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Delay Time Modelling 

Wenbin Wang 

14.1 Introduction  

In this chapter we present a modelling tool that was created to model the problems 
of inspection maintenance and planned maintenance interventions, namely Delay 
Time Modelling (DTM). This concept provides a modelling framework readily 
applicable to a wide class of actual industrial maintenance problems of assets in 
general, and inspection problems in particular.  
 The concept of the delay time was first mentioned by Christer in 1976 in a context 
of building maintenance, Christer (1976). It was not till 1984, the concept was first 
applied to an industrial maintenance problem, Christer and Waller (1984). Since 
then, a series of research papers appeared with regard to the theory and 
applications of delay time modelling of industrial asset inspection problems, see 
Christer (1999) for a detailed review. The delay time concept itself is simple which 
defines the failure process of an asset as a two-stage process. The first stage is the 
normal operating stage from new to the point that a hidden defect has been 
identified. The second stage is defined as the failure delay time from the point of 
defect identification to failure. It is the existence of such a failure delay time which 
provides the opportunity for preventive maintenance to be carried out to remove or 
rectify the identified defects before failures. With appropriate modelling of the 
durations of these two stages, optimal inspection intervals can be identified to 
optimise a criterion function of interest. 
The delay time concept is similar in definition to the well known Potential Failure 
(PF) interval in Reliability Centred Maintenance, Moubray (1997). It is noted 
however, that two differences between these two definitions mark a fundamental 
difference in modelling maintenance inspection of assets. First, the delay time is 
random in Christer’s definition while the PF interval is assumed to be constant. 
Secondly the initial point of a defect identification is very important to the set up of 
an appropriate inspection interval, but ignored by Moubray. Nevertheless, 
Moubray did not provide any means of modelling the inspection practice, while 
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DTM provides a rich source of modelling methodologies ranged from the concept 
to practical solutions.  
Asset inspection modelling has long been researched by many others, Among 
them, the model proposed by Barlow and Proschan (1965) is perhaps the most 
famous one. They consider a unit subject to inspections as follows. The unit is 
inspected at prespecified times, where each inspection is executed perfectly and 
instantaneously. The policy terminates with an inspection which detects the unit 
failure. This implies that the unit may have already failed during an operation  
interval between inspections, but can only be identified at the forthcoming 
inspection. Various modifications and extensions to the Barlow and Proschan’s 
model have been proposed, see for example, Thomas et al (1991), Luss (1981), 
Abdel-Hameed (1995), Kaio and Osaki (1989), McCall (1965). The delay time 
inspection model is different from the classical Barlow and Proschan’s model on 
two accounts. First, a failure is identified immediately when it occurs. This is 
perhaps more rationale than the Barlow and Proschan’s model since if the system 
fails, it may have stopped operating and should be observed immediately by the 
operators. Secondly, there is a failure delay time in DTM which characterises the 
abnormal deterioration before failure, which is not defined in Barlow and 
Proschan’s model. It is noted however, that for a certain class of equipment such as 
fire distinguishers, Barlow and Proschan ’s model is appropriate.  
To clarify the objective of the type of inspection modelling we are concerned with 
here, consider a plant item with an inspection practice every period T, says, weeks, 
months, … , with repair of failures undertaken as they arise.  The inspection 
consists of a check list of activities to be undertaken, and a general inspection of 
the operational state of the plant.  Any defect identified leads to immediate repair, 
and the objective of the inspection is to minimise operational downtime. Other 
objectives could be considered, for example cost, availability or output. There are 
other types of inspection activities such as condition monitoring and preventive 
maintenance which will be introduced and discussed elsewhere in this book, for 
now we focus on the inspection practice outlined above using the delay time 
inspection modelling technique. 
This chapter is organised as follows. Section 14.2 gives an outline of the delay time 
concept. Sections 14.3 and 14.4 introduce two delay time inspection models of a 
single component and a complex system respectively. Section 14.5 discusses the 
parameters estimation techniques used in DTM. Section 14.6 highlights extensions 
to the basic delay time model and future research in DTM and section 14.7 
concludes the chapter.   

14.2 The Delay Time Concept 

We are interested in the relationship between the performance of assets and 
inspection intervention, and to capture this, the conventional reliability analysis of 
time to first failure, or time between failures, requires enrichment. Consider a 
repairable item of an asset. It could be, say, a component, a machine, a building, or 
an integrated set of machines forming a production line, but viewed by 
management as a unit. For now we take a complex system of multiple components 
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as an example, the case for a single component will be considered in section 14.3. 
The interaction between inspection and equipment performance may be captured 
using the delay time concept presented below. 
Let the item of an asset be maintained on a breakdown basis. The time history of 
breakdown or failure events is a random series of points, see Fig. 14.1. For any one 
of these failures, the likelihood is that, had the item been inspected at some point 
just prior to failure, it could have revealed a defect which, though the item was still 
working, would ultimately lead to a failure. Such signals include excessive 
vibration, unusual noise, excessive heat, surface staining, smell, reduced output, 
increased quality variability etc. The first instance where the presence of a defect 
might reasonably be expected to be recognised by an inspection, had it taken place, 
is called the initial point u of the defect, and the time h  to failure from u is called 
the delay time of the defect, see Fig 14.2. Had an inspection taken place in 

, the presence of a defect could have been noted and corrective actions 
taken prior to failure. Given that a defect arises, its delay time represents a window 
of opportunity for preventing a failure.  Clearly, the delay time h is a characteristic 
of the item concerned, the type of defect, the nature of any inspection, and perhaps 
the person inspecting. For example, if the item was a vehicle, and the maintenance 
practice was to respond when the driver reported a problem, then there is in effect a 
form of continuous monitoring inspection of cab related aspects of the vehicle, 
with a reasonably long delay time consistent with the rate of deterioration of the 
defect. However, should the exhaust collapse because a support bracket was 
corroded through, the likely warning period for the driver, the delay time, would be 
virtually zero, since he would not normally be expected to look under the vehicle. 
At the same time, had an inspection been undertaken by a service mechanic, the 
delay time may have been measured in weeks or months. Had the exhaust 
collapsed because securing bolts became loose before falling out, then the driver 
could have had a warning period of excessive vibration, and perhaps noise, and the 
defects would have had a drive related delay time measured in days or weeks. 
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Fig. 14.1.  Failure points ‘●’ 
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Fig. 14.2.  The delay time for a defect 
Time
h



