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A transient boundary element method for acoustic 

scattering from mixed regular and thin rigid bodies 

1 Abstract 

Boundary Element Methods (BEMs) may be used to predict the scattering of sound by 

obstacles, which has accelerated the prototyping of new room acoustic treatments such as 

diffusers.  Unlike the more popular frequency domain method, the time domain BEM is 

usually solved in an iterative manner which means it can exhibit instability, a crucial 

impediment to its widespread use.  These instabilities are primarily associated with the 

resonance of cavities formed by closed surface sections, but may also be caused by 

discretisation or integration error corrupting physical damped resonances. 

Regular BEM implementations cannot model objects with thin sections due to a 

phenomenon known as Thin Shape Breakdown.  This paper develops an algorithm which 

combines an accepted approach for modelling thin plates with the Combined Field 

Integral Equation which eradicates cavity resonances, thereby permitting models of 

mixed regular and thin bodies.  Accuracy and stability are tested by comparison to 

verified frequency domain BEMs, examination of the transient response, and pole 

decomposition.  This is done for a simple obstacle and a Schroeder diffuser, which 

comprises a series of wells separated by thin fins.  The approach is successful but 

universal stability cannot be guaranteed for the diffuser.  It is suggested that instability is 

caused by the lightly damped resonances of the wells being corrupted into divergent 

behaviour by numerical errors. 
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2 Introduction 

Scattering of sound by an obstacle is a fundamental process in acoustics and predicting it 

accurately a powerful tool in the design of acoustic treatments.  A Boundary Element 

Method (BEM) model may be used to calculate such scattering by considering only the 

boundaries between obstacles and air, as it is known how sound travels unobstructed. 

This produces smaller, simpler meshes compared to volumetric methods such as finite 

element and finite difference time domain (FDTD). It also permits an unbounded volume 

of air to be modelled, making it ideal for free-field scattering scenarios.  

Most BEMs assume harmonic excitation so the unknowns are time invariant and 

complex. Whilst this frequency domain analyses is a useful tool, the transient behaviour 

witnessed in the real world may only be recovered by solving many frequency domain 

models and then applying an inverse discrete Fourier transform. An alternative is to drop 

the time invariant assumption and formulate the BEM in the time domain as is presented 

herein.  This approach was first published by Friedman and Shaw in 1962
1
, however, its 

implementation is problematic and consequently the method is still not in widespread use 

in acoustics. 

One major impediment is that the solution is typically progressed from known initial 

conditions using a time marching scheme.  This is an inherently iterative process and so 

has the potential for instability.  Numerical error arising from discretisation, integration 

accuracy or machine precision may distort the stable behaviour of the physical scenario, 

causing the numerical model to diverge from the true solution.   Modes of behaviour that 
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are lightly damped are likely candidates for causing such instability since they are already 

close to the stability threshold, and therefore should be avoided where possible. 

When the problem of sound scattering from a body is stated as a Boundary Integral 

Equation (BIE), the precursor to forming a BEM, the restriction that sound cannot travel 

through the body is lost and an air-filled cavity is effectively created inside the body‟s 

bounding surface.  At certain frequencies this cavity may resonate, storing energy so the 

time-invariant frequency domain BEM has a non-unique solution.  In the time domain 

problem, these resonances correspond to time-invariant oscillations, on the cusp of 

instability and likely candidates for corruption into divergence by numerical error.  Such 

modes are not physically relevant, so their removal is acceptable and improves solver 

performance.  One method that achieves this in the frequency domain is the Burton & 

Miller formulation
2
, and it has been transferred to the time domain as the Combined Field 

Integral Equation (CFIE)
3
. 

The creation of this complementary interior problem causes issues when the obstacle 

tapers to a thin fin.  The sound in the virtual cavity becomes largely independent of the 

excitation sound, so the problem becomes ill-posed.  A formulation has previously been 

published
4
 which addresses this issue for scattering by thin plates, but such an “all-thin” 

model is unsuitable for problems involving tapering obstacles, or obstacles with or in the 

presence of thin fins, due to the issues described in the previous paragraph.  Therefore 

this paper aims to develop a formulation suitable for this more general scenario.  

The BEM is a wave based method and its computational cost increases rapidly with 

frequency.  Acceleration algorithms
5,6,7

 have been published to address this issue but, as 
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these are derived from the time-marching solvers for which instability issues remain, the 

focus herein remains on modelling smaller problems in a non-accelerated fashion.  In 

addition some interesting work has been done on alternative solvers
8,9,10,11

 that may be 

less sensitive to divergent poles than the current time-marching generation. 

This paper is structured as follows:  Section 3 introduces the boundary integral 

formulation of the scattering problem and the CFIE.  Section 4 describes the existing 

formulation for thin plates, and describes how that can be adapted for a mixed body 

problem.  The discretisation process and time-marching solver, and a technique for 

quantifying their stability are specified in sections 5 and 6 respectively.  Verification 

results are shown and discussed in section 7 followed by the conclusions in section 8  

Finally details of the numerical integration procedure are outlined in the appendix. 

