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Condition-based Maintenance Modelling 

Wenbin Wang 

5.1 Introduction 

The use of condition monitoring techniques within industry to direct maintenance 
actions has increased rapidly over recent years to the extent that it has marked the 
beginning of what is likely to prove a new generation in production and 
maintenance management practice. There are both economic and technological 
reasons for this development driven by tight profit margins, high outage costs and 
an increase in plant complexity and automation. Technical advances in condition 
monitoring techniques have provided a means to achieve high availability and to 
reduce scheduled and unscheduled production shutdowns. In all cases, the 
measured condition information does, in addition to potentially improving decision 
making, have a value added role for a manager in that there is now a more 
objective means of explaining actions if challenged. 

In November 1979, the consultants, Michael Neal & Associate Ltd published 
‘A Guide to Condition Monitoring of Machinery’ for the UK Department of Trade 
and Industry, Neal et al (1997). This groundbreaking report illustrated the 
difference in maintenance strategies (e.g., breakdown, planned, etc.) and suggested 
that condition based maintenance, using a range of techniques, would offer 
significant benefits to industry. By the late 1990’s condition based maintenance 
had become widely accepted as one of the drivers to reduce maintenance costs and 
increase plant availability. With the advent of e-procurement, Business to Business 
(B2B), Customer to Business (C2B), Business to Customer (B2C) etc., industry is 
fast moving towards enterprise wide information systems associated with the 
internet. Today, plant asset management is the integration of computerised 
maintenance management systems and condition monitoring in order to fulfill the 
business objectives. This enables significant production benefits through objective 
maintenance prediction and scheduling. This positions the manufacturer to remain 
competitive in a dynamic market.  

Today there exists a large and growing variety of condition monitoring 
techniques for machine condition monitoring and fault diagnosis. A particularly 
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popular one for rotating and reciprocal machinery is the vibration analysis. 
However, irrespective of the particular condition monitoring technique used, the 
working principle of condition monitoring is the same namely, condition data 
becomes available which needs to be interpreted and appropriate actions taken 
accordingly. There are generally two stages in condition based maintenance. The 
first stage is related to condition monitoring data acquisition and its technical 
interpretations. There have been numerous papers contributing to this stage, as 
evidenced by the proceedings of COMADEM over recent years. This stage is 
characterised by engineering skill, knowledge and experience. Much effort of the 
study at this stage has gone into determining the appropriate variables to monitor, 
Chen et al (1994), the design of systems for condition monitoring data acquisition, 
Drake et al (1995), signal processing, Wong et al (2006), Samanta et al (2006), 
Harrison (1995), Li and Li (1995), and how to implement computerised condition 
monitoring, Meher-Homji et al (1994). These are just a few examples and no 
modelling is explicitly entered into the maintenance decision process based upon 
the results of condition monitoring. For detailed technical aspects of condition 
monitoring and fault diagnosis, see Collacott (1997). The second stage is 
maintenance decision making, namely what to do now given that condition 
information data and its interpretations are available. The decision at this stage can 
be complicated and entails consideration of cost, downtime, production demand, 
preventive maintenance shutdown windows, and most importantly, the likely 
survival time of the item monitored. Compared with the extensive literature on 
condition monitoring techniques and their applications, relatively little attention 
has been paid to the important problem of modelling appropriate decision making 
in condition based maintenance.  

This chapter focuses on the second stage of condition monitoring, namely 
condition based maintenance modeling as an aid to effective decision making. In 
particular, we will highlight a modelling technique used recently in condition based 
maintenance, e.g. residual life modelling via stochastic filtering, Wang and 
Christer (2000). This is a key element in modeling the decision making aspect of 
condition based maintenance. The chapter is organised as follows. Section 5.2 
gives a brief introduction to condition monitoring techniques. Section 5.3 focuses 
on condition based maintenance modeling and discuss various modeling 
techniques used. Section 5.4 presents the modelling of the residual life conditional 
on observed monitoring information using stochastic filtering. Section 5.5 
concludes the chapter with a discussion of topics for future research.   

5.2 Condition monitoring techniques 

For many years condition monitoring has been defined as “The assessment on a 
continuous or periodic basis of the mechanical and electrical condition of 
machinery, equipment and systems from the observation and/or recordings of 
selected measurement parameters”, Collacott (1997). One of the obvious analogies 
is the temperature measurement of a human body where the observation is the 
temperature and the system is the human body. Just as doctors strongly recommend 
periodic checks of key health parameters such as blood pressure, pulse, weight 
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and/or temperature for an early indication of potential health problems, for 
industrial equipment some measurements can be taken and the likely condition of 
the plant assessed.   

