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Abstract  

Driven by the demands on healthcare resulting from the shift towards more sedentary 

lifestyles considerable effort has been devoted to the monitoring and classification of human 

activity. In previous work, various classification schemes and feature extraction methods 

have been used to identify different activities from a range of different datasets. In this paper, 

we present a comparison of fourteen methods to extract classification features from 

accelerometer signals. These are based on the wavelet transform and other well-known time- 

and frequency-domain signal characteristics. To allow an objective comparison between the 

different features, we used two datasets of activities collected from twenty subjects. The first 

set comprised three commonly used activities, level walking, stair ascent and descent and 

the second a total of eight activities. Furthermore, we compared the classification accuracy 

for each feature set across different combinations of three different accelerometer 

placements. The classification analysis has been performed with robust subject-based cross-

validation methods using a Nearest-Neighbour classifier. The findings show that, although 

the wavelet transform approach can be used to characterise non-stationary signals, it does 

not perform as accurately as frequency-based features when classifying dynamic activities 

performed by healthy subjects. Overall, the best feature sets achieved over 95% inter-subject 

classification accuracy. 

 

1. Introduction  

Over the last decade there has been considerable research effort directed towards the 

monitoring and classification of physical activity patterns from body-fixed sensor data [1, 2]. 

This has been motivated by a number of important health-related applications. For example, 
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with the trend towards more sedentary lifestyles there is a growing interest in the link 

between levels of physical activity and common health problems, such as diabetes, 

cardiovascular disease and osteoporosis [3]. As self reported measures have been shown to 

be unreliable [4, 5], systems for activity profiling are beginning to play an important role in 

large-scale epidemiological studies in this area [6, 7]. Furthermore, such systems can also be 

used to assess the effectiveness of different interventions aimed at increasing levels of 

physical activity and for motivating individuals to become more physically active.  

 

The success of a given rehabilitation programme is often judged by not only the levels of 

activity, but also the type of activity that an individual can return to after treatment. In 

addition, as fall risk increases with age, so a better understanding of the factors contributing 

to fall risk becomes more important. Ambulatory monitoring of various activities, including the 

time spent in sit-stand transitions have shown promise as predictors of fall-risk [8]. Further, 

both type and intensity of individuals’ activity are of interest to urban designers, and 

designers, manufacturers and purchasers of certain medical devices (e.g. advanced 

responsive pacemakers and orthopaedic implants).  

 

In addition to health-related applications, portable systems which can accurately identify the 

activity of the user have the potential to play a fundamental role in a ubiquitous computing 

scenario [9, 10]. In this field, computing devices use information from a variety of sensors to 

determine the context of a situation. Different devices can then use the context information to 

deliver an appropriate service. For example, a mobile phone may detect when a person is 

driving a vehicle and automatically divert a call. 

 

With recent advances in miniaturised sensing technology, it is now possible to collect and 

store acceleration data from individual body segments over extended periods of time. 

Although this technology offers the ideal platform for monitoring daily activity patterns, 

effective algorithms are also required to interpret the accelerometer data in the context of 
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different activities. Previous studies have shown machine learning or artificial intelligence 

approaches to be effective for identifying a range of different activities from body-fixed sensor 

data [11-14]. These techniques typically operate via a two-stage process [15]. Firstly, 

features are derived from windows of accelerometer data. A classifier is then used to identify 

the activity corresponding to each separate window of data. A range of different approaches 

has been used to obtain features from accelerometer data, with some researchers deriving 

features directly from the time-varying acceleration signal [12, 16-18] and others from a 

frequency analysis [11, 13, 19, 20]. More recently wavelet analysis has been used to derive 

so-called time-frequency features [14, 21-24]. 

 

With wavelet analysis the original signal is decomposed into a series of coefficients which 

carry both spectral and temporal information about the original signal. From these 

coefficients, it is possible to identify localised temporal instances at which there is a change 

in frequency characteristics of the original signal [25]. This concept has been applied 

successfully to accelerometer signals in order to identify points in the signal at which the 

subject changes from one activity to another [22, 24]. As well as being used to locate discrete 

temporal events, wavelet analysis can also be used to derive time-frequency features which 

characterise the original signal. However, it is not clear whether such time-frequency features 

lead to more effective activity classification than the more commonly used time-domain or 

frequency-domain features.  

