A Model of the Construction Project Selection and Bidding Decision

A Thesis submitted for the degree of Doctor of Philosophy

by

Ronald Martin Skitmore

Department of Civil Engineering The University of Salford

> "If the organism carries a small scsle model of external reality and of its own possible actions within its head, it is able to carry out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and in the future, and in every way react in a fuller, safer and more competent manner to the emergencies which face it".
> CRAIK, K.J.W. (1943) The Nature of Explanation
> Cambridge University Press
Page
List of Tables (vi)
List of Figures (x)
ACKHOWLEDGEMEITS (xiii)
ABSTRACT (mi)
Chapter 1 INTRODUCTIOX 1
Chapter 2 ANALYSIS OF DECISION-MAKING IN CONSTRUCTIOE COYPAXIES 4
2.1 Types of decisions 4
2.2 Making the 'right' decision 6
2.2.1 Identification of options 6
2.2.2 Evaluation of options 7
2.2.3 Selection 8
2.3 Corporate decision systems 8
2.3.1 Generally 8
2.3.2 Use in construction companies 9
2.3.3 Reasons for lack of use 11
2.4 Aspects of a decision system 12
2.4.1 Scope 12
2.4.2 Practical needs 16
2.4.3 System design 18
2.5 Decision models 19
2.6 Conclusions 21
Chapter 3 DETERMINISTIC PROJECT SELECTION MODELS 24
3.1 Introduction 24
3.2 The decision environment 24
3.3 The outcome environment 25
3.3.1 People 26
3.3.2 Control of resources 29
3.3.3 Property 31
3.3.4 Money 31
3.3.5 Interrelationships in the outcome environment 34
3.3.6 Measures of benefit 34
3.4 Project characteristics 36
3.4.1 Relationships between project characteristics and the outcome enviranment 36
3.4.2 Type of work 40
3.4.3 Types of client 41
3.4.4 Geographical location 42
3.4.5 Competitors 43
3.4.6 Summary 43
3.5 Selection criteria 45
3.5.1 Monetary objectives 48
3.5.2 Other objectives 48
3.5.3 Market related objectives 49
3.5.4 Multiple objectives 49
3.6 Selection strategies 50
3.6.1 Multiple selection decision evaluation 50
3.6.2 Evaluation of the preference function 52
3.7 Conclusions 54
Chapter 4 TIME DEPENDENT ASPECTS 56
4.1 Introduction 56
4.2 The relationship between the outcome environment and projects 56
4.3 The time dimension 58
4.4 Implications for evaluation and selection 59
4.4 Conclusions 67
Chapter 5 NOM-DETERMINISTIC PROJECT SELECTION MODELS 68
5.1 Introduction 68
5.2 Imperfect knowledge 68
5.2.1 Coping with risk and uncertainty 72
5.2.2 Behaviour of the prototype 73
5.2.3 Conclusions 75
5.3 The decision environment 76
5.3.1 The project generating environment 78
5.3.2 Predicting project opportunities 80
5.3.3 Predictions in the outcome environment 82
5.3.4 The influence of project characteristics 82
5.3.5 Tasks and performance 85
5.3.6 Outcome states 86
5.3.7 The effect of subcontracting 88
5.4 The prediction process 89
5.4.1 Accuracy of predictions 90
5.5 Selection stategies and the non-deterministic model 92
5.5.1 Study 1 (Hillebrandt) 92
5.5.2 Study 2 (Benjamin) 93
5.5.3 Study 3 (Fellows \& Langford) 94
5.5.4 Study 4 (Ibbs \& Crandall) 94
5.5.5 Conclusions 95
5.6 Dynamical aspects 95
Chapter 6 THE PROJECT DECISION SYSTEM 99
6.1 Introduction 99
6.2 Decision options 99
6.3 Selection of 'best' options 100
6.4 Option identification decision rules 101
6.5 Low risk exogenous factors and strategies 102
6.6 High risk exogenous factors and strategies 104
6.7 Conclusions 108
Chapter 7 STATISTICAL MODELS 114
7.1 Introduction
7.2 Uncertainty, risk and probability 114
7.3 Construction demand and project characteristics 115
7.4 The outcome environment 117
7.4.1 Expenditure 117
7.4.1.1 Cost and estimated cost variables 117
7.4.1.2 The suitability of a statistical model 119
7.4.1.3 Estimation of parameters 125
7.4.1.4 Shape 123
7.4.1.5 Spread 125
7.4.1.6 Location 126
7.4.1.7 Relationship with other factors 128
7.4.1.8 Summary of overall parameters 128
7.4.2 Income and cash flow 128
7.4.3 Conclusions 130
7.5 Kodelling competitors' bids 131
7.5.1 The behaviour of competitors 133
7.5.2 Collective behaviour 133
7.5.2.1 Shape 135
7.5.2.2 Spread and location 136
7.5.2.3 Relationship with other factors 138
7.5.2.4 Distribution of law bids 140
7.5.3 Individual competitors 141
7.5.3.1 The independence assumption 142
7.5.3.2 The project decision environment 142
7.5.3.3 Collusion 145
7.5.3.4 Mon serious and unrealistic bids 146
7.5.4 Data limitations 148
7.5.5 Project acquisition 150
7.5.6 Factors affecting the likelihood of entering the lowest bid 150
7.5.7 The probability of entering the lowest bid as a function of mark-up 152
7.6 Summary and conclusions 155
Chapter 8 AJALYSIS OF BIDDING DATA 158
8.1 Introduction 158
8.2 Project values 158
8.2.1 Distribution of project values 158
8.2.2 The Exponential model 158
8.2.3 The Gamma model 164
8.2.4 The Beta model 164
8.2.5 The Normal model 165
8.2.6 The Normal model (log-log transformation) 165
8.2.7 Conclusions 166
8.3 The number of bidders 168
8.3.1 The distribution of the number of bidders per project 168
8.3.2 Conclusions 180
8.4 The distribution of bids for each project 180
8.4.1 Shape 180
8.4.1.1 First impressions 180
8.4.1.2 Relationship between number of bidders and skewness 185
8.4.1.3 Relationship between skewness and project value 185
8.4.1.4 Tests of distributional shape 187
Introduction 187
Normal and Uaiform 190
Gamma, Weibull and Lognormal 208
Distribution af test statistics 210
Results of tests 217
8.4.1.5 Transformations 220
8.4.2 Spread 224
8.4.2.1 Generally 224
8.4.2.2 Eartlett's test 231
8.4.2.3 Simulation programme 232
8.4.2.4 Variance stabilising trensformations 233
8.4.3 Conclusions 242
Chapter 9 THE INDIVIDJAL BIDDEPS 243
9.1 Introduction 243
9.2 The probability that certain bidders bid for a project 243
9.3 The distribution of bid values entered by each bidder 245
9.3.1 Introduction 245
9.3.2 The iterative procedure 249
9.3.3 Distribution of aggregated residuals 252
9.3.3.1 Shape 252
9.3.3.2 Vormal model 252
9.3.3.3 Pearson's distributions 260
9.3.3.4 Gram-Charlier series Type A and Edgeworth's form 263
9.3.3.5 Discesssion 265
9.3.4 Distributien of individual bidders' bids 269
9.3.4.1 Shape 269
9.3.4.2 Spread 273
9.3.4.3 Location 275
9.4 Analysis of one bidier 277
9.4.1 Introduction 277
9.4.2 Detecting Type 2 bids 278
9.4.2.1 The highest bid in each project 278
9.4.2.2 The highest bid relative to a bidders alpha value 279
9.4.2.3 Comparison between bidders 280
9.4.2.4 Conclusions 283
9.4.3 The distribution of mark-up values 283
9.4.4 The distribution of low bid/cost estimate ratios 284
9.4.5 The probability of entering the lowest bid (ordinal scale estimation) 284
9.5 Summary and conclusions 287
Chapter 10 ON ESTIMATING THE PROBABILITY OF ENTERING THE LOWEST BID 294
10.1 Introduction 294
10.2 General proposition 294
10.3 Probability of entering lowest bid 295
10.4 Identity of bidders known 296
10.5 Identity of bidder not known 297
10.6 Number of bidders not known 299
10.7 Praject value not known 301
10.8 The probability of entering the lowest bid for a given mark-up 304
10.9 Conclusions 308
Chapter 11 SUMMARI AND CONCLUSIONS 309
REFERETCES 310
APPENDICES 335
A Statistical formulae 335
B Bidding data 342
Case 1 342
Case 2 345
Case 3 353
C Estimates of α_{1} and σ^{2} obtained after the transformation $y_{1 j}=\ln \left(x_{1 j}-0.8 x_{1 j}\right)$ 351
Case 1 361
Case 2 362
Case 3 363
D Estimates of regression coefficients α_{i} and β_{1} for prediction of 'probability' a specified bidder enters a bid 355
Case 1 З6Е
Case 2 207
Case 3 374

	Table	Page
Competing environmental perceptions	2.1	14
Comparison of operative incentive ratings	3.1	28
Coefficients of variation $V \%$ of estimated productivity for various operations in building construction industry	7.1	121
Distribution parameters for costs/estimates	7.2	129
Distribution parameters for bids	7.3	137
Frequency of low bids	7.4	151
Project values and the Beta distribution - comparison of expected and observed coefficients of sirewness	8.1	165
Log-log transformation of project value (low bid) distribution	8.2	166
Modelling project values	8.3	167
Results of regression of project value on number of bics per project	8.4	168
Distribution of observed number of bidders around regression prediction	8.5	176
Distribution of observed number of bidders around regression prediction (forced through zera)	8.6	177
Regression predictions of number of bids per project (Case 1) and Poisson probability $\operatorname{Fr}\left(n_{f}\right)$ of residuals	8.7	178
Test for Uniform distribution of $\operatorname{Pr}\left(n_{j}\right)$ (Case 1)	8.8	179
Average coefficients of variation of skewness and kurtosis	8.9	181
Summary of weighted shape statistics for project bids	8.10	184
Regression of number of bidders per project against skewness coefficients	8.11	185
Results of regression of project value on the coefficient of skewness for each project	8.12	187
Percentage points of the skewness statistic Y_{1} empirical distribution obtained from 20,000 simulated n size randon samples from a Normal population $\mathbb{N}(1,0.01)$	8.13	195
Percentage points of the skewness statistic Y_{1} empirical distribution obtained from 20,000 simulated n size randon samples for a Uniform population $U(1,0.01)$	8.14	196

Percentage points of the kurtosis statistic Y_{2} empirical distribution obtained from 20,000 simulated n size random samples from a Normal population $\mathbb{N}(1,0.01) \quad 8.15$ 197

$$
\begin{aligned}
& \text { Percentage points of the kurtosis statistic } Y_{z} \text { empirical } \\
& \text { distribution obtained from } 20,000 \text { simulated } n \text { size random } \\
& \text { samples for a Uniform population U(1.0.01) }
\end{aligned}
$$

Percentage points of Geary's statistic, a, empirical distribution obtained from 20,000 simulated n size random samples from a Normal population $\mathbb{N}(1.0 .01)$ 8.17 199
Percentage points of Geary's statistic, a, empirical
distribution obtained from 20,000 simulated n size random samples from a Uniform population $U(1,0.01)$ 8.18 200
Percentage points of the studentized range statistic, W, empirical distribution obtained from 20,000 simulated random samples from a Normal population $\mathbb{K}(1,0.01)$

$$
8.19
$$ 201

Percentage points of the studentized range statistic, W, empirical distribution obtained from 20,000 simulated random samples from a Uniform population $U(1,0.01)$ 8.20 202
Percentage points of the Anderson-Darling statistic, A^{2}, empirical distribution obtained from 20,000 simulated n size random samples from a Normal population $\mathbb{1}(1,0,01)$ 8.21a 203
Percentage points of the Anderson-Darling statistic, A^{2}.
from Pettitt (1975, Table 2) 8.21b 204
Percentage points of the Anderson-Darling statistic, A^{2}, empirical distribution obtained from 20,000 simulated n size random samples from a Uniform population U(1,0.01) 8.22 205
The test battery 8.23 211
Random number generators 8.24 213
Critical percentage points obtained from simulated shape tests (Normal and Uniform) 8.25 214
Critical percentage points obtained fron simulated shape tests (Weibull and Lognormal) 8.26 217
Shape test statistics obtained from the data 8.27 220
Results of power transformations 8.28 222
Results of log transformations 8.29 223
Spread statistics obtained from the data 8.30 224
Mean coefficients of variation of construction bids 8.31 225
Results of regression of project value on the standard deviation of each project 8.32 229
Results of regression of project value on the standard deviation of each project (log transformations) 8.33 230
Critical values of Bartlett's probability (log simulations using average variance, Normal distribution, 1000 trials) 8.34 233
Results of tests on variance stabilising transformations 8.35 234
Estimates of location parameter cs using Cohen's method 8.36 237
Results of regression of project values ($\mathrm{x}_{1 \mathrm{j}}$) on threshold values (c_{j}) for $\sigma^{2}=0.06$ 8.37 241
Ranges of α and β 8.38 241
Results of regression of log project value (lowest bidder) on probability of a specified bidder entering a bid 9.1 244
Prediction from iterative procedure for Case 1

$$
9.2
$$ 251

Goodness of fit tests for various Yormal distributions to the standardised residuals 9.3 260
Gram-Charlier Type A series - goodness of fit tests 9.4 265
Simulated shape tests - critical values (simulation of log values obtained by iteration, average variance, Hormal distribution, 1000 trials) 9.52 270
Results of tests of distribution shape for each bideer 9.5b 272
Simulated variance tests - critical values of Bartiett's probability (simulation of log values obtained by iteration, average variance, Normal distribution, 1000 $\begin{array}{ll}\text { trials) } & 9.6\end{array}$ 273
Results of tests for homoscedasity of bidders (Bartlett's test 9.7 274
ANOVA example for Case 1 9.8 275
ANOVA results for all Cases 9.9 276
Project details 9.10 277
Data available 9.11 278
Competitors' bids known 9.12 278
Projects in which bidder 304 entered the highest bid 9.13 279
Highest valued residuals for bidder 304 9.14 279
Comparison between bidders 304 and 55 of estimates and bids

$$
9.15
$$ 280

Bid/estimate ratios 9.16 282
As bidder 55 might see bidder 304 9.17 282
Bidder 55's prediction of bidder 304's Type 2 bids 9.18 283
Summary of models successfully fitted 9.19 291
Results of simulation of bidder 304's bidding for projects of unspecified value 10.1 303
Results of simulation of bidder 2.'s bidding (Case 2) 10.2 305
Results of simulation of bidder 3's bidding (Case 3) 10.3 306

List of Figures

	Figure	Page
Basic decision model	2.1	22
Sources of long term finance	3.1	32
Sources of short term finance	3.2	33
The working capital cycle	3.3	35
Measures of satisfaction with job and company	3.4	37
Development status	3.5	38
Relationships between project characteristcs	3.6	44
Relationships between project characteristics and the outcome environment	3.7	46
Project selection model	3.8	47
The payoff machine	4.1	64
Project selection machine configuration	4.2	65
The general structure of risk assessment	5.1	71
Basic sources of information	5.2	74
Relationship of factors in the outcome environment	5.3	83
The project decision system environment	5.4	96
Alternative strategies	6.1	107
The project decision machine	6.2	109
Variance over time	7.1	139
Case 1: Frequency distribution of project size (lowest bid)	8.1	159
Case 2: Frequency distribution of project size (lowest bid)	8.2	160
Case 3: Frequency distribution of project size (lowest bid)	8.3	161
Case 2: LH tail of frequency distribution of profect siz (lowest bid)	8.4	162
Case 3: LH tail of frequency distribution of project siz (lowest bid)	8.5	163

Case 1 \& 2: Frequency of bids per project	8.6	169
Case 3: Frequency of bids per project	8.7	170
Number of bidders by average project value	8.8	172
Case 1: Number of bidders v. log contract value	8.9	173
Case 2: Number of bidders v. log contract value	8.10	174
Case 3: Number of bidders v. log contract value	8.11	175
Log data: Low bid against skewness (all Cases)	8.12	186
Case 1: Contract value against standard deviation	8.13	226
Case 2: Contract value against standard deviation	8.14	227
Case 3: Contract vaiue against standard deviation	8.15	228
All Cases: Lowest bids ∇. threshold values	8.16	240
Case 1: Distribution of residuals	9.1	253
Case 2: Distribution of residuals	9.2	254
Case 3: Distribution of residuals	9.3	255
Case 1: Probability plot of residuals	9.4	256
Case 2: Probability plot of residuals	9.5	257
Case 3: Probability plot of residuals	9.6	258
Plot of $\bar{F}(), \sigma^{2}=0.6,0.65, \ldots, 1.0$	9.7	259
Plot of Xermal order statistics $\mathbb{W}(0,1)$ against the frequemey of the stancardised pooled residuals	9.8	261
Plot of Normal order statistics $\mathbb{X}(0,0.6)$ against the frequency of the standardised pooled residuals	9.9	262
Distribution of residuals (1)	9.10	264
Distribution of residuals (2)	9.11	266
Distribution of residuals (3)	9.12	267
Distribution of pooled residuals	9.13	268
Bidders 304 and 55 bid/bid and bid/cost estimate ratios	9.14	281
Distribution of mark-up values	9.15	285
Frequency of low bid/cost estimate ratios	9.16	286
Plot of mark-up against estimated empirical probability of entering the lowest bid	9.17	288

Frequency of probability of bidder 304 entering lowest bid against bidders 55, 73, 134, 150, 15410.1 298
Frequency of probability of bidder 304 entering lowest bid against 5 unspecified competitors 10.2 300
Frequency of probability of bidder 304 entering lowest bid against an unspecified number of competitors 10.3 302

ACKHOWLEDGEMEMTS

I am considerably indebted to many people who have most generously given me many hours of their time and energies in helping and guiding the research described in this thesis. In many cases, especially in the mathematical areas, there would have been little prospect of making any sensible progress in the absence of this help.

Particular thanks are due to the following people who have had a significant influence, in their own way, on the final state of the project. These are, in alphabetical order:

Jonation Aylen, of the Department of Economics, for his advice on the use and relevance of econcmic theory to construction firms. Derek Beeston, of the Property Serfices Agency, for his encouragement and many practical comments and ideas on the use of statistical models for bids and cost estimates. Professor Roger Burgess, of the Department of Civil Engineering, for his encouragement generally, some astute perceptions of the industry and invaluable help in obtaining data on bids. Tim Calland, also of the Department of Civil Engineering, who typed the whole of the difficult Chapter 8. Dr Steve Carter, of the Department of Chemistry, for endless hours of discussion on a wide range of issues from mathematical estimation techniques to the role of statistical models and research methodology in general. Professor Christer, of the Department of Mathematics, for his help and guidance in mathematical formulations.

Roy Daniels, of Builders Conference, for allowing me access to his data files and providing some practical insights into bidding arrangements. Adrian Dooley, former research assistant in the Department of Civil Engineering, for many late night discussions on the relevance of bidding models. David Eckersley, of the Computing Centre, for his great help and advice on mathematical aspects with a minimum of persuasion. Harry Edwards, of Lancashire County Council, who provided all the data for Case 2. Dick Fellows, of Brunel University, for his interest in my work and his unwillingness to accept most of my views. Brian Fine, of course, had a major influence on the direction of many research projects including this one and his steadfast commitment maintained in our brief conversations has strengthened the purpose of
the study. Professor Kenneth Gee, of the Department of Business Studies, provided some literature on and insights into bidding models and the application of multi-attribute theory. Ian Hamilton, a research fellow currently involved in the Department. of Civil Engineering's expert system project, for loaning me SOWA's book on 'conceptual structures' which provided the basis for the solution framework outlined in Chapter 6.

Peter Harlow, of the Chartered Institute of Building, for providing several references regarding construction company objectives. Dr Paul Laidler, of the Department of Mathematics, for pointing to the difficulties in solving large sparse matrices, a topic covered briefly in Chapter 9. John Laing (North West) for discussing several aspects of their bidding process and philoscping. Feter Lansley, of the University of Reading, for discussing tie oiojectives of construction companies and providing me with a very useful restricted access repart, to which reference has been made on several occasions, together with some other useful published material including the translated paper by Dressel (c1980). Professor Geoff Locirett, of the Manchester Business School, for his encouragement and background infermation together with the introducation to Adamson Butterley. Dr Ron McCaffer, of the Loughborough University of Technology, for his initial comments on the size of the problem and for revealing the existence of Dr Johnston's research. Joe Matthews , Managing Director of Adamson Butterley, for his very frank exposition of the major high level issues of project selection and bidding. Professor Milner, of the Department of Economics, for the illuminating discussion on decision models and the advice to concentrate on simple models. Bob Newcombe, of Brunel University, for our brief discussion on construction company objectives.

Dr I Nomura, formerly of the Department of Mathematics, for his keen and supportive interest and particularly his advice on the application of discrete dynamical systems. Mike Patchett, of the Salford College of Technology, for access to his excellent bibliographic index of the Construction Technology and Management Journal. Dr Mike Patefield, of the Department of Mathematics, for devising the iterative procedure described in Chapter 9 and his advice on many of the subsequent analyses. Dr Steve Stradiing, of the Department of Social and Anthropological Studies, for his very perceptive comments on behavioural aspects of the study. Roy Thomas, of the Department of

Civil Engineering, upon whom my statistical education is largely founded, for his heroic efforts in trying to make sense of my ideas. Dr Ted Traynor, formerly of the Department of Civil Engineering, for his encouragement and very sound advice on the nature of the problem and research in general. Trollope \& Colls for an informative discussion on the practice and issues of bidding. Marcel Weverbergh, of the University of Antwerp, for volunteering several of his own publications on bidding. Professor Doug White, of the University of Manchester, for his discussion on bidding and advice on the use of multi-attribute and multiple objective functions. Dr Ernest Wilde, of the Department of Mathematics, for his constant advice and guiaance throughout the period of study. Bidder 304, who wishes to remain anonymous, for all the time and discussions, and the extremely useful data provided for Case 1.

My gratitude also goes to my colleagues in the Department for their sympathy, good wishes and patience in forebearing my sometimes neglected administrative duties.

It should be mentioned that the research would not have been possible without the facilities of the University Library and the Department's computer.

Finally I must record my thanks and gratitude to my wife, Anne, for not only suffering an interminable amount of my time in researching ard preparing this thesis, but also for typing the bulk of the report.

A MODEL OF THE CONSTRUCTION PROJECT SELECTION AND BIDDIVG DECISION

ABSTRACT

The thesis considers one of the central problems of corporate planning for a construction company, the profect selection and bidding decision, and a model is developed for the entire decision environment.

The nature of decision systems is examined and considered to consist of the identification, evaluation and selection from a range of options. Corporate decisions are discussed leading to the conclusion that a suitable model is needed.

A basic model is proposed in which three outcome criteria consisting of people, money and property are required to be assessed, the values of the outcome criteria being determined by four project characteristics. Some approaches to the solution of multiple criteria problems are examined.

The implications of time are next considered and the use of Gottinger's sequential machines examined as a means of modelling the complexities involved. Non-deterministic aspects of the problem are introduced which, together with dynamical considerations, suggest a model of intermediate complexity to be appropriate.

The final chapters of the thesis concentrate on some ways in which the computational burden associated with the model can be reduced. The role of decision strategies is examined as a means of identifying the most suitable options. The suitability of probabilistic approaches to modelling non-deterministic aspects is investigated and an empirical analysis of three sets of bidding data is made to examine some possible simplifying assumptions.

CHAPTER 1

Introduction

One of the most important decisions facing a company in the western world is the price to charge for its products or services. For the construction company this decision usually forms a part of the process of bidding for future projects. The selection of projects and deciding on suitable bid levels has attracted a considerable amount of research, the majority of which is aimed at maximising profits through optimal bidding. A recent study by Lansley (1983), however, has found very little evidence of the application of optimal bidding techniques by construction companies. One criticism is that such techniques often rely on "... oversimplified assumptions of the existence of data that are never actually available" (Wagner,1971,p1273). What is needed, according to Wagner, is a substantive and robust analysis of the practical issues to identify the truly pivotal factors involved to enable assessment of the practical application of formal solution techniques.

The objective of the first part of the research described in this thesis was to conduct just such an analysis. Chapters 2 to 6 examine the issues surrounding the project selection and bidding decision. All pivotal factors are identified and a preliminary assessment of some potential appropriate solution techniques is made.

The second part of the research, described in Chapters 7 to 10 , concentrates on the application of one particular solution technique, statistical modelling, and a multivariate approach is examined through the simultaneous analysis of three case studies.

The absence of any comparable study of the global aspects covered by the first part of the research discouraged the proposition of any a priori hypothesis. It was considered therefore that any findings should be regarded as essentially post hoc. The subsequent statistical analyses contain several hypotheses some of which, for brevity, have not been formalised. Full reference, however, is made to previous work for comparative purposes.

CEAPTER 2

Analysis of decision making in construction companies

2 aNalysis of decisioy makivg in construction companies

2.1 Types of Decisions

Ansoff (1965,p18) has identified three categories of decisions, strategic, administrative and operating. Strategic decisions "... are primarily concerned with external rather than internal problems of the firm" involving the consideration of such issues as the nature of the firm's objectives and goals, and diversification strategies. Administrative decisions are concerned with "... structuring the firm's rescurces in a way which creates a maximum performance potential". One part of the administrative problem is concerned with organisation: siructuring of authority and responsibility relationships, work flews, information flows, distribution channels, and location of facilities. The other part is concerned with the acquisitionand development of resources: development of raw material sources, personnel training and development, financing and acquisition of facilities and equipment. Operating decisions usually absorb the bulk of the firm's energy and attention, the object being to "... maximise profitability of current operations" involving such major decisions as resource allocation, scheduling of operations, supervision of performance and applying control actions.

These categeries, however, are essentially derived from the functicmel difisions of the organisation, typical of the "management" approach. Management has been defined as "... those senior managers whose decisions influence policy and affect the organisation's relationships with its external environment", (Bullock \& Stallybrass,1977,p366). This corresponds to Ansoff's "strategic decisions". It then follows that "administrative" and "operating" decisions are carried out by middle management "... whose decisions affect the internal functions of production, accounting and finance, marketing, personnel research and -development", and operational management at the foreman or supervisory levels (Bullock \& Stallybrass,1977,p366).

