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Abstract 

A new method for estimating knee joint flexion/extension angles from segment 

acceleration and angular velocity data is described. The approach uses a 

combination of Kalman filters and biomechanical constraints based on 

anatomical knowledge. In contrast to many recently published methods, the 

proposed approach does not make use of the earth’s magnetic field and 

hence is insensitive to the complex field distortions commonly found in 

modern buildings. The method was validated experimentally by calculating 

knee angle from measurements taken from two IMUs placed on adjacent 

body segments. In contrast to many previous studies which have validated 

their approach during relatively slow activities or over short durations, the 

performance of the algorithm was evaluated during both walking and running 

over 5 minute periods. Seven healthy subjects were tested at various speeds 

from 1 to 5 miles/hour. Errors were estimated by comparing the results 

against data obtained simultaneously from a 10 camera motion tracking 

system (Qualysis). The average measurement error ranged from 0.7 degrees 

for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint 

constraint used in the IMU analysis was derived from the Qualysis data. 

Limitations of the method, its clinical application and its possible extension are 

discussed. 



1. Introduction 

The use of lightweight, low power, MEMS inertial sensors to measure acceleration or 

angular velocity is now widespread in the clinical community. Inertial sensor data 

have been used to infer: activity type/intensity; falls and falls risk; muscle activity; 

and gait events [1-3]. However, accelerometers together with rate gyroscopes can also 

be used to estimate orientation relative to an inertial frame. While high accuracy 

estimation of inclination is possible [4], such an approach is limited by the lack of 

absolute orientation information in the horizontal plane (azimuth). Relative 

orientation estimation is possible by integration of gyro signals in this plane, but such 

an approach is susceptible to drift. Consequently, techniques that take advantage of 

the earth’s magnetic field, that provides information on azimuth, are often adopted. 

Commercial systems that adopt such an approach are now widely available (e.g. 

www.xsens.nl). However, despite attempts to deal with the heterogeneity of the 

earth’s magnetic field inside modern buildings [5], using them to measure orientation 

in typical clinical environments over extended periods remains extremely difficult [6].  

 

Therefore, research is continuing into improved methods for deriving orientation 

without the use of magnetometers. A recent paper [7] showed that it was possible to 

obtain high accuracy 3-axis orientation without the use of a magnetometer by using a 

two stage approach – integration of the angular velocity signals, followed by a 

correction to the angle estimation based on inclination data from accelerometers 

gathered during periods of rest, or near constant velocity motion.  However, the 

interest of the biomechanics community generally lies in differential orientation 

measurements, derived from absolute angle measurements on two adjoining limb 
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segments. While it would be possible to estimate joint angle from independent 

estimates of distal and proximal segment orientation (from an IMU on each segment), 

this approach ignores the additional useful information that can be derived from 

knowledge of the joint anatomy and the pose of the two IMUs on their respective 

segments. 

 

Favre et al extended their earlier work [7] to calculate joint angles by taking account 

of known anatomical constraints [8]. To calculate joint angle from the outputs of 

IMUs on the lower and upper legs, a calibration procedure is required. First, while the 

subject stands in a defined pose, a static calibration takes advantage of gravity being 

the signal common to both IMUs; and second, a dynamic calibration is performed, 

during which the subject rotates their leg about the hip while maintaining a “stiff” 

knee, which imposes the same angular velocity on both IMUs. This allows the relative 

orientation of the two IMUs to be identified and then the estimation of knee angle 

may be derived from the two IMUs’ signals. 

 

While Favre’s approach uses a calibration routine to align the two reference frames, 

we present a different approach, similar to [9], which takes advantage of the 

kinematic constraints offered by anatomical joints as an input to the measurement 

process itself, rather than as a means of prior alignment. By positioning an IMU either 

side of the joint of interest, it is possible to take advantage of the known constraints 

on joint motion to counteract sensor drift and thereby provide stable orientation 

estimation. 
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The objective of this research is to demonstrate that IMUs (measuring only 

acceleration and angular velocity) can be used in combination with knowledge of joint 

constraints to give measurements of knee joint flexion/extension angles during 

dynamic activity (walking & running). The method is demonstrated using the 

simplification that the knee is a hinge joint; however, it may be possible to extend the 

method to measure additional DOF.. 

