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Abstract 
An unstructured-grid, Navier-Stokes flow solver is used to compute the transonic flow development 
over the SKF 1.1 supercritical aerofoil section, in clean configuration and equipped with either a 
trailing-edge flap or a leading-edge slat. A full differential Reynolds-stress turbulence model is 
employed, with wall-function near-wall boundary conditions, for the computations. Agreement 
between predicted surface pressure distributions and experimental data for the three high-lift 
configurations is satisfactory for the free-stream Mach number of 0.6 considered, over a range of 
incidence angles. There are some uncertainties in the wind-tunnel wall interference corrections to be 
applied to the experimental data, and there are also indications of possible leading-edge slat movement 
in the experiment under the large aerodynamic loads experienced in the cases considered. 

1. Introduction 

Mechanical high-lift systems, consisting of trailing-edge flaps and possibly leading-edge slats, are used by most 
aircraft during the take-off and landing phases of flight. Flaps provide an additional lifting capability at low speed 
beyond that of a wing’s cruise configuration, and slats enable higher incidence angles to be achieved before 
significant flow separation takes place. The aerodynamic performance of the high-lift system has a significant impact 
on the overall performance of the aircraft, with small improvements in the high-lift efficiency of the wing leading to 
significant gains in payload, field length and climb-out performance1,2. The wing of a combat aircraft must be able to 
generate additional high-lift at transonic flow conditions, in order to enhance manoeuvring performance, without 
incurring an excessive drag penalty or promoting the onset of shock-induced flow separation which leads to buffet. 
The use of supercritical aerofoil sections on the basic wing planform can help with this by allowing rearward 
movement of upper-surface shock waves without the increase in shock-wave strength associated with older-
technology aerofoil sections. Flight tests of the F-4 Phantom II equipped with leading-edge slats3 have demonstrated 
significantly-improved climb and turn manoeuvrability, even without complete optimisation of the slat configuration. 
However, the aerodynamic benefits of high-lift systems need to be balanced against the weight penalty and 
additional system complexity. Nield4 considers the high-lift design process for low-speed applications, highlighting 
the importance of modern Computational Fluid Dynamics (CFD) methods which are able to provide predictions of 
aerodynamic performance at flight Reynolds numbers. The quantitative accuracy of these CFD methods is very 
dependent upon the validity of the engineering turbulence models used to approximate the physics in the governing 
flow equations. 
 
 The additional lift generated by deployment of a high-lift system is achieved by the increased effective camber and 
chord-wise extent of the multi-element wing planform. Such a wing is generally able to operate at higher incidence 
angles since the upper surface pressure rise to the trailing edge is split over a number of wing elements. The multi-
element nature of the geometry leads to the presence of more complex flow phenomena such as turbulent 
wake/boundary layer mixing and closed re-circulation bubbles in flap and slat cove regions. Also, the wakes of 
upstream geometry elements develop in the stream-wise adverse pressure gradients of the downstream geometry 
elements which can result in off-the-surface flow-reversal in the wake. Finally, at transonic manoeuvring conditions 
there are likely to be shock waves present on the main wing element and possibly also on the flaps and/or slats. The 
viscous flow development through the gap regions between the main wing and the flap and slat elements means that 
optimisation of the high-lift geometry, in terms of gaps, overlaps and angles, is significantly Reynolds number 
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dependent. Thus, the results of optimisation studies using wind tunnel testing of sub-scale models at lower Reynolds 
numbers can be difficult to extrapolate to flight conditions. It is in this area, particularly, that CFD methods can give 
some insight and so complement wind tunnel test programmes. 
 
The development and application of computational methods to transonic, high-lift flow conditions has received much 
less attention that the low-speed, take-off and landing flight regime. Inviscid flow methods for two-element aerofoil 
configurations were developed in the mid 1970s, with Caughey5 using the transonic small-disturbance equations for 
example. Grossman and Melnik6 and Arlinger7 solved the full-potential equation, using conformal mapping 
techniques to transform the flow around a two-element aerofoil into the annular region between two concentric 
circles. Rosch and Klevenhusen8 developed a method applicable to more than two geometry elements by using 
computational grids consisting of the streamlines and equi-potential lines of the incompressible flow-field around the 
geometry. Initial attempts to develop viscous flow methods involved the coupling of boundary-layer methods to the 
inviscid flow solvers; see Grossman and Volpe9, Leicher10 and Rosch and Klevenhusen8. Such viscous/inviscid 
coupled methods tend to break down with the onset of flow separation, limiting their practical use in the design 
process. The use of modern CFD methods, based around solutions of the Reynolds-averaged Navier-Stokes 
equations, provide a more practical basis for a high-lift analysis method. Rumsey and Ying11 review methods 
developed for application to low-speed, high-lift flows, the majority of the methods being based on structured-grid 
formulations and employing the turbulent-viscosity approach to model the Reynolds stresses appearing in the mean-
flow equations. Stolcis and Johnston12 describe the initial application of an unstructured-grid, Navier-Stokes flow 
solver and the k-ε turbulence model to an aerofoil equipped with a trailing-edge flap at transonic flow conditions. 

