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Abstract 
A method to compute the aerodynamics of multi-element aerofoil, high-lift systems is outlined. The 
Reynolds-averaged Navier-Stokes equations are solved using an unstructured-grid approach, together 
with a finite-volume spatial discretisation and a dual-time implicit, time-marching solution procedure. 
Turbulence modelling is at the differential Reynolds stress level, in order to capture the anticipated 
influence of significant streamline curvature on the flow development, particularly for landing 
configurations. Results are presented comparing predictions with experimental data from the UK’s 
National High-Lift Programme. In general, good agreement is obtained but further work is required to 
incorporate transition prediction which appears to have an influence on the stall mechanism. 

1. Introduction 

Mechanical high-lift system, comprising trailing-edge flaps and leading-edge slats, are used during the take-off and 
landing phases of flight to provide additional lifting capability at low speed beyond that of a wing’s cruise 
configuration. The aerodynamic performance of the high-lift system has a significant impact on the overall 
performance of the aircraft. In particular, a small improvement in the high-lift efficiency of the wing can lead to 
significant gains in payload, field and climb-out performance1,2. However, this must be balanced against the weight 
and system complexity associated with the installation and operation of the high-lift system. Nield3 and Reckzeh4 
discuss the high-lift design process, highlighting the importance of efficient computational methods which are able to 
provide predictions of aerodynamic performance at flight Reynolds numbers. However, the results obtained are only 
as good as the models of the flow physics (turbulence models) implemented and should be used with caution. 
Nevertheless, Computational Fluid Dynamics (CFD) methods, based on solutions of the Reynolds-average Navier-
Stokes equations are nowadays used alongside wind-tunnel testing in the high-lift design process. In this way, it is 
possible to get much closer to an optimised high-lift configuration using CFD methods, in terms of component 
angles, gaps and overlaps, before having to commit to the expense of high-Reynolds number wind tunnel models for 
design validation. The increased simulation capability provided by CFD is enabling the high-lift design requirements 
to be achieved using less-complex, and therefore cheaper and lighter, flap and slat systems. However, the accurate 
prediction of the flow physics around maximum-lift conditions and through the stall remains a significant challenge5. 
Viscous flow phenomena such as boundary layer transition, laminar separation bubbles, turbulent wake/boundary 
layer mixing and even shock wave/boundary layer interaction may all be present around maximum-lift conditions 
and all tend to be significantly influenced by Reynolds number6. There is, thus, a continuing requirement for 
additional high-Reynolds number experimental programmes7, involving measurements of both mean-flow and 
turbulence quantities, to aid understanding of these complex flows and to provide high-quality data-sets for CFD 
method validation and evaluation. 
 
The development of a practical computational method for two-dimensional, low-speed, high-lift aerodynamic flows 
involves three main components: a procedure for generating suitable computational grids around the multi-element 
aerofoil section, the implementation of a turbulence model to predict the flow physics and an efficient solution 
algorithm for the mean-flow and turbulence transport equations. The majority of the methods reviewed by Rumsey 
and Ying5 are based on a structured-grid formulation and employ one- or two-equation turbulence models which 
adopt the turbulent-viscosity approach to modelling the Reynolds stresses appearing in the mean-flow equations. 
Using structured grids, it is relatively straightforward to generate the highly-stretched computational cells 
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immediately adjacent to the aerofoil surfaces which are required to resolve the boundary-layer regions in these high-
Reynolds number flows. However, the turbulent boundary-layer and wake regions developing around a high-lift 
system can change significantly in position and thickness as the aerofoil section is pitched from small incidence 
angles up to and beyond the stall condition. In this situation, an unstructured-grid approach, together with flow-
adaptation, may be a more efficient approach8. Also around maximum-lift conditions, there is significant stream-wise 
curvature of the turbulent wakes flowing from upstream aerofoil elements over the upper surfaces of the downstream 
elements. The various Reynolds normal- and shear-stress components respond in different ways to the influence of 
flow curvature, but this vector-like behaviour cannot be simulated using a scalar turbulent-viscosity coefficient. It is 
for this reason that a Reynolds-stress transport equation model is adopted in the present computational method. 

