification. The previous chapter 

presented the theory of the model using Bayesian networks as a basis. This 

chapter carries out an empirical evaluation of the extent to which the aims are 

achieved. 

The chapter is organised as follows. Section 4.1 describes the experimental 

method, and Section 4.2 then describes the results obtained. Section 4.3 concludes 

the chapter with a summary. 

, ý- 

4.1 Experimental Method 

The objectives of the experiment are: 

77 
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1. to evaluate the accuracy of the model as it learns incrementally and 

2. to determine the number of exemplars retained as more cases are observed. 

To evaluate the performance of the model with respect to these objectives, 

an experimental environment was developed and implemented in the C language. 

Figure 4.1 presents the top level flow diagram of the environment. 
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exemplar H 
based mode process 

Results 

-- 
Figure 4.1: An experimental environment. 

This experimental environment was used to apply the model on three datasets 

that are independent of this work and are publicly available [Merz & Murphy 

19961. The datasets selected are: 
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Votes. This dataset records the voting behaviour of the U. S. A. house of repre- 

sentative congressmen on 16 issues and their party affiliation. The records 

are classified into two categories, democrats, or republicans. 

Zoo. This dataset consists of records describing animals. Each record has fea- 

tures like hair, legs, feathers, etc. and is classified into seven classes of 

animals labelled class-1, ..., class-7. 

Audiology. This dataset consists of records that describe a set of illnesses in the 

domain of clinical audiology. 

Table 4.1 summarises the characteristics of each dataset. 

Table 4.1: A summary of the datasets. 
Dataset 
name 

Number of 
cases 

Number of 
features 

Values in 
features 

Number of 
concepts 

Missing 
values 

Votes 435 16 2 2 Y 
Zoo 101 16 2 7 N 
Audiology 226 69 2 24 Y 

These datasets were selected for various reasons. First, an important aim of 

the model is to be able to handle polymorphic cases; that is not all the cases 

should have the same features. Hence, the votes dataset was selected because it 

has unknown values and is therefore a reasonable test of this aim. The model 

aims to retain exemplars by using a measure of prototypicality. Hence, the Zoo 

dataset was selected because most people have intuitive exemplars of animals, and 

these can be compared with the exemplars retained by the model. The audiology 

dataset was selected primarily because it was used to evaluate Protos. Ideally, the 

aim was to carry out the same experiment as the one used to evaluate Protos and 

compare the results. However, this is not possible since the experiment involved 

substantial interaction with human experts. A case was presented to Protos and it 

attempted to classify it. The classification was then displayed to an expert who 
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then modified the model, by providing explanations, so that the classification 

agreed with the expert's classification. The audiology dataset includes only the 

final classification given by the expert and does not include any information 

about the reliability of the classification. The book describing Protos includes 

an appendix that requires experts to rank alternative classifications but does not 

include the data. Unfortunately, Bareiss (1989) no longer has the data which 

would enable the experiment to be repeated. Nevertheless, given the relationship 

of this thesis with Protos, the model had to be attempted on the audiology 

dataset. 

For each of these datasets, the experiments aimed to evaluate the accuracy and 

the number of exemplars retained. This was done with the following experimental 

method: 

1. Repeat 20 times 

(a) Randomise data set - i. e. order of cases. 

(b) Select 70% randomly for training and the remainding 30% for testing. 

(c) Train the model with the 70%. 

(d) Test the model with the 30%. 

In addition to the above experiment, an attempt was made to obtain some 

results that could be compared with those obtained when Protos was applied 

to the audiology dataset. These results were obtained by approximating the 

procedure adopted by Bareiss to evaluate Protos, except without help from an 
I 

expert. This procedure involved presenting the first 200 cases incrementally, and 

recording the number of the exemplars retained in each category. Then, the 

accuracy of the final model was tested on 26 new cases. 

The following section presents the results of these experiments. 
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Table 4.2: Averages results for the votes dataset. 
No. Category Training Testing Exemplars Accuracy 

cases cases ±95% 

- conf. int. 
1 Republicans 119.20 47.8 2.1 96%±1.9% 
2 Democrats 185.05 81.95 4 84%±2.0% 

4.2 Results 

4.2.1 Votes dataset 

Table 4.2 presents the average results together with the standard deviations ob- 

tained for the votes dataset when the experiment described in Section 4.1 was 

carried out. The results for each of the 20 trails are given in Appendix B. 

The overall accuracy obtained for this dataset was 89%. This, together with 

the results given in Table 4.2 show that the model has worked very well for this 

dataset. The number of exemplars in both categories is very low. The extent of 

the compression can be indicated by the ratio: 

compression ratio =1- 
no. exemplars in category 

no. of training cases in category 

Thus, for this data set, the compression ratio for both categories is above 97%. 

An interesting question to ask is: 

are the results better for those models with more exemplars? 

Figure 4.2 presents a graph of the average accuracy against the number of the 

exemplars for the 20 trails. As the figure shows, for this dataset the accuracy ac- 

tually reduces when more exemplars are retained and the best results are obtained 

when the least exemplars are retained. 
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Figure 4.2: Relation between accuracy and exemplars in votes. 

4.2.2 Zoo dataset 

Table 4.3 presents the average results together with the standard deviations ob- 

tained for the zoo dataset when the experiment described in Section 4.1 was 

carried-out. The results for each of the 20 trails are given in Appendix B. 

The overall accuracy obtained for this dataset was 92%. This, together with 

Table 4.3: Averages results for the zoo dataset. 
No. Category Training 

cases 
Testing 

cases 
Exemplars Accuracy 

±95% 
conf. int. 

1 class-1 28.4 12.6 1.35 98%±1.7% 
2 class-2 14.16 5.35 1 99%±1.4% 
3 class-3 3.45 1.55 1.65 16%±12.3% 
4 class-4 9.3 3.7 1 100%±O% 
5 class-5 2.9 1.1 1 77%±19.3% 
6 class-6 5.35 2.65 1 100%±9.8% 
7 class-7 7.3 2.7 1.75 80%±9.6% 
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Table 4.4: Common exemplars in some categories of zoo dataset. 
Feature class-1 class-2 class-6 

dolphin cheetah lark housefly 
hair y Y 
feathers y 
eggs y Y 

milk y Y 
airborne y Y 
aquatic y 
predator y Y 
toothed y Y 
backbone y Y Y 
breathes y Y Y Y 
venomous 
fins y 
legs 4 2 6 
tail Y Y Y 
domestic 
catsize Y Y 

the results given in Table 4.3 show that the model has worked very well for this 

dataset. Most of the classes have about one exemplar representing a type of 

animal. Since most people have intuitive exemplars for types of animals it is 

worth giving Table 4.4 which shows a selection of the categories, their exemplars, 

and features found in some trials. 

In this dataset, the overall compression ratio is also very good and more than 

87%. 

The number of exemplars retained in each of the 20 trails varies only between 

7 and 10 exemplars. For this dataset, it is therefore not possible to detect any 

variation of the accuracy with respect to the number of exemplars retained. How- 

ever, ever, an interesting difference in accuracy occurs between class-3, which has a low 

accuracy of 16% and class-5 which has an accuracy of 77% and both classes have 

about 3 training cases on average. This merits further analysis and so consider 

Table 4.5 which presents all the cases in both classes. Class-3 consists of five 
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T21-N1P A F" (racvc in rlaccac" rlacc_`2 and rlaca_K 

Feature class-3 - class-5 
pit- 

viper 
seas- 
nake 

slow- 
worm 

tor- 
toise 

tua- 
tara 

frog 
A 

frog 
B 

newt toad 

hair 
feathers 

eggs y Y Y Y Y Y Y Y 
milk 
airborne 
aquatic y Y Y Y Y 

predator y Y Y Y Y Y Y 
toothed y Y Y Y Y Y Y Y 
backbone y Y Y Y Y Y Y Y Y 
breathes y Y Y Y Y Y Y Y 
venomous y Y Y 
fins 
legs 4 4 4 4 4 4 
tail y Y Y Y Y Y 
domestic 

catsize Y 

relatively different animals: pitviper, seasnake, slowworm, tortoise, and tuatara, 

while class-5 consists of fairly similar animals: frog, poissionous frog, newt, and 

toad. Since, class-3 is very polymorphic and only a few cases have been observed, 

the exemplars representing that category are weak and hence the accuracy of 

class-3 is low. However, although there are only a few cases in class-5, they 

are similar and the exemplars are therefore more representative of the category. 

Hence, the accuracy for class-5 is significantly better. 

