
ANY TIME PROBABILISTIC REASONING FOR SENSOR
VALIDATION

P.H. Ibargüengoytia
Instituto de Investigaciones

Eléctricas, A.P. 1-475
Cuernavaca, Mor., 62001, México

pibar@iie.org.mx

L.E. Sucar
Instituto Tecnológico y de

Estudios Superiores de Monterrey
Campus Morelos, A.P. 99-C

Cuernavaca, Mor., 62050, México
esucar@campus.mor.itesm.mx

S. Vadera
University of Salford
Dept. of Mathematics
and Computer Science
Salford, M5 4WT, U.K.

S.Vadera@mcs.salford.ac.uk

Abstract

For many real time applications, it is impor-
tant to validate the information received from
the sensors before entering higher levels of
reasoning. This paper presents an any time
probabilistic algorithm for validating the in-
formation provided by sensors. The sys-
tem consists of two Bayesian network mod-
els. The first one is a model of the dependen-
cies between sensors and it is used to validate
each sensor. It provides a list of potentially
faulty sensors. To isolate the real faults, a
second Bayesian network is used, which re-
lates the potential faults with the real faults.
This second model is also used to make the
validation algorithm any time, by validating
first the sensors that provide more informa-
tion. To select the next sensor to validate,
and measure the quality of the results at each
stage, an entropy function is used. This func-
tion captures in a single quantity both the
certainty and specificity measures of any time
algorithms. Together, both models consti-
tute a mechanism for validating sensors in an
any time fashion, providing at each step the
probability of correct/faulty for each sensor,
and the total quality of the results. The al-
gorithm has been tested in the validation of
temperature sensors of a power plant.

1 Introduction

Artificial intelligence (AI) techniques are playing an
increasingly important role in real applications. In in-
dustry, different techniques have been proposed, for
example, in diagnosis, automatic control, and moni-
toring. Generally, these applications require an over-
all model which usually, its inputs are mainly sensors.
Also, many of these real applications need to main-

tain a real time behaviour, i.e., the correctness of the
system depends not only on the logical result of the
computation but also on the time at which the results
are produced [Stankovic 1988]. Usually, real applica-
tions possess a time limit by which some actions must
be performed.

This paper presents a model for the validation of the
sensors used in real time applications. The proposed
validation is carried out in a separate module that
works together with other functions in a system. In
other words, it is assumed that a layered scheme is
used in which the lowest level concentrates on validat-
ing the signals transmitted by the sensors as presented
in Fig. 1 [Yung & Clarke 1989]. The main benefit of

º

¹

·

¸
sensor

validation

º

¹

·

¸
loopdiagnosis

º

¹

·

¸
systemdiagnosis

6

6

Figure 1: Layered diagnosis architecture.

using a layered approach is that it enables the con-
struction of models in a modular fashion. That is, it is
easier to construct a model for sensor validation and
then a model for the process than it is to construct
an overall model in one step. This separation of the
sensor validation layer can also result in simpler higher
layer models and leave the higher layers to utilize other
techniques.

Faults in the sensors readings are detected in a decen-
tralised and hierarchical approach, so that they can
be easily isolated and repaired. Additionally, suppose
that the higher layers of the system represent other
important and critical functions, e.g., the fault diag-

nosis of a nuclear plant. The intermediate layer (loop
diagnosis) may be using model based reasoning to di-
agnose a control loop in the plant, whereas the system
diagnosis layer may be utilizing a different approach.
The validation module presented in this paper, utilizes
a probabilistic model which considers only the rela-
tionships between the variables to be validated. This
probabilistic model is independent of the higher layers
models, so it is easier to construct and mantain when
necessary.

This paper presents the continuation of the project
described in a previous paper [Ibargüengoytia et al.
1996]. In that paper, the authors described a proba-
bilistic approach to sensor validation that took advan-
tage of a Markov blanket property to distinguish real
faults from apparent faults. A Bayesian network was
used as a basis for predicting a probability distribu-
tion for a sensor value based on other sensors. The
predicted distribution and the actual sensor reading
was used in order to determine if there was a potential
fault.