3 Boundary Integral Equations 

This section introduces the Boundary Integral Equations which are needed to derive the 

new BEM in Section 4. Figure 1 depicts a scattering problem, comprising an obstacle 

submerged in a connected medium Ω+ with equilibrium density ρ0 which obeys the linear 

acoustic wave equation with speed of sound c.  S is a surface conformal to the obstacle 

and sufficiently close that the obstacle‟s surface properties may be ascribed to it, thus the 

obstacle resides in the interior domain Ω-.  S∞ is the extent of the medium.  x and y are 3D 

Cartesian vectors defining the observation and radiation points respectively, R = |x – y| is 

the distance between them and yn̂  is the surface normal unit vector at y. 
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Sound is represented by the velocity potential φ which, while not a physical quantity, has 

the convenient property that both pressure p and particle velocity v may be derived from 

it: 

   ttp ,, 0 xx           [1] 

   tt ,, xxv          [2] 

where t is time and a dot above a quantity indicates temporal differentiation. An incident 

disturbance  ti ,x  exists in Ω+ but does not reach the obstacle while t ≤ 0.  When 

 ti ,x  does reach the obstacle a wave  ts ,x  is scattered such that the total disturbance 

     ttt sit ,,, xxx    matches the surface properties of the obstacle, thus this is an 

initial-boundary-value problem.  Application of Greens Theorem
12

 allows the 

propagation of  ts ,x  in Ω+ to be stated as the Kirchhoff Integral Equation (KIE) over 

its boundary S S∞.  In practice S∞ is chosen so distant that its contribution does not 

arrive within the modelling duration, so the integration domain may be reduced to S. The 

scattered velocity potential from a rigid obstacle is thus: 

      
S

ts dtRgtt ynyx yy ,ˆ,,        [3] 

  denotes temporal convolution and g(R,t) is the time domain Greens function, which 

describes how sound travels from a point source to a point observer, given by: 
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,


         [4] 

where δ(t) is a dirac delta function. 

Consideration of the obstacle‟s boundary condition at x allows solution for the total 

surface sound, from which scattered sound at any desired off-surface point may be 

evaluated. 

3.1 Pressure Operator 

The pressure operator Lp is derived from the assertion that within the obstacle the total 

pressure must be zero, i.e.    xx if0,tpt .  Recalling that the total sound is the sum 

of incident and scattered sound, and substituting Equations 1 and 3, yields: 

         



  SdtRgt

t
tt

S

tti xynyxx yy if,ˆ,,L, p    [5] 

x must lie within Ω- for the underlying assertion to hold but must also be on S for total 

surface sound to be solved for.  Thus x is deemed to lie on S-, a surface conformal to and 

infinitesimally inside S.  This choice weakens the above assertion and permits non-zero 

pressures in the cavity away from its boundary, hence Lp supports soft cavity modes. 

3.2 Velocity Operator 

The velocity operator Lv follows from the assertion that if the boundary is stationary then 

the surface normal component of particle velocity must be zero, i.e. 

  Stt  xxvnx if0,ˆ .  Recalling that total sound is the sum of incident and scattered 

sound, and substituting Equations 2 and 3, yields: 
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         SdtRgttt
S

tti   xynynxxn yyxxx if,ˆ,ˆ,L,ˆ
v   [6] 

These statements only restrict the particle velocity at S so waves in the cavity are 

permitted, including cavity resonances and pneumatic modes
13

. 

3.3 Combined Field Integral Equation Operator 

The CFIE operator Lc is stated
3
 to be the time domain equivalent of the Burton and Miller 

formulation
2
 commonly used in frequency domain acoustic BEMs.  Its formulation 

differs slightly from the latter, in particular with regard to the range of values taken by 

the blend parameter α, and matches more closely its namesake in the Electromagnetic 

BEM formulation
14

.  It may be expressed in terms of a linear sum of Lp and Lv: 

        

        



Stct

tctt

tt

iit

xxx

xnxx x

if,L,L1

,ˆ,1,L

vp

c



 
   [7] 

It is equivalent to the boundary condition        Stctp tt xxvnx x if,ˆ,1 0 , 

which when α = ½ is satisfied by any plane wave propagating in the direction of xn̂  out 

of the cavity.  More generally, it has been shown that when 0<α<1 energy flows out of 

the cavity and it cannot support resonant modes
15

.  Consequently, the application of Lc 

has been shown to grant superior stability to Lp and Lv for a variety of test geometries.  

Therefore it is desirable to derive the BEM algorithm from the CFIE for all compatible 

scattering obstacles. 
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4 Obstacles with thin appendages 

So far discussion has focussed on obstacles that have significant interior volume.  

However, there are various devices used in acoustics which have thin parts, for example 

an orchestral canopy or the Schroeder diffuser that will be modelled later in this paper. 

All thin objects occurring in the real world have some finite thickness, so accordingly 

attempts have been made to use the closed surface BEM to model these with two 

surfaces, each conformal to a body-air interface.  This is a reasonable model of reality, 

however, when the BEM is applied problems can occur.  In particular, the 

complementary interior problem is now an extremely thin cavity, so areas of the cavity 

walls opposite one another interact very strongly, dominating over their interactions with 

other parts of the body and making the problem ill-posed.  This phenomenon is known as 

Thin-Shape Breakdown (TSB) and has been found to cause frequency-independent ill-

conditioning in the solution stage of frequency domain BEM models
16

.  The TSB also 

affects the time domain BEM, where it is most likely to manifest as solver instability. 

