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Why [m»f perception of room
- modes?

integral part of the reproduction system

its own characteristics (acoustic
ne listener hears

udio Monitoring C most acousticians have
rying to define a ‘standard’ room
\sure compatibility between studios

ure compatibility between studio monitoring rooms and
ser’s listening environment

g room

o etc
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Whyiinvestigate perception of room
- modes?

oht of as the ‘low frequency
>oms have some

en t nain problems when trying to listen
rately :
es perception of reproduced sound quite dramatically

f the main reasons for room related problems in the
yroduction
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What are Room Modes?

& Modes are standing waves that exist at specific frequencies
associated with the room dimensions and existing damping

= Objectively, room modes cause:

1. Frequency variance — Peaks and valleys in the frequency response
2. Spatial variance — Quiet and loud zones for individual frequencies
3. Resonant behaviour — Changes in attack and decay of sound
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Audible Modal Effects

the effects of room modes are well known:

X 4.83 x 2.45 (m)

SOURCE DETAILS: xS - 1.6m, yS - 0.2m, zS - 1.2m

°
P

RECEIVER 2: xR - 4.75m, yR - 4m, zR - 1.2m
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Whyinvestigate perception of room
-modes?

ntrol Techniques

sign/treatment requires guidance in terms

equire targets

| 'ave mainly bee
10dal sound-field

sed on objective measures
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under study
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'sychoacoustic Methods

ion where Human is the measurement instrument

otion of a given aspect by:
actors that make up that aspect

ven study we need |
1e factor under study
ely present a different number of cases to a panel of listeners — modelling

aningful response from each listener
ere are any significant results from the panel — statistical analysis

- FACTOR
- UNDER
STUDY

OBJECTIVE LISTENER | SUBJECTIVE > RESPONSE
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\Y/ dal Factors

e are interested in the response of listeners to the

there are 3 main factors that can be described or

Amplitude
apes in the room and the source content around that

Centre fre
pends on the physical dimensions o the room
ome lesser extent on damping

oL+ (related to modal decay time)

pends on the acoustic conditions existent in the room (rigidity of walls;
on; active control)

_ dal soundfield there is an additional factor that potentially
"af"fects the correct perception of sound

(more on this later)
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Viodal Factors

conditions in the modal sound-field are
vith one or more of the above factors, Eg:

of a particular frequency depends on source
ions and how loud the source is at that

o the ‘lining up’ of the modal
sociated with the room aspect

ydal distribution re
tre frequencies and i

requency response at a given position depends greatly
ow much absorption is efficient at low frequencies
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ling the room
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oW Frequency Models

& Bi-quad IIR bandpass filters
® Allows control over centre frequency, amplitude and Q-factor

= An addition of bi-quads can effectively model the response of a
generic room (Morjopoulos, 1991)
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oW Frequency Models

& Green’s function for a rectangular
room (eg: Kuttruff, 2000)

m Limitations:

o Assumes relatively low damping

o Assumes modes and modeshapes are
orthogonal

o Easier for rectangular rooms
= Advantages:

o Allows adequate control over various
room aspects

= Aspect ratios

L] DimenSionS, V0|ume Frequency (Hz)
* Damping

= Source and receiver position
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Creating an Audition Sample

Real Room Impulse Response e
| Convolution High Frequency content

P —— 5 of real room
Mono Sample . Q)

AN . ;

100 | ] Low Frequency containing
s Convolution virtual room modes

Model Room Transfer Function

Bruno Fazenda - 2008



active testing
mernodads
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§ubjective Testing

ed 3 test samples (A, B
and an unknown X which is either A or B)

istener has to answer which is X

peat with random X (at least 10 times) ABX Trial

Samples:

hi Square statistical analysis reveals

lihood of guessing

@ Eg: 8/10 correct is considered true detection AT ST
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Subjective Testing

E Zarameter -stimation by equential esting (PEST)
= |dentifies difference limen in a minimum number of auditions (Trials)
m Subject is asked to detect a difference between 2 samples

= Test rules are automated to reach a final figure

PEST for Difference Limen
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O -factor Detection Thresholds

 previous work was based on the determination of thresholds for the
anges to Q-factor

| Q-factor and decay time are inversely proportional

Modal Q-factor is associated with the amount of effective damping in the room

A change in modal Q-factor may be obtained by altering the damping (absorption) in
the room