4.2.3 Audiology dataset 

Table 4.6 presents the average results together with the standard deviations ob- 

tained for each category of the audiology dataset when the experiment described 

in Section 4.1 was carried out. The original dataset includes a category named 

cochlear-unknown which appears to consist of all cases that the experts failed to 
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Table 4.6: Averages results for the audiolozv dataset. 
No. Category 

- 

Training 
cases 

Testing 
cases 

Exemplars Accuracy 
±95% 

conf. int. 
1 mix_coch_age_fix 0.70 0.30 0.7 0%±0% 
2 mix-coch_age_ot_med 2.90 1.10 2.9 0%±0% 
3 cochlear-age 32.25 13.75 9.9 78%±8% 
4 normal-ear 14.30 5.70 7.1 52%±11% 
5 cochlear_poss_noise 10.85 5.15 7.3 33%±10% 
6 coch_age_and_noise 12.40 5.60 4.85 46%±17% 
7 acoustic_neuroma 0.80 0.20 0.8 0%±O% 
8 mix_coch_unk.. ser_om 2.20 0.80 1.05 44%±20% 
9 cond_discontinuity 1.35 0.65 1.35 0%±0% 

10 retrococh_unknown 1.70 0.30 1.7 0%±0% 
11 conductive_fixation 4.40 1.60 1 100%±0% 
12 bells-palsy 0.70 0.30 0.7 0%±O% 
13 coch_noi_and_herd 1.55 0.45 1.55 0%±0% 
14 mix_coch_unk_fix 3.70 1.30 1 62%±19% 
15 mix_poss_noise_om 1.55 0.45 1 100%±0% 
16 otitis-media 2.95 1.05 2.95 0%±0% 
17 possible_menieres 5.25 2.75 4.6 15%±10% 
18 poss_brain_disord 2.65 1.35 1.85 74%±17% 
19 coch_age_p_p_men 0.60 0.40 0.6 0%±01/0 
20 mix.. coch_age_s_om 1.50 0.50 1.5 0%±0% 
21 mix coch_unk_dis 1.65 0.35 1.65 0%±O% 
22 mix_poss_central_om 0.70 0.30 0.7 0%f0% 
23 poss_central 0.65 0.35 0.65 0%±0% 

classify. Consequently, in the initial experiments, it resulted in many exemplars 

and therefore required substantial computation time since probabilistic propaga- 

tion is computationally expensive. Hence, to enable 20 random trials to be carried 

out in reasonable time, this category was omitted from these experiments. The 

results for each of the 20 trails are given in Appendix B. 

The overall accuracy obtained for this dataset was 50%. This is, of course, very 

low! A deeper analysis of these results is necessary in order to understand why 

the overall accuracy is low. First, consider Fig. 4.3 which displays the number 

of training cases and the accuracy with respect to the categories. This figure 



CHAPTER 4. AN EMPIRICAL EVALUATION OF THE MODEL 86 

confirms that those categories with low accuracies also hav' only a few training 

cases. For this dataset. 13 of 23 categories have less than 5 training cases. Not 

surprisingly, the accuracy for these categories is virtually zero. 
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Now consider Figure 1.1. Ichich displays the accuracy anal compression ratio 

for each category. This figure shows that the accuracy is low (i. e. less than 20' 

for categories where the compression ratio for a category is low (i. e. less than 

20 ). Thus. for example. the compression ratio for the po.,.. ibl(_W(fl/( rrscategorv, 

(number 1 111 the figure) is just 16 and has an accuracy of In coat rast t lie 

conductirf_fi. ration category (number II in the figure) has a compression ratio of 

1 c2 and 100cß accuracy. Low compression ratios are indicative of categories that 

have not observed enough cases to cover the category. In t his dal eiset. a closer look 
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shows that the exemplars retained in the categories with low compression ratios 

are sufficiently different and therefore necessary to retain. In general, categories 

that are polymorphic will have lower compression ratios than categories that 

are not polymorphic. For this dataset, there are not enough training cases to 

conclude whether the categories with low compression ratios are naturally more 

polymorphic than the other categories. All that can be concluded is that these 

two factors, namely lack of training cases and polymorphism, mean that one can 

not expect good results in these categories. 

However, for those categories where the compression ratio is good, the overall 

accuracy is also good. Thus the average accuracy of those categories for which 

the compression ratio is above 50% is 66%. 

In addition to the above experiment, a further experiment was carried out to 

enable some comparison with the results obtained when Protos was tested in the 

audiology domain. This involved repeating the experiment conducted by Bareiss 

as closely as possible. Bareiss presented cases to Protos and used experts to train 

Protos incrementally. While training, he observed the number of the exemplars 

retained and noted the accuracy incrementally (i. e. while training) at intervals 

of 50 cases. After training with 200 cases, Bareiss also tested the accuracy on 26 

further cases. Table 4.7 presents the results obtained in that experiment [Bareiss 

1989, p90]. The second column of this table, labelled `1st. Correct' refers to the 

accuracy when the first category proposed by Protos was checked by an expert. 

Since Protos does not adopt probabilities, it is difficult to utilise thresholds to 

determine if a classification is geniune or whether it is unknown. 

A similar experiment was conducted but without the additional help of an ex- 

pert and the number of exemplars were recorded at intervals of 50 cases. For this 

experiment, the cochlear-unknown category was included since Bareiss included it 

in his experiments and only one trial was carried out. However, the accuracy was 
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Table 4.7: Results reported by Bareiss. 
Cases 1st. Correct 
1-50 55.0 
51-100 72.7 
101-150 59.1 
151-200 44.7 
1-200 57.7 
test 92.3 

Table 4.8: The incremental learning with audiology dataset. 
Cases Categories Exemplars Accuracy Unclassified 
1-50 12 34 46% 50% 
1-100 20 64 62% 19% 
1-150 24 78 65% 4% 
1-200 24 84 65% 4% 

not recorded since expert help was not utilised, and the results obtained would 

not have been comparablel. 

The results obtained are summarised in Table 4.8. The table shows the in- 

cremental behaviour on the same 26 cases used in Bareiss's experiment. The 

accuracy column records the number of cases that are succesfully classified. The 

accuracy column is a little pesimistic since it interprets those cases that are not 

classified (i. e. those below the threshold of 0.75) as incorrect. The column la- 

belled `unclassified' gives the percentage of cases not classified. The accuracy 

column shows the model improves incrementally as more training cases are ob- 

served. The final accuracy, of 65%, is not as high as Bareiss obtained. There may 

be several reasons for this difference. 

" In the results obtained with Protos (Table 4.7) there is a noticeable increase 

in the accuracy from the incremental tests performed (i. e. from 44.7% to 

72.7%) to the final accuracy on the 26 cases (92.3%). This may be a result 

of the additional help provided by the expert. 
1Bareiss was approached for the data collected, but unfortunately, the experiment was con- 

ducted 10 years ago and he no longer has the required information. 
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" The experiment performed is just one trial and the results may not be 

significantly accurate. For example in the earlier experiment where 20 trials 

were performed; the results varied from an accuracy of 64% to 38% for the 

same dataset. 

" Some of the categories appear to be joint categories, which in the dataset, 

are treated as separate categories. So for example, there are categories 

labelled coch_age_and_noise and cochlear-age. It is unclear whether the ex- 

perts had been told to treat these categories as disjoint categories or how 

the results have been interpreted when a more general category has been 

proposed by Protos. Appendix E of Bareiss (1989) includes a questionnaire 

that asks experts to rank the possible categories, suggesting that this infor- 

mation may have been utilised, but one can not be certain without having 

the actual data. 

The first two reasons are possible but there is little that can be done to investi- 

gate them without the availability of the Protos model for the audiology dataset. 

The third possibility was investigated by examining a number of the cases that 

were wrongly classified. When this was done, it became apparent that a number 

of test cases that were treated as incorrect classifications were classified into re- 

lated categories and the classification could be justified in terms of the observed 

cases. As an example, consider the 4 cases shown in Table 4.9 that are labelled 

T3, P43, P192, P139. The exemplars P192 and P139 represent the category 

coch_age_and_noise, while the exemplar P43 represents the category cochlear-age 

and T3 is the test cäse that is classified to be in category coch_age_and_noise by 

the expert. The model however, suggests the category cochlear-age. From Ta- 

ble 4.9, it is apparent that more features of the exemplar P43 are present (7 out 

of 9) than those of P192 (9 out of 13) or of P139 (6 out of 11). Given the simi- 

larity, and that the proposed category is not disjoint from the expected category, 
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Table 4.9: Features in test case T3 and exemplars P43, P192, and P139. 
Feature T3 P43 P192 P139 

age_gt_60 Y Y Y Y 
möd-sn_gt_3k y 
history(noise) Y Y Y 
bone(unmeasured) Y Y 

air(normal) Y 
speech(good) Y 

tymp(a) Y Y Y Y 
static(normal) Y Y Y Y 

ar_u(normal) Y Y Y Y 

ar_c(normal) Y Y Y Y 

o r_u(normal) Y Y Y 

o_ar_c(normal) Y Y Y 

speech(normal) Y 

air(mild) Y Y 
notch-4k y 

msn-sn gt_lk y 
speech(unmesurated) Y 

speech(very-poor) y 

or_ar_c(elevated) y 

or_ar_u(elevated) y 
air(moderate) y 
boneAbnormal y 

there is some doubt about recording this as an incorrect classification. There are 

2 cases like this one and if this is taken into account then the accuracy would 

be 73%. This is still short of the 92% accuracy reported for the Protos' experi- 

ment. Hence, without having access to the Protos model for audiology, one can 

only hypothesise that the additional help of an expert resulted in a significant 

improvement to the Protos results. 