 

The paper begins with a description of the hardware and algorithm design. It then 

reports on the experimental validation of the approach for the measurement of knee 

angle during gait and draws conclusions. 

2. System Design 

The IMU comprised three orthogonally aligned single axis rate gyroscopes 

(±1200deg/second) and a three-axis accelerometer (±5g). Data was logged on a SD-

micro card integrated into each unit. A synchronising pulse was sent to each unit prior 

to commencing measurements to provide synchronisation. 1

 

The estimation of joint angle is split into two parts: firstly a Kalman filter estimates 

the two components of the Euler angles of each IMU (pitch & roll); and secondly this 

information is used to estimate knee joint angle. 

                                                 
1 The hardware was provided by ETB Ltd, Codicote, UK. However, the algorithms described in the 
paper are not implemented in any of ETB’s commercial products.  
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2.1 Kalman filter 

The pitch and roll of each IMU is estimated by a Kalman filter which tracks the state 

of the system, including the roll (φ ), pitch (θ), acceleration, angular rate, and sensor 

biases. The state vector of the Kalman filter is defined by equation (1)  
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where: 

ap is the vector of accelerations along the three orthogonal axes in the 

pseudoinertial frame (defined below). 

vp is the vector of velocities along the three orthogonal axes in the 

pseudoinertial frame 

ωb is the vector of angular rates around the three orthogonal body axes 

bg is the vector of gyro biases around the three body axes 

 

The rotation between the inertial frame and the body frame of the sensor is defined by 

the three Euler angles ψ, θ and φ, in either Euler 321 or Euler 312 formulation. 

Appendix A describes how singularities are avoided by using the two different Euler 

formulations. The angles ψ, θ and φ, are rotations about the z, y, and x vectors 

respectively.  

 

The primary motivation for using Euler angles rather than alternative representations 

is that this allows the orientation component around the gravity vector (ψ) to be 

readily extracted from the main state vector (Appendix B).  
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The Kalman filter system models the accelerations as Gauss-Markov processes with 

additional factors to limit the long-term velocity RMS (equation (2)) 

( ) kpk
aa

kpkp vwtaa ,,1, exp γβ −+Δ−=+  (2) 

where: 

wa
k is the vector of noise on accelerations at the kth timestep 

velocities are integrated from the accelerations, equation (3) 

tavv kpkpkp Δ+=+ ,,1,  (3) 

Angular rates and gyro biases are modelled as Gauss-Markov processes, equation (4) 
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Angles were then calculated from the angular rates using the Euler formulation 

equations (5) 

( )
( )
( ) θφωφωψ

φωφωθ

θφωφωωφ

secsincos

sincos

tansincos

yz

zy

yzx

+=

−=

++=

&

&

&

 (5) 

(where sec indicates the secant function) and using backwards integration, equation (6) 
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 In the software, ψ̂  is propagated separately from the other angles, because it is kept 

separate from the state vector. The estimate of ψ̂  is referenced to the pseudo-inertial 

frame. The filter relies on the fact that the pseudo-inertial frame drifts slowly around 

the inertial frame, so that estimates of orientation and gyro bias can still be made.  

The measurements are the three accelerometer measurements in the body frame, and 

the three gyro measurements in the body frame, equation (7). 
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where: 

vk is the vector of noise on measurements at the kth timestep 

The filter process itself is a standard Extended Kalman Filter [10]. The state matrix A 

is derived from the above propagation equations, so that the state vector obeys 

equation (8) 

 
kk sAs =+1  (8) 

 
The process noise covariance matrix WQW(equations (9 & 10)) uses the Jump 

Markov method, so that the covariances of the accelerations, angular rates and gyro 

biases follow the usual Gauss-Markov equations, and the angle and velocity 

covariances are set to zero. 
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where 
 

( )( )tq aaa Δ−−= β2exp1D  (10) 
 

and qa is the long-term acceleration RMS. Similar equations apply for Dω and. Dg. 