Decaying Room Mode
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WEfactor Detection Thresholds

f detection for Q-factor changes are useful in
2 necessary damping required to render

ne of the most important aspects
ts of room modes

absorption is effective at
eration

ke mid and high Teq
ing reflections and reve

0 one of the most difficult to achieve

pency modes have long wavelengths and much energy
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Wefactor Detection Thresholds
Subjective experiment results show:

Thresholds increase for lower Qs

More difficult to detect changes in
shorter decays

More ditficult to detect changes in Q-
factor as the room tends towards
more absorptive conditions

Difference Limen for Q factor of Room Modes

On average, a modal Q of a least 16 is
necessary to detect modal behaviour

This corresponds to a decay of 0.5 Reference Q
seconds at 65Hz

Higher RT increases the thresholds

Mid-frequency reverberation may
help to mask modal activity
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VMeasuring the Subjective Transition Frequency

B The Schroeder frequency refers to
the transition between the modal
region and diffuse field conditions

m It states that at least 3 modes
‘share’ the same bandwidth

|
Modal region ! Diffuse field region
|
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m A desirable minimum modal density

B It is commonly stated that due to ﬁ;‘;i“;fcy
the higher modal density above ' ko b a0 o000
this transition frequency the e
effects of modes are no longer

detectable

m Hence larger rooms (with high
modal density even at low
frequencies) do not suffer from the
problems of room modes

<—REVERBERATION TIME

<—VOLUME
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gasuring the Subjective Transition Frequency
ing room volume appears to flatten the

See demonstration

m Using an Hybrid ABX/PEST method we attempted to define a room
volume where the difference between a sample room and a (smooth)
100,000m?3 room was not detectable

m At 63Hz, 125Hz and 250 Hz

= 8subjects |lama

ABX Trial PEST Progress

'revious Yolume Last Step Size
-500

Samples:

Play A Play B
Play X

Your Answer:

Comparison Result

Status ————————————————————————
— U Trial In Progress
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Vieasuring the Subjective Transition Frequency
céptable modal density at lower frequencies we

active’ modal density across frequency?

=
a1
=
=

Room Volume (m3)
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Vieasuring ;j;g Subjective Transition Frequency

h and density for
an be obtained

dal bandwidth of

2ase

ny with frequency for t 3
‘modes to be rendered —
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Viedasuring the Su bjective Transition Frequency

are with Schroeder’s method?

quency predicts diffuse conditions at much lower critical
larly for smaller rooms

jects, the effects of modes are still detectable up to much
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e no specific ‘ideal modal density’

ity appears to be frequency

tradicts the basis for the Schroeder frequency which
es that modal effects are inaudible once there are at
odes in one bandwidth

dless of frequency

But are we telling the whole story?

1 NO!
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"w-

e mode shapes in the room

= |n line with the use of the Schroeder frequency definition

1 Also an issue when defining room aspect ratios (more on
his later)

hen the shape functions are included, the

oothing of the frequency response is not

obtained

s See demonstration
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VIgasuring the Subjective Transition Frequency

d never converge if mode shapes are included
ised

olumes were compared to a ‘reference’
d large and small rooms

Reference Volume k
Small Room —
.. -
E 0 | 10
T

Large Room

nces caused by modal effects in small rooms should be detected since
on frequency in these cases is high

between large rooms should not be detected since the
transition frequency in such cases is typically low
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VIEASUTING the Subjective Transition Frequency

= Used ABX Test to det:
= 10 trials for each pair
= Used musical samples
= Eight subjects tested
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Vieasuring the Subjective Transition Frequency

e between large and small room volumes
s are detectable until test is within 10% of

Correct I
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8 Subjective Transition Frequency

d Mode interaction are highly important

ensity does not appear to be beneficial in
Jal behaviour

leed the density is higher but the energy is spread out over
ny modes instead of a few as happens in small rooms

2 decay at low frequencies is too long then it will still sound
‘resonant’

o Since the energy is ‘returned’ from the modes during the natural
response

o Like a reverberant room
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spect ratios
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Aspect Ratios

0 associate a ‘flat’ frequency
audio quality

ooms this is v
odal activity

ifficult at low frequencies due

ons have been investigated that attempt to
ve a ‘flatter’ frequency response by ‘arranging’
~ the modes optimally