The number of exemplars retained is more comparable than the accuracies and 

Table 4.10 gives the exemplars retained by Protos and the probabilistic exemplar 

based model (PEMIB). As the table shows, in general, the model retains fewer 

exemplars than Protos. 
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Table 4.10: Exemplars retained by Protos and PEMB for audiology dataset. 
No. Category Protos PEBM 

1 mix. xoch_age_fix 1 1 
2 mix-coch_age_ot_med 3 4 
3 cochlear-age 20 13 
4 normal-ear 16 6 
5 cochlear_poss_noise 9 8 
6 coch_age_and_noise 8 5 
7 acoustic_neuroma 1 1 
8 mix coch_unk-ser_om 3 1 
9 cond_discontinuity 2 2 

10 retrococh_unknown 2 2 
11 conductive-fixation 1 1 
12 bells-palsy 1 1 
13 coch_noi_and_herd 2 2 
14 mix-coch_unk_ix 3 1 
15 mix. poss noise_om 2 1 
16 otitis-media 4 4 
17 possible_menieres 6 7 
18 poss_brain_disord 2 2 
19 coch_age_p_p_men 1 1 
20 mix-coch_age s_om 1 2 
21 mix-coch_unk_dis 1 2 
22 mix-poss_central_om 1 1 
23 poss_central 1 1 
24 cochlear-unknown 28 15 
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4.2.4 Conclusions 

This chapter has presented an empirical evaluation of the model by testing it on 

three different datasets. The main aims of the model are: 

" not to store all the cases but to learn prototypical exemplars, 

" to learn models that are accurate and 

" to learn incrementally. 

The results show that the model performs well with respect to these aims. 

For the votes and the zoo datasets, the compression ratio is above 85% and the 

overall acuracy is above 89%. The compresion ratio for the audilogy dataset 

was 46.5% and the accuracy was much lower at 50%. A closer analysis of the 

audiology results shows that there are several categories where there are only a 

few training cases and the accuracies of these categories is therefore low. The 

model cannot, of course, be confident about an exemplar until it represents a 

reasonable number of cases. In these experiments, the compression ratio gives an 

indication of the number of cases represented by the exemplars. In the case of 

the audiology dataset, there is strong correlation between low compression ratios 

and low accuracies within categories. 

An attempt was also made to repeat an experiment that was used to test the 

Protos system. Although the accuracy results are not comparable, due to lack of 

information about the original data, the results of the number of the exemplars 

retained is comparable. The results obtained show that the model developed in 

this thesis retains fewer exemplars in each category for a similar experiment. 

In addition, the accuracy of the model was observed as more training cases 

were presented. In general, the accuracy increases and the rate of improvement 

reduces as more cases are observed. 
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In conclusion, the experiments show that the probabilistic exemplar based 

system learns models that have high accuracy by retaining only a few of the 

cases, provided there are sufficient cases to cover the variability of the categories. 

That is, categories that are very polymorphic require more training cases than 

categories that are not particularly polymorphic. In cases where a category does 

not have sufficient exemplars, the compression ratio is low, and can therefore be 

used as a measure of the extent to which the exemplars cover a category. 

4.3 Summary 

This chapter has carried out an empirical evaluation of the probabilistic exemplar 

based model. The model was implemented and tested on three datasets. The 

experiments involved training the model using 70% of a dataset and testing by 

using the remaining 30%. Twenty random trials were carried out for each dataset 

and the average accuracy and the number of exemplars retained calculated. 

For two of the datasets, namely votes and zoo, high accuracies were obtained 

with the retention of only a few exemplars. The results for the third dataset, au- 

diology, were significantly poorer in that the overall accuracy was 50% although 

the compression ratio was 46.5%. A more detailed analysis of these results showed 

that a number of categories in this dataset had only a few training cases. Con- 

sequently, the accuracies in these categories were low and contribute to the low 

overall accuracy for this dataset. 

An attempt was made to repeat the experiment conducted to evaluate Protos 

so that the results- could be compared with the model developed in this thesis. 

Although the experiment could not be repeated satisfactorily, since the original 

expert data were unavailable, the number of exemplars retained should be compa- 

rable. The model developed compares favorably in that it retains fewer exemplars 

per category. 
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The main conclusion of the evaluation was that the probabilistic exemplar 

based system works well when there are sufficient cases to cover the variability 

of the categories. _ 

Y' 



Chapter 5 

RELATED WORK 

This thesis has developed a probabilistic exemplar based model. Chapter 3 pre- 

sented the theory and Chapter 4 presented an empirical evaluation of the model. 

This chapter aims to contrast the model with related work. 

The probabilistic exemplar based model addresses problems and issues in the 

areas of case based reasoning (CBR), machine learning, and probabilistic clas- 

sification. Hence, the developed model needs to be contrasted with research in 

these three areas. Since each of these areas is broad in its own right, some care 

must be taken to select the systems that should be compared. To facilitate this, 

important systems in each of the broad categories were identified. Figure 5.1 

shows the three areas together with a selection of important systems. 

The following sections select some systems from each of these areas and con- 

trasts them with the model developed in this thesis. The thesis motivated and 

developed the probabilistic exemplar based model with respect to (i) the repre- 

sentation used or memory organisation, (ii) the classification process, and (iii) 

the learning process. Hence, in contrasting the different systems, first each sys- 

tem will be summarised with respect to these three references. Then, the main 

differences will be summarised, again with respect to these reference points. 

96 



CHAPTER 5. RELATED WORK 

Bayesian models 

Naive Bayesian 
classifier 

I 
Heckerman's AutoClass 
model 

0 PERM 

CASEY 

4 
0 

Protos " IBL 

" REMIND C4.5 
CBR-Express 

" ID3 

Inductive models 
with unsupervised 
learning 

Case-based models Inductive models with and 
Exemplar-based models supervised learning 

Figure 5.1: Classification of related work. 
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5.1 Case Based and Exemplar Based Models 

The category of case based reasoning models includes a range of systems. There 

are some commercial tools, such as CBR express and Rehlind which provide 

relatively standard facilities for creating indexes, and using simple retrieval al- 

gorithms [Althoff et al. 1995]. A part from following the basic CBR cycle, the 

relationship between these commercial tools and the model developed in this the- 

sis is not very interesting. This category also includes more advanced systems 

such as CASEY, and Protos, which aim to address the issues tackled in this thesis. 

Hence, this section contrasts the developed model with these systems. 

5.1.1 The CASEY system 

CASEY [Koton 1988] is one of a number of systems that have emerged from 

Schank's original dynamic memory model [Schank 1982]. These systems, such as 

MEDIATOR [Kolodner & Simpson 1989] and JULIA [Hinrichs 1989], utilised a 
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representation known as discrimination network. In this representation, a network 

is used to partition the cases, based on the semantic similarity of the cases. Each 

internal node of the network can be viewed as a question that divides the cases 

stored in its children, where each child represents cases that correspond to one 

of the possible answers to the question. Each leaf node contains the cases which 

have the properties obtained by tracing the path from the node to the root of the 

network. 

Given this representation, case retrieval is carried out by starting with the 

root node and following a path determined by the answers contained in the new 

case. All the cases below the final node of this path represent the similar cases 

that need to be considered in more detail. These cases are then evaluated by using 

a similarity metric and the nearest neighbour is selected as the most similar. 

CASEY always learns from a problem solving case. When a new case is 

classified by a leaf node in the discrimination network then, CASEY stores the 

new case if it is significantly different from the store case. If the new case is very 

similar (i. e. most of the features match) then it simply updates the importance 

of the features used in the similarity metric. If the new case cannot be classified 

or it is wrongly classified, CASEY needs to reorganise the discrimination network 

so that the new case is included. 

The main differences between CASEY and the probabilistic exemplar based 

model (PEBNI) can be summarised with respect to the three references points as 

follows. 

Representation. 
-The representation adopted by CASEY is more hierarchical 

than the one adopted in this thesis. The representation does not explicitly 

address noisy information or represent uncertainty. Both representations 

aim to cluster regions of similar cases. CASEY clusters cases in terms of 

the possible values of the features of the case while the model developed in 
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this thesis, PEBNI, clusters the cases using exemplars which are represented 

using a Bayesian network. 

Classification. In CASEY, classification is based on following a path from the 

root towards a leaf node based on the answers contained in the new case. 

The new case is then compared to all the cases below the final node of 

this path by using a similarity metric. One significant disadvantage of this 

approach is that it is unclear how missing values are handled. That is, if 

an answer to a question is missing, then all possible values of the missing 

feature need to be considered and may result in many more cases that need 

to be compared with the new case. For polymorphic cases, a feature is 

not just missing, it is not present, and it is unclear how discrimination 

networks cope with this problem. In contrast, the representation adopted 

by PEBMI enables missing values or polymorphic cases to be supported and 

classification is carried out by using probabilistic propagation. 

Learning. The learning process used by CASEY is limited in that it does not 

learn the initial hierarchy. Also, the similarity metric needs to be defined. 

