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Abstract 

There have been several attempts to describe traffic flow behaviour by modelling the 

relationship between the main variables describing traffic such as speed, flow and density.  

Some of these models are based on simplistic assumptions and therefore, they are far from 

being accurate in representing the whole range of traffic conditions (e.g. from free flowing 

to congested situations).  This paper describes a speed-flow traffic model based on a two-

regime linear speed-density relationship.  The proposed model gives a mathematical 

representation for the likely speed-flow relationship based on published data from the 

Highway Capacity Manual.  The model is robust and simple to use in describing this 

relationship for different traffic and roadway conditions.  It can be applied in modelling 

traffic behaviour and used in estimating delays when dealing with stable as well as unstable 

traffic flow conditions ranging from free-flow to stationary queues.  The model is also 

recommended for use in text books when describing speed-flow-density relationships. 
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1   Introduction 

The main variables that form the underpinnings of traffic analysis are speed, flow and 

density (Mannering et al., 2005).  Although there are a number of published theoretical and 

analytical speed-density relationships, most Traffic Engineering text books refer to 

Greenshields model which was developed in 1934 when describing such relationships (for 

example, see Fricker and Whitford (2004), Mannering et al. (2005), O’Flaherty (1997), 

Salter (1986), Salter and Hounsell (1996), and Wright and Dixon (2004)).  This is because 

the model by Greenshields (1934) proposed a simplistic approach by assuming a linear 

form of speed-density relationship.  The derived flow-density relationship gives a 

symmetrical parabola which has been used later on by Lighthill and Whitham (1955) in 

describing and explaining what is known as the shockwave phenomenon in traffic streams 

when traffic density increases suddenly. 

Other forms of speed-density relationships are provided elsewhere (see for example, 

Drew (1965), Duncan (1979) and Pipes (1967)), while Drake et al. (1967) refer to a multi-

regime linear relationships (i.e. two-regime and three-regime linear speed-density 

relationships).  From experimental observations, Kerner (1999) showed that there are at 
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least two phenomena of what was called “self-organisation without bottlenecks” in real 

traffic flow. 

Normally, it is difficult to obtain accurate measurements of traffic density directly from 

sites.  Hall et al. (1986) used occupancy (spot-density) instead of density in a study on 

flow-density relationships.  Speed and flow values are much more accessible than density 

and are easier to obtain from site observations.  Logically, speed and flow (rather than 

density) should be used as input values to those models representing traffic behaviour in 

evaluating the performance of traffic schemes and in estimating traffic delays for 

cost/benefit analysis. 

Therefore, this paper uses parameter relating to speed and flow (such as free speed, 

maximum flow and speed at maximum flow) which can be directly measured from site in 

proposing a traffic model for speed-flow relationship.  The Highway Capacity 

Manual (2000) is used as the basis for the data needed for this paper to form the proposed 

analytical model.  This model is recommended for use in describing traffic once its 

parameters are obtained from site.  

2   Capacity and Level of Service (LOS) 

According to Wright and Dixon (2004), the Highway Capacity Manual (2000) describes 

traffic operational conditions using a qualitative measure called Level of Service (LOS).  

There are several Levels of Service ranging from A to F with varying density range 

measured in pc/mi/ln (passenger car per mile per lane) as shown in Table 1.  

Table 1  Levels of service and density range (adapted from Highway Capacity Manual, 2000) 

Level 

of 

Service 

Description Density 

range 

pc/mi/ln 

(pc/km/ln) 

Average 

density 

pc/mi/ln 

(pc/km/ln) 

A This represents free-flow, low flows, high speeds, and 

low density with little or no delay. Drivers are free to 

choose their speeds and lanes.  (Stable condition) 

0-11 

(0-7) 
5.5 

(3.4) 

B Operating speeds begin to be restricted by traffic 

conditions.  Drivers are able to reasonably maintain 

their desired speed and lane of operation.  (Stable 

condition) 

11-18 

(7-11) 
14.5 

(9.1) 

C Most drivers are more restricted by the higher traffic 

flows and have less freedom to select their own 

speeds, as well as reduced ability to change lanes or 

pass.  (Stable condition) 