However, the sensor validation process described in
that paper works in batch mode, i.e., no intermedi-
ate results are available, and no attempt is made to
estimate the quality of the results. For a real time
application, these characteristics are inadequate. This
paper presents the extension of the sensor validation
algorithm, so it can be applied in real time systems.
This consists in the use of any time algorithms.

Thus, the extension of the sensor validation algorithm
consists in the following features. First, the use of a
probabilistic causal network that relates the real and
apparent faults. Second, in order to perform in any
time basis, the validation algorithm selects the sensor
which provides more information when validated. Fi-
nally, a quality function is calculated in order to char-
acterize the behaviour of the algorithm. The selection
of the most informative sensor is made using the en-
tropy function.

To summarize, this paper presents an any time prob-
abilistic algorithm for validating the information pro-
vided by sensors. The system consists of two Bayesian
network models. The first one is a model of the de-
pendencies between sensors and it is used to validate
each sensor. It provides a list of potentially faulty
sensors. To isolate the real faults, a second Bayesian
network is used, which relates the potential faults with
the real faults. This second model is also used to make
the validation algorithm any time, by validating first
the sensors that provide more information. To select
the next sensor to validate, and measure the quality
of the results at each stage, an entropy function is
used. Together, both models constitute a mechanism

for validating sensors in an any time fashion, providing
at each step the probability of correct/faulty for each
sensor, and the total quality of the results.

The next section briefly describes the basis of any time
algorithms.

2 Any Time Algorithms

Any time algorithms represent one direction of work
that aims to achieve the use of artificial intelligence
techniques in real time systems. This term was ini-
tially used by Dean in his research about time depen-
dent planning [Dean & Boddy 1988]. At the same
time, Horvitz (1987) proposed the name of flexible
computation for this mechanism. Any time algorithms
are those that can be interrupted at any point dur-
ing computation, and return an answer whose value
increases as it is allocated additional time [Boddy &
Dean 1994]. However, how can this value be mea-
sured in a specific application? The literature con-
tains descriptions of different dimensions that have
been proposed as metrics [Zilberstein & Russell 1996]:
certainty, accuracy and specificity.

Performance profiles represent the expected value of
these metrics for a given procedure as a function of
time. In other words, performance profiles character-
ize the quality of an algorithm’s output as a function
of computation time. Figure 2 illustrates three cases
of performance profiles [Zilberstein & Russell 1996],
[Dean & Boddy 1988]:

(a) (b) (c)

qq q q

t t t

Figure 2: Examples of performance profiles. (a) a
standard or one shot algorithm. (b) an ideal, expo-
nential precision algorithm, and (c) a more realistic
profile for an any time algorithm in practice.

Clearly, all these types of performance profiles are spe-
cial cases of a superclass that can be defined as mono-
tonic improvement, i.e., the quality of its intermediate
results does not decrease as more time is spent to pro-
duce the result. The next section explains the basis of
the validation algorithm, so that section 4 develops the
any time algorithm for the sensor validation problem.

3 Sensor Validation

The probabilistic sensor validation model utilizes
Bayesian networks. The nodes represent the measures
of the sensors. The structure of the network makes ex-
plicit the dependence relations between the variables.

The probabilistic sensor validation includes the diag-
nosis of all single sensors in the network. The idea
is to instantiate all the nodes with the sensor read-
ings, except the one being validated. A probabilistic
propagation provides a distribution of the posterior
probability of the estimation of a signal value based
on the readings of the most related signals. The esti-
mated value is then compared with the current value
in order to decide if the measurement is correct. The
most closely related variables for each sensor consist
of a Markov blanket of the sensor variable. A Markov
blanket is defined as the set of variables that makes a
variable independent from the others. In a Bayesian
network, the following three sets of neighbours is suffi-
cient for forming a Markov blanket of a node: the set
of direct predecessors, direct successors, and the direct
predecessors of the successors (i.e. parents, children,
and spouses) [Pearl 1988]. The set of variables that
constitutes the Markov blanket of a variable can be
seen as a protection of this variable against changes of
variables outside the blanket. This means that, in or-
der to analyze a variable, it is only necessary to know
the value of all variables in its blanket [Ibargüengoytia
et al. 1996]. Additionally, the extended Markov blan-
ket (EMB) of a sensor is formed by its Markov blanket
plus the variable itself.