However, both may change as new cases are classified. This means that 

the hierarchical representation used by CASEY is appropriate when the 

semantic structure of a domain is known in advance so that the important 

features can be used as discrimination questions. However, if the semantic 

structure is not known, then identifying a suitable structure is difficult. In 

contrast, PEBINI learns incrementally, from the data. 

1. 

5.1.2 The Protos system 

Protos [Bareiss 1989] is a system that has the closest relationship with the model 

developed in this thesis. The Protos system, which actually inspired this research 

project, integrates a method based on exemplars for concept representation, a 
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method to classify, and a method of learning, as a solution to the category for- 

mation problem. 
Protos organises its memory in a semantic network called a category structure 

which represents concepts using exemplars. The model includes four types of 

indices: remindings, censors, prototypicality, and difference links. A reminding is 

a feature that is associated with categories or exemplars that can be expected to 

be relevant for a new case containing the feature. A censor is a negative reminding 

that excludes a category or exemplar when a feature is present. Prototypicality 

is the importance that each exemplar has in the category. Difference links point 

from one exemplar to another exemplar that should also be considered when 

searching for similar cases. 

These indices are used as follows when a new case needs to be classified. 

First the remindings are used to propose categories that should be investigated. 

Then, the strongest exemplars in the category, which are determined by the 

prototypicality indices, are considered and matched with the new case. This 

matching process relates features in the exemplar with features in the new case. 

Identical features are given a weight that is the importance of the feature for the 

category. Features that can be related by an explanation are given a weight that is 

computed by using heuristics based on the qualifiers used to relate the features. 

If a suitable exemplar is not found, difference links are followed to investigate 

other exemplars. Eventually, a similar exemplar is found or no suitable exemplar 

is available. 

Protos learns in various ways. When a new case is not classified, or wrongly 

classified, then Prötos interacts with the expert to acquire new information that 

can modify the semantic structure. For example, it learns how the features of the 

new exemplar contribute to the classification of new exemplars in the category 

through expert explanations. Protos also learns remindings by analysing expert 
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explanations of the relevance of the case features to the category. Protos empiri- 

cally estimates prototypicality ratings, which are used for intracategory indexing. 

Protos also learns failure indices in response to problem solving failures. 

The main differences between the model developed in this thesis and Protos 

can be summarised as follows. 

Representation. In Protos, an exemplar is represented by a case while in PEBM, 

an exemplar is represented by a Bayesian network, where the random vari- 

ables of the network are determined by the prototypical case. Protos makes 

heavy use of indices while PEBIN1 only uses the relationship between cat- 

egories and exemplars. Protos has no explicit way of representing joint 

categories. That is, although an exemplar can be duplicated in two differ- 

ent categories, Protos can not conclude that a case is in both categories. 

Classification. Protos relies heavily on the indices to retrieve similar cases. 

That is, remindings and difference links are used to identify potential cat- 

egories and exemplars. The prototypicality ratings are used to rank the 

exemplars and a matching process is used to measure the similarity of an 

exemplar with a new case. All this is done with heuristics. The heuristics 

have evolved as a result of one application and are difficult to justify with 

any theory. In contrast, PEBM I classifies using probabilistic propagation 

and therefore has better theoretical foundations. There is also less reliance 

on the use of indices. That is, remindings, censors, or difference links are 

not used. Unlike Protos, the measure of similarity is not heuristic but a 

probability of similarity. 

Learning. In the learning phase, Protos learns the importance of its features 

and indices by explanation, while the proposed model learns directly from 

the data. Also, Protos retains those cases that are not correctly classified 
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as new exemplars. Cases that are correctly classified result in an increase of 

an exemplar's prototypicality but are discarded. In contrast, the proposed 

model attempts- to use the notion of prototypicality to determine if a new 

case, that is correctly classified, would make a better exemplar. 

Protos determines the prototypicality of an exemplar by the number of cases 

that it represents. The proposed model uses a measure of prototypicality 

based on the concepts of focality and peripherality identified by Biberman 

(1995) as characteristics of prototypicality. 

5.2 Inductive Learning Models 

Research in the area of inductive learning models can be subdivided into systems 

that perform supervised learning and systems that perform unsupervised learning. 

Supervised learning systems are trained with examples where a class is known, 

whereas unsupervised learning systems aim to identify clusters without a known 

class. 

Examples of systems that perform supervised learning include tree induction 

systems such as ID3 [Quinlan 1996] and C4.5 [Quinlan 1992]. These systems 

aim to produce decision trees by using evaluation functions to select the nodes of 

the decision tree from the available attributes. As such, they are not similar to 

PEBTN1 and are not described further in this section. 

Examples of systems that perform unsupervised learning include COBWEB [Fisher 

1990], CLASSIT [Gennari et al. 1990] and AutoClass [Cheeseman et al. 1990]. 

From these systems, -- COBWEB system is the most interesting since it de- 

termines clusters incrementally. Hence, this section outlines COBWEB and con- 

trasts it with PEBMI. 
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COBWEB system 

103 

The main aim of COBWEB is to identify clusters so that they can be used as 

a way of summarising and explaining data. Since the class is not identified, 

COBWEB has to use a utility function to measure the quality of a cluster. 

It organises its memory as a hierarchy of clusters where the terminal nodes 

are instances and the non terminal nodes represent clusters. Each parent node 

represents a cluster that is the union of the clusters represented by its children. 

Each cluster is described by listing the features and their conditional probabilities 

given the cluster. Fisher (1996) gave the example shown in Fig. 5.2 which has 

three variables: size, shape and colour. 

Size small 0.50 medium 0.25 
Shape square 0.50 shere 0.50 
Colour blue 0.25 qreen 0.25 

P(C1lroot) - 0.50 

Size small 1.00 
Shape square 1.00 
Colour blue 0.50 green 

P(C3IC1) - 0.50 

Size Ismail 1.00 
Shape square 1.00 
Colour blue 1.00 

P(C41C1) - 0.50 

Size small 1.00 
Shape square 1.00 
Colour green 1. OC 

large 0.25 

red 0.50 
P(root) -1.0 

P(C21root) - 0.50 

Size medium 0.50 large 0.50 
Shape sphere 1.00 
Colour red 0.50 

P(C51C2) - 0.50 

\P(C6; 

C2) - 0.50 

Size medium 1.00 Size large 1.00 
Shape sphere 1.00 Shape sphere 1.00 
Colour red 1.00 Colour red 1.00 

Figure 5.2: A probabilistic categorisation tree. 

Given this representation, classification is carried out as follows. A new ex- 

ample is placed in the root cluster and the utility function is evaluated. If this 

improves the utility then the example is placed in the child node that improves 

the utility most. This process is repeated until a leaf is reached or placing the 

example in a cluster reduces the utility. If the utility reduces, then a separate 
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cluster is created at that level instead. 
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In addition to learning by creating separate clusters, COBWEB also has op- 

erators for merging two clusters and for dividing categories. These operators can 

also be used to improve the utility. 

The differences between COBWEB and PEBM can be summarised as follows. 

Representation. The main difference between the representations used by COB- 

'VEB and PEBIN1 is that COBWEB does not utilise categories. However, 

within a category in PEB1I the situation is similar to COBWEB in that 

clustering is required and unsupervised learning is used. 

COBWEB uses a hierarchical representation that is able to represent finer 

regions than the one adopted by PEBM. PEBM uses a Bayesian network 

that represents the regions. In an exemplar based model one level of regions 

appears to be natural but it would be interesting to find applications where 

multiple levels of clustering is required. 

Classification. COBWEB classifies a new example by finding the best home 

cluster for it in a top down manner. That is, the cluster that results in the 

largest improvement in utility when the example is placed in the cluster is 

identified starting with the root cluster and specialising until the finest clus- 

ter is found. In contrast, PEBMM uses probabilistic propagation to determine 

the probability of an exemplar representing the example. 

Learning. Learning in COBWEB is achieved by subdividing regions, introduc- 

ing new regionq, or merging regions so as to optimise a utility function. In 

PEBII, learning is achieved by growing regions around exemplars and by 

retaining exemplars that best represent a region. 
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5.3 Bayesian Probabilistic Approaches 

The model developed in the thesis makes significant use of Bayesian networks. 

Hence, it is reasonable to ask if just the use of Bayesian classification models 

on their own are adequate. Hence, this section includes a summary of the most 

common Bayesian classifier, known as the naive Bayesian classifier. 

Like the work described in this thesis, Tirri and Myllymäki's work utilises 

Bayesian networks in the area of CBR. Hence, this section also contrasts the 

PEBM model with their research. 

The section concludes with a summary of other systems that have utilised 

CBR and Bayesian networks. 

5.3.1 The naive Bayesian classifier 

The naive Bayesian classifier is a probabilistic classification model which takes 

the form shown in Fig. 5.3, where C; denotes the categories and fj denotes the 

features. Notice that the categories in this representation are assumed to be 

independent and the features are assumed to be independent given a category. 

P(Ci) C Ci 

f1 f2 

P(f1 I CO P(f2 I Ci) 
- Y- 

P(Ci+1) ( Ci+1 

... fn fý f2 ... 