2. Computational Method 

2.1 Grid Generation 

The unstructured grid-generation procedure used is described in detail by Marques and Johnston9 and consists of 
three distinct stages. Firstly, structured-like grids, consisting of directly-triangulated quadrilateral cells, are wrapped 
locally around the various aerofoil surfaces and extended downstream of the trailing edges. These anisotropic-grid 
cells encompass all the anticipated boundary-layer and wakes regions of the flow domain. Any overlapping cells in 
these regions are deleted, with the quad-tree search algorithm of Löhner10 being used to facilitate this process. Figure 
1 shows views of the anisotropic-grid regions around the flap elements of the NHLP L1/T8 5-element high-lift 
aerofoil configuration, before and after deletion of overlapping cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Anisotropic Grid Before and After Deletion of Overlapping Cells 

With the anisotropic-grid regions created, the next stage in the present grid-generation method is to create an initial 
triangulation for the remaining part of the flow domain. This is achieved by connecting all outer-edge points of the 
anisotropic regions to the outer boundaries of the domain, using the Tanemura-Merrian Delaunay algorithm, as 
described by Mavriplis11. The Delaunay algorithm provides a valid initial triangulation of the inviscid-flow region, 
producing computational cells which are as isotropic as possible, see Figure 2. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 2: Initial Isotropic Grid Generation 
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The final stage of the grid-generation process involves refinement of the isotropic-grid regions using the cell sub-
division technique of Jahangirian and Johnston8. The various cell-edges in the isotropic region of the grid are listed 
in order of their length. Each edge is then checked against desired edge-length criteria, with edges being tagged for 
sub-division if they fail to meet the criteria. Cell sub-division is made by splitting the longest edge,  thus dividing the 
two cells for which the tagged edge is common. If the adjacent cells do not share the same longest edge, the 
neighbouring cell is sub-divided first. A Laplacian smoother is applied to the isotropic-grid regions and the outer 
layers of the anisotropic-grid regions, and this quality-improvement process is complemented by an edge-swapping 
operation. The desired grid density and quality is generally achieved after 20 iterations of the cell sub-division 
procedure. In contrast to most existing unstructured-grid methods, the present approach generates new cells, grid-
points and the respective connectivities simultaneously. Figure 3(a) to (c) shows the inner regions of grids generated 
for the three NHLP high-lift configuations to be considered in the results section below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         (a)  NHLP L1/T2 3-Element Aerofoil                                                        (b)  NHLP L1/T7 4-Element Aerofoil 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                  (c)  NHLP L1/T8 5-Element Aerofoil 

Figure 3: Computational Grids for the Three NHLP High-Lift Configurations 

2.2 Governing Flow Equations 

The present computational method is based on solution of the Reynolds-averaged Navier-Stokes equations applicable 
to two-dimensional, compressible, turbulent flow. Although the free-stream Mach numbers are of the order of 0.2 at 
take-off and landing conditions, there can be significant compressibility effects present, particularly around the upper 
surface of any leading-edge slat element. This is the reason for employing a compressible-flow solver. Also, the 
time-dependent, integral form of the equations is used, with steady-state solutions being obtained by time-marching 
procedures. The Reynolds-stress terms appearing in the governing mean-flow equations are modelled using either the 
turbulent-viscosity based, two-equation k-ε model of Launder and Spalding or the simplified version of the 
differential Reynolds-stress model (DRSM) of Launder, Reece and Rodi. This latter model solves transport equations 
for the three Reynolds normal-stress components, the Reynolds shear stress and the rate-of-dissipation of turbulent 
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kinetic energy. Further details concerning the mean-flow equations and the implementation of the k-ε turbulence 
model can be found in Johnston and Stolcis12, with Cantariti and Johnston13 providing the corresponding details for 
the DRSM turbulence model. Both models can be used with either wall-function boundary conditions or a one-
equation, low-Reynolds number formulation for the near-wall regions of the flow.  

