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Abstract 

Lean construction and Building Information Modeling are quite different initiatives, but both are 

having profound impacts on the construction industry. A rigorous analysis of the myriad specific 

interactions between them indicates that a synergy exists which, if properly understood in theoretical 

terms, can be exploited to improve construction processes beyond the degree to which it might be 

improved by application of either of these paradigms independently. Using a matrix that juxtaposes 

BIM functionalities with prescriptive lean construction principles, fifty-six interactions have been 

identified, all but four of which represent constructive interaction. Although evidence for the majority 

of these has been found, the matrix is not considered complete, but rather a framework for research to 

explore the degree of validity of the interactions. Construction executives, managers, designers and 

developers of IT systems for construction can also benefit from the framework as an aid to recognizing 

the potential synergies when planning their lean and BIM adoption strategies. 

Keywords: computer aided design; construction management; information technology (IT); lean 

construction. 
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Introduction 

 
Two major developments are effecting fundamental change in the architecture/ 

engineering/construction (AEC) industry. The first is a conceptual approach to project and construction 

management – Lean Construction – and the second is a transformative information technology – 

Building Information Modeling (BIM). While the two are conceptually independent and separate, there 

appear to be synergies between them that extend beyond the essentially circumstantial nature of their 

approaching maturity contemporaneously. Their parallel adoption in state-of-the-art construction 

practice is a potential source of confusion when assessing their impacts and effectiveness. Does BIM, 

as a process, have features that would be intrinsically instrumental in eliminating dominant wastes in 

construction?  Will  the  organizational  forms  stimulated  by  the  introduction  of  BIM  be  neutral, 

conducive or hindering regarding lean? What characteristics of BIM systems promote flow, and what 

characteristics interrupt flow? 

As a starting point, we define the two concepts for the specific purposes of the framework analysis 

(these should not be construed as an attempt to provide authoritative definitions, but only to provide the 

proper context for the discussion that follows): 

Lean Construction 

 
Lean construction refers to the application and adaptation of the underlying concepts and principles of 

the Toyota Production System (TPS) to construction. As in the TPS, the focus in lean construction is on 

reduction of waste, increase of value to the customer, and continuous improvement. While many of the 

principles and tools of the TPS are applicable as such in construction, there are also principles and tools 

in lean construction that are different from those of the TPS. 

Building Information Modeling 

 
The glossary of the BIM Handbook (Eastman et al. 2008) defines Building Information Modeling as  

“a verb or adjective phrase to describe tools, processes and technologies that are facilitated by digital, 

machine-readable documentation about a building, its performance, its planning, its construction and 

later its operation.” The result of BIM activity is a ‘building information model’. BIM software tools 

are characterized by the ability to compile virtual models of buildings using machine-readable 

parametric objects that exhibit behavior commensurate with the need to design, analyze and test a 
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building design (Sacks et al. 2004). As such, 3D CAD models that are not expressed as objects that 

exhibit form, function and behavior (Tolman 1999) cannot be considered building information models. 

However,  the  BIM  Handbook  also  states  in  its  introduction  that  building  information  modeling 

provides “the basis for new construction capabilities and changes in the roles and relationships among 

a  project  team.  When  implemented  appropriately,  BIM  facilitates  a  more  integrated  design  and 

construction  process  that  results  in  better  quality  buildings  at  lower  cost  and  reduced  project 

duration.” In this sense, BIM is expected to provide the foundation for some of the results that lean 

construction is expected to deliver. 

Lean construction and BIM are not dependent upon one another (i.e. lean construction practices can be 

adopted without BIM, and BIM can be adopted without lean construction). This is illustrated by the 

numerous cases of separate adoption of each in design and construction companies within the past 

decade. However, we hypothesize that the full potential for improvement of construction projects can 

only be achieved when their adoption is integrated, as they are in the Integrated Project Delivery (IPD) 

approach. A similar notion is expressed in the American Institute of Architects document on IPD 

(Eckblad et al. 2007), “Although it is possible to achieve Integrated Project Delivery without Building 

Information Modeling, it is the opinion and recommendation of this study that Building Information 

Modeling is essential to efficiently achieve the collaboration required for Integrated Project Delivery.” 

The  following  sections  of  this  paper  provide  a  formal  exposition  of  this  idea  by  defining  the 

interrelationships between the two. This is achieved by means of a framework that juxtaposes BIM 

functionalities and lean principles, establishes the theoretical relationships between them, and identifies 

the constructive and destructive interactions between them in implementation. 

 

 

Emerging research and empirical evidence linking BIM & Lean Thinking 

 
Liker (2003) has pointed out that Toyota remained flexible (in comparison with its competitors) by 

selecting only those information and communication (ICT) opportunities that were needed and which 

could reinforce the business processes directly, and by ensuring through testing that they were an 

appropriate “fit” to the organizational infrastructure (people, process and other ICT). BIM provides this 

opportunity to the construction industry because it reinforces the core construction processes. However, 
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to date, the results of much of the construction industry’s investment in ICT have been less than 

satisfactory for a number of reasons (Dave et al. 2008). The main factors are: 

 Too much emphasis has been placed on solutions which focus mainly on peripheral issues 

 
(such as Enterprise Resource Planning systems) rather than core processes. 

 
 The  three  core  organizational  issues  –  people,  process  and  technology  –  have  not  been 

addressed with the required balance. 

The individual areas of Lean Construction and BIM have been researched extensively in recent years. 

However, there seems to be much less research that exploits both of these areas collectively. The 

following paragraphs describe efforts that explore the synergy between the areas of BIM and Lean 

Construction. 

In an attempt to evaluate the impact of what they termed ‘Computer Advanced Visualization Tools’ 

(CAVT), Rischmoller et al. (2006) used a set of lean principles as the theoretical framework. They 

placed key emphasis on value generation during the design stage of the construction project. Based on 

a case study conducted over a four year period, they concluded that application of CAVT results in 

waste reduction, improved flow and better customer value, indicating a strong synergy between the 

lean construction principles and CAVT. 