18-26 

(11-16) 
22 

(13.8) 

D There is little freedom to manoeuvre with lower 

comfort and convenience but these conditions may be 

tolerated for short periods.  (Approaching unstable 

conditions) 

26-35 

(16-22) 
30.5 

(19.1) 

E 

 

Momentary stop-start conditions may prevail and 

queues start forming and operations are at or near 

capacity of the road.  (Unstable conditions) 

35-45 

(22-28) 
40 

(25.0) 

F 

 

This represents forced flow operation where speeds are 

low and flows are below capacity with existing queues 

approaching traffic jam with complete stand still.  

(Unstable conditions) 

>45 

(>28) 
Varies 



 3 

Table 1 illustrates these levels of service (LOS) and gives the density range associated with 

each of them as described by the Highway Capacity Manual (2000).  The stable and 

unstable traffic conditions associated with these levels are also identified.  Capacity of a 

given section of roadway can simply be defined as the maximum number of vehicles which 

can pass a given point in one hour under the prevailing roadway and traffic conditions.  

Thus, there are a whole range of factors which influence capacity, some of which are 

related to road geometry while others are related to general drivers’ behaviour, 

environmental conditions and the presence of traffic control devices. 

3   Modelling Traffic 

According to Kreyszig (2006), modelling is translating a physical or other problem into a 

mathematical form using an algebraic equation, a differential equation, a graph or some 

other mathematical expression.  It is one of three phases which might be necessary in 

problem solving and interpretation of results for practical use. 

Different models were used in describing traffic behaviour.  These models could be 

analytical (which uses theoretical considerations based on field data), descriptive (which 

are mathematical models that applies theoretical principles), deterministic (which are 

mathematical models that are not subject to randomness) and empirical (that uses statistical 

analysis of field data in describing the behaviour).  Computer simulation or stochastic 

techniques could be used in the modelling of traffic behaviour.  

The model used in this paper is a simple descriptive analytical model which is based on 

published data from reliable sources such as the Highway Capacity Manual (2000).   

4   Speed-flow-density models  

In this section, two speed-density relationships are considered in more details, namely, the 

one- and two-regime linear models.  Both of these models are simple to use.  However, 

there are other forms of models of more complex nature. 

4.1   One-regime linear speed-density relationship 

4.1.1   Speed-density 

The one-regime linear relationship between speed and density, as represented by 

Greenshields (1934), is shown in Figure 1. 

This relationship is represented in Equation 1, as follows: 

 v = vfree [1 - (k / kjam)] ....Eq. 1   (linear form) 

where, 

 v is the space mean speed 

vfree is the free-flow speed (i.e. the speed on a roadway that can be maintained when 

no other vehicles are present)  

 k is the density 

 kjam is the jam density (i.e. the maximum possible density on a roadway). 
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Figure 1  Equation of a line (representing a linear speed-density relationship) 

4.1.2   Flow-density  

According to Wardrop (1952), flow is the product of space mean speed and density.  This is 

represented by Equation 2. 

  q = k v …. Eq. 2 

where,  

 q is the flow 

Therefore, Equation 1 could be rewritten as follows: 

 q = k [vfree (1 - (k / kjam))] 

q = k vfree - vfree (k
2 
/ kjam) .... Eq. 3 (parabolic function)  

This is a parabolic representation of the relationship between flow and density.   

4.1.3   Capacity 

Capacity (i.e. maximum flow) is of interest to practitioners such as traffic engineers and 

transport planners when designing roads and modelling traffic behaviour.  In order to find 

the optimum density (kcap) when flow is maximum (i.e. at capacity (qcap)), Equation 3 is 

used to find the maximum point on the curve by differentiation and setting the terms to zero 

as follows: 

 dq/dk = 0 (from Eq. 3) 

 dq/dk = vfree - 2k vfree / kjam = 0, then 

 kcap = 0.5kjam  (i.e. density at capacity)  …. Eq. 4 

Similarly, optimum speed (vcap ) at maximum flow (qcap) from Equations 1 and 4: 