2.3 Solution Algorithm 

The mean-flow and turbulence-transport equations are discretised in space using the cell-centred, finite-volume 
formulation of Jameson et al14, which employs additional numerical dissipation terms in order to facilitate smooth 
solutions. The resulting set of semi-discrete equations can be written as follows : 
 
 

(1) 
 
 

iq  is the vector of dependent variables, iR is the residual containing the convective, diffusive and source terms, 

iD contains the numerical dissipation terms and ih  is the area of computational cell i . The dual-time, implicit 
method of Jameson15 is used to time-march the semi-discrete equations to a steady-state solution, as described by 
Jahangirian and Hadidoolabi16 for the present unstructured-grid methodology. The time-derivative is approximated 
by a second-order accurate, implicit, finite-difference operator: 
 
 

(2) 
 
 
where n  denotes a time level. It is convenient at this stage to define a new residual *R : 
 
 

(3) 
 
 
The solution of the steady-state problem: 
 

(4) 
 
 
is also a solution of the original set of discretised mean-flow and modelled turbulence-transport equations. Equation 
(4) is solved by introducing a fictitious pseudo-time τ , and setting-up a new time-dependent problem: 
 
 

(5) 
 
 
An explicit, four-stage scheme is used to time-march this equation to a steady-state solution, with local time-stepping 
and implicit residual smoothing techniques being employed to enhance the rate of convergence. Note that 
convergence of the pseudo time-dependent problem, equation (5), results also in convergence of the original time-
dependent problem, equation (1), in real time. The dual-time, implicit approach is computationally much more 
efficient than a purely explicit solution procedure. 

3. Results 

Predictions using the present computational method are compared with experimental results from the UK’s National 
High Lift Programme (NHLP) of the 1970’s. Three different high-lift, multi-element aerofoil configurations are 
considered, all based on the same clean aerofoil geometry. The experimental data is described by Moir17, and a 
detailed overview of the NHLP can be found in Woodward and Lean18. The wall-function approach to near-wall 
boundary conditions for the turbulence-transport equations has been employed in all cases. 
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3.1 NHLP L1/T2 3-Element Aerofoil Configuration 

The NHLP L1/T2 3-element aerofoil section consists of a leading-edge slat and a single-slotted trailing-edge flap, 
and is representative of a typical take-off configuration. The flow conditions consist of a free-stream Mach number 
of 0.197 and a Reynolds number of 3.52 x 106. The DRSM turbulence model is used for the computations, with fixed 
transition positions assumed on the upper and lower surfaces of all aerofoil elements. The computational grid, Figure 
3(a), consists of 38148 cells, 57561 cell-edges and 22742 vertices. There are 142, 280 and 203 cell-edges on the 
surfaces of the flap, main-aerofoil and slat elements, respectively. Computed surface pressure distributions at an 
incidence angle of 20.18o are in good agreement with experiment, Figure 4. Note that sonic-flow conditions are 
reached on the upper surface of the leading-edge slat despite the relatively modest free-stream Mach number. 
Predicted and experimental variations in lift and pitching-moment coefficients with incidence angle are shown in 
Figure 5. Both coefficients are well-predicted up to the experimental stall angle, but the computations do not capture 
the observed stall behaviour. This is attributed to inadequacies in dealing with the boundary-layer transition process 
and the possible appearance of laminar separation bubbles on the upper surfaces of some aerofoil elements. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Figure 4: Surface Pressure Distribution for NHLP L1/T2 3-Element Aerofoil Section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Lift and Pitching-Moment Coefficients for NHLP L1/T2 3-Element Aerofoil Section 