TSB can be avoided by taking the limit as the thickness approaches zero and 

approximating the two body-air interfaces by a single surface.  This approach has the 

added benefit of reducing the number of surface elements hence improves computational 

efficiency.  Figure 2 depicts a thin body with surfaces S1 and S2, and the scattering from it 

may be written: 
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          

2

22

1

11 2211 ,ˆ,,ˆ,,
S

t

S

ts dtRgtdtRgtt ynyynyx yyyy   [8] 

As the thickness approaches zero S1 approaches S2, so y1 and y2 coalesce.  The normal 

vectors are opposed but the gradient of the Greens function is continuous, hence the 

sound radiated by the surface is a function of the jump in velocity potential (or pressure) 

across the surface instead of the absolute values on each side. This may be written as a 

single integral: 

      
S

ts dtRgtt ynyx yy ,ˆ,~,        [9] 

where the surface subscripts are dropped as they both refer to the same surface, and 

     ttt ttt ,,,~
21 yyy    is jump velocity potential.  S is now physically interpreted 

as a thin rigid shell that resists pressure, an air-air interface. 

Since  tt ,1y  and  tt ,2y  are both unknown, no boundary condition of the form 

  0,2 tt y  may be used.  However, boundary conditions involving the surface normal 

component of velocity are still valid, so the rigid surface boundary condition 

  Stt  xxvnx if0,ˆ  may be applied; this is simply Lv applied to jump velocity 

potential. 

       Sttt tsi  xxxnxn xx if,~L,ˆ,ˆ
v      [10] 

The above operator permits solution for a jump velocity potential field on S that satisfies 

the rigid obstacle boundary condition for a given incident sound wave.  Total velocity 
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potential at any point off S may be calculated using Equation 9, including y1 and y2 if the 

limit is taken as x approaches S from the appropriate side. 

This approach of modelling scattering by thin plates was implemented in the time domain 

by Kawai and Terai
4
.  However there remains the question of what is best when it is 

desired to model a plate near a solid body, or a solid body with a protruding fin.  It 

transpires that Equation 10 may be used for the entirety of such a mixed problem, as for 

the air-body interfaces of the non-thin sections   0,2 tt y  hence    tt tt ,,~
1yy   ; this 

will be referred to as an “all-thin” model.  However, Ergin et al
 3

 highlighted that Lv 

supports cavity resonances and so is unreliable in this application; instead they promote 

use of the CFIE on closed bodies. 

Wu
17

 addressed the same concerns in the frequency domain and showed that non-

uniqueness occurs if any closed bodies exist in a mixed body problem.  He implemented 

a BEM that uses different solution strategies on thick and thin surface parts; thin parts 

were modelled with the surface normal derivative of the KIE, as above, closed parts were 

modelled with either the Burton and Miller method
2
 or the CHIEF method

18
, both of 

which inhibit cavity resonances and the associated non-uniqueness issue. 

Wu was careful to distinguish between closed and open surfaces.  In contrast, the 

comments on jump potential above suggest that these surface parts need not be 

distinguished in this way; they merely have differing boundary conditions.  Derivation is 

further simplified because Lc reduces to Lv when α = 1; this is not the case for the Burton 

and Miller definition in which the KIE and its surface normal derivative have a fixed 

weight of one and a variable weight respectively. 
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Consequentially the mixed surfaces algorithm proposed here is to use the CFIE with the 

replacement of  tt ,'r  by  tt ,'~ r  and the constraint that α = 1 on thin surface sections.  

This requires the meshing scheme to choose which sections of the obstacle will be 

modelled by closed surfaces and which by open surfaces at time of discretisation, so 

problems could still be encountered for tapering bodies for which it is unclear how and 

when is best to switch between representations.  In this application the numerical 

integration implementation described in Appendix A excels as it regularises all 

integrands, so singularities in non-self element interactions are correctly handled.  It must 

also be ensured that thin appendages do not bisect body elements, and that meshing of a 

tapering section is symmetrical, since contravening either could make the boundary fields 

unsmooth at the collocation point, the consequences of which have not been considered.  

The numerical solution strategy will now be described. 

5 Marching-On-in-Time 

The surface quantities must be discretised in order for a solution to the boundary 

conditions on S to be found numerically. The scheme described here follows that 

published in reference 3, except that the numerical integration uses an improved 

implementation which is more accurate. 

The surface S is partitioned into Ns flat elements denoted Sn, all small with respect to the 

anticipated spatial variation of the sound field, and time is discretised into Nt regular 

time-steps with duration Δt.  Discretisation of the incoming wave is achieved by 

approximating it by a weighted summation of basis functions: 
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     
 


s tN

n

N

i

inint twt
1 1

, Tf, xx        [11] 

where wn,i are the discretisation weights, f n(x) are the spatial basis functions, which are 

unity if x  Sn or zero otherwise, and Ti(t) = T(t – iΔt) are the temporal basis functions, 

the latter being regularly delayed copies of the mother basis function T(t).  Herein T(t) is 

chosen to be the piecewise polynomial used in reference 3. 