 vcap = vfree [1 - (kcap / kjam)] = vfree [1 - (0.5kjam / kjam)] =  0.5vfree … Eq. 5 

y 

x 

a 

y = a + bx 

(b: slope of the line) 
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To calculate maximum flow (i.e. capacity): 

 qcap = kcap vcap = (0.5 kjam) (0.5 vfree) = 0.25 kjam vfree   ….Eq. 6 

4.1.4   Speed-flow 

In order to find the relationship between speed and flow, Equations 1 and 2 are used to 

form: 

k = (kjam / vfree) (vfree - v), and q = k v, 

 q = v (kjam / vfree) (vfree - v) = kjam (v - v
2 
/ vfree)   (parabolic function) … Eq. 7 

Since speed is dependent on flow (rather than the other way round), Equation 7 could be 

transformed to show speed as the dependent variable and flow is the independent variable.  

This will result in a symmetrical shape of a partial ellipse.  This representation of the speed-

flow relationship is often found in most Traffic and Transport Engineering text books as 

mentioned earlier. 

The mathematical representation for an ellipse in the xy-plane with the centre at the origin 

can be shown as follows (Kreyszig, 2006): 

 x
2
/m

2
 + y

2
/n

2
 = 1   …. Eq. 8a 

Where 

 m is the x-intercept and n is the y-intercept as shown in Figure 2. 

 

 

 

 

 

 

 

 

Figure 2  Equation of an ellipse 

Therefore,  

y
2 
= n

2 
(1 - x

2
/m

2
)   …. Eq. 8b            or           y =  n (1 - x

2
/m

2
) …. Eq. 8c 

In order to take into consideration that there are no negative speed values (i.e. y values 

could only be positive), the above equation is shifted up by the value of the y-intercept (i.e. 

the value of n) to form: 

 y = n  n (1 - x
2
/m

2
) …Eq. 8d 

Equation 8d represents both stable and unstable conditions, as described in Table 1, for the 

one-regime linear speed-density relationship. 

x 

x
2
/m

2 
+ y

2
/n

2
 = 1 

n 
m 

y 
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4.2   Two-regime linear speed-density relationship 

A more realistic approach to the relationship between speed and density could take the form 

of a two- (or more) regime linear relationship representing both stable and unstable 

conditions.  Figure 3 shows a two-regime linear relationship between speed and density 

which results in a non-symmetrical parabolic shape for the speed-flow relationship (as 

shown in Figure 4). 

 

Figure 3  Two-regime linear for the speed-density relationship 

 

 

 

 

 

Figure 4  Speed-flow for the two-regime linear speed-density relationship 

Making use of Equation 8c, and in order to take into consideration that there are no 

negative speed values for the speed-flow relationship (as discussed earlier), the equation is 

shifted up by n’, as shown in Figure 4. 

Therefore, Equation 8c, for the stable conditions, becomes: 

 y = n’ + n (1 - x
2
/m

2
) …Eq. 9a    

Similarly, for the unstable conditions: 

   y = n’ – n’ (1 - x
2
/m

2
) …Eq. 9b 

In Figure 4, the intercept (m) takes only positive values representing capacity (qcap), 

with (n) is represented by the difference between the free-flow speed (vfree) and optimum 

v 

k 

line representing the 

stable condition 

line representing the 

unstable condition 

Flow 

 

Speed 

 

n 

n’  

m 
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speed (vcap), while (n’) represents the optimum speed (vcap) at capacity.  This representation 

is more realistic than the previously described symmetrical form since it clearly 

differentiates between the stable (i.e. before capacity is reached) and the unstable traffic 

conditions (i.e. flows lower than capacity but with relatively low speeds and higher 

densities).  In order to find the values of the intercepts used in these equations, published 

data from the Highway Capacity Manual (2000) were used. 