 

The overall aim of this study was to extensively compare the performance of a number of 

previously reported and novel wavelet features with a range of time-domain and frequency 

domain features for the classification of different activities. Many previous wavelet-based 

studies have investigated level walking, stair ascent and stair descent [21-23], but have not 

compared their performance against simpler approaches. Therefore our first research aim 

was to compare features for this three-activity classification problem. As a second aim, we 

sought to compare the same features for a larger set of activities, which represents a more 
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challenging problem. Additionally, since the performance of a given set of features can be 

dependent on the location of the monitor, we compared accuracy for the different features 

across a number of different lower limb placements. It was felt that this work would underpin 

the development of an off-the-shelf activity monitor which could be used to classify activity 

patterns across different subjects. 

 

2. Methods 

 

2.1 Data collection 

Accelerometer data was collected using Pegasus activity monitors developed by ETB, UK. 

Each of these units contained a tri-axial accelerometer, with dynamic range of ±5g, which 

was sampled a with 10-bit resolution. With these devices it is possible to sample 

accelerometer data at a user-defined frequency and to store this data for up to 24 hours. A 

sampling frequency of 64Hz was selected for this study as this is sufficiently larger than the 

20Hz sampling required to assess daily activity [26]. A number of previous activity 

classification studies have used wavelet analysis to derive features from accelerometer 

signals collected at relatively high sampling frequencies (>250Hz). However, for this study 

64Hz was chosen as this is a realistic sampling frequency which could be implemented by an 

off-the-shelf activity monitor. No anti-aliasing filtering was applied to the acceleration data. 

 

For each subject, data was collected with three activity monitors. These were attached to 

waist (at the sacrum), the thigh (just above the knee) and the ankle (just above the lateral 

maleollus). To secure each unit in place specialised bandage (FabriFoam®) was first 

positioned around each of the body segments and the activity monitors, which were backed 

with Velcro®, adhered to the underwrapped bandage. Once in position, additional bandage 

was then wrapped over each sensor to ensure no movement could occur from overlying 

clothing. This method of attachment has been illustrated in Figure 1 for the ankle and thigh 

placement. 
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Ten male and ten female subjects participated in the study. As large individual variation has 

been reported for accelerometer signals corresponding to the same activity [27], subjects 

with a range of ages and body mass indices were recruited into the study. The mean (SD) 

age of the subjects was 31 (7) years, mean (SD) height was 1.71 (0.07) m and the mean 

(SD) weight was 68 (10) Kg. The subjects covered a wide range of body mass index from 19-

30 with mean (SD) 24 (3). Each subject gave informed consent to participate in the trial after 

approval had been obtained from the ethical committee at the University of Salford. 

 

A number of studies have shown that static postures can be differentiated from dynamic 

activity by applying a single threshold to some measure of acceleration variability [28, 29]. 

Provided sensors are attached to more than one body segment, it is possible to accurately 

identify different static postures using a threshold-based approach [30, 31]. However, the 

situation is more complicated with only a single sensor. In this scenario, more complex signal 

processing along with an appropriate biomechanical model is required to differentiate 

between different postures, postural transitions and continuous dynamic activity [32].  For this 

study we chose to investigate the classification of continuous dynamic activities. This choice 

was motivated by previous work which have used a range of different features to 

characterise acceleration signals [11, 14, 16, 17, 21-24, 33-35] 

 

Subjects completed a total of eight different activities (level walking, walking upstairs and 

downstairs, jogging, running, hopping on the left and right leg and jumping). Each of these 

activities was part of a continuous circuit which started in a building and then followed a route 

around the university campus. This circuit was described to the subjects before the start of 

data collection. During the trial the experimenter recorded the sequence of activities with a 

portable video camera giving minimal prompting to the subject. With this design the subject 

was free to move at their preferred pace and to transition between different activities when 

they felt most comfortable.  
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To ensure that there was sufficient data to address the first research question, the circuit 

involved stair walking both inside and outside the building as well as level walking in a 

number of different environments. In addition to these three  everyday activities, both jogging 

and running were also included in the circuit. For the first of these two activities, subjects 

were instructed to perform a gentle jog over a 50m distance and for the second to perform a 

fast run over the same distance. Both these activities have been used in previous 

classification studies [11, 12, 36] and their recognition could prove invaluable in any activity 

monitoring system for sports rehabilitation. We wanted to collect data across a range of 

different modes of locomotion and there included three  additional activities: hopping (on 

each leg) and jumping. Both hopping [37] and jumping [36] have been used in previous 

activity monitoring studies and are also used in sports rehabilitation. In order to include each 

of these activities as part of the circuit each subject was required to hop (on each leg 

separately) over a 15m distance and to jump, moving both legs together, over the same 

distance.  