Recent studies of leading companies, by Peters \& Waterman (1982) for instance, suggest that the more successful organisations have little regard for such a strict managerial hierachy. Many of the companies
investigated were found to have a very loose decision making structure, apart from the firm centralisation of "core" values.

Another classification of decisions is made by Fellows et al (1983,p11)in the distinction between "strategic" and "tactical" decisions. These are defined as "what shall we do?" and "how shall we do it?" decisions respectively. The former includes attempts to answer such questions as, "what are we trying to achieve?"; "what are our objectives?"; "what opportunities are open to us?"; "what are our strengths and weaknesses?"; "what are our current strategies?"; "what strategic choices do we have?"; and "what should we do?" Tactical decisions are the operational decisions involved in estimating, buying and accounting. Strategic decisions are additionally defined as those which are very important to the company, althcugh, as Ansoff ($1965, \mathrm{p} 18$) observes "... depending on its position, the firm may find operating decisions to be more important then stategic ones".

The term strategic in this sense seems to imply the devising of a kind of prosthetic "formula", the application of which, despite possible short term problems, will provide some leng-term benefits. Hence, in the military sense - "losing the battle but winning the war".

Some criticisms of the Fellows et al classification are apparent. The reference to strategic decisicns as being very important and to tactical decisions as being operational indicates a functional managerial influence similar to Ansoff's classifications. Also, the military analogy has been found by Peters \& Vaterman to be inappropriate in their study of successful companies.

Despite the wealth of literature on strategy, there appears to be very little documentation on the actual decisions available to a company.

One major aspect is in the relationship with other organisations. These factors identified by Fellows et al (1983) are (a) acquisition or merger, (b) foint venture and (c) licences or agencies. The acquisition or merger involves the permanent unification with another organisation, the foint venture is a project-specific temporary unification and the licence/agency is a project/process-specific temporary indirect unification.

Another major aspect is the internal organisation of the company, the arrangement of the physical, human and financial resources, often termed the organisational structure.

One vital recurring decision for the construction organisation, and that to which this thesis is devoted, is the selection of suitable projects. The majority of construction companies rely almost exclusively on project work obtained by competitive tender. The type and location of projects obtained is by far the most important factor in determining the direction of the organisation, (Lansley,1979).

2.2 Making the 'Right' Decisions

One view of the decision making process is that it is essentially a question of selection from a set of options. Whilst it is thecretically possible to select from a standard (and probably infinite) set of options in all decision situations, such an approach is herdly practicable. It is necessary, therefore, to reduce the set of options to a more convenient size. It is also necessary, as an aid to selection, to make some evaluation of each option. This three stage process is called the decision choice process (after Johnson \& Scholes,1984) involving the identification and evaluation of opticns and the selection of decisions.

2.2.1 Identification of Options

The identification of interesting options is often a function of the evaluation and selection process. In practice, possible options which are difficult to evaluate may be omitted whilst options more easily evaluated may be consistently included. Another factor influencing the inclusion of a potential option is the quality and quantity of information needed and available, and the associated time and costs. Time is also a factor in constraining the number of options that can be identified, depending on the speed of identification. A further factor is the ability and the preconceptions of the optioner himself which will be related to some extent to his education, experience and mativation.

Fortunately, the number of types of realistic options are relatively limited for the construction organisation. The major difficulty lies in the evaluation stage. However, some recent findings by Lansley et al (1980) suggest that flexibility is an increasingly important attribute for the success or survival of the construction organisation. One aspect of flexibility would seem to be the willingness to bring an increasing variety of options into consideration.

A popular approach to the option identification problem is to apply a feasibility technique which allows a cost effective procedure to reduce the option set. This involves quickly sifting out the least likely options before employing a more sophisticated evaluation. An often recommended procedure is to bring the ccmpanies' objectives and policies to bear on the problem. A policy to concentrate entirely on house building, for instance, would certainly be a very cheap option identification aid, but its effectiveness in identifying all the best options will depend on the policy formulation procedure.

2.2.2 Evaluation of Options

Evaluation of each option implies that some knowledge is available of the future outcome of the decision option. As in the option identification problem, the extent of this knowledge will depend on the quallty and quantity of information available, and the associated cost and time.

Accuracy of evaluation will also depend on the evaluator. A further aspect of option evaluation is that the outcome of a decision is not necessarily independent of the decision maker, who may well participate in the implementation process.

In order to best help the selection procedure, each option will need to be evaluated in a similar manner, which implies the presence of some criteria.

2.2.3 Selection

Having identified and evaluated the various options available, the selection process ought to be relatively straightforward. Difficulties occur in accomodating conflicting criteria, particularly those evaluated non-quantitatively. The problem can also be exacerbated by the need to make several decisions, either simultaneously or sequentially. This latter aspect is a decision choice process in itself, involving the identification and evaluation of sets of decisions.

Once again, information, cost, time and the ability of the selector are important aspects.

2.3 Corporate Decision Systems

2.3.1 Generally

Construction companies have, for some time now, been urgently recommended to exercise some forethought before taking decisions and subsequent action. Argenti (1974) and Ansoff (1965) in the general business field, for instance, and Grinyer (1972), Diepeveen \& Benes (1978), Lansley (1981), Fellows et al (1983) and many others in the construction literature have all advocated the application of long term planning as the basis for short term effective action as "... without planning, a course of action becomes (if not completely aimless) a succession of random changes in direction", (Brech,1975,ch12). Holderman, in his "Characteristics of an Unsuccessful Contractor" has even suggested that "... most companies that fail do so because they did not do adequate planning", (Xolderman,1984,p18).

Corporate planning has been defined as simply "... basing decisions on purpose, facts and considered estimates", (Koontz \& O'Donnell,1972); or, organisationally, as the "... systematic process of determining a firm's goals and objectives for at least three years ahead and developing strategies ... to achieve these objectives", (Rajab,1981,p1); or, managerially, as "... a continuous process of making entrepreneurial decisions systematically and with the best possible knowledge of their futurity, organizing systematically the effort needed to carry out these
decisions", (Drucker,1955). Rajab (1981,p177) has also noted the difference between formal and informal planning.

The notion of objectives is often stated to be inextricably bound up in the corporate planning systems. Cheetham (1980), for instance, has been a strong advocate of management by objectives (MBO) for construction companies.

Murray (1978) identifies six basic evolutionary corporate planning models; Allison's (1971) "Rational Acter" model, in which the decision maker is a kind of "super-person" who always behaves in a perfectly rational manner; the "Organisation Process" model, which emphasises the impact of processes and procedures of crganisations on the strategic planning process in the tradition of crganisational theory; the "Bureaucratic Politics" model, in which decision-mairing is assumed to be a political process wherein agreement is reached through bargaining games; Steinbrunner's "Cybernetic" model, in which the central focus of the decision process is the business of eliminating the variety inherent in any significant decision problem; Steinbrunner's "Cognitive" model, containing cognitive models and belief structures modified by inputs from the real world; and Mintzberg's (1975) "Contingency" model, in which alternative explanations are provided for phenomena under different conditions.

Many benefits have been claimed for conporate planing systems. Rajab (1981), for instance, in investigating the nature and extent of corporate planning in construction companies, foum that corporate planning "... makes managers think about the future and the effects of decisions on the future; encourages an understanding of the company alms leading to a better understanding of operations; focusses managers' attention on developing the business; quicker decision-making; better co-operation between departments; increased competency of managers by making them face up to key decisions", (Rajab,1981,p167).

2.3.2 Use in Construction Companies

There appears to be little use of formal decision systems in any industry. The results of operations research practice, for instance, "... are not well regarded or used by decision-makers",
(Bonder,1979,p209). Particular problems have been found in introducing operations research into such activities as marketing and devising competitive strategies (such as product pricing and bidding), (Wagner,1971,p1269).

Vong (1978), Stark (1976) and Lansley (1983), amongst others, have found that contractors do not favour the use of bidding models. Barnard's research (1981) found that, in the construction industry, "... in common with most industries, there is little use made of corporate planning".

Humphrey's study (1977) of 18 Kerseyside construction companies, found little evidence of the cperation of formal policies, although annual turnover forecasting was widely fractised together with cash flow forecasts at monthly and quarterly intervals, mainly to ensure the avallability of capital to finance projects.

Cusack's investigation (1981) of decision maring in construction companies, six in some depth, found "... the picture emerging from these investigations is one of intuitive decision-making situations based mainly on experience..." (Cusack,1981,p14). The study did find, however, that plenty of information was available but not in the right form:

Rajab (1981) did locate five ccmpanies using corporate planning systems, but was unable to determine whether the use of these systems benefitted the companies. Some differences were observed between the systems operated by the companies themselves, and the systems recommended in the literature. For instance, "... a substantial number of companies did not carry out very systematic internal appraisals", (Rajab,1981,p163). The relevance of this was not clear, however, as the researchers were unable to determine that the companies would be "... more profitable if they plan exactly as suggested in the books because there is no proof of this", adding that there was "... no real reason to believe that it should be true.", (Rajab,1981,p177).

Another study of 23 construction companies between 1970 and 1976 found a "... considerable variability between companies' performance and policies", (South,1979,p292).

Studies of organisations outside the construction industry suggest that "... the most important contribution of corporate planning systems are actually in the 'process' rather than in the 'decision' realm" in that "... they create a network of information that would not otherwise be available", (Bahrami,1981,p4).

Apart from isolated cases, such as Cheetham (1980), MBO has been found to be of benefit to "... a large regional construction company", although other recent studies suggest that most construction companies are using a form of contingency rather than long-range planning, (Edwards \& Harris,1979;Lansley et al, 1980).

2.3.3 Reasons for Lack of Use

Rajab has identified five major problems associated with corporate planning systems in construction organisations: co-ordination of aims and objectives of various units in the organisation; communication problems; forecasting results and accuracy; restrictions due to capital policies; and political or economic uncertainty overseas (Rajab,1981,p166).

Fryer (1977) has suggested that lack of managerial skills could be responsible. In a survey of 29 managers in construction companies, he found that, although decision-making was the second highest rated skill (after "social" skills), such decisions were normally concerned with short term, day-to-day issues rather than strategic aspects of management.

Many of the problems may well be due to special characteristics of the industry itself. Economists, for instance, have frequently failed to understand the industry due to "... its extremely complex technological and institutional constraints; imperfection of knowledge about future markets; lack of an adequate theory of human capital; concentration on the demand side because of historical excess capacity; lack of importance of time in neo-classical production theory; the local nature of the industry; and the small effect on the economy prior to 1950", (Burton,1972,p1). The effects of this can be far reaching for, in Burton's view "... many current national problems can be traced ... to the fact that economists and ... operations research specialists have
not provided the level of understanding of the construction industry necessary for the solution to these problems", (Burton,1972,p2).

Many of the difficulties in objective decision-making appear to stem from the complexity of the construction process. The "immense number of variables" involved, (Park,1966), and the "uncertain environment" (Cusack,1981,p14) result in " the absence of ... necessary data for managerial decisions", (Burten,1972,p86). Difficulties in accurately assessing long term demand and the non-continuous volume of work from clients, particularly the goverament, makes long term forecasting and planning "so much guessworis", (Goodlad,1974,p73).

Another aspect is the limited amount of time the decision-maker has available to make each cectsion. Frosper (1984,p24) has noted the difficulties in finding the time to apply 'correct' management techniques.

The combination of lack of relevant infermation and lack of time seems to be a big factor in restricting the use of formal decision systems.

Problems have also been encountered in the relevancy of the techniques available, a particular problem being the involvement of specialists. Some criticisms of operaticns research, for instance, are of "... the relevance of current mathematical developments" and that "... techniques and methods are being developed by individuals who have more of a disciplinary allegiance to mathematics and economics", (Bonder,1979,p210), resulting in there being "... too much optimisation, the results of which are usually irrelevant to decision-making", (Jensen,1976).

2.4 Aspects of a Decision System

2.4.1. Scope

The characteristics of an effective decision system are essentially those attributed to effective management but, as Ball observes, these are not easy to define in any unique sense

[^0]Short term success can mean long term disaster. The tasks and decisions of management have themselves different time horizons which have in some way to be brought together to show some index of effectiveness. But even when we believe that this can be done, it is not enough to stop there since, in the social system, both of the organisation and of the wider social system of which the organisation is part, it is not a matter of indifference as to how results are achieved. To some degree, this is because managerial behaviour will be governed by acceptable social values and modes of behaviour and these values may change over time," (Ball, 1977, p4).

In identifying, evaluating and selecting decision options, therefore, it is necessary to consider the interaction between decisions and the environment (social system) over time. One view is that the organisation simply responds to direct environmental "stimulus", providing a service to satisfy the demands of the environment, the "outside-in" approach. A more recent recommendation in the construction ifterature is to adopt a more aggressive policy of attempting to influence the environment by promotional activities for instance, the "inside-out" approach (Ewing,1968,ch6). Rajab's study (1981) of construction companies indicated that both approaches are necessary.

The construction company's environment is often conveniently divided into two separate groups, the internal and the external environment. Different companies need to consider different environments. In Dressel's view (1965), the essential differences between companies are in their "capacity, size and structure". Commonality, however, does exist in such basic resources as people, property and finance.

The shift in emphasis in environmental perception in recent years has been marked, perhaps even on the scale of a Kuhn paradigm (Cotsgrove,1980). Table 2.1 indicates some of the changes noted by Cotsgrove. Ansoff's retitling (1979) of the firm as an "environmental serving organisation" further evidences the alternative approach. It follows, therefore, that a decision system will ultimately "... need to recognise cultural, political and social inputs in an open system, renegotiated environment", (Murray,1980, p200). These considerations lead to the increasing necessity to analyse both the internal and external environments to identify power groups and individual values

Table 2．1 Competing environmental perceptions

	Deminsat social paradigm	Alternative paradigm
Cere vaiues	Maさe＝：̇il（economic growth） Katural environment valued aミ resource Doニ゙ニュtion over nature	```Non-material (self-actualisatica) Natural environment intrinsiceli% valued Harmony with nature```
E®こここご	Marief forces Rissi and reward Kewzess for achlevemert Diffe＝entials Inctivicual self－help	```Public interest Safety Incomes related to need Egalitarian Collective/social provisic=```
Fei：tj	Autharitative structures： （experts influential） Hierarchical Law a＝d order	```Participative structures: (citize=/ worker involvement) Bon-hierarchical Iiberation```
Sociery	Centralised Larga－scale Asseciational Ordered	Decentralised Small－scale Communal Flexible
Hature	Ample reserves Natural hostile／neutral Environment controllable	Earth＇s resources ilmited Mature benign Nature delicately balanced
Krowlejge	Confidence in science and tecinology Rationality of means Separation of fact／value， thought／feeling	```Limits to science Rationality of ends Integration of fact/value, thoug==/ feeling```

Source：Cotgrove（1980，p129，table 2）
(Johnson \& Scholes,1984) and pursue social objectives (Andrew,1973,p18). It is important, as Toffler suggests, to recognise in organisations "... an array of goals other than economic ones and growing increasingly sensitive to changes in the non-economic environment", (Toffler,1971,p409).

Bahrami's studies (1981) of 14 corporate planning systems found these consistent features in all the systems: they facilitated the adaption of the company's strategic posture to the emerging opportunities and threats to its environment; an integrative function by facilitating communication and flows of information; and a control function to implement strategic priorities by evaluating proposals and monitoring performance. The construction industry, it has been observed, has not been noted fer its speed of reaction to environmental events, such as changes in demand. "A sudden and substantial increase or decrease in demand in a major sector or geographical area has not normally been matched as quickly by an appropriate increase or decrease in capacity", (Campbell et al,1974,p21). However, as Sidwell (1984,p22) comments, moving into new and unfamiliar markets places greater strain on the efficiency and sirills of the company. What appears to be needed is some preparedness for a future state. Uncertainty of the exact nature of future environmental states is a big problem in this respect; but, ironically, as Ansoff points out, the greater the uncertainty the greater the need to be prepared.

Lansley (1981) suggests that construction companies who followed the 'traditional doctrines' in the 1970's either went out of business or diminished in size. The only firms who survived were those who were flexible and responsive to the needs of the changing market. Diepeveen et al (1985,p113) suggest that contractors "... should evaluate future technological developments which may affect the business structure" implying that "scenario writing" may be an effective approach. It is suggested that management should work out "... two or more possible future alternatives which are intrinsically consistent", (Benes \& Diepeveen, 1985, p29). This recommendation closely resembles contingency planning, previously found to be successfully employed by some construction companies, but ahead of, instead of after, environmental changes. One approach to this is through the concept of "weak signals", (Ansoff,1984,ch5.4) where the effects of possible changes in
the environment are examined. Another, interdependent, approach is by simulation studies.

One final aspect of the scope of a decision system is the criticism by Murray (1980) of Ansoff's approach to strategic management in that a "rational-actor" model is assumed, that is the decision maker is seen as a dedicated remote "super-person" dedicated to some optimising or maximising strategy. The increasing amount of decentralisation of decision making currently being repcrted, together with the sometimes rather irrational and decentralised method of the 'excellent' companies (Peters \& Waterman, 1982) coes inceed suggest that Ansoff's assumption may be misplaced. In terms of a decision system this implies the existence of several cption selecticn procedures. What really seems to be needed is a system "... that can inform the executive as to the likely effects of decision strategies that he has himself formulated" and therefore "... permit a manager to evaluate decisions that satisfy his personalised rationality". (Vagner,1971,p1259).

2.4.2 Practical Needs

Analysis of attempts to introduce decision systems into construction organisations reveals that certain practical aspects need to be considered.

The major problem is in the cost of implementing and monitoring the system. This will depend on the depth to which the decision maker is prepared to go. Limiting the set of options, limiting the number of evaluation criteria, approximating option evaluations, simplifying selection procedures 1llustrate possible approaches. Neale (1985) recommends the adoption of simple systems with a minimum data demand. Cusack found no shortage of data, but what was missing was a "...quick and accurate method of analysis that enables alternative solutions to be compared", (Cusack,1981,p29). Levinson has suggested using a combination of formal and informal methods by allowing "... the operations research department to solve those fragments of a total problem that are amenable to quantative formulation. The sub-optimised solutions can then be considered lby the decision maker] together with intangibles, the unquantifiable elements of the problem. The executive decision will, in some cases, be based partly on the operations
research solutions, partly on other data produced by the company, and partly on the judgement and intuition of the management", (Levinson,1953). What is proposed is an economic trade-off between more elaborate models that require greater data processing and more approximate models that need less data to apply", (Wagner,1971,p1268). The issue is, of course. centred on the tensions between risk and cost, the reconciliation of which is a decision problem in itself.

The number of decision options is a measure of the versatility of the system as decision makers "... need alternatives that can provicie them with more flexibility over time", (Bonder,1979,p211). Retaining the flexibility of decision options has been dealt with to some extent by Rosenhead et al (1972), Merkhofer (1977) and Pye (1978) by focusing on the size of the alternative action space available to the dectsion maker, the flexibility being reduced to zero when a specific alterastive is chosen. As Merkhofer (1977) notes "... all flexibility is lost when an irrevocable commitment is made to a specific alternativen. Cleariy, some compromise between versatility and cost is necessary anc "... although the versatility ideas are still imprecise, and methods are not available to assist in their implementation, we can and should persue the spirit of the concept in our planning and analysis support to decision making", (Bonder,1979,p222).

Risk is also a problem associated with the option evaluation process. Estimating the outcome of decisions is bound to be a rough and ready business, especially when the outcomes are often only fully realised at some quite distant time in the future. Unfortunately, the construction industry is particularly vuinerable in this respect. The methods of obtaining work and the length of contracts, for instance, together with the fragmented nature of the industry, the customised product and the unstable nature of the environment in which the construction process takes place make risk assessment particularly unattractive. In fact "...one of the main reasons for the high fallure rate lof construction companies] is the under-estimation of risks", - (Langford \& Wong,1979,p21). It is possible that risk assessment can be improved by formal feedback systems but, in many cases, the decision maker has to rely on more subjective information.

2.4.3 System Design

In designing a decision system "... a sensitive system of indicators geared to measuring the achievement of social and cultural goals, and integrated with economic indicators ... is an absolute precondition", (Toffler,1971,p413). Informational support, it is suggested, would come from a Strategic Data Base (SDB) representing the major conclusions regarding the environment and the organisation's clientele (King \& Cleland,1978,p95). A Management Information System (MIS) is a form of SDB, being "... specifically designed to formally present information required to support managerial decision making", (Bcoth,1981,p5).

The properties of a MIS include: provision of information from both internal and external sources necessary to support a range of specific management activities and decisions; provision of information in a manner and at a time relevant to managerial decision making; and flexibility to adapt to and accomodate organisational and environmental change", (Bcoth,1981,p6). A MIS in support of the strategic planning process would, it is suggested, provide information on the general environment, economic, technical and political (including legislation);factors of productions; and competition, future demand for products/services, policies of competitors etc.

One approach to MIS design is through analysis of the current decision making process. There are, however, some limitations in this approach as "... it results in an essentially static, rational view of decision making; users descriptions are biased towards expectations; it tends to rationalise decision making, over-simplify goals and under-play uncertainty; modelling of uncertain/complex phenomena involves simplification; and it is difficult to foresee information needs to support future decisions", (Booth,1981,p46). Booth suggests that a contingency framework focussing on the 'if - then' relationships of the problem situation would provide a more appropriate starting point.

Information systems are normally associated with some type of environmental scanning activity. Aguilar has identified four types, undirected viewing, involving considerable orientation by the scanner in selection of particular sources; conditional viewing, where the scanner is sensitive to particular types of data; informal search, where
information wanted is actively sought; and formal search, a programmed or quasi-programmed search to a pre-established plan, procedure or methodology, (Aguilar,1967). Etzioni (1967) advocates a method of mixed scanning involving broad surveys of the problem area"and detailed investigation of areas adjudged to merit such attention.

An implicit prerequisite in any information system is to provide adequate forecasts of future events. This is a particular difficulty in the construction industry where operations are often short-run and on a project basis because of the need to continuously re-allocate with shifts in market demand. Gill has even opined that "... it is not possible to forecast plans from one project through a succession of Frojects" (Gill,1968). There are, however, techriques available to eazile some predictions to be made. Raiffa (1968), for instance, has shown how probability theory can be employed in general decision stituations involving rist. Benjamin (1969), Langferd \& Vong (1979), Wolf \& Kalley (1983) andothers have attempted to introduce espects of the decision-maker's preferences into a probabilistic apprach by means of utility theory. Still others have conducted simulation studies (eg.Bennett \& Fine, 1980; Morrison \& Stevens, 1980).

Before designing a MIS an understanding of the major underlying characteristcs of the system is needed. Booth refers to this as the "conceptual design stage" and "... of fundemental importance in MIS design" and which requires that "... a clear understanding of the decision environment and process is developed" (Eooth,1981,p232). In such complex and dynamic conditions as these prevailing in the construction industry, one approach is to model the complexities involved.

2.5 Decision Models

Several models have been proposed for the construction industry decision maker but, as Stark observes in relation to project bidding, "It is common for research papers to develop a thesis, usually in the form of a mathematical model, without adequate mention or consideration of underlying assumptions and characteristics of the bidding environment. In many instances, assumptions are demonstrably untenable in the market places I have experienced", (Stark,1976,p22). A similar
observation has also been recorded by Lange who, in reviewing pricing stategy, concludes that "... despite the enormous literature concerned with pricing, economists have devoted relatively little space to the consideration of pricing in the construction industry. The ifterature that does deal with construction pricing concentrates on the formulation of optimal bidding stategies for contracts, while largely neglecting the fundamental issue of presenting a detailed analysis of the interaction of the chief factors, both quantifiable and unquantifiable, that influence the contracter's bidding decision" (Lange,1973,p91).
"What is needed is a model that reflects the truly pivotal factors in the environment being modelled, espectally with regard to the types and amcunts of available data and the ability to process this information rapidly enough to be useful to the decisicn maker" (Wagner,1971,p1273). The construction literature reveals no existence of any such substantive approach to decision model building.

The foregoing analysis has revealed, however, that the decision process can be considered to be in three stages, identification of options, evaluation of options and selection of the best option. Each of these stages contains its own problems and involves some knowledge of the future. The contingency approach suggests that the identification of options should be widened to consider not only the options presently available, but also options that may beccme available. The evaluation of options is essentially a report on the likely changes in the future environment as a result of the chotee of each option. The selection process will involve consideration of several, probably conflicting, criteria representing interesting aspects of the environment.

One operational characteristic of the decision model is concerned with the sequencing of the three stages - is it necessary to identify all options prior to evaluation and is it necessary to evaluate all options prior to selection? Booth suggests that the evaluation of options is normally done as they are identified as "... search activity is often conducted within the constraints of time and cost" (Booth,1981,p133). This approach logically leads to an iterative model of decision making where each option is in turn identified, evaluated and compared with the previously best selection. This comparison will determine whether the previously 'best' selection should be replaced by the current option
or not. Such a procedure has the great practical advantage of allowing the decision maker to search amongst a feasible set of options of his own choosing for as long as he wishes. The basic model then, illustrated in Fig 2.1, is envisaged as an iterative process occuring within, and interacting with, the environment.

Lindblom's (1959) "The Science of Muddling Through" involves a similar incremental procedure. Some of the problems associated with this approach include the possibility that an important variable is missed; policies may be overlooked; it may reinforce indifference to new technologies; and that it relies on satisfactory present policies, continuity in the nature of the problem and continuity in the means for dealing with the problem (Dror,1964). It is necessary, therefore, to identify all of the variables involved and the variety of policies available in an open system contingent on environmental change.

Criticisms levelled at the "mudding through" approach, such as the use of subjective evaluations, stopping at the first 'good looking' selection and late responses to problems unresolved by earlier decisions (Grinyer,1972, p9) are idiosyncratic of the decision maker rather than the incrementation procedure. The advantages claimed of the incremental approach are, however, relevant to the proposed model in that it is intended to be relatively quick and efficient, more flexible, does not demand explicit objectives and makes use of the decision maker's experience (Grinyer,1972,p9).