P(fn I Ci) P(fl I Ci+1) P(f2 I Ci+1) 

Figure 5.3: The naive Bayesian classifier. 

fn 

P(fn I Ci+1) 

In order to classify a new case I, the model simply applies Bayes' theorem for 
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each category as follows. 

P(Ci 11) = 
P(C1) P(1 I Ci) 

P(I) 
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Since I is the conjunction of features fj then the equation above can be 

expanded as follows. 

P(C, t 11) __ 
P(C1) P(Aff I C: ) 

Ek P(Afi I Ck) P(Ck) 

As can been seen in this equation, the classifier needs to know the prior 

probabilities of the concepts and the conditional probabilities of the attributes 

to be able to compute the posterior probability of the categories given the new 

instance. After calculating these probabilities for each description, this model 

classifies the new instance in the concept with the highest probability. 

As the classifier assumes that the attributes are independent, then the prob- 

ability of the conjunction of the features given a category can be computed by 

the product of the conditional probabilities of the features as follows. 

P(Af, I C=) = II P(f3 I C1 ) 

This classifier contrasts with the proposed model in the following ways. 

Representation. The naive Bayesian classifier aims to predict a category using 

features while PEBM1 aims to predict exemplars using features. This is a 

significant difference that can be illustrated with the following example. 

For example, the category bird has a dominant feature flies. Given an 

ostrich the probability of it being in the category would not be high. In 

contrast, the probability of it being an exemplar in the birds category would 

be high. 

Classification. Both approaches to classification use Bayes' rule. However, an 

important difference is that the naive Bayesian classifier assumes that the 
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categories are independent given a feature but this assumption cannot be 

made for exemplars. That is, given a feature, it cannot be assumed that the 

exemplars are independent. This means that the naive Bayesian classifier 

is much more efficient than PEBM when classifying. 

Learning. In terms of learning, the main difference is that the naive Bayesian 

classifier needs all the data in advance, while PEBM learns incrementally. 

5.3.2 Tirri and Myllymäkis' model 

Myllymäki & Tirri (1994) have developed a model that integrates Bayesian rea- 

soning and CBR in a connectionist network for case matching and adaptation. 

This model represents the case base by a Bayesian network as shown in Fig. 5.4 

(a). The cases (upper nodes) are represented as binary random variables. The at- 

tributes (low nodes) are represented as random variables that can have n possible 

values. The model represents a case Ck as: 

Ck = (Pk(all), ... , 
Pk(alnl), ... , 

(Pk(aml), 
... , 

Pkýamnmýý 

where Pk(ail), """, Pk(a; n; ) expresses the probability distribution for the values of 

attribute A; when the case ck is in question. 

Since this representation can contain values between 0 and 1, the Myllymäki 

and Tirris model regards a case as a "prototypical" representation of a class of 

similar cases. 

The input to the Bayesian network is given by defining an initial probability 

distribution for each-attribute value of a case, co: 

co = (Po(all), 
... iPO(alnl), ..., 

PO(ami), ..., 
PO(amnm)) 

Given an input case co, the similarity to Ck is determined by computing P(Ck = 

11 Co = co) 
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Cl """ Ck """ Cl C 

Al """ Aj """ Am Al """ Aj """ Am 

(a) (b) 

Figure 5.4: Case base as a (a) multiply connected and (b) tree. 
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In order to reduce the complexity of the algorithm for propagating probabil- 

ities in a multiply connected network, Fig. 5.4 (a), the model assumes that the 

cases cl, """, cl are mutually exclusive values of a single random variable C and 

all the variables A; are conditionally independent given the value of the variable 

C. These assumptions enable the multiply connected network to be transformed 

to a tree as shown in Fig. 5.4 (b) and therefore allow the use of a more efficient 

propagation algorithm. 

The main differences between this model and PEBNI model are as follows. 

Representation. The initial representation proposed in Nlyllymäki and Tirris' 

model (shown in Fig. 5.4 (a)) is similar to the one adopted in this thesis. 

However, the one actually used by Myllymäki and Tirri (shown in Fig. 5.4 

(b)) is simpler and assumes that the cases are mutually exclusive. The 

extent to which this assumption holds is unclear since a new case can be 

expected to be similar to a number of previous cases. However, the assump- 

tion would hold if mutually exclusive prototypes could be found. In more 

recent work [Tirri et al. 1996a, Tirri et al. 1996b], they aim to find pro- 

totypes by using a statistical clustering technique known as finite mixture 
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models which could be used as the cases for their earlier work. 

Classification. Since the Bayesian networks adopted in Myllymäki and Tirris' 

model are simpler, classification is more efficient than in PEBM. The overall 

efficiency, however, depends on the number of cases they retain. Thus, 

without prototypes, (i. e. as their model is proposed) they need to adopt 

parallel computation methods to cope with the number of cases stored. 

Learning. The kind of learning performed in Myllymäki and Tirris' model is 

limited to estimating the probabilities. The subsequent work that aims 

to identify prototypes learns by using unsupervised clustering techniques 

which require all the cases in advance. In contrast, PEBM learns exemplar 

incrementally. 

In adition to MIyllymiiki and Tirris' work there are a number of other re- 

searchers who have used Bayesian networks and CBR. A brief summary of the 

main aspects of other work is as follows. 1 

" Breese & Heckerman (1995) have integrated Bayesian networks and CBR for 

diagnostic purposes. They used a three-layer Bayes net to link the causes of 

cases (called, issues) with observable symptoms. Then, when some evidence 

is available, it is propagated in the networks to identify the most probable 

cases. The most probable cases are then used as a basis for diagnosing the 

fault and determining a cost-effective solution. 

" Chang & Harrison (1995) used a Bayesian approach to guide retrieval and 

indexing as part of an experimental testbed that includes several techniques 

and allowed a user to experiment with different instance selection algo- 

rithms. The instance selection schemes have similar goals to exemplar se- 

lection but are not based on notions of protypicality as in PEBTN1. 
1The reader is referred to the paper by Aha & Chang (1996) for a more detailed account of 

these systems. 



CHAPTER 5. RELATED WORK 110 

" Aha & Chang (1996) used a Bayesian network and CBR to work cooper- 

atively on multiagent planning tasks. The Bayesian networks are used to 

characterize action selection, whereas CBR is used to determine how to 

implement actions. Unlike the proposed model, their model does not aim 

to utilize Bayesian networks for CBR, but instead combines their mutual 

strengths to solve a particular task. 

5.4 Summary 

This chapter has contrasted the model developed in this thesis with other research 

in the areas of CBR, machine learning, and Bayesian classification. Systems in 

each of these areas were summarised and the main differences identified and 

discussed. 

Each system was described in terms of the representation used, classification 

approach and the learning process. Then each system was contrasted with the 

model developed in this thesis, again, in terms of representation, classification, 

and learning. 

In terms of representation, PEBM is the only model that uses Bayesian net- 

works to represent exemplars. Tirri and Myllymakis' model uses Bayesian net- 

works but the focus is different in that they represent cases. The representations 

used by COBWEB and CASEY are interesting in that they allow multiple levels 

of clusters (or regions) to be represented whereas in PEBNI, only two levels are 

represented. 

In terms of classification, both PEBM, Tirri and Myllymakis' model use prob- 

abilistic propagation methods. However, the simplified model adopted by Tirri 

and NIyllymakis' model enables them to adopt a simpler propagation algorithm 

than PEB11. Protos classifies by using its indices and a heuristic matching pro- 

cess, while COBWEB classifies by finding a home for the new case that maximises 
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models which could be used as the cases for their earlier work. 

Classification. Since the Bayesian networks adopted in Myllymäki and Tirris' 

model are simpler, classification is more efficient than in PEBM. The overall 

efficiency, however, depends on the number of cases they retain. Thus, 

without prototypes, (i. e. as their model is proposed) they need to adopt 

parallel computation methods to cope with the number of cases stored. 

Learning. The kind of learning performed in Myllymäki and Tirris' model is 

limited to estimating the probabilities. The subsequent work that aims 

to identify prototypes learns by using unsupervised clustering techniques 

which require all the cases in advance. In contrast, PEBNI learns exemplar 

incrementally. 

In adition to MIyllymiiki and Tirris' work there are a number of other re- 

searchers who have used Bayesian networks and CBR. A brief summary of the 

main aspects of other work is as follows. ' 

" Breese & Heckerman (1995) have integrated Bayesian networks and CBR for 

diagnostic purposes. They used a three-layer Bayes net to link the causes of 

cases (called, issues) with observable symptoms. Then, when some evidence 

is available, it is propagated in the networks to identify the most probable 

cases. The most probable cases are then used as a basis for diagnosing the 

fault and determining a cost-effective solution. 

" Chang & Harrison (1995) used a Bayesian approach to guide retrieval and 

indexing as part of an experimental testbed that includes several techniques 

and allowed a user to experiment with different instance selection algo- 

rithms. The instance selection schemes have similar goals to exemplar se- 

lection but are not based on notions of protypicality as in PEBM. 
'The reader is referred to the paper by Aha & Chang (1996) for a more detailed account of 

these systems. 
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" Aha & Chang (1996) used a Bayesian network and CBR to work cooper- 

atively on multiagent planning tasks. The Bayesian networks are used to 

characterize action selection, whereas CBR is used to determine how to 

implement actions. Unlike the proposed model, their model does not aim 

to utilize Bayesian networks for CBR, but instead combines their mutual 

strengths to solve a particular task. 