5   Typical Values from the Highway Capacity Manual  

For uninterrupted flow facilities, capacity (as described under level of service E) occurs 

where average density is in the region of 40 pc/mi/ln (or 25 pc/km/ln) with a maximum 

value of 45 pc/mi/ln as shown in Table 1.  In Table 2 and according to Wright and 

Dixon (2004), for any known density, the maximum service flow rate (i.e. capacity, 

column 3) will increase for higher speed roadways (i.e. free-flow speed, column 1). 

Fricker and Whitford (2004) stated that capacity varies by free-flow speed and that figures 

of about 2400 pc/hr/ln were used in design for most rural and suburban freeways with free-

flow speed of 70 to 75 mph, whereas capacity values of 2250 pc/hr/ln corresponding to 

lower free-flow speeds of about 55 mph were often used in design of urban freeways. 

Table 2 Typical maximum service flow rates for Level of Service E in pc/hr/ln for different free-flow speeds 

(Adapted from Wright and Dixon (2004)) 

 1 2 3 4 5 

 Free-flow 

Speed (vfree) 

 in  

mph (km/hr) 

Minimum 

Speed at Level 

of Service E 

(vcap)  

in 

mph (km/hr) 

Maximum 

Service Flow 

Rate (qcap)  

 in  

pc/hr/ln 

Speed intercept 

for stable 

conditions  

(n=vfree-vcap) 

in  

mph (km/hr) 

Speed intercept 

for unstable 

conditions  

(n’=vcap) 

in  

mph (km/hr) 

rural 75 (120) 53.3 (85.3) 2400 21.7 (34.7) 53.3 (85.3) 

 70 (112) 53.3 (85.3) 2400 16.7 (26.7) 53.3 (85.3) 

 65 (104) 52.2 (83.5) 2350 12.8 (20.5) 52.2 (83.5) 

 60 (96) 51.1 (81.8) 2300 8.9 (14.2) 51.1 (81.8) 

urban 55 (88) 50.0 (80.0) 2250 5.0 (8.0) 50.0 (80.0) 

The capacity values shown in Table 2 (column 3) are typical ones which may be adjusted 

depending on other factors, such as lane width, lateral clearance, traffic composition, type 

of drivers (e.g. commuters or unfamiliar users of the road), number of lanes, spacing 

between interchanges and general terrain. 

Table 2 shows the constant values which could be used in formulating the equations 

representing both stable and unstable conditions of flow for different free-flow speeds (e.g. 

representing different road types).  This could easily be adjusted for use in modelling more 

realistic speed-flow relationships for different roadway conditions. 

Fricker and Whitford (2004) stated that density is the primary determinant of the Level of 

Service and the speed criterion is the speed at maximum density for that Level.  For a given 

LOS at capacity (i.e. LOS E), the maximum density reached will determine the minimum 

speed of that level as shown in column 2, Table 2. 
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In order to find the intercepts, n and n’, which were previously described in Equations 9a 

and 9b, columns 4 and 5 in Table 2 were formed.  Column 4 represents the speed 

intercept (n) in the stable condition and is formed by deducting column 2 from column 1, 

while column 5 representing the speed intercept for the unstable condition (n’) is taken 

from column 2, since  

 vfree= n + n’ ,  vcap = n’ , and  qcap = m 

Therefore, 

 v = vcap + [(vfree - vcap) (1 – (q
2 
/ qcap

2
))]    Eq. 10a (stable condition) 

 v = vcap – [(vcap) (1 – (q
2 
/ qcap

2
))]    Eq. 10b (unstable condition) 

The values of these parameters could be obtained from the Highway Capacity 

Manual (2000) (as shown in Table 2 based on analytical studies for different types of 

roadway conditions).  The above two equations are recommended in practice for use in 

modelling traffic conditions ranging from free-flowing to stationary queuing.  Also, they 

are recommended for use in Traffic Engineering text books when describing speed-flow-

density relationships since they represent both stable and unstable conditions which are 

likely to occur on site. 