2.6 Conclusions

There are many decisions faced by a construction company in the ordinary course of its business, ranging from the major strategic decisions taken by top management to operational decisions taken at lower levels. Recent research suggests that the more successful companies place more emphasis on the decision than on the level of management concerned with the decision. Formal management oriented decision aids, such as corporate planning systems, have received little attention from construction companies. Major difficulties appear to stem from organisational issues and, perhaps, more importantly, knowledge acquisition. These two interrelated aspects involve

Fig 2.1 Basic Decision Model

difficulties in co-ordination of aims and objectives and communication in the former and time constrained informational needs in the latter.

Particularly difficult problems in the construction industry are due to its complex and uncertain nature. Another major informational difficulty encountered by a construction company is the necessity to forecast events over the life span of a project and beyond.

The basic model proposed in Fig 2.1 represents a possible basis of a practical decision system. In order to develop the madel further, it has been found necessary to concentrate on one particular type of decision, referred to as "... one of the central problems of corporate planning" (Bischoff,1976,p1), the project selection decision. In so doing, an approach often found in the cperations research literature has been adopted, in which the uncertain and dynamicalaspects of the model are treated separately. The following chapter, therefore, deals with the complexities of a static/deterministic project selection model.

CHAPTER 3

Deterministic project selection models

3. DETERMINISTIC PROJECT SELECTION MODELS

3.1 Introduction

This chapter aims to specify the construction company's project selection decision problem within the framework proposed in Chapter 2. In order to do this it has been found expedient to restrict considerations to 'wisdom' aspects of the problem, that is 'perfect knowledge' is assumed to exist. The effect of this is that only the kinds of knowledge that are directly relevant to the problem are examined here cindirect aspects and knowledge acquisition are dealt with in Chapter 5). A further expedient has been to largely ignore time-dependent aspects such as cash flow and the impact of current decisions on future decisions (these are dealt with in Chapter 4). The chapter concludes with the consideration of some possible approaches to developing a solution technique.

3.2 The Decision Environment

A decision model has been proposed in Chapter 2 in which decisions and actions are ∇ iewed as a process within, and interacting with, an 'environment'. This view necessarily implies a contextual definition of the environment as anything which affects or which is affected by the decisions or actions. The decision environment would, therefore, include such bodies as clients, competitors and even governments, in addition to personnel, property and finance thought to exist generally within the organisation.
'Resources' are defined here as that part of the decision environment which are not at the decision-maker's disposal in accomodating the decision. Resources would, therefore, usually include personnel, property and finance but not clients or competitors; (Ansoff,1965,p17).

A further point is in the distinction between decisions, actions and outcomes. For the purpose of this thesis, a decision is regarded as a process involving the three components of option identification, evaluation and selection. Actions are presumed to take place once a decision has been made. Implementation is taken to be synonymous with
action. Outcomes are a set of environmental states or changes in states associated with a particular decision-action sequence. With the perfect knowledge assumption, the interest is in the (predictable) relationship between the decision and the outcome, and 'action' is simply subsumed within 'outcome'.

The environment is continually changing. The effect of a decision, then, is to produce an outcome which is different to that of other decisions, or no decision. The project selection decision problem is essentially targetted at identifying the decision which will result in the most favourable outcome.

The decision maker is interested in two facets of the environent, these aspects of the environment which generate work oppertinities (projects), and these aspects of the environment which are affected by the decisicn (outcomes).

3.3 The Outcome Environment

The outcome envircnment consists essentially of people (aspirational environment) and property (non-aspirational environment). The aspirational environment includes workmen, managers, administraters, executives and directors within the organisation (internal aspirational) and shareholders, clients, sub-contractors, and competitors outside the organisation (external aspirational). The aspirational environment can be further subdivided into individuals and groups.

The non-aspirational environment is often classified into monetary aspects (eg. liquid assets and cash) and non-monetary aspects (eg. buildings, land, plant and equipment).

A further convenient distinction between outcome environments concerns those aspects directly affected by the decision (resources) and those indirectly affected by the decision. The latter environments include competitors and the project generating environment.

3.3.1 People

The extent to which people are affected by the decision process depends on their aspirations, expectations, attitudes and personal philosophies. These attributes are termed by Johnson \& Scholes (1984,pi16) as "values". Rockeach (1973) makes a finer definition wherein "attitudes" are considered to reflect a level of affect towards a specific object or situation whilst "values" are thought to transcend objects and situations and be connected with the satisfaction of higher order personal needs, thus occupying a more central position in an individual's personality, make-up and cognitive system. This distinction has been found useful by Hackett \& Guion (1985), for example, where absenteeism was found to be a result of a deciston process involving the individual's perscnal values rather then attitudes to fob satisfaction.

Recent studies indicate that the performance of tasks within an organisation fulfils some essential psycho-sociological neecis of the individual. Kahn (1971), for instance, found that about three quanters of employed men and the majority of employed women would cerry on working even if they did not need a wage. The major reasons for this were considered to be due to the presence of friends at work and the fact that the occupation helped to reduce boredom.

Many interrelated factors have been associated with individual and group needs: activity, meaning, reward and social status (Kahn,1981), for instance. In the construction organisation context non-menetary objectives such as "leisure" or "partaking in civic duties" (Fellows et al,1983,p40), "maintaining a way of life" (Hillebrandt,1974), "personal security" (Fellows et al,1983,p18) and "serving the general community" (Barnard,1981) are valued. Attitudes to such objectives, however, would seem to be tempered by the current state of need fulfilment of the individual.

One study of operative motivation (MacKenzie \& Harris,1984) has used Maslow's hierachical need state structure as a framework for comparing operatives' and managers' views on operative motivation. Maslow's theory implies the existence of five states of need: psychological; safety; belonging; esteem; and self actualisation. An individual is said to progress through each state, from psychological to self
actualisation, as the needs associated with each state are satisfied. MacKenzie \& Harris's results together, with the ranking of operatives' views of the importance of incentives from an earlier study by Wilson (1979), is shown in Table 3.1. These results, although indicative of the type of factors affecting operatives, strongly suggest the inapplicability of Maslow's system in providing collectively mutually exclusive need states for the operatives. It is possible, however, that individual operatives may provide a better fit.

Despite extensive research into human behaviour, a brief summary of which is included in Fryer (1985), there is little concensus on any basic explanatory theory. The fundamental problem may be in the inconsistency of the human decisicn process.

Group behaviour presents no less of a problem. In many respects, the needs and aspirations of groups are identical to those of individuals. The interactions of individuals within groups are of particular concern, however, power and social context being important factors. Recent studies by Tjosvold (1985) suggest that social contexts involving cooperative, individual or competitive related activities were more important than vested power.

Inter-individual and inter-group relationships are usually referred to in terms of such manifestations as "politics" or "power". Here the tendency is to rely entirely on overtly expressed values of power groups such as unions (Johnson \& Scholes,1984).
"Corporate harmony" has been implied to be a characteristic of a successfully progressing company (Fellows et al,1983,p48). Recent studies by Peter \& Waterman (1982), however, have found instances of some very successful companies thriving on internal competition.

One power group that has attracted particular interest in the construction literature is that of senior management. Managers have an additional role in the organisation, which is to be formally responsible for resources. Insofar as human resources are concerned, this responsibility requires a concern for welfare (Lansley et al,1980,p43), satisfying employees (Moore,1984,p20) and their aspirations (Barnard,1981) and encouraging and supporting individual growth and development (Fryer,1985). The basis of this responsibility

Table 3.1 Comparison of operative incentive rankings

Theoretical Ranking (After Maslow)	Operative Ranking (A.J.Wilson)	Management Ranking
Phystological Weeds		
Earnings	3	1
Short travel to and from work	7	-
Safety Needs		
Physical/Safety/Working Conditions	1	7
Welfare Conditions	2	6
Job Security	18	4
Belonging Needs		
Friendliness of site	$4=$	10
Work with people as a team	12	9
Work on a well organised site	$4=$	2
Good relations with management	14	3
Fringe benefits	15	8
Needs for esteem		
Recognition from management/workmates	10	-
Working for a successful company	18	-
Vorking for a modern company	15=	-
Need for self-actualisation		
Challenge in the job	17	-
Job freedom	9	1
Plenty of time for personal/family life	6	5
Prospects for promotion	21	$12=$
Opportunities for training	20	$12=$
Ability to make use of, and develop, skills	8	-

Source: Mackenzie \& Harris (1984, Table 3)

1s, according to Fryer (1985), in the provision of secure employment (though not highly rated in MacKenzie \& Harris,Table 3.1), a friendly and co-operative atmosphere and fair compensation for the efforts of employees. Much of this managerial task is covered by such functional terms as personnel management, health and safety, and labour relations.

Conflicts that exist within and between resources are particularly notable where managerial responsibilities are concerned. The conflict between personal and company interests has been discussed by Cyert \& Marsh (1963), although Hillebrandt (1974,p90) considers such conflicts to be minimal in construction companies where there is "... a substantial overlap of ownership and control". The major area of conflict appears to be in the management and control of monetary and non-monetery resources.

3.3.2 Contral of Resources

The construction industry, according to Sidwell (1984), "... relies heavily on the flexibility and initiative of its people" and as a result "... firms which [rely] on standardised systems and procedures [are] particularly restrained in this repect" (Lansley et al,1980,p43). Controls based on "performance standards and direct supervision" have been found to be less constraining. What appears to be needed is a means by which people can obtain "... clear and consistent views of their own rales, the roles of colleagues and the firm's objectives" and "... co-ordiaate their activities", (Lansley et al,1980.p43). There are times, though, when rather more than communicative and co-ordinating support are needed. One such occasion is in the preparation and management of change, particularly when resistance to change is anticipated. In this case, the system can be used to manipulate resources. Similar manipulation activities occurs in balancing resources. A company may, for instance, increase monetary resources at the expense of human resource development, and vice versa. The provision of such manipulatory facilities are obtained through control systems, usually embedded in the organisational structure of the company.
"A wide variey of organisational structures exists in the construction environment" (Lansley et al,1979,pt3,p74). Lansley et al have identified
four basic structure types: ideal beaurocratic, with high control and integration; mechanistic, with high control and low integration; organic, with low control and high integration; and anarchic, with low control and low integration. Their study of 26 national and regional construction companies involved in general contracting, housing and services found "... national firms tending to display relatively high levels of control but with no one structure being favoured by any of the different types of firm although ... there is a suggestion that smaller firms hed the most organic structures" (Lansley et al, 1979,pt3,p67). Performance, however, was found to be "strongly related" to higher levels of integration, whilst control was of "little importance".

The apparent lack of influence of contral may be due to the existence of an "adhocracy" forn (Mintzberg,1979), typically found in construction organisations because of the temporay and diverse nature of project activities (Ireland,1985,p60). As a result, constiuction organisations have been urged to concentrate on developing structures and systems Which enable effective "... location of technical and specialist support and systems on site", "... integration between staff and their activities" and "... communication of information" (Lansley et al,1980,p43).

The relationship between corporate dectsicas and organisation structure has been extensively studied by Chandler (1961) and others, resulting in "... the now accepted thesis" (Smith,1985,p176) thet the organisation of the enterprise develops to match its decisions. Studies by Newcombe (1976), however, of "a number of construction companies of various sizes and types" found that delays in developing an appropriate organisation structure can be fatal. Ansoff $(1965, p 179)$ has proposed the adoption of an administrative strategy to manage the organisational evolution of the firm. Such an administrative strategy could, according to Ansoff, be "... elaborated further into specific organisational relationships and provisions for growth of organisational resources" (Ansoff,1965,p179). Several researchers, however, have noted a distinct lack of application of administrative strategy in construction companies, evidenced by "... the lack of suitable teaching and training material which could be used to develop the abilities of the managers" (Lansley et al, 1979,pt1,p65), for instance. The reason for this may be
that the very factors responsible for the existence of adhocracies mitigate against controlled organisational development.

Peters \& Waterman's study (1982) of "excellent" companies suggests a simple organisational form of the adhocratic type to be most appropriate. This study found senior managers to be relatively few in number and demands; the focus of the attention to be on people, particularly the customer and the workers, and the product; a bias for action, to cause and react quickly to changing circumstances.

3.3.3 Property

Froperty, termed "physical resources" by Johnson \& Scholes (1984), consists of such physical assets as land, buildings, machines and materials. The extent to which such property is directly affected by the project selection decision is often minimal, except perhaps in the case of very large or unusual projects, as many effects are of a temporary nature. Some of the more permanent effects can be the need to increase the size of the head office to accomodate an expanding permanent staff, which may involve the acquisition of further land and buildings. Plant and materials are normally acquired for the duration of the project, although the residue of some large items of plant, such as a tower crane or batching plant, will have an impact. The acquisition of plant or manufacturing facilities for larger projects can have longer term implications in generating possible decisicn options involving permanent and separate business operations.

3.3.4 Money

Monetary resources are usually classified into long term/medium term finance. Long term finance is used "... to purchase buildings, plant and equipment and to carry stocks of materials" (Harris \& McCaffer, 1983,p312). Short term finance is used to overcome immediate cash flow problems, such as the purchase of materials, plant hire and payment of sub-contractors (Harris \& McCaffer,1983,p312). The project selection decision will, therefore, predominantly affect short term finance and generally only indirectly affect long term finance. Typical sources of long and short term finance are given in Figs. 3.1 and 3.2.
Fig 3.1 Sources of Long-Term Finance

Fig 3.2 Sources of Short-Term Finance

Source: Harris \& McCaffer (1963, p313)

The acquisition of finance generates benefits (assets) and costs (liabilities). The liabilities incurred in the acquisition of finance consists of internal liabilities, for example debts owed to ordinary and preference shareholders, and external liabilities, such as sums owed to debenture holders, the Inland Revenue (for taxes), banks (for loans and overdrafts), and trade creditors (Adam,1965,p226). Liabilities can also be short term (current liabilities), such as thise payable to trade creditors, or long term (deferred liabilities), usually more than one year (Adam,1985,p226).

Assets can similarly be divided into current and fixed depending on the time period involved. A further relevant distinction is between liquid and illiquid assets. Vorking capital comprises the liquid or nealiquid assets needed to lubricate the daily transactions of business. It is represented by the difference between current assets and current liabilities, and is locked up in a continuous cycle, shown in Fig 3.3 (Harris \& McCaffer,1983,p315).

3.3.5 Interrelationships in the Outcome Environment

Many aspects of the outcome environment are interrelated and often conflicting. A common feature is the clash of interests between power groups, such as senior management and unions, where changes in the environment which are beneficial to one group are detrimental to the other. Similarly improvements in levels of financial resources of one groupof people usually implies a reduction in financial resources in another. The successful progress of the organisation depends exclusively on the balance of benefits received by these sections of the outcome environment.

3.3.6 Measures of Benefits

The degree of benefit derived depends upon the development state of the environment at the time. The effect of earning 11 , for instance, depends on the number of pounds already earned.

Measures of satisfaction can be obtained by means of questionnaires to provide ranked priorities.

Lansley et al (1979,Appendix

Fig 3.3 The Working Capital Cycle

Source: Harris \& McCaffer (1983,p316)

F,p23) have obtained group measures of job satisfaction, company satisfaction and company commitment (Fig. 3.4).

The development states of an individual or a group of people are not yet sufficiently understood to allow any universal classification.

Some of the benefits normally associated with internal and external individuals and groups are tabulated using Maslow's needs/drives hieracky in Fig 3.5. Although Maslow's system has many defects, the figure serves to illustrate the general proposition that the size of benefit is dependent on the state reached.

Heasures of moretary benefits are well accepted. 'Profit' and 'turnover' are of major inierest, but several other descriptive statistics are usec. Calvert (1981) has identified the ratios commonly used:

1 Current assets to current liabilities (working capital ratio)
2 Iiçuid assets to current liabilities
3 Outstanding debts to sales
4 Illiquid assets to sales moving annual total
5 Cash to current liabilities
6 Current profit to invested capital
7 Current profit to sales
8 Direct labour to turnover
9 Average credit period
10 Overhead percentage

Taxation and cash flow are two further considerations. Real property is normally evaluated in monetary terms. Depreciation is an important factor in such evaluations and also affects taxation liabilities.

3.4 Project Characteristics

3.4.1 Relationship between Project Characteristics and the Outcome

 EnvironmentThe types and kinds of projects undertaken by a construction organisation have a considerable impact on its outcome environment. Deliberate moves into a new area of work have been found to be an

Fig. 3.4 Measures of satisfaction with job and company

Company Commitment

Source: Lansley et al (1979,Appendix F,p23)
Figure 3.5: Development status

		Individual		Group	
		Internal	External	Internal	External
		Workmen Forman Site Agent Executives Manager Director Owner	Shareholder Customer User Others	Gang Sitel regional. natlonal Organlsation Other power groups unions	Attached power groups Shareholders Unattached power groups - sub-contractors., suppllers, unlons ecological, cllent government, bodies
Survival	pay/cover overheads meet debts obtain minlmum work	stay allve food and drlnk clothing, shelter	stay alive food and drink	$\begin{aligned} & \text { stay in business } \\ & \text { keep IIcence } \\ & \text { stay together } \\ & \text { minimum workload } \end{aligned}$	stay in business stay together minlmum workload
Safety	steady work steady Income resolution of basic grievances	job securlty	secure income	assets steady workload minlinum growth minimum profits and turnover malntaln market share minimum power	steady workload minlmum power
Love (belongin	```stability g) Increaslng Income stimulation participation In decisions (influence)```	job satlsfaction personal development		job satisfaction growth of assets, proflt, flurnover and market bliaro	power growth
Esteem	respect status prestige philanthropy community service advisory (non power)		.	growlh	
Self-actu	ualisation philanthropy assured future				

important means of developing mobile management, for instance (Lansleyet al,1979,pt1,p59). Profect value also has an important bearing on financial resources.

The characteristics of projects are necessarily a function of the construction industry itself, which "... encompasses a whole range of diverse activities such as civil engineering works, building works, public and private sector work, large capital utilities, development work and refurbishment" involving contracts obtained under "... competition, negotiation or a variety of cost reimbursement forms" (Sidwell,1984,p22).

In examining the nature of industries generally, Smith has suggested key factors as being "... the type of products produced and the market served, the technology of production and the nature of the materials required" (Smith,1985,p3). The diverse' nature of the construction industry, however, makes these factors rather difficult to define.

Hillebrandt defines the construction product as basically "... the service of moving earth and material, of assembling and managing the whole process". However, as this service and management varies according to the technical processes involved, the industry is ∇ iewed as consisting of many sub-industries "... coming under the umbrella of the industry concept" (Hillebrandt,1974,p24). A more appropriate analysis is proposed by Hillebrandt to be the market "... in which a group of firms, whose products are more or less substitutes for each other, operates" (Hillebrandt,1974,p27). Lange (1978) has termed these determinants, with the addition of industry branch 'sub-markets'. Size, complexity and industry branch are often referred to as "type" (Lansley et al,1980) or "size and type of work" (Harrison,1982), Lansley et al (1980) proposing "client" as a further sub-market.

These sub-markets, ie type of work, client, location and competitors, define the "nature of the work" (Mannerings,1970) coming from the construction company's "immediate environment" (Foster,1974). A recent study by the Building Economics Research Unit (Cusack,1981) has found that the sub-markets collectively account for over 97% of reasons underlying the decision to tender for projects.

3.4.2 Type of Work

The type of work available in the construction industry is reflected in the activities of large construction companies "... ranging from general building and civil engineering to materials manufacturing, property development, trade sepcification, and even open cast mining", together with "... peripheral services such as materials supply, plant hire and ... project management" (Fellows et al,1983,p1). A building company's services can include "... a building on its site; a building for assembly on a site provided by the client; an assembly service, for a building designed on commission to the client; or one of a series of contributcry services brought together and co-ordinated on behalf of the client to erect a building to a design commissioned by him" (Jepson \& Hicholson,1972,p5).

Types of buildings are usually denoted by function: residential, commercial, industrial, educational and recreational being typical groupings. The building's function will largely be associated with benefits to the consumer.

The physical and monetary size of a project affects the company's resources and particularly management and finance. Productivity has been associated with project size (Clark \& Lorenzoni,1985), Large contracts cen develop managerial skills, for instance, provided the personnel heve reached a suitable stage of development (Harrison,1982). Monetary resources similarly need to be sufficiently high to withstand cash flow pressures.

Lansley et al (1979,pt3,p5) have found that the technology of the project, expressed in terms of size, complexity and method of construction required, significantly affects organisational and managerial aspects of the company when an unfamiliar technology is involved. In such situations, the organisational structure tended to become more flexible. Different organisation structures occurred on large contracts involving many complex tasks (eg hospitals and hotels) than on smaller and less complex contracts. Distinctions between organisation structures for civil engineering and building projects were not found to be significant, however, although many building companies considered the acquisition of technical expertise and understanding of
the commercial aspects of civil engineering to be an insurmountable difficulty.
'Technology', although of potentially great value in expressing relationships between project characteristics and the outcome environment, has been found difficult to completely define. Theoretical developments are still needed in this respect (Lansley et al,1979,pt1,p64)...

3.4.3 Types of Client

Jepson \& Nicholson (1972,p4) have identified four types cf client: "... a speculator, investing in building for profit; a public bocy, investing in building on behalf of or for the benefit of the community; an occupier with a family or commerical activity or an industrial process to house; and a person or body seeking a monument". Public construction demand is about 30 to 40 per cent of overall demand (Diepeveen,1985,p111).

Two main client influences on outcomes have been found to be "ability to pay" and "relations" (South,1979). The latter also includes the client's advisors, the architect, engineers and quantity surveyor. Relations have been found to affect the contractor's efficiency and cause delays in settling variations and the final account, (Cusack,1981).

The factors related to the client organisation and the construction project are procurement methods and contractual arrangements. Ireland (1985) has identified six procurement methods in common use: a single lump sum contract on a fully documented project; provisional or partial quantities contracts; cost reimbursement (cost-plus); package deal (design and construct or turnkey); construction management; and praject management. There appear to be no satisfactory criteria which uniquely separate each procurement method. However, four important aspects have been suggested to be "... the arrangements for determining the cost of the project and identifying the contractor to be used; the roles and relationships of the specialists used, including the possibility of having the contractor available to contribute to the design; the process structure adopted, including such aspects as the overlap of
design and construction, the use of multiple prime contracts and the staging of these; and detalls included in the conditions of contract such as provision for extensions of time for industrial disputation of inclement weather etc" (Ireland,1985,p77).

The value (cost to the client) of the project is considered to be related to the cost determination and contractor selection method used. Negotiated contracts are generally agreed to increase value, whilst open tenders generally cecrease value (Smith,1979). However, as Adrian (1973,p370) observes, the price offered by the contractor needs to be comparable with potential competitors, even in the absence of direct competition.

The contractor's contribution to the design necessarily affects his resources. The overiap of design and construction gezerally reflects the desire for speedy completion. The speed at which the project is needed has important repercussions on estimating resources (Mannerings,1970; South,1979) as well as production resources.

The conditions of contract mainly affect risk (see Chapter 4). Specific instructions regarding the type (eg sub-contractors, materials) and use (access, storage, permissible working times) of resources'have direct implications.

Some specific clients may have a special interest in the company through a previous relationship, for instance. In these cases, the client may have a particular influence in selecting the second lowest tender, for example, and thereby modifying the marixet value principle.

3.4.4 Geographical Location

Dressel (c.1980,pi4) distinguishes between "home" markets (consisting of town area, region, county, province and country) and "abroad" (consisting of neighbouring country, developing countries and overseas).

Lansley et al's (1979) studies of several construction companies in the South East, South West and East Midlands of Britain revealed that most firms worked over a small area, mainly within a maximum radius of forty miles from their base. Even national contracting firms were
found to have interests centred upon their local or regionally based units, which generally adhered to similar boundaries (Lansley et al,1979,pt2,p21).

The distance of the project from the company's local base affects operatives, who appreciate short travel and welcome the extra free time it produces (see Table 3.1, ranking 7 and 6 respectively). Local craft can, - of course, be employed, but this often adversely affects productivity (Clark \& Lorenzoni,1985) and hence monetary resources.

Transportation costs are another important factor, together with the costs incurred by non-productive travelling time and subsistence allowances. The organisational structure can also be affected by the need to make special communication arrangements between the site and local, regional or head offices. Remote sites and overseas projects can have special influences due to weather conditions and cuitural differences.

3.4.5 Competitors

From the market viewpoint it is the company's competitors that determine the value of the project and, as the deterministic model presupposes that competitors' bids are known, then the value must also be known. The factors influencing bid levels of competitors will be the same as the company's factors. Ease of entry to the industry or market, for instance, simply reflects the position where the option to enter the industry or market is associated with beneficial and preferential outcomes.

3.4.6 Summary

Four project characteristics, type, client, location and competitors, have been considered in relation to influences on the outcome environment. These characteristics are themselves interrelated as, for instance, certain types of client always want certain types of buildings, or always build in the same locality. A simple causal model is shown in Fig 3.6. A more complex model would accomodate possible relationships between type and location (eg, nuclear power stations

Fig.3.6 Relationships between project characteristics

should be on remote sites), competitors and clients (eg, the existence of a well established package dealer may influence the procurement type decision), competition and type (eg. a company's known ability to produce certain pre-fabricated components may influence the design) etc. Other environmental factors such as governmental and social legislation also affect the project characteristics. These are dealt With in the next Chapter as 'indirect' influences.

Fig 3.7 summarises the relationships between the project characteristics and the outcome environment briefly introduced in this Chapter.

Fig 3.8 shows the essentials of the project selection model, consisting of the available projects, decision and outcome, their influences on each other together with indirect environmental influences. The dotted finfluence line between outcomes and projects is the dynamical link required for the dynamic models examines later. The requirements of the contingent approach to decision making demand that potential options which may not currently be actual project opportunities are considered, and these have been accomodated in the decision 'box' for this reason.