In another effort to integrate lean construction processes with BIM, Khanzode et al. (2006) attempted 

to provide a conceptual framework to link Virtual Design & Construction (VDC) with the Lean Project 

Delivery Process (LPDS). As with CAVT, the VDC concept can be taken to represent BIM, or aspects 

of BIM, due to the similarities in underlying principles and technologies. Here too, results from a case 

study confirmed that the application of VDC enhances the Lean Project Delivery Process when applied 

at the correct stages. The authors reported that there was hitherto no literature on linking BIM to the 

Lean Construction process, and so provided an initial set of guidelines. 

Sacks et al. (2009b) discussed the potential contributions of BIM to visualization of the product and 

process  aspects  of  construction  projects  in  terms  of  lean  construction  principles.  They  provided 

examples that illustrate the use of BIM and related technologies to enable a “pull flow” mechanism to 

reduce variability within the construction process. 

IPD and VDC are emerging techniques that leverage BIM to provide an integrated project management 

and collaboration platform. The first places emphasis on engendering collaboration through a central 
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common contract, while the latter focuses primarily on skilled use of information technology.. Both are 

still in their infancy, but they are being developed and their adoption within the industry is increasing. 

Some of the major process changes that have been documented are (Eastman et al. 2008, Ch. 1; Khemlani 

2009): 

1. Increased engagement of construction knowledge and skills upstream in the design process. 

 
2. Development of detailed design earlier than has been common with traditional systems. 

 
3. Collocated teams. 

 
4. Contractual arrangements to share pain and gain. 

 
5. Introduction of new roles, such as BIM managers or consultants. 

 
 

Khemlani (2009) reported a detailed case study of a project in which IPD was implemented. The 

Sutter Health Castro Valley Medical Center project, a $320 million hospital building facility,  builds on 

the project team’s earlier experience implementing BIM and lean on projects such as the Camino 

Medical Center (Eastman et al. 2008, p. 358). Each design and construction partner uses the BIM 

system of their choice for design and/or fabrication detailing. The discipline models are then integrated 

using collaboration software for coordination and the design is tested for code compliance using Solibri 

model checker. The team also uses lean tools such as value stream mapping to monitor and improve the 

project processes, which aims to minimize the cycles of iteration as the design converges. On this 

project a unique professional role, defined as “Lean/BIM project integrator”, has been created. The 

positive results reported to date demonstrate how the new project management process combines the 

areas of Lean and BIM to leverage maximum benefit. 

Gilligan  and Kunz (2007) reported  that the use of VDC in  an  earlier project was considered to 

contribute directly to the implementation of lean construction methods: ‘Early interaction between the 

design and construction teams driven by owner Sutter Health’s Lean Construction delivery process 

used 3D models to capitalize on true value engineering worth nearly $6M’. Khanzode et al. (2005) 

provide additional descriptions of the project and the use of VDC and lean methods in its construction. 

Eastman et al. (2008, Ch. 9) provide ten detailed case studies of BIM implementation, two of which 

focus on projects in which prefabrication was used extensively. In the context of detailed design for 

fabrication and delivery by subcontracted suppliers of prefabricated elements, they comment that ‘Lean 

construction  techniques  require  careful coordination between  the  general contractor  and  subs  to 
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ensure that work can be performed when the appropriate resources are available onsite.  …..  Because 

BIM provides an accurate model of the design and the material resources require for each segment of 

the work, it provides the basis for improved planning and scheduling of sub-contractors and helps to 

ensure just-in-time arrival of people, equipment, and materials.’ 

It emerges from this review of existing literature and research efforts that even if many interesting 

connections have been pinpointed, there is a lack of systematic exploration between BIM and lean 

construction, and that further efforts are needed to bridge this gap in knowledge. 

 

 

Relevant Lean Construction Principles 

 
Several authors have provided lists of lean principles, both in the general lean production literature 

 
(Liker 2003; Schonberger 1996; Womack and Jones 2003) and the lean construction literature (Koskela 

 

1992; Koskela 2000). In this context, it is also worth mentioning Deming’s 14 points that are based on 

the quality approach (Deming 1982). In the following, we present a list that has been specifically 

compiled for the analysis of interconnections between lean and BIM. 

In selecting such principles, a number of criteria were used. Regarding the focus of the principles, it is 

interesting to consider the four types of principles, as defined by Liker: philosophy, process, people and 

partners, problem solving. From these, only principles relating to philosophy are assumed not to relate 

to BIM. Another choice concerns whether the principles should be descriptive or prescriptive. For 

example, Hopp and Spearman (1996) present a number of descriptive manufacturing laws, whereas 

most lean authors have prescriptive principles. Here, the mainstream approach has been adapted, and 

the applicable descriptive laws have been transformed into prescriptive principles. 

A further choice is about the meaning of “process”. As it has been contended elsewhere (Koskela 

2004b), popular accounts, like Womack & Jones (2003), may confound the two involved concepts, 

namely flow and value generation, and thus blur the existence of two conceptualizations from which 

principles are being derived. Historically, lean was initiated based on the flow concept, and the value 

concept, cultivated by the quality movement, was later merged into lean. Here, principles are explicitly 

derived from both concepts. With the exception for some key relations, the complex interrelations 

between the principles are not discussed in this short account. Each principle is presented in generic 
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terms, but if its application in construction deviates from the mainstream, the construction specific 

features are briefly commented. 

In the following paragraphs the principles are listed in bold, with detailed prescriptions noted in italics: 

Reduce variability. This is a foundational principle that has been derived through two domains, 

industrial engineering and quality engineering. In statistical quality theory (Shewhart 1931), the target 

is  to  reduce  the  variability  in  the  significant  product  characteristics.  In queuing theory based 

understanding of production (Hopp and Spearman 1996), the target is to reduce temporal variability of 

production flows. These two types of variability interact in a complex way. 

Reduce cycle times. Because variability expands cycle times, this principle can be used as a driver 

towards variability reduction. However, reduction of cycle times also has intrinsic value. Due to the 

definitional connection between work-in-progress and cycle time (expressed in Little’s Law), this 

principle is roughly equivalent to inventory reduction. In construction, reduction of cycle times should 

be focused on several levels of analysis: total construction duration, stage of construction, flow of 

materials (from factory to installation), and task (Koskela 2000). 