 

Just prior to data collection the three activity monitoring units were synchronised with each 

other and with the clock of a laptop computer. This procedure was repeated at the end of 

each experiment to ensure that the units had not drifted relative to each other. 

Resynchronisation was not needed as the units never drifted by more than 3-4 samples (0.05 

seconds). Custom software was developed in Matlab (The MathWorks, USA) so that the 

video data could be synchronised with the laptop and thus the accelerometer data. Following 

data collection this software was used to annotate the accelerometer data with the transition 

points between each of the different activities (see Figure 2). This method allowed for rapid 

and accurate labelling of the data which was particularly important for identifying stair ascent 

and descent as these activities only lasted approximately 10 seconds. A small pilot study 

demonstrated minimal (<1 second) inter-tester variability in the identification of the activity 

transition points  
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Once activity transition points had been identified, features were calculated from two-second 

(128-sample) consecutive windows which overlapped by one second. The use of a 50% 

overlap between successive sliding windows has been shown to be effective in previous 

studies of activity classification [11, 38]. The choice of a two-second window was motivated 

by previous studies which had used similar length windows, Nyan et al. [24] (2 seconds) and 

Wang et al. [14] (2.56 seconds). It was not possible to use shorter windows as signals with 

less than 128 samples could not be fully decomposed into wavelet coefficients appropriate 

for comparison with other studies (see section 2.2). Longer windows limited the amount of 

data which could be extracted from short duration activities, such as stair walking. Pilot work 

also showed minimal differences between classification accuracies calculated from 

frequency-domain features derived from two-second or three-second windows. 

 

 If a window corresponded to a transition between two activities, it was excluded from 

subsequent analysis. Given the continuous nature of the circuit completed by the subjects, 

there was a disproportionate number of windows of data which corresponded to level 

walking. Therefore, in order to balance the distribution of the different activities, only a 

randomly chosen subset of these windows was used in the final analysis. 

 

2.2 Wavelet features 

A number of previous activity classification studies have derived time-frequency features 

obtained using the filter bank interpretation of the discrete wavelet transform (DWT) [22, 24]. 

With this approach the original time-domain signal (maximum frequency f) is initially 

decomposed into a coarse approximation (A) and detail information (D) by low pass filtering 

(band pass [0,f/2]) and high pass filtering (band pass [f/2,f]) respectively [39]. With wavelet 

decomposition the halfband filters are designed to enable perfect reconstruction of the 

original signal and to avoid aliasing effects. In subsequent levels of decomposition the 

approximation signal from the previous level is split into a second approximation and a detail 
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coefficient. This process is repeated to the desired decomposition level. For further details 

see [40] 

 

The aim of this study was to compare the performance of wavelet features with more 

commonly used time- and frequency-domain features. Wavelet features are normally derived 

from one or more of the detail coefficients which contain both temporal and frequency 

information on the original signal. Five separate studies were identified which had previously 

used wavelet features for classification of accelerometer data [14, 21-24]. These studies 

were then used as a basis for defining seven sets of wavelet features (Table I).  

 

The first set of wavelet features was proposed by Tamura et al. [23]. With this approach the 

accelerometer signal is decomposed using the wavelet transform and the features defined as 

signal power measurements, calculated as the sum of the squared detail coefficients at 

levels 4 and 5. Tamura et al. [23] sampled acceleration data at 250Hz. Given our lower 

sampling frequency of 64Hz, we calculated the two features from detail coefficients 

corresponding to the same frequency bands as those used by Tamuras et al. [23]. This 

process of identifying corresponding wavelet coefficients for our lower sampling frequency 

was performed for all other wavelet feature sets where needed 

 