However, since validating a sensor based on a faulty
one results in an erroneous validation, the probabilis-
tic validation only provides a list of apparent faults.
Thus, the probabilistic validation provides a list of po-
tential correct and potential faulty sensors. The fault
isolation is carried out when the list of potential faulty
sensors is compared with the list of EMB of each sen-
sor. When a match exists, then the faulty sensor has
been distinguished. Otherwise, different conditions ex-
ist for the isolation of multiple failures [Ibargüengoytia
et al. 1996]. The next section describes the extensions
of the sensor validation model in order to discriminate
faulty and correct sensors in an any time basis.

4 Any Time Sensor Validation

Any time sensor validation algorithm implies that the
knowledge about the state of the sensors (faulty or cor-
rect) becomes more certain and complete as time pro-
gresses. Certainty about the state of a sensor refers to
the degree of belief in the correctness of a sensor, and
completeness is characterized by the number of sensors

from which the state is known. Thus, it is required to
be able to monitor the state of the sensors during all
the validation process. This is done through a vec-
tor whose elements Pf (si) represent the probabilities
of failure for the sensors si. Given that the any time
validation process needs to be cyclic, the top level of
the algorithm can take the form shown in Fig. 3.

1. Initialize Pf (si) for all sensors si.

2. While there are unvalidated sensors do:

(a) choose the next sensor to validate
(b) validate it
(c) update the probability of failure vector Pf

(d) measure the quality of the partial response

Figure 3: Top level of the any time sensor validation
algorithm.

The probabilistic validation of a single sensor (step b)
will be explained next in order to clarify the rest of
the algorithm.

4.1 Validation

The validation step was briefly introduced in section 3
and more extensively in [Ibargüengoytia et al. 1996].

The sensors are processed one by one by the validation
function utilizing the following algorithm:

1. Read the actual value of the variable provided by
the sensor.

2. Read the value of all variables that appear in the
Markov blanket of the selected variable.

3. Propagate the probabilities and obtain the poste-
rior probability distribution for the selected vari-
able.

4. If the probability (obtained in 3) of the value ac-
quired in step 1 is lower than a specified value,
return failure; else return success

For example, consider the simplified model of a gas tur-
bine shown in Fig. 4. The validation of m is carried
out by calculating the probability distribution of m
given the measurements of t and p. If the real value of
sensor m has a probability greater than certain value,
then the sensor is considered correct, and faulty oth-
erwise. However, if the fault is in sensor p, then the
validation of m will also result in apparent fault.

µ´
¶³
m

µ´
¶³

t µ´
¶³

p

¢
¢¢®

A
AAU

µ´
¶³

g

¢
¢¢®

A
AAU

µ´
¶³

a

Figure 4: A reduced Bayesian network of a gas turbine.

Thus, the validation step is carried out by this algo-
rithm that receives as input, the sensor that will be
validated. As output, the algorithm returns a binary
value {correct,faulty} with the apparent status of the
sensor.

4.2 Selection of next sensor

This section develops a mathematical model for choos-
ing the best sensor to validate given the history of the
validation process and the current state of the system.
Also, the model proposed here will be used for measur-
ing the quality of the response in order to obtain the
performance profile of the validation algorithm. The
central idea is that the validation of a sensor provides
some information and also, extra information can be
inferred. Therefore, a measure of the information that
a single validation produces is required. A definition of
the expected amount of information that an event pro-
duces was first proposed by Shannon and used in com-
munication theory [Shannon & Weaver 1949]. Shan-
non proposed the following definitions.

Definition 4.1 Given a finite probability distribution

pi ≥ 0 for (i = 1, . . . , n), and
∑n

pi = 1

Shannon’s entropy measure is defined as

Hn = Hn(p1, . . . , pn) = −
n∑

i=1

pilog2pi (1)

Thus, the entropy measures the related number of bits
required to store the information.