Reducing batch sizes, or striving for single piece flow, is an effective technique for reducing the 

expansion of cycle times due to batching. In construction, abstract conceptualizations of ‘products’ that 

can be counted in a batch are needed. These are commonly predefined as packaged sets of tasks 

performed in distinct spaces, such as apartments (Sacks and Goldin 2007). 

Increase flexibility. Here flexibility may be associated with work station capability and capacity, 

routings, etc. Flexibility reduces cycle times and also otherwise it simplifies the production system. In 

construction, multi-skilled teams provide an example. Reduced setup or changeover times increase 

routing flexibility with short cycle times. 

Select an appropriate production control approach. In a pull system, a productive activity is 

triggered by the demand of a downstream work station (or customer), whereas in a push system, a plan 

pushes activities into realization. The pull system has come to be closely associated to lean. However, 

in reality most production control systems are mixed push-pull systems, and the task is to select the 

best method for each stage of production (Huang and Kusiak 1998). Leveling of production facilitates 

the  operations  of  a  pull  system.  In  construction,  the  push  system  is  realized  through  plans  and 
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schedules. The look-ahead procedure in the Last Planner System of production control provides an 

example of pulling. 

Standardize. Standardization of work serves several goals. Both temporal and product feature 

variability can be reduced, and continuous improvement is enabled. Employees are also empowered to 

improve their work. 

Institute continuous improvement. Through continuous improvement, variability can be reduced, and 

also technology incrementally improved. The foundation for continuous improvement was provided by 

the scientific experimentation method for improvement (Shewhart 1931) and is now known under the 

name of Deming cycle. Continuous improvement is a deliberate, institutionalized and systematic form 

of improvement, and thus in many ways goes beyond mere learning (as addressed by the concept of the 

learning curve). 

Use visual management. Visual management is closely connected to standardization, where 

visualization of production methods offers easy access to standards and supports compliance with 

them. It is also closely connected to continuous improvement, in that visualization of production 

processes enables perception by workers of the process state and of measures of improvement. 

Design  the  production  system  for  flow  and  value.  This  principle  stresses  the  importance  of 

production system design (this phrase intends to cover also the product development and design stage). 

Generally, criteria derived from the two concepts of production should be used in this endeavour. 

Another important issue is that production system design should support production control and 

continuous improvement. There are several heuristics for production system design, advising towards 

simplification, use of parallel processing and use of only reliable technology. From the viewpoint of 

value, ensuring the capability of the production system is important. 

Ensure comprehensive requirements capture. This is the first principle addressing solely the value 

generation  concept.  For  obvious  reasons,  value  generation  requires  comprehensive  requirements 

capture – in practice, this is a notoriously problematic stage (Kamara et al. 2002). 

Focus on concept selection. Designing divides into concept design and detail design. The development 

of different concepts and their evaluation should be addressed with necessary emphasis, as there is a 

natural tendency to rush to detail design. Set based design is an application of this principle that is 

useful for building design (Parrish et al. 2007). 
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Ensure requirement flow-down. The next challenge from the point of view of value generation is to 

ensure that all requirements flow down to the point where the smallest parts of the product are designed 

and produced. 

Verify and validate. Also in the realm of value generation, this principle, well known from the V 

model of systems engineering (Stevens et al. 1998), reminds us that intent is not enough. All designs 

and products should be verified against specifications and validated against customer requirements. 

Go and see for yourself. This “going to gemba” principle stresses the importance of personal 

observation, instead of reports and hearsay (Liker 2003). Although traditionally in construction, the 

tendency has been to solve problems in situ, this principle tends to stress the importance of site visits of 

those who usually do not practice them: for example, estimators and managers. 

Decide by consensus, consider all options. This principle derives from the practice of Toyota (Liker 

2003). By extending the circle of decision makers, a wider knowledge base can be ensured for the 

decisions. By extending the number of options considered, the probability of finding the practically 

best solution is increased. 

Cultivate an extended network of partners. This principle implies that an extended network of 

partners should be built, challenged and helped to improve. In construction, this can either happen in 

the framework of one project (alliancing), or on a longer term basis (framework agreements). 

 
 
 

BIM Functionality 

 
We next identify the relevant key aspects of functionality that BIM technology provides for compiling, 

editing, evaluating and reporting information about building projects. The fundamental technology that 

is the basis of most of the functionality shared by all BIM tools is parametric object modeling and 

application of parametric constraints (Sacks et al. 2004). Object modeling implies the use of software 

objects, which group data and the methods to manipulate them, to represent real-world concepts (Galle 

1995). The concepts may be physical, such as parts of a building, or abstract, such as a cost estimate or 

a structural analysis result (Turk et al. 1994). The adjectives ‘parametric object’ imply the possibility to 

re-use object ‘class’ definitions to represent multiple occurrences of similar things; these are termed 

‘instances’ of a class, and have different attribute values, but the same basic structure. Inheritance of 

class attributes and methods in a hierarchy make it possible to build extensive taxonomies of objects, 
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with complex behaviors, fairly efficiently. Parametric constraints, which are applied to the resulting 

model object instances, enable expression and application of rules that govern the way the objects 

behave when manipulated, so that they can be programmed to respond to actions on them in the way 

that we would expect their real-world counterparts to behave. For example, when a wall is moved in a 

BIM design tool, we naturally expect a door within it to move with it. In summary, it is this technology 

that enables BIM tools to model building’s form, function and behavior (Tolman 1999), and that makes 

all of the aspects of functionality listed below possible. 

For the purposes of the analysis, we focus on the exhibited functionality, rather than the core 

technology. The items listed in the following text have been phrased with care to express bare 

functionality, avoiding a priori assumptions concerning the potential benefits or drawbacks of their use 

in relation to lean construction principles. They are drawn primarily from Eastman et al. (2008) and 

Sacks et al. (2004). 

Visualization of form (for aesthetic and functional evaluation). All BIM systems provide the ability 

to render the designs with some degree of realism, making building designs more accessible to non- 

technical project participants and stakeholders than is possible with technical drawings. 