The second set of features were taken from Nyan et al. [24]. These are calculated in a similar 

way to Tamura et al. [23], however, rather than treating the scales separately, the 

summations at levels 4 and 5 are added together. Features suggested by Sekine et al. [22] 

form the basis of the third set of features. Again there are two features, the first being the 

total of the summations of the detail signal at levels 6 and 7. This quantity is divided by the 

number of steps (N) which is obtained by counting the number of times the signal, 

reconstructed from levels 6 and 7, changes sign. For the second feature, the total of the 

summations of the detail signal from levels 4 to 7 is normalised against the sum of the 

squares from the original signal. Although Sekine et al. [22] used a Coiflet wavelet mother for 
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wavelet decomposition, our preliminary investigation showed improved classification with a 

Daubechies wavelet mother. This was therefore used for subsequent analysis. Both Nyan et 

al. [24] and Sekine et al. [22] collected data at 256Hz, therefore as before, wavelet 

coefficients corresponding to appropriate frequency bands were used to calculate of each of 

the features. 

 

Most previous activity classification studies have used wavelet analysis to derive only a small 

number of features. In contrast Wang  et al. [14] used wavelet packet analysis to derive 33 

features from a tri-axial accelerometer signal. With wavelet packet analysis, the detail 

coefficients are split into a further approximation and detail coefficient. This allows additional 

information to be extracted from the original signal. The features suggested by Wang et al. 

[14] involved summing the squares of the detail coefficient and wavelet packet approximation 

coefficients across different levels. In addition, they calculated standard deviations and RMS 

values of detail and wavelet packet approximation coefficients at a number of different levels. 

In their study, Wang et al. [14] sampled accelerometer data at 50Hz, therefore our data was 

resampled to this frequency. 

 

The fifth set of features are based on the concept of fractal dimension which was used by 

Sekine et al. [21] to characterise accelerometer signals. The fractal dimension quantifies the 

variance progression of the detail coefficient over the different wavelet scales and as such 

gives a measure of the complexity within the original signal [41]. Given the high sampling 

frequency used by Sekine et al. [21] (1024 Hz), they were able to calculate the fractal 

dimension from the variance of the detail coefficients across seven different levels. Due to 

our lower sampling frequency of 64Hz, fractal dimension was estimated from variance 

progression across three  levels. Although this may lead to poorer discriminate ability for this 

feature set, the use of additional detail coefficients was not possible with our lower sampling 

frequency. 
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In addition to the five sets of wavelet features described above, we experimented with some 

alternative wavelet features. Two additional features sets were then included in this study 

(Table I). For both of these feature sets, each component of the 64Hz tri-axial acceleration 

signal was decomposed to five levels using a Daubechies 2 wavelet mother. A sixth wavelet 

feature set was then defined as the sum of the squared detail coefficients at levels 1 to 5. 

These five features were calculated for each component of acceleration, thus giving a total of 

15 features. The seventh feature set was obtained in a similar way, but the sums of the 

absolute values were used to provide a different type of combining norm. All wavelet features 

in Table I, were derived for every window of accelerometer data using Matlab ver.7.4 (The 

Mathworks, USA). 

 

2.3 Time and frequency-domain features 

For additional comparison, we also employed three sets of time-domain features and four 

sets of frequency-domain features (Table II). Within each of these seven sets, the features 

were derived individually for each of the three components of the tri-axial accelerometer 

signal. Mean and standard deviation (SD) have been used in previous studies [34] to 

characterise windows of accelerometer data. As an extension to this set we defined the 

multiple statistics features set which additionally included median and 25th and 75th percentile 

[33]. Low pass filtering is commonly used to separate the DC and AC components of an 

accelerometer signal [42]. Previous studies have defined features as the mean DC and the 

mean of the rectified AC signal [16, 17]. These two statistics were therefore used to define 

the third set of time-domain features. 

 

In order to derive frequency domain features, an FFT was performed on each two  second 

window. The principal frequency was defined as the first of the frequency-domain feature 

sets (fourth in Table II). This has been used previously as an addition to time-domain 

measures in order to improve classification accuracy [35]. The second frequency-domain 

feature set was chosen to be spectral energy, which is defined to be the sum of the squared 
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FFT coefficients [11, 43]. A recent study carried out by Bao and Intille [11] obtained high 

levels of classification accuracy using a mixed set of time and frequency-domain features. 