Since the validation of a sensor s has two possible out-
comes, the entropy function H(s) is then defined as:

H(s) =
{

0 if p = 0 or p = 1
−plog2(p)− (1− p)log2(1− p) otherwise

(2)
where p represents the probability of failure of the sen-
sor. Notice that the expression plog2(p) = 0 when

p = 1 but it is undefined when p = 0. However, since
plog2(p) tends to zero as p tends to zero, the values
defined in equation 2 can be safely assumed. Notice
that it has its maximum when p = 1

2 , i.e., when the ig-
norance is maximum, and it is zero when either p = 0
or p = 1, i.e., when the information is maximum and
ignorance is minimum. This function can be consid-
ered either as a measure of the information provided
by an experiment, or as a measure of the uncertainty
in the experiment’s outcome. Thus, considering each
single sensor validation as an experiment, this function
can be used to measure the amount of information pro-
vided by that validation. Then, the average amount of
information E for the system can be defined as follows:

E(s1, . . . , sn) =
1
n

n∑

i=1

H(si)

= − 1
n

n∑

i=1

Pf (si)log2Pf (si)

+ (1− Pf (si))log2(1− Pf (si))

= − 2
n

n∑

i=1

Pf (si)log2Pf (si) (3)

where n is the number of sensors in the system S,
and Pf (si) represents the current probability of fail-
ure value assigned to sensor si. Notice that the vector
whose elements are Pf (si) provides a measure of the
certainty in the validation while the sum of n indi-
vidual entropies provides a specificity measure of the
result.

Given this measure, the any time sensor validation al-
gorithm needs to select a sensor X that gives the best
improvement in the average entropy of the system S.
Hence the following conditional version of equation 3
can be written

E(S | X) = E(S | x = ok) + E(S | x = flty)

=
1
n

(∑
H(si | x = ok) +

∑
H(si | x = flty)

)
(4)

This function can be evaluated for each sensor and
the one which gives the most information (the mini-
mum E(S | Xi)) can be selected as the next sensor Xi

to be validated. The computation suggested by the
above formulae could be too expensive for a real time
sensor validation process. To overcome this problem,
a pre compilation of the sensor selection mechanism is
implemented as follows. The above formulae are used
to select the sensor, sr which gives the most informa-
tion. This selected sensor forms the root of a binary
decision tree. A fault is simulated in this sensor and
the formulae are again used to select the next sensor
sr−. Then, the root sr is assumed to be correct, and
the formulae are used to select the sensor sr+ in this

case. This results in the partial decision tree shown
in Fig. 5. This process is repeated recursively on the

µ´
¶³
sr−

µ´
¶³
sr

µ´
¶³
sr+

J
J

JĴ

­
­

­­À

Figure 5: Partial decision tree.

nodes sr− and sr+ to obtain a complete decision tree,
so that each path in the tree includes all the sensors.

As an example, consider the network shown in Fig. 4.
This process results in the decision tree shown in
Fig. 6. Notice that this tree can be reduced considering

t

m m

pp

p

p

p

p

g

g

g

g

g g

g

a

a

a

a

a a

a

+-

+

++

+

++

--

- - - -

Figure 6: Binary tree indicating the order of validation
given the response of the validation step.

only the valid trajectories formed by the assumption
of, for example, single faults among the set of sensors.
See [Ibargüengoytia 1997] for more details.

This decision tree can be used to select the next sensor
more efficiently in real time than by performing the
calculations. Thus, the selection step of the algorithm
of Fig. 3 consists of simply traversing the tree one level
after every single sensor validation. The cycle starts
at the root, and the decision tree points to the next
node in the tree according to the result of validating
the current sensor.

4.3 Isolation

The validation step provides only a list of potentially
faulty sensors. Thus, a comparison is made between
the set of potentially faulty sensors with the table of
extended Markov blankets of all the sensors. When a
match is found, a real fault is determined. However,
the set of potentially faulty sensors is obtained after
all the sensors have been validated. Therefore, in or-
der to extend that algorithm for any time behaviour, a

different mechanism for distinguishing real faults from
apparent ones is required. This new mechanism pro-
vides, as the output of the isolation phase, a vector
with the probability of a real fault in all the sensors.
This vector is refined incrementally in time, so the any
time behaviour can be achieved.

