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ABSTRACT 

We report, to the best of our knowledge, the first exact analytical bistable dark spatial 

solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index 

model.  Our analysis begins with an investigation of the modulational instability 

characteristics of Helmholtz plane waves.  We then derive a dark soliton by mapping 

the desired asymptotic form onto a uniform background field, and obtain a more 

general solution by deploying rotational invariance laws in the laboratory frame.  The 

geometry of the new soliton is explored in detail, and a range of new physical 

predictions is uncovered.  Particular attention is paid to the unified phenomena of 

arbitrary-angle off-axis propagation and non-degenerate bistability.  Crucially, the 

corresponding solution of paraxial theory emerges in a simultaneous multiple limit.  

We conclude with a set of computer simulations that examine the role of Helmholtz 

dark solitons as robust attractors. 

PACS numbers:   05.45.Df,  42.65.Hw,  42.65.Sf 
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I. INTRODUCTION 

Spatial solitons are robust self-localized optical beams that evolve with a 

stationary intensity profile when diffractive spreading is exactly opposed by medium 

nonlinearity.  Two-dimensional (2D) planar waveguide geometry, where there is a 

longitudinal direction and a single (effective) transverse direction, permits such beams 

to be self-stabilizing.  This innate stability against perturbations makes 2D spatial 

solitons ideal candidates for “building blocks” in future integrated-optic devices and 

architectures [1]. 

Angular considerations play a pivotal role in nearly all applications in 

photonics.  Two examples that are fundamental to device modelling are: (i) the 

multiplexing of two (or more) beams [2], and (ii) the reflection/refraction of beams 

incident at a material interface [3].  Over the past few decades, these classic 

configurations have been described within nonlinear Schrödinger-type frameworks.  

Such paraxial analyses have yielded a great deal of insight into a wealth of 

potentially-exploitable phenomena, but they are inherently limited to considering 

near-negligible angles (with respect to the reference direction).  The full angular 

characteristics of multiplexing [4] and interface [5] phenomena have only recently 

been described by developing formalisms based on the underlying nonlinear 

Helmholtz equations. 

Many contexts for optical-switching [6,7] and optical-memory [8] applications 

are based upon bistable dynamics, where the system’s input-output curve has a 

characteristic “S” shape.  The origin of these hysteretic response curves tends to lie in 

external boundary conditions, typically cavity feedback.  Material interfaces can also 

give rise to regimes of bistable operation [9,10]. 
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Some two decades ago, Kaplan introduced a type of bistability that, crucially, 

does not require external boundary conditions [11].  This intrinsic phenomenon [12] 

is potentially useful for switching applications exploiting spatial solitons in planar 

waveguides [13], as opposed to cavity solitons [6–8,14].  For a wide class of 

nonlinearity, there is often a parameter regime where one finds the coexistence of 

degenerate bright solitons – that is, beam solutions with different propagation 

constants but the same power [15,16].  While the ubiquitous Kerr nonlinearity is 

excluded from this category, materials with more involved refractive nonlinearities 

(e.g., cubic-quintic and saturable) offer greater flexibility for potential device designs. 

In this paper, we consider a type of bistability, proposed by Gatz and 

Herrmann [17], that describes non-degenerate solitons: one can find pairs of beam 

solutions that have the same full-width-at-half-maximum (FWHM) but different 

powers [18,19].  In recent papers [20], we unified the physical contexts of non-

degenerate bistability and oblique (off-axis) propagation through proposal and 

analyses of Helmholtz equations with cubic-quintic and saturable nonlinearities.  

Exact analytical bright solitons were derived, and parameter regimes were identified 

where solutions have a bistable characteristic.  Solutions lying on both branches were 

found to behave as robust attractors. 

Bistable dark solitons have been known in paraxial wave optics for many 

years [21–23].  However, dark-soliton phase topology (a localized grey “dip” that 

modulates a uniform background) means that the notion of degenerate bistability 

becomes more subtle [24].  However, non-degenerate bistability is still physically 

meaningful and can be easily interpreted.   

In this paper, we are concerned with the angular properties of bistable dark 

solitons.  In Section II, a cubic-quintic Helmholtz model is proposed.  Exact analytical 
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dark solitons for this new governing equation are then derived by mapping the 

solution asymptotics directly onto a plane-wave background; both forward- and 

backward-propagating beams are obtained.  A bistable characteristic is investigated 

and, in an appropriate multiple limit, the classic paraxial soliton [23] can be recovered 

from the more general Helmholtz solution.  In Section III, the stability of the new 

soliton is examined through computer simulations, and we conclude, in Section IV, 

with some remarks about the potential application of this work. 