Therefore this was included as the sixth set of features. In addition to spectral energy, Bao 

and Intille [11] included DC, correlations between axes and frequency-domain entropy. This 

latter feature gives a measure of the normalised information entropy of the FFT components 

and allows for differentiation between activities which have simple acceleration patterns and 

those with more complex patterns [11]. The final frequency-domain feature set was defined 

as the magnitude of the first five components of the FFT power spectrum. As with the other 

feature sets, this set of parameters was derived separately for each of the three components 

of acceleration. Although it is more common to use the power spectrum of FFT coefficients, 

preliminary work showed that the magnitudes gave improved accuracy and were therefore 

used for the final analysis. 

 

2.4 Activity classification 

In order to compare the discriminate ability of each of the different features sets, a k-Nearest 

Neighbour (kNN) classifier was implemented and its accuracy determined using leave-one-

subject-out cross validation. This type of classifier has been shown to be effective in previous 

activity recognition studies [11, 12] and selects the activity that is closest to the feature under 

question using the Euclidean distance metric in the multidimensional feature space. We 

employed kNN as our recognition engine, due to its implementational simplicity and flexibility, 

and the fact that it can allow analysis of the classification decisions. With leave-one-subject-

out cross validation, the classifier is trained with data from all subjects except one and then 

tested with data from the excluded subject. This process is repeated until each subject has 

been used once as the testing dataset. With this approach, the overall accuracy is calculated 

as the average classification result of each train-test repetition. Cross validation is a popular 

statistical resampling procedure [44] and we use it here to evaluate the accuracy of the kNN 

classifier for a given set of features. The mean accuracy of all train-test repetitions can be 

influenced by a small number of subjects who may bias the overall result. Therefore, in order 
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to compare the performance of two sets of features, the Mann-Whitney U test was used to 

test for differences in the two distributions of train-test accuracies. This test was chosen as it 

was not possible to guarantee that these distributions were normally distributed. A 

significance level of p<0.01 was used throughout. 

 

To address our first research aim, only windows of data which corresponded to level walking, 

stair ascent and stair descent where included in the analysis. For this three-activity 

classification problem, accuracy was determined for the waist-mounted accelerometer for 

each of the seven sets of wavelet features and for each of the seven sets of time/frequency 

features. This process was then repeated for the thigh and then the ankle-mounted sensor. 

To establish whether it would be possible to improve classification accuracy using data from 

more than one sensor, the analysis was performed for all seven possible combinations of the 

three sensors (as shown in the first column of Table III). Once classification accuracies had 

been determined for the three-activity problem, the process was repeated with windows of 

accelerometer data from all eight activities. 

 

3. Results 

Table III gives the classification accuracies for the wavelet feature sets and different 

accelerometer placements for the three-activity classification problem. Table IV illustrates the 

same information but for the time/frequency features. Overall, for the three-activity problem, 

the highest classification accuracy for a single sensor (97±3%) was obtained using FFT 

components derived from the ankle-mounted unit. This distribution of accuracies was 

significantly higher than those obtained from all other feature sets derived from a single 

sensor (p<0.01). In general, for the wavelet feature sets, the highest performance was 

obtained using the sum of the absolute values for each sensor configuration (Table III). 

However, the performance of this feature set was, in some cases, not significantly better than 

the wavelet feature set proposed by Wang et al. [14] 
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In order to establish whether, in general, the time/frequency features outperformed the 

wavelet features, a number of statistical tests were performed. Firstly, the performance of the 

best set of time/frequency features was compared with the best set of wavelet features for 

each sensor configuration. With the exception of the waist-mounted sensor, the 

time/frequency feature sets significantly outperformed the wavelet features sets (p<0.01) in 

every case (table III and IV). Further testing was then carried out by comparing the second 

best performing time/frequency feature set with the second best performing wavelet feature 

set, again for every sensor configuration. These tests also showed the time/frequency feature 

sets to significantly outperform the wavelet feature sets in every case (p<0.01). 