3.5 Selection Criteria

The project selection decision is a result of considerations of the beneficial effects of the decision on the outcome environment. The decision-maker, however, places differing levels of emphasis upon different aspects of the outcome environment. The internal outcome environment, for instance, is usually of more concern than the external outcome environment. These aspects of the environment are, effectively, project selection criteria and the degree of emphasis placed upon each criterion is indicative of its relevance to the problem. Relevant criteria are closely associated with the decision-maker's objectives and goals.

The primary objective of the company has been said to be "... in the continued existence and further development of the company" (Dressel,c.1980,p2). Special objectives involve market, supply, production, financial, personnel and organisational aims
Figure 3.7: Relationships between project characteristics and the outcome environment

Project Characteristics	Outcome Enviromment		
	People	Money	Real Property 1
$\begin{array}{\|ll} \text { Type } & \text { (function) } \\ & \text { (size) } \\ & \text { (technology) } \end{array}$	Consumer Management Organlsation \& Management Sub-Contractors Suppliers (technology)	$\begin{aligned} & \text { (size) Finance } \\ & \text { (technology) Profit } \end{aligned}$	Materlals (technology) Plant (technology) Head Office (size)
Client	Estlmators (procedure) Designers (procedure) Sub-Contractors (contract)	(abllity to pay) Finance Proflt (Procedure) Finance (procedure)	Materials (contract)
Location		Finance, Profit (cost of transport) (weather) (accomodation and subsistence) (production) (communications)	Transportation Vehtcles Communication devicestelephone
Competitors		Value (flnance, profit)	

(Dressel,c.1980). These are dealt with here as monetary, non-monetary and market related objectives.

3.5.1 Monetary Objectives

The desired changes in levels of monetary resources are usually expressed in terms of profits or profitability. The conventional economist interpretation of company objectives is in the maximisation of profits, although Simon (1960) has found profit 'satisficing' to be a more appropriate description of the general business aspiration.

Frofit marinisation bas been considered by many writers in the construction industry to be a rather naive view of the project Objective (see Fellows et al,1983,p40; Hillebrandt,1974,pô9; Voodward,1975,p170, for instance). It has been suggested that the company's primary objective is to make "adequate" profits (Hillebrandt,1974,p92), "rormal" profits (Hillebrandt,1974,p93), "modest" profits (Fellows et al,1983,p40), "target" profits (\$iss,1965; Hillebrandt,1974,p89) or minimize losses. Profits have been measured in absolute terms, or as the level of return on investments (Barnard,1981; Mannerings,1970). A further distinction is between before and after tax profits.

An alternative approach concentrates on the growth of earnings (Barnard,1981), commoniy referred to as 'turnover', where similar objectives such as "target" turnover (Hillebrandt,1974,p91; \#iss,1965) or "limited expansion" (Hillebrandt,1974,p89) have been identified, often involving annual turnover forecasts (Humphreys,1977).

3.5.2 Other Objectives

A frequently reported objective concerns the utilisation of resources. This includes the efficient use of resources (Fryer,1985) such as labour and materials (Barnard,1981; Niss,1965) and filling plant capacity (Benson,1979). Maintaining the size of the workforce (Cusack,1981) or keeping key workers (Niss,1965) have also been found to be important objectives.

Objectives involving people in the environment have already been discussed to some extent in this chapter in identifying human developmental characteristics. Other objectives include serving the client well (Fryer,1985; Barnard,1981) also the general community (Barnard,1981) by maintaining and improving quality and service (Hiss,1965) and avoiding such activities which endanger the environment and public health (Fryer,1985). Retaining the confidence of suppliers and sub-contractors has also been found to be important (Moare,1984, p19).

3.5.3 Market Related Objectives

Objectives are sometimes mare conveniently expressed indirectly in terms of the market, instead of as specific desired states in the cutcome environment. These aspirations, termed product-market scope (Ansoff,1965,p98); include such objectives as increases in mariret share (Fellows et al,1983,p118; Barmard,1981), staying in existing markets (Adrian,1973,p371) such as construction type (Cooke,1981) or location (Foster,1974), entering new markets (Woodward,1975,p170; Foster,1974) and growth in a number of markets (Earnard,1981; Fellows et al,1983,p27). Product-market scope is, however, a 'means' rather than an 'end' and, as such, constitutes more of a 'strategy' than an 'objective' (Ansoff,1965,p100). The decision model adopted in this thesis relies purely on the consideration of outcomes arising from the decision. A strategy is, therefore, regarded as a means of preempting the workings of such a model by some globalising mechanism such as, in this case, attributing market related factors to outcomes. Such a globalising process, it is maintained, would be only enabled through the model. A useful purpose can be served, however, in comparing known successful strategies with those revealed by the model as part of the validation process. These are described in Chapter 6.

3.5.4 Multiple Objectives

Studies by Bengtsson (1985) have falled to reveal the existence of any single unambiguous company gaal. "Multiple objectives are required if the relations of an organisation to the environment are to be understood" (Bengtsson,1985,p33). Conflicting objectives were found,
particularly between monetary objectives (eg, "profit within own area of responsibility", "company profit") and human needs and aspirations (eg. " stimulating tasks and internal training programme", "Job security", "work environment", "safety" etc.). The emphasis placed on each objective, the 'goal profile', was found to differ between individuals. An analysis of 86 individuals in construction companies suggested differences in goal profiles to be associated with different managerial hierachical levels in the organisation and different quantities of expertise. There is, as Bengtsson observes, no simple method for evaluating goal profiles.

3.6 Selecticn Strategies

Selection strategies can be classed as either 'rational' or 'irrational'. In both cases the objective must be to make the best possible choice from a set of alternatives. The identification of rational strategies is referred to as the "optimisation problem" (Bullock \& Stallybrass,1977,p444), which is usually expressed in mathematical terms, involving the minimisation of some function (the objective function or criterion function). :In problems where several criteria exist, this function is variously referred to as the "vector criterion", "multivariate criterion" or a "multidimensional criterion" (Mood,1983,p55) When several criteria are combined into a single criteria the resulting ciliterion is termed the 'scalar criterion'.

Methuds of handing optimisation problems containing several criteria are called "multiple criteria" or "multi-attribute" methods.

3.6.1 Multiple Criteria Decision Evaluation

There is a practical need, in the face of multiple decision criteria, to develop a_strategy for "... presenting all those potential courses of action which might reasonably be regarded as attractive without obscuring what is at best likely to be a complex decision by the presence of many less desirable possibilities" (Kmietowicz \& Pearson,1981,p106).

In recent years, an increasing number of papers have appeared concerned with both the theory and practice of multiple criteria decision making. French and Dutch authors, in particular, have made significant contributions to the field. Whilst the majority of early formal work appears to have emanated from psychologists and management scientists in the USA, many potential areas of application exist. Public policy decisions, for example, frequently involve the consideration of a wide range of consequences which affect many different groups of people in different places and in different ways.

It is apparent, however, that no single multiple criteria technique exists which is unambiguously supericr to all others, the most appropriate method or combination of methocs varying from problem to problem, (Kmietowicz \& Pearscn,1981,p106).

One possible approach is to construct a multi-attribute function covering the whole range of monetary and non-monetary outcomes which could potentially arise from the decision to be taken. The best known methods for reducing multiple consequences to a single dimension are in financial appraisal and cost-benefit analysis. In the former case, market prices are used to evaluate the different consequences of a course of action. In the latter, account is tairen of consequences which may not have a market and for which shadow prices have to be substituted.

The multi-attribute function, termed the "global preference function" by Ibbs and Crandall (1982,p191), can be formulated in several ways. Keeney \& Raiffa (1976) have considered four of these formulations: additive; multilinear; multiplicative; and general.

MacCrimmon (1973) has identified four major categories of solution technique: weighting methods; sequential elimination methods; mathematical programming methods; and spatial proximity methods. At one point or another, a weighting method is central to the evaluation procedure of most practical muitiple criteria decision making models, the main difference between methods being the techniques used for establishing the weights (Kmietowicz \& Pearson,1981,p107).

3.6.2 Evaluation of the Preference Function

Examination of the construction industry literature reveals two approaches to the formation of the global preference function evaluation process in the project selection problem. Although both of these approaches are presented in a non-deterministic context, they, nevertheless, serve to illustrate the potential use of the multiattribute technique.

Study 1 (Fellows \& Langford,1980 and Fellows et al,1983,ch3)

Fellows \& Langford give an example of a weighted additive multiattribute utility function approach to the construction project selection problem. They consider five courses of action (outcomes): returning the tender documents; submitting a cover price; providing detailed estimates and a tender conversion; preparing a tender based upon approximate estimates; or reworking the tender. Each of these possible outcomes is evaluated on five criteria: speed of obtaining solution; accuracy of solution; cost of solution; client/consultent consideration (risk, attitudes etc); and benefits, success potential to firm (profitability potential, employment of resources, continuity of work etc). Adjustment for the relative importance of each criterion is made by a utility weighting device before values are summed into an aggregated "outcome evaluation". Under the reasonable assumption that the decision-maker is interested in maximising the utility of the various consequences resulting from his decision, the 'best' decision will be that associated with the highest aggregated outcome evaluation. "Sensitivity tests" are recommended by the authors in assessing the effect of changes in the utility weightings and "the criteria themselves".

Study 2 (Ibbs \& Crandall,1982)

Ibbs \& Crandall have considered the use of weighted additive and multiplicative multi-attribute functions. In their example there are three (unspecified) decision options, the outcomes of which are evaluated as three criteria: profit return; contract size; and "regulatory aspects".

The multiplicative formulation relies on the existence of Utility Independence (UI) and Multi Utility Independence (MUI). Tests for the existence of these states involves the construction of a standard lottery to check the decision maker's indifference to relative changes in permutations of criteria values. In the additive formulation MOI only is a necessary condition.

Weighting factors in the multiplicative formulation are required for all attributes together with an attribute independent scaling factor. As Ibbs \& Crandall show, the value of this attribute independent scaling factor can be computed from the attribute values and weightings and, in particular, that when the attribute independent scaling factor obtains a zero value the multiplicative formulation reduces to the additive form. Indeed it would seem that the attribute independent scaling factor can be used as a decision variable in determining the method of aggregation to adopt.

The resulting global preference function value is computed for each decision and, as in the previous Study, the 'best' decision is considered to be that associated with the highest valued global preference function.

In addition to the recommendations for sensitivity tests on the weighting factors and the criteria used, several further observations are made. Precise definition of the decision variables is considered to be important in order to avoid confusion of the variables measured. 'Profit return', for instance, may have a variety of valid submeasures, such as absolute monetary profit or return on investment, which reflect different value levels. The independence checks, involving all permutations of the criterion variables can become "unwieldy" in the presence of more than "five or six" criteria. If none of the independence conditions can be found among the decision criteria, other steps may be necessary. Special formulations are available, but difficult, or some method of criteria parsimony applied by isolating offending variables or combining variables by an orthogonal technique such as factor analysis.

Three final operational comments are made. Firstly, some decisionmakers have difficulty in expressing a preference function for the criteria. Secondly, there are situations in which decision alternatives
are assigned scalar values outside the original limits of the analysis. It could be, for instance, that the decision maker considers a criterion variable to be more important than another criterion variable which has already been assigned a maximum value on the weighting index. Finally, a related feature, and one which appears to be a recurring problem in the utility approach, is the instability of utility values in the weighting scheme. These values, it seems, must be continually monitored as the firm's preferences change.

3.7 Conclusions

The project selection problem, in its deterministic and static form, centres on the consideration of three fundamental and interrelated aspects of the outcome environment, people, money and physical property. Four interrelated project characteristics, type, client, location and competitors have a significant influence on these environmental aspects.

It is considered that, in order to pursue the successful progress of the company, the 'best' decision should be the one which will most benefit all these often competing aspects of the outcome environment. This will normally entail the evaluation of criteria including profits, profitability, earnings and turnover for monetary outcomes, the type, value and usage of physical rescurces, the usefulness and aspirations of individuals and groups within the organisation, the level of the client and community satisfaction of the company's quality and service and the confidence of the suppliers and sub-contractors. The value of these criteria, it is argued, will be relative to previous levels, referred to as the developmental state.

The final stage of the decision model outlined in Chapter 2 involves the comparison of the evaluated criteria with those of an alternative decision. Where only one criterion exists, profit for instance, the comparison is trivial. The presence of multiple criteria is, however, clearly an essential feature of the problem. Before any attempt can be made at a solution, it is apparent that some method of weighting must be applied. This is regarded as an aspect of the selection phase of the problem in order to preserve the generality of the evaluation phase.

CHAPTER 4

Time dependent aspects

The proposal to combine the weighted criteria into a single scale is, perhaps, the most controversial issue. The major criticism with this approach is that, in reducing the multiple dimensional consequences of an act to a single dimensional evaluation, information is inevitably lost. "If there is no doubt about the rates at which decision makers are prepared to trade off different consequences against each other at all different levels of attainment of those consequences, then reduction to a single dimension should cause no great problems", Kmietowicz \& Pearson,1981,p106). Ibbs \& Crandall's study indicates that this is not likely to be the case, some difficulty being encountered in acquiring consistent trade-off values.

Kimietowicz \& Fearson (1981,p106) suggest two possible approaches to this problem. One is the comparison and raniking of selection strategies on the basis oi more than one decision. The other is in the reduction of the dimensionality of the problem by fixing acceptable weights to the different consequences of strategies and the exploration of the implications of some tolerance in the precise values of those weights.

Both of the studies reported have adopted the latter approach in attempting to attach weights to the various criterion variables and in recommending some sensitivity analyses. The need to perform extensive independence checks and the difficulty in assigning weights suggests that the apprcach may not be without its problems, even in the deterministic model.

It is noted, however, that, whatever solution technique is employed, some formalisation of the decision process does have value in helping to clarify both what is being aimed at and the relative importance of conflicting goals. Furthermore, communication with other decision makers and affected parties is facilitated if some framework for presenting and comparing the consequences of different courses of action exist

4.1 Introduction

The previous chapter was concerned with the relationship between the project selection decision and the immediate environment of the decision-maker, assuming perfect knowledge and, generally, without regard to time-dependent aspects of the problem. The purpose of this chapter is to explore such time-dependent aspects whilst still maintaining focus on the immediate environment and assuming perfect knowledge.

Time-dependent aspects of the decision making process have two majcr implications in terms of the project selection model. One is the causal relationship between the outome environment and prajects, shown in Fig. 3.8 as the dynamical link. The other implication is that time introduces a new dimension to the problem.

4.2 The Relationship between the Outcome Environment and Projects

The previous chapter examined the problem of selecting a project or set of simultaneous projects which would best benefit the outcome environment without regard to any further selections that may be required in the future. However, it is clear that future decisions will be significantly affected by current decisions. The problem can, therefore, be restated as that of selecting the set of sequential projects which will best benefit the outcome environment. Problems involving sequential decisions are said to be dynamical problems (Bullock \& Stallybrass,1977,p184). The dynamical version of the project decision problem demands knowledge of the effect of the outcome environment associated with each project on the quantity and characteristics of future projects.

The generation of project opportunities is normally regarded to be a result of some marketing activity. Until relatively recently, marketing has not generally been considered appropriate for construction companies, as they belong to a service industry largely waiting to be asked for their services (Sidwell,1984). Lansley et al (1979,pt3,p78),
however, found some rather more aggressive contractors who actively sought opportunities through market research and by cultivating contacts with prospective clients. It was also found that contractors who normally adopted a passive attitude became more aggressive when work was short (Lansley et al,1979,pt3,p78).

The marketing aspects of the project selection decision are only a small part of the total possible marketing effort, and very little literature is available on the subject.

An obvious point of interest is the client, who is part of the outcome environment and project characteristics. Enhanced benefits for a particular client may well generate further project opportunities. Jepson \& Ficholson (1972) term this general strategy "image building" or the development of "goodwill". Such enhancement necessarily implies reduced benefits in other aspects of the outcome environment. It may require, for instance, "... the unquestioning assumption of liability for the errors and failings of employees and associates and that profit may thus be lower" (Jepson \& Nicholson,1972,p78). The opposite approach, termed 'milking' the project, is aimed at enhancing non-client aspects of the outcome environment and with the possible consequence of reduced future project. opportunities or modified project characteristics.

This means of influencing potential clients extends to other aspects of the outcome environment. Knowledge of benefits received by one client may influence other potential clients. Benefits received by a section of the community may also influence potential clients in a similar way. Even benefits obtained internally, such as the wellbeing of the workforce, may engender a special attitude in potential clients towards the benefits they may receive should they wish to employ the company.

Unless clients possess perfect knowledge, then communication of events that take place in the outcome environment to potential clients is an important issue. Such communication usually implies some advertising or promotional activity by the company. The project selection decision can provide some assistance in this through the selection of certain prestigious projects, for instance, or profects associated with well publicised designers or causes. In these cases, enhanced promotional benefits may be preferred to short term monetary gain.

4.3 The Time Dimension

The effect of time considerations is. to introduce an additional dimension to the problem, as changes in the decision environment occur at different points in time.

Major implications occur in the outcome environment. The extent of benefits received by people is, as discussed in the last Chapter, dependent on the stage of development reached at the time. These benefits are received continuously, in the case of human resources, resulting in continually changing developmental and aspirational states. Also, as people join and leave the organisation, fluctuations in quantity as well as quality occur.

Perfermance levels are affected by time, instanced by such phenomena as the learaing curve. The time of the year can affect output by up to 50\% (Cusack,1981,p54). Overtime working and bonus schemes also provide other time related aspects. Construction sites suffer particular difficulties in the co-ordination of sequential activities as operatives frequently change work places (Bennett \& Fine,1980).

The acquisition of a new profect involves some degree of disruption to perscminel, depending on the project characteristics, although craft based organisations, such as construction companies, have been said to respend quicily and effectively to major changes in demand, (Gurten,1972,p72). Lansley et al (1979), however, has found evidence of resistance and reluctance to change due to incompatible individual development strategies (rigidity of views and attitudes); the frequency of changes, especially those not providing benefits to the individuals; lack of involvement in the decision, causing the change or its implementation; and poor communication of decisions and their anticipated effects on the individuals concerned.

The extent and frequency of change has an effect on the organisational structure of the company, a tendency to a more flexible structure occuring with increasing change (Lansley et al,1980) depending on the present size of the company (Lansley et al,1979). Movements in monetary resources are primarily linked with the project duration, resulting in the consideration of cash flow implications. Cash flow has been found to be affected mostly by such project characteristics as
the size of the project, the type of project (eg. speculative housing), the client (eg. private work) and bias in the progress valuations (caused by "front end loading") (South,1979). The client's conditions of contract further impact on cash flow by restricting income (retention) and reimbursement of changes in the value of money (fluctuations). The cost of creating liquid assets (interest rates) and the timing of payments to suppliers, sub-contractors, shareholders etc are further important aspects.

Time effects on physical properif incluce the frovision of temporary buildings and the acquisition, maintenance and disposal of materials and plant. These aspects are normally treated in monetary terms, such as depreciation or sinking fund provisiens.

Changes also oceur in the project characteristics. Design modifications take place during the course of construction. These affect the management and organisation of the work, productivity, cash flow and even the contract period. Changes in client or consultant personnel can affect working relationships, sometimes quite dramatically. Such changes (eg change in Quantity Surveying personnel) can also affect monetary resources.

4.4 Implications for Evaluation and Selection

Consideration of time related aspects of profect selection introduces the notion that outcomes take place over time. These outcomes can be regarded as being discrete events or as continuously developing, as represented by discrete or continuous time systems. An outcome, in these terms, is effectively the state of the outcome environment at some point in time after the decision has been made. Points of time that are of interest occur in the short, medium and long term, (Adrian,1973,p370). For construction companies short term is associated with the duration of a particular project, medium term has been said to be about three years (Bahrami,1981), although in recent changing times twelve to eighteen months has been considered more appropriate (Benes \& Diepeveen,1985), and long term some distant future of a minimum of ten years ahead. Such distinctions are quite arbitrary however. Cash flow analysis, for instance, attempts to predict monetary outcomes at quite frequent, usually monthly, intervals and is
particularly useful in identifying times when financial problems will occur. Ideally, a system would indicate the state of the outcome environment at any moment in time.

The influence of the outcome environment on project opportunities raises special strategic issues. Sacrificing profits to enhance opportunities, for instance, is one such strategy (Fellows et al,1983,p40,p188). Strategies aimed at stabilising profits, return on investments and turnover are also evident (Barnard,1981). Development strategies also exist to enable exploitation of opportunities (Fellows et al,1983), particularly organisational development (Lansley et al,1979). Marketing strategies of this nature are termed forward integratien strategies (Moss,1981).

These considerations suggest that the project selection decision will require evaluation of the state of the project generating environment in addition to the outcome environment. Strategic decisions also require evaluaticns of the nature of changes in the relevant environment. This would require knowledge of the rate of change or the existence of treads for instance. It is contended, however, that, as noted in the previous chapter, such strategy oriented aspects are necessarily concerned with behaviours manifested by, rather than incorporated into, the model, except as a simplifying expedient.

In the 'systems' context, changes in the environment can be regarded as an iterative process and any decisions affecting these changes are adjustment processes. The competitive economy, which is a particular organisational form in which all members as regarded as acting in competition with each other, has received some attention in this respect. The competitive economy has been described as consisting of "... agents, involved in a competitive process, who act in response to their changing 'environments' and to actions by other agents resulting in 'messages' (prices)" (Gottinger,1983,p178). "... An adjustment process in this organisation is a kind of scheme or process which this organisation reveals at each iteration and which would satisfy certain properties to the best of all members of this organisation" (Gottinger,1983,p178). In this context, an adjustment process can be viewed as "... a sequence of aggregated actions (behaviour patterns) taken by each agent" (Gottinger,1983,p178).

For a different class of environment, Hurwicz (1959) has studied adjustment processes in terms of differential equations in which agents respond to messages from other agents including. themselves (memorising). The behavioural pattern of such an economic system can be studied in terms of a particular social welfare function satisfying an optimality criterion given an environment of a particular-kind. On the basis of the adjustment process new states will be generated up to a point where the final state is compatible with the welfare criterion. Some important results in this area have been obtained notably by Hurwicz (1959) and Gottinger (1983,p179), although always depending on some simplifying assumption such as the existence of a 'classical' environment or a Pareto-like stabilising tendency. Major criticisms of these results turn on informational efficiency, giving rise to contraversies about the choice of econamic systems, and the gaalcompatible behaviour patterns of econcmic agents in which a competitive system is satisfied, given the classical envirament by assuming prafit and utility maximisation.

A further difficulty with this apprcach is that the agents in the project selection environment do not simply respond to environmental stimuli, but attempt to influence stimulatory parts of the environment (evidenced by the 'marketing' effort), nefther do the agents acti in a purely competitive manner.

The complexities of the various interactive elements in the decision environment over time have been modelled by Gottinger (1983) by a device termed a 'sequential machine'. The sequential machine is a finite-state dynamic system possessing five general characteristics:
"(1) A Set of Iaputs, eg. thcse changing parameters of the environment which will affect the system behaviour in a predictable way.
(2) A Set of Outputs, ie. those parameters which act upon the environment leaving observable changes in the relationship between the system and the environment.
(3) A Set of States, ie. those internal parameters which determine the relationship between inputs and outputs and which may reveal all necessary information embodied in the part.
(4) A State Transition Function which determines the dynamics of how the state will change when the system is fed by various inputs.

> (5) The Output Function which determines what output the system will yield with a given input when in a given state."
> (Gottinger, 1983, pl7)

A sequential machine is then defined as a function $f: E A \rightarrow B$ where A is the basic input set, B is the basic output set and $f\left(a_{1}, \ldots, a_{n}\right)=b_{n}$ is the next input at time $j(1 \leqslant j\{n) . A$ is a nonempty set of $[A$, ie. $\Sigma A=\left\{\left(a_{1}, \ldots, a_{n}\right): n \geqslant 1\right.$ and $\left.a_{s} \in A\right\}$. Looking inside the machine, a circuit C is defined as a quintuple ($A, B, Z, \lambda, \delta)$, where Z is the (nonempty) set of internal states, $\lambda: A \times Z \rightarrow Z$ is the next-state function, and $\delta: A \times Z \rightarrow B$ is the next output function

$$
\begin{aligned}
& C_{x}\left(a_{1}\right)=\delta\left(a_{1}, z\right) ; \\
& \left.C_{z}\left(a_{1}, \ldots, a_{n}\right)=C_{\lambda(2,}, x\right)\left(a_{2}, \ldots, a_{n}\right) \text { for } n \geqslant 2
\end{aligned}
$$

The basic idea of a sequential circuit C is then

Gottinger's perspective is to consider sequential machines as basic analogues for modelling complex 'humanistic' systems (organisations), and to treat adjustment processes in terms of transformations on the set of states of a machine. One consequence of the sequential machine concept is that any biological, ecological, or economic system evolving in time can be viewed as a transformational semigroup (tsg) in which time is an irreversible resource.

The first task in building such a machine is to decompose the syster into component parts or sub-systems. This is done by first identifying the external state vector $x_{t}=\left[x_{1, t}, x_{2}, t, \ldots, x_{n, t}\right]$ representing exogeneous factors driving the system from 'outside'. In terms of the project selection process; these exogeneous factors include such indirect influences as government policy and social attidudes. Exogeneous factors are not incorporated into the decomposition. -

The next step is to choose a kind of partition of the overall system into parts that comprise the main activities of the system. Gottinger suggests that this can be achieved by a decomposition into three types of machine, a message machine, a decision machine and a payoff machine. In terms of project selection this implies project opportunities and
characteristics (message machine), project selection/rejection (decision machine) and the outcome environment (payoff machine). The payoff machine, for instance, would resemble the configuration shown in Fig 4.1. Each part enclosed in dotted lines is itself an automaton called a component. The interaction of all components with feedback constitutes the realisation of the entire system. The transformations relating to each component are each described by a set of structural equations taking into account imput or feedback stimuli from other components. Each stimulus for a component is composed of an external stimulus, together with all state-output configurations of all previous components plus the feedback responses to subsequent components. The overall design complexity is determined by the structural complexity of the components and the computational compleaity of the interaction between components, the length of computational strings to arrive at solutions. The control complexity is a kind of complexity that satisfies some bounds in the performance boxes in order to keep the system in harmony and stability. A refinement of the payoff machine shown in Fig. 4.1 would further decompose the outcome environment into individual people, separate types of monetary assets and individual items of property.