The any time fault isolation process is based on the
relationship between real and apparent faults. There
are two situations that arise: (i) the existence of a real
fault causes an apparent fault (as shown in Fig. 7(a)),
and (ii) one apparent fault is the manifestation of sev-
eral possible real faults (as shown in Fig. 7(b)).

µ´
¶³
A1 µ´

¶³
A2

µ´
¶³
Ri

µ´
¶³
An

µ´
¶³
R1

µ´
¶³
Aj

µ´
¶³
R2 µ´

¶³
Rn

J
J

JĴ

­
­

­­À??

J
J

JĴ

­
­

­­À

(a) (b)

Figure 7: Causal relation between real faults (R) and
apparent (A) faults represented as nodes. In (a), one
real fault causes several apparent ones, while in (b),
one apparent fault is caused by one or more real faults.

In both figures, the relation between root nodes and
leaf nodes is the same as the extended Markov blan-
ket (EMB) of a sensor. Considering all the sensors,
a causal model relating the real and apparent faults
can therefore be obtained from the fault detection
Bayesian network (in fact, the EMB table is sufficient
to build this network). In the first level (roots), the
nodes represent the events of real failure in every sen-
sor. Then, the second level (leaves) is formed by nodes
representing apparent failures in all the sensors. Arcs
are included between every root node, and the corre-
sponding nodes of the extended Markov blanket. For
example, the causal network shown in Fig. 8 can be
obtained directly from the Bayesian network of the
gas turbine given in Fig. 4. Thus, the consequences of
observing an apparent fault can be propagated in the
causal network in order to obtain the probabilities of
a real fault in all the sensors.

The network of Fig. 8 is multiply connected. Hence,
the propagation method of trees of cliques is utilized
[Lauritzen & Spiegelhalter 1988].

In general, O(2n) conditional probabilities would be
required (for a node with n parents). However, the
noisy or model can be adopted here. Two assumptions
need to hold in order to use this model: accountability
and exception independence [Pearl 1988].

The accountability assumption holds by the way the

Rm Rt Rp Rg Ra

Am At Ap Ag Aa

cmt
cmm

Figure 8: Probabilistic causal model for fault isolation
in the example of Fig. 4. Ri represents a real fault
in sensor i while Aj represents an apparent fault in
sensor j.

model is constructed, i.e., a sensor is apparently faulty
only if there is a fault in its MB. The exception inde-
pendence assumption is concerned about a rare situ-
ation for this particular model. The relationship be-
tween the real and apparent faults is obtained from a
Bayesian network in which the dependencies are as-
sumed to be strong. Hence, the probability of a real
fault not resulting in an apparent fault is small. Fur-
ther, the mechanism by which a real fault in one sensor
does not result in an apparent fault is even less likely
to be dependent on another real fault. Hence, given
that these assumptions are reasonable, the conditional
probability matrix can be calculated by utilizing equa-
tion 5.

P (Aj | d) =
{ ∏

i∈Td
qij if ¬Aj

1−∏
i∈Td

qij if Aj
(5)

where d is the set of assignments of the set of apparent
faults, and Td represent the set of all apparent faults
actually present. Thus, the only parameter required is
defined as:

cij = 1− qij = P (Aj | Ri only).

In the case of the sensor validation problem, in an
ideal case, all the parameters cij ≈ 1. Of course, these
values can be obtained by simulation from the data
if the problem is expected to depart from this ideal
case. That is, according to the theory developed in
Ibargüengoytia et al. (1996), when a real fault Ri is
present, it will always cause the apparent fault Aj (as-
suming that there is an arc from Ri to Aj).

The network of Fig. 8 is initialized with the following
information: (i) the prior probability of all the root
nodes in the model is 0.5 (assuming ignorance at the
beginning of a cycle), and (ii) the parameters cij =
0.99 for all 1 ≤ i, j ≤number of nodes.