Today, there exists a large and growing variety of forms of condition 
monitoring techniques for machine condition monitoring and fault diagnosis. 
Understanding the nature of each monitoring technique and the type information 
measured will certainly help us when establishing a decision model. Here we 
briefly introduce five main techniques and among them, vibration and oil analysis 
techniques are the two most popular ones.  

5.2.1 Vibration based monitoring 

Vibration based monitoring is the main stream of current applications of condition 
monitoring in industry. Vibration based monitoring is an on (off) line technique 
used to detect system malfunction based on measured vibration signals.  

Generally speaking, vibration is the variation with time of the magnitude of a 
quantity that is descriptive of the motion or position of a mechanical system, when 
the magnitude is alternatively greater than and smaller than some average value or 
reference.  

Vibration monitoring consists of essentially in identifying two quantities: 

- the magnitude (overall level) of the vibration 
- the frequency content (and/or time waveform) 

The magnitude is basically used for establishing the severity of the vibration 
and the frequency content for the cause or origin. Vibration velocity has been seen 
as the most meaningful magnitude criterion for assessing machine condition, 
though displacement or acceleration is also used. The magnitude of vibration is 
usually measured in Root Mean Square (rms). If T denotes the period of vibration 
and  is the vibration (say, velocity) measured at time t, then )(tV

∫=
T

Trms dttVV
0

21 ))(( , 

which is proportional to the energy of vibration, Charles and Reeves (1998).  
However, since vibration signals from machines are, in general, periodic in 

nature, a great deal of information is contained in its frequency spectrum form. The 
frequency spectrum is usually obtained digitally using a digital analyser or 
computer via a mathematical algorithm known as “Fast Fourier Transform” (FFT). 
The spectrum analysis of vibration signals is commonly used in the fault diagnosis 
of rotating machines.  Potentially, all machines can benefit from vibration 
monitoring except, perhaps, those running at very low speed (below about 20 
rev/min), and those where isolation (or damping) occurs between the source and 
the sensor.  

From observed vibration signals we often see a typical two-stage process where 
the signals may stay flat over the normal operation period and then display some 
increasing trend when a defect has initiated, Wang (2002). Another factor coming 
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into play when establishing a vibration based maintenance model is the casual 
relationship between the measured signals and the state of the plant. It is the defect 
which causes the abnormal signals, but not vice versus, Wang (2002).  This factor 
plays an important role when selecting an appropriate model for describing such a 
relationship. 

5.2.2 Oil based monitoring 

A detailed analysis of a sample of engine, transmission and hydraulic oils is a 
valuable preventive maintenance tool for machines. In many cases it enables the 
identification of potential problems before a major repair is necessary, has the 
potential to reduce the frequency of oil changes, and increase the resale value of 
used equipment.  

Oil based monitoring involves sampling and analyzing oil for various 
properties and materials to monitor wear and contamination in an engine, 
transmission or hydraulic system etc. Sampling and analyzing on a regular basis 
establishes a baseline of normal wear and can help indicate when abnormal wear or 
contamination is occurring. Oil analysis works as follows. Oil that has been inside 
any moving mechanical apparatus for a period of time reflects the possible 
condition of that assembly. Oil is in contact with engine or mechanical components 
as wear metallic trace particles enter the oil. These particles are so small they 
remain in suspension. Many products of the combustion process also will become 
trapped in the circulating oil. The oil becomes a working history of the machine. 
Particles caused by normal wear and operation will mix with the oil. Any 
externally caused contamination also enters the oil. By identifying and measuring 
these impurities, one can get an indication of the rate of wear and of any excessive 
contamination. An oil analysis also will suggest methods to reduce accelerated 
wear and contamination.  

The typical oil analysis tests for the presence of a number of different materials 
to determine sources of wear, find dirt and other contamination, and even check for 
the use of appropriate lubricants. Today there exist a variety of forms of oil based 
condition monitoring methods and techniques to check the volume and nature of 
foreign particles in oil for equipment health monitoring. There are spectrometric oil 
analysis, scan electron microscopy/energy dispersive x-ray analysis, energy 
dispersive x-ray fluorescent, low powered optical microscopy, and ferrous debris 
quantification. One purpose of the oil analysis is to provide a means of predicting 
possible impending failure without dismantling the equipment. One can "look 
inside" an engine, transmission or hydraulic systems without taking it apart.  