Fig. 4.1 illustrates a cascade decomposition. Other types of decomposition are available such as serial and parallel decomposition. Machines can also be decomposed in similar ways or combination of ways. Fig. 4.2. indicates a possible machine configuration for project selection. General environmental factors (external stimuli) affect all the machines involved. The projects and their characteristics affect the decision machine. The outcome environment (payoff machine) loops back to influence (future) environmental influences.

The project selection process is then, in terms of this model, controlled by the decision machine, the key developmental results being formed in the payoff machine. The solution to the problem must be in operating the decision machine in such a manner as to obtain the 'best' set of developmental states.

Three immediate problems arise in the model procedure examined above:

1. As the number of components (particulary in the payoff machine) and sufficiently strong connections among components increase, the
Fig 4.1 The payoff machine

after Gottinger (1983)
Fig 4.2 Project selection machine configuration

behaviour of the system becomes increasingly obscured by complex interactions which resemble very much non-linearities in the total system's behaviour in correspondence with size.
2. The structure and size of components themselves present a potential source of complexity depending on whether and to which extent a component system is sensitive to disturbances, errors, threshold phenomena etc.
3. As the number of components and interdependencies in the system enhances, increasingly longer sequences of calculations are required to deduce the behaviour of the system which results in computational complexity.

The solution to these three problems would, as Gottinger observee, "... enable us to determine the complexity of the system on-line, as it is running from some initial time to some target time in the future. But knowing the complexity would permit us to design control strategies which are effective in guiding the system toward relative stability or harmony" (Gottinger,1983,p117). In order to understand the complexity of the systems it is important, that "... we should be able to understand the strongly connected, coupled nature of its subsystems. For this purpose we need a measure of complexity that reflects the structural performance of each of the connected subsystems in terms of state space configurations, plus the number of computational links that are established among the various subsystems and that reflect the richness of state representations in the global trajectory space of the entire system" (Gottinger,1983,p119).

A recent approach to dealing with the computational complexities involved has been to reconfigure the computer hardware in such a way as to arrange the processing elements to match the structure of the problem. This has resulted in an entirely new kind of computer, the "connection machine" (Hills,1985) which, in terms of the project selection problem, implies a separate processor for each aspect of the problem environment, eg, each individual member of the organisation.

It is clear from the literature, however, that insufficient knowledge is yet available to determine the complexity of the system to the degree recommended by Gottinger. Even the assumption that the objective is to
"...guide the system toward relative stability and harmony" is as yet untested.

4.5 Conclusions

This chapter has outlined the dynamical and dimensional effects of time on the project selection problem. An approach of conceptualising the problem along the lines of Gottinger's sequential machine has been proposed as a means of handling the complexities involved. It is anticipated that this, together with some type of multi-attribute analysis discussed in the previous chapter, may form the basis of a useful and realistic approach to developing appropriate solution techniques. Before attempting such a task, however, it is necessary to consider a further (and most critical) aspect of the problem - the effects of imperfect knowledge.

CHAPTER 5

5.1 Introduction

The aim of this chapter is to consider the implications of relaxing the 'perfect knowledge' assumption. The effect of this is to reduce our decision-maker to a mere mortal faced, as will be seen, with a task of rather unearthly proportions.

Imperfect knowledge introduces uncertainties, in the most general sense, into the problem. One such uncertainty, the value of the project, is of particular relevance in the competitive situation in that the decisionmaker can no longer be certain of obtaining the project he has selected. Problems invaiving this characteristic are normally termed auction, bidding or tendering problems upon which a body of literature already exists. The following extract from Woodward (1975) is, perbaps, a suitable introduction to the subject.

Abstract

"To many people, the whole subject of bidding and tendering appears to defy analysis and is cloaked in a certain amount of mystery. One reason for this is that there are so many variables that are not well understood when they interact, that it becomes very difficult to make specific predictions. Some of the more important of these variables are related to the cost of the completion of the work, for example the price of materials, labour rates, labour productivity, plant usage, ground conditions, weather, variations instructed as to the detailed work to be completed and additional costs associated with delays caused by shortage of materials or lack of information. A second reason for the mystery surrounding bidding is that it is a very sensitive area to many contractors and they are unwilling to discuss it. This is largely due to the desire to keep methods of estimating work and the prices used confidential to the company, but a more subtle and seldom quoted reason for secrecy is that many contractors do not themselves fully appreciate how their prices are arrived at, and may indeed have very little or no systematic approach to bidding whatever."

(Woodward, 1975, p168).

5.2 Imperfect Knowledge

The model of the profect selection decision process thus far developed relies on the decision maker 'knowing' the exact effect of potential
decisions on the outcome environment, placing some value on each of these effects and selecting the 'best' decision by comparing these values. The reality of the situation, however, is that 'exact' effects can seldom, if ever, be predicted. The difference between predicted and actual outcomes, termed 'errors' in this thesis, are, therefore, a direct result of the imperfect knowledge of the decision maker. The nature and magnitude of these errors have a significant impact on the problem.

If the 'real world' is defined as the 'prototype' (after Aris,1978) and the indivicual's perception of the real world is defined as the 'model' (after Relly,1955) then the fundamental cause of all errors is in the discrepancy between the prototype and the model. This dees not , of course, imply that a model generating no predictive errors must necessarily be a perfect compositicnal mapping of the prototype (although such a model may often be considered to be a 'perfect' model). The formula for predicting the expansion of a piece of metal, for instance, is not, although virtually error free, in any way composed of the actual physical process involved. Although, in essence, simple or 'top-down' predictive models ('simple' in this context is equated with 'elegant') are highly desirable computationally, the instability associated with non-physical prototypes (people) invariably inhibits their development. The logical action, therefore, is to adopt the 'bottom-up' approach of concentrating on the compositional aspects of the prototype, at least until 'top-down' modelling is sufficiently welladvanced.

Compositional discrepancies between the prototype and the individual's model are due to the prototype information received or not received by the individual together with the individual's ability or inability to model the prototype once the information is received. Interdependencies have been found to exist between the prototype, the individual and information. Skitmore (1985), for instance, in a brief review of the psychology of expertise has noted the profound differences in the way experts and novices handle contextual information.

In the context of the project selection decision, discrepancies between the prototype and the decision-maker's model are frequently termed uncertainties (in the general sense). One type of uncertainty has been identified as "inherent uncertainty" (Bennett \& Barnes,1979), due to
"chance variations" (Gates,1971), "chance events" (Woodward,1975,pi2) or "lack of predictability" (Ireland,1985,p62) in the prototype and resulting in "an inherent inability to forecast positively the efficiency, and therefore the production rate for any given crew for any given operation" (Gates,1971,p277) for example. Inherent uncertainty is, therefore, intended to represent the cause of those errors which cannot be avoided in any way, in other words, the limit to which the model can approximate the prototype.

Some knowledge of the nature of the prototype/model misfit, however, can be useful. A measure of this misfit is called 'risk'. Risk is essentially a measure of the strength of belief that an event will or will not occur, and is usually expressed as the chance or probability of occurance. The definition of risk is usually extended to all events to which the chance of their occurance can be quantified in scme way. The definition of uncertainty is then confined to inherent uncertainties for which no measure of their chance occurance is available.

A general structure of risk assesment is given by Otway and Paranka (1980) reproduced in Fig 5.1. This structure separates the tasks of risk estimation, based on intuitive or formal estimates, from risk evaluation, based on experimental or statistical data, the object in this case being to gauge the environmental consequence of risk acceptance. Risk evaluation is a complex process of determining the meaning, or value, of the estimated risks to those affected, referred to by Häfele (1974) as the "embedding" of risks into the "sociosphere". Evaluation has been considered by Otway \& Pahner: (1980) to be a process of ranking risks so that their total effects, both objective and subjective, may be compared for acceptability.

Attitudes to risk vary between individuals from cautious to adventurous. Studies by Dickenson (1979) suggect that risk experienced people tend to be more cautious in their attitude to risk. Building contractors, although no evidence is yet available, are also thought to be generally risk-averse and this, too, may be a result of risk exposure. Whilst not wishing to make risky decisions, however, it would appear that people in the construction industry are able to adequately cope with risky situations. Indeed, the Tavistock Institute's study (1966) found evidence of people actually thriving in risky and uncertain situations.
Fig 5.1 The general structure of risk assessment
Intuitive estimates

5.2.1 Coping with Risk and Uncertainty

There are two recommended approaches to dealing with risks and uncertainties. . One approach is to devise methods of exploiting the situation, by adapting a more flexible posture, for instance. The alternative is to reduce the effects of risks and uncertainties, especially those effects associated with environmental disbenefits; by either reallocation or by improving the prototype/decision-maker's model fit. Reallocation can involve sub-contracting sections of the work, insuring risks via external agencies or by partly reallocating to the client by means of contingency allowances. Improving the model fit involves either changing the model or changing the prototype in some way.

The quality of the model is, as mentioned earlier, dependent on the interrelated aspects of context, the modeller and the information received by the madeller. The context of the project selection prablem is the entire decision environment which includes not only the immediate outcome environment but the whole of the project generating environment. The ability of the modeller and the information he receives depends upon this contextual -state. Lansley et al (1980), for instance, have commented on the importance of past experience in reducing uncertainties and the need for training to handle unfamiliar problems by familiarisation with possible future environments. Turbulent environments create special organisational problems in this respect, resulting in "difficulties in obtaining a sufficiently detailed understanding of the changing business environment" due to staff being "unable to keep abreast of change or pursue activities critical to the firm's survival, particularly marketing and industrial relations", (Lansley et al,1980,p43). The 'customised' nature of the construction process is a particular source of uncertainty, resulting in "lack of routine" and "unfamiliarity" (Ireland,1985,p62).

Ansoff (1984), in stressing the need for familiarisation with current events and preparation for future events, suggests the development of surveillance systems for detecting "weak signals" of future movements in the environment. Fellows et al include such action in their recommendations for "external appraisal" to "forecast the pattern of demand and competition" by identifying competitive, political, economic, social and technological trends [in the project generating environment]"
(Fellows et al,1983,p44). Fellows et al's "internal appraisal" covers internal aspects of the outcome environment. Foster (1974) indicates the major sources of information of these environmental states (Fig 5.2) as inputs to his management services system. As Erikson \& Boyer (1976) observe, however, such information is not always readily available, mainly due to the competitive nature of the environment. A further problem, as noted in Chapter 2, is that the information does not always exist in the most appropriate form. Gilchrist (1984), for instance, discusses the problems of aggregated information which may be simply averages of some highly variable observations. The information may also contain errors which implies the same considerations as errors occuring in the decision problems generally. Further difficulties occur in interpreting and communicating information to the decision maker and assimilation of the information by the decision maker. These activities, as Bunn (1975) observes, require a careful synthesis of information, predictions and opinions.

The cost of information is a subject which has attracted many writers and, in the context of this thesis, forms a part of the overall cost of the decision making process. It is possible, of course, that information costs may be distributed amongst the other information users where identical information is needed but, as previously noted, such compatibllity seldom exists in current systems.

5.2.2 Behaviour of the Prototype

Empirical research in the physical sciences is directed towards the discovery of "laws of nature", underlying environmental behaviour. Belief in the existence and immutability of those laws of nature is axiomatic in fundamental scientific research. The origins of laws of nature may have motivational implications for the scientist in the worthiness of the enterprise and optimism of its outcome. "Raffiniert ist der Herrgott, aber boshaft ist er nicht" (Subtle is the Lord, but malicious He is not - Albert Einstein). The origins of such laws are, however, of little relevance to most current scientific research, which is essentially concerned with the more pragmatic task of predicting behaviour. Laws of nature in this context often implies the scientist to be a passive observer of events 'caused' by the laws, in the way that an astronomer may observe the apparent movements of celestial

Fig 5.2 Basic sources of information

External Environment
Factors:-

\longleftrightarrow Economic
\longmapsto
Technological
\longmapsto

Internal Environment

Factors:-

Observed through:-
Observed through:-

bodies, or that we have some control over 'conditions' (in experimental work for instance). In these cases, the view is essentially fatalistic in that events are predetermined generally or predetermined in a given set of conditions.

The belief that there are laws of nature waiting to be discovered is, however, more a product of faith than of rationality (Pais,1982). There are also occasions where the observer can have a good deal of influence over the occurance of future events. Typical of this is in the occurance of observer bias in psychological and sociological work. Another example is in the interaction between predictions and outcomes. Whilst a piece of metal expands under heat in a way that is independent of any predictions about its ultimate state, the same cannot be said in situations where the experimentee is aware of the experimentor's predictions.

Interaction between predictions and outcomes exist in the project selection problem. In many cases, the decision maker's predidicn, say that a certain profit will be achieved, will be treated as a target. Similarly, predictions of low rates of personnel development can generate low expectation of personal progress. Complete interaction between prediction and outcome is termed a 'self-fulfilling prophesy' in which the prediction can be said to be the cause of the outcome. Some further discussion on this aspect is to be found in Skitmore (1981a).

The extent to which the outcome environment can be manipulated into its predicted state depends on the decision making processes of indipiduals in the outcome environment. Major inhibitors within this manipulation process include errors, unforseen and unpredictable events, lack of information and human factors (Cusack,1981) which are precisely the factors associated with the lack of fit between the prototype and the decision maker's model.

5.2.3 Conclusions

Lack of perfect knowledge opens up whole new areas of the project selection problem. As the decision maker can no longer be regarded to have direct access to the 'real world' he must attempt to create an internalised version from his perception of that world. The closeness
to which the internalised model aligns with the real world, it is argued, determines the quallty of the model and hence the quality of decisions. The degree of alignment is considered to be dependent on the contextually interdependent aspects of the modeller and the information received by the modeller.

Little is known of the abilities demanded of the modeller except that experience, training and, perhaps, some inate characteristics are beneficial. Informational requirements are, on the other hand, rather better known. Information directly relevant to the problem is, however, never complete. Some kinds of information are either too costly to obtain or simply unobtainable. These practicalities dictate the need for relatively inexpensive information concerning the entire decision environment. Further issues centre on the accuracy and usefulness of information and its relationship with the decision maker.

5.3 The Decision Environment

Bahrami (1981) considers the general 'contextual' environment of an organisation to consist of: economic factors, including inflation, interest and exchange rates; political factors, including the political ideology of the government and political developments on the international scale; social factors, including changes in life styles and values; technological factors, including the impact of new technology on specific industries; and legal and legislative factors, including the impact of government legislation on such matters as 'lead in petrol' on oil and motor vehicle companies (Bahrami,1981,p80). Smith (1985) actually reduces these five factors into four by combining legislative with political factors. These factors have been variously termed the organisation's "background environment" (Foster,1974) or the environment "outside the building process" (Tavistock Institute,1966).

Political and economic factors are, as Fellows et al (1982,p45) note, interdependent. A construction organisation at the local level is affected by the need to obtain planning approvals and also by the state of local public sector building programmes. Besides being an important client to the construction industry, the national government acts indirectly through legislation on safety, tax, noise, employment etc. Construction demand is closely related to the health of the economy at
local, national and international levels. Economic trends in regional development, the treatment of urban decay, the regulation of the economy, the manipulation of interest rates, and national economic growth and decline are important factors (Fellows et al,1982). Foster (1974), however, considers that the effect of government policy and its economic consequences on the industry's output "would not be sufficient to disrupt a long range planning exercise", a rather surprising statement considering events taking place at this time.

Social factors, which include demographic movements, changes in education, woriking hours, housing, leisure, retirement, sports promotion and holiday patterns, are said to have an "enormous" impact on the decision environment (Fellows et al,1982,p46). Pressure groups, such as those concerned with conservation, have also become a particularly important social phenomenon.

The combination of economic, political and social factors has been identified by the Tavistock Institute (1966) with sources of uncertainty attributable to goverment departments, planning authorities, public bodies, client organisations and the general public. The same combination has been studied recently by Murray (1980) in respect of social values concluding that the type and stability of values are dependent upon the interrelationships between social structure, policy and culture.

Technological factors mainly affect the construction organisation's site or business systems. There are also technological implications in the demand for certain types of construction due to increased need for computer component manufacturing facilities for instance. Foster (1974) suggests that there are important informational implications caused by changes in technology, knowledge being needed in particular of the impact of new materials, new methods and processes, and working in new environments. Fryer (1985), however, maintains that "the construction industry does not have to cope with rapid technical change, but the market for buildings is changeable and unpredictable" (Fryer,1985,p14).

The implications of these major environmental factors on the market, or in this thesis' terminology, the project generating environment, are examined in more detail in the next section.

5.3.1 The Project Generating Environment

Successive governments of the post-war era have gradually changed in their policies from direct intervention towards demand management (Budd,1978). Direct intervention still exists in the construction industry in the form of public client organisations such as the Property Services Agency and regulative action through building, fire and safety regulations and planning legislation. Indirect measures occur in the form of grants and fiscal policies which affect the demand for construction, the building land marixet, capital money markets and industrial and competitive practise.
"Changes in government policy as a result of efther internal or external matters or events can and do affect the demand for construction services" (Moore,1984,p21). The size of the government budget and changes in public expenditure policy involving cuts, reflation attempts and moratoria on cash limits, are particularly significant for the industry (Lansley et al,1979,pt1,p9). Foreign policies influence events on the international scene, in construction for military projects for instance. Entry to the European Economic Community and associated changes in taxation, legislation for equal opportunities and protection of employment are further important influences (Lansley et al,1979,pt1,p9).

Many important economic features are related to the health of the economy (Fellows et al,1982,p3). Balance of payments problems, sterling crises, high interest and mortgage rates, high inflation, rising unemployment and low economic growth being particular examples (Lansley et al,1979,pt1,p9). Economic factors are, in Clark \& Lorenzoni's view (1985), of prime importance as the decision to build is "... the result of a favourable analysis of the marketing situation that shows future increased product demands or the need for new and different products or the research department may develop new products with high sales potential, or new government or social requirements may dictate the need for new facilities ... the ultimate reason, in virtually every case, is economic (Clarke \& Lorenzoni,1985,p2).

Two particular instances of economic factors are given by Moore (1984). One is in the effect of the oil crisis, resulting in a concentration of construction activity in offshore projects, in terminal sites such as

Aberdeen, energy saving schemes, energy creating projects such as nuclear power stations, and projects involving new types of energy generation. The other example concerns the growth of container transport and the consequent need for projects involving port facilities, storage and roads.

Social factors influencing the demand for construction arise from the basic needs and aspirations of individuals and groups of people. In general terms these influences are connected with leisure, education, shelter, mobility and environmental concern (Moore,1984).

Constructicnal implications associated with leisure include such facilities as spcris and recreational centres, swimming pools, squash courts etc.. The increasing popularity of dining out involves the construction of clubs, extensions to hotels and public houses, and car parks. Eoliday activities create the demand for extensions and alterations to botels, additional aiport buildings and runways, and docirs and larding facilities for overseas travel.

Educational and domicilary building activity is affected by changes in population levels and the state of the existing building stock. A declining birthrate implies less demand for schools and teacher training colleges, for instance, whilst deteriorating housing involves the removation or replacement of dwellings in the form of new housing estates tegether with associated amenities.

Increased mobility and the greater use of the motor car has created a need for the provisicn of more suburban facilities - supermarkets, department stores, and surface and multistorey car parks.

Environmental pressure groups have had a significant impact on the nature of construction projects, such as motorways, roads, airports, nuclear power stations, and waste disposal plants.

Science and technology, and also the products of research and development, have provided a further impact on the nature of demand for construction projects. Technologically based production facilities, such as those involved in the manufacture of computer hardware and other electronic equipment or those utilising such products (such as computer centres or robotic assembly lines) are typical examples.

5.3.2 Predicting Project Opportunities

Predicting project opportunities clearly involves obtaining knowledge of the frequency and characteristics of future projects. Such knowledge is, invariably, acquired through market intelligence. Market intelligence can be obtained directly from clients and architects, although this approach has its problems, for, as Jepson a Nicholson observe, "... Architects' offices react unfavourably to the visits of salesmen, and the levels at which interviews are usually negotiated with local autherities may be of mere use to suppliers than to contractors" (Jepson \& Micholson,1972,p51,author's emphasis).

An alternative approach is to seek mairet intelligeace indirectly. One such indirect method invoving recmeds of approved planning applicaticns has been found to be sigaificantly associated with the volume of subsequent wori (SEBI,c1965). Kafid (1967) has studied "with some success" (Jepson \& Nicholscn,1972,p50) this use of planning applications in predicting housing trends in the Jerth West of England. Difficulties exist, however, in that "Local Autherity procedure is not uniform and once data are required for a locality extending across Local Authority boundaries, then standardisation of the format of applications and centralised processing of a periodic summarised return from authorities becomes necessary" (Jepson \& Ificholson,1972,p50). A further problem is that not all relevant information on project characteristics is available. There are, however, some commercial organisations who exist to provide this type of information to contractors.

The more long term changes in the project generating environment can be predicted by assessing trends in the demand for construction. Such assessments depend on knowledge of future changes in the eccnomic, political, sociological and technological factors affecting demand. Political trends may be observed from statements made by influential politicians (see, for instance, Freeson,1977), Acts of Parliament, white and green papers etc. Economic trends may be revealed by economic indicators including population statistics, indicators of regional prosperity, industrial structure, investment etc. (see, for instance, Lansley et al,1979,pt2,p22). Demographic analysis of census statistics have been used to predict changes in housing demand, for example (Parry-Lewis,1968).

Many of the informational sources used for evaluating aspects of the market are detailed by Harris \& McCaffer (1983,p182-188), including such periodicals as 'The Economist', 'National Institute Economic Review'; government publications such as the 'Monthly Bulletin of Construction Statistics', 'Housing Statistics', 'Sample Census Statistics', 'Regional Economic Reports' 'Local Planning Reports' and 'Monthly Digest of Statistics'; and other publications such as 'EMP Weekly Publication' and 'Construction Trends'.

The extent to which the organisation attempts to predict the acticn of the project generating environment is largely dependent on its mariketing policies. Rajab's survey (1981) suggests that the mest attenticn is paid to externally compiled statistics (100\%), exteranal mariset researchers (33\%), trend projections (14\%), consumer =urveys (11\%) and econcmic modelling (11\%), ccmmercial inteiligence being preferred to government reports (Rajab,1981,p164). Most forecasts and information on the external environment were found to be obtained on a regional basis by lower management (Rajab,1981,p163).

The general level of accuracy of predictions does not seem to be very good, particularly in current economic conditions. "The hard facts of a collapsing market, growing unemployment, high interest rates, and the dismantling of impressive building concerns have taught us tient our forecasts of the early seventies were far from accurate ... chenges in social, political and economic factors have been so rapid in recent jears that forecasting on the basis of extrapolation of existing trends is now far from reliable" (Benes \& Diepeveen,1985,p27). Causes of demand fluctuations have often been attributed to government measures to alter the level of activity in construction (eg. public work moratoria) or the whole economy through construction by public expenditure cuts) (Campbell et al,1974). More recently, however, there has been some evidence to suggest that the government has tried to stabilise demands on the industry by planning its expenditure and operating a more effective system of monitoring and controlling local authority expenditure (Cannon, 1978,p13). Whether the government has been successful in this is not clear for, although it is suggested that there are "very few examples of turbulent environments in construction" (Harding,1985,p220) and the construction environment only moderately uncertain (Brown,1974), Diepeveen (1985) is still adamant that public sector demand is very unstable despite efforts to create stability. One
possibility is that the environmental changes occuring are of a more fundamental nature outside governmental control, for as Lansley et al (1979) observe "... the 1970 's have witnessed a series of probably fundamental changes both in the determinants and in the structure of demand more sporadic and unpredictable than have hitherto been experienced since the war" (Lansley et al,1979,introduction).

5.3.3 Predictions in the Outcome Environment

The bulk of the ifterature dealing with predictions in the outcome environment is concerned with monetary aspects and particularly predictions of expenditure by the contractor, usually termed the cost estimate. Moyles (1978), for $12= \pm$ nce, has consicered in some detail tie factors affecting the accuracy of this cost estimate under the groupings labour, materials, plant, sub-contractors, overheads and profit. Fellows et al (1982) use similar groupings as a means of identifying fixed, variable and semi-variable costs (in the economic sense) together with direct (praject related) and indirect costs.

Fig 5.3 indicates the basic relationship of the factors in the outcome environment proposed in this thesis, which is essentially concerned with project characteristics and their influence on people, money and property. The central issue in this model in determining costs is that of productivity or performance which, togather with the nature of the tasks generated by the project, largely determine expenditure.

5.3.4 The Influence of Project Characteristics

The project characteristics are seen as influencing the tasks to be done and the income to be received by the participants in the construction process.

The information available for predicting the extent and nature of the tasks is contained formally in tender documents in the competitive situation. These, in the UK, may comprise the drawings and specification and/or bills of quantities. The accuracy of task predictions has been found to be affected by errors and omissions in the drawings (Ormerod,1984) or by misinterpretation of contract
Fig 5.3 Relationship of factors in the outcome environment
Proj. gen.
envt.
requirements (Gates,1971) over, for instance, the suitability of "equal substitutes" (Gates,1971) or "quality of work" (Moyles,1973,p51; Bennett \& Ormerod,1984). Mistakes occur through computational errors (Langford \& Vong,1979) and omission and commission (Gates,1971). Quantity errors are of particular concern (Langford \& Wong,1979) resulting in undermeasurement or omission of items (Park,1966). The generality of quantity descriptions also provides a source of error, the extent of which has been said to be dependent on the level of measurement (Bennett \& Barnes,1979). It is possible, however, that misestimates in quantities can scmetimes be anticipated (Stark,1976). Many criticisms have been made of the lack of association between quantity items and the nature of the construction task. Task oriented quantities have been proposed to improve predictability (Flanagan,1980 and Thompsen,1981, for instance).