 

II. HELMHOLTZ SOLITON THEORY 

A. Field and envelope equations 

We consider a transverse-electric (TE) polarized continuous-wave scalar electric field 

E(x,z,t) = E(x,z)exp(–it) + c.c. with angular frequency .  The spatial part E(x,z) is 

assumed to vary on a scalelength that is much larger than the free-space optical 

wavelength , and thus satisfies the Maxwell field equation [25,26], 

      
2 2 2 2

2 2 2
, ,

n
E x z E x z

z x c

  
    

0 .             (1) 

In uniform media, there is no physical distinction between x and z.  This spatial 

symmetry appears in Eq. (1) as invariance under the permutation x  z, and 

diffraction is thus fully-2D (occurring in both x and z).  Explicit x–z equivalence 

permits multiple beams to propagate and interact at arbitrary angles (with respect to 

the reference direction) and orientations (with respect to each other) [4]. 



The refractive index of the medium is taken to be n = n0 + nNL(|E|2), where n0 

is the linear index at frequency , the intensity-dependent contribution is nNL(|E|2) = –

n2|E|2 + n4|E|4, and n2 and n4 are (small, real) coefficients.  It is assumed throughout 

that n2 > 0 (so that the Kerr contribution is always of the defocusing type) but n4 may 
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be of either sign.  For weak optical nonlinearity, one has that n2 �  n0
2 + 2n0nNL(|E|2).  

By choosing the z axis as the reference direction and writing E(x,z) = E0u(x,z)exp(ikz), 

an equation for the dimensionless envelope u(x,z) can be derived without further 

approximation: 

           
2 2

2 4

2 2

1
0

2

u u u
i u u u 

  
  

    
  

u .           (2) 

Here,  = z/LD and  = 21/2x/w0, where LD = kw0
2/2 is the diffraction length of a 

reference Gaussian beam.  The inverse beam width is quantified by  = 1/(kw0)
2 = 

2/42n0
2 << O(1), where  ≡ /w0, k = n0k0 and k0 = /c = 2π/.  Finally, E0 = 

(n0/n2kLD)1/2 and  = E0
2(n4/n2).  The full generality of zz  in Eq. (1) has been retained 

in Eq. (2) by omitting the slowly-varying envelope approximation. 

Ultranarrow-beam corrections [27–30] are unimportant in Helmholtz 

modelling: we assume broad beams throughout (where w0 >> ), so that  << O(1) is 

always rigorously satisfied.  The polarization-scrambling term    E  in Maxwell’s 

equations, which couples the transverse and longitudinal electric field components, 

can thus be safely neglected so that waves are assigned a purely transverse (scalar) 

character.  Since vector effects are redundant for a broad on-axis beam, they are 

clearly also redundant for the same beam propagating obliquely to the reference 

direction.  This follows from the fact that on- and off-axis configurations are linked 

by a rotational transformation, and all physical properties of the beam must be 

independent of the relative orientation of the observer’s coordinate axes. 
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B. Plane waves and modulational instability 

It is instructive to consider first the plane waves of Eq. (2).  Since the 

governing equation is bi-directional (due to the retention of   in the linear wave 

operator), one expects to find both forward- and backward-propagating solutions [26].  

By substituting u(,) = 0
1/2exp[i(k + k)] into Eq. (2), where 0 is the intensity, 

one arrives at the nonlinear dispersion relation k
2 + k + ½k

2 + 0(1 – 0) = 0.  

The elliptic (i.e., quadratic) nature of this relation allows one to identify two distinct 

solutions, 

 21
0 02

1 1
1 4 1

2 2
k k   

 
        ,                        (3a) 

which correspond to forward (+) and backward (–) fields.  By considering the 

transformation laws of Eq. (2) [26], one can connect k to a conventional transverse 

velocity parameter V through 

 
 0

2

1 4 1

1 2
k V

V
0 


 




 .                             (3b) 

In turn, V is related to the propagation angle  of the plane wave (in unscaled space, 

and with respect to the z direction, respectively) through 

                tan 2 V                         (4) 

(see Fig. 1).  By combining Eqs. (3a) and (3b), the two plane wave solutions may be 

expressed as 

                

   0 0
0 2

1 4 1
, exp

1 2 2

exp ,
2

u i V
V

i

     
 




             
   
 

              (5) 

where the complex-exponential exp(–i/2)   exp(–ikz) is the rapid-phase term 

inherent to Helmholtz envelope solutions.  Inclusion of   thus allows one to 
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transform between normalized and laboratory coordinate systems without 

approximation. 