Rapid generation of multiple design alternatives. Designers can manipulate design geometry 

efficiently by taking advantage of the parametric relationships and behavioral ‘intelligence’, which 

maintain design coherence, and of automated generation and layout of detailed components (e.g. 

automated connection detailing in steel construction). This was not possible with computer-aided 

drafting (CAD) systems. 

Use of model data for predictive analysis of building performance. This has three aspects: 

 
a. Some BIM software products have engineering analysis tools (such as finite-element and energy 

analyses) built-in, and most can export relevant pre-processed data for import to external third- 

party analysis tools. Varying degrees of human effort are needed to adapt the exported data to 

the forms required by the analysis tools, and different degrees of rework are required to change 

the analysis models whenever the building model is changed. Nevertheless, the procedures are 

more productive, less error prone and quicker than compilation of the analyses models from 

scratch. 

b. Automated life-cycle and construction cost estimation with links to online sources of cost data. 
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c. Automated evaluation of conformance to program/client value and code compliance checking 

using rule processing. A recent comprehensive review (Eastman et al. 2009) shows that while 

this functionality is still limited in scope, its development is well beyond the proof of concept 

stage. 

Maintenance of information and design model integrity. This capability is achieved because BIM 

tools store each piece of information once, without the repetition common in drawing systems where 

the same design information is stored in multiple drawings or drawing views (such as on a plan, an 

elevation and a detail sheet). Geometric integrity is also enhanced where the automatic clash-checking 

capabilities of model integration software tools are used to identify and remove physical clashes 

between model parts. 

Automated generation of drawings and documents. Different BIM software offer varying degrees of 

automation for initial generation of drawings and documents, with most needing at least some user 

input  for  custom  annotation.  By  definition,  however,  a  BIM  system  is  one  that  automatically 

propagates any model changes to the reports, thus automatically maintaining integrity between the 

model and the reports (Eastman et al. 2008, p. 16). Some, but not all, also offer full bi-directional 

editing, where the model can be edited directly from model object links embedded in drawings. 

Collaboration in design and construction is expressed in two ways: ‘internally’, where multiple users 

within a single organization or discipline edit the same model simultaneously, and ‘externally’, where 

multiple  modelers  simultaneously  view  merged  or  separate  multi-discipline  models  for  design 

coordination. Whereas in the internal mode objects can be locked to avoid inconsistencies when objects 

might be edited to produce multiple versions, in the external mode only non-editable representations of 

the objects are shared, avoiding the problem, but enforcing the need for each discipline to modify its 

own objects separately before checking whether conflicts are resolved. 

Rapid  generation  and  evaluation  of  construction  plan  alternatives.  Numerous commercial 

packages are available for  4D visualization of construction schedules. Some automate the generation 

of  construction  tasks  and  modeling  of  dependencies  and  pre-requisites  (such  as  completion  of 

preceding tasks, space, information, safety reviews) and resources (crews, materials, equipment, etc.) 

by using libraries of construction method recipes, so that changes to plans can be made and evaluated 

within hours. Although the use is not widespread, some provide functions that enable discrete event 
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simulation of construction procedures and plans Such developments permit construction process 

rehearsal and iterative optimisation (Kong and Li 2009; Li et al. 2009). 

Online/electronic object-based communication. At present, online communication is largely limited 

to the use of project intranets and more sophisticated model-servers. However, more sophisticated 

systems that integrate product information in BIM tools with process information from enterprise-wide 

information systems have moved beyond early research and have been implemented (e.g. ConstructSim 

(Bentley 2009) for process plants). These newer tools enable visualizations of process and product 

status using the graphic building model views to deliver the information to workers in construction 

environments (Sacks et al. 2009b). LEWIS (Sriprasert and Dawood 2003) and the KanBIM system 

(Sacks et al. 2009a), which delivers integrated product and process information directly, are examples 

from research. In the near future, these systems will also use building model views to provide the 

context for collection of status data on- and off- site. 

Direct   information   transfer   to   support   computer-controlled   fabrication   of   construction 

components (rebar, structural steel members, etc.) using numerically-controlled machines is already 

common. Similarly, business-to-business integration between companies collaborating in construction 

projects is also possible on the basis of product specifications that originate in building models. 

 

 

Research framework for analysis of the interaction of Lean and BIM 

 
The lean principles listed in Table 1 and the features of BIM functionality listed in Table 2 were 

arranged in a matrix, as shown in Figure 1. The bare matrix, without cell entries, is a framework for 

analysis of the interactions between BIM functionality and lean principles. The nature of the interaction 

in any cell may be positive, representing synergy between BIM and lean construction, or negative, 

where the use of BIM inhibits implementation of a lean principle. The goal of the framework is to both 

guide and stimulate research; as such, the approach adopted up to this point is constructive. 

 

 

BIM – Lean Influence Analysis 

 
The next steps in using the framework are a) to postulate possible interactions and b) to seek empirical 

evidence to either support or refute them. In this section, we propose 55 distinct interactions, on the 

basis of the emerging evidence from research and practice outlined in the literature survey earlier in the 
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paper. Some are drawn directly from the evidence and others are inferred based on the informed 

reasoning of the authors. The impact of each feature of BIM functionality on each lean principle was 

assessed according to the definitions provided for the functionality and principles. The numbers listed 

in the cells of the table of Figure 1 are indices to the explanations of the cell interactions that appear in 

Table 3. Positive numbers indicate positive interaction, while the indices shown in brackets represent 

negative interaction. 

The explanations provided for each interaction (listed in Table 3) postulate the possible interactions. 

They are not deemed to be proven by empirical evidence, but rather they are candidates for verification 

or contradiction through measurement in future research.  Where anecdotal or other evidence is 

available, the appropriate sources are referenced in the third column. Where documented evidence has 

not been found, we have noted 'not yet available'; these areas are potentially fertile ground for future 

empirical research to substantiate or refute the interactions. 
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Figure 1. Interaction Matrix of Lean Principles and BIM functionalities. The numbers in the cells are indices to the cell content explanations provided in 

Table 3. Numbers in brackets represent negative interactions. 