4 Book Title 

To see why the delay time concept is of use, consider Fig. 14.3 incorporating the 
same failure point pattern as Fig 14.1 along with the initial points associated with 
each failure arising under a breakdown system. Had an inspection taken place at 
point (A), one defect could have been identified and the seven failures could have 
been reduced to 6. Likewise, had inspection taken place at points (B) and point 
(A), 4 defects could have been identified and the 7 failures could have been 
reduced to 3. Fig. 14.3 demonstrats that provided it is possible to model the way 
defects arise, that is the rate of arrival of defects )(uλ , and their associated delay 
time , then the delay time concept can capture the relationship between the  
inspection frequency and the number of plant failures. 

h

We are assuming for now that inspections are perfect, that is, a defect is recognised 
if it is, and only if it is, there and is removed by corrective action.  Delay Time 
Modelling is still possible if these assumptions are not valid, but this more complex 
case is discussed in section 14.3.1.   
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Fig. 14.3.  ‘○’ initial points;  ‘●’ failure points. 

14.3 Delay Time Models for Complex Plant 

14.3.1 Perfect inspections  

A complex plant, or multi-component plant, is one where a large number of f
modes arise, and the correction of one defect or failure has nominal impact 
steady state upon the overall plant failure characteristics. Consider the foll
basic complex plant maintenance modelling scenario where: 

1. An inspection takes place every T  time units, costs  units and re

 time units, where 
sc

sd Td s << . 
2. Inspections are perfect in that all (and only) defects present are identifi
3. Defects identified are repaired during the inspection period.  
4. Defects arise according to a Homogeneous Poisson Process (HPP) wi

rate of occurrence of defects, λ , per unit time. 
5. The delay time, H , of a random defect is described by a pdf. 

, and is independent of the initial point U . 
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6. Failure will be repaired immediately at an average cost  and downtime 

. 
fc

fd
7. The plant has operated sufficiently long since new to be considered 

effectively in a steady  state. 
8. Defects and failures only arise whilst plant is operating. 

These assumptions characterise the simplest non-trivial inspection maintenance 
problem, Christer et al (1995), and would, of course, only be agreed in any 
particular case after  careful analysis and investigation of the specific situation. We 
now proceed to construct the mathematical model of the relationship between T 
and an objective function of interest. 
From assumptions 1-4, it is obvious that the number of system failures is identical 
and independent over each inspection interval, and we can simply study the 
behaviour of such a failure process over one interval, say the first interval   . ),0[ T
Suppose for now that we take the expected downtime per unit time, , as a 
measure of our objective function, the relationship between 

)(TD
T  and  can be 

established directly by using the renewal reward theorem, Ross (1981), as 
)(TD

[( ( )](Downtime over t)( ) lim f f
t

s

d E N T dED T
t T→∞

s

d
+

= =
+

           (14.1) 

where is the expected number of failures within [0,T). Clearly if 

 is available,  can be readily calculated. 

)]([ TNE f

)]([ TNE f )(TD
It can be shown that the failure process shown in Fig. 14.3 is a Marked Poisson 
process, Taylor and Karlin (1998), with the delay time h as the marker. It has been 
proved that this failure process over  is a nonhomougenous Poisson process 
(NHPP), Taylor and Karlin (1998) and Christer and Wang (1995). To derive the 
the rate of occurrence of failures (ROCOF), 

),0[ T

)(tν , for this NHPP, within , 
we start first by deriving the expected number of failures within . Since the 
expected number of the defects arrived within [

),0[ T
),0[ T

ttt δ+, ), Tt <≤0 , is tλδ , then 
the expected value of the failures caused  by these defects is ttTF δλ )( − . 
Integrating  from 0  to t T  and after some manipulation we have  

∫=
T

f dttFTNE
0

)()]([ λ                                                                            (14.2) 

Differentiating (14.2) with respect to T we have 

)()( tFtv λ=                                                                                                    (14.3) 
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The original model developed in Christer and Waller (1984) for (14.2) uses a 
different approach, but leads to the same result. 

14.3.2 Imperfect inspections  

Section 14.3.1 outlined a basic delay time model under perfect inspections. It is 
established under a set of assumptions, and some of them may not be valid in 
practical situations. These assumptions greatly simplify the mathematics involved 
but also restrict a wider use of the models developed. Perhaps the most restrictive 
assumption is that of perfect inspections. In almost all the case studies conducted 
using the delay time concept, we found none of them supported the perfect 
inspection assumption. The other concerning assumption is the HPP for defect 
arrival in the case of a complex system. One would naturally think as the system 
ages there could be more defect arrivals than that of a younger system. In this 
section, we introduce one delay time model that relaxes the perfect inspection 
assumption. The delay time model using a NHPP is presented in Christer and 
Wang, (1995) and Wang and Christer(2003). These models are mainly developed 
for complex systems, but a non-perfect inspection single component delay time 
model can also be developed along a similar line, Baker and Wang (1991). 
All the assumptions proposed in section 14.3.1 will hold except the perfect 
inspection one. Assume for now that if a defect is present at an inspection, then 
there is a probability r  that the defect can be identified. This implies that there is a 
probability r−1 that the defect will be unnoticed. Fig. 14.4 depicts such a process. 
 
                               Two defects were not identified 
                             
 
 
           ○   ○    ●    ○                      ○     ○ ●      ●            ●      ○○    ●                         
                                         A                                    B                          C               time 
                                                 

Fig. 14.4.  Failure process of a multi-component system subject to three non-perfect 
inspections at points A, B, and C, and two potential failures were removed and two missed. 