When  > 0 (competing cubic-quintic nonlinearity), each Helmholtz plane 

wave becomes modulationally unstable against long-wave perturbations in the band 

|K| < 2[0(–1 + 20)]
1/2 when 0 > 1/2 [31].  When  < 0 (purely defocusing 

nonlinearity), there is no modulational instability.  Interestingly, 0 must satisfy 

40(1 – 0)  1, otherwise k becomes pure imaginary and the wave is evanescent 

in its propagation direction.  The origin of this requirement, which is always met in 

practice, is that the total refractive index (squared) due to the plane wave, i.e., n0
2 + 

2n0nNL(E0
2), must be non-negative.  In contrast, n2 > 0 is only an implicit assumption 

in paraxial theory [23]. 



 

C. Mapping onto plane waves 

To derive the dark soliton of Eq. (2), one begins by writing u in the form 

u(,) = ()exp[i(,)], where () and (,) are real functions.  At this stage, u 

is taken to comprise an on-axis grey dip with transverse intensity profile (); the 

phase distribution (,) contains both dip and (off-axis) plane wave components.  

After substituting u into Eq. (2) and collecting the real and imaginary parts, two 

quadrature equations are obtained: 

        

 
2 22

2 2

2

2 1 1
8 1

2

                                    ,

d d

d d

   
    


 

   
         

  
      

                         (6a) 

      
2

2
0 

  
    

     
.             (6b) 
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Since the dip is on-axis,  is at most a linear function of  (due to the plane wave 

component with velocity V0) and the first term in Eq. (6b) vanishes to leave the 

familiar result    0       .  This simplified equation yields 

                   1C






,                      (6c) 

where C1 is a (real) constant since the left-hand side is a function only of .  The 

subsequent integration of the Eqs. (6a) and (6c) is performed by following a similar 

procedure to that in Ref. [23].  The major modification with our calculation comes 

from recognizing the components of the Helmholtz plane wave background [solution 

(5)], and building these components explicitly into the structure of the desired 

solution u via the dark-soliton boundary conditions. 

The boundary conditions on  are taken to be  = m and d/d = 0 at  = 0 

(beam centre);  = 0 and d/d = 0 as | |  (beam extremes), where 0 > m is 

the plane-wave intensity.  Applying these conditions to the derivative 



  , one 

can identify 

 01
0 2

0 0

1 4 1
lim

1 2

C
V

V

0 
  

 
 

 
 ,                                 (7) 

This result follows from the fact that the transverse slope of the dip’s phase profile is 

zero at spatial infinity, so that only the plane-wave contribution survives [c.f., Eq. 

(3b)].  In this way, the dark soliton is mapped directly onto a plane wave.  A second 

integration yields the formal solution  

   1,
dq

C k
q



  


   .        (8) 

From solution (5), one can also identify 
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 0 0

2
0

1 4 11
1

2 1 2
k

V

 
 

  
   

  
,              (9) 

where, in combination with Eq. (7), the upper (lower) signs describe a Helmholtz 

plane wave that is propagating in the forward (backward) direction (see Fig. 1).  By 

introducing k
2 + k  , Eq. (6a) reduces to 

              
2 2

1 1
8 1

2

d d

d d

   
   

     
               





,              (10) 

which is formally identical to the intensity quadrature equation in Ref. [23].  Exact 

expressions for  and  can now be found by integrating Eqs. (10) and (8), 

respectively.  Two key algebraic results that help complete the Helmholtz solution are 

C1 = 0
3/2{(1 – a2)[1 – 20(1 – a2/3)]}1/2 and  = –½0(3 – a2) + 0

2(6 – 4a2 + a4)/3, 

where a2 ≡ 1 – m/0.  The plane-wave dispersion relation also provides a useful 

check on self-consistency, confirming that –½k
2 – 0(1 – 0) = k

2 + k  is indeed 

equal to . 