5.4 Summary 

This chapter has contrasted the model developed in this thesis with other research 

in the areas of CBR, machine learning, and Bayesian classification. Systems in 

each of these areas were summarised and the main differences identified and 

discussed. 

Each system was described in terms of the representation used, classification 

approach and the learning process. Then each system was contrasted with the 

model developed in this thesis, again, in terms of representation, classification, 

and learning. 

In terms of representation, PEBM is the only model that uses Bayesian net- 

works to represent exemplars. Tirri and Myllymakis' model uses Bayesian net- 

works but the focus is different in that they represent cases. The representations 

used by COBWEB and CASEY are interesting in that they allow multiple levels 

of clusters (or regions) to be represented whereas in PEBNI, only two levels are 

represented. 

In terms of classification, both PEBMT, Tirri and Myllymakis' model use prob- 

abilistic propagation methods. However, the simplified model adopted by Tirri 

and Myllymakis' model enables them to adopt a simpler propagation algorithm 

than PEBM. Protos classifies by using its indices and a heuristic matching pro- 

cess, while COBWEB classifies by finding a home for the new case that maximises 
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a utility function. 

All the models adopt and require different learning processes. Tirri and Myl- 

lymakis' model only needs to learn the probabilities from all the data and is not 

incremental. Protos learns primarily from user provided explanations and the use 

of heuristics. COBWEB learns by considering the effect of creating new clusters, 

merging clusters, and partitioning clusters, on an evaluation function and aims 

to optimise its value. In contrast to all these models, PEBM learns by retaining 

examplars on the basis of a measure of prototypicality. 

-r 



Chapter 6 

CONCLUSIONS AND 

FUTURE WORK 

6.1 Conclusions 

Case based reasoning (CBR) has become an active area for research that aims 

to solve new problems by adapting the solution of similar problems encountered 

in the past. A central research problem in CBR is the organisation of the cases. 
Most current CBR systems have the following characteristics: 

1. They store all the past cases but partition the cases in order to make re- 

trieval more efficient. 

2. They adopt a fixed format for the cases and often require all the features 

in advance. 

3. They often require all the cases in advance and are not incremental. 

4. They do not handle noisy data and do not explicitly handle uncertainty. 

One approach to these problems is to develop exemplar based models, where 

only prototypical cases are stored. However, before an exemplar based model can 

112 
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be developed, the following questions need to be answered: 

" How can an exemplar based model be represented? 

" Given a new case, which exemplar, if any, represents it? 

" What makes a good exemplar? 

" How can an exemplar based model be learned incrementally? 

This thesis has attempted to answer these questions by developing and eval- 

uating an exemplar based model whose foundations are based on Bayesian net- 

works. The following subsections summarise the model developed, the empirical 

evaluation, and contrasts the model with the related systems. The chapter con- 

cludes with directions for future work. 

6.1.1 The model 

The first of the above questions, that of finding a suitable representation, has 

to cater for weak domains where: (i) the categories are difficult to define by 

necessary and sufficient features, (ii) the categories can be non-disjoint, and (iii) 

there is uncertainty in how the categories are represented by cases. 

This implies the need for a representation that is capable of representing 

uncertainty. Hence, the representation adopted consists of a two layered Bayesian 

network where the nodes in the lower level consist-of the features, and the nodes 

in the upper level consist of the exemplars. The arcs of the network represent 

the strengths of the dependencies. Categories are then represented as collections 

of exemplars. 

Figure 6.1 illustrates how the exemplar based model shown on the left of the 

figure is represented by the network on the right of the figure. 
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Figure 6.1: Exemplar based model and its representation. 
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Given this representation, the question of finding an exemplar that represents 

a new case can be addressed by using probabilistic methods. That is, given a 

new case with features fl, f2i """, fq the probability 

P(e I 
. 
fi, f2, ... , . 

fv) 

is the degree to which the new case is represented by the exemplar e. This can 
be computed by probabilistic propagation methods. 

Since probabilistics propagation methods can be expensive, a ranking scheme 

is used to order the categories according to the most promising exemplars. Then, 

categories are investigated by applying probabilistic propagation within categories 

until a suitable exemplar is found (i. e. where the probability is above a threshold). 

The third question, what makes a good exemplar, is addressed by utilizing 

an observation by Rösch & Mervis (1975) who argued that a case is prototypical 

if it has high family resemblance within the category (focality) and low family 

resemblance to other categories (peripherality). 

Given the availability of the probability of an exemplar e; representing a region 

within a category C, this notion of prototypicality can be formalised by 
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Prototypicality(e;, C) = Focality(e; ) - Peripherality(ei, C) 

where the focality and peripherality measures are computed by probabilistic prop- 

agation. 

Given this measure for prototypicality, if a new case is more prototypical than 

an existing exemplar, then it replaces that exemplar. Hence, incremental learning 

can take place by repeated application of this criteria as new cases are observed. 

However, how can the probabilistic dependencies be estimated incrementally as 

the model evolves? This is done by the introduction of an additional exemplar, 

called avirtual exemplar (Ve) as shown in Fig. 6.2. 

P(e6 A) P(e8 A) P(e9 I A) 

e6 e8 e9 Ve 

fI )( f2 )( f3 )( f4 ) ... (fn-2 )( fn-1 

P(fl I e6. Ve) P(f3 e6, Ve) P(fn-2 I e8, Ve) 
P(f2 I e6, e8, Ve) P(t4 I e8, e9, Ve) P(fn-1 I e9, Ve) 

Figure 6.2: Virtual exemplar. 

This virtual exemplar can be viewed as representing all the cases that have 

not yet been observed. The introduction of a virtual exemplar, Ve, requires 

estimating the strengths of the dependencies P(f I Ve). This is done by observing 

that the strengths should be highest, initially, when there are no cases and should 

decay as more cases are observed. This observation leads to the adoption of the 
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following function for estimating the dependencies: 

P(f I Ve) = Ae-a. ««n 

or 

0.1 if P(f I Ve) < 0.1 

where n is the number of cases in a category and a is a scaling parameter that 

determines the rate of decay. 

6.1.2 A contrast with related systems 

The developed model is related to work in three areas: CBR, machine learning 

and Bayesian classification models. The thesis therefore compared the model 

with systems in these three categories. First, a number of systems were identified 

and classfied in these areas and then the most related and interesting systems 

were contrasted. 

In the area of CBR, CASEY and Protos were contrasted with the model 

developed in this thesis (PEBMI). The representation used by CASEY is more 

hierarchical but does not handle polymorphic cases and it is unclear how it re- 

trieves cases when features are missing. The kind of learning it does is also 

limited in comparison to the other models. The representation used by Protos 

is similar to PEBMI in that exemplars are used to define categories. The notion 

of exemplar is, however, very different in that cases denote exemplars, whereas 

in PEBM, exemplars are represented by Bayesian networks. The classification 

process used by Protos is dependent on the use of indices called remindings, 

censors, and difference links. In contrast, classification in PEBM is achieved by. 

probabilistic propagation. The learning mechanisms are also very different since 

Protos relies heavily on heuristics that learn from user provided explanations, 

while PEBMI learns from data. The most significant difference, however, is that 

PEBMI has foundations in probabilistic reasoning, whereas Protos appears to be 
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based primarily on heuristics. 

The model was also compared with COBWEB, an important system in the 

area of inductive-learning models. Although COBWEB performs unsupervised 

learning, the comparison revealed an interesting aspect of the developed model. 

Overall, PEBM is a supervised learning model. However, within a category, 

where exemplars need to be learned, it performs unsupervised learning. The way 

PEBM performs learning is quite different. In COBWEB, learning is performed 

by introducing new regions (or clusters), partitioning regions, or merging reasons 

so as to optimise a utility function. In PEBM, learning is performed by growing 

regions around exemplars and retaining the most prototypical exemplars that 

represent a region. 

Since the model uses Bayesian networks, an obvious question to ask is: how 

does it compare with Bayesian classification models? PEBM was therefore com- 

pared with the naive Bayesian classifier, a model well studied in the literature. 

The naive Bayesian classifier operates at the level of categories only and is there- 

fore unable to make finer distinctions within categories of the kind that the ex- 

emplar based model can make. In terms of learning, the naive model requires all 

the data in advance, and is not incremental. 

In the category of research that utilises Bayesian networks and CBR, Tirri and 

Myllymakis' work is the closest to this thesis. They first proposed a representation 

that is very similar to the one adopted in this thesis but with the exception 

that their upper level nodes are random variables that represent cases and not 

prototypes. Given the potentially large number of cases, standard propagation 

methods would not Fe practical. Hence, they assume that the cases are mutually 

exclusive in order to simplify the network to a tree. The extent to which this 

assumption holds or the effects of violating the assumption are unclear since a 

new case can be expected to be similar to a number of previous cases. In contrast, 
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PEBM does not make this assumption and uses exemplars which aim to represent 

regions of similar cases. This difference is also reflected in the requirements for 

learning, since their model only estimates the probabilities from all the cases, 

while PEBbt identifies prototypes incrementally. 