14 
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Discussion 

 
Reviewing the matrix (Figure 1) reveals a number of aspects of interest, in terms of concentrations of 

positive and negative interactions for specific BIM functionalities and lean principles. These lead to 

observations and recommendations for guiding management focus when implementing lean and BIM, 

but they also provoke reflection on the depth of understanding that may be needed for managers to 

realize the positive interactions in practice. 

The lean principles that have the highest concentration of unique interactions are “Get quality right the 

first time (reduce product variability)” (A), “Focus on improving upstream flow variability (reduce 

production variability)” (B) and “Reduce production cycle durations” (C). These have significantly 

more numerous interactions than any of the other principles. Interestingly, the interactions are not 

limited to the BIM functionalities that serve design activities, but rather their impact is felt across 

design and construction. 

The BIM functionalities that have the highest concentrations of unique interactions are “Aesthetic and 

functional evaluation” (1), “Multi-user viewing of merged or separate multi-discipline models” (10), 

“4D visualization of construction schedules” (13) and “Online communication of product and process 

information” (15). Although the distinction between these and the other functionalities is not as sharp 

as it is for the leading lean principles, we note that three of these four are concerned with fabrication 

and construction management, despite the fact that BIM is perceived by many to be primarily a design 

tool. 

The principles that appear to be served least or even negatively impacted, are “Reduce inventory” (D), 

“Simplify production systems” (N) and “Use only reliable technology” (P). BIM can increase 

information inventory if not used in a process that actively streamlines information flow. Because BIM 

tools are technologically sophisticated, if not properly implemented and managed, they can make a 

process more complicated and unstable if the applications are not mature or if the users are not 

competent. Similarly, consumers of model information may place undue trust in the accuracy of 

models; models are often incomplete, have different degrees of detail in different zones or buildings 

systems. The BIM functionality that offers least in terms of support for lean principles is the single 

information source (6). 
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The preponderance of positive interactions over negative interactions that is apparent from Figure 1 

and Table 3 should not lead readers to assume that their achievement in practice is straightforward. 

Realization of the benefits in practice cannot be taken for granted. Numerous studies have shown that 

application of information technology in construction management has in certain circumstances failed 

to provide a positive return on investment. In a Scandinavian study, Howard et al. (1998) found 

benefits in design and administration, but not in construction management per se. Rivard’s results for 

Canada were similar (Rivard 2000), and Gann pointed out that the costs could outweigh the benefits in 

certain circumstances (Gann 2000). Under-utilization and interoperability issues have been identified 

as key problems with BIM adoption (Fox 2008), and lack of conceptual understanding can be a barrier 

to lean construction initiatives. 

In analyzing this situation, Koskela and Kazi (2003) start by introducing the notion that realizing IT 

benefits in general is dependent on compatible re-alignment of business processes. They then build on 

this in the construction context to suggest that such re-alignment is itself predicated on the need for a 

fundamental understanding of the peculiarities of construction. In the current context of lean 

construction and BIM, we propose that for comprehensive realization of benefits, not only should 

changes in information and material processes be coherently based on these two, but that all three – 

process changes, BIM tools themselves, and of course lean construction principles – should be rooted 

in conceptual understanding of the theory of production in construction. This is illustrated in Figure 2. 

 

 
Figure 2. The dependence of benefit realization through process change in construction on lean 

construction principles, BIM, and a theoretical understanding of production in construction. 
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By way of example, consider the significant shortening of cycle time that is commonly achieved when 

quantity take-off is extracted from a building model, as compared with traditional measurements from 

drawings. This can be exploited to improve the value generated through iterative design refinement, but 

only if managers recognize a) that the shortened cycle time shifts the bottleneck in the process to other 

activities, and b) that the overall design management approach can be re-aligned to bring designers and 

estimators to work together. Thus cycle-time is reduced by BIM whether project participants are aware 

of it or not, but comprehensive benefits can only be achieved when its meaning is perceived clearly. 

A second note of caution in interpreting the interaction matrix is that despite the analytical method 

inherent in the interaction matrix – i.e. subdivision of the whole into parts (cells of interaction) – the 

interaction of lean principles and BIM in construction should be seen as a whole and complex process 

rather than the sum of the isolated parts. Each functionality supports multiple lean principles, and vice 

versa, and these presumably have a synergistic effect. For the same reason, expert reasoning cannot 

determine all of the interactions and their impacts; some will only emerge through exploration and 

trialing by practitioners. 

The topics of BIM as a boundary object and construction tolerances, neither of which is included in the 

interaction matrix, are examples of such holistic interactions. Based on the seminal work by Star and 

Griesemer (1989),  BIM technology has been identified as a boundary object in business and social 

interactions between construction professionals that requires, but can also facilitate, organizational 

change (Forgues et al. 2009; Taylor 2005). As such, BIM technology could also be used as an enabler 

or catalyst for lean transformation. However, at present little is known about this issue. 

Dimensional tolerances are not managed well in construction (Milberg and Tommelein 2008; Tsao et al.  

2004).  BIM  may  provide  an  opportunity  for  improved  control  of  spatial  tolerances  through 

advanced tolerance analysis and management capabilities, which were previously unavailable in 2D 

CAD software. It can also support prefabrication and assembly of high tolerance components. Higher 

precision tolerances would contribute to leaner processes as they arguably reduce variability and the 

resultant waste from the construction process as well as generally diminish the losses due to deviations 

from target values (Taguchi 1993). However, the potential impact is broad and indirect, and remains to 

be proven through experimentation or empirical evidence. 
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Conclusions 

 
At the outset, the different ways of conceptualizing lean construction (including the whole project life 

cycle) and BIM, respectively, as presented in prior literature, were examined. Based on this, a 

framework or taxonomy of analyses was created for assessing the interconnections of lean and BIM. 

This rigorous framework is expected to be useful for future research (both empirical and design science 

research) relating to this interaction. In a broader sense, the framework and the analysis can be seen as 

an exemplar of the interactions between new information technologies and the production systems they 

serve. As such, it may be useful for research and analysis of such systems beyond the domain of 

construction. 

Methodologically, this is constructive/design science research, because it proposes a conceptual 

framework for analyzing the interaction of two transformative technologies: BIM and lean. Thus, 

depending on the angle of interest, the primary focus is either on the influence of an approach to design 

technology that has a transformative power not only on the design process but on the construction 

process as a whole, or on the pull of a transformative approach to management to use this design 

technology for transcending current constraints for performance improvement. 