It has been proved that the failure process over each inspection interval is still an 
NHPP, Christer and Wang (1995), but not identical over the earlier inspection 
intervals of the system. It can be shown that as the number of inspections increases, 
the number of failures over each inspection interval becomes stable and identical, 
so we need to study the asymptotic behaviour of the failure process assuming the 
number of previous inspections is very large. 
Let 
i   ---  inspection; thi
U  --- random variable of the initial time u; 
r  --- probability of perfect inspection; 

)(tiν  --- ROCOF at time t , ),)1[( iTTit −∈ ; 
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)],)1(([ iTTiNE f −  --- expected number of failures over ),)1[( iTTi − ; 

)]([ iTNE s  --- expected number of defects identified at ; iT
 
It can be shown, Christer et al (1995), Christer and Wang (1995), that is 
given by 

)(tvi
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for ),)1[( iTTit −∈ . 

It can also be proved by induction that )()(1 tvtv ii ≈− when i is large. Given 
(14.4) is available, it is straightforward that the expected number of failures over 
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The expected number of defects found at an inspection point, say, iT , is also a 
Poisson variable with the mean given by, Christer et al (1995), Christer and Wang 
(1995) 
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(14.6) 

The expected downtime is given by (14.1) with the expected numer of failures 
given by by (14.5), so that 

s

sff

dT
dTTiNEd

TD
+

+−
=

)],)1(([
)(                                                          (14.7) 

The use of (14.7) assumes that the system is already in a steady state with . 
For computation purpose we can select a large , and then  starts from the first k 
where and 

∞→i
i n

ε≥− +− 1)1( kir ε  is a very small number. 
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Equation (14.7) is established assuming that the defects identified at an inspection 
will always be removed without costing any extra downtime or cost. This 
assumption can be relaxed. Let be the mean downtime per defect being 
repaired. Then using the same approach as before,  the expected downtime is given 
by 

rd

)]([
)]([)],)1(([

)(
iTNEddT

iTNEddTTiNEd
TD

srs

srsff

++

++−
=  ,                          (14.8) 

If the objective function is the expected cost per unit time, we obtain this by simply 
substituting the downtime parameters in (14.7) or (14.8) by the corresponding cost 
parameters. 

Example 
Assume that the rate of occurrence of defects is 2 per day, and the delay time 
distribution is exponential with scale parameter 0.03 measured in days. The 
downtime measures are 30=fd  and 30=sd  minutes respectively. The 
probability of a perfect inspection is assumed to be 0.7. Using (14.5) and (14.7), 
we have the expected downtime against inspection intervals as shown in Fig. 14.5 
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Fig. 14.5 Expected downtime per unit time v inspection interval (in days) 

It can be seen from Fig. 14.5 that a weekly inspection interval is the best. 

14.4 Delay Time Model for A Component Subject To A Single 
Failure Mode (Single Component System) 

Most DTM applications are for multiple component systems subject to independent 
failure modes, although most maintained equipment fall into this category, there 
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are plant items which may have a single dominant failure mode, and may be, in 
some cases, replaced or renewed upon failure. Examples of such plant items are 
batteries, traffic lights, small pumps and motors. Such plant items are called single 
component systems. Noted that a system in this category may not actually be a 
single component, but the key difference compared with a complex multi-
component system is that this single component system is subject to a single failure 
mode, and the only maintenance action is to renew the whole system either by a 
complete replacement or a renewal type of repair. This implies that at any point of 
time, only one defect of the dominant failure mode can exist. This contrasts with a 
complex system with many failure modes, where only the failed component was 
replaced or repaired upon a failure, and at any point of time there could be many 
defects present, and the system is not renewed at failures. 
The failure process of this type of a single plant item is different from that of a 
multi-component complex system, see Figs. 14.6 and 14.7. 
 

 

           ○   ○    ●    ○    ●   ●          ○     ○ ●       ● ○○    ●       ●                                                  

               Fig. 14.6 Failure process of a multi-component system, where ‘○’ denotes
points;  ‘●’ failure points. 
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Fig. 14.7 Failure process of a single component system 

 
For the system in Fig. 14.6, the system may be renewed at inspection po
these inspections are perfect, and the rate of arrival of defects is constant. Ho
for the system in Fig.14.7, the system can be renewed either at a failure or
inspection. We present the case with a perfect inspection assumption. The c
an imperfect inspection delay time model for a single component can be fou
Baker and Wang (1991), (1993). 
We need the following additional assumptions and notation.  

1. The system is renewed at either a failure repair or at a repair done
inspection if a defect is identified. 

2. After either a failure renewal or inspection renewal the inspection p
re-starts. 

3. The initial time, U , to the appearance of a random defect has a proba
density function . )(ug
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4. The defective compoment identified at an inspection will be renewed either 
by a repair or a  replacement at an average cost of and downtime .  rc rd

14.4.1 Inspection model based on an exponentially distributed initial time 

We first consider a simple case that an inspection renews the system regardless  
whether a defect was identified or not. This effectively assumes an exponential 
distribution for the initial time U .  
Since each failure or inspection renewed the system with associated downtimes or 
costs, the process is a renewal reward process, and the long term expected cost per 
unit time, , is given by, Ross (1981), )(TC

E(CL)
E(CC)C(T) =  

where CC is the renewal cycle cost and CL is the renewal cycle length which is 
the interval between two consecutive renewals. There could be two different 
renewal cycles, one is the failure renewal and the other is the inspection renewal. 
 