2. Computational Method 

A practical computational method to predict the aerodynamic performance of two-dimensional, high-lift aerofoil 
configurations involves three main components: a procedure for generating suitable computational grids around the 
multi-element aerofoil section, the implementation of a turbulence model to predict the flow physics and an efficient 
solution algorithm for the mean-flow and turbulence-transport equations. Using structured grids, it is relatively 
straightforward to generate the highly-stretched computational cells immediately adjacent to the aerofoil surfaces 
which are required to resolve the boundary-layer regions in these high-Reynolds number flows. However, the 
turbulent boundary-layer and wake regions developing around a high-lift system can change significantly in position 
and thickness as the aerofoil section is pitched from small incidence angles up to and beyond the stall condition. In 
this situation, an unstructured-grid approach, together with flow-adaptation, may be a more efficient approach13. 
Also, around maximum-lift conditions, there is significant stream-wise curvature of the turbulent wakes flowing 
from upstream aerofoil elements over the upper surfaces of the downstream elements. The various Reynolds normal- 
and shear-stress components appearing in the mean-flow equations respond in different ways to the influence of flow 
curvature. This vector-like behaviour cannot be simulated using a scalar turbulent-viscosity coefficient to model the 
Reynolds stresses, as in the k-ε turbulence model. It is for this reason that a differential Reynolds-stress transport 
equation model (DRSM) is adopted in the present computational method. 

2.1 Grid Generation 

The unstructured grid-generation procedure used is described in detail by Marques and Johnston14 and consists of 
three distinct stages. Firstly, structured-like grids, consisting of directly-triangulated quadrilateral cells, are wrapped 
locally around the various aerofoil elements and extended downstream of the trailing edges. These anisotropic-grid 
regions encompass all the anticipated boundary-layer and wakes regions of the flow domain. Any overlapping cells 
in these regions are deleted. Next, an initial triangulation is constructed, using the Delaunay algorithm, to discretise 
the remaining parts of the flow domain. The final stage of the grid-generation process involves refinement of this 
initial Delaunay triangulation using the cell sub-division technique of Jahangirian and Johnston13. A Laplacian 
smoother is also applied in this region and to the outer layers of the anisotropic-grid regions, with an edge-swapping 
operation being used to further enhance the grid quality. The desired grid density and quality is generally achieved 
after 20 iterations of the cell sub-division procedure. 

2.2 Governing Flow Equations 

The present computational method is based on solution of the Reynolds-averaged Navier-Stokes equations applicable 
to two-dimensional, compressible, turbulent flow. The time-dependent, integral form of the equations is used, with 
steady-state solutions being obtained by time-marching procedures. The Reynolds-stress terms appearing in the 
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governing mean-flow equations are modelled using the simplified version of the differential Reynolds-stress model 
of Launder, Reece and Rodi. This turbulence model solves modelled transport equations for the three Reynolds 
normal-stress components, the Reynolds shear stress and the rate-of-dissipation of turbulent kinetic energy. Further 
details concerning the mean-flow equations can be found in Johnston and Stolcis15. Cantariti and Johnston16 discuss 
implementation of the DRSM turbulence model which can employ either wall-function boundary conditions or a 
one-equation, low-Reynolds number formulation for the near-wall regions of the flow.  