 

The results of the eight-activity classification problem displayed similar trends to the three-

activity problem for both the wavelet features (Table V) and the time/frequency features 

(Table VI). Again, the highest wavelet classification accuracies, for each of the sensor 

configurations, were obtained using the sum of the absolute values (Table V). However, the 

performance of this feature set was, in some cases, not significantly better than the sum of 

the squares feature set. For the time/frequency features, maximal classification accuracy for 

a single sensor (92±7%) was again obtained when the individual FFT components were 

derived from the ankle-mounted unit (Table VI). However, this distribution of accuracies was 

not significantly different to those obtained using FFT coefficients derived from the thigh-

mounted sensor (p=0.16). Again, to determine whether differences in accuracy existed 

between the two types of features, comparisons were made between the best and second 

best performing time/frequency and wavelet features. These comparisons showed that, with 

the exception of features derived from a waist mounted sensor, the time/frequency features 

significantly outperformed the wavelet features (p<0.01)  (Table V and VI). 

 

The classification accuracies reported in tables V and VII represent an average across all of 

the eight different activities. Although this data would suggest that FFT features give better 

classification accuracy than wavelet features, it is not clear whether this result is true across 
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all activities. To investigate this further sensitivity and specificity were calculate separately for 

each of the eight activities for the ankle-mounted sensor with the best performing wavelet 

feature set (sum of the absolute values) and the best performing time/frequency feature set 

(magnitude of the FFT components). This comparison (Table VII) shows that, for each of the 

different activities, the FFT feature set outperforms the wavelet feature set. 

 

4. Discussion 

This study was designed to compare the discriminative ability of wavelet features with 

time/frequency features for two activity classification problems: a simple three-activity 

problem and an eight-activity problem. In addition, classification accuracies were compared 

for three individual lower limb placements, the waist, thigh and ankle, as well as some of their 

combinations. In general, similar levels of accuracy were found when data from a waist-

mounted sensor was used to obtain either time/frequency or wavelet features. However, for 

both the ankle and thigh-mounted sensor, time/frequency features significantly outperformed 

the wavelet features. For both classification problems, the optimal accelerometer placement 

for a single sensor was shown to be on the ankle. 

 

Five previous studies were identified which had used wavelet features to discriminate 

between level walking, stair ascent and stair descent. Of these five studies, only Nyan et al. 

[24] and Wang et al. [14] reported inter-subject classification accuracies [14, 24]. The 

remaining three studies simply demonstrated significant differences between wavelet 

parameters corresponding to each of the three activities [21-23]. Nyan et al. [24] used a 

simple threshold-based classification scheme which required the manual selection of 

arbitrary thresholds for both of their features. With this approach they obtained accuracies of 

97-99%. The use of thresholds determined by the experimenter reduces the system’s ability 

for fully automatic classification. In our work we aimed to build an automated system which 

can be trained by a set of supervised subjects and activity scenarios. This system can then 

be applied to new subjects, instrumented with the same sensors, without any further 
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supervision. In their study, Nyan et al. [24] collected data using two shoulder-mounted 

accelerometers so their results are not directly comparable to those in the current study.  

 

Wang et al. [14] studied levelling walking, stair ascent/descent and walking up/down a slope 

using data collected from a waist-mounted accelerometer. Using a MLP Neural Network 

classifier they obtained classification accuracies of 89-92% for these five activities. However, 

in their study, an individual normalisation scheme was used in which the features were 

divided by those obtained from a five second flat walking session. When unadjusted features 

were used for classification, similar levels of accuracy to those found in the current study 

were obtained. 

 

In order to minimise computational power requirements, activity classification algorithms 

typically work with relatively short windows of sensor data. As these windows typically 

correspond to a single activity, the frequency content of the signal varies little with time. 

Wavelet analysis allows for the analysis of non-stationary signals. However, it is not clear 

whether parameters derived from wavelet coefficients, represent a more effective means of 

characterising short windows of data than standard frequency-domain techniques. In this 

study data was collected from 20 healthy subjects. Analysis of this data showed that features 

derived from an FFT analysis outperformed those derived from wavelet coefficients. This 

may reflect the suitability of standard frequency-domain techniques for characterising the 

short duration stationary signals, which were characteristic of our subject group. 