For oil based monitoring, there is no such a clear cut distinction between 
normal and abnormal operating based on observed particle information in the oil 
samples. The foreign particles that accumulate in the lubricant oil increase 
monotonically so that we may not able to see a two-stage failure process as seen in 
the vibration based monitoring. The casual relationship between the measured 
amount of particles in the oil and the state of the plant may also be bilateral in that,  
for example, the wear may cause the increase of observed metals in the oil, but the 
metals and other contaminants in the oil may also accelerate the wear. This marks a 
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difference when modeling the state of the plant in oil based monitoring compared 
to vibration based. 

5.2.3 Other monitoring techniques 

The other popular condition monitoring techniques are infrared thermography, 
accustics and the motor current analysis.  

The basis of infrared thermography is quite simple. All objects emit heat or 
infrared electro-magnetic energy, but only a very small proportion of this energy is 
visible to a naked eye. At low temperatures in order to ‘see’ the heat being emitted 
an infrared camera must be used. The camera detects the invisible thermal energy 
and converts it to a visible image on a screen. The image can then be analyzed to 
identify any abnormality. 

The acoustic emission (AE) based method is used widely for monitoring the 
condition of rotating machinery. Compared to traditional vibration based methods, 
the high frequency approach of AE has the advantage of a significant improvement 
in signal to noise ratio. It can also be used for non-rotating machinery where defect 
activities do not generate distinct repetition frequencies and hence FTT analysis 
cannot be used. An item to note is that AE transducers need to have a relatively 
narrow band to be able to detect high frequency faults. 

The Motor current noise signature analysis methods and apparatus for 
monitoring the operating characteristics of an electric motor-operated device, such 
as a motor-operated valve, have been frequently used for early detection of rotor 
related faults in AC induction Motors. Frequency domain signal analysis 
techniques are applied to a conditioned motor current signal to distinctly identify 
various operating parameters of the motor driven device from the motor current 
signature. The signature may be recorded and compared with subsequent 
signatures to detect operating abnormalities and degradation of the device. This 
diagnostic method does not require special equipment to be installed on the motor-
operated device, and the current sensing may be performed at remote control 
locations, e.g., where the motor-operated devices are used in unaccessible or 
hostile environments. 

All the techniques briefly introduced above can offer some help for indicating 
the current state or condition of the plant monitored. Based on the technical 
analysis of the observed condition monitoring data, a maintenance decision has to 
be made to maintain the plant in a cost effective way. We discuss in the next 
section, how modeling can be used to support such a decision making utilizing 
available monitoring information. 

5.3 Condition based maintenance modelling 

There is a basic, but not always clearly answered question in condition monitoring, 
that is: what is the purpose of condition monitoring? Have we lost sight of the 
ultimate need? Condition monitoring is not an end itself, it involves an expenditure 
entered into by the managers in the belief that it will save them money. How is this 
saving achieved? It can be obtained by using monitored condition information to 
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optimise the maintenance to achieve minimum breakdown of the plant with 
maximum availability for production, and to ensure that maintenance is only 
carried out when necessary. This is what one calls condition based maintenance 
which contrasts with the traditional break down or time based maintenance policies 
where maintenance is only carried out when it becomes necessary utilizing 
available condition information. But in reality, all too often we see effort and 
money spent on monitoring equipment for faults which rarely occur, and we also 
see planned maintenance being carried out when the equipment is perfect healthy 
though the monitored information indicates something is ''wrong''. A study of oil 
based condition monitoring of gear boxes of locomotives used by Canadian Pacific 
Railway indicated, Aghjagan (1989), that since condition monitoring was 
commissioned (entailed 3-4 samples per locomotive per week, 52 weeks per year), 
the incidence failure of gear boxes while in use fell by 90%. This is a significant 
achievement. However, when subsequently stripped down for 
reconditioning/overhaul, there was nothing evidently wrong in 50% of cases. 
Clearly, condition monitoring can be highly effective, but may also be very 
inefficient at the same time. Modelling is necessary to improve the cost 
effectiveness and efficiency of condition monitoring.  