Further project associated information regarding tasks can be obtained by site visits and enquiries to the client or his advisors. The kind of relationship with the client and his delegates has a bearing on this and future events (Cauwelaert \& Heynig,1978).

Difficulties occur due to "unknown work" (Bennett \& Ormerod,1984), which in the post-contract period can be a result of design changes, which are mostly attributable to client requests (Diekmann \& Nelson,1985), invoiving "major scope changes" (Clark \& Lorenzoni,1985). Delays caused by the client and architect are a further factor (Langford \& Vong,1979) which can, in some cases, develop into delays of a more permanent nature, such as financial failure of the client (Langford \& Wong,1979), resulting in the early discharge of the contract.

Many of the project factors which influence tasks also have implications in predicting income. The main determinant of income is the price offered by the contractor at the tender stage, this price being determined by the project selection decision, one consideration of which is the predicted monetary state caused by the amount of expenditure incurred. The heavy emphasis usually placed on monetary aspects, together with the difficulties involved in predicting the market value of the 'customised' construction poject, often results in a situation where predicted price and cost are closely related. The construction contractual arrangements are, in many respects, aimed at
monitoring this relationship by providing some expenditure related income adjustments. These are mainly project based in covering such events as errors and ommissions in drawings, specification and quantities, and client interference in the form of design chages. Environmental changes can also be accomodated in reimbursements for inflation and other unforseen events. Income fluctuations are, however, seldom exactly the same as fluctuations in expenditure as some form of surrogate measure is often employed. Design changes, for instances, are usually valued by quantity related measures rather than by an exact record of expense incurred. Time related aspects are also important as, in construction contracts, income is received some time after the expenditure has taken place. These cash flow aspects can be exacerbated by delays in client payments, particularly where outstnding claims are involved.

5.3.5 Tasks and Performance

The ways in which tasiss are defined and executed are attributable to a combination of project characteristics and other events of differing degrees of predictability. The weather, especially in the early stages of the construction process, is clearly an important factor, as is the extent and quality of management and control (Gates,1971; Duff,1976). Delays in obtaining manegement approvals is a source of variability (Eennett \& Ormerod,1984). Adequate advance planning by means of network analysis, for instance, can improve predictability but there is no evidence of its widespread use in the construction process (Cusack,1981). The complex and dynamic arrangement of tasks on a construction site is, as demonstrated by Bennett \& Fine's (1980) simulation studies, an important cause of variability.

Performance is influenced by the task and its associated working conditions (Manson,1985), the state of materials and plant resources and the development and aspirational state of the operations. The degree of difficulty presented by the task is difficult to predict due to the variability in tasks and condition between projects. As Moyles observes "... a complete workforce is seldom transferred from job to job so whilst a competent site agent may obtain favourable results in one situation, there is no guarantee that this programme will be repeated
in another" (Moyles,1973,p46). Predicting learning curves or the economies of repetition for similar reasons is also problematic (Foster,1974). Performance is linked to incentives (Moyles,1973,p49) although "... the cost of the work often remains the same" (Moyles,1973,p49), the saving in time and the reduction of people utilised, however, can affect expenditure by reducing on-costs and overheads. Labour outputs can also vary from area to area as some parts of the country have "... traditionally poor output and strong union militancy" (Moyles,1973,p49), although these are "... fairly well recognised by local and national contractors with experteace of worising in these areas" (Moyles,1973,p50). Labour unrest (Gates,1971), disputes (Earnes,1974) and strikes (Clark \& Lorenzoni,1985) are particularly sensitive factors in performance predictions.

Fryer (1985) intimates seversl personal factors - perscnelity, experience, motivation, ability and sirill, and stress to be important determinants of human performance. Other factors inclucie role claritif and feedback in addition to task demands. Feedbacis, in general, jas not been thought to be adequate in construction (Flanagan,1980), although measurement techniques of work study and activity sampling do exist.

Efficient working is also dependent on the requisite materials being delivered at the right time and in the desired place (Mcyles,1973,p50). The use of power tools and other items of plant has a =ajor impact on productivity (Niss,1965; Cusack,1981). The occurance cf iliness aad accidents are further factors (Clark \& Lorenzoni,1985).

Many other factors are invoived in determining performance levels, a complete review of which is beyond the scope of this thesis. It is clear, however, from this brief review, that performance rates are "highly variable" (Bennett \& Ormerod,1984) and their prediction is probably the most uncertain aspect of the entire project selection problem.

5.3.6 Outcome States

There is very little reference in the constuction literature to the prediction of human development. Such literature as does exist is
concerned primarily with human development as a means to further improve the company's monetary state, via improved efficiency and productivitiy for instance. Human development in such cases may be measured in terms of responsibility, position in the organisational hierachy, remuneration, courses attended and qualifications acquired. A more indirect measure of human development (but more directly relevant to the monetary state), particularly at the operative level, is productivity, which is, to some extent, a reflection of the individual's abilities and sixills, experience and motivation. Predicting human development per se, however, may involve the assessment of other factors more directly associated with well-being. The only such measures that appear to be available at the moment seem to be evaluated intuitively, in that "... the worifforce is reasonably content", or by the frequency of disputes, which, as has been noted earlier, may be regarded by some individuals and groups to be aspirational events in themselves. The only other alterative that seems to available lies in the use of questionnaires, althougi this approach has currently been restricted to research activities.

Predictions of property states are, in the project context, normally confined to changes in the materials and plant levels. Various control techniques are available to influence the level of stocks and which are applied with varying degrees of success. Plant and particularly materials supply has been shown to be virtually perfectly elastic (Burton,1972), although "... delays do occur resulting in variabilities caused by late deliveries" (Bennett \& Ormerod,1984; South,1979), mechanical breardown and malfunction of equipment are a further source of variability (Bennett \& Ormerod,1984).

The price of labour and materials and plant combine to impact on monetary states. Material substitutes can affect the accuracy of predictions, for "... a careful search of the market alternatives may yield better goods at competitive prices" (Harris \& McCaffer,1983,p181). The acceptability of such substitutes to the client, however, is not necessarily assured, though, and is in itself a further cause of prediction error (Gates,1971). The fluctuating prices of materials is a cause for concern (Gates,1971; Case,1972), although trends can be predicted to some extent (Cauwelaert \& Heynig,1978). Fluctuations in discount levels are a further difficulty.

The effect of labour costs on monetary levels is dependent on productivity and rates of pay. Rates of pay can fluctuate for many reasons, (Caulewaert \& Heynig,1978), including changes in government legislation, union agreements, responsibility and incentive schemes. Labour related expenses also exist in the form of overtime payments, supervision costs, national insurance contribution etc.

Further fluctuating expenses stem from changing interest rates (Barnes,1974), inflation (Bennett \& Ormerod,1984) and currezcy rates (Clark \& Lorenzoni,1985). Prediction errors can also occur in the failure to allow a sufficient amount for overheads (Park,1960).

5.3.7 The Effect of Sub-Contracting

The incidence of sub-contracting has greatly increased in the post-war era "... probably due to the complexity of modern buildings, labour shortage, structuring of large firms and taxation policy" (Moyles,1973,p59). There are exceptions, however, as some companies are "... actively pursuing closer links with sub-contractors through acquisition" (Lansley et al,1979,pt1,p59). These changes are seen, by Lansley et al , as an indication of the companies' preference "... to increase control over their operational environment through 'internalising' the activities upon which they are depencent or by attempting to reduce uncertainty by externalising parts of their business" (Lansley et al,1979,pt1,p59).

The extent to which control is lessened is largely depencient on the relationship between the company and the sub-contractor. The continued use of a sub-contractor should be beneficial in this respect, although this is not always possible due to contract requirements (nominated sub-contracts, for instance) or financial considerations. The degree of uncertainty is similarly dependent on familiarity with the subcontractor. An important source of uncertainty occurs when the contractor has to estimate sub-contract prices instead of obtaining quotations.

Delays by sub-contractors have been found to be a particular cause of prediction error (Langford \& Wong,1979).

5.4 The Prediction Process

The very need to predict future environmental states generates processes which themselves affect the decision environment. The degree of accuracy of predictions, dependent on the contextual relationship between the predictor and his information, largely determines the level of effect.

Predicting movements in the project generating environment is usually regarded as a marireting function. Little is known of the persczael and monetary consequences of this relatively recent activity in construction companies.

The functional process of predicting changes in the outcome environment, especially the monetary aspects, is better cocumented. Predicting future project related costs is aormally performed by the estimator or estimating department. The size of the estimating department is often related to the company's turnover (Humphreys,1977), the amount of resources needed being determined by froject characteristics such as the type and size of project, its location and the time available for tendering, together with the estimator's expertise and information. The time available for tendering has been found to be particularly important (Cusack,1981). The frequency of estimates appears to be season related, Humphreys' (1977) study noting a peak period between February and March during which time a tatal of 14 to 16 estimates were being compiled simultaneously.

The direct effect of the estimating process on monetary states has been investigated by several researchers. Broemser's (1968) analysis of one construction company found the cost of estimating to represent 9.1% of total assets and 1.8% of total receipts, this figure being equivalent to 0.18% of the value of each project estimated, as only 10% of the estimated projects were actually obtained. Park (1966) places this figure higher at between 0.5% and 2.0% of project value, offering a "... rule of thumb used by some contractors on large projects" to be "... total estimating cost $=0.005 x$ estimated direct materials costs + $0.015 \times$ estimated direct labour costs" (Park,1966), equivalent to 1% on a $\$ 1 \mathrm{~m}$ contract. Rubey \& Miner (1966) suggest that, for a "good bid", estimating costs would be "perhaps 1% of the total bid". Harrison (1981) is of the view that estimating costs vary quite widely between
0.1% and 10% of project value, depending on the degree of repetition involved and the experience of the estimator.

Larew (1976) has used a multiple regression analysis technique to identify possible causal associations in the time spent by one contractor in estimating 22 project costs in the early 1960's. The results of this analysis suggest that high activity may be caused by the presence of many speciality items: excessively detailed specifications, and reference to exotic standards; high quality finish; the insistence that contractors satisfy owners' every desire; and where the contractor seems to be held responsible for the errors and omissions of the designers. Medium levels of activity are associated with some specialities, but not to an excess; reasonable and understandable contract documents; the requirements for a good and workmanlike finish; the contractor being responsible only for work shown on plans and in the specifications; where the designer accepts responsibility for the contract documents; and where the contract assures a fair, prompt and impartial mediation of disputes. Low activity is associated with very few specialities; abbreviated specification; open structures with low quality of finish; simplicity in every respect; and relatively straight-forward production work is needed. Estimating time was also shown to be less for "in.town" projects and more for "out of town" projects, due to the necessity for the estimator to visit the site. Niss (1976) has also obtained evidence that estimating costs are a logarithmic function of project value.

All of the research indicated above, however, was conducted prior to the introduction of computer aids. Since that time, several inexpensive estimating systems have become available on the construction market and have attracted some considerable interest. One such system is known to be installed in over 1,000 locations at present (Hunt,1986). The effect of this on project estimating costs is likely to be quite dramatic.

5.4.1 Accuracy of Predictions

As has been previously discussed, the accuracy of predictions relating to the project generating environment is not thought to be generally very good. There are no specific figures available in the literature
concerning accuracy levels achieved and some research in this direction, particularly in relation to project characteristics, the abilities of the predictor and information used would be advantageous.

Accuracy in predicting the outcome environment is, however, known to be rather poor. Estimating construction costs is probably the most researched area and the process has been found in practise very "approximate and crude" (Benjamin,1979) relying on "haphazard" methods often "grossly in error" (Neil,1978). Ashworth \& Skitmore (1983) have examined estimating accuracy in same detail, considering the various measures available and noting the extensive use of subjective judgement involved. Their findings suggest that the extent of complexities and uncertainties in the process results in accuracy being determined more by the ability of the predictor than the project information avaialble. In ∇ iew of the facility to 'control' work to some extent in the post preciction period, it is reasonable to assume that the cost estimate can often be considered to be self-fulfilling to some extent, in which case cniy a reascnable figure is needed. There is, however, a bias in the process due to the need to avoid excessively low estimates of expenditure. Such low estimates are avoided by including "contingency allowances" (Earrison,1981) or "risk premiums" (Portsmouth Polytechnic,1974; Barnes,1974) to cover possible errors, particularly those caused by uncertainty or risk. This can result in uncertain cost being "padded two or more fold" (Case,1972). Clearly there are limits to this procedure as increasing estimates of expenditure in this way will result in a totally false impression of the predicted monetary state. A further difficulty is that the predicted price of the project, if based on expenditure predictions formulated in this way, may well be in excess of the price the client wishes to pay. One way of avoiding this is to "... exclude any allowance for such unpredictable events as strikes, bad weather, major scope changes, acts of God, currency fluctuations etc from the estimate" and any other item with less than a 50/50 chance of occurance, and making full allowance for other events (Clark \& Lorenzoni, 1985,p117).

An alternative approach is to consider the probability of occurance of an event and the cost associated with its occurrance, the product of which is the "expectation value" to be incorporated into that estimate (Gates,1971,p277). The suitability of this approach depends on the risk attitude of the decision-maker who may or may not be happy with this
averaging technique. Case (1972) and Stacey (1979) have both proposed a method of deriving a probability distibution of cost estimates from an indication of the most likely lower and upper bounds of the predicted cost of individual items. Such a technique is anticipated to accomodate the preferences of decision-makers to varying risk attitudes.

5.5 Selection Strategies and the Non- Deterministic Model

Kmietowicz \& Pearman (1981,p105) have considered three models for decision-making with multiple criteria. These models cover situations of uncertainty, risk and "incomplete knowledge" (where criteria can be razked only).

Although they acknowledge that it may ultimately be possible to develop a strategy for handing simultaneously the twin problems of uncertainty and multiple criteria, "current practice is nowhere near this point".

Four approaches encountered in the construction literature are concerned exclusively with the second model where a cardinal scale is used to assess the relative importance of different criteria. Thefirst two of these approaches, by Hillebrandt (1974,ch13) and Benjamin (1969) attempts to evaluate preferences directly from the cecision-maker, based on Shackle's (1952) degree of potentisi surprise in the former and utility theory in the latter. The two other approaches, by Fellows \& Langford (1980) and Ibbs \& Crandall (1982) use a multi-attribute utility function.

5.5.1 Study 1 (Hillebrandt,1974,ch13)

Hillebrandt's approach is to first construct an index of potential surprise of a specified profit/loss outcome for a specified bid value. The next step is to identify the profit and loss outcome on the potential surprise index which will generate the greatest stimulus to the decision-maker. These outcomes, called standardised focus gain and standardised focus loss are then evaluated on a gambler indifference map to ascertain the ultimate focus gain. Ultimate focus gains are
found for all possible bid values and the bid value associated with the maximum ultimate focus gain is adjudged to be the best decision.

A further development proposed by Hillebrandt is to allow for competitive aspects of the problem by plotting the ultimate focus gains and the degree of potential surprise of obtaining the contract associated with each bid value on a bidding indifference map.

Althcugh seemingly complicated, Hillebrandt's apprcach is simply a formalised intuitive procedure. In accomodating a whole raage of subjective judgements, the approach represents an adirirable attempt to avoid many of the criticisms normally levelled at bidding decision aids. The benefits of this form of analysis are suggested by Hillebrandt as being "... belpful for understanding the reasens for decisions on tender prices; in locating the reascns for difference of opinion between persons sharing the entrepreneurial functicn within contracting firms; in assessing how the bidding thecry based on the probability approach can help in tendering cecisions; and hence, altogether, in making the process of tender decisions more logical and efficient" (Hillebrandt,1974,p179).
5.5.2 Study 2 (Benjamin,1969)

Benjamin identifies three aspects of the selection strategy problem (a) a probability distribution to express the relaticnship between the cost estimate and the actual monetary cost of performing the woris. (b) a non-linear utility function which scales the decision-maker's preference for different amounts of money and (c) a means of assessing the probability of obtaining the project with different bid amounts.

In deriving the probability distribution of the cost estimate, it is proposed that such factors as sub-contractors' bids, materials availability and costs, labour availability and productivity, methods of performing the work, season in which the work is done, location of job, type of building or type of construction and supervisory capacity are taken into account.

The utility function "... transforms the monetary value of the outcome to a different scale which satisfies the decision- maker's ordering of preferences for different amounts of profit or loss with a given bid". Further work by Willenbrock (1972) has developed the work into a sophisticated technique.

In estimating the probability of obtaining the project the characteristics of the project and the "bidding environment" are considered.

5.5.3 Study 3 (Fellows \& Langford,1980)

The value $c n$ the five criteriz speed, accuracy, cost, client and benefits are assessed by the decision-maker. The agoregated outcome evaluations, together with the probability of each outcome are then analysed by means of a decision tree. Sensitivity analysis is recommended to assist in identifying the best decision route.

5.5.4 Study 4 (Ibbs \& Crandall,1982)

The values of the three criteria profit return, project size and "regulatory aspects" are assumed to be derived by "conventional procedures".

Estimating scalar values for the preference function is suggested to be an often "imprecise task". For a decision problem such as the search for new business marisets, the American authors recommend sources such as 'Dun \& Bradstreet' statistics as providing some relative indication of possible expected profit margins. Various government agencies and owner's representatives may supply future bidding volume and project size information. In the final analysis, though, the authors maintain that it is the "... decision-maker who, with the assistance of the decision-analyst, must make these estimates".

In their example, the mean estimated scalar value and the estimated standard deviation about that mean is assumed. A sensitivity analysis of the decision alternative is then conducted by a Monte Carlo simulation procedure for one hundred iterations.

5.5.5 Conclusions

Of the four selected published accounts of non-deterministic approaches to the construction project selection problem with several criteria, the first, by Hillebrandt, relies entirely on the decisicn maker's judgement.

Benjamin's approach estimates the monetary effect of a decisicn based on some knowledge of the probability distributions of estimated/actual costs and 'our' bid/competitors' bids. These probability distributions are suggested to be obtained as far as possible by objective azalysis. The estimated value of the preference functicn is derived from some non-linear function of the estimated monetary value of the project.

Fellows \& Langford and Ibbs \& Crazdall both estimate vaiues of individual criteria by relying mainly on the decision marer's fudgement. Sensitivity tests are recommended to test the reliability of outcome evaluations.

The additional difficulties associated with the multiple criteria project selection problem in the non-deterministic model are in the reliable assessment of criteria values. Whilst an assessment by empirical means would seem desirable, the frequent recourse to the decision-maker's judgement in these assessments prompts the view expressed by Hillebrandt ($1974, \mathrm{pl} 184$) that "... mest of the facters are so varied and qualitative that it seems better to use judgement for quite wide groups of variables together".

5.6 Dynamical Aspects

The effects of imperfect knowledge are essentially two-fold. One factor is that uncertainties in the immediate decision environment introduce the necessity to consider more indirect influences, particularly in the project generating environment. These indirect influences also result in considerations of other aspects including organisation and control together with marketing decisions. In terms of the sequential machine approach discussed in Chapter 4, this would suggest a revised model along the lines of Fig 5.4 Here the project decision machine envisaged as being one of several such decision machines including an organisation and marketing decision machine all
Fig 5.4 The project decision system environment
exogeneous factors

causally related to the project generating machine and the outcome machine. The project generating machine consists of a set of four internal 'states', economic, governmental, societal and technological, which are determined by exogeneous variables such as government ministerial policy decisions, changing international economic conditions, shifts in societal attitudes and general technological developments, generally influencing the demand for construction work. Other determinants of the project generating machine states emanate endogenously from the outcome machine in what may loosly be termed as marketing inputs. The outputs of the project generating machine determine the frequency and characteristics of project opportunities fer input into the project decision machine. The project decision machine output in the non-deterministic situation consists not only of the dichotomous project selection variable, but also of other features whici may determine project acquisition, such as the price and contract duration offered. The result of the project decision, together with such exogenous factors as societal aspirations, interest and inflation rates, forms an input into the outcome machine affecting its three states of people, money and property. The connection between the outcome machine and the project generating machine forms the dynamical linir in the system and the control link (shown dotted) suggests a means by which the decision machine can be automated to respond in a rational manner to changes in outcome states.

The second factor turns on the predictive difficulties associated with the system components. The five general characteristics of each machine, inputs, outputs, internal states, state transition and output functions, have some degree of unpredictability, usually extremely high. The way in which environmental changes affect project opportunities is largely unpredictable and little appears to be known of the effect of project characteristics on the state of personal wellbeing. Perhaps the most knowledge that is available concerns the effect of project characteristics on monetary outcomes, although, as discussed in this Chapter, there is still a considerable degree of uncertainty involved. These predictive difficulties are further exacerbated by the need to forecast future events, preferably over a period of several years.

The situation is, however, not entirely hopeless. One of the great contributions of J. von Neumann (1969) is to have proved the fact that a predictable system can be built from unpredicatable parts. An
outstanding example of this is Bennett \& Fine's (1980) construction profect simulator (CPS) which, by repeated simulation of a stochastic construction process model containing many highly varying elements, generates fairly stable probability distributions of project cost and duration. The CPS typifies what Gottinger (1983) has termed dynamic systems of "intermediate complexity". Gottinger outlines four points on which he would like to see computer models developed in order to cope successfully with systems of "intermediate complexity". Firstly, the model should be aimed at achieving improvements rather than optimality. Secondly, sensitipity azalysis should be preferred to formal statistical hypotheses testing. Thirdy, the computer model should consist of an interaction between human beings and machines, And, finally, the system should be integrated $a s$ far as possible with other similar such systems.

These 'points' coincice well with the wori described in the last section in prescribing a fudgement-related system with a facility to observe the effect of errors by means of sensitivity aadyses. The improvement-related approach has already been proposed in Chapter 2, Fig. 2.1, where options are evaluated consecutively for improvements.

Relationships with other systems has already been considered, and these other systems bave been introciuced in Fig. 5.4 as other decision machines, the crganisational and marketing machines being seen as particularly relevant. Computer simulation, an essential ingredient in systems of intermediate complexity, also aligns with the need to anticipate changes in the environ ment in contingency planning or other 'scenario' type approaches to flexible management.

CHAPTER 6

The project decision system

6.1 Introduction

This chapter completes the specification of the project decision system by defining the various options available to the decision-maker. Some means are discussed whereby the system can be utilised in the search for decisions which will best enhance the outcome environment. Further references are made to the construction interature to determine possible appropriate search methodologies by means of decision rules and strategies. The chapter concludes with a final proposal for a project decision system with an indication of scme derices necessary for its practical operation.

6.2 Decision Options

The decision options considered in this section are restricted to the set of outputs associated with the project decision machine shown in Fig 5.4. Options that are associated directly with organisational and control decisions, marketing decisions etc are outside the scope of this thesis. These other decisions, however, interact with the project decision and references will be made where the interaction occurs.

Ansoff (1965) recommends five possible alternative courses of action in project screening: reject the project; provisionally accept the project; add it to the reserve list of approved projects; remove a project from the reserve list and replace it with the same project; and remove an active project, discontinue it and provisionally accept the present project (Ansoff,1965,p183). As contractual issues prevent the practical implementation of any of these alternatives once the construction organisation is formally employed by the client, the relevance of these options will be restricted to the pre-contract period and, in particular, the tendering (bidding) period.

The limited amount of time available for bidding limits the use of reserve lists to a minimum, the usual options being restricted to acceptance or rejection of the project. Harris \& MeCaffer (1983) suggest that this decision to bid must be made at three possible points
in the bidding process: during the pre-selection stage, if a preselection process is being used; after receiving all the contract documents; and after the cost estimate has been prepared.

The decision that the project is not required generates two options, not to bid or to bid with a 'cover' price. The decision that the project is required generates several options, including alternative price levels and what Simmonds (1968) terms "non-price features" such as quality, contract duraction and design facilities (Clark \& Lorenzoni,1985). The break-down of price also creates options for front loading (South,1979; Diekmann et al,1982) to enhance cash flow. Further options are theoretically available in the combinations of price, non-price features and loadings.

6.3 Selection of 'Eest' Options

The basic decision model proposed in Fig. 2.1 involves the sequential identification, evaluation and comparison of decision options as a means of locating the 'best' option. In terms of the project decision system, this would entail the evaluation of various bid levels, monprice features and loading arrangements, and all combinations of these, for a sequence of project opportunities over a suitable period (about 1/2 years). The uncertainties in the system environment imply that the frequency and nature of project opportunities, changes in the outcome environment and exogenous variables together with their interrelationships are not known very well.

One approach to finding the best set of options in these circumstances would be to evaluate every conceivable combination of options and events. There are, however, clearly extremely severe computational difficulties in this approach. An alternative procedure is to confine the process in some way to a reduced set of alternatives. This approach effectively introduces a further decision into the system ie. which option ar set of options to evaluate next. This decision is termed here the option identification decision (OID) and a procedure for determining the option identification decision is termed an option identification decision rule (OIDR).

The literature reveals many (non-random) OIDR's, often of a qualitative nature, that are applied by construction project decision makers. In almost every case the options considered are whether the project is wanted and, if so, the level at which to bid. The next section examines the nature of the OIDR's commonly employed.

6.4 Option Identification Decision Rules

The magnitude of a decision, it has been said, "... will normally be judged in terms oi resource commitment its implementation will require and the risk factors associated with this commitment in relation to the expected outcome" (Cusack,1981,p24). The substantial effect of project decisions on resources together with the associated high levels of risir and uncertainty known to exist, indicate that the project decision is of paramount importance. The guidelines for making such decisions are determined by the organisation's business policy. Business policy statements are of the type "When faced with a situation of the type \mathbb{X}, always choose course of action A, rather than B or C..." (Kempner,1971,p62), and as such would seem to be eminently suitable potential OIDR's. The rather subjective manner in which policies are formulated "... as a result of moral, political, aesthetic or personal considerations rather than as a result of logical and scientific analysis" (Kempner,1971,p63) and their influence in the profect evaluation and selection process in determining the choice amongst multiple criteria strengthens this view.

Policies are normally devised to coincide with the Managing Director's objectives (Lansley et al,1979,Appendix E,p11-13), the board of directors and senior management (Cusack,1981,p39) or in consultation within a group of companies (South,1979).