3.2 NHLP L1/T7 4-Element Aerofoil Configuration  

This 4-element aerofoil configuration is representative of a landing configuration and is considerably more 
challenging than the previous case. The influence of significant streamline curvature can be anticipated since the flap 
is deflected 40o and, in the trailing-edge region, there are several wake/boundary-layer and wake/wake interactions 
present. The flow conditions are a free-stream Mach number of 0.161, a corrected incidence angle of 19.15o and a 
Reynolds number of 2.88 x 106. The computational grid, Figure 3(b), consists of 48309 cells, 72898 cell-edges and 
26974 vertices. There are 140, 155, 319 and 190 cell-edges on the surfaces of the flap, vane, main-aerofoil and slat 
elements, respectively. The results for two separate computations, comparing the performance of the k-ε and DRSM 
turbulence models, are presented. Again, fixed transition positions are assumed on the upper and lower surfaces of all 
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aerofoil elements. Figure 6 indicates a reasonable level of agreement between predictions and experiment for the 
surface pressure distributions.  However, there are under-predictions of the suction levels on the upper surfaces of the 
vane and flap elements, Figure 7. Note also that the two turbulence models are predicting differing extents of upper-
surface flow separation on the flap element, with the DRSM model giving closer agreement with experiment. The 
predicted iso-Mach number contours, Figure 8, show that compared to the k-ε model, the DRSM model predicts a 
much smaller recirculation at the flap trailing edge. 
 

 

 

 

 

 

 

 

 

 

Figure 6: Surface Pressure Distribution for NHLP L1/T7 4-Element Aerofoil Section 

 

 

 

 

 

 

 

 

 

 

Figure 7: Vane and Flap Surface Pressures for NHLP L1/T7 4-Element Aerofoil Section 

 

 

 

 

 

 

 

 

 

 

Figure 8: Iso-Mach Number Contours for NHLP L1/T7 4-Element Aerofoil Section 
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3.3 NHLP L1/T8 5-Element Aerofoil Configuration  

The flow conditions for the 5-element aerofoil configuration are a free-stream Mach number of 0.161, a corrected 
incidence angle of 17.1o and a Reynolds number of 2.88 x 106. The computational grid, Figure 3(c), consists of 
70518 cells, 106401 cell-edges and 40152 vertices. There are 130, 264, 180, 379 and 231 cell-edges on the surfaces 
of the auxiliary flap, flap, vane, main-aerofoil and slat elements, respectively. The DRSM turbulence model is used 
for the computations, with fixed transition positions assumed on the upper and lower surfaces of all aerofoil 
elements. Figure 9 shows a reasonable level of agreement between predicted and experimental surface pressure 
distributions, although there is an under-prediction of suctions levels on the upper surfaces of all the aerofoil 
elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Surface Pressure Distribution for NHLP L1/T8 5-Element Aerofoil Section 

 
The convergence history of the computation for the NHLP L1/T8 5-element aerofoil case, Figure 10, is typical for all 
of the computations presented here. The flow solutions have all been run on a Laptop PC with a 2GHz Intel Core 2 
CPU and 1.24GB of RAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Convergence of Density Residual and Lift Coefficient for NHLP L1/T8 5-Element Aerofoil Section 

4. Conclusions 

A computational method to predict multi-element aerofoil, high-lift aerodynamics is described, with a particular 
emphasis on the dual-time, implicit solution procedure adopted to time-march the governing mean-flow and 
turbulence-transport equations to steady-state solutions. Sample results are presented, comparing predictions with 
experiment, for three high-lift configurations taken from the UK’s National High Lift Programme (NHLP). 
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Encouraging levels of agreement with experimental data are obtained, which indicate the computational efficiency of 
the present method. The initial results do, however, point to some weaknesses in the physical modelling of these 
complex flows, as embodied in the turbulence models. Two particular areas for further study are the influence of the 
boundary-layer transition positions on the stall characteristics of the high-lift system and the incorporation of a 
procedure to deal with the presence of laminar separation bubbles on the upper surfaces of some aerofoil elements. 
Accurate drag prediction for multi-element aerofoil sections, not considered here, also remains an area of concern. 
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