This discretisation scheme is substituted into Equation 7 and the summations and weights 

are brought outside Lc.  Collocation is performed in space and time to form a matrix 

equation; evaluation at xm (the centre of element Sm) and tj = jΔt contributes a row to: 







1
0

l
ljljj wZewZ        [12] 

where l = j - i is the retardation index and the weights wi;n = wn,i.  As the collocation 

points are in the centre of elements the surface and velocity potential field are guaranteed 

to by smooth nearby, and the boundary condition consistent.  This simplifies evaluation 

of the interaction matrices, which are defined as: 

       mjljnnml t xxxZ TfLc,;       [13] 

where the CFIE blend coefficient α is chosen to be ½ or 1 for thick or thin elements 

respectively.  These are evaluated efficiently and accurately by regularisation to contour 

integrals and adaptive numerical integration; details are included in Appendix A.  These 

will be zero for l greater than some constant due to finite c.  The excitation vectors are 

evaluated as: 
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     jmijmimj tct ,ˆ,1; xnxe x         [14] 

This algorithm is commonly referred to as the Marching On in Time (MOT) or „Retarded 

Potential‟ algorithm, and intuitively possesses an iterative structure with sound travelling 

from element to element with a finite speed.  It may more generally be considered to be a 

matrix solver between excitation coefficients and discretisation weights, which exploits a 

pattern in the interaction matrices due to the regular temporal basis functions. 

Discretisation accuracy may be quantified spatially and temporally by considering the 

maximum frequency ωmax present in the incident wave.  The maximum phase variation 

over an element with largest dimension Δx in a time-step is ωmax(Δt  + Δx/c).  The logical 

assumption that spatial and temporal discretisation error should be of similar magnitudes 

suggests the choice cΔt  ≈ Δx, as favoured by Bluck and Walker
20

.  This leads to non-zero 

off-diagonals in the matrix Z0, necessitating a matrix solution at each time-step.  Z0 will 

in practice be very sparse and an iterative matrix solver seeded with the previous time-

step‟s weights provides an efficient implementation. 

6 BEM stability analysis 

Stability is a crucial issue for the time domain BEM so the vast majority of publications 

touch upon stability issues, and many propose conditions (often heuristic) that if met 

guarantee stability of the corresponding algorithm.  Similar instabilities affect all time 

marching BEM models regardless of the field of application, implying that this behaviour 

is fundamental to the solution method, and these instabilities commonly take the form of 

an exponentially increasing oscillation that alternates in sign at each time-step
19

. 
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The dominant mathematical analysis of this phenomenon is the Singularity Expansion 

Method (SEM)
20,21,22

 which expands the continuous time system response into a sum of 

damped exponentials with poles sn and corresponding spatial modes Φn: 

       tet i

n
t

ts

n

n

t n ΦΦΦΦ  Re       [15] 

where Φ
i
(t) represents system excitation.  This can be written in discrete time as: 

 




  i

jn
j

j

n

n

n

t

j ΦΦΦΦ Re       [16] 

where the discrete time pole tns

n e


 , hence   tnns  lnRe  and   tnns  Im .  

The initial conditions prohibit such solutions, so they must be initiated by excitation or 

numerical error.  Multiple divergent modes may exist simultaneously but, due to their 

exponential growth, the one with the largest magnitude pole will ultimately dominate. 

For a stable solution   0Re  ns or equivalently 1 n  must be satisfied.  Poles of the 

underlying physical scenario are stable as are those of the BIE, although the latter may 

possess extra poles on the cusp of stability if it supports cavity resonances.  Any pole 

may be perturbed by discretisation and numerical error
23

, so borderline stable poles are 

likely candidates for divergence.  High frequency poles have poor spatial and temporal 

resolution so experience the worst error, explaining why the dominant pole often has a 

phase of ±π or equivalently a frequency of (2Δt)
-1

. 

Once excitation has ceased an iteration of the MOT equation may be represented by 

multiplication of a state history vector h j by the state-transition matrix M.  M is non-
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normal and does not possess a full set of linearly independent eigenvectors.  However, 

there is evidence that it‟s largest magnitude eigenvalues often correspond to the discrete 

time poles λn of recognisable modes
20,21, 22

.  , For a typical mesh, M is very large (though 

sparse) so hardware storage and precision often limit the size of problem for which M 

may be constructed and any eigenvalues resolved. 

In the following section numerical results will be presented.  Where possible the largest 

magnitude state-transition eigenvalues will be calculated and displayed as a measure of 

stability. 

7 Results 

The modified algorithm for mixed bodies will be verified by comparison with frequency 

domain BEM implementations which have previously been shown to accurately match 

experimental data
24

, and by considering the transient response and largest magnitude 

SEM poles.  Two scattering problems are considered, both of which involve obstacles 

possessing thin fins, the first being a simple cube with a square fin attached, and the 

second being a Schroeder Diffuser. 

One spatial mesh is used for each surface, and the time domain BEM is tested over a 

wide range of time-step durations defined by their relationship to spatial resolution, 

denoted implicitness cΔt /Δx.  This is done because time-step duration has been associated 

with stability in many publications; evidently different values affect whether poles are 

perturbed into divergence. 
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In order to quantify accuracy, a harmonic point source illuminates the surface for 

sufficient duration that the system reaches steady state and any instability has the 

opportunity to appear.  The time domain surface velocity potential is discrete Fourier 

transformed and the percentage error versus the frequency domain BEM is quantified at 

the frequency of excitation; the details of this process are found in Appendix B.  This 

error was analysed as a contour plot versus time-step implicitness and temporal resolution 

t  2  and the trends observed are described in what follows. The ranges of time-

step implicitness and temporal resolution tested were -1 ≤ log10(cΔt /Δx) ≤ 1 and 5 ≤ β ≤ 

20 respectively, equating to a frequency range from 12Hz to nearly 5kHz.  Using single 

frequency excitation is clearly an uninspiring application of the time domain BEM but is 

being done purely to achieve rigorous verification. 