Business strategies appear to perform a similar role to policies. Strategies have been defined as "broad policies" (Bahrami,1981,vol2,p5) describing "patterns of decisions" (Andrews,1980) resulting from or enabling the "continuous process of making entrepreneurial decisions" (Drucker,1959). The distinction between strategies and policies, on this basis, is not very clear and, indeed, some "considerable confusion" is known to exist (Kempner,1971,p6i3). It has been said that "... policy decisions refer more often to the character and nature that the company
wishes to adopt, while strategy refers to the means to be employed in bringing about these desired characteristics" (Kempner,1971,p63). This suggests that, in terms of the project decision. system, the view on what constitutes the most desirable states in the outcome machine is determined by policy whilst the internal mechanics of the decision machine which generate these states is determined by strategy. In other words, the OIDR's are determined by strategy and the 'best' set of OIDR's are determined by an 'optimal' strategy.

The high level of uncertainty surrounding the project decision problem has an important effect in strategies and policies (Frazer,1981), mainly due to prediction difficulties (Benes \& Diepeveen,1985). Uncertainties can occur excgenously by changes in the levels of demand, for instance, and enengencusly by the results of the decision mechanism. The combination of these situations is considered here in terms of high/low risk excgenous factors and strategies.

6.5 Low Risk Exogenous Factors and Strategies

Harding (1985) has identified two types of low risk exogenous sets of factors, the placid, randomised environment and the placid clustered environment. Low risir strategies in the placid randomised environment are essentially "stick with the knitifig" (Peters \& Waterman,1982) in terms of project characteristics with attention mainly focused on the outcome environment especially in terms of production (Lansley et al,1981) and baciward integration Cfess,1981). Typical objectives in these situations are to "... achieve target profits and monetary return" (Niss,1965) and limited or selected growth (Fellows et al,1983; Barnard,1981; Porter,1980,pxvi1) with some preference for growth (Fellows et al,1983). The emphasis is on the correspondence between projects and resources, which Moss terms the focusing effect (Moss,1981) resulting in responses to project opportunities limited and influenced by the size of the company (Jarman,1978; Lansley et al,1979,pt3,p2). This simple response mechanism, termed "operational" (Lansley et al,1979,pt3,p2) or "tactical" (Harding,1975,p216) can influence the type of work chosen (South,1979), although smaller builders appear to be less affected (Jarman,1978).

The focusing effect has been observed in most construction organisation strategies. South's examination of 23 construction companies, between 1970 and 1976, found "little effort to change markets" except from public to private housebuilding (South,1979). Most companies had limits on work types, geographical range from head office and value ranges of work. In comparing differing sized construction companies, Jarman concluced that large companies "... do not tackle business ventures with little knowledge or expertise" (Jarman,1978,p171). Medium sized companies "... usually concentrated in one area, both spatially and by product" (Jarman,1978,p165). Small companies specialised in maintenance and repairs which the large companies generally avoided unless as a rolling programme. House builders, on the other hand, cculd do "... any type of job within reascn, local authority heusing ... small incustrial units ... being specified aiternatives" (Jarman,1978,p163).

Outcome oriented strategies are essentially concerned with the need fer work reflected in the level of utilisation of resources. Lew risk strategies recognise limitations in capability and capacity, concentrating on the availability of resources by means oi capability profiles (Fellows et al,1983,p18) for instance. Project woris load has been found to be the single most important factor in determining the bidding decision (Mannerings,1970) affecting the organisation's ability to tender and resulting in the decision to return a teader, reduce margins or be mere selective in projects (South,1979).

The availability of personnel has been found to be a major factor affecting the bidding decision (Niss,1965), one reason being due to the policy of keeping the work force together (Niss,1965). Plant and skilled operative constraints are said to exist (Cusacis,1981), craft shortages occuring because of redeployment difficulties caused by barriers to entry between crafts (Burton,1972). Utilisation of equipment is one objective of construction companies (Niss,1965) and materials availability has been found to affect the bidding decision as it can influence the contract duration and thus the level of project overheads (South,1979). Low risk monetary oriented strategies include minimising capital usage (Rajab,1981) or utilising available capital sufficiently to avoid financial over-extension (Park,1971,p24.4), an essential constraint being that the project must generate sufficient profit to cover overheads (Humphreys,1977).

Harding's second type of low risk exogenous factors, the placid clustered environment, implies the existence of some predictable movements in the project generating environment which can be exploited by the organisation. Such identifiable trends can lead to low risk demand related pricing strategies (South,1979) based on forecasts of future project opportunities and levels of competition (South,1979). Medium sized organisations for instance, being more susceptible to down-turns in demand (Jarman,1978), may respond by increasing specialisation (Jarman,1978) or competitive advantage. A more coherent market oriented strategy can be adopted to enhance company imegs and reputation and, to some extent, influence demand by adopting a passive attitude on claims (Harris \& KcCaffer,1983,p181), co-operating with clients in improving the design and contract (Herris \& McCaffer,1983,p182) and generally increasing client satisfacticn (Rajab,1981; Peters \& Waterman,1982).

Low risk responses to change in demand imply that output trends will be a delayed and smoothed version of demand trends. Evidence of this lagged and damped effect (South,1979) suggest that low risk exogencus factors and strategies typify the construction industry.

6.6 High Risk Exogenous Factors and Strategies

High risk exogenous factors are associated with Harding's (1985) disturbed reactive environment and Ansoff's (1979) turbulent fields. Turbulent fields imply a gross increase in relative uncertainty where effects are amplified and become unpredictable; where there is ifttle relationship between a decision, its resulting effects and the next decision to be made; and where the future appears to be disjointed and discontinuous (Harding,1985,p220). There are, fortunately, few examples of turbulent environments in the practice of construction (Harding,1985,p220), the construction environment being foupd to be "moderately uncertain" (Brown,1974) and not significantly disruptive "... other than through the inflationary mechanism" (Foster,1974). Turbulence, however, can be induced if the organisational structure is inappropriate to the demands placed on it, or if the quality of management declines (Harding, 1985,p220). Low risk strategies of the kind outlined in the previous section can have similar effects.

Swift change in demand can cause "overheating" in the industry. With low risk strategies "... the various parts of the [construction] industry cannot increase or decrease output as quickly as orders. But when orders increase too rapidly, the industry becomes overheated and contractors spread work forward and vice versa when demand is inadequate" (Campbell et al,1974,p17). The results of such overheating or inadequate demand can be observed by such indicators as the ratio of vacancies to unemployed, level of brick stocks, the rate of increase of earnings and bid prices in construction compared with other industries, architect's new commissions, and banirruptcies in the industry (Campbell et al,1974).

Perseverance with low risk strategies in high risi environments can have uncesirable consequences in the form of defensive take-overs (Jarman,1978) or liquidation (Lansley et al,1980; Jarman,1978). There are difficulties, however, despite this knowledge, in changing strategies to accomodate fluctuations in demand because of commitment to the focusing effect (South,1979) and general resistance to change (Lansley et al,1979). The project decistcn model implies that commitment to the focusing effect is inappropriate except as one means of identifying plausible options. The organisation and management of change is considered to be a function of the organisation machine (Fig. 5.4).

The high risk environment has a twofold effect on the organisation. The fluctuating and unpredictable changes in demand represent increased and varied opportunities and threats. Successful low risk strategies are associated with avoiding threats and concentrating on survival (see, for instance, Fellows et al,1983,p188; Hillebrandt,1974,p89,p92; Woodward,1975,p170; Harrison,1982), whilst high risk strategies attempt to exploit opportunities as a means of further growth (see, for instance, Lansley et al,1979,pt3,p86; Niss,1965; Fellows et al,1983,p188; Rajab,1981). The former strategies can lead to controlled regression (Benes \& Diepeveen,1985), decline (Fellows et al,1983,p32), the desire for stability (Niss,1965; Rajab,1981) or a constant volume of work (Niss,1965). Growth strategies lead to the desire to progress and expand (Niss,1965,p92) by increasing the level of operations (Woodward,1975,p170), size and turnover (Fellows et al,1983,p188).

In high risk environments, both low and high risk strategies require a certain 'fleetness of foot' regarding market orientation. Low risk strategies are essentially passive in that attempts to influence project generation are kept to a minimum except in times of need. The accent is on market specialism until circumstances dictate otherwise. Stability strategies (Lansley,1979,pt3,p87), emphasis on quality of product (Rajab,1981; Niss,1965), strategies to keep out competitors (Woodward,1970) and maintain or increase market share (Foster,1974; Cusack,1981; Fellows et al,1983,p188) are typical. Entry into new markets, when necessary, can present difficulties, however, depending on the costs of starting up and the chances of obtaining more woriz in that market (Foster,1974). One approach to this difficulty is the "foot in the door" strategy (Foster,1974) invoiving a gradual transition between marisets. Information on new marisets is clearly a vital facter.

The main emphasis with low risk strategies in high risk environments, however, is in the outcome environment. The chances of survival can be improved by increased productivity (Harris \& McCaffer,1983,p157; Cusack,1981; Claris \& Lorenzoni,1985,p55,pp64-72) by better and more flexible use of resources through subcontracting (Foster,1974) or redeployment of workmen (Cusack,1981), for instance, to increase efficiency and minimise costs (Niss,1965). Increased flexibility has been found in at least two cases, plant and staff work load, to minimise the impact of resource levels on the bidding decision (South,1979).

High risk strategies, under the definition implied here, are associated with aggressive market oriented behaviour. It has been suggested that priority to market related objectives is essential for the modern company (Lansley et al,1980). Such forward integration strategies (Moss,1981) include expansion and diversification (Dressel,1965,p14; Fellows et al,1983,p26) developing merger potential (Fellows et al,1983,p49) and growth through acquisition (Lansley et al,1979,pt3,p78). Grinyer (1972) has postulated the incremental nature of strategic development in diagrammatic form, from existing expansion and diversification to conglomerate diversification (Fig. 6.1). Strategic developments on this scale demand close integration of bidding, organisational and marketing activities in order to be successful. Newcombe (1976), for instance, found incompatibilities between organisational and marketing strategies can have a terminal effect on

Fig 6.1 Alternative strategies

	Existing services type of construction, or product	New but related services, type of construction or product	New and largely unrelated products
Existing clients in same gecgraphic area	Existing strategy	Expansion	Expansion
Existing clients in new geographic area	Expansion	Expansion	Diversification
Hew clients in same geographic area	Expansion $\quad 7$	Diversification	Conglomerate diversification
New clients in new geographic area	Expansion ${ }^{\mathbf{V}}$	Diversification	Conglomerate diversification

"Construction firms are normally well advised to explore strategic alternatives in the sequence indicated by the arrows".

Source: Grinyer (1972, P9, Figi)
the organisation. Organisational flexibility is needed to prevent incompatibility occuring (Lansley et al,1979,pt1,p15).

High risk strategies continually seek new fields of endeavour (Moore,1984,p20) and attempt to create their own demand (Sidwell,1984). Such objectives necessarily imply the existence of good environmental information and active marketing together with appropriate management and co-operation of those involved in the decision environment to overcome long run limitations of size, organisation and markets (Moss,1981).

6.7 Conclusions

The previous examination of the torai project cecision problem reveals the need to assess multiple conflicting citeria under dynamic and uncertain conditions. The appropriate cecision is selected by evaluation and comparisons of options over time. The options to be evaluated include the decision of whether or not the project is wanted and, if it is wanted, the level of price to offer. Options occur due to the presence of project opportunities generated by the general demand for construction together with the marketing efforts associated•with previous decisions. The result of the project decision is to influence changes in the outcome enviranment. The uncertain nature of all aspects of the decision problem, and particularly those important factors which lie in the future, indicates that values and strengths of relationships will need to be estimated. The combined complexities and uncertainties of the problem suggest that scme simulation model may be most appropriate, allowing the implication of inaccurate estimates to be examined. Fig. 5.4 proposes a schematic system of the project decision incorporating major aspects of the problem in terms of project generating, project decision and outcome machines. A schemata for the project decision machine is shown in Fig 6.2 incorporating a means of determining future events by simulation.

The project decision machine contains an option generator and evaluator/comparator. The option generator is activated by incoming project opportunities and construction demands together with details of the outcome states. Human input is available through the 'people'

outcome state. The option generator contains option identification rules (strategies) whilst the evaluator/comparator contains rules for comparing multiple criteria (policies). The simulator is a small scale model of the project decision model, designed to simulate future environments and decisions. The project decision machine contained in the simulator has exactly the same configuration as the project decision machine illustrated in Fig. 5.4. The project decision machine operates, therefore, in a recursive manner, each decision machine containing a nested versicn of itself. The satisfaction of some termination criterion results in the cutput of the currently 'best' decision. Decision reliability is estimated by some form of sensitivity analysis.

A typical medium term decisicn herizan for a medium sized construction organisation would seem to be about lik jears, during which time the organisation will typically receive about 75 project opportunities. An exhaustive search of all possible options will certainly present some serious problems for a sub speed-of-lightcomputer, even when the options are restricted to two, to bid or not to bid for each opportunity. The number of iterations in this case are 2^{75} which, even assuming an extremely fast 1 nanosecond per iteration, will still take almost 1.2 million years of computer time! A method of limited search is clearly necessary.

Searching problems occur in expert systems, problem solvers and robot controllers, where the search is for operations that transform the current state into a state that meets some desired criteria.

Sowa (1984) has identified seven "certain features" of searching problems of this nature:

[^1]
Abstract

Scheduling. A breadth-first search proceeds along all options in parallel, and a depth-first search takes one option at each step, until it reaches either a goal or a dead end then backs up to take a previously untried option. A best-first search keeps an agenda of options to try, and uses an evaluation function to choose the most promising one at each step.

Pruning. An exhaustive search tests all possibilities, and pruning eliminates the unlikely ones. In forward pruning some of the options are rejected before any searching is done. In backward pruning information gained while searching one branch is used to select or reject alternatives on other branches. The alpha-beta algorithm is a common form of backward pruning for searching game trees.

Termination. To determine when a goal is reached there must be some criterion for testing whether the current state is the end. For some searches the criterion is the binary choice ... for other searches there is a measure of goodness for each state, and the criterion is efther to find the best state or find one that exceeds a certain threshold.

Heuristics. A systematic guessing strategy can guice or speed up a search. Heuristics may select the best option to try, reducing the branching factor by pruning options or test the current state against the termination criteria".

(Sowa, 1984, p198)

Strategies for controlling complexity include the introduction of constraints to eliminate redundant or dead-end files; shallow searches; special cases; generate and test plausible solutions; large knowledge bases; and special hardware (Sowa,1984). Various systems combine these strategies. The chess computer, Belle, which has reached master level in competition with human players, uses the alpha-beta algorithm to prune options, an arbitrary cut-off to limit the search, special cases for forcing sequences, heuristics for ordering the search and evaluating positions, a knowledge base of opening moves derived from grand master practice and parallel hardware for generating legal moves and computing the value of a position (Condon \& Thompson,1982).

Many of these devices are also applicable to the project selection problem:

1. The problem is likely to have multiple solutions, especially after sensitivity testing, so n may vary depending on the search path.
2. The branching factor k is potentially very large, even infinite, if all real numbers are considered for the set of potential bids. Sensitivity testing, however, is unlikely to indicate that prices within

3. The project decision model represented in Fig. 5.4 and Fig. 6.2 implies the use of a data directed search, no specific goal other than an 'improvement' in outcome state being defined. it is possible, however, that some abitrary goal such as target profit or turnover may be found desirable in which case a goal directed or bid directed search could be used.
4. A breadth first search could be used to secure short-terII solutions say the best bid to make for the current opportunity irrespective of future opportunities. Sensitivity tests may well reveal that increasing uncertainties of future events reduce their impact on current decisions. The various strategies outlined in this Chapter indicate possible heuristic evaluation functions for the best first search. The indications are that a consistent "stick with the knitting" market strategy combined with a resource utilisation strategy would suffice unless faced with undue changes in demand in which case a broader search may be more appropriate.
5. Forward pruning could be utilised to remove obvious opportunities that are well outside the organisation's area of expertise. Backward pruning is a possibility where the selection of several contiguous projects is patently linked to create work load or cash flow overload. The alpha-beta algorithm has a potential application in bidding by enabling some pruning to be made based on the likely actions of competitors leading to a rapid decision not to bid against a leading competitor for instance.
6. The incremental approach proposed by the model implies that lines of option search are improving the results. A termination procedure might be adopted, for instance, based on a non-improvement heuristic resulting perhaps in an entirely different search strategy.
7. One constraint is immediately apparent - there will be a limit below which certain resources cannot fall. Monetary resources, for example, will have a minimum level. A minimum resource constraint may
also be necessary on a continuous basis. A certain sequence of projects could easily generate this state. Sensitivity tests may well reveal the possibility of constraint vialation for most combinations of projects.

CEAPTER 7

Statistical models

7 STATISTICAL MODELS

7.1 Introduction

The previous Chapter introduced some ideas to ease the computational burden of the project decision problem mainly centering on possible search heuristics for 'best' decisions. This chapter examines another possibility, the use of statistical models, as a means of reducing some aspects of the problem at least to manageable proportions.

7.2 Uncertainty, Risk and Probability

It is clear from the preceding Chapters that uncertainties and risks are likely to be major aspects of the project decision problem. One approach to dealing with these aspects, sensitivity analysis, has already been discussed. Sensitivity analyses, however, exist in many forms although all such techniques are essentially concerned with investigating the effects of uncertainty by inducing peturbationsin the data. It is important, therefore, as Bacarreza (1973,p129) observes "... to develop techniques that will permit representation of the uncertainties ... as accurately as possible". A popular technique for representing uncertainty is by a statistical model in which some variable aspects of the problem are modelled as random events. Heisenberg's "uncertainty principle" is an obvious example. The advantage of this approach is that the assumption of purely random events implies a special kind of stability, indeed, as Pierce (1980) asserts, "... nothing could be imagined to be more systematic". A further advantage is that the statistical approach, enables a potentially substantial amount of theoretical knowledge to be applied to the problem.

There are, unfortunately, few events_(if any) which occur in the prototype which will be truly random in the statistical sense,, as there are equally few events that are truly deterministic. The best that can be expected, therefore, is a statistical model which will 'reasonably' map some aspect of the prototype. The 'reasonableness' of the mapping is to be judged by the consequent performance of the decision system, and not necessarily the degree with which the model 'fits' the
prototype. This will, of course, depend on the 'robustness' of the system in the same sense that statistical tests for means (robust) are less reliant on the assumption of the 'Normal' distribution than tests for variance (non-robust).

The first task, however, is to identify those aspects of the system likely to be amenable to statistical modelling and the type of model which may be most appropriate. The remainder of this Chapter, therefore, contains an examination of the literature relating to the statistical nature of variables contained in the project decision model outlined in the previous Chapters.

7.3 Construction Demand and Project Characteristics

Kost modellers consider total demand to be infinite (Atrins,1975) and that project opportunities occur in an infinite (Oren \& Rothkopf,1975) or unending sequence (Agnew,1972). Benson (1970) assumes the number of opportunitities occuring in a given time interval is known or estimated from previous experience without reference to any frequency distribution. Hossein's (1977) empirical analysis of 106 projects, however, found the frequency distribution of the size of project opportunities to be Exponential as adjudged by the chi-square test at the 99\% confidence level.

Ortega-Reichert (1968) suggested the work content of the project to be a randoll variable. This approach has been developed by Morrison \& Stevens (1980) in a simulation study involving the random generation of such constructional features as gross floor area, number of storeys, column centres, building plan, the occurence and size of basements and types of roofs. Project opportunities were, in this case, generated randomly from a distribution based on the total industry turnover target, average project size and duration.

Models representing the number of competitors bidding for a given project start with Friedman (1956) who suggested a Poisson distribution to be appropriate, an assumption subsequently adopted, but not tested, by Hossein (1977), for instance. Friedman also suggested several methods of estimating the 'average' number of bidders. "In many cases there is information available to a company about the intentions of its
competitors. This information combined with the experience of the executives of the company may give a good estimate of the number of bidders" (Friedman,1956,p109), an approach reiterated by Rubey \& Milner (1966) with particular reference to the type and size of the project involved.

A further approach considered by Friedman, based on an assumed relationship between project size and the number of bidders, was to regress the number of bidders against the company's cost estimates on previous bids. Such a regression has been applied by Wade \& Harris's (1976) analysis of 136 bid tabulations from three small to medium sized general construction contractors located and working in Ann Arbor, Michegan, indicating that a logarithmic relationship between the number of bidders and project value.

A similar analysis has been conducted by Gates (1967), however, but with very poor predictive results. Sugrue's (1977) analysis confirmed this by finding no significant relationships between project size, number of bidders, number of suppliers and sub-contractors involved. Park (1966) has suggested that a non-linear relationship may exist but no evidence has been found to adequately support this notion. Skitmore's (1981) analysis of bidding data indicated a relationship between the number of bidders and market conditions, although no model was developed. Such lack of predictive models has led researchers to conduct simulation studies based on a randomised number of bidders (R1ckwood,1972).

The identities of competitors vary, according to Benjamin (1969), with the type and size of project, the client and the location. Some evidence was found in support of this in "... the records of the contractor who provided data for this study". However, Morin \& Clough's (1969) "... inspection of real world data ... showed that different competitors were met on different classes of work", the extent of such differences though, were not revealed. Wade \& Harris (1976) have suggested that the identities of the various individual and combinations of competitors can be treated probabilistically whilst Shaffer \& Micheau (1971,p116) briefly mention a predictive technique termed the multidistribution model (MD) which "... represents the local structure of the construction industry, a structure which allows the contractor to predict with a high level of confidence who his
competitors will be on a specific project". The details of this model are apparently given in Casey \& Shaffer (1964), a publication to which this writer has been unable to gain access.

Difficulties in predicting the identity of certain competitors, particularly those of whom the company has little or no knowledge, has led to the separate treatment of "strangers" and "isey" competitors. These and other competitive aspects, however, are examined later in this chapter.

7.4 The Outcome Envircament

Whilst a evidezce of probabilistic approaches to modelling human developmeat and aspirations was located, some considerable literature is availabie conceraing the physical and particularly monetary aspects of the outcome envirament. Monetary aspects are dependent on two major facters, tiee probability of acquiring the project and the probability of the cocurance of certain monetary states conditional upon the project being acquired or lost. This latter factor is examined first, on the assumption that the project will be acquired, in terms of expenditure (cost) and income probabilities. The probability of project acquisiticn will be considered in the final section of this Chapter.

7.4.1 Expenditure

7.4.1.1 Cost and Estimated Cost Variables

Although some models assume future project expenditure to be known with certainty (Agnew,1972; Gates,1960; Park,1966; Broemser,1968; Edelman,1965; Morin \& Clough,1969, for instance) it is clear that this is far from the case in the prototype. Several attempts have been made to formulate the problem in a quantitative manner which allows treatment of the variation between expenditure and estimates. One approach adopts the concept of 'true' cost (Whittaker,1970), sometimes expressed as God's cost (McCaffer,1976a) or the Devil's cost (Fine,1974). This is essentially that of Friedman's (1956) approach who takes the view that "... the true cost can only be known after the
job has been completed" and assumes that the distribution of the ratio 's' of the true cost to the estimated cost can be determined from the contractor's records, this ratio being ".... clearly a random variable" (Benjamin,1972). As the estimate is often assumed to be "correct on average" (Capen et al,1971), the population mean of this ratio is, therefore, unity with a dispersion, according to determinists, of zero (Casey \& Shaffer,1964). Weverberg (1978) also refers to the random variable ' S ' as the ratio of real and estimated costs, where real costs are implied to equal true costs.

A different perspective is provided by McCaffer (1976b) whose model is derived on the basis that "... different estimators will obviously assess the effects of factors on costs idfferently and hence a number of estimators are liable to produce a range of [estimated costs". This suggests a probability distribution of estimates arourd some mean. This mean has been termed 'the likely cest' (Cauwelaert \& Heynig,1979) and several simulation studies (Fine \& Encknar,1970; Rickwood,1972; Morrison \& Stevens,1980, for instance) have been cencucted on this basis. The advantage of the likely cost approach is that each project cost estimate can be considered to be a random value drawn from a distribution of possible cost estimates unique to each project, whilst Friedman's approach implies one distributicn to apply irrespective of non-random differences that may occur between projects. This, according to Benjamin (1969) is an important factor for, in his view, "... there is no single distribution of the ratio of true cost to estimated cost that applies to all jobs without regard to the characteristics of the job". Curtis \& Kaines (1973) have similar reservations regarding the Friedman approach.

An alternative line has been adopted by Park (1966) who takes the view that the actual project costs are distributed about the estimated costs, this distribution being regarded by Vegara (1977) as symmetrical around estimated costs with actual costs being equal, on average, to estimated costs. This approach suggests that the estimated cost is somehow the target figure, a possibility discussed earlier.

The difference between the 'true' versus 'likely' cost and the 'actual' cost models is essentially that "... some authors consider estimated costs as a stochastic variable and the true cost as non-stochastic, [whilst], others take the true cost as being stochastic and estimated
cost to be non-stochastic" (Naert \& Weverberg,1978,p362). In statistical terms, this difference, according to Naert \& Veverberg, "... basically boils down to taking a classical versus a Bayesian point of view".

An alternative way of dealing with this difference has been to treat both the costs and the estimates as random variables (Fuerst,1977; Rothkopf,1980). There is some fustification for this approach for, as Fine \& Hackemar (1970) demonstrate, variability in estimates of production and costs exists both before and after the event as "... estimates are guesses at future costs and accounts are guesses at past costs". In their view, the two variables may not be strongly causally dependent, certainly as far as feedback is conesraed, fer "... in theory the estimator's guess should be based on accounting data and siculd be obtained from these by a process of data mazipuiation and caiculation. In practice data of this kind are of ifttle concern to anyone involved in the process" (Fine \& Hackemar,1970p1).