= This is physically possible by changing the

- dimensions and aspect ratios of the room
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ROOm Aspect Ratios

earchers set optimization targets for aspect ratio

= Achieve homogeneus spacing of modes in frequency

Length: |4.5m ‘
10 z0 3 _| 110

_________

_________
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ROOm Aspect Ratios

Length: |4.5m Width: |4.6m Height: [4.7m

40 50 g0 70O B0 90100 50 200 250 300 400 500

IN THIS EXAMPLE MODES
‘BUNCH UP’ BECAUSE
ASPECT RATIOS ARE
VERY CLOSE TO AN
INTEGER

10 zZ0 20 40 =11} &0 70 B0 30100 =1a] Z00 Z50 =200 400 500

This ratio (HWL): 1098096 Length /Width = 0.98 This volume: 97 Cu Mt
r N—

Length: |5.2m Width: [6.7m Height: |4.3m

THIS MODAL
DISTRIBUTION IS MORE
HOMOGENEOUS WITH
MODES ‘SPREADING OUT

This ratio (HWL): 1156121 This volume: 150 Cu Mt
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Room Aspect Ratios

m Metrics have been defined to
indicate the reproduction quality

- Louden Standard Devalion s of the room

= |n this case (Louden, 1971) it is

based on the spacing between
modes

=  Other have used similar metrics
(Bolt,Walker,...)

=  Darker areas in the map are best
@ This seems to make good sense

= Where dimensions are equal or
integer multiples, degeneracy

occurs, so the room is classified
as bad
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Aspect Ratios

10ds are based upon assumptions of modal

ncies are of equal magnitude
equencies are excited
in a real application

nagnitude anc er of modes excited are all dependent

» and Receiver coupling
equency response is then affected by the phase of each mode

arent source and receiver positions in the room give different
)nses for the same room!

performance of a given room is highly dependent on source
and receiver positions
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ROOmM Aspect Ratios
& A new metric is needed that takes into account source

ancd receiver positions and their coupling to the room
mode shapes

= Flow about the deviation from a smooth response?

B Room aspect ratios can now be evaluated from their
predicted resp  sewea —

Linear Fregquency (Hz)



ROOmM Aspect Ratios

ate ‘good’ and ‘bad’ listening positions within the room
should have a higher mean score and a smaller variance

oad’ room ratio: @ A ‘good’ room ratio:

Rigure. SEMBEPavation Eiem:SmattcRlessU-REspunse Figure of Merit: Deviation From Smoath Pressure Response

4.5

2 3 4

v Position of Reciever

y Position of Reciever
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ROOm Aspect Ratios

psition significantly affects the response in the room

Figure of Ment: Dewation From Smooth Pressure Response Figuee of Ment: Deviation From Smoath Fressure Hesponse

3
y Position of Reciever

3 4
¥ Pusilion of Recien
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ROOmM Aspect Ratios

possible to improve the response evenin a

Figure of Merit: Deviation From Smooth Pressure Response
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Aspect Ratios

equency reproduction quality from aspect
aningful if source is in the corner

metric needs to take into account source

0ss a desirable listening area

ary testing is showing some correlation between this
d the perceived response in the room
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nal Modal Spacing

oblems with room modes is that they

| her important aspect (as seen before) is that
/ exhibit long decays

easing damping and reducing decay seems to
e of the best ways of controlling modal energy

= But this is quite difficult with passive methods (i.e.
Absoprtion)

= Can the decay be reduced in other ways?
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Optimal Modal Spacing

In any system
= 3 flat response gives an impulse in time

= Any deviation from this flat response produces a time decay — room modes
being an ubiquitous example

A single mode has a long decay
Two modes with a given spacing produce a smoother response

= And a shorther decay
= And an associated beating effect!