 

This study found surprisingly good levels of classification accuracy when using simple time-

domain features. A number of other studies have reported high levels of classification 

accuracy using time-domain features. For example, Pirttikangas [34] used means and SDs 

from a number of body worn accelerometers to accurately classify (>90%) a wide range of 

activities. Similarly, Fahrenberg et al. [16] used mean DC mean AC in a hierarchical 

classification to differentiate between a range of static postures and movements. For the 
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current study, this set normally outperformed the other time-domain features and often gave 

comparable accuracy to the FFT component feature set.  

 

The highest classification accuracy for a single sensor was obtained for the FFT component 

feature set and the ankle-mounted sensor. This feature set consistently outperformed both 

the energy feature and the larger set proposed by Bao and Intille [11]. As they studied a 

larger range of activities than those of the current study, direct comparison of classification 

accuracies is not possible. However, their reported maximum classification accuracy of 84% 

using data from five sensors is similar to the maximum accuracy (90%) achieved in our study 

for the eight-activity problem.  Huynh and Schiele [37] also compared the discriminative 

ability of individual FFT components with simple time-domain features, spectral energy and 

spectral entropy for a range of activities including walking, jogging and hopping. In 

agreement with this study, they found the FFT component to have higher discriminative 

ability than the other features. However, they were unable to identify a single component 

which performed best for each activity. Although, in the present study, the first five 

components were used as input to the classifier, it is possible to use a larger or smaller 

number of components. Figure 3 illustrates how the classification accuracy changes as the 

number of components varies. It can be seen that using the first six components produces 

maximal accuracy for both the three-activity and eight-activity problems. Although, for the 

three-activity problem, an almost perfect result is achieved, with the eight-activity problem a 

maximum accuracy of only 94% is possible. Inspection of the corresponding confusion matrix 

(Table VIII) showed that jumping was often confused with a number of the other activities. 

When this activity was excluded the accuracy increased to 97%. 

 

There are a number of limitations to the current study. Firstly, subjects performed each of the 

separate activities whilst being videoed by the experimenter. Under these conditions, it is 

possible that individuals may subconsciously modify their habitual movement patterns. 

However, some method is required for annotating the sensor data. The video method, used 
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in this study, was selected as it was believed to be more accurate than self observation by 

the subject. Another limitation is that only relatively young, healthy subjects were included in 

the study. Clearly it is not possible to generalise our findings, that frequency-domain features 

perform better than wavelet features, to other subject groups, such as the elderly or patients 

with neurological impairment. For such individuals, jerkiness of movement may lead to 

isolated frequency transients which maybe better characterised using wavelet features. 

Further work is thus needed to determine the most appropriate features for activity 

classification for different patient groups. 

 

For this study a single classifier (kNN) was used to evaluate the discriminatory ability of the 

different feature sets. Although it is possible to use other methods to identify optimal features, 

this method was chosen for its simplicity, flexibility and popularity. In general, different 

classifiers can have different subsets of optimal features and a larger evaluation study would 

be needed to perform comparisons between different classifiers.  

 

5. Conclusion 

This study was performed on healthy individuals. For this subject group it was demonstrated 

that, for the majority of sensor configurations, time/frequency features lead to better 

discrimination between activities when compared to wavelet parameters. More specifically, 

the highest levels of classification accuracy were obtained from individual FFT components. 

The study also compared classification accuracies across three  different sensor placements 

and showed a sensor mounted at the ankle to outperform the thigh and waist sensors for 

most feature sets. These findings suggest that future activity monitoring systems, aimed at 

healthy individuals, should consider using an FFT feature set derived from an ankle-mounted 

sensor. Further work is required to determine the most appropriate features sets for other 

subjects groups, such as the elderly or neurologically impaired. 
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Figure 3 
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Figure Captions: 

 

Figure 1: Activity monitors attached to the ankle and thigh. 

Figure 2: GUI used to annotate the accelerometer data from the video record. 

Figure 3: Plot to show the accuracy of activity recognition as the number of FFT coefficients 

is increased. The dashed line shows the relationship for the three-activity problem (level 

walking, stair ascent and stair descent) and the solid line shows the relationship the eight-

activity problem. 
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Table I: Summary of the different wavelet features. The term cDj refers to the detail 
coefficient at the jth level of decomposition. All other nomenclature is explained within 
the table. 
  