7.1 Cube with a thin fin 

This mesh is conceived as a simple test case for the CFIE mixed surfaces model.  It 

comprises a 0.7m cube with a 0.7m fin attached.  Δx = 0.1m so the cube has 294 thick 

elements and the fin 49 thin elements.  It is an extremely regular mesh with all elements 

having an equal aspect ratio.  Care is taken to ensure that the fin‟s line of attachment does 

no bisect any body elements.  It is depicted in Figure 3 (thin elements are coloured blue 

online). 

First the cube section of the mesh was modelled alone to ensure that the BEM 

implementation of the CFIE was performing correctly.  The model was universally stable 

and error compared with the frequency domain BEMs was generally better than 5% when 

cΔt /Δx > ½ and β > 10, and, as good as 1% when β approached 20. 
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Having verified the cube as a closed body problem, investigations progressed to 

including the fin, so as to verify the implementation for a mixed body problem.  Stability 

and accuracy trends remained unchanged, confirming correctness of the proposed scheme 

for mixed surfaces. 

The decay of the impulse response of the system is expected to be dominated by the least 

damped pole, hence this characterises the BEM model‟s stability and realism.  Figure 4 

shows the transient behaviour of the cube plus fin problem mixed model for cΔt  = Δx.  

The data series plotted are total pressure for two receivers located interior to and exterior 

but close to the body.  In order for the decay of the system to be visible and to excite 

poles over a wide frequency range, the excitation was required to be extremely short and 

pulse like in nature.  A true Dirac delta pulse cannot be used in the current 

implementation because it is discontinuous; instead a Hanning plane wave was chosen as 

it is smooth with compact support: 
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where H(…) is the Heavyside function, and the parameters were chosen to take the 

values amplitude A = 10
-3

, duration d = 0.02s, start time t0 = 0.1s, and propagation vector 

 1,0,0ˆ i .  The incident wave is clearly visible in Figure 4 (note Equation 1) 

dominating the response at the receiver external to the cube. 



ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 95 (2009) 678 – 689 DOI 10.3813/AAA.918196 

In order to observe the decay of the scattered field a dB scale is required, hence this is 

used in Figure 5, which is otherwise identical to Figure 4.  Pressure inside the scattering 

body is 35dB lower than outside; this quantifies the completeness of cancellation between 

incident and scattered waves and would be expected to be greater for more slowly 

varying waves.  Following this pressure at both receivers decays at approximately 

3500dB/s, indicating that all poles are extremely well damped and consistent with the 

modelled scenario being a convex body devoid of features associated with acoustic 

resonance. 

Figure 6 is a graphical representation of how time-step duration affects the SEM poles of 

the discrete system.  The state transfer matrix M was constructed
20

 and the largest of its 

eigenvalues found numerically; these are estimates of the discrete time poles λn and their 

magnitudes are plotted against the time-step implicitness cΔt /Δx.  The continuous time 

poles sn should ideally be invariant of Δt, but the magnitudes of their discrete counterparts 

vary with Δt
-1

; where these can be identified they have been indicated and their loci 

plotted.  The pole at s = 0 is typical of boundary conditions involving the derivatives of φ 

and corresponds to a silent mode where velocity potential is unchanged between time-

steps hence p = 0.  All poles of the cube plus fin problem mixed model are stable. 

Figure 7 shows results from the same scenario as Figure 5 but modelled with an all-thin 

boundary condition; this response represents what would be calculated by previously 

published time-domain BEMs.  The behaviour is initially very similar, with pressure 

inside the scattering body again 35dB lower than outside, but then the decay of the 

external pressure is much slower at only 263dB/s, implying that the system response is 

less well damped so possibly less realistic.  The interior pressure decays briefly but stalls 
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at a constant value approximately 95dB lower than peak incident pressure, which could 

be a pneumatic (0Hz) mode as investigated by Parot
13

, but is certainly not a behaviour 

representative of the physical problem modelled.  In addition, high frequency oscillations 

in the surface quantities were observed for the shortest (most explicit) time-step durations 

modelled which is clearly erroneous. 

Fewer eigenvalues have been resolved in Figure 8 than Figure 6, and those shown display 

less identifiable trends suggesting they are more corrupted, plus have larger magnitudes.  

The largest magnitude pole (excluding s  0) at log10(cΔt /Δx) = 0 is indicated and has a 

value s  -28+1400j.  This closely matches the decay rate observed in Figure 7, providing 

strong evidence that it is this pole that dominates the scattered pressure for short duration 

plane wave excitation.  Another pole indicated at log10(cΔt /Δx) = 0.4 oscillates 

divergently at the Nyquist frequency; this did not dominate in the durations modelled as 

verification cases, but with an unfortunate choice of excitation it would.   

These mechanisms observed for the transient response also compromise the harmonic 

response, giving an unacceptable error average of around 83% compared to the frequency 

domain BEM.  Thus the superiority of the mixed body scheme in terms of accuracy and 

stability is confirmed for a simple scattering problem. 