So what is the optimal spacing?
= Objectively and Subjectively
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Optimal Modal Spacing

is we used an adapted Green Function model of two

Factors tested
10, 20, 30, 50

H Decay Time Test

e —

Taszk: Select The Shortest Decary Time
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-increases with frequency
decreases with Q-factor
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al Modal Spacing

sl

3 s between 25% - 40% of the
mode

ain the 4 modes per bandwidth

closer than often occurs in real rooms

ns to be more important to focus on the
lower frequencies

1. Less homogeneous response
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Modal Spacing

m This animation shows the
effect of increasing the
spacing between two
resonances in the time domain
= Original is fixed at f=100Hz

= The frequency spacing of the
second resonance is varied from
OHz to 10HzZ

= No alteration of the Q-factor

= It 1sinteresting to see:

= The point at which the time
response is shorter

= The appearance of ‘beat” effects
as the two resonances share the
same frequency region
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Viodal Spacing

dulation Transfer Function as a metric, the
vacing between two resonances is

loss of modulation in a signal
equency response in one metric

_afhpin

optimal spacing becomes important’ as the room

towards lower decays

ors are much lower
verlap is greater
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Modal Density

eder frequency associates
ber of modes per
indwidth

dal density

he animation shows the effect of
reasing modal density
riginal frequency is f=100Hz

- The temporal response is shown to
hange as more resonances are added

Fixed spacing - 0.1Hz

..

= Reduction in the temporal response

= ‘beats” appear at lower relative
amplitude compared to frequency
spacing case
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ation Transfer
Flgetieds
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on Transfer Function

eloped in the field of optics as a
1s image resolution

ion of modulation

t different audio frequencies
des a measure of temporal performance at each
) frequency

es are bound between 1(no loss of modulation)

) (no modulation preserved)
_an be averaged to a single figure 0 0102 03 04 05 06 07 08 09 10
- Ratig Scale Bad Poor Fair Good Excellent

‘@ May be determined from impulse response/spectra
WEENVIEE S
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ation Transfer Function

d the MITF to investigate the effect of
nown to affect low frequency room

Efbdaldenshy
m aspect ratio
dal distribution
orption (Damping)
ay time
| [F ratings
‘@ A number of room responses were modelled

Compare to existing data on subjective perception of modal
activity
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Room Volume (m?3)
30
100
145

Effects

V=30m3
—— \/—10)0mM3
................ V=145m3

MTF (avg. over all frequency bands)
0.44
0.39
0.36
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of Room Volume

V=30m3
F—\/=100mM3
V=145m3

Rating
Poor/Fair
Poor

Poor




" Aspect Ratio

1:2.58:2.97
1:1.41:3.6

1:1:5.08

MTF (avg. over all frequency bands)
0.33
0.35
0.40
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Effects of Room Aspect Ratio

Rating

Poor
Poor

Fair



Effects of Damping

RT=1.5s;MTF=0.25

~ RT=0.8s;MTF=0.34
RT=0.2s;MTF=0.63 I

Average Decay Time (s) MTF (avg. over all frequency bands) Rating
1.5 0.25 Bad
0.8 0.34 Poor
0.2 0.63 Good
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‘activity (40Hz-200Hz) using music stimuli
used as variable under measurement

_

f a single mode when in the pr e of other modes

hresholds of audibility for single resonant decays using upwards log sweep

‘ : Measured Threshold MTF Rating
e (frequency range)

2s (<100 Hz) <0.25 Bad
0.2s (100Hz-800Hz) 0.63 Good
0.2s (20Hz-1KHZ) 0.63 Good
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1clusions on MTF

oe a useful measure of LF room

a ‘peripheral’ effect on room performance and
sponding MTF scores when compared to damping

bined effects such as loudspeaker performance and
position-related coupling effects can be taken into account if
present in measurement/simulation
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ations for room
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_ gher modal range to about 30
ather than a ‘magical’ constant bandwidth
er modal density may alleviate modal problems

only if the source and receiver coupling result in a
smooth overall response

= Dips in the magnitude frequency response appear to be as (or
more) problematic as peaks

Bruno Fazenda - 2008



ons for Room Design

orrect’ modal spacing may afford a
cy response and in turn a shorter
dal decay
though the effects o

mal modal spacing is defined between 25% and
of modal bandwidth

is could be achievable in the lower modal range with

ul room dimensioning and/or low frequency
diffusion

= Not so relevant at higher modal range or in rooms with
large damping

eats may become a problem
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implications for Room Design

oom aspect ratios as a measure to
ion quality is only meaningful if
gositions as well as their

yurce and receive

m In most applications, the response in the room may
be improved by optimising source (and receiver)
position even in a supposedly ‘bad’ room ratio
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e decay of modes still appears to be the
10d of reducing their unwanted effects

| be effective if used correctly and guided by

ve metrics
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