 

D. Helmholtz dark solitons 

Before presenting the more general (off-axis) dark soliton solution (which is 

obtained from rotational transformations [26,32]) we first consider beam geometry in 

the laboratory frame – a schematic diagram is shown in Fig. 2.  The plane wave 

propagates at angle  = tan–1[(2)1/2V] relative to the reference direction, while the 

grey dip propagates at angle  = tan–1[(2)1/2V0] relative to this background.  The 

propagation angle of the dip with respect to the reference direction is thus –  = 

tan–1[(2)1/2W].  Here, V, V0 and W are the transverse, intrinsic, and net velocities, 

respectively.  The dark soliton of Eq. (2) is 
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     
 

 

1 2 1

0 0

2

,
, , exp sin

2 ,

1 4 1
exp

1 2 2

exp ,
2

A bi
u

C

i V
V

i

 
    

 

  
 





  

       
           
   
 


 ,                       (11a) 

where 

  
 0 28 4

0 03 3

2
,

1 1 2 cos

d

a
   

 
 

      h
,          (11b) 

           1 2

2
, 2

1 2

W
d

W

  



 


,                          (11c) 

            4
03, 1 ,A        ,                        (11d) 

                   2 22
0 032 1 1 3b a  a      ,                      (11e) 

                   24
03, 1 2 ,C a           ,                   (11f) 

                           2 22
0 031 4d a a      ,                           (11g) 

    0

01 2

V V
W

VV





,                  (11h) 

        
   

 
2 22

0 032
0 2 22

0 03

1 1 3

1 2 3 6 4

a a
V

a a

 

 

    
4a      

,                (11i) 

where a2 is a contrast parameter (0 ≤ a ≤ 1) and W is the net velocity.  The upper 

(lower) sign in Eq. (11a) corresponds to a forward (backward) solution (see Fig. 2). 

The intensity profile of the dip (,) modulates the soliton phase through 

both A(,) and C(,), which are different for a   1.  The parameter b is a constant 

determined solely by the plane-wave asymptotics, but which influences the size of the 

grey soliton intrinsic velocity.  Towards the small-amplitude grey soliton limit (a = 0), 
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the inverse-width factor d tends to zero and the dip becomes very broad.  For  > 0, 

black solitons (a = 1) can also be significantly delocalized when 0 increases toward 

the modulational instability threshold of 1/2 (they cease to exist at, and above, this 

threshold).  Also for a > 0, where such plane-wave instability can occur, grey solitons 

are predicted to exist only below the instability threshold (see Section III for further 

details).  We note that the Helmholtz Kerr dark soliton [32] is obtained from solution 

(11) when  = 0. 

Potentially-dominant Helmholtz corrections arise from the finite propagation 

angles  and 0 [20,26,31,32].  These corrections can be of any order, even though  ~ 

2 << O(1).  For instance, when | – 0| = , an observer in the (x,z) frame 

perceives the beam width  = [1 + tan2( – 0)]
1/20 to have doubled relative to its 

on-axis value 0  1/2d1/2 (see Fig. 3).  In the limiting case of | – 0| , the grey 

soliton appears to be infinitely wide in x since the dip is propagating perpendicularly 

to the reference axis.  Angular corrections are not just of geometrical significance.  

They are central to optical contexts such as nonlinear beam interactions [4] and 

soliton refraction [5], where broadening can lead to corrections to paraxial predictions 

exceeding 100%, and even give rise to new regimes of behaviour. 

60

 90 

Dark soliton (11) can be represented in a more symmetric form by exploiting 

the relationships between velocities and propagation angles.  By eliminating V, V0 and 

W, one can combine both the forward and backward solutions into a single beam: 
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     
 

 

1 2 1

0 0

,
, , exp sin

2 ,

1 4 1
exp

2

sin cos
2

exp ,
2

A bi
u

C

i

i

 
    

 

 


  






  

       
  

 


     
 

   
 

             (12a) 

                  1 2
0, 2 cos sin

2
d


0     


       

 .           (12b) 

Here, the propagation angle of the plane wave is now bounded by 180 180      , 

but the intrinsic propagation angle (defined with respect to the plane wave 

background) still satisfies 090 90      . 

 

E. Bistable characteristics 

By looking at the solution continuum in Eqs. (11a)–(11i), one can identify 

pairs of beams where the grey dips have the same FWHM, but the plane-wave 

backgrounds have different intensities [23].  Such non-degenerate pairs can be 

obtained from the condition (s = ) = (0 + m)/2, where s   ( + W)/(1 + 

2W2)1/2,  = sech–1(2–1/2) ≈ 0.8814, and  measures the half-width in units of  

[20,23]: 

     
 
 
 

1 2
0 1 2

22
03

28
031

24
03

1

2 1 4

3 3
cosh .