5.3.1 The decision model 

This is an extension to the age-based replacement model in that the replacement 
decision will be made not only dependent upon the age, but also upon the 
monitored information, plus other cost or downtime parameters. If we take the cost 
model as an example, then the decision model amounts to minimising the long run 
expected cost per unit time. We use the following notation: 

fc :  the mean cost per failure; 

pc :  the mean cost per preventive replacement; 

mc : the mean cost per condition monitoring; 

it : the ith and the current monitoring point; 

iY : monitored information at  with of its observed value; it iy

iℑ : history of observed condition variables to , it },...,{ 1 ii yy=ℑ ; 

iX : the residual life at time ; it
)|( iii xp ℑ : pdf of  conditional on iX iℑ ; 

 
The long term expected cost per unit time, , given that a preventive 

replacement is scheduled at time t>   is given by, Wang (2003), 
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where , which is the 

probability of a failure before t  conditiional on 

∫
−

ℑ=ℑ−<=ℑ− itt

iiiiiiiii dxxpttXPttP
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iℑ . The right hand side of (5.1) is 
the expected cost per unit time formulated as a renewal reward function, though the 
life times are independent but not identical. 

The time point t  is usually bounded within the time period from the current to 
the next monitoring since a new decision shall be made once a new monitoring 
reading becomes available at time . 1+it

In general, if a minimum of  is found within the interval to the next 
monitoring in terms of t , then this t  should be the optimal replacement time. If no 
minimum is found, then the recommendation would be to continue to use the plant 
and evaluate (5.1) at the next monitoring point when new information becomes 
available. For a graphical illustration of the above principle see Fig. 5.1. 

)(tC

 
  C(t) 
  
 
                            No replacement is recommended  
 
                        
 
                                          Optimal replacement time      
 
 
 
 
 
    Current time                            Next monitoring time                      t it

*t 1+it
                                                                                                                                                           

Fig. 5.1 A graph to show the optimal replacement time 

Obviously the key element in (5.1) is the determination of )|( iii xp ℑ , which is 
the topic of the next two sections,  

5.3.2 Modelling  )|( iii xp ℑ

Before we proceed to the discussion of the modelling of )|( iii xp ℑ , there are few 
issues that need clarification.  

The first relates to the concept of direct and indirect monitoring, Christer and 
Wang (1995). In direct monitoring, the actual condition of the item, say the depth 
of a brake pad, can be observed, and a critical level, say C , can be set up. While in 
the indirect monitoring case we can only collect measures related to the actual 
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condition of the item monitored in a stochastic manner. For example in the 
vibration monitoring case, if a high vibration signal is observed we may suspect the 
item’s condition might be bad, but we may neither know the exact condition of it, 
nor its quantification. For direct monitored systems, Markov models are popular, 
see Black et al (2005), Chen and Trivedi (2005), and Love (2000). Counting 
processes have also been used for modeling the deterioration of directly monitored 
plant, see Aven (1996), Jenson (1992). Christer and Wang (1992) used a random 
coefficient model for a direct monitored case. It is noted however that the majority 
of condition monitoring applications are indirect monitoring such as the five 
popular monitoring techniques discussed earlier. It is therefore, in this chapter  that 
our attention is paid to the indirect monitoring cases.  

The second issue is the appropriate definition of the plant state. This also 
relates to the first issue whether the monitoring is direct or indirect. In direct 
monitoring, the actual observed condition of the item is clearly the plant state. 
While in the indirect monitoring case we can only observe measures indirectly 
related to the actual condition of the item monitored as discussed earlier. The most 
simple and intuitive definition is a set of categorical states ranging, say from  0 
(new) to N (failed) as seen from Markov based models, Baruah and Chinnam 
(2005). Wang (2006a) also used a generic term of wear to represent the state of the 
monitored plant, which is particularly useful in modeling wear related problems in 
condition monitoring. Wang and Christer (2000) first used the residual life at the 
time of checking as a measure of the state of the monitored unit of interest. This 
definition provides an immediate modeling means to directly establish a link 
between the measured information and the residual life of interest. It is noted 
however, that this residual life is usually not observable which increases modeling 
complexity. A model of )|( iii xp ℑ introduced later will be based on this 
definition.  

Various different methods or models have been proposed in literature to 
formulate and calculate )|( iii xp ℑ . Proportional Hazard Modeling (PHM, one 
particular and natural form for modelling the hazard) is a popular one, Kumar and 
Westberg (1997), Love and Guo 1991, Makis and Jardine (1991), Jardine et al 
(1998), Banjevic et al (2001). Accelerated life models, Kalbfleisch and Prentice 
(1980), Wang and Zhang (2005) could also be used here, and may be more 
appropriate since the analogy between accelerated life testing, where these models 
originate, and condition monitoring is a close one. It should be noted that 
accelerated life models and proportional hazard models are identical when the time 
to failure distribution is Weibull, that is when the hazard function is given by 

 
1)( −= βαβ tth . 