The parameters of the EKF were based on the typical velocities, accelerations and 

angular rates seen during running, and were defined as fixed parameters (i.e. not 

modified in response to observed motions). 
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2.2 Knee angle estimator 

The knee angle estimator assumes that the knee can be represented as a pure hinge 

joint. It combines information from the two IMUs (roll and pitch, as estimated by the 

Kalman filter) along with the physical constraints of the knee joint to estimate the 

knee angle.  

 

The need to use the joint constraint in the estimate arises because the IMUs only 

estimate inclination (roll and pitch), rather than orientation (roll, pitch and yaw). At 

each point in time, four measurements are available: roll and pitch for each IMU. If 

the joint constraint was not included, then the overall physical system would have five 

important degrees of freedom (DOF): the inclination of the thigh section (two DOF) 

and state of the joint (three DOF). It is not possible to estimate these five DOF from 

only four measurements and extra information is required. 

 

Modelling the knee as a pure hinge joint can provide this extra information. With the 

joint constraint in place, there are only three important DOF: inclination of the thigh 

(two DOF) and the hinge joint angle (one DOF), making the problem solvable. The 

user specifies the rotation axis of the joint relative to the IMUs and then for each time 

step the knee angle is estimated using an analytical chi-squared minimisation method. 

 

To solve for knee angle without any joint constraint would require estimates of the 

third orientation parameter (yaw) from both IMUs. The Kalman filter does maintain 

an internal estimate of yaw, but this is in the pseudo-inertial frame, which drifts 

significantly relative to the inertial frame. This severe drift prevents any direct 

estimate of knee angle (i.e. an estimate which does not rely on the joint constraint).  
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Given a pseudo-inertial vector at some point in time, its transformation in the shank’s 

IMU frame, designated IMU2, through the thigh’s IMU frame, called IMU1 is given 

by equation (11). 

( ) ( ) ( ) ( ) iiROTPREDIMU VtMMtMtV 1,2 0
21 →→

=  (11) 

where: 

PREDIMUV ,2  is the predicted inertial vector in IMU2 frame 

ROTM  is the rotation matrix that takes a vector V in the IMU2 frame at the 

first time step and maps it to the IMU2 frame at time t, such that V(t) 

=  *V(0). This rotation matrix is dependent on the knee angle 

and is derived in Appendix C. 

ROTM

( )0
21→

M  Is the rotation matrix between IMU1 and IMU2 frames at the first time 

step, obtained via a simple calibration process (see section 3). 

1→iM  Is the rotation matrix that maps a vector in the pseudo-inertial frame 

to the IMU1 frame and is a standard function of the estimated Euler 

angles for IMU1. 

iV  Is a vector in the pseudo-inertial frame. 

 

Equation (11) assumes that only a rotation about the knee hinge axis causes the 

orientation of the IMU2 frame relative to the pseudo-inertial frame to change in time. 

Frame changes that come from muscle or skin movement at the IMU2 location are not 

taken into account. 

 

The same transformation can also take place using directly the rotation matrix from 

the pseudo-inertial to the IMU2 frame, for which measurement data is available: 
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( ) ( ) iiMEASIMU VtMtV 2,2 →=  (12) 

where: 

2→iM  Is the rotation matrix that maps a vector in the pseudo-inertial frame to 

the IMU2 frame and is a function of the estimated Euler angles for 

IMU2. 

By using the inertial Z vector to be V in equations (11) and (12), the dependency on ψ 

is eliminated.  

 

Figure 1 illustrates the predicted and measured Z inertial axis in the IMU2 frame. 

Zi
IMU2,PRED,PREROT is the inertial vector before the rotation about the hinge axis 2ĥ , 

Zi
IMU2,PRED is the same vector after the rotation as predicted by equation (11), 

substituting Vi with [0 0 1]T, and Zi
IMU2,MEAS is the measured vector as given by 

equation (12). ε is the error angle between the predicted and measured vectors and it 

is present due to measurement errors in the IMU output Euler angles: 

( ) i
MEASIMU

i
PREDIMU ZZ ,2,2cos ⋅=ε  (13) 

Therefore, at each time step the knee angle is calculated to minimise the error angle ε 

in equation (13). 