Taking the expected cost per renewal cycle as an example, since a failure will cost 

 with probability of it happening as fc )( TXP < , then the expected cost due to 
a failure renewal within T is,  

∫ −=<
T

ff duuTFugcTXPc
0

)()()( ,                                                    (14.9) 

where X  is the time to failure. 
The expected cost due to an inspection renewal with a defect identified at T  is 

∫ −−+=≥∩<+
T

srsr duuTFugccTXTUPcc
0

)}(1){()()()(  (14.10) 

and finally the expected cost due to an inspection renewal without a defect being 
identified at T is given by  

∫
∞

=≥
Tss duugcTUPc )()(                                                                       (14.11) 

From (14.9)-(14.11) we have expected cost per renewal cycle. 
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As to the expected cycle length, we model two possibilities. The first is that the 
cycle ends at a failure before T . Define the density function for the time to 
failure which is given readily by 

)(tp

duutfugtXP
dt
dtp

t

∫ −=≤=
0

)()()()(  

Since  is the probability of no failure, which implies an inspection 

renewal and is given by , we have 

)(1 TXP <−

∫ −−
T

duuTFug
0

)()(1

∫∫∫ −−+−=
TtT

duuTFugTdtduutfugtCLE
000

))()(1()()()(        (14.13) 

For the detailed derivation of (14.9)-(14.13), see Baker and Wang (1991), Baker 
and Wang (1993). 
Finally the expected cost per unit time is given by 

∫∫∫
∫ ∫

−−+−

+−−++−

=
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TtT
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Tssrf

duuTFugTdtduutfugt

duugcduuTFugccduuTFugc
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)()}(1){()()()( ∫

              (14.14) 

The expected downtime can be obtained in a similar manner. 

Example 
Assume both the initial time and delay time distributions are exponential with scale 
parameters 0.6 and 0.75 respectively. The time unit is 100 days and the cost 
parameter values are £1000,=fc =rc £150 and =sc £15 respectively. Using 
equation 14.14, the calculated expected cost per unit time as a function of T is 
shown in Fig 14.8.  
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Fig 14.8 Expected cost per unit time v inspection interval 

The optimal inspection interval is 0.4*100=40 days, so a monthly inspection 
schedule is appropriate. 

14.4.2 Inspection model based on a non exponentially distributed initial time 

If  is not exponentially distributed, then we cannot assume any inspection 
will renew the system unless a defect was identified at an inspection and the 
system was replaced or repaired to as  new condition. In this case a renewal cycle 
may span several inspection intervals. 

)(ug

Using a similar framework as before and now taking the expected downtime per 
renewal cycle as an example, the expected downtime due to a failure renewal at 
time X , where  ),)1[( iTTiX −∈ is 

∫ −
−+−=<<−+−

iT

Tifsfs duuiTFugddiiTXiPddi
)1(

)()(])1[())1((])1[(

(14.15) 

This is because inspections are perfect so that if a failure at time X, then the initial 
time must be bounded within U iTXXTi <− ),,)1[( . There are  
inspections with no defect identified before the failure so 

)1( −i
)1( −i times of the 

inspection downtime are added.   
Equation (14.15) models only one of the possibilities and a failure can be in any of 
the inspection intervals so summing over all possible intervals i from 1 to infinity 
gives the expected downtime due to a failure, 
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Equation 14.16 is always finite since all the probability terms for large i  tend to 
zero because  tends to zero for )(ug Tiu )1( −>  when i  is large. 
Similarly the expected downtime due to an inspection renewal with a defect 
identified is 

∑ ∫
∞

= −
−−+−

1 )1(
)](1)[())1((

i

iT

Tirs duuiTFugddi                                (14.17)  

Summing (14.16) and (14.17) gives the complete expected downtime per renewal 
cycle 
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(14.18) 

 The expected cycle length is obtained in a similar manner and is given by 
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Finally the expected downtime per unit time is given by 

{ }
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(14.20) 

14.4.3 A case example 

The medical physics department of a teaching hospital in England, which 
maintains a large number of medical equipment, records the history of breakdowns 
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and repairs carried out using history cards for each individual item of departmental 
equipment. Information available included purchase date, date of preventive 
maintenance, failures and some description of the work carried out. There were no 
costs recorded, but some estimated cost values were provided by the hospital staff. 
Following a discussion with the chief technician, it seemed best to focus on the 
following items, to ensure a sample of similar machine types, under heavy and 
constant use, with a usefully long history of failures, and with reasonably well-
defined modes of failures. Two pumps were chosen, namely volumetric infusion 
pumps and peristaltic pumps all from the intensive-care, neurosurgery and heart-
care units. There were 105 volumetric pumps and the most frequent failure mode 
was the failure of the pressure transducer. There were 35 peristaltic pumps and the 
most frequent failure mode was battery failure. For a detailed description of the 
case, data and model fitting, see Baker and Wang (1991). Several distributions 
were chosen for the initial and delay time distributions for both pumps, and it 
turned out that in both cases a Weibull distribution was the best for the initial time 
distribution and an exponential distribution for the delay time distribution. The 
estimated parameter values based on history data using the maximum likelihood 
method for both pumps are shown in table 14.1. 
 

Pump Initial time pdf. 

 
ηαβααη )(1)()( ueuug −−=

Delay time pdf. 

 hehf ββ −=)(

Volumetric infusion α̂ =0.0017, η̂ =1.42 β̂ =0.0174 

Peristaltic α̂ =0.0007, η̂ =2.41 β̂ =0.0093 

Table 14.1 Estimated parameter values for the pumps 

Although the cost data were not recorded, it was relatively easy to estimate the cost 
of an inspection (called preventive maintenance in the hospital) and the cost of an 
inspection repair if a defect was identified. However, it was extremely difficult to 
have an estimate for the failure cost since if the pump failed to work while needed 
the penalty cost could be very high compared with the cost of the pump itself. 
Nevertheless, some estimates were provided, which are shown in table 14.2 
 

Pump Inspection cost Inspection repair 
cost 

Failure cost 

Volumetric infusion £15 £50 £2000 

Peristaltic £15 £70 £1000 

Table 14.2 Cost estimates 

This time we cannot derive an analytical formula for the expected cost because of 
the use of the Weibull distribution. Numerical integrations have to be used to 
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calculate (14.20). We did this using the maths software package MathCad and the 
results are shown in Figs  14.9 and 14.10.  
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Time is given in days in Figs 14.9 and 14.10, so the optimal inspection interval for 
the volumetric infusion pump is about 30 days and for the peristaltic pump is 
around 70 days. The hospital at the time checked the pumps at an interval of 6 
months, so clearly for both pumps the inspection intervals should be shortened. 
However, it has to be pointed out that the model is sensitive to the failure cost, and 
had a different estimate been provided, the recommendation would have been 
different. 