7.2 Schroeder Diffuser 

Room acoustic diffusers are passive devices which attempt to scatter sound uniformly 

over a range of frequencies.  They can be used to treat critical listening environments to 

improve speech intelligibility and to make music sound better
25

.  Their scattering may be 

measured under anechoic conditions
26

, but this is a time consuming and expensive 
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process. An alternative is to predict this dispersion using a numerical model, and the 

BEM is well suited to this task
27

.  The speed and low cost of this approach aids 

prototyping of new designs, and even allows automated optimisation of treatments to be 

performed
28

.   

The development of phase grating diffusers can be traced back to the pioneering work of 

Schroeder
29,30

.  They comprise a series of wells of differing depths according to a number 

theoretic sequence, separated by thin fins, and sound waves entering each well emerge 

following the time taken for them to travel to the bottom of the well, reflect and travel 

back to the mouth. These delays are optimally decorrelated so the cumulative scattered 

sound is widely dispersed. Because the wells store sound energy and then reradiate it, the 

scattered sound is diffused in both space and time, hence their transient response has 

recently begun to attract research interest
31,32

. 

A Schroeder diffuser is an ideal example of an obstacle to be modelled using the new 

mixed body algorithm as it comprises a closed body and thin fins and possesses no 

tapering sections, and Cox and Lam
27 

have shown that such a frequency domain BEM 

model is accurate in this application.   In addition, they compared results with a model 

where the behaviour of each well is approximated by a surface impedance at its mouth; 

this algorithm has also recently been successfully implemented in the time domain
33

. 

In this paper, a one-dimensional diffuser based on the Quadratic Residue Sequence [2 4 1 

0 1 4 2] will be considered; these are designed to diffuse in one plane only and take the 

form of an extruded cross section.  The design wavelength was chosen to be 

approximately 1.4m, the well width 0.25m, and the height 1.0m.  Δx = 0.1m meaning the 
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mesh comprises 726 thick elements and 174 thin elements; it is depicted in Figure 9 

where the thin elements are shown partially transparent (and blue online). 

First the QRD was modelled without its fins; this was therefore an obstacle with a series 

of steps on the front face.  Use of the CFIE was stable for all but the shortest two time-

step durations modelled, and the error trend versus the frequency domain BEM changed 

little from the from the cube mesh (generally better than 5% when cΔt /Δx > ½ and β > 

12), except that it was interrupted by a localised error increase of a few per-cent close to 

the diffuser design frequency.  This artefact also appeared in a comparison between the 

two frequency domain BEM implementations, and a state-transition eigenvalue can be 

resolved with similar natural frequency; the cause and significance of this behaviour 

being at the design frequency is an ongoing research question.  In contrast, use of an all-

thin model resulted in instability for 7 of the 21 time-step durations modelled, and an 

average error of approximately 300% for the stable results, again reinforcing the 

superiority of the CFIE for closed obstacles. 

Subsequently the fins were reinstated and the model repeated.  The obstacle now contains 

a wealth of exterior convex parts and parallel surfaces, whose presence suggests a 

disposition toward resonance.  Indeed each well may be considered to be a ¼ wave 

resonator, albeit damped by energy leaving through its mouth.  Energy trapped in these is 

not suppressed by the CFIE as they are physically relevant external features of the device; 

their response is part of the desired solution.  It will be seen if discretisation errors push 

these lightly damped poles into instability or if accuracy is maintained. 



ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 95 (2009) 678 – 689 DOI 10.3813/AAA.918196 

For the QRD mixed model, underlying error trends compared to the frequency domain 

BEM were harder to identify than previous models due to the presence of instability and 

a localised error maxima at 136Hz, a frequency with no obvious geometrical significance.  

In general accuracy was poorer than has previously been observed, typically between 3% 

and 30% where cΔt >2Δx and β > 10.  However this performance should be placed in 

context against the all-thin model which is unstable for the majority of time-step 

durations, with the remaining showing poorly damped behaviour and error rarely lower 

than 100%; clearly this is a very challenging modelling scenario. 

Figure 10 shows the resolvable state-transition eigenvales of the QRD mixed model, 

being estimates of the discrete-time SEM poles.  At two time-step durations divergent 

poles can be clearly seen at the top of the figure both with frequency (2Δt)
-1

.  In addition 

divergent poles are also present for four more time-step durations (all explicit cΔt <<Δx) 

but hardware limitations mean they are not quantified in this figure.  A few loci are 

identified for the corresponding continuous-time poles, but these are mostly non-

oscillatory and none appear to correspond to characteristic physical resonances such as 

the ¼ wave resonant frequencies of the wells, or modes along or across the wells.  The 

exception is the pole at s ≈ -69 + 860j (red online) which matches the frequency of 

localised error increase mentioned above.  It only appears for a short range of time-step 

durations since on the left of the figure there is corruption by instability, and on the right 

low pass filtering by the low sample rate.  As was emphasised for the QRD block, the 

error maxima compared to the frequency domain results is accompanied by oscillatory 

eigenvalues, implying the presence of lightly damped oscillatory poles.  This is 

unsurprising since the time harmonic problem effectively considers the equilibrium 



ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 95 (2009) 678 – 689 DOI 10.3813/AAA.918196 

pressure at which incident and scattered energy are equal, and the damping or Q of a 

resonance greatly affects its peak value.  It appears that the largest magnitude state-

transition eigenvalues dominate the overall accuracy of transient BEM results, so the 

accuracy with which they match the SEM poles of the physical problem may be critical. 