1 2

a a

a

a


 







    
  
 
   

                          (13) 

Canonical solutions are defined by  = 1, where the half-width-at-half-maximum is s 

= , and the FWHM is thus 2.  There is no  or V2 dependence in Eq. (13).  This 
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follows from the fact that the FWHM of a beam is defined in a direction 

perpendicular to the propagation direction; bistability is essentially an intrinsic 

(direction-independent) property of the solitons.  Thus, plane-wave intensities must be 

insensitive to the relative orientation of the observer’s coordinate axes.   

Figure 4 shows that when  is less than some maximum value, there are two 

values of 0 that satisfy Eq. (13) for a given contrast parameter a.  As   0, the 

lower solution branch tends toward 0
1/2 ~ 1/a, while the upper branch has a cut-off 

at coordinates (crit,0crit
1/2), where crit = (322/2)a4(4 – a2)–2 and 0crit = (4 – 

a2)/22a4 (an approximate cut-off point was given in Ref. [23]). 



 

F. Recovery of paraxial solitons 

Herrmann’s paraxial soliton [23] can be recovered from the forward 

Helmholtz solution (11) after careful consideration of a quite subtle multiple limit, 

specifically   0 (broad beams), 0  0 (moderate intensities), V2  0 and 

V0
2  0 (near-negligible propagation angles).  One finds that [33] 

  



  

     
 

 

1 2 1

2

0 0

,
, ~ , exp sin

2 ,

exp 1 ,
2

A bi
u

C

V
iV i

 
    

 

   


  
      

         
   

             (14a) 

                1 2, ~ 2d W     ,                   (14b) 

                  0~W V V              (14c) 

   2 2 2
0 0 03~ 1 1 3V a  2a     .                 (14d) 

Note that when  = 0, the paraxial Kerr grey soliton is recovered from Eqs. (14a)–

(14d), where V0
2 = 0(1 – a2).  By applying the same asymptotic procedure to the 
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backward Helmholtz solution, one finds that a phase factor exp[–i2(/2)] survives 

the limit process.  This result emphasises the uni-directionality of paraxial theory, 

which has no analogue of backward waves.   

Together, the four physical limits mentioned above define the paraxial 

approximation.  That is, conventional modelling is valid when all contributions 

arising from the operator   are negligible simultaneously.  If even one of the four 

criteria is relaxed, a Helmholtz description of nonlinear beams is necessary.  We 

stress that one cannot obtain solution (14) from solution (11), nor the corresponding 

paraxial governing equation from Eq. (2), simply by letting    0. 

 

III. DARK SOLITON STABILITY 
 

The stability of plane-wave solutions to generic nonlinear Helmholtz 

equations has been analysed elsewhere [31].  Here, we consider the more interesting 

issue of soliton stability.  In particular, we focus on the case  > 0, where bistability 

exists.  Computer simulations [34] are used to analyse the fully nonlinear problem of 

soliton robustness against perturbations to the local beam shape.   

 

A. Black solitons 

     We first consider launching an obliquely-propagating black beam (a = 1, V0 = 0) of 

the form 

 

 
   

 

1 2

0
8 4

0 03 3

0 0

2

2
,0

1 1 cosh 2

1 4 1
exp ,

1 2

d
u

d

iV
V

 
  

 




 
  
    

  
  
  

            (15) 
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where the broadening factor (1 + 2V2)1/2 = sec has been omitted from the intensity 

profile. This class of initial-value problem thus addresses what happens when an exact 

paraxial solution (14) with transverse velocity V{[1 – 40(1 – 0)]/(1 + 2V2)}1/2 is 

launched into an inherently off-axis nonparaxial regime [32,35].   

For  = 10–3 and  =10–4, we consider propagation angles of || = 15 , || = 

 and || = .  For  = 0.15, the lower and upper solution branches have 0 



30 45   

1.486 and 0  3.018, respectively (see Fig. 4).  Figure 5 shows that as  , the 

perturbed beam transforms smoothly into a stationary Helmholtz beam with width  

~ (1 + tan2)1/20.  Solutions lying on both branches can be interpreted as stable 

robust attractors [20,31]. 