 
There are two problems with proportional hazards modeling or accelerated life 

models in condition based maintenance. The first is that the current hazard is 
determined partially by the current monitoring measurements and the full 
monitoring history is not used. The second is the assumption that the hazard or the 
life is a function of the observed monitoring data which acts directly on the hazard 
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via a covariate function. Both problems relate to the modeling assumption rather 
than the technique. The first one can be overcome if some sort of transformation of 
the observed data is used. The second problem remains unless the nature of 
monitoring indicates so. It is noted however that for most condition monitoring 
techniques, the observed monitoring measurements are concomitant types of 
information which are a function of the underlying plant state. A typical example is 
in vibration monitoring where a high level of vibration is usually caused by a 
hidden defect but not vice versus as we have discussed earlier.  In this case the 
observed vibration signals may be regarded as concomitant variables which are 
caused by the plant state. Note that in oil based monitoring things are different as 
the metal particles and other contaminants observed in the oil can be regarded both 
as concomitant variables and covariates as we discussed earlier. In this case a 
model considers both variables might be appropriate.  

The last decade has seen an increased use of stochastic filtering and Hidden 
Markov Models (HMM) for modelling )|( iii xp ℑ  in condition based 
maintenance, Hontelez et al (1996), Christer et al (1997), Wang and Christer 
(2000), Bunka et al (2000), Dong and He (2004), Lin and Markis (2003, 2004), 
Baruah and Chinnam (2005), Wang (2006a). These techniques overcome both 
problems of PHM and provide a flexible way to model the relationship between the 
observed signals and unobserved plant state. HMM can be seen as a specific type 
of stochastic filtering models that are usually used for discrete state and 
observation variables. If the noise factors in the model are not Gaussian, then a 
closed form for is generally not available and one has to resort to 
numerical approximations. A comparison study using both filtering, Wang (2002), 
and PHM, Markic and Jardine (1991), based on vibration data revealed that the 
filtering based model produced a better result in terms of prediction accuracy, 
Matthew and Wang (2006). 

)|( iii xp ℑ

 
It should be noted also that if the monitored variables also influence the state to 

some extent, then both HMM and PHM should be used to tackle the problem. 
Alternatively an interactive HMM can also be formulated where a bilateral 
relationship is assumed between the observed and unobserved. In the next section, 
we shall discuss in details a specific filtering model used for the derivation of 

. This model is simple to use and is analytically tractable. )|( iii xp ℑ

5.4 Conditional residual life prediction 

First we define the true state of plant is the residual life conditional upon measured 
condition related information to date, such as, vibration, temperature, etc.. 

Next we assume these conditional information are functions of the residual life, 
that is, it is the residual life which controls the behavior of the measured 
conditional information, but not vice-versa (this assumption can be relaxed). 
Generally we expect a short residual life (depending on the severity of the defect) 
will generate a high signal level in some of the measures of condition variables, 
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though in a typical stochastic fashion. In theory, we may have the following 
relationship; 
 
Defect          short residual life            higher than normal signal may be observed. 
 

If the severity of the defect is represented by the length of the residual life, the 
relationship between the residual life and observed condition related variables 
follows. 

5.4.1 Conditional residual life prediction 

The model is built based on the following assumptions. 

1. Plant items are monitored regularly at discrete time points. 
2  There are two periods in the plant life where the first period is the time 

length from new to the point when the item was first identified to be 
faulty, and the second period is the time interval from this point to failure 
if no maintenance intervention is carried out. The second period is often 
called the failure delay time. It is also assumed that these two periods are 
statistically independent with each other. 

3. A threshold level is established to classify the item monitored to be in a 
potential faulty state if the condition information signal is above the level. 
Such a threshold level is usually determined by engineering experience or 
by a statistical analysis of measured condition related variables. 

4. The conditional information obtained at time t , , during the failure 

delay time is a random variable which depends on . 
i iy

ix
Assumptions 1 and 2 can often be observed in condition monitoring practice. 

Assumption 3 can be relaxed and a model which can both identify the starting 
point of the second stage and residual life prediction can be established, Wang 
(2006b). For now to keep the model simple we still use assumption 3. Assumption 
4 was first proposed in Wang and Christer (2000), which states that the rapid 
increase in the observed condition information is partly due to the shortened 
residual life because of the hidden defect. However this relationship is 
contaminated with random noise. Assumption 4 is the fundamental principle 
underpinning our model. For a detailed discussion on assumption 4 see Wang and 
Christer (2000). 