Having described how real and apparent faults can be
related, the fault isolation model can now be summa-
rized. It receives as an input, a validated sensor with

its detected state (faulty or correct) and updates the
probability of failure of all the sensors. It does this by
instantiating the value of the corresponding apparent
node and using a propagation algorithm to obtain the
posterior probabilities of the real faulty nodes. A vec-
tor Pf of these posterior probabilities represents the
current state of knowledge about the sensors, and can
be viewed as the output of the system at any time.
For example, assuming a fault in g in the network of
Fig. 4, produces the sequence of values of the proba-
bility vector as shown in Table 1.

Table 1: Example of the values of the probability vec-
tor Pf .

Step Pf (m) Pf (t) Pf (p) Pf (g) Pf (a)
t = faulty 0.534 0.534 0.5 0.534 0.534

m = correct 0.013 0.013 0.009 0.663 0.663
g = faulty 0.009 0.019 0.009 0.99 0.502
a = correct 0.009 0.0 0.009 0.999 0.009
p = correct 0.0 0.0 0.0 0.999 0.009

4.4 Quality measure

A measure that is independent of the application is
the average entropy of the sensors given in equation 3.
That is, if the current quality measure is:

Q(s1, . . . , sn) = − 2
n

n∑

i=1

Pf (si)log2Pf (si) (6)

then, the reported quality function is calculated with
the formula Q = Qmax−Qcurrent

Qmax
where Qmax is the

maximum value of the quality measure (i.e., n, the
number of nodes). Notice that this measure captures
both the certainty and specificity measures of any time
algorithms. It captures certainty since the probabili-
ties of the sensors are used, and specificity since all
the sensors are combined to give an average. Figure 9
shows the performance profile obtained with this qual-
ity measure for the example of Fig 4.

5 Empirical Results

The sensor validation algorithm was evaluated by ap-
plying it to the validation of temperature sensors of
the gas turbine at the Gómez Palacio power plant in
México. A Bayesian network representing the depen-
dencies between the sensors of the plant is shown in
Fig. 10. The dependency model was obtained by uti-
lizing an automatic learning program that uses real
data from the start up phase of the turbine [Sucar et
al. 1997].

The data set was partitioned in two subsets: one parti-
tion for training the network, and the other partition

-

6

(a)
time

1.0

-

6

(b)
time

1.0

Figure 9: Performance profile describing the combi-
nation of certainty and specificity in one parameter
against time. (a) without failure, (b) with a simulated
failure in sensor g.

CH4

CH1 CH3

CH2

CH5

CH6CA6 EM1 EM2 EM3 CA4 AX2

CA7 AL1 AL2

AEF CA3 CA5

CA2

CA1

AX1

Figure 10: Probabilistic tree of the application. Nodes
represent temperature signals of a gas turbine.

for testing. The training/testing partition used was
70-30 % of the original data set, i.e., 610 instances for
training the model (calculating the prior and condi-
tional probabilities), and 260 instances for testing.

Theoretically, the system should always detect and iso-
late single faults correctly. However, in reality, some
errors may occur since in practice it is unlikely that the
dependency model will be perfect. Consequently, two
types of errors could occur: a correct reading might
be considered faulty, and a real fault might not be de-
tected. These two possible errors are called type I and
type II errors in the literature, and defined as follows
[Cohen 1995]:

type I: rejection of the null hypothesis when it is true,

type II: acceptance of the null hypothesis when it is
actually false.

The null hypothesis used refers to the hypothesis that
a sensor is working properly. Thus, in other words,
type I errors occur when a correct sensor is reported
as faulty while type II errors occur when faulty sensors
are not detected.

The criteria for deciding if a reading is faulty or not
can result in a trade off between these two types of

errors. The criteria considered in this project are the
following:

1. Calculate the distance of the real value from the
expected value, and map it to faulty if it is beyond
a specified threshold and to correct if it is less
than a specified threshold. The threshold values
considered were 2, 2.5 and 3 times the standard
deviation σ.

2. Assume that the sensor is working properly and
establish a confidence level at which this hypoth-
esis can be rejected, in which case it can be con-
sidered faulty. This confidence level is known as
the p value. The p values considered were 0.05
and 0.01.

The accuracy of the model, i.e., the proportion of type
I and II errors, is evaluated by varying the possible
thresholds for each of these criteria.

Two different faults were simulated:

Severe. The sensor value modified is the most distant
extreme value, i.e., the real value is substituted by
one which differs by minimum 50 %.