The 56 issues identified are presented as hypotheses and are intended to guide and stimulate further 

research. A survey of experimental and practical literature to date shows documented evidence for 48 

of the issues. We expect that more of them will be borne out as empirical evidence is gathered, while 

some may prove to have different effects from those postulated. Nevertheless, the sheer amount of the 

constructive interaction mechanisms identified strongly supports the argument of a significant synergy 

between BIM and lean. 

However, the framework may also be used for understanding the practical issues faced by companies 

implementing BIM and/or lean. First, the breadth and depth of interconnections between them implies 

that any company or project on a lean journey should seriously consider using BIM for enhancing the 

lean  outcomes.  Conversely,  any  company  or  project  implementing  BIM  should  ensure  that  their 

adoption/change process is contributing to the fullest extent possible to making their processes leaner. 

Second,  in  the  current  stage  of  both  BIM  and  lean,  it  is  probable  that  most  companies  and 

professionals are still on a learning curve. The high number of interactions between BIM and lean 

suggests that perhaps the parallel adoption should be in small steps. It may be a good strategy to 
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carefully define benefits that are desired, accordingly to design and execute manageable BIM/lean 

experiments, and to proceed in incremental stages towards harnessing even more positive interactions 

between these two initiatives. 

Lastly, we contend that for comprehensive realization of benefits, changes in information and material 

processes, BIM tools themselves, and of course lean construction principles should be rooted in 

conceptual understanding of the theory of production in construction. This issue does not come out of 

any specific cell or group of cells in the matrix, but derives from a holistic view of the situation. As 

such, this implies that in construction management, a closer interaction between theory and practice, 

between academia and industry, is needed than has hitherto been the case. 
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Table 1. Lean principles 

 
Principal area Principle Column 

 

Key 

Flow process Reduce variability 
 

Get quality right the first time (reduce product 

variability) 

Focus on improving upstream flow variability (reduce 

production variability) 

Reduce cycle times 
 

Reduce production cycle durations 
 

Reduce inventory 
 

Reduce batch sizes (strive for single piece flow) 

Increase flexibility 

Reduce changeover times 
 

Use multi-skilled teams 
 

Select an appropriate production control approach 
 

Use pull systems 
 

Level the production 
 

Standardize 
 

Institute continuous improvement 
 

Use visual management 
 

Visualize production methods 
 

Visualize production process 
 

Design the production system for flow and value 
 

Simplify 
 

Use parallel processing 
 

Use only reliable technology 
 

Ensure the capability of the production system 

 

 
A 

B 

 

 
C 

D 

E 

 

 
F 

G 

 

 
H 

I 

J 

K 

 

 
L 

M 

 

 
N 

O 

P 

Q 

Value generation 
 

process 

Ensure comprehensive requirements capture 
 

Focus on concept selection 

Ensure requirement flowdown 

Verify and validate 

R 
 

S 

T 

U 

Problem-solving Go and see for yourself 
 

Decide by consensus, consider all options 

V 
 

W 

Developing partners Cultivate an extended network of partners X 



26 

Revised and submitted 11/2009 to the Journal of Construction Engineering and Management 

2009 © Sacks, Koskela, Dave and Owen 

 

 

 
 

 
Table 2. BIM Functionality 

 
 

 
Stage Functional  area and function Row 

 

Key 

Design Visualization of form 
 

Aesthetic and functional evaluation 

 

 
1 

Rapid generation of multiple design alternatives 2 

Re-use of model data for predictive anlyses 
 

Predictive analysis of performance 
 

Automated cost estimation 
 

Evaluation of conformance to program/client value 

 

 
3 

 

4 
 

5 

Maintenance of information and design model integrity 
 

Single information source 
 

Automated clash checking 

 

 
6 

 

7 

Automated generation of drawings and documents 8 

Design and 
 

Fabrication 
 

Detailing 

Collaboration in design and construction 
 

Multi-user editing of a single discipline model 
 

Multi-user viewing of merged or separate multi-discipline models 

 

 
9 

 

10 

Pre-construction 
 

and Construction 

Rapid generation and evaluation of construction plan alternatives 
 

Automated generation of construction tasks 
 

Construction process simulation 
 

4D visualization of construction schedules 

 

 
11 

 

12 
 

13 

Online/electronic object-based communication 
 

Visualizations of process status 
 

Online communication of product and process information 
 

Computer-controlled fabrication 
 

Integration with project partner (supply chain) databases 
 

Provision of context for status data collection on site/off site 

 

 
14 

 

15 
 

16 
 

17 
 

18 
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Table 3. Interaction matrix: explanations of cell contents. 

 

In
d

e
x 

 
Explanation 

Evidence from 
practice and/or 
research 

1. Due to better appreciation of design at an early stage, and also due to the early functional 
evaluation of design against performance requirements (such as energy, acoustics, wind, 
thermal, etc) the quality of the end product is higher and more consistent with design intent. 
This reduces variability commonly introduced by late client‐initiated changes during the 
construction stage. 

 
(Eastman et al. 2008 
p.390; Manning and 
Messner 2008) 

2. Building modeling imposes a rigor on designers in that flaws or incompletely detailed parts are 
easily observed or caught in clash checking or other automated checking. This improves design 
quality, preventing designers from ‘making‐do’ (Koskela 2004a) and reducing rework in the 
field as a result of incomplete design. 

(Dehlin and 
Olofsson 2008; 
Eastman et al. 2008 
p.422) 

3. Building systems are becoming increasingly complex. Even trained professionals have difficulty 
generating  accurate  mental  models  with  drawings  alone.  BIM  simplifies  the  task  of 
understanding designs, which helps construction planners deal with complex products. 

(Eastman et al. 2008 
p.382) 

4. As all aspects of design are captured in a 3D model the client can easily understand, the 
requirements can be captured and communicated in a thorough way already during the 
concept development stage. This can also empower more project stakeholders to participate 
in design decision making. 