The transient response is shown in Figure 11, where time-step duration is chosen such 

that log10(cΔt /Δx) = 0.1 because the model is unstable when cΔt  = Δx.  Despite the error 

versus the frequency domain BEM at the surface being larger than for the cube plus fin 

mesh, this scattered response is more similar to the good behaviour in Figure 4 than the 

poorly-damped ill-behaviour in Figure 7; the scattered field appears at least subjectively 

plausible.  Cancellation achieved inside the QRD is similar with pressure 33dB lower 

than outside, and the pressure at both receivers decays rapidly at approximately 2170 

dB/s.  The interior and exterior pressures appear to both stall at constant values 214dB 

and 225dB lower than incident respectively.  However closer examination reveals that 

these are in fact exponentially growing instabilities, albeit growing extremely slowly at 

2.3×10
-5

 dB/s, which matches the magnitude of the largest state-transition eigenvalue 

being 1 + 1.44×10
-9

; evidently the pole at s = 0 has been perturbed to a slightly positive 

value.  This behaviour is non-physical but the numerical errors involved are smaller than 

the numerical integration precision so blame probably lies there.  However, despite 

insignificance within this modelling duration, presence of this artefact in an otherwise 

well behaved model does highlight the shortcomings of the current solution strategy. 

Lastly, Figure 12 shows the same transient response as predicted by the all-thin model; 

this represents what would be calculated by previously published time-domain BEMs.  

Results are much poorer with cancellation inside the body reduced to 22dB, both 
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receivers showing a slow decay of 92.1 dB/s while oscillating at 127Hz, and the interior 

pressure approaching a constant value 67dB lower than incident pressure.  This model 

has been shown to be inaccurate compared to frequency-domain BEMs at the principle 

frequency of excitation, and clearly its transient response is unrealistic too. 

There is an interest among diffuser designers as to the transient behaviour of their 

devices.  This data is both scattering angle and time dependent, so presentation as a polar 

impulse response such as Figure 13 could be appropriate.  Scattered velocity potential 

magnitude is plotted in dB, versus angle normal to the diffuser and time, for a 5m radius 

arc of receivers above the diffuser.  Excitation was by a point source located 10m distant 

normal to the diffuser.  Display on Cartesian axes was felt superior to display on polar 

axes (where time would be the radius) because the latter could be misinterpreted as an 

instantaneous snapshot of sound in space, which it is not. 

In order to aid temporal resolution a very short (explicit) time-step duration has been 

chosen (log10(cΔt /Δx) = -0.5).  Accuracy here is poor (>30%) and further research and 

modelling is required to improve it.  However like Figure 11, the transient response 

appears subjectively plausible, so this figure is included as an indicator of how future 

verified results may appear.  Indeed it bears great qualitative resemblance to measured 

data published by Farina
31

.   Verification against such measured transient data is a future 

objective for development of this algorithm. 

8 Conclusions 

Regular BEM implementations cannot model objects with thin fins as the proximity of 

the surfaces at each solid / air interface causes singular behaviour in the underlying 
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integral equations, a phenomenon known as Thin Shape Breakdown.  This has been 

tackled by adopting an open surfaces model where a single surface models the fin as a 

rigid air / air interface, an approach previously used with the time domain BEM so not 

itself new.  However, it has also been shown that such an all-thin model of a closed 

surface permits cavity resonances so is often unstable.  In light of this it was proposed 

herein that the open surfaces model be applied solely to the thin surface sections (the 

fins), the CFIE be applied to the remaining closed sections, and that an improvement in 

stability will result relative to an all-thin model.  This mixed body approach is analogous 

to an approach used for the frequency domain BEM but is novel for the time domain 

algorithm. 

The algorithm was verified on the simple problem of a cube with an attached fin; 

accuracy was good and stability universal.  A single period of a real world device, a 

Quadratic Residue Diffuser, was then modelled.  The approach was successful, achieving 

vastly superior stability and accuracy compared to the all-thin model, but some instability 

was still witnessed.  It is suggested that this occurs because the wells are lightly damped 

resonators, so the corresponding poles are not suppressed by the CFIE as they are 

external to the body and physically relevant, and that these are easily corrupted into 

instability.  Obviously the real device does not radiate exponentially increasing pressures 

so the behaviour of the time domain BEM is erroneous.   

It is felt that deriving a heuristic criterion that might ensure stability for this particular 

modelling problem is not a research avenue that has wide scope.  Instead, the results 

suggest that further research is required into achieving stability of the time domain BEM 

when modelling lightly damped acoustic resonators, such as wells and parallel plates.  It 
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has been inferred herein that if a lightly damped pole is not accurately calculated it causes 

substantial error in the time harmonic case close to its natural frequency.  Similarly 

lightly damped poles dominate the transient response, so perhaps a measure of their 

perturbation would be an appropriate indicator of transient error, albeit one with 

substantial computational cost. 
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10 Appendix A 

Accurate evaluation of the interaction coefficients defined in Equation 13 is fundamental 

to the accuracy and stability of the algorithm.  The temporal basis function has 

discontinuous derivatives which cause discontinuities and delta functions in the surface 

integrands, making them unsuitable for solution by Gaussian integration.  In addition, the 

integrand is singular so element self-interaction need often be considered as a special 

case. 