 Publication Wavelet Mother 
No of 

Features 
Description of each feature 

1 
Tamura et 

al. [23] 
Daubechies 3 6 

2

4 |||| cD  & 
2

5 |||| cD  

for all three acceleration components 

2 
Nyan et al. 

[24] 
Daubechies 5 2 




5

4

2||||
j

Vert

jcD  & 


5

4

2||||
j

AP

jcD  

Where the subscripts Vert and AP refer to the 
wavelet coefficients derived from the vertical and 

anterior-posterior accelerations 

3 
Sekine et 

al. [22] 
Daubechies 2 2 



7

6

2||||
1

j

Vert

jcD
N

   &   
2

7

4

2

||||

||||

AP

j

AP

j

x

cD


 

Where xAP represents the AP accelerometer 
signal. 

4 
Wang et 
al. [14] 

Daubechies 5 33 

2

3

2

3

6

2

2 |||||||||||| dDdAcD
j

j 


 

Where dA3 and dD3 represent the third level 
wavelet packet approximation and detail 
coefficient respectively. This feature was 

calculated for all three components of acceleration 
along with measures of standard deviation and 
RMS for wavelet coefficients at different levels. 

5 
Sekine et 

al. [21] 
Daubechies 4 3 








 


2

1
2


ensionFractalDim  

To calculate fractal dimension, the variance of the 
detail coefficient is plotted against the 

decomposition level. The parameter β is the 
gradient of resulting line. This feature was 

calculated for each component of acceleration. 

6 
Squared 

coefficients 
Daubechies 2 15 

2

1
||cD|| , 2

2
||cD|| , 2

3
||cD|| , 2

4
||cD||  & 2

5
||cD||  

for each component of acceleration 

7 
Magnitude 
coefficients 

Daubechies 2 15 11 |||| cD , 
12 |||| cD , 13 |||| cD , 

14 |||| cD , 15 |||| cD  

for each component of acceleration. 
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Table II: Summary of the time and frequency-domain features 
 

 
No of 

Features 
Description of each feature 

1 6 Mean and SD 

2 15 Mean, SD, median and 25th and 75th percentile 

3 6 Mean low and mean high pass filtered signals 

4 3 Principal frequency 

5 3 Spectral energy 

6 12 
Bao and Intille [11]: Mean DC, energy, entropy and 

correlations between axes 

7 15 Magnitude of first five components of FFT analysis 
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Table III: Classification accuracies (%) obtained using leave-one-out cross validation 
for the three-activity classification problem (level walking, stair ascent and stair 
descent) with the wavelet features (table I). Accuracies have been reported for each of 
the different accelerometer combinations. 
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Thigh 71 67 72 83 59 82 88 

Waist and 
Ankle 74 74 72 84 55 79 89 

Thigh and 
Ankle 85 82 61 92 62 91 92 

All 85 85 73 95 65 93 95 
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Table IV: Classification accuracies (%) obtained using leave-one-out cross validation 
for the three-activity classification problem (level walking, stair ascent and stair 
descent) with the time and frequency features (table II). Accuracies have been 
reported for each of the different accelerometer combinations. 
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Table V: Classification accuracies (%) obtained using leave-one-out cross validation 
for the eight-activity classification problem with the wavelet features (table 1). 
Accuracies have been reported for each of the different accelerometer combinations. 
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Table VI: Classification accuracies (%) obtained using leave-one-out cross validation 
for the eight-activity classification problem with the time and frequency features (table 
II). Accuracies have been reported for each of the different accelerometer 
combinations. 
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Table VII: Sensitivity and specificity for each activity for the best performing 
time/frequency and wavelet feature sets. 

 

 Time/frequency Features: 
Magnitude of FFT coefficients 

Wavelet Features: Sum of 
absolute values 

Sensitivity Specificity Sensitivity Specificity 

Walking 99 99 85 92 

Upstairs 94 99 67 95 

Downstairs 96 98 88 96 

Jog 91 98 78 97 

Run 91 99 87 98 

Hop (left leg) 83 99 77 99 

Hop (right leg) 74 98 69 98 
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Table VII: Confusion matrix showing classification results for the eight-activity 
problem using features defined as the magnitudes of the first ten FFT components 
obtained from the ankle-mounted sensor. 
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Hop (right leg) 0 0 0 0 0 14 73 8 

Jump 0 2 13 4 1 1 14 59 

 
 