6   Typical Values for Jam Density and Free-Flow Speed 

Jam density (kjam) could be obtained from Equation 6 as follows: 

 qcap = kcap vcap = (0.5 kjam) vcap , therefore,  kjam = 2 qcap /  vcap  …. Eq. 11 

Using the values from the Highway Capacity Manual (2000) shown in columns 2 and 3 of 

Table 2 and Equation 11, the calculated jam density, kjam, for all free-flow speed conditions 

(i.e. ranging between 55 and 75 mph representing urban to rural conditions, respectively), 

reveals a figure of about 90 pc/mi/ln (i.e. 56 pc/km/ln).  This indicates that when stationary 

queues are formed, the effect of the type of road (i.e. urban to rural) is negligible and jam 

density is more or less unchanged.   

Using the value of 90 pc/mi/ln or 56 pc/km/ln for jam density obtained from Equation 11 

above, the calculated average distance headway (hd) when stationary is in the region of 

18 metres.  Obviously the average distance headway could vary depending on traffic 

composition (affecting the factor used in converting different types of vehicles into 

equivalent passenger car units).  

According to Wright and Dixon (2004), the lengths of some articulated transit buses and 

semi-trailers are in excess of 60 ft (18.3 m).  The higher the number of long vehicles in the 

traffic stream (such as buses and trucks), the lower is the jam density measured in veh/mi/ln 

(or veh/km/ln).  Thus, the calculated average distance headway (hd) of 18 metres when 

stationary is relatively high and some text books (e.g. Fricker and Whitford (2004) and 

Salter 1986) refer to a more realistic values in the region of 8 metres which corresponds to 

a jam density of 125 pc/km/ln (equivalent to 200 pc/mi/ln).    Leutzbach (1988) suggested a 

higher figure for jam density of 150 veh/km/ln (i.e. 240 veh/mi/ln) as a rough guideline 
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based on European studies.  This results in relatively lower equivalent distance 

headway (hd) of 6.7 meters. 

Figure 5 shows the flow-density relationship for the two-regime linear speed-density 

relationship suggested in this paper based on distance headway (hd) of 8 meters and those 

obtained from the Highway Capacity Manual (2000).  The assumption used in Equation 4 

for calculating the optimum density at capacity should therefore be adapted as follows: 

kcap = 0.50 kjam  ….. Eq. 12a  (based on a maximum density of 45 pc/mi/ln or 

28 pc/km/ln as used by the Highway Capacity Manual (2000)) 

and 

 kcap = 0.20 kjam  ….. Eq. 12b  (based on hd of 8 meters when stationary) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Flow-density relationship for the two-regime linear speed-density relationship 

 

Similarly, one could obtain the relationship between free-flow speed (vfree) and speed at 

capacity (vcap) for different roadway conditions (i.e. rural to urban) using columns 1 and 2 

in Table 2 from the Highway Capacity Manual (2000).  This will result in vfree values 

ranging between 1.10 and 1.41 times vcap for urban to rural freeways, respectively.  

7   Conclusions 

The assumption that speed-density relationship is linear is widely used due to its simplistic 

representation of the behaviour of traffic.  A more realistic approach to speed-density 

models is to use the two-regime linear form to take into account the effect of stable and 

unstable conditions.  This relationship gives a non-symmetrical partial elliptical shape for 

the speed-flow relationship as shown in Equations 10a and 10b.  These equations are 

recommended for use in relevant Traffic Engineering text books when describing speed-

flow-density relationships since they give better representation of traffic behaviour for 

stable and unstable conditions. 

Maximum density of 45 pc/mi/ln (i.e. 28 pc/km/ln) could be used as the boundary value for 

the stable traffic condition.  Jam density values calculated from the Highway Capacity 

Density in pc/km/ln 

        Flow 

28 56 125 

one-regime 

two-regime 

(recommended) 
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Manual (2000) are in the region of 90 pc/mi/ln (i.e. 56 pc/km/ln).  This yields average 

distance headways of 18 meters when dealing with stationary queues which is relatively 

high.  However, it is more realistic to obtain jam density in the region of 200 pc/mi/ln 

(i.e. 125 pc/km/ln) which are nearly double those figures obtained from the Highway 

Capacity Manual (2000).  The parameters used for the proposed partial elliptical model 

could be tested and validated using data from various sites operating under free, medium 

and congested traffic conditions.    
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