3. Experimental Validation 

Ethics approval was obtained from the University of Salford and informed consent 

was obtained from the test subjects (Table 1). A ten camera Qualysis system was used 

to provide independent reference measurements of the IMUs’ orientations, the knee 

axis location, and knee angle during the validation trials. Figure 2 shows the IMUs 

and reflective markers attached to a test subject’s right leg. . 
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The test subjects were asked to stand still on the treadmill within the cameras’ capture 

volume and data were recorded for ten seconds (the static calibration trial). The 

anatomical reflective markers were then removed leaving the markers on the IMUs as 

tracking markers for both the leg segments and the IMUs during the dynamic trials. 

 

The IMUs, the camera system and a synchronisation unit were first connected via a 

cable. Following synchronisation of the systems, the cable was removed prior to the 

start of walking trials. . Subjects began walking on the treadmill at 1mile/hour and the 

speed was increased in five increments to 5miles/hour over a 5 minute period until the 

subject was running. The IMU and camera data were captured at 100Hz. 

 

The roll, pitch and yaw angles that describe the rotation of the IMU reference frames 

with respect to an inertial frame were extracted from the Qualysis camera data using 

Visual 3D. The angles were represented in the Euler 3-2-1 sequence that the knee 

angle estimator requires for processing. From this camera derived data at the first time 

step, the initial rotation matrix between the IMU frames ( ( )0
21→

M ) was calculated. 

This defines the absolute flexion/extension angle of the knee, i.e. the observed angle 

during the standing posture is taken to be a knee angle of 0. The knee rotation axis 

was defined from the camera derived data to be coincident with the anatomical 

flexion-extension axis of the knee (derived using anatomical landmarks) and was 

required to initialise the IMU based knee angle estimator. 

 

The knee angle was estimated from angular velocities and linear accelerations 

measured in the two IMU reference frames. This data was processed through the 

Kalman filter and the Euler angles that describe the pitch and roll of the IMU 

- 10 - 



reference frames with respect to a pseudo-inertial frame were estimated. Due to the 

inability of accelerometers and rate gyros alone to provide absolute orientation about 

the gravity vector (nominally the z inertial axis), no azimuth angle estimation was 

provided. To avoid singularities in the estimation of the remaining Euler angles (pitch 

and roll about intermediate x and y axes), the algorithm automatically adjusted the 

rotation sequence in each time step to either Euler 3-2-1 or Euler 3-1-2 (Appendix A). 

The outputs of the estimation namely the roll and pitch angles and the rotation 

sequences for the two IMUs at each time step were saved in a text file to be read by 

the knee joint angle estimator. The knee rotation axis and the initial rotation matrix 

between the two IMU frames were already known from the camera derived 

calibration information. 

4. Results 

In this section the overall estimation performance is described by comparison with 

reference results calculated from the camera data. In figure 3, the knee angles 

estimated from camera and IMU data are compared for different speeds (only a subset 

of the data is shown). The vibration of the IMUs that occurs at heel strike is evident at 

knee angles close to zero.  

Figure 4 shows the absolute estimator errors for the same sample times shown in 

Figure 3. It can be seen that the accuracy decreases as the speed increases, which is 

expected since the Kalman filter’s ability to accurately estimate the state vector 

decreases as the accelerations and angular rates increase. In principle, it is possible 

that the loss of accuracy may be partly due to the duration of the measurement as well 

as the increase in dynamics. However, the Kalman filter is designed to produce 
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bounded errors on inclination irrespective of the experiment duration, so the decrease 

in accuracy is likely to be due primarily to the waking/running speed. 

Figure 5 shows the pitch and roll angles as measured by the IMU and the camera 

system for both the thigh and shank. 

The RMS errors of the knee angle estimator for the entire data set are given in Table 2, 

along with the estimation errors produced by the EKF for both the shank and the thigh. 

It was observed that the knee angle estimation error is sometimes smaller than the 

errors in the individual angle measurements. Due to the physical mounting of the 

sensors the estimate of knee angle is mainly dependent on the estimates of φ, so errors 

in θ do not necessarily lead to errors in knee angle. Secondly, if there is any degree of 

correlation in the errors in thigh and shank measurements of φ, then the errors will 

partially cancel, leading to small knee angle errors. 