2.3 Solution Algorithm 

The mean-flow and turbulence-transport equations are discretised in space using the cell-centred, finite-volume 
formulation of Jameson et al17, which employs additional numerical dissipation terms in order to facilitate smooth 
solutions. The resulting set of semi-discrete equations can be written as follows : 
 

(1) 
 

iq  is the vector of dependent variables, iR is the residual containing the convective, diffusive and source terms, 

iD contains the numerical dissipation terms and 
ih  is the area of computational cell i . The dual-time, implicit 

method of Jameson18 is used to time-march the semi-discrete equations to a steady-state solution, as described by 
Jahangirian and Hadidoolabi19 for the present unstructured-grid methodology. The time-derivative is approximated 
by a second-order accurate, implicit, finite-difference operator: 
 

(2) 
 
where n  denotes a time level. It is convenient at this stage to define a new residual *R : 
 
 

(3) 
 
Note that the solution of the steady-state problem: 
  (4) 
 
is also a solution of the original set of discretised mean-flow and modelled turbulence-transport equations. Equation 
(4) is solved by introducing a fictitious pseudo-time τ , and setting-up a new time-dependent problem: 
 

(5) 
 
An explicit, four-stage scheme is used to time-march this equation to a steady-state solution, with local time-stepping 
and implicit residual smoothing techniques being employed to enhance the convergence rate. Convergence of the 
pseudo time-dependent problem, equation (5), results also in convergence of the original time-dependent problem, 
equation (1), in real time. Application of the present computational method to low-speed, high-lift configurations is 
described by Jahangirian and Johnston20. 

3. Results 

The present computational method is evaluated for transonic flows by application to three high-lift configurations, all 
derived from the SKF 1.1 supercritical aerofoil section. Experimental data, comprising surface static pressure 
distributions, are taken from tests performed in the DFVLR 1m x 1m transonic wind tunnel; Stanewsky and Thibert21 
describe the wind tunnel and present experimental results for the clean SKF 1.1 aerofoil section and for the 
aerofoil/manoeuvre flap configuration. All the cases considered here are for a nominal free-stream Mach number of 
0.6 and a Reynolds number of 2 x 106, based on the clean aerofoil chord. The experimental data involve free 
transition on all aerofoil surfaces. Fixed transition points are used for all the present calculations and are measured 
relative to the leading edge of the clean aerofoil section. In the absence of more specific information, the nominal 
experimental incidence angle has been adjusted to take account of wind-tunnel wall interference effects in a rather 
empirical way. The procedure used is to adjust the incidence angle of the lowest-lift case for each configuration so as 
to match predictions with experiment for the lower surface pressure distribution on the main aerofoil section. This 
same incidence angle correction is then used for the subsequent higher-lift cases. The DRSM turbulence model with 
wall-function near-wall boundary conditions has been employed in all of the computations. 
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3.1 SKF 1.1 Aerofoil Section 

Figure 1 shows the inner region of the computational grid for the clean SKF 1.1 aerofoil section, comprising 31,662 
cells, 47,717 cell-edges and 16,096 vertices, with 342 cell-edges on the aerofoil surface. Boundary-layer transition is 
fixed at 0.05 and 0.4 chord downstream of the leading edge on the upper and lower surfaces respectively for the 
computations. Two experimental cases are considered, Runs 16 and 20, and an incidence angle correction of -1.5o 
has been applied to the nominal experimental values. Figure 2 indicates a good level of agreement between 
predictions and experiment for Run 16 which is a fully-subsonic flow condition, Cp

* being the critical pressure 
coefficient for sonic flow at the free-stream Mach number. The predictions for the transonic flow conditions of Run 
20 are again in good agreement with experiment, Figure 3, apart from the appearance of a weak shock wave on the 
upper surface. This discrepancy is attributed to uncertainty in the applied corrections for wind-tunnel wall 
interference. The Mach number contours in Figures 2 and 3 show the development of the supersonic flow region 
(high speeds being indicated by yellow) and the thickening of the upper-surface boundary layer (low speed being 
indicated by dark blue) as the incidence angle is increased between the two Runs. 

3.2 SKF 1.1 Aerofoil Section with Trailing-Edge Flap  

The inner region of the computational grid for the SKF 1.1 aerofoil section with a manoeuvre flap deflected 15o is 
shown in Figure 4. The grid consists of 93,485 cells, 140,597 cell-edges and 47,878 vertices. There are 371 and 252 
cell-edges on the surfaces of the main-aerofoil and flap elements, respectively. Transition is fixed at 0.05 and 0.4 
chord on the upper and lower surfaces of the main aerofoil, respectively. Similarly, transition is fixed close to the 
leading edge of the flap element, at 0.85 and 0.90 chord respectively on the upper and lower surfaces. Two 
experimental cases are considered, Runs 254 and 255, with an incidence angle correction of -2¼o being applied to the 
nominal experimental values for the computations. Figures 5 and 6 indicate a very satisfactory level of agreement 
between predictions and experiment for the pressure distributions on the main aerofoil element and the trailing-edge 
flap. Note that the flap upper surface flow remains subsonic for both of these transonic flow cases. The predicted 
position of the main aerofoil upper surface shock wave is slightly downstream of experiment, with a small under-
prediction of the pressure recovery downstream of the shock wave. Again, these differences are most probably 
associated with uncertainties in wind-tunnel wall interference effects. The Mach number contours show the 
increasing size of the supersonic region on the upper surface of the main aerofoil as the incidence angle is increased, 
together with an associated thickening of the main aerofoil wake above the flap upper surface. Also to be seen is the 
closed re-circulation bubble sitting in the flap cove region. 