Mild. The real value is replaced by one which differs
by 25 %.

A test procedure was used to evaluate the accuracy
of the whole validation process. Table 2 presents the
final evaluation of the prototype with the percentage
of type I and II errors for severe and mild faults.

Table 2: Final evaluation: number of errors and their
percentage for severe and mild faults.

Criteria 2σ 2.5σ 3σ p = 0.05 p = 0.01
Severe fault

Type I 17.3 % 4.8 % 2.9 % 14.5 % 2.9 %
Type II 0.5 % 0.1 % 0.9 % 0.7 % 0.4 %

Mild fault
Type I 21.5 % 10.3 % 11.4 % 17.7 % 6.5 %
Type II 8.0 % 11.7 % 14.9 % 4.7 % 5.8 %

Type I errors imply that most of the sensors in a EMB
present apparent type I errors. This is more common
as it can be seen in Table 2. That is, there are cases
where the existence of an invalid apparent fault, to-
gether with the valid ones, completes the EMB of a
misdiagnosed sensor. Hence, a type I error is pro-
duced. On the contrary, type II errors are detected at
this stage when most of the sensors of a EMB present
misdiagnosed apparent faults. This is very improba-
ble as the results of Table 2 confirms. The percentages

are obtained comparing the average number of errors,
with the total number of experiments.

6 Discussion

Section 4.2 developed an any time sensor validation
algorithm that utilizes an entropy function as a cri-
terion for selecting the next sensor to validate. This
entropy function calculates the amount of information
that any single validation provides for diagnosing all
the sensors. Hence, to evaluate this criterion, this sec-
tion compares the performance profile of the any time
sensor validation algorithm as a function of time when
the entropy based measure is used, and when a random
selection scheme is used.

Figure 11 shows the resultant performance profile of
the any time sensor validation algorithm. That is, the

Time

Q
u

a
li
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10.32 218.38

Random Entropy

Figure 11: Performance profile of the any time sensor
validation algorithm (time× 10−2sec.).

quality of the response as a function of time. An ex-
periment consisted in the simulation of a single fault.
Thus, 21 independent experiments were necessary to
simulate a fault in all the sensors. In total, 260 exper-
iments were carried out, so every one of the 21 sensors
was simulated faulty at least 12 times (12.6 times).
The entropy graph represents the average of the resul-
tant quality with the entropy based scheme for the 21
sensors of Fig. 10. The random graph represents the
average of the same experiment with a random selec-
tion scheme. The time axis is a qualitative comparison
rather than quantitative.

Alternatively, the results can also be evaluated by com-
paring the time required to reach different levels of
quality. For example in Fig. 11, when the random cri-
terion reaches 60 % of quality, the entropy criterion
has already reached more than 80 %.

The approach has been implemented and is being
tested on the validation of temperature sensors in a
gas turbine of a combined cycle power plant. The re-
sults for the accuracy of the model were reported in

terms of the type I and type II errors and with re-
spect to detecting severe and mild faults. The results
showed, that for this particular test application, more
stringent criteria for detecting failures reduced type I
errors but did not significantly increase type II errors.

The results of the evaluation of the validation and iso-
lation phases together are shown in Table 2. Again,
with a p value of 0.01, there are 2.9 % of type I errors,
and 0.4 % type II errors. Notice that, in general, the
sensor validation algorithm performs almost perfectly
with respect to undetected faulty sensors, i.e., all the
faults are detected. At the same time, the rate of in-
correct detection faults is satisfactory for most of the
criteria analyzed.

Two complexity aspects need to be discussed. The first
one is the size of the pre compliled decision tree pre-
sented in section 4.2. A binary tree for n sensors con-
tains n levels and up to 2n−1 nodes (1,048,575 nodes
for 21 sensors). However, if a single fault is assumed,
then the decision tree results in a pruned tree with
n levels and at most n × (n + 1) nodes. The second
one is the complexity for probability propagation in
the fault isolation network as in Fig. 8. The propaga-
tion complexity (using the clostering algorithm [Lau-
ritzen & Spiegelhalter 1988]), depends on the the size
of the largest entry of the EMB table, i.e., the largest
clique. However, if a tree is assumed for the detection
Bayesian network, the number of nodes in the EMB
table remains small, i.e., just one parent and the chil-
dren of a node.