14.5 Delay Time Model Parameter Estimation 

14.5.1 Introduction 

In previous sections, delay time models for both a complex system and a single 
compnent have been introduced.  However in a practical situation, before the 
construction of expected cost or downtime models, it is necessary to estimate the 
values of the parameters that characterise the defect arrival and failure processes.  
In this section we discuss various methods developed to estimate the parameters 
from either ‘subjective’ data of experts opinions or ‘objective’ data collected at 
failures and inspections.  
Naturally, the parameter estimation process is not the same for the different types 
of delay-time model i.e. single component models where a single potential failure 
mode is modelled and only one defect may (or may not) be present at any one time, 
compared with complex system models where many defects can exist 
simultaneously and many failures can occur in the interval between inspections.  
This is particularly important for the method using objective data. In this section, 
we mainly focus on the estimation methods for complex systems since these 
systems are the most applicable asset items for DTM. The details of the approaches 
developed for parameters estimation for a single component DTM can be found in 
Baker and Wang (1991) and Baker and Wang (1993). 

14.5.2 Subjective data method 

If the maintenance records of failures and recorded findings at maintenance 
interventions such as inspections (collectively called objective data in this chapter)  
are available and sufficient in quantity and quality, the delay time distribution and 
parameters can be estimated by the classical statistical method of maximum 
likelihood, see section 5.14.3, and the paper by Christer et al (1995). If however, 
such a data set does not exist, or is insufficient in quality and quantity for the 
purpose of estimation, the alternative is to use the subjective judgement of 
experienced maintenance engineers or technicians to obtain the delay time 
distribution and parameters. This section introduces three methods developed by 
Christer and Waller (1984), Wang (1997) and Wang and Jia (2006) in estimating 
the delay time distribution and the associated parameters using subjective data. 
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Subjective estimation of the delay times through an on-site and on-spot survey 
This method needs to be done over a time period to collect detailed information 
and assessment at every maintenance intervention or failure, Christer and Waller 
(1984). 
At every failure repair, the maintenance technician repairing the plant would be 
asked to estimate: 
HLA: How long ago the defect causing the failure may first have been expected to 
have been recognised at an inspection. 
If a defect was identified at an inspection, then in addition to HLA, the technician 
would be asked to estimate 
HML: How much longer could the defect be left unattended before a repair was 
essential. 
The estimates are given by, see Fig. 14.11 (a) and (b),  for a failure, and 

 for an inspection repair. is then estimated from the data 

of  { }.  

HLAh =ˆ

HMLHLAh +=ˆ )(hf
ĥ

 
 

                                HLA                                                  HLA          HML 

                                                   ● 

                           (a) Failure                                             (b) Inspection 

Figure 14.11 HLA and HML estimates at failure and inspection 

At the time of repair, the maintenance technician has information available to 
inform his estimate. In addition to his experience, the defect is present, the plant 
may be examined, and operatives questioned.  
The rate of defect arrivals can be estimated directly from the number of observed 
failures and defects identified over the survey period. For a case study using this 
approach for estimating delay time model parameters, see Christer and Waller 
(1984). 

 Subjective estimation of the delay times based idetified failure modes 
The method introduced earlier is a questionnaire survey based approach where the 
subjective opinions of maintenance engineers were asked. It has the advantage of 
directly facing the defect or failure when the information regarding the delay time 
was requested. However, it has also the following problems: (a) it is a time 
consuming process in conducting such a survey, particularly in the case that the 
frequency of failures or defects is not high, which implies a longer time to get 
sufficient data; (b) the estimation process is not easy to control since all the forms 
are left at the hands of the maintenance engineers involved without an analyst 
present, which may result in confusion and mistakes as experienced in the studies 
of Chrisater and Waller (1984), and Christer et al (1998). 
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Wang (1997) recommended a new approach to estimate directly the delay time 
distribution based on pre-defined major failure modes or types. The idea is as 
follows 

1. If the estimates can be made based on pre-selected major failure types 
instead of the individual failure or defect when it occurs, the time spent 
for the questionnaire survey will be greatly reduced since the estimates 
for all major failure types can be carried out at the same time, which may 
only take a few hours. This also creates the opportunity for an analyst to 
be present to reduce possible confusion and mistakes. 

2. A group of experts should be questioned on the same failure type and 
opinions can be properly combined to reduce sampling errors. 

3. The question asked should be a probabilistic measure of the delay time 
over all possible ranges. 

The following phases for the estimating of the delay time were suggested, Wang 
(1997). 

The problem identification phase 
This is for the identification of all major failure types and possible causes of the 
failures. This was normally done via a failure mode and criticality analysis so that 
a list of dominant failures can be obtained. This process will entail a series of 
discussions with the maintenance engineers to clarify any hidden issues. If some 
failure data exists it should be used to validate the list, or otherwise a questionnaire 
should be designed and forwarded to the person concerned for a list of dominant 
failure types. 

Expert identification and choice phase 
The term ‘expert’ is not defined by any quantitative measure of resident 
knowledge. However, it is clear in the case here that a person who is regarded by 
others as being one of the most knowledgeable about the machine should be 
chosen as the expert. The shop floor fitters or any maintenance technicians or 
engineers who maintain the machine would be the desired experts, Christer and 
Waller (1984). After the set of experts is identified, a choice is made which experts 
to use in the study. Full discussion with management is necessary in order to select 
the persons who know the machine ‘best’. Psychologically, five or fewer experts 
are expected to take part of the exercise, but not less than three. 