6.1.3 A summary of empirical results 

Given the theoretical model of the Bayesian exemplar based model, the empirical 

evaluation aimed to examine how well the model worked on real datasets and 

whether it had the desired characteristics. In particular, the empirical evaluation 

tested the extent of compression achieved when only exemplars are stored and 

whether accurate results could be obtained when only a few of the cases were 

retained as exemplars. 

The model was implemented in the C language and tested on three datasets 

available in the public domain and known as the: votes, zoo and audiology 

datasets. The experiments involved training the model with 70% of the data 

and testing with the remaining 30%. This was repeated with twenty trials and 

the average accuracy and the number of exemplars retained recorded. A measure, 

called the compression ratio, was used as an indication of the number of cases 

represented by the exemplars in a category. 

For the votes and the zoo datasets, the compression ratio was above 85% and 

the overall accuracy was above of 89%. The compression ratio for the audiology 

dataset was 46.5% and the accuracy was much lower at 50%. A closer analysis 

of the results showed that there were several categories where only a few training 

cases were available and the accuracies of these categories were therefore low. 

The model cannot, of course, be confident about an exemplar representing a case 

until it represents a reasonable number of cases. Those categories that had low 

accuracies also had a small number of training cases. 
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In the case of the audiology dataset, an attempt was also made to repeat an 

experiment that was used to test the Protos system. The results obtained showed 

that the model developed in this thesis retains fewer exemplars in each category 

for a similar experiment. 

In summary, the experiments showed that the probabilistic exemplar based 

system learns models that have high accuracy by retaining only a few of the cases, 

when there are sufficient cases to cover the variability of the categories. That is, 

categories that are very polymorphic require more training cases than categories 

that are not particularly polymorphic. In cases where a category does not have 

sufficient exemplars, the compression ratio is low, and can therefore be used as a 

measure of the extent to which the exemplars cover a category. 

In conclusion, this thesis has developed a new exemplar based model whose 

foundations are established with Bayesian theory and which has produced good 

results on some test datasets. 

6.2 Future Work 

There are a number of areas where further research and development can be 

carried out. These include the following. 

" The model currently adopts the propagation algorithm developed by Lau- 

ritzen & Spiegelhalter (198S). This algorithm is not efficient and better 

algorithms need to be found or developed for the special kind of Bayesian 

networks adopted in this thesis. 

" The model currently only uses the information that it learns from the data. 

In some applications, background knowledge, such as generalisation, hier- 

archies may be available. Therefore, the model could be extended to utilise 

such background knowledge. 
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9 The implementation of the model needs to be evaluated on a wider range of 

datasets and the results compared with other approaches. This may require 

the implementation of other approaches if they are not available. 

- -W 



Appendix A 

Illustration of the model 

In order to provide a better understanding of the example presented in Chapter 3, 

the training data, results of the training phase, test data, and results of the testing 

phase are shown in this appendix. 

University dataset 

In the example, the model was trained with the following training cases. 

- t- 
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Exemplar Category Features 

1. L. Pintos TEACHER attention(total) 

dressing(formal) 

money(few) 

age(adult) 

2. L. Pineda TEACHER attention(total) 

money(few) 

study(very-much) 

age(adult) 

3. W. Philips TEACHER age(old) 

attention(sleeping) 

money(much) 

study(very-much) 

4. J. Gomez TEACHER age(old) 

attention(sleeping) 

money(sufficient) 

study(very-much) 

5. A. Smith TEACHER age(old) 

STUDENT dressing(formal) 

money(few) 

attention (middle) 

study(very-much) 

6. G. Leon TEACHER attention(sleeping) 

money(much) 

study(very-much) 

7. B. Wild TEACHER age(old) 

attention(sleeping) 

money (sufficient ) 

study(very-much) 
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Exemplar Category Features 

8. P. Ibar STUDENT age(adult) 

- attention (middle) 

dressing(informal) 

study(normal) 

9. R. Abaco STUDENT age(adult) 

dressing(informal) 

study(normal) 

10. P. DeBuen TEACHER age(old) 
STUDENT dressing(formal) 

attention (middle) 

study(very-much) 

has(computer) 

11. S. Santana TEACHER age(adult) 

STUDENT dressing(formal) 

attention(middle) 

study(very-much) 

has(computer) 

12. E. Zage STUDENT age(adult) 

attention(middle) 
dressing(informal) 

13. E. Plaza TEACHER age(old) 

"Y 
attention (sleeping) 

money(much) 

dressing(formal) 

14. L. Garcia STUDENT money(few) 

attention(middle) 

age(adult) 

dressing(informal) 

study(few) 
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Exemplar Category Features 

15. F. Patlan TEACHER age(old) 

attention(sleeping) 

dressing(formal) 

money(much) 

16. P. Wolf STUDENT money(few) 

attention(middle) 

age(adult) 

study(normal) 

17. C. Pinan TEACHER attention(total) 

money(few) 

dressing(formal) 

study(very-much) 

age(adult) 

The results in the training phase show the exemplars retained. These results 

were obtained using the threshold value of 0.6 and values of 0.4 and 0.1 for the 

parameters A and a respectively' 

The results of this training process are presented as follows. 

1. The training case is presented. 

This description shows the name of the new case nc, the categories that it 

represents and the features that represent it. 

2. The probability of the exemplars given a new case is ranked. 

For all exemplars e; that represent the category C� the probabilities P(e, I 

nc) are computed. 
'Given that the model normally retains the early cases as exemplars, low values were needed 

in order to obtain a small exemplar based model suitable for illustrative purposes. 
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If one exemplar has a probability greater than or equal to a threshold value 

the new training case is classified by the exemplar. 

3. The prototypicality measure is presented. 

If the new training case was classified by some exemplar, which is named 

an old exemplar, then the prototypicality measure of both the old exemplar 

and the new training case are computed. This prototypicality measure 

determines which exemplar, between the old exemplar and the new case, 

will represent the category. 

Training phase 

Exemplar Category Features 

1. L. Pintos TEACHER attention(total) 

dressing(formal) 

money(few) 

age(adult) 

Results: 

The new case is not classified by an exemplar. 

Probability = 0.00 

The new training case is added as a new exemplar. 

Exemplar Category Features 

2. L. Pineda TEACHER attention(total) 

money(few) 

study(very-much) 

age(adult) 
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Results: 

The new case is classified by the exemplar: L. Pintos with probability 0.85. 

The prototypicality measure is: 

Prototypicality(L. Pintos) = 0.97 - 0.00 = 0.97 

Prototypicality(L. Pineda) = 0.97 - 0.00 = 0.97 

The exemplar L. Pintos is the exemplar selected. 

Exemplar Category Features 

3. W. Philips TEACHER age(old) 

attention(sleeping) 

money(much) 

study(very-much) 

Results: 

The new case is not classified by an exemplar. 

Probability = 0.02 

The new training case is added as a new exemplar. 

Exemplar Category Features 

4. J. Gomez TEACHER age(old) 

at tention(sleeping) 

money(sufficient) 

study(very-much) 

Results: 

The new case is classified by the exemplar: W. Philips with probability 0.71. 
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The prototypicality measure is: 

Prototypicality(W. Philips) = 0.93 - 0.01 = 0.92 

Prototypicality(J. Gomez) = 0.93 - 0.01 = 0.92 

The exemplar W. Philips is the exemplar selected. 

Exemplar Category Features 

5. A. Smith TEACHER age(old) 

STUDENT dressing(formal) 

money(few) 

attention(middle) 

study(very-much) 

Results: 

The new case is not classified by an exemplar. 

Probability = 0.43 

The new training case is added as a new exemplar. 

Exemplar Category Features 

6. G. Leon TEACHER attention(sleeping) 

money(much) 

study(very-much) 
^ s- 

Results: 

The new case is classified by the exemplar: W. Philips with probability 0.71. 

The prototypicality measure is: 

Prototypicality(`V. Philips) = 0.96 - 0.02 = 0.94 
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Prototypicality(G. Leon) = 0.80 - 0.01 = 0.79 

The exemplar W. Philips is the exemplar selected. 

Exemplar Category Features 

7. B. Wild TEACHER age(old) 

attention(sleeping) 

money(sufficient) 

study(very-much) 

Results: 

The new case is classified by the exemplar: W. Philips with probability 0.87. 

The prototypicality measure is: 

Prototypicality(W. Philips) = 0.97 - 0.02 = 0.95 

Prototypicality(B. Wild) = 0.97 - 0.02 = 0.95 

The exemplar W. Philips is the exemplar selected. 

Exemplar Category Features 

8. P. Ibar STUDENT age(adult) 

attention(middle) 

dressing(informal) 

study(normal) 

Results: 

The new case is not classified by an exemplar. 

Probability = 0.05 

The new training case is added as a new exemplar. 
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Exemplar Category Features 

9. R. Abaco STUDENT age(adult) 
" dressing(informal) 

study(normal) 

Results: 

The new case is classified by. the exemplar: P. Ibar with probability 0.77. 