The implementation herein exploits the flat elements and piecewise-constant spatial basis 

functions to permit regularisation of all integrands by coordinate transformation
4,34

 such 

that the collocation point is no longer a special case.  The radial component of integration 

is performed analytically, leaving the remaining numerical integration a one-dimensional 

contour integral.  This allows an adaptive numerical integration scheme to be used, 

specifically Simpson integration with Romberg extrapolation.  An absolute termination 
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criterion was used, meaning that larger more significant interaction coefficients were 

evaluated with higher precision than smaller less significant ones.  This process is 

arbitrarily accurate, has better computational cost scaling than two-dimensional 

integration, and allows the same integration routine to be used for all element pairs as 

effort is automatically concentrated where necessary. 

In order to clarify the conversion of the surface integral over Sn into nested integrals two 

new coordinate systems will be used; one is a cartesian system  zwv ,,  and one a 

cylindrical polar system  zr ,, , both shown in Figure 14. The origin and positive z 

direction are the same in both coordinate systems.  The origin is defined as the projection 

of the collocation point x into the plane of Sn and the positive z direction is specified by 

yn̂ .  The positive v direction is defined as the projection of xn


 into the plane of Sn, such 

that 0ˆˆ  xnw .  The positive theta direction is defined such that  cosrv   and 

 sinrw   in the conventional way.  The variable z refers to the z coordinate of the 

collocation point x and any reference to v, w, r or θ implies the integration point y. 

For this scheme of flat elements with piecewise-constant spatial basis functions the sound 

scattered according to the discretised KIE may be expressed as follows, an angular 

integral over the edge of Sn and a contribution from the origin: 
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θorigin is the angle the edges of Sn make around the origin.  This is zero if the origin is 

outside Sn and 2π if Sn contains the origin.  If the origin lies on an edge θorigin will equal 
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the enclosed angle; intersection of one edge implies θorigin = π, intersection of a corner 

implies θorigin will equal the acute angle between the adjoining edges. 

The interaction coefficients for the CFIE are numerically evaluated by: 
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Numerical integration is with respect to μ; a dimensionless edge position coefficient 

varying from zero at the start vertex to one at the end vertex.  For an edge e the partial 

differentials between this and the geometric integration variables are found as follows 

where r  is the minimum (perpendicular) distance from the origin to the line of edge e: 
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11 Appendix B 

Two frequency domain BEM implementations were used for verification purposes; a 

closed body version equivalent to Lp and an open body version equivalent to Lv.  Both 

use piecewise constant interpolation and have previously been verified against 

experimental results
24

.  The closed body BEM can only be used on the closed sections of 

meshes, but its inclusion was necessary as the open body BEM showed evidence of 

encountering non-unique solutions at certain frequencies. 

For the harmonic problems the source is located in the far-field, 100m distant normal to 

the obstacle.  This excites the system at a frequency such that the number of time-steps 

per excitation period t  2  assumes a range of predetermined integer values.  For 

each combination the error e between the time and frequency domain BEMs is calculated 

from the normalised mean complex difference between the respective source-to-

collocation-point transfer functions at the excitation frequency: 
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In the frequency domain the transfer function HFD is simply the total pressure divided by 

the source monopole pressure: 
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In the time domain HTD is found by division of the discrete Fourier transform (DFT) of 

the total velocity potential by the DFT of the source monopole potential: 
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The first 50β iterations are omitted from the DFT to allow the time domain solution to 

reach steady state.  The next 100β iterations are chosen for DFT; this length maintains 

periodicity and eliminates windowing error.  This error ratio was analysed as a contour 

plot versus time-step implicitness and temporal resolution β and the trends observed are 

described herein. 
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Figure 12 
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Figure 13 
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13 Figure Captions 

Figure 1: A scattering problem comprising an obstacle submerged in a connected 

medium.  S is a surface conformal to the obstacle, hence the medium is said to 

be external to S. 

Figure 2: Cross-section of a thin body section 

Figure 3: The cube plus fin mesh 

Figure 4: Scattered Pressure in Pascals for two receivers, one inside and one outside the 

body of the cube plus fin mixed model, excited by a 0.02s Hanning plane wave. 

Figure 5: Scattered Pressure in dB for two receivers, one inside and one outside the body 

of the cube plus fin mixed model, excited by a 0.02s Hanning plane wave. 

Figure 6: Discrete poles of the cube plus fin mixed model 

Figure 7: Scattered Pressure in dB for two receivers, one inside and one outside the body 

of the cube plus fin all-thin model, excited by a 0.02s Hanning plane wave. 

Figure 8: Discrete poles of the cube plus fin all-thin model 

Figure 9: The Quadratic Residue Diffuser (QRD) Mesh 

Figure 10: Discrete poles of the QRD mixed model 
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Figure 11: Scattered Pressure in dB for two receivers, one inside and one outside the 

body of the QRD mixed model, excited by a 0.02s Hanning plane wave. 

Figure 12: Scattered Pressure in dB for two receivers, one inside and one outside the 

body of the QRD all-thin model, excited by a 0.02s Hanning plane wave 

Figure 13: Normalised transient scattered velocity potential at a 5m radius receiver arc 

Figure 14: Contour integration geometry and coordinate systems 

 

 