The question formulation phase 
The questions we want to ask in this case are the rate of occurrence of defects, 
(assuming we are modelling a complex plant) and the delay time distribution. In 
the case addressing the rate of arrival of a defect type, we can simply ask for a 
point estimate since it is not random variable. Without maintenance interventions, 
this would, in the long term, be equal to the average number of the same failure 
type per unit time. For example we may ask ‘how many failures of this type will 
occur per year, month, week or day?’. It is noted that this quantity is usually 
observable. In fact, our focus is mainly on the delay time estimates. 
Given the amount of uncertainty inherent in making a prediction of the delay time, 
the experts may feel uncomfortable about giving a point estimate, and may prefer 
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to communicate something about the range of their uncertainty. Accepting these 
points, perhaps the best that experts could do in this case would be to give their 
subjective probability mass function for the quantity in question. In other words, 
they could provide an estimate over the interval such that the mass above the 
interval is proportional to their subjective probability measures. Alternatively, 
three point estimates can be asked, such as the most likely, the minimum and the 
maximum durations of the delay times for a particular type of failure. 
The word ‘delay time’ was not entered in the question since it will take some effort 
to explain what is the delay time. Instead, we just asked a similar question like 
HLA. But this question was still difficult for the experts to understand based upon 
our case experience. The lesson learned is to demonstrate one example for them 
before starting the session.  

The elicitation phase 
Elicitation should be performed with each expert individually. If possible, the 
analyst should be present, which proved to be vital in our case studies. The above  
mentioned histogram was used to draw the answer from the experts so that the 
experts can have a visual overview of their estimates and a smooth histogram could 
be achieved if the experts are advised to do so. The maximum number of the 
histogram intervals is set to be five, which is advised by psychological 
experiments. 

The calibration phase 
Roughly speaking, calibration is intended to measure the extent to which a set of 
probability mass functions ‘correspond to reality’. Reviewing the problem we have 
concluded that subjective calibration is not recommended due to its time 
consuming nature. If any objective data is available, we may calibrate the experts’ 
opinion by a Bayesian approach as discussed by many others. Other approach is to 
calibrate the estimate by matching a statistics observed. If significant difference is 
found, the estimates must be revised. 

The combination phase 
Experts resolution, or combining probabilities from experts, has received some 
attention. Here we use one of the simplest approaches, namely the weighting 
method. It is simply a weighted average of the estimates of all experts. The weights 
need to be selected carefully according to each expert’s level of expertise, and their 
sum should be equal to one. Other more complicated methods are available, see 
Wang (1997)  
It is noted that the combined delay time distribution obtained from this phase is in 
a form of discrete probability distribution. In fact a continuous delay time 
distribution is needed in delay time inspection modelling. To achieve this, based 
upon the number of delay times in each interval, an estimated continuous delay 
time distribution of can be obtained by fitting a distribution from a 
known family failure distributions, such as exponential or Weibull using the least 
square method or maximum likelihood method. 

)(ˆ hF )(hF
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The updating phase 
This phase is mainly for after some failure and recorded findings become available. 
In a sense it is a way of calibrating.  
A case study using the above method is detailed in Akbarov et al (2006). 

An empirical Bayesian approach for estimating the DTM parameters based 
subjective data 
In previous subjective data based delay time estimating approaches, Christer and 
Waller (1984), Wang (1997), and Akbarov  et al (2006), some direct subjective 
estimates of the delay time is required, which has been found to be extremely 
difficult for the experts to estimate since the delay time is not usually observable 
and difficult to explain, Akbarov et al (2006). 
We now introduce a recently developed new approach which starts with subjective 
data first and then updates the estimates when objective data becomes available. 
The initial estimates are made using the empirical Bayesian method matching with 
a few subjective summary statistics provided by the experts. These statistics should 
be designed easy to get based on the experience of the experts and on observed 
practice rather than unobservable delay times. Then the updating mechanism enters 
the process when objective data become available, which requires a repeated 
evaluation of the likelihood function which will be introduced later. In the 
framework of Bayesian statistics and assuming no objective data is available at the 
beginning, we basically first assume a prior on the parameters which characterize 
the underlying defect and failure arrival processes. When objective data becomes 
available, we calculate the joint posterior distribution of the parameters, and then 
we may use this posterior distribution to evaluate the expected cost or downtime 
per unit time conditional on observed data.  
Assuming for now that we are interested in the rate of arrival of defects, λ , and 
the delay time pdf., , which is characterised by a two parameter distribution )(hf

),|( βαhf . Unlike the methods proposed in Christer and Waller (1984), Wang 
(1997), here we treat parameters λ  and the α  and β   in ),|( βαhf as random 
variables. The classical Bayesian approach is used here to define the prior 
distributions for model parameters λ , α  and β  as )|( λλ Φf , 

)|( αα Φf and )|( ββ Φf , where •Φ is the set of hyper-parameters within 

. )|( •Φ•f
Once those •Φ are available, the point estimates of λ , α  and β  are the 
expected values of them and are given by 

∫∫∫
∞∞∞

Φ==Φ=
000

)|(ˆ and  )(ˆ     ,)|(ˆ ββββααααλλλλ βλ dfd|fdf αΦ  

Let ),,( βαλg  denote a statistics of interest, which may be a function of λ , α  
and β , say the mean number of failures within an inspection interval,  and 
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)],,([ βαλ ΦΦΦgE denote its expected value in terms of λΦ , αΦ  and , 
then we have 

βΦ

.)|()|()|(),,(

)],,([

0 0 0∫ ∫ ∫
∞ ∞ ∞

ΦΦΦ=

ΦΦΦ

βαλβαλβαλ βαλ

βαλ

dddfffg

gE
             (14.21)                 

If we can obtain a subjective estimate of )],,([ βαλ ΦΦΦgE  provided by the 

experts, denoted by sg , then letting sggE =ΦΦΦ )],,([ βαλ , we have  

∫ ∫ ∫
∞ ∞ ∞

ΦΦΦ=
0 0 0

.)|()|()|(),,( βαλβαλβαλ βαλ dddfffggs      (14.22)                   

Equation 14.22 is only one of such equations and if several such subjective 
estimates (different) were provided, we could have a set of equations 14.22. The 
hyper-parameters  may be estimated by solving equations 14.22 in the case that 
the number of equations 14.22 is at least the same as the number of hyper-
parameters in . We now demonstrate this in our case. 