(Eastman et al. 2008 
p.378; Manning and 
Messner 2008) 

5. Virtual prototyping and simulation due to the intelligence built in the model objects enables 
automated checking against design and building regulations, which in turn makes verification 
and validation of the design more efficient. 

(Eastman et al. 2008 
p.390; Khanzode et 
al. 2008) 

6. With BIM, Gemba can be augmented because it is now possible to virtually visit the project 
and  the  worksite  (Whyte  2002).  With  objects  that  contain  intelligence  and  parametric 
information, problem solving is also more efficient. 

 
(Whyte 2002) 

7. BIM provides the ability to evaluate the impact of design changes on construction in a visual 
manner that is not possible with traditional 2D drawings. Rapid manipulation is a key enabler 
for repetition of this kind of analysis for multiple design alternatives (see also item 40). 

(Eastman et al. 2008 
p.378) 

8. It is now possible for multi‐skilled teams to work concurrently in order to generate various 
design alternatives at an early stage using integration platforms such as Navisworks or Solibri 
etc. as exemplified in the Castro Valley project case study (Khemlani 2009). Also, at a later 
stage during manufacturing/construction; for any design change, changing the model will 
automatically update other relevant information such as cost estimating, project planning, 
production drawings, etc. 

 
(Eastman et al. 2008 
p.329; Khemlani 
2009) 

9. Testing the design against performance criteria ensures that the design is appropriate for the 
chosen function, reducing the variability and improving the performance of the end product. 

(Eastman et al. 2008 
p.390) 

10. Automated quantity take off which is linked to the BIM model is more accurate as there are 
less chances of human error; hence it improves flow by reducing variability. Also, changing the 
design at a later stage also changes the linked quantity files; this ensures that the quantities 
are always accurate. 

 
(Eastman et al. 2008 
p.425) 

11. In sets of 2D drawings and specifications, the same objects are represented in multiple places. 
As design progresses and changes are made, operators must maintain consistency between 
the multiple representations/information views. BIM removes this problem entirely by using a 
single representation of information from which all reports are derived automatically. 

 
(Eastman et al. 2008 
p.422) 

12. Use of software capable of model integration (such as Solibri/Navisworks/Tekla) to merge 
models,  identify  clashes,  and  resolve  them  through  iterative  refinement of  the  different 
discipline specific models results in almost error free installation on site. 

(Eastman et al. 2008 
p.431) 

13. Multi‐disciplinary  review  of  design  and  of  fabrication  detailing,  including  clash‐checking, 
enables early identification of design issues. 

(Eastman et al. 2008 
p.362; Khanzode et 
al. 2008) 

14. Automated task generation for planning helps avoid human errors such as omission of tasks or 
work stages. 

(Eastman et al. 2008 
p.409) 

15. Discrete event simulation can be used to test and improve production processes and to run 
virtual first‐run studies which in construction are often impossible or impractical. 

(Eastman et al. 2008 
p.429) 

16. At  the  conceptual  design  stage,  rapid  turnaround  to  prepare  cost  estimates  and  other 
performance evaluations enables evaluation of multiple design options, including the use of 
multi‐objective optimization procedures (such as genetic algorithms). 

(Eastman et al. 2008 
p.445) 

17. Animations of production or installation sequences can be prepared. These guide workers in 
how to perform work in specific contexts, and are an excellent means for ensuring that 
standardized procedures are followed, particularly where turnover of workers from stage to 
stage is high, as is common in construction. 

 
(Eastman et al. 2008 
p.429) 

18. When up‐to‐date product information is available online, the opportunities for identifying 
conflicts and errors within short cycle‐times, when their impact is limited, are enhanced. 

(Eastman et al. 2008 
p.422) 
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In

d
e

x 
 
Explanation 

Evidence from 
practice and/or 
research 

19. Direct  transfer  of  fabrication  instructions  to  numerically‐controlled  machinery,  such  as 
automated steel or rebar fabrication, eliminates opportunities for human error in transcribing 
information. 

(Khanzode et al. 
2008; Tekla 2009b) 

20. Direct delivery of information removes waiting time, thus improving flow. (Khemlani 2009) 

21. Provision of a model background and context for scanning bar codes or RFID tags, and display 
of the process data on model backgrounds, enables accurate reporting and rapid response to 
work flow problems 

 
(Vela 2009) 

22. Quick turn‐around of structural, thermal, acoustic performance analyses; of cost estimation; 
and of evaluation of conformance to client program, all enable collaborative design, collapsing 
cycle times for building design and detailing. 

(Eastman et al. 2008 
p.386) 

23. Parallel processing on multiple workstations in a coordinated fashion (with locking of elements 
edited on each machine) collapses cycle times of otherwise serial design activities. Where 
design was previously (i.e. with CAD) performed in parallel on different parts, the time needed 
for integration and coordination of the different model views is removed. 

 
(Khemlani 2009) 

24. Model‐based coordination between disciplines (including clash‐checking) is automated and so 
requires a fraction of the time needed for coordination using CAD overlays. 

 
(Eastman et al. 2008 
p.422) 25. All three functions serve to reduce cycle time during construction itself because they result in 

optimized operational schedules, with fewer conflicts 

26. Where process status is visualized through a BIM model, such as in the KanBIM system (Sacks 
et al. 2009a), series of consecutive activities required to complete a building space can be 
performed one after the other with little delay between them. This shortens cycle time for any 
given space or assembly. 

 
(Sacks et al. 2009a) 

27. Direct computer‐controlled machinery fed directly from a model can help shorten cycle times 
by eliminating labor‐intensive data entry and/or manual production, thus shortening cycle 
times. This does not  guarantee shortened cycle times if  the time gained is  then wasted 
through batching or waiting. 

 
(Eastman et al. 2008 
p.333) 

28. Removal of data processing steps for ordering or renewing material deliveries, removal of time 
wasted before ordering, etc., improve cycle times. 

(Vela 2009) 

29. In this case the functionality can be said to increase inventory of design alternatives. This can 
be considered beneficial in terms of making broader selections, delaying selection of a single 
alternative until the last responsible moment. 