7 Conclusions

This paper has presented an any time, probabilistic
algorithm for sensor validation. A layered approach is
considered where the lowest layer performs the valida-
tion. A Bayesian network is used to define the relation-
ships between variables and to estimate the expected
value of a sensor. The expected value is then compared
with the actual reading obtained. If these measures
differ then a faulty sensor is suspected. A faulty sensor
is then distinguished from apparently faulty sensors by
the use of a property based on the Markov blanket.

An any time version of the validation algorithm, that
improves the quality of its answer incrementally, has
also been presented. This any time algorithm uses a
causal network to distinguish the real fault from the
apparent ones. The any time behaviour is obtained
with the selection of the sensor that provides more
information when validated. The selection is made
with the entropy function.

The evaluation of the any time behaviour of the al-
gorithm presented in this paper was done by carrying

out experiments to obtain the performance profile of
the entropy based selection scheme and comparing it
with a random selection scheme.

Future research will attempt to use the probabilities
obtained in the fault detection Bayesian network, as
the input to the fault isolation Bayesian network. At
this stage, the output of the detection network consists
in a binary value ({correct, faulty}).

Acknowledgments

Thanks to the anonymous referees for their comments
which improved this article. This research is sup-
ported by a grant from CONACYT and IIE under the
IIE/SALFORD/CONACYT doctoral programme.

References

Boddy, M. & Dean, T. (1994), ‘Decision theoretic de-
liberation schedulling for problem solving in time-
constrained environments’, Artificial Intelligence
67(2), 245–286.

Cohen, P. (1995), Empirical methods for artificial in-
telligence, MIT press, Cambridge, Mass.

Dean, T. & Boddy, M. (1988), An analysis of time
dependent planning, in ‘Proc. Seventh Natl. Conf.
on AI’, St. Paul, Menlo Park, U.S.A., pp. 49–54.

Horvitz, E. (1987), Reasoning about beliefs and ac-
tions under computational resource constraints,
in J. Lemmer, T. Levitt & L. Kanal, eds, ‘Proc.
Third Conference on Uncertainty in Artificial In-
telligence’, Elsevier Science Publishing Company,
Inc., New York, NY, Seatle, WA, U.S.A., pp. 429–
444.

Ibargüengoytia, P. (1997), Any time probabilistic sen-
sor validation, PhD dissertation, University of
Salford, Computer and Mathematical Sciences,
Salford U.K.

Ibargüengoytia, P., Sucar, L. & Vadera, S. (1996),
A probabilistic model for sensor validation, in
E. Horvitz & F. Jensen, eds, ‘Proc. Twelfth Con-
ference on Uncertainty in Artificial Intelligence
UAI-96’, Portland, Oregon, U.S.A., pp. 332–339.

Lauritzen, S. & Spiegelhalter, D. J. (1988), ‘Local com-
putations with probabilities on graphical struc-
tures and their application to expert systems’,
Journal of the Royal Statistical Society series B
50(2), 157–224.

Pearl, J. (1988), Probabilistic reasoning in intelligent
systems: networks of plausible inference, Morgan
Kaufmann, San Francisco, CA.

Shannon, C. & Weaver, W. (1949), The mathemati-
cal theory of communication, University of Illinois
press, Urbana, Illinois, U.S.A.

Stankovic, J. (1988), ‘Misconceptions about real time
computing: a serious problem for next generation
systems’, Computer 21(10), 10–19.

Sucar, L., Pérez-Brito, J., Ruiz-Suarez, J. & Morales,
E. (1997), ‘Learning structure from data and its
application to ozone prediction’, Applied Intelli-
gence 7, 327–338.

Yung, S. & Clarke, D. (1989), ‘Local sensor validation’,
Measurement & Control 22(3), 132–141.

Zilberstein, S. & Russell, S. (1996), ‘Optimal compo-
sition of real-time systems’, Artificial Intelligence
82(1-2), 181–213.