 

5. Discussion 

This study has demonstrated that two IMUs (attached to the thigh and shank), each 

consisting of a 3-axis accelerometer and three single axis rate gyroscopes, provide 

sufficient data to obtain high accuracy knee angle estimates. Kalman filters are used 

to estimate the pitch and roll of each IMU and this information, together with known 

anatomical constraints on knee joint motion, is used to estimate knee angle. 

 

In the validation trials, knee angle was estimated over a 5 minute period with RMS 

errors of 0.7 deg for walking and 3.4 deg for running based on a single static 

calibration at the beginning of the measurement period. Whilst other researchers have 

also investigated the use of inertial sensors (accelerometers, gyroscopes or both) to 
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measure body segment orientation or joint angles, their validation experiments have 

used relatively slow movements or movements of short duration [11-13]. Furthermore, 

some researchers have compared their IMU results with less accurate validation 

instrumentation than the methods used here (e.g. [14] [15]). 

 

Luinge & Veltink [4] also produced promising results by using an IMU and Kalman 

filter to estimate orientation of the trunk, pelvis and forearm. Accuracy is increased by 

comparing (drift prone) gyro measurements with autocalibrated accelerometer 

measurements [16] using knowledge of the frequency of movement and gravity. They 

achieved RMS errors of around 3 degrees; however, in the tasks they used for 

validation (lifting & daily routine tasks), the body segments were relatively slow 

moving. Further research by Luinge et al [9] evaluated elbow joint orientation using a 

similar approach to the one described in this paper. Their method measured full joint 

orientation and included a practical calibration procedure, whereas our method 

simplified the knee joint to a single angle. However, their validation experiment was 

over a short duration (10-30 seconds) and had less dynamic movement in comparison 

to the running validation used here. In the results presented here (Table 2), RMS 

errors were less than 3 degrees for all cases except the fastest running speed.  

 

Favre et al [8] measured knee angle during walking. For each trial the sensors were 

calibrated by a period of static standing followed by abduction/adduction of the leg 

with the knee locked. They then derived quarternions for the 30m walking trial based 

on integration of angular velocity plus use of accelerometer data when the device was 

stationary to provide correction. Results produced by this fusion algorithm [7] were 

benchmarked against a Polhemus system and gave mean errors of 1 deg for knee 
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flexion/extension. We assume that their errors would increase with the distance 

walked because of the integration of rate gyro biases. 

 

An important limitation of the work presented in this paper is that the knee is assumed 

to be a perfect hinge joint, and hence while the flexion-extension angle is measured 

well, rotations about other axes are not estimated. This could be addressed by adding 

filters to estimate the remaining two angles, based on a model of the knee which 

allowed small deviations from 0 in these angles, but stipulated that the average angle 

was 0. A Kalman filter would probably work well here: the existing system would 

allow direct calculation of the rate-of-change of the remaining two knee angles (which 

would provide the measurements to the Kalman filter), and a simple stochastic 

prediction model could be used to stabilise the system. This would allow a complete 

3D estimate of the knee angle, albeit at the expense of some additional complexity.  

 

A key question in the design of any EKF is stability. Both the experimental results 

and also long duration simulation based testing indicate that the filter is stable.  

However, this is dependent on the movement dynamics (acceleration, velocity and 

rate of rotation) remaining within the bounds specified in the filter parameters – 

higher dynamics lead to instability. One area that was not well tested by the 

experimental methodology was the response of the system when the user is turning 

(e.g. walking or running round a corner): in principle the filter should not be adversely 

affected by such motions, but further testing would be required to verify this. Also the 

validation tests at varying speeds were performed in one experimental session and, 

hence, it was not possible to differentiate errors caused by speed from those caused by 

measurement duration. 
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As is the case with alternative IMU based approaches (Favre [8] and Luinge & 

Veltink [4]), the performance of our system is dependent on the accuracy with which 

the initial calibration is performed. Further development work is required to eliminate 

the need for a camera system for calibration. An alternative static alignment 

calibration method could be to take measurements from the IMUs with the test 

subject’s body segments in known static orientations or joint angles. Greater accuracy 

could be obtained by combining these static measurements with some known dynamic 

movements, as proposed by Favre et al [8] and Luinge et al [9]. 
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Figure 4 
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Figure 1: Graphical representation of the Z inertial vectors in the IMU2 frame 

 

Figure 2: IMU and reflective marker position on the test subject. Two IMUs (one on 

the thigh, one on the shank) were attached to each test subject. The IMUs each had 4 

markers to enable the camera system to record their position and orientation. The knee 

axis was defined by markers on the two epicondyles and markers were also placed on 

the malleoli and the greater trochanter.  