 
(Khemlani 2009) 

30. Online visualization and management of process can help implement production strategies 
designed to reduce work‐in‐process inventories and production batch sizes (number of spaces 
in process by a specific trade at any given time), as in the KanBIM approach. 

 
(Sacks et al. 2009b) 

31. Automated generation of  tasks  for  a  given  model  scenario and  project  status  drastically 
reduces the setup time needed for any new computation or evaluation of a construction 
schedule alternative from any point forward. 

(Eastman et al. 2008 
p.345) 

32. For numerically controlled machinery, data entry represents setup time. Direct electronic 
communication of process instructions from a model essentially eliminates this setup time, 
making single piece runs viable. 

 
(Tekla 2009b) 

33. Design coordination between multiple design models using an integrated model viewer in a 
collaborative work environment, such as those described in Liston et al. (2001) and Khanzode 
et al. (2006), enables design teams to bring multi‐disciplinary knowledge and skills to bear in a 
parallel process. 

(Khanzode et al. 
2006; Liston et al. 
2001) 

34. Process visualization and online communication of process status are key elements in allowing 
production teams to prioritize their subsequent work locations in terms of their potential 
contribution to ensuring a continuous subsequent flow of work that completes spaces, thus 
implementing a pull flow. This is central to the KanBIM approach, which extends the Last 
Planner System. 

 
 

(Sacks et al. 2009b) 

35. Where  BIM  systems are  integrated with  supply  chain  partner  databases, they  provide  a 
powerful mechanism for communicating signals to pull production and delivery of materials 
and product design information. This also helps make the supply chain transparent. 

 
(Vela 2009) 

36. Multiple users working on the same model simultaneously enables sharing of the workload 
evenly between operators. 

Not yet available 

37. Discrete event simulation can reveal uneven work allocations and support assessment of work 
assignments to level production. 

(Li et al. 2009) 

38. Online   access   to   production   standards,   product   data   and   company   protocols   helps 
institutionalize standard work practices by making them readily available, and within context, 
to work teams at the work face. This relies, however, on provision of practical means for 
workers to access online information. 

(Hewage and 
Ruwanpura 2009; 
Sacks et al. 2009a; 
Sriprasert and 
Dawood 2003) 

39. Where BIM interfaces provide a context for real time status reporting, measuring performance 
becomes accurate and feasible. Measurement of performance within a system where work is 
standardized and documented is central to process improvement. 

 
Not yet available 
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research 

40. BIM provides an ideal visualization environment for the project throughout the design and 
construction stage and enables simulation of production methods, temporary equipment and 
processes. Modeling and animation of construction sequences in ‘4D’ tools provides a unique 
opportunity to visualize construction processes, for identifying resource conflicts in time and 
space and resolving constructability issues. This enables process optimization improving 
efficiency and safety and can help identify bottlenecks and improve flow. 

 
 

(Eastman et al. 2008 
p.429; Li et al. 2009) 

41. Detailed planning and generation of multiple fine‐grained alternatives can be said to increase 
complexity rather than simplify management. 

Not yet available 

42. These applications cannot be considered mature technology. (Manning and 
Messner 2008) 

43. Where clients or end‐users are engaged in simultaneous reviews of different system design 
alternatives  they  can  more  easily  identify  conflicts  between  their  requirements  and  the 
functionality the proposed systems will provide. 

(Eastman et al. 2008 
p.349) 

44. Rapid  generation of  production plan  alternatives can  allow  selection  among  them  to  be 
delayed (making the last responsible moment later than it would be otherwise). This can be 
considered to be a set‐based approach to production system design and to production 
planning. 

 
(Kong and Li 2009) 

45. Online  access  helps  to  bring  the  most  up‐to‐date  design  information  to  the  work  face 
(although it cannot guarantee that the design information reflects the user requirements). 

(Hewage and 
Ruwanpura 2009) 

46. Clash‐checking and solving other integration issues verifies and validates product information. (Li et al. 2009) 

47. Visualization  of  proposed  schedules  and  visualization  of  ongoing  processes  verifies  and 
validates process information. 

(Dehlin and 
Olofsson 2008) 

48. Where managers can ‘see’ process status with near to real‐time resolution, this may substitute 
for the need to see processes directly on site. However, it cannot substitute for seeing a 
process with one’s own eyes. 

 
(Sacks et al. 2009b) 

49. These functions can support and facilitate participatory decision making by providing more 
and better information to all involved and by expanding the range of options that can be 
considered. Of course, they cannot in and of themselves guarantee that senior management 
will adopt a consensus building approach. 

 
(Dehlin and 
Olofsson 2008) 

50. Integration of different companies’ logistic and other information systems makes working 
relationships that extend beyond individual projects worthwhile and desirable. 

Not yet available 

51. Use and re‐use of design models to set up analysis models (such as energy, acoustics, wind, 
thermal, etc) reduces setup time and makes it possible to run more varied and more detailed 
analyses. 

 
Not yet available 

52. Abuse of  the ease with which drawings can be  generated can lead  to  more versions of 
drawings  and  other  information  reports  than  are  needed  being  prepared  and  printed, 
unnecessarily increasing drawing inventories. 

 
Not yet available 

53. Automated  generation  of  drawings,  especially  shop  drawings  for  fabrication  (of  steel  or 
precast,  for  example)  partly  enables  review  and  production  to  be  performed  in  smaller 
batches because the information can be provided on demand. Unlike item 52 above, this and 
the following item are positive interactions of automated drawing production. 

 
Not yet available 

54. Automated  drawing  generation  improves  engineering  capacity  when  compared  with  2D 
drafting,  and  it  is  a  more  reliable  technology  because  it  produces  properly  coordinated 
drawings sets. 

(Sacks and Barak 
2008; Tekla 2009a) 

55. Animations of production or installation sequences can be prepared. These guide workers in 
how to perform work in specific contexts, and are an excellent means for ensuring that 
standardized procedures are followed, particularly where turnover of workers from stage to 
stage is high, as is common in construction. 

 
(Dehlin and 
Olofsson 2008) 

56. Sharing models among all participants of a project team enhances communication at the 
design phase even without producing drawings, helping ensure that the requirements are 
understood and transmitted throughout the team and on to builders and suppliers. 

 
Not yet available 

 