 

 

B. Grey solitons 

Since dark soliton (11) should have a real width (dictating that d > 0), the 

plane wave intensity 0 is bounded by the inequality 

       
 0 2

3

2 4 a






.                             (16) 

This is an interesting result.  For black solitons, when a2 = 1, the maximum allowed 

0 falls exactly below the threshold for modulational instability.  In the grey limit, 

when a2 = 0, one has that 0 < 3/8, and the maximum 0 in this case is well below 

the threshold value.  When inequality (16) is met, then a second existence requirement 

(obtained from the condition V0
2  0), namely 0 < 3/[2(3 – a2)], is automatically 

satisfied. 



The condition d > 0 has a profound impact on the angular characteristics of the 

beam.  By using Eq. (16) in conjunction with Eq. (11i), it has been found that even a 
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very small value of  can place strong restrictions on the maximum allowable |V0|.  In 

turn, this limits the maximum supportable intrinsic propagation angle |0|max (see Fig. 

6); as  is reduced, |0|max is depressed even further.  Of course, the net propagation 

angle  – 0 can still be highly nonparaxial.  This new result provides further evidence 

of quantitative differences between the predictions of Helmholtz (finite-) and 

paraxial models.  

Such restrictions on |0|max are lifted when  < 0, and the nonlinearity is of a 

purely defocusing type [32].  For instance, one can attain |θ0|  (i.e., V0
2 ) by 

ramping-up the plane wave intensity towards its limiting value.  From Eq. (11i), this 

value is found to be 

90 

   
 

2 2

0 2 42 44
3

43 6 4
1 1

3 9 66 4

a

a aa a






4a a           


   
.            (17) 

Again, this type of large-angle regime has no counterpart in paraxial theory [23]. 

To address the stability properties of grey solitons, we consider the solution 

continuum without necessarily applying the half-width condition described in Section 

IIE.  In this way, one can gain insight into the robustness of grey beams independently 

of any externally-imposed constraints.  Another advantage with this approach is that 

the more general solution allows access to larger intrinsic propagation angles than 

would otherwise be supportable in the bistable solution (see Fig. 6).  

Results are now presented beam for self-reshaping grey solitons with  = 0.01, 

a = 0.4, and  = 10–3 (so that |θ0|max 9   and 0 < 39).  With these parameters, plane 

wave intensities 0 = 4, 10, and 20 correspond to intrinsic propagation angles |0|   

4.56°, 6.83°, and 8.59°, respectively [profiles are shown in Fig. 7(a)].  The initial 

condition u(,0) is obtained from solution (11) with (,0) = 2d1/2.  This corresponds 
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to an input beam whose width has been reduced by the Helmholtz factor (1 + 2V0
2)1/2 

= sec0.  The perturbed beam evolves into a stationary Helmholtz dark soliton, with 

the dip broadening toward the asymptotic value ∞ ~ (1 + tan20)
1/20 [see Fig. 7(b)]. 

 

V. CONCLUSIONS 

In this paper, a Helmholtz model has been proposed for describing broad 

(scalar) optical beams in a medium with nonlinear refractive index nNL(|E|2) = – n2|E|2 

+ n4|E|4.  Two families of exact analytical dark soliton (corresponding to forward and 

backward beams) have been derived, and self-consistency of these solutions has been 

demonstrated.  Their geometry and bistability characteristics have also been explored 

in full detail, and the predictions of paraxial theory recovered in a simultaneous four-

fold limit.  We have further found that these solitons exist only when the background 

plane wave is modulationally stable.  Computer simulations have verified that cubic-

quintic Helmholtz dark solitons with  > 0 can be interpreted as robust attractors 

[31,32] (we note, in passing, that reshaping solitons with  < 0 exhibit the same type 

of qualitative behaviour as shown in Figs. 5 and 7). 

The dark solutions studied in this paper complement their bright counterparts 

[20], and extend our earlier analyses [32] to more general classes of nonlinear 

materials.  Solitons, and their wave equations, are universal features across many 

areas of nonlinear science.  Specifically, we highlight that our results may play a key 

role in many future applications.  For example, configurations involving bright 

spatial-soliton switching [36], logic [37], and dragging [38] could be extended to 

involve dark solitons.  Solution (11) also opens up the possibility of additional novel 

studies involving angular geometries, such as interactions between bistable dark 

solitons, and also between bistable bright and dark solitons.  Further considerations 
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could link up with the field of soliton computing [39].  We also propose that 

bistability, in parallel with the recent analysis of arbitrary-angle beams-at-interfaces 

configurations [5], could give rise to qualitatively-new phenomena.  For instance, 

even the behaviour of monostable dark solitons at interfaces appears to have received 

very little attention in the literature [40]. 