The prototypicality measure is: 

Prototypicality(P. Ibar) = 0.99 - 0.00 = 0.99 

Prototypicality(R. Abaco) = 0.95 - 0.00 = 0.95 

The exemplar P. Ibar is the exemplar selected. 

Exemplar Category Features 

10. P. DeBuen TEACHER age(old) 

STUDENT dressing(formal) 

attention(middle) 

study(very-much) 

has(computer) 

Results: 

The new case is classified by the exemplar: A. Smith with probability 0.12. 

The prototypicality measure is: 

Prototypicality(A. Smith) = 0.99 - 0.00 = 0.99 

Prototypicality(P. DeBuen) = 0.99 - 0.00 = 0.99 

The exemplar A. Smith is the exemplar selected. 
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Exemplar Category Features 

11. S. Santana TEACHER age(adult) 
STUDENT dressing(formal) 

attention(middle) 

study(very-much) 

has(computer) 

Results: 

The new case is classified by the exemplar: A. Smith with probability 0.62. 

The prototypicality measure is: 

Prototypicality(A. Smith) = 0.98 - 0.00 = 0.98 

Prototypicality(S. Santana) = 0.98 - 0.00 = 0.98 

The exemplar A. Smith is the exemplar selected. 

Exemplar Category Features 

12. E. Zage STUDENT age(adult) 

attention(middle) 

dressing(informal) 

Results: 

The new case is classified by the exemplar: P. Ibar with probability 0.71. 

The prototypicality measure is: 

Prototypicality(P. Ibar) = 0.99 - 0.00 = 0.99 

Prototypicality(E. Zage) = 0.95 - 0.00 = 0.95 

The exemplar P. Ibar is the exemplar selected. 



APPENDIX A. ILLUSTRATION OF THE MODEL 131 

Exemplar Category Features 

13. E. Plaza TEACHER age(old) 

attention(sleeping) 

money(much) 

dressing(formal) 

Results: 

The new case is classified by the exemplar: W. Philips with probability 0.72. 

The prototypicality measure is: 

Prototypicality(W. Philips) = 0.97 - 0.01 = 0.96 

Prototypicality(E. Plaza) = 0.88 - 0.01 = 0.87 

The exemplar W. Philips is the exemplar selected. 

Exemplar Category Features 

14. L. Garcia STUDENT money(few) 

attention(middle) 

age(adult) 

dressing(informal) 

study(few) 

Results: 

The new case is classified by the exemplar: P. Ibar with probability 0.87. 

The prototypicality measure is: 

Prototypicality(P. Ibar) = 0.98 - 0.00 = 0.98 

Prototypicality(L. Garcia) = 0.99 - 0.00 = 0.99 

The exemplar L. Garcia is the exemplar selected. 
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Exemplar Category Features 

15. F. Patlan TEACHER age(old) 

' attention(sleeping) 

dressing(formal) 

money(much) 

Results: 

The new case is classified by the exemplar: W. Philips with probability 0.87. 

The prototypicality measure is: 

Prototypicality(W. Philips) = 0.97 - 0.01 = 0.96 

Prototypicality(F. Patlan) = 0.94 - 0.01 = 0.93 

The exemplar W. Philips is the exemplar selected. 

Exemplar Category Features 

16. P. Wolf STUDENT money(few) 

attention(middle) 

age(adult) 

study(normal) 

Results: 

The new case is classified by the exemplar: L. Garcia with probability 0.64. 

The prototypicality measure is: 

Prototypicality(L. Garcia) = 0.99 - 0.00 = 0.99 

Prototypicäfity(PAVo1f) = 0.97 - 0.00 = 0.97 

The exemplar L. Garcia is the exemplar selected. 
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Exemplar Category Features 

17. C. Pinan TEACHER attention(total) 

money(few) 

dressing(formal) 

study(very-much) 

age(adult) 

Results: 

The new case is classified by the exemplar: L. Pintos with probability 0.94. 

The prototypicality measure is: 

Prototypicality(L. Pintos) = 0.95 - 0.01 = 0.94 

Prototypicality(C. Pinan) = 0.99 - 0.04 = 0.95 

The exemplar C. Pinan is the exemplar selected. 

At the end of training phase, the probabilistic exemplar based model held 

three exemplars for the category TEACHER and two exemplars for the STU- 

DENT category. Notice that the exemplar A. Smith is an exemplar that represents 

a teacher and a student at the same time. 

Testing phase 

This simple model was tested with the following three test cases. The test cases 

have the categories that they represent. In order to determine if the classification 

was well done, these categories are used in the evaluation. 

The test case are the following. 
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Exemplar Category Features 

1. L. Paz STUDENT has(computer) 

dressing(informal) 

study(few) 

money(few) 

attention(total) 

2. J. Perez TEACHER age(old) 

STUDENT dressing(formal) 

money(few) 

study(very-much) 

3. A. Lara TEACHER age(old) 

study(few) 

money(much) 

attention(sleeping) 
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The first test case was not well classified. The probabilities in the exemplars 

of the TEACHER category are: 

Category: TEACHER 

Exemplar: C. Pinan 

Exemplar: W. Philips 

Exemplar: A. Smith 

Prob: 0.13 

Prob: 0.00 

Prob: 0.00 

The probabilities in the exemplars of the STUDENT category are: 

Category: STUDENT 

Exemplar: L. Garcia Prob: 0.37 

Exemplar: A. Smith Prob: 0.00 
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The second test case is classified by the exemplar A. Smith with probability = 

0.85 in STUDENT category. So the test case is well classified since the exemplar 

A. Smith represents the TEACHER and STUDENT categories that the test case. 

The probabilities in all the exemplars of the STUDENT category are: 

Category: STUDENT 

Exemplar: A. Smith 

Exemplar: L. Garcia 

Ranking of probabilities in exemplars 

Prob: 0.85 

Prob: 0.02 

The third test case is classified by the exemplar W. Philips with probability 

= 0.93 in TEACHER category. So the test case is well classified since the ex- 

emplar W. Philips represents the TEACHER category that the test case. The 

probabilities in all the exemplars of the THEACHER category are: 

Category: TEACHER 

Ranking of probabilities in exemplars 

Exemplar: W. Philips 

Exemplar: A. Smith 

Exemplar: C. Pinan 

Prob: 0.93 

Prob: 0.01 

Prob: 0.00 

Y' 



Appendix B 

Results in datasets 

This appendix presents the results of the empirical trials for each of the datasets. 

- Y- 
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Results in 20 trials of votes dataset 
No. Training 

cases 

Testing 

cases 

Exemplars Classified Accuracy 

1 304 130 6 118 91% 

2 304 130 4 122 94% 

3 304 130 8 120 92% 

4 304 130 5 116 89% 

5 305 129 6 117 91% 

6 304 130 8 111 85% 

7 304 130 4 118 91% 

8 305 129 5 108 84% 

9 304 130 10 117 90% 

10 305 129 6 117 91% 

11 304 130 4 123 95% 

12 304 130 10 104 80% 

13 304 130 10 108 83% 

14 305 129 5 115 89% 

15 304 130 4 114 88% 

16 304 130 6 115 88% 

17 304 130 4 114 88% 

18 305 129 7 114 88% 

19 304 130 5 110 85% 

20 304 130 5 108 91% 
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Results in 20 trials of zoo dataset 
No. Training 

cases 

Testing 

cases 

Exemplars Classified Accuracy 

1 72 29 9 26 90% 

2 72 29 9 27 93% 

3 71 30 9 29 97% 

4 71 30 8 26 87% 

5 71 30 9 27 90% 

6 71 30 8 29 97% 

7 72 29 7 23 79% 

8 71 30 8 28 93% 

9 71 30 9 29 97% 

10 72 29 9 29 100% 

11 72 29 9 27 93% 

12 72 29 10 27 93% 

13 71 30 10 30 100% 

14 72 29 9 28 97% 

15 71 30 9 27 90% 

16 71 30 8 26 87% 

17 -71 30 7 25 83% 

18 71 30 9 27 90% 

19 71 30 10 28 93% 

20 72 29 9 26 90% 

138 

z- 



APPENDIX B. RESULTS IN DATASETS 

Results in 20 trials of audiology dataset 

No. Training 

cases 

Testing 

cases 

Exemplars Classified Accuracy 

1 107 45 55 29 64% 

2 107 45 58 19 42% 

3 107 45 52 17 38% 

4 107 45 49 25 56% 

5 108 44 59 21 48% 

6 107 45 57 19 42% 

7 107 45 62 26 58% 

8 108 44 52 24 55% 

9 108 44 66 26 59% 

10 107 45 60 23 51% 

11 108 44 61 23 52% 

12 107 45 56 24 53% 

13 107 45 57 22 49% 

14 108 44 49 19 43% 

15 108 44 59 23 52% 

16 107 45 58 22 49% 

17 107 45 63 24 53% 

18 107 45 64 22 49% 

19 107 45 57 23 51% 

20 107 45 54 20 44% 
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