•Φ

•Φ
Suppose that the experts can provide us the following subjective statistics in 
estimating λΦ : 

• The average number of failures within  , denoted by ,),0[ T fn  

• The average number of defects identified at inspection time T , denoted by 

dn  

• The average probability of no defect at all in , denoted by ),0[ T ndp . 
 
In this case if the statistics of interest is the average number of the defects within 

, we have from the property of the HPP that ),0[ T Tg λβαλ =),,( , and then  

∫∫ ∫ ∫
∞∞ ∞ ∞

Φ=ΦΦΦ=

ΦΦΦ

00 0 0
)|()|()|()|(

)],,([

λλλβαλβαλλ λβαλ

βαλ

dTfdddffTf

gE
 

Since if inspection is perfect we have dfs nng += , it follows from (14 .22) that 

.)|(
0

λλλ λ dTfnn df ∫
∞

Φ=+                                                                   (14.23) 
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Similarly, from the property of the HPP, that is, 
!

)(e)|nT)(0, (
T-

n
TNP

n

d
λ

λ
λ

== , 

we have 

.)|()|()|0T)(0,(
00

λλλλλ λ
λ

λ dfedfNPp T
drnd ∫∫

∞ −∞
Φ=Φ==       (14.24) 

where is the number of defects in . If we have only two hyper-

parameters in , then solving (14.23) and (14.24) simultaneously in terms of 

 will give the estimated values of the hyper-parameters in 

),0( TNd ),0[ T

λΦ

λΦ λΦ .  Note that λ  

is independent with  α  and β  so that the integrals of )|( αα Φf and )|( ββ Φf  
are dropped from (14.21). Similarly if more subjective estimates were provided, 
the hyper-parameters in  and  αΦ βΦ can be obtained. For a detailed description 
of such an approach to estimate delay time model parameters see Wang and Jia 
(2007).  
Obviously this approach is better than the previously developed subjective methods 
in terms of the way to get the data and the accuracy of the estimated parameters. It 
is also naturally linked to the objective method in estimation DTM parameters to 
be presented in the next section via Bayesian theorem if such objective data 
becomes available, Wang and Jia (2007). 

14.5.3 Objective data method 

Objective data for complex systems under regular inspections should consist of the 
failures (and associated times) in each interval of operation between inspections 
and the number of defects found in the system at each inspection. From this data 
information, we estimate the parameters for the chosen form of the delay time 
model.   
Initially, we consider a simple case of the estimation problem for the basic delay 
time model where only the number of failures, , occurring in each cycle 

 and the number of defects found and repaired, , at each inspection 

(at time iT ) are required. We do not know the actual failure times within the 
cycles 

im
)),1[( iTi − ij

The probability of observing  failures in im )),1[( iTi −  is; 
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Similarly the probability of removing  defects at inspection i  (at time iT ) is; ij
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As the observations are independent, the likelihood of observing the given data set 
is just the product of the Poisson probabilities of observing each cycle of data,  

and 
im

ij  .  As such, the likelihood function for K intervals of data is; 
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where is the set of parameters within the delay time model. The likelihood 
function is optimised with respect to the parameters to obtain the estimated values. 
This process can be simplified by taking natural logarithms.  The log-likelihood 
function is; 
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where the final summation term is irrelevant when maximising the log-likelihood 
as it is a constant term and therefore not a function of any of the parameters under 
investigation.   
When the times of failures are available, it is often necessary to refine the 
likelihood function, (14.27) by considering the detailed pattern of behaviour within 
each interval in terms of the number of failures and their associated times. Define 

 the time of the jth failure in the ith inspection interval, the likelihood is given 
by, Christer et al (1998), 
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where is given by (14.4). )( iji tv
In the case study of Christer et al (1995), only the daily numbers of failures are 
avaialble. They formulated a different likelihood taking account of this pattern of 
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data. It was done essentially by formulating the probability of a particular number 
of failures for each day over each inspection interval, and then the likelihood for a 
particular inspection interval is just the product of these probabilities and the 
probabilty of observing some number of defects at the inspection, see Chriter et al 
(1995) for details.  

14.5.4 A case example 

A copper works at the Northwest England was used for same extrusion press for 
over 30 years, and the plant is a key item in the works since 70% of its products 
shall go through this press at some stage of their production. The machine 
comprises a 1700-ton oil-hydraulic extrusion press with one 1700kW induction 
heater and completely mechanized gear for the supply of billets to the press and for 
the removal of the extruded products. The machine was operated 15-18 hours a day 
(two shits), 5 days a week, excluding holidays and maintenance down-time. 
Preventive Maintenance (PM) was carried out on this machine since 1993, which 
consisted of a thorough inspection of the machinery, along with any subsequent 
adjustments or repairs if the defects found can be rectified within the PM period. 
Any major defects which cannot be rectified during the PM time were supposed to 
be dealt with during non-production hours. PM lasted about two hours and is 
performed once a week at the beginning of each week.  
Questions of concern are (i) whether PM is or could be effective for this machine; 
(ii) whether the current PM period is the right choice, particularly, the one week 
PM interval which was based upon maintenance engineers’ subjective judgement; 
(iii) whether PM is efficient, i.e. whether it can identify most defects present and 
reduce the number of failures caused by those defects. 
In this case study, the delay time model introduced earlier was used to address the 
above questions. The first question can also be answered in part by comparing the 
total downtime per week under PM with the total downtime per week per week of 
the previous years without PM. A parallel study carried out by the company 
revealed that PM has lowered the total downtime. The proportion of downtime was 
reduced from 7.8% to 5.8%. 
To establish the relationship between the downtime measure and the PM activities 
using the delay time concept, the first task is to estimate the parameters of the 
underlying delay time distribution from available data, and hence build a model to 
describe the failure and PM processes. The type of delay time model used in the 
study is the non-perfect inspection model. 
In the original study, Christer et al (1995), a number of different candidate delay 
time distributions were considered including exponential and Weibull distributions. 
The chosen form for the delay time distribution is a mixed distribution consisting 
of an exponential distribution (scale parameter α) with a proportion P of defects 
having a delay time of 0.  The cdf. is given by 