Because the interest in residual life prediction is over the failure delay time 
(assuming it exists) and the information collected over the normal working period 
may not be beneficial for the residual life prediction, we revise our notation on t  
as the ith and the current monitoring time since the item was suspected to be faulty 
but still operating (noted that the order starts from the moment when the item was 
first identified to be possibly faulty). This implies that t  is the first monitoring 
point which may indicate that the second stage has started. However, some 
monitoring may not be able to display a two-stage process such as oil based 

i

1
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monitoring. If this is the case, we can simply set the threshold level to be zero. Fig. 
5.2 shows a typical condition monitoring practice.  
 
     iy
                                                                                                                   1x
                                                                                                                                    
                                                                                                                                     3y
                                                                                                                                     2y 3x
                                                                                                                     1y 2x
     Threshold level                                               
                                                                                                                                 
 
                                                                                                                                 
 0                                                                                                      failure   1t 2t 3t

Fig. 5.2 Condition monitoring practice 

 
It is noted from Fig. 5.2 that the conditional information obtained before  is not 
used since they are irrelevant to the decision making process. It is noted however, 
that the time to is one of important information sources to be used in 
determining the condition monitoring interval, Wang (2003).  

1t

1t

Since the residual life at  is the residual life at  minus the interval 

between  and  provided the item has survived to  and no maintenance 
action has been taken, it follows that 

it 1−it

it 1−it it

.
defined 

 if)( 1111

⎩
⎨
⎧ −>−−

= −−−−

elsenot
ttXttX

X iiiiii
i                                           (5.2) 

The relationship between  and  is yet to be identified. From assumption 4 we 

know that it can be described by a distribution, say, . We will discuss 
this later when fitting the model to data. 

iY iX
)|( ii xyp

We wish to establish the expression of )|( iii xp ℑ , and therefore a 
consequential decision model can be constructed on the basis of such a conditional 
probability, see (5.1). Since },{},...,,{ 121 −ℑ==ℑ iiii yyyy , then  

can be expressed as 

)|( iii xp ℑ
),|()|( 1−ℑ=ℑ iiiiii yxpxp . It follows that 
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By using the multiplicative rule, the joint distribution, )|,( 1−ℑiii yxp  is given as 

( ) )|(),|(|, 111 −−− ℑℑ=ℑ iiiiiiii xpxypyxp                                                 (5.4) 

Since given both  and ,  depends on  only from assumption 4 so (5.4) 
reduces to 

ix 1−ℑi iy ix

( ) )|()|()|(),|(|, 1111 −−−− ℑ=ℑℑ=ℑ iiiiiiiiiiii xpxypxpxypyxp      (5.5) 

Integrating out the  term in (5.5) we have ix

iiiiiiiiiii dxxpxypdxyxpyp ∫ ∫
∞ ∞

−−− ℑ=ℑ=ℑ
0 0 111 )|()|()|,()|(         (5.6) 

We focus our attention to )|( 1−ℑiixp  which appears both in (5.4) and (5.6).  

From (5.2) we have )()( 11 −− −+== iiiii ttxxgx  conditional on 

. Then the distribution of 11 −− −> iii ttX 1| −ℑiiX  can be expressed by a 

transformation of variables from  to , Freund (2004), as iX 1−iX

i

i
iiiiiiii dx

xdgttXxgpxp )(),|)(()|( 11111 −−−−− −>ℑ=ℑ                            (5.7)  
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we finally have 
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Using (5.5), (5.6) and (5.9), (5.3) becomes 

( ) ( )
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111
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(5.10) is a recursive equation which starts at time . At time , using (5.10) we 
have 

1t 1t

( ) ( )
100110110

0011011
111

)|()|(

|()||
dxttxpxyp

ttxpxypxp
ℑ−+

ℑ−+
=ℑ
∫
∞                                  (5.11) 

Since 0ℑ  is usually 0 or not available, so 

)()|( 011000110 ttxpttxp −+=ℑ−+ , then if  and  can 
be specified, (5.11) can be determined. Similarly we can proceed to determining 

 if  and  are available from the previous 

step calculation at time . 

)( 00 xp )|( 11 xyp

)|( iii xp ℑ )|( 111 −−− ℑiii xp )|( ii xyp

1−it
Now the task is how to specify  and .  )( 00 xp )|( ii xyp

5.4.2 Specification of  and . )( 00 xp )|( ii xyp

)( 00 xp  is just the delay time distribution over the second stage of the plant life. 
Here we use the Weibull dsitribution as an example in this context. In practice or 
theory, the distribution density function should be chosen from the one 
which best fits to the data or from some known theory.  