3.3 SKF 1.1 Aerofoil Section with Leading-Edge Slat  

Figure 7 shows the inner region of the computational grid for the SKF 1.1 aerofoil section equipped with a leading-
edge slat, deflected at an angle of 8o. The grid contains a total of 90,481 cells, 136,065 cell-edges and 46,009 
vertices, with 342 cell-edges on the main aerofoil surface and 169 cell-edges on the slat element. Transition is fixed 
at 0.06 and 0.4 chord downstream on the upper and lower surfaces of the main aerofoil, respectively. For the slat, 
transition is fixed at -0.06 and -0.034 chord respectively on the upper and lower surfaces, the latter value being 
chosen to ensure a turbulent boundary layer separation at the slat hook. Three experimental cases are considered, 
Runs 306, 308 and 309, with an incidence angle correction of -¾o being applied to the nominal experimental values 
for the computations. Figures 8 to 10 compare the predicted and experimental surface pressure distributions for the 
three cases. In general, the overall level of agreement is reasonable, with the results indicating the build-up of slat 
loading as the incidence angle is increased. The slat loading at a particular incidence angle tends to be over-
predicted, however, which may indicate some geometric movement of the slat element in the wind tunnel tests due to 
the high aerodynamic loading. The Mach number contours show the development of supersonic flow regions on the 
slat and main aerofoil with increasing incidence angle, and the slat wake can be clearly seen passing over the upper 
surface of the main aerofoil.  
 
Figure 11 presents convergence histories of the computation for the clean aerofoil Run 20 and shows well-converged 
solutions in terms of the average density residual, lift and pressure-drag coefficients. All the computations have been 
run on a Samsung Q35 Laptop PC with a 2GHz Intel Core 2 CPU and 1.24GB of RAM. 
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4. Conclusions 

The predictive capability of a numerical method for multi-element aerofoil, high-lift aerodynamics at transonic-flow 
conditions has been demonstrated by application to the SKF 1.1 supercritical aerofoil section in a clean configuration 
and equipped with either a trailing-edge flap or a leading-edge slat, employed as a transonic manoeuvre device. The 
computational results, using a differential Reynolds-stress turbulence model with wall-function boundary conditions, 
show a satisfactory level of agreement with experiment given the uncertainties in the precise wind-tunnel wall 
corrections to be applied to the experimental data. Future work will involve the use of more refined near-wall 
computational grids, to enable the use of no-slip boundary conditions on the aerofoil surfaces rather than the semi-
empirical wall-function approach adopted here. It would also be beneficial to have a transition prediction capability 
within the computational method. 
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Figure 1: Computational Grid for SKF 1.1 Aerofoil Section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Mach Number Contours and Surface Pressure Distribution for Run 16, α = 2.01o 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Mach Number Contours and Surface Pressure Distribution for Run 20, α = 7.67o 

x/c

y/
c

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x/c

C
p

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Cp*

x/c

y/
c

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x/c

y/
c

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x/c

C
p

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Cp*



L.J. Johnston. COMPUTATION OF TRANSONIC HIGH-LIFT AERODYNAMIC FLOWS 

 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Computational Grid for SKF 1.1 Aerofoil Section with Manoeuvre Flap Deployed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Mach Number Contours and Surface Pressure Distribution for Run 254, α = 1.48o 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Mach Number Contours and Surface Pressure Distribution for Run 255, α = 3.32o 
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Figure 7: Computational Grid for SKF 1.1 Aerofoil Section with Manoeuvre Slat Deployed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Mach Number Contours and Surface Pressure Distribution for Run 306, α = 1.92o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Mach Number Contours and Surface Pressure Distribution for Run 308, α = 7.50o 
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Figure 10: Mach Number Contours and Surface Pressure Distribution for Run 309, α = 9.34o 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Convergence History of Density Residual, Lift and Pressure-Drag Coefficients for Run 20 
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