h-P-(F(h) α−= )e11  
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An optimisation algorithm is required for maximisation of the likelihood with 
respect to the parameters.  The estimated values are given in table 14.3 with their 
associated coefficients of variation (CV) 
 
Rate of occurrence of 

defect 
Probability of 

perfect inspection 
Proportional of zero 
delay time of defects 

Scale parameter 

3561.1ˆ =λ  902.0ˆ =r  5546.0ˆ =P  0178.0ˆ =α  

CV=0.0832 CV=3.4956 CV=0.4266 CV=1.1572 

Table 14.3  Estimated model parameters 

Inserting the optimal parameter estimates into the log-likelihood function gives a 
ML value of 101.86.  See Christer et al (1995) on the analysis and the fit of the 
model to the data. 

14.6 Other developments in DTM and future research 

Several useful extensions have been made over the last decade to make the delay 
time model more realistic, but that increases the mathematical complexity as well. 
Christer and Wang (1995) addressed an NHPP non-perfect inspection delay time 
model of multiple component systems. In this case the constant inspection interval 
assumption cannot be held, and a recursive algorithm was developed in Wang and 
Christer (2003) to find the optimal non-constant intervals till final replacement. 
Christer and Redmond (1990) reported a problem of sampling bias, and proposed 
ways of estimating the delay time distribution from subjective data. Wang and 
Christer (1997) modelled a single component system subject to inspections over a 
finite time horizon. Christer et al (1997) used a NHPP in modelling the rate of 
arrival of defects within a case study. Wang (2000) developed a model of nested 
inspections using the delay time concept. Wang and Jia (2006) reported the use of 
empirical Bayesian statistics in the estimation of delay time model parameters 
using subjective data, which overcame a number of problems in previous 
subjective delay time parameter estimation. If the downtime due to failures cannot 
be ignored in the calculation of the expected number of failures during an 
inspection interval, Christer et al (2000) addressed this problem and a refined 
method was proposed. Christer et al (2001) compared the delay time model with an 
equivalent semi-Markov setting to explore the robustness of both modelling 
techniques to the Markov assumption.  Carr and Christer (2003) in a recent paper, 
studied the problems of non-perfect repairs at failures, which allows failures to re-
occur if the repair is not perfect. 
The future research on the DTM relies on the application areas, the data involved, 
and the objective function chosen. We consider that the following areas or 
problems are worthy of research using the delay time concept. 

1. PM type of insepctions. Inspections may consist of many activities and 
some of them are purely preventive types such as greasing, top-up oil, 
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and cleaning, which may have no connection with defect identification. 
It is noted however, that this type of PM may change the RATE  of 
defect arrivals and therefore change the expected number of failures 
within an inspection interval. This problem has not been modelled in 
previous DTM research, but it is a reality we have to face. An initial idea 
is to introduce another parameter in the RATE OF DEFECT 
ARRIVALS to model  the effectiveness of such PM activities.  

2. Multiple inspections scheme. This is again common in practice in that 
more than one inspection intervals of different scales or types are in 
palce.  Wang  (2000) developed a DTM for nest inspections, but the 
model is not generic, and can only be used for a specific type of 
problems.  

3. Condition Monitoring (CM) is becoming more popular in industry and 
offers abundent modelling opprotunities with a large amount of data.  
With CM it may be able to identify the initial point of a random defect at 
an earlier stage than that of using manual inspections, and it is possible 
that u becomes observable by CM. A pilot research has been carried to 
investigate the use of DTM in condition based maintenance modelling, 
Wang (2006). 

4. Parameters estimation. This is still an on-going research since for each 
specific problem we may have to develop a tailor made approach. The 
empirical Bayesian approach outlined earlier is promising since it 
combines both subjective and objective data. It is noted however, that 
the computation involved is intensive, and therefore, algorithms 
developments are required to speed up the process.  

14.7 Conclusion 

There is a considerable scope for advances in maintenance modelling that impact 
productivity upon current maintenance practice. This chapter reports upon one 
methodology for modelling inspection practice. The power of mathematics and 
statistics is used to exploit an elementary mathematical construct of failure process 
to build operational models of maintenance interactions. The delay time concept is 
a natural one within the maintenance engineering context. More importantly, it can 
be used to build quantitative models of the inspection practice of asset items, which 
have proved to be valid in practice. The theory is still developing, but so far there 
has been no technical barrier to developing DTM for any plant items studied. 
This chapter has introduced the delay time concept and showed how it can be 
applied to various production equipment to optimise inspection intervals. To 
provide substance to this statement, the processes of model parameter estimation 
and case examples outlining the use of delay time modelling in practice are 
introduced. We only presented some fundamental DTMs and associated parameters 
estimation procedures, but interested readers can refer to the references listed at the 
end of the chapter for further consultation.  
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14.8 Dedications 

This chapter is dedicated to Professor Tony Christer who recently passed away.  
Tony was a “world class” researcher with an international reputation. He was the 
originator of the delay time concept and had produced in conjunction with others a 
considerable number of papers in delay time modelling theory and applications. He 
was a great man who enthused, mentored and guided many of us to strive for 
higher quality research. He will be sadly missed by all who knew him.  
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