 

Figure 3: Comparison of knee angle estimates using camera and IMU data for Subject 

1 at speeds of 1mph (top graph) to 5mph (bottom graph). 

 

Figure 4: Knee angle estimation error from camera and IMU data for Subject 1 at 

speeds of 1mph (top graph) to 5mph (bottom graph). 

 

Figure 5: Euler angles measured by the IMU and the camera system for both the thigh 

and shank (shin) body segments. 

 

Table 1: Test subject anthropometric data (note that s.d. refers to standard deviation)  

 

Table 2: Average and standard deviation of root mean square of the knee angle errors 

between video and IMU data for the 7 test subjects.  
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Table 1 
 

Number of 
Test Subjects 

Age  
(years) 

Height 
(metres) 

Weight 
(kilograms) 

male female mean s.d. mean s.d. mean s.d. 
5 2 30 6 1.7 0.2 70 11 

 
 
 
Table 2 
 
Speed RMS Error (degrees) 
 Knee Angle Shank Thigh 
 Average Standard 

Deviation 
θ φ θ φ 

1 mph 0.7 0.2 0.9 0.4 0.4 0.4 
2 mph 0.8 0.3 1.5 0.6 0.5 0.9 
3 mph 1.0 0.4 1.8 0.6 0.6 0.8 
4 mph 2.3 0.6 4.7 1.5 0.9 1.0 
5 mph 3.4 1.1 4.5 4.1 0.9 1.5 
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APPENDICES 

A. Avoiding singularities by switching between Euler formulations  

The Euler 321 formulation has singularities at . An alternative Euler 

formation which still allows the angle 

o90±=θ

ψ̂  to be kept separate from the rest of the state 

vector is the 312 formulation, with singularities at . The software can avoid 

these singularities by switching between formulations when the angles in the current 

formulation get too close to the singularities. 

o90±=φ

B. Choice of Euler angle representation 

The yaw angle ψ cannot be known accurately, because it is the angle of rotation 

around the z-axis, i.e. rotation around the gravity vector (estimate of the change in 

azimuth since switch on). Therefore, the angle ψ is separate from the state vector, and 

is assumed by the filter to have zero error in its estimation. Let ψ̂  be the filter’s “zero 

error” estimation of ψ. The propagation equations for θ and φ are independent of ψ̂ . 

Therefore, the pseudo inertial frame is defined as the inertial frame rotated around the 

gravity vector by an arbitrary (and generally unknown) amount. Specifically, the yaw 

angle relating the sensor and the pseudo inertial frames is ψ̂ , whereas the yaw angle 

relating the sensor and true inertial frames is ψ. Using Euler angles allows ψ to be 

treated separately from the other two orientation angles; in any other attitude 

representation (e.g. quaternion) it would not be possible to separate the different 

components in this way. 
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C. Derivation of MROT 

The matrix ( )tM ROT  describes the transformation of a vector in the IMU2 frame at 

time zero to the IMU2 frame at time t after a rotation about the knee hinge axis unit 

vector 2ĥ  in the IMU2 frame. Assuming that the difference in knee angle at time zero 

and at time t is Δα(t), the rotation about the hinge vector can be described by a unit 

quaternion, equation (A1) 
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 (A1)

The unit hinge vector retains the same orientation in the IMU2 frame throughout time 

since, as explained earlier no residual movements due to muscle activity and loose 

skin are taken into account. The corresponding rotation matrix that describes the 

mapping of a vector between the IMU2 frames before and after the above rotation is 

given from quaternion algebra, equation (A2) 
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tM ROT  (A2) 

Note that the use of a quaternion formulation in this part of the derivation is simply 

because it is a convenient way to describe and calculate a rotation of a specified angle, 

( )tαΔ , about a specified vector, 2ĥ .  
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