Modelling with Helmholtz equations [25,26] equips one with the necessary 

mathematical and computational tools for understanding oblique-propagation effects.  

It paves the way for designing a host of novel spatial soliton device architectures 

whose operational emphasis is on angular geometries. 
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FIGURE CAPTIONS 

FIG. 1. (Color online)  Geometry of (a) forward and (b) backward Helmholtz plane 

waves [solution (5)] in the laboratory frame.  In both cases, the velocity V > 0 and the 

magnitude of the transverse projection of the (dimensionless) wavevector, |k|, is 

bounded by |k|   |k|max, where |k|max = {[1 – 40(1 – 0)]/2}1/2.  This limit 

corresponds to |V | , or equivalently || , where the wave propagates 

along the x axis (that is, perpendicularly to the reference direction). 

 90 

 

FIG. 2. (Color online) Schematic diagram showing the geometry of the Helmholtz 

dark soliton in the laboratory frame.  (a) A black solution (a = 1, thus V0 = 0 and there 

is an absolute-zero in the field at the beam centre), and (b) a grey solution (0 < a < 1, 

|V0| > 0).  The plane-wave background propagates at angle  relative to the z axis, 

while the propagation angle 0 of the grey dip is specified relative to the background.  

The angle of the dip relative to the z axis is thus  – 0.  Parts (c) and (d) illustrate the 

corresponding backward-propagating beam. 

 

FIG. 3. (Color online)  Angular beam broadening for black (a = 1, V0 = 0) Helmholtz 

solitons with  = 0.15 on the (a) upper and (b) lower solution branches (see Section 

II.E), where 0   3.018 and 1.486, respectively.  The modulational instability 

threshold intensity for this value of  is 0 = 1/2   3.33, so the plane-wave 

background of both solitons is modulationally stable.  Solid line (black):  = 0  

(paraxial profile); dashed line (blue): | | = 30 ; dotted line (red): | | = , dot-dash 

line (green): | | = . 



 45

60
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FIG. 4. (Color online)  Bistability characteristic for the Helmholtz soliton (11), as 

defined by the implicit equation (13).  Solutions lying on the upper and lower 

branches have the same FWHM ( = 1, so s = ) but different plane-wave intensities. 

 

FIG. 5. (Color online)  Asymptotic transformation of the perturbed beam (15) into an 

exact (stationary) Helmholtz soliton for (a) lower- and (b) upper-branch solutions, 

where 0  1.486 and 3.018, respectively.  Solid line (black): | = 15 ; dashed line 

(blue): | = ; dot-dash line (red): | = .  Horizontal bars denote theoretical 

predictions  ~ (1 + tan2)1/20, where 0 = 1/2d1/2 

 

30 45

 

FIG. 6. (Color online)  Maximum intrinsic propagation angle |0|max as a function of 

the contrast parameter a when  = 0.01 (black solid line),  = 0.05 (blue dashed line), 

 = 0.10 (red dotted line), and  = 0.15 (green dot-dash line).  The nonparaxial 

parameter is  = 10–3.  When  = 0 (a defocusing Kerr nonlinearity), |0|max = 90  for 

0 < a < 1. 



 

FIG. 7. (Color online) (a) Exact Helmholtz grey soliton profiles when  = 0.01, a = 

0.4, and  = 10–3.  The plane-wave intensities are 0 = 4 (black solid line), 0 = 10 

(blue dashed line), and ρ0 = 20 (red dot-dashed line), which correspond to |θ0| 

, , and 8.59 , respectively.  (b) Transformation of the perturbed input 

beam [where the broadening factor (1 + 2V0
2)1/2 is omitted from the profile] into an 

exact (stationary) Helmholtz soliton.  The horizontal bars denote asymptotic 

predictions for the relative beam width ∞/0 ~ (1 + tan20)
1/2 as   (where 0 = 

1/2d1/2).  The numerical data has been fitted to an adiabatic trial solution.  This 

4.56  6.83 

 
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approximation method is generally valid for perturbed black solitons (see Fig. 5), and 

also for grey solitons as  .  However, it can become slightly less reliable for 

modelling the initial stages of grey-beam evolution (denoted by the grey band) due to 

the emission of radiation. 


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