)( 00 xp

The set-up of the  term requires more attention. Here we follow the 

one used in Wang (2002), where  is assumed to follow a Weibull 

distribution with the scale parameter being equal to the inverse of . In 
this way we establish a negative correlation between and  as expected., that 

is  . The pdf is given below 
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This is a concept called floating scale parameter, which is particularly useful in this 
case, Wang (2002). There are other choices to model the relationship between  

and  , but will not
iy

ix  be discussed here, and can be found in Wang (2006a). 

5.4.3 Estimating the model parameters within )|( iii xp ℑ  

To calculate the actual )|( iii xp ℑ  we need to know the values for the model 

parameters. They are the parameters of  and . The most 
popular way to estimate them is using the method of maximum likelihood.  

)( 00 xp )|( ii xyp

At each monitoring point, , two pieces information are available, namely,  

and , both conditional on 
it iy

11 −− −> iii ttX 1−ℑi . The pdf. for 1| −ℑiiy  is given by 

(5.7) and the probability function of 111 | −−− ℑ−> iiii ttX  is given by 
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If the item monitored failed at time  after the last monitoring at time , the ft nt
complete likelihood function is then given by  
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(5.14) 

where is the set of parameters to be estimated. Taking log on both sides of 
(5.14) and maximising it in terms of unknown parameters should give the 
estimated values of those parameters. However, computationally it has to be solved 
numerically since (5.14) involves many integrals which may not have analytical 
solutions. 

Θ

5.4.4 A case study 

Fig. 5.3 shows the data of overall vibration level in rms of six bearings, which is 
from a fatigue experiment, Wang (2002).  It can be seen from Fig. 5.3 that the 
bearing lives vary from around 100 hours to over 1000 hours, which shows a 
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typical stochastic nature of the life distribution. The monitored vibration signals 
also indicate an increasing trend with bearing ages in all cases, but with different 
paths. An important observation is the pattern of vibration signals which stays 
relatively flat in the early stage of the bearing life and then increases rapidly (a 
defect may have been initiated). This indicates the existence of the two stage 
failure process as defined earlier.  

 
Fig. 5.3 Vibration data of six bearings 

 
The initial point of the second stage in these bearings is identified using a control 
chart called the Shewhart average level chart and the threshold levels of the 
bearings are shown in table 5.1, Zhang (2004). 

Table 5.1 Threshold level for each bearing 

Bearing Threshold level 
1 5.06 
2 5.62 
3 4.15 
4 5.14 
5 3.92 
6 4.9 

 
Assuming both distributions for  and  are Weibull where )( 00 xp )|( ii xyp
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then starting from  and after recursive filtering we have 1t
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To estimate the parameters in  and  we need write down the 
likelihood function as (5.14). The actual process to estimate these unknown 
parameters is complicated and involves heavy numerical manipulation which we 
omit and interested readers can get the details in Zhang (2004). The estimated 
result is listed in table 5.2.  

)( 00 xp )|( ii xyp

Table 5.2 Estimated parameter values in  and  )( 00 xp )|( ii xyp

α̂  β̂  Â  B̂  Ĉ  η̂  

0.011 1.873 7.069 27.089 0.053 4.559 
 
Based on the estimated parameter values in table 5.2 and (5.15) the predicted 
residual life at some monitoring points given the history information of bearing 6 
in Fig. 5.3 is plotted in Fig. 5.4. 
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Fig. 5.4 Predicted condition residual life of bearing 6 

 
In Fig.5.4 the actual residual lives at those checking points are also plotted with 
symbol *. It can be seen that actual residual lives are well within the predicted 
residual life distribution as expected.  

Given the estimated values for parameters and associated costs such as 
, and 6000=fc 2000=pc 30=mc , Wang and Jia (2001), we have the 

expected cost per unit time for one of the bearings at various checking time t, 
shown in Fig. 5.5. 
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Fig. 5.5. Expected cost per unit time v planned replacement time in hours from the current 
time t 
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In can be seen from Fig. 5.5. that at t=116.5 and 129 hours both planned 
replacements are recommended within the next 30 hours.   

To illustrate an alternative decision chart in terms of the actual condition 
monitoring reading, we transformed the cost related decision into actual reading in 
Fig. 5.6 where the dark grey area indicates that if the reading falls within this area a 
preventive replacement is required within the planning period of consideration. 
The advantage of Fig. 5.6 is that it can not only tell us whether a preventive 
replacement is needed but also show us how far the reading is from the area of 
preventive replacement so that appropriate preparation can be done before the 
actual replacement.  
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Fig. 5.6 Decision chart using observed CM reading. 

The transformation is carried out in this way. At each monitoring point of , by 

gradually changing the value of  in 
it

iy )|( iii xp ℑ used in (5.1) until a preventive 
replacement is recommended by the model within the planning period, and then 
mark this value of  as the threshold value at time . Connecting these threshold 
values at those monitoring points forms the boundary between the light and dark 
grey areas. Finally mark the actual reading of  on the graph to see which area it 
falls in. 

iy it

iy

5.5 Future research directions 

5.5.1 Multi-component systems 

Previous condition based prognosis models developed in the literature mainly 
focused on a single failure mode system subject to routine monitoring and 
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replacement such as bearings, pumps and motors, and various probability 
distributions are used to describe the life time of the component. In the case of a 
high value and high risk system with many components such as aircraft engines 
and gas turbines, how to assess the health condition and make prognosis based on 
condition information obtained from all components is still an open question. It is 
typical with a multi-component system that many observed signal parameters are 
available and the times between failures are neither independent nor identical.  

5.5.2 Idebtification of the initial point of a random defect 

With the delay time concept, see chapter 14, system life is assumed to be classified 
into two stages. The first is the normal working stage where no abnormal condition 
parameters are to be expected. The second starts when a hidden defect is first 
initiated with possible abnormal signals. The identification of the initial point in 
the evolution of such a defect is important and has a direct impact on the 
subsequent prediction model. Most research on fault diagnosis focuses on the 
location of the fault, the possible cause of the fault, and of course, the type of fault. 
This serves for the engineering purpose of deciding what to repair, but does not aid 
the decision of when to do the task. This initial point defect identification has 
received very little attention in prognosis literature. Wang (2006b) addressed this 
problem to some extent using a combination of the delay time concept and the 
HMM. Much work still remains. It is possible that a multi-stage (>2) failure 
process could be used, which might be more appropriate to some cases. 

5.5.3 The definition of plant state 

The definition of the underlying state and the relationship between the observed 
monitoring parameters and the state of the system are issues which still need 
attention. In the model presented in this chapter, the state of the system is defined 
as the residual life, which is assumed to influence the observed signal parameters. 
Whilst the modelling output appears to make sense, there are a few potential 
problems with the approach. The first is the issue that the life of the plant is fixed 
at birth (installation) but unknown. This is termed as playing the God. Secondly, 
the residual life is not the direct cause of the observed abnormal signals. These are 
more likely caused by some hidden defects which are linked to the residual life in 
this chapter. To correct the first problem we can introduce another equation 
describing the relationship between  and  deterministically or randomly. 

This will allow  to change during use, which is more appropriate. If the 
relationship is deterministic, then a closed form of (5.3) is still available, but if it is 
random, HMM must be used and no closed form of (5.3) exists unless the noises 
associated are normally distributed. The second problem can be overcome if we 
adopt a discrete or continuous state hidden Markov chain to describe the system 
deterioration process where the state space of the chain represents the system state 
under question.  

iX 1−iX

iX
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5.5.4 Information fusion 

There is now a considerable amount of condition monitoring and process control 
information available in industry, thanks to the recent development in condition 
monitoring technology. It is noted that not all information are useful, or because of 
correlation they may provide similar information. There are two ways to deal with 
this. One is to use some statistical methods to reduce the dimension of the original 
data such as principal component analysis, and the other is to use multi-variate 
distributions. The principal component analysis method has been used in Wang and 
Zhang (2005), but unless the first principle component accounts for most of the 
variation in the original data we still need to deal with a data set with more than 
two dimensions. The use of multi-variate distributions in prognosis has not been 
reported apart from the normal distribution which has the drawback of producing 
negative values. 

A final point worth mentioning is that in practice observed condition 
monitoring variables could be concomitant variables or covariates with respect to 
the system state. A model which can handle both type of information is ideal, but 
very few attempts have been made, Hussin and Wang (2006).  

5.6 Summary and Conclusions 

This chapter introduces the concept of condition monitoring, key condition 
monitoring techniques, condition based maintenance and associated modelling 
support in aid of condition based maintenance. Particular attention is paid to the 
residual time prediction based on available condition information to date. An 
important development made here is the establishment of the relationship between 
the observed information and underlying condition which is the residual life in this 
case. This is achieved by letting the mean of the observed information at  be a 

function of the residual life at that point conditional on 
it

ii xX = . The 
mathematical development is based on a recursive algorithm called filtering where 
all past information is included. The example illustrated is based on real data which 
came from a fatigue experiment. However, data from industry has showed the 
robustness of the approach and the residual life predictions conducted so far are 
satisfactory.  
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