7.4.1.2 The Suitability of a Statistical Model

Whittaker noted in 1970 "... that the estimated cost is a stochastic variable has been recognised by almost all previous investigations" (Whittaker,1970). There has been $n o$ discernable change in circumstances since that time, Fuerst (1976) suggesting the cost estimate to be a random variable; Vegara (1977) using probabilistic estimates to treat the cost of the project as a random variable; Carr (1982) assuming estimates of total cost to be rancom variables; and Rothkopf (1980) considering both cost and estimates to be random variables. Very little evidence exists, however, to support the assumptions and some criticisms have been recorded. Curtis \& Maines (1973), for instance, consider that cost estimates are not random but depend on the company position. Ortega-Reichert (1968) implies the cost to be conditioned by the work cantent of the project. Stark \& Mayer (1971,p474) suggest that "... cost dependencies can exist in which economies are anticipated from executing certain combinations of contracts eg, the efficient utilisation of supervisory personnel for nearby construction sites. Firms which contract for large construction projects and hence consider fewer bid opportunities might expect their
costs to be independent. However, as the number of opportunities to bid increase, cost interactions between projects are more pronounced".

Several aspects of costs and cost estimates have been proposed that may be amenable to statistical modelling. These have been studied, to some extent, by Green (1978) and Vegara \& Boyer (1974). Bacarreza (1973) considers the main random variables to consist of: cost percentage of, for instance, labour, materials, plant and overheads; cost 'variances'; cost curves; bidding curves; and contract duration. At a more detailed level, random variables have been said to include the following:

1. Labour Costs

Site activity has been modelled as a series of stochastic independent events by Fine (1970) and subsequently by Bennett \& Fine (1980), Bennett \& Ormerod (1984) and Wilson (1982) amongst others. Armstrong (1972) has also modelled trends in wages, outputs and performance standards and the ease or difficulty of performing the work in a similar manner. Benfamin (1969) suggests that "... labour costs associated with the costs of performing the work are random variables whose behaviour may be described by a probability distribution" and Gates (1971) has suggested some typical coefficients of variation (Table 7.1).

2. Material Costs

Trends in material costs have been modelled stochastically by Armstrong (1972), Benjamin (1969) suggesting that the theory of stochastic processes (time series analysis in particular) may be used to predict the probability distribution of the cost of materials at the time they are to be purchased.

3. Sub-Contractors' Costs

Benjamin (1969) suggests that the receipt of a low bid from a subcontractor could be treated as a Poisson arrival and the relative amount by which it is a low bid could be described by some other probability distribution.

Table 7．1 Coefficients of variation $\mathrm{V} \%$ of estimated productivity for various operations in building construction industry

Operation	V \％	Operation	V \％
Unloading and stacking		Concrete formwcris	
Faciraged material	10	Fabricate	10
Erick，block	10	Erect	10
Loose lumber，bars	20	Strip，cleaz，oil	10
		Repair	20
Site impravements			
Cleariag	10	Concreti＝x	
Gruboing	20	Flacing	15
Remare parements	15		15
Pipe Culverts	15	Cu5ing	10
2゙きーごロ	15		
Fine grading	10		
ショviこち	15		10
Sldewalks	10	Se\％ヒa＝s	7.5
Fowe：1izes	20		10
Feここe	10		
	Structurs！stee？		
Yaッ゙si exceratien			15
IESE＊ $50 \leq 1$	：	Eごこご	10
Seurel aza cast	15		15
E®ecfili	10		
Ccざここち	20	Mニミヒニ゙ア	
V上es！－	15	Tーざ	20
		Sきさ ¢こここ！	10
		Lay bricir，Eicei \＆Eile	7.5
Sanll eテufjこeご	20	E®is\％	20
Yeetum ニ゙̧さここeご	20		
	15		
Trucis maul	10		
		Manual	15
		Fiwe	10
Drill blastzoles	15	Fごコニ2g Iasail	7.5
Sheet piles；driveErace axd pull		Fexere	15
	15	Floo：ing，ṡeathias	10
		Plaster beare	7.5
Foundation files	20		
		Finisi csreeztry	
Precess concrete		Exie：de\％sititug	10
Manufacture	10	Erse：さc：t－゙こ	20
Ezect	15		10
		IEte：さct totu	15
IEsulatios	10	Cajotet wcej	15
		Stafrs	20
Fiasteriag		Eang cecrs	15
Latz te walls	7.5	Ins＝eil w！ごこws	15
Lath to ceilings	10		
Stueeo netting	10	Eecifas	
Flaster	10	Singele	15
Stuceo axd guaite	10	Eullt－ug tar a gravei	10
		Fiashiag	10
Faintiag			
Walls，iloors，cellings	7.5	Electrical woris	
Deors，windows，trim	10	Concuit，cable \＆wire	10
Structural steel	10	Install fixtures	15
Vall papering	20	Buried cable	10
Floor，ceilinga and wall tile Ceramic，quarry，structural Asbestos，asphalt，accustic		Plumbing	
	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	Exterior piping	15
		Interior pipigg \＆tubing	10
		Install ilxtures	10
Glazing	10	Cut and thread	10
		Heating and air conditioning pipe and duct runs	10
		Fittings	10
		Insulation	7.5
		Install fixtures	15

4. Quantity Related Costs

Gates (1971) has proposed that errors caused by mistakes are distributed triangularly and symmetrically. Mistakes, according to Gates, include "... gross mistakes, foolish mistakes and unpardonable mistakes due to carelessness or isnorance". "Quantity take-off results in mistakes from plan reading, measurement and related arithmetic as well as ambiguous or incomplete plans. Carelessness results in missing some quantities and even items of woris" (Gates,1971,p278). Fine \& Hackemar (1970) and Grinyer \& Whittairer (1973) also advocate the use of proiobilistic models for mistaikes of tinis nature.

5. Effects of Weather and Seascns

Benjamin (1909) suggests that "... since the occurance of different weatier concitions in different seasons are random variables, the costs associated with changes of weatiner are also random", a view endorsed by Hillejrandt (1974) and adopted in Armstrong's (1972) simulation studies.
6. Costs of Estimating

Leech \& Jenirins (1978) have feriormed a stochastic simulation of the tendering system using a iistribution of activity times, based on evidence provided by Leech \& Earthrowl (1972).
7. Additional Costs

Gates (1971) considers that additional costs required by the Engineer can be dealt with by probabilistic modelling. The acceptability of substitutes is also recommended for treatment in a similar manner (Gates,1971).
8. Other Costs

Benjamin (1979) suggests that other costs, such as insurance costs, bonding costs and fringe benefits, which are functions of the above costs are also random variables.

Statistical approaches to modelling cost and estimate variability have not gone unchallenged, however. Hillebrandt (1974), in distiguishing between risk (where probabilities can be determined) and uncertainty (where probabilities cannot be determined) suggests that most of the foregoing aspects are uncertain rather than risky and, therefore, considers it "... questionable whether probability is the right tool" (Hillebrandt,1974,p183).

The criticism, however, is not that probabilistic modelling is inappropriate per se but that estimation of the parameters involved is Ifrely to be the difficul.ty.

7.4.1.3 Eیtimatica ci Parameters

The complete specification of any probability distributica involves three parameters which have been referred to as shape, spread and location (Spiegelvalter,1983). Althougi tie distribution cE costs and estimated cost is, as Naert \& Weverberg (1978) point out, not abservable, several indications are available.

7.4.1.4 Shape

A wice razge of shape parameters have been assumed by modellers of praject costs. Vickrey's (1961) early work on the application of game thecry to aucticns assumes costs to be Uniformly distributed, an assumption also adopted by later researchers in this field (Griesmer et al,1967, for instance). Fine (1974) and Hackemar (1970) also adopt the uniform assumption in their simulation studies of construction projects, together with KcCaffer (1976b), Cauwelaert \& Heynig (1979) and Harris \& McCaffer (1983), who all assume "... the range of estimates produced to be the likely cost $\pm A \%^{\prime \prime}$ (Harris \& McCaffer,1983, p226) or in the range B to $1 / B$, where $B=(100+A) / 100$ (Fine,1974). Beckmann (1974), Naert \& Weverberg (1978), Rickwood (1972) and Mitchell (1977) assume a Normal (Gaussian) distribution of cost estimates to be a reasonable assumption particularly "... in those situations where a cost estimate is the sum of a large number of cost components" (Mitchell,1977,p192), as implied by the Central Limit Theorem (Case,1972).

Capen et al (1971) and Zinn et al (1975), on the other hand, prefer the Lognormal distribution on the assumption that the cost estimate is the product of variables, Smith \& Case (1975) opting for the Loglogistic model for similar reasons. Rothkopf (1969, 1980), Oren \& Rothenkopf (1975) and Zinn et al (1975) assume the two parameter Weibull distribution to be "... particularly appropriate because it is a limiting distribution in the theory of extreme value statistics" (Rathkopf,1969,p363), expressing surprise that the Weibull model is not adopted more frequently.

An alternative approach has been to model components of cost as individual probability distributiens. An early example of this is Case (1972) who assumed each cost component to be represented by a Eeta distribution. A similar procediure hes been advocated by Stacey (1979) and others. Spcone: (1974) has suggested using the triangular distribution to model cest components, an approach adopted by Wilson (1982), mainly for its simplicity. Fecent simulation studies by Beanett \& Fine (1980) and Bennett \& Ormerod (1984) use a variety of probability distributiens to represeat the variability of cost components. The resulting total cost and estimate probability distributions in these cases is clearly determined by the degree of dependency between the component cost variables. No studies of these dependencies have, however, been reported.

Construction companies, it appears, have little knowledge of the frequency distribution of costs and estimates as generally "... no use is made of statistics and probability to systematically evaluate the uncertainty and risk inherent in construction" (Neil,1978), perhaps because methods of estimating costs "... do not attempt to quantify the variability of actual costs" (Larew,1976). Benjamin (1969) has suggested the use of three methods to determine the distribution of the total cost of performing the work "... by convolution of Normally distributed random variables whose elemental distributions are determined by multiple regression; covolution of Beta distributed random variables whose elemental distributions are determined subjectively by the construction cost estimates; and by examination of historical data without regard to the elements or activities of which the job is completed". The first method requires the assumption of stochastic independence which, in Eenjamin's view is "not unreasonable". Ashworth's (1977) attempts to apply the method, however, encountered
severe difficulties in devising suitable explanatory variables. The second method also relies, as mentioned above, on the independence assumption, but no practical applications have been located. The third method, direct assessment, also presents some difficulties for, as Whittaker (1970) has found, details of actual project cost are "... often not available to the contractor since bulk buying and general stores complicate the task of determining the cost for the project". Further difficulties in estimate/actual cost comparisons are created by postestimate design changes, for instance.

Despite the difficulties associated with direct assessment, several attempts have been made to determine the probability distribution of costs and estimates in this way by analysis of the ratios of estimated to actual costs for a sample of completed projects. The earliest example of this is by Friedman (1956) who found the Gamma distribution "frequently furnishes a fit" for projects of an unspecified nature. Gates' (1967) analysis of 110 projects completed by a large highway contractor for the Connecticut State Highway Department between 1963 and 1965 found the actual/estimated construction cost ratios to be approximately Normally distributed. Morin \& Clough's (1969) analysis of a "limited sample" of a contractor's cost and estimating data found the distribution of the ratio of actual to estimated cost to be symmetrical. Whittaker's (1970) analysis of 153 construction projects completed by a contractor between 1968 and 1969 showed that "... the use of the Uniform distribution for cost estimates is consistent with, and provides an adequate description of, the real system". Leech \& Earthrowl (1972), from a limited amount of information, and Smith \& Case (1975) have found a multiplicative model with Lognormal distributed estimates to furnish a reasonable approximation of an actual auction for oil tracts.

An alternative approach, based on the assumption that the difference between different bids for a profect is largely determined by the random nature of the costs and estimates, is to estimate the shape of the distribution of bids. McCaffer (1976b), however, suggests that this may be misleading and Skitmore's (1981) analysis of 269 building contracts, indicating a systematic parameter change more closely related to income (price) than costs, would seem to offer some confirmation.

It has been said that contractors should estimate with an error of considerably less than 10% of their total final cost (Rubey \& Milner, 1966) and, generally, of the order of $\pm 5 \%$, given a set of quantities and sub-contractors' quotations (Park,1966). Experience in process engineering contracts suggest that $\pm 5 \%$ is a reasonable figure (Liddle,1979). An opinion survey taken amongst construction contractors at a seminar in Loughborough also confirmed the view that $\pm 5 \%$ is generally appropriate, notwithstanding the lack of supporting data Moyles,1973). Simulation studies have indicated higher figures to more closely represent those acually obtained by a leading contractor. $\pm 8 \%$ ta $=11 \%$ (Fine \& Hackemar,1970), usually rounded to $\pm 10 \%$ (Fine,1974) has been quated, together with figures between $\pm 5 \%$ and $\pm 15 \%$ (Eackezar,1970). Morrison \& Steven's (1980) stmulation used $\pm 20 \%$ labour rates, $\pm 10 \%$ materials and $\pm 30 \%$ output, the results indicating a mean accuracy of 5% to 7.5%.

Barnes \& Law (1974) judge the average spread for process plant contractors to have an average coefficient of variation (cv) of 7\%, the performance of particular companies "... varying widely from this average, certainly from 4% to 15% ". Beeston (1974) reported a cv 4% found by one civil engineering contractor after "... careful analysis of the extent of agreement among his estimators" when estimating the same project. Gates' (1967) analysis indicated an approximate cv 7.5% whilst other researchers suggest a cV 5.5% for engineering services "from experience" (Case,1972) or a cv 2% from an analysis of a "... limited sample of contractors' cost and estimate data" (Morin \& Clough,1969).

Barnes (1971), in attempting to overcome some of the difficulties mentioned earlier, has used the ratio of the actual total cost to the estimated total cost multiplied by the ratio of the tender sum to the final account to measure spread. His analysis of data collected for 160 completed British construction contracts indicates a cv 5.8\%.

7.4.1.6 Location

In common with most statistical models, the mean or expected error is normally taken to be the same as the 'true' value. Where the ratios of
actual to estimated costs are used, this implies a value of unity, an assumption made by Rothkopf (1980) for instance. Naert \& Weverberg's (1978) "... discussions with executives frequently engaged in ciosed sealed bidding [for construction projects] suggest that the expected value of the ratios is often close to unity". Willenbrock's (1972) analysis of data supplied by a road contractor for 20 completed projects, however, showed a 3\% increase in costs over the estimate after deducting change orders and claims.

Thecretical considerations of the competitive aspects of the situation implies that some bias must be present in order to avoid the effects of the "winner's curse". Winner's curse is said to apply in situations whers acquisiticn of the project is not independent of the cost estimate. Thus, for instance, an underestimate of costs is associated witi, and partially responsible for, the acquisition of a project resulting in the expected value of estimated costs conditional upon acguiring the project being somewhat lower than the unconditional expected value of the estimated costs. Friedman (1950) has proposed a means of unbiasing estimating costs but, as Simmonds (1968b) observes, the distribution of actual/estimated cost ratios is the conditional distribution and, therefore, already debiased to some extent. The situation is, however, complicated by factors associated with competitive aspects, for, as Weverberg (1981) and others have shown, the degree of bias is likely to be closely related (negatively csrelated) to the probability of acquiring the project.

Winner's curse may also be an artifact of the model employed. Dependencies among errors of estimation between bidders and differing amounts of information (is bidders with different distribution parameters) can remove the effects of the winner's curse completely (Winkler \& Brooks,1978). Dependency between estimated and actual costs can alsa have a similar effect if the estimated cost, as discussed previously, has some predetermining effect on the actual cost of the project.

7.4.1.7 Relationships between the Probability Distribution of Expenditure and Other Factors

It has been suggested that the probability distribution of cost will change with the project characteristics. As "... the variance of the probability distribution of cost is an indication of the riskiness of the job" (Eenjamin,1969), then it follows that increases in spread are a function of increases in risk. Risk has been said to depend on the type of praject (Case,1972), lewer risk levels being associated with a company's specialty work and less complex projects (Benjamin,1969) and higher risk levels with large and complex projects (Neil,1978). Both large and small projects, and frojects demanding either low or high woris intensity, have been assacisied with high risk (Broemser,1968), although Eenjamin considers low intensity projects to produce lower risis. High levels of subcontracting are usually associated with low risk (Broemser,1968), providing quataticis have been obtained in advance.

One approach to reducing spread is by increasing the estimating effort. Smart (1976) has discussed the possible effect of increasing tendering effort in reducing the variability between costs and estimates.

7.4.1.8 Summary of Overall Expenditure Distribution Parameters

Project expenditure has been modelled extensively by probability distributions. Table 7.2 summarises, in alpiabetical order, the overall shape, spread and location parameters adopted in the cases reviewed in this section.

7.4.2 Income and Cash Flow

Income is normally assumed to be some function of the value of the bid, the majority of modellers assuming a one to one relationship. It is clear, however, that a one to one assumption is far from realistic in the prototype, many factors influencing changes between the bid value and the income ultimately received. Most of the factors involved are dealt with on a contractual basis, remuneration often being provided for unpredicted events such as inflation, additional work caused by

Table 7.2 Distribution parameters for costs/estimates

Modeller	Shape	Spread	Location
Earnes (1971)		cv 5.8\%	
Earnes \& Lau (1974)*		cv 4-15\%	
Beckmann (1974) -	Hormal		
Beeston (1974)s		cv 4\%	
Capen et al (1971)*	Logzormal		
Case (1972)		cv 5.5\%	
Cauwelasrt a Heynig (1979)*	Uniform	$\pm \mathrm{A} \%$	
Fine (1974) ${ }^{\circ}$	Uniform	$\pm 10 \%$	
Fine \& Haciremar (1970) ${ }^{\circ}$	Uniform	$\pm 8-10 \%$	
Friedman (1956)	Gamma		
Gates (1967)	Normal	cv 7.5\%	
Greismer et al (1967)*	Uniform		
Eacisemar (1970)		$\pm 5-15 \%$	
Earsis \& Mclaffer (1983)*	Uniform	$\pm \mathrm{A} \%$	
Leech \& Earthrowl (1972)=	Lognormal		
Liddle (1979) ${ }^{\text {a }}$		$\pm 5 \%$	
Mitchell (1979) ${ }^{\text {- }}$	Hormal		
Mcrin \& Clough (1969) =	Symmetrical	cv 2\%	1.0 (mecian)
Morrison \& Stevens (1980) -		$\pm 5-7 \% \%$ (mean)	
Moyles (1973)		$\pm 5 \%$	
Waert \& Weverberg (1978) ${ }^{\text {d }}$			close to 1
Oren \& Rethkopf (1975)-	Weibull		
Parik (1966)		$\pm 5 \%$	
Rickwood (1972)	Normal		
Rothiopf (1969) ${ }^{\text {c }}$	Weibull		1.0 (exp. val)
Rothkopf (1980) ${ }^{-}$	Weibull		
Rubey \& Milner (1966)*		less than 10\%	
Smith \& Case (1975) ${ }^{\text {c }}$	Logrormil		
Smith \& Case (1975) ${ }^{\text {c }}$	Loglogistic		
Vicirrey (1961) $=$	Uniform		
Whittaker (1970)*	Uniforill		
Willenbrock (1972) ${ }^{\text {d }}$			+ 3\%

- assumed for theoretical purposes
- assumed for simulation purposes
c source of data unknown
- analysis of 110 USA road projects
- analysis of 153 UK construction projects
- opinion survey of UK contractors
- analysis of extent of agreement between UK construction estimators
n analysis of 160 British construction projects
1 discussion with Dutch construction companies
s analysis of 20 USA road prajects
design changes, uncovering suspected (incorrectly) faulty work, changes caused by fire and flood, andquantity errors and delays outside the company's control. Further income may accrue outside the contractual position in the form of ex gratia payments for perhaps exceptionally inclement weather, interest received on invested capital, receipts from the leasing of advertising space on hoarding etc. Of these variations in income only one factor, the incidence of design changes, has been modelled statistically.

Profit, however, is another matter. Estimates of profit are, invariabiy, taken as the difference betwesn the bid and the cost estimate, usually in percentage terms, and the probability distribution of profit as the difference between the bid (a constant) and the cost (a variable). It is clear, though, that the probability discribution of profit is the difference between the two variables, income and expenditure. As the mechanism of the bidding process often is recognised as being such that the bid is a multiple of a cost estimate (Curtis \& Maines,1973), it would seem appropriate that income, expenditure and profit are regarded as being a function of the estimated cost, conditional on the multiple (mark-up) applied. The degree of marix-up will also have a bearing on the likelihood of acquiring the project, an issue which is dealt with later in this Chapter.

Models of income and expenditure over time, cash flow models, have been developed. The DHSS's curve fermulae, for instance, provide a deterministic approximation of expenditure flows based on projected work value modelled continuously over the project duration, for differing sizes of projects. Similar models have been used by Atkins (1975) to represent the "cash flow pattern" for differing project sizes and types. The only probabilistic model that has been identified in the work reviewed in this Chapter is that adopted by Kangari \& Boyer (1981) in the form of a Beta distribution.

7.4.3 Conclusion

Project opportunities and the outcome environment, particularly expenditure, for an individual company have received some attention from statistical modellers encountered in the literature and the indications are that the assumptions implied by the statistical
approaches, ie the existence of random variables with estimable parameters, may well be appropriate in some instances.

A particularly significant factor in determining the state of the project decision system is whether the project will be acquired or not. This factor would seem to be dependent to some degree on the estimated cost of completing the project and the mark-up applied. Other companies also have a considerable influence in the ultimate appropriation of the project. The next section examines some approaches to modelling the behaviour of these competitors before finally considering probabilistic aspects of project acquisition

7.5 Modelling Competitors' Bids

Researchers since Friedman (1956) have assumed that "... by keeping a record of the competitors' past bids it is possible to evaluate its bidding habits ... by tracking competition we can develop its bidding behaviour [and] that history usually can be used as a basis for predicting competitive bid levels just as statistical sampling is used to predict election results" (McCall,1977). The prediction of election results, however, by these means, has sometimes achieved spectacular failures. It is not surprising, therefore, to find some criticism of this approach insofar as construction project bidding is concerned. One major criticism is that the events taking place are not truly random in the classical statistical sense as "... the basis of classical statistical theory is that there is an experiment that can be repeated many times in order to gather data from which the parameters of the probability distribution of some random variable of interest can be estimated. A sequence of bidding situations is not really a sequence of performances of the same experiment [and] each job is unique" (Benjamin,1972). Whilst there is no denying the truth of the statement, the same can equally be said for all observed phenomena, as discussed earlier in this Chapter. Neoclassical theory simply utilises statistical techniques on the assumption that the underlying mechanisms in the data 'reasonably' resemble the statistical premises, the degree of 'reasonableness' being determined pragmatically rather than by 'goodness of fit'.

Empirical criticisms are more serious. It has been claimed, for instance, that the assumption of randomness is invalid "... as we know that many subjective factors influence bidding behaviour" (Curtis \& Maines,1974, p181). Spooner (1971) has also suggested that "... a random selection process is not a rational representation of behaviour" in these circumstances, a view endorsed by Simon (1957,1979) who also believes that the uncertainty of bidding can and will not be solved through the adoption of probabilistic techniques. The evidence upon which these ∇ iews are based, however, appears to be rather more circumstantial than factual, and there is a substantial body of opinion holding the opposite view. The general opinion relies on the existence of stable distributions of cost generating stable distributions of bids (Becken,1974) based on "... the long recognised fact that there is a stability in mass data, although the mass is comprised of erratic incividual cases" (Gates,1960,p22). "This fundamental precept ...", accoriing to Gates, "... underlies the basis of actuarial science and is the foundation of the insurance industry" for instance.

A second, and related, criticism concerns what has been termed "... one of the most seifous limitations of the statistical approach" which is "... the basic assumption that competitors will follow the same general bicding patterns in the future that they have in the past" (Park,1962). An individual competitor may, for instance, "... change his strategy, thus rendering past data about him misleading" (Beeston,1983,p114). This criticism is essentially aimed at all inductive approaches, for induction necessarily extrapolates from past events to future events. Induction, however, does not attempt merely to extend into the future repetitions that have occured in the past, but rather by creating the conception of a mechanism [model] that explains the past from which the future may be deduced (Adler,1963,p236). McCaffer's (1976a) analysis of individual bidders suggests that some contractors behave in a matter not entirely consistent with the random model. His series of time based tests, however, were generally inconclusive and further research may well indicate possible predictor variables in this respect. Despite their reservations, both Park and Beeston concede that in the absence of other information, probably the best guide to the future is the past and that statistical modelling may provide benefits to the organisation.

Some models do, in fact, incorporate other information such as project characteristics and measures to deal with the degrading effects of time, and some of these will be examined later in this section. Two other aspects, which are related to some extent, dependent and nonserious bids, together with problems caused by data acquisition are alsa addressed later in this section.

7.5.1 The Behaviour of Competitors

The project decision model, proposed in this thesis, is intended to apply to any construction organisation, including competitors. It is clear, however, that the information and computational burden problems implied by attempting to incerporate complex models of competitors' behaviour will be largely insuracuntable. This section, therefore, examines some relatively simple models of competitors' behaviour, both collectively and individually.

7.5.2 Collective Behaviour

Probably the most detailed and sophisticated analysis of individual and collective bidding behaviour of construction companies has been made by McCaffer (1976a), who found, from his Belgian data, "... substantial evidence that existing bidding processes are little more than random". The reasons for this may be attributable to the mechanism of the bidding process by which "... each competitor calculates his cost estimate, which is a random sample taken from his cost estimate distribution, and multiplies it by his merk-up" (Curtis \& Maines,1973). The implication, therefore, is that each competitor's cost estimate is taken from the same distribution and that the mark-up may also be treated as being taken from a distribution of mark-ups in a similar manner.

The notion of some commonality between competitors' cost estimates does seem to hold some attraction for, as Park observes, "... taking a single job, most of the competing contractors can also be expected to encounter roughly the same costs of performing the work; they are all subject to the same costs of operation, have access to the same labour supply, use the same types of equipment, obtain supplies and materials
from the same sources, and have somewhat comparable, if not equal, supervisory capabilities" (Park,1972,p24.1). As a result, it is claimed that "... in general building, where there is not a large element of highly specialised work and where there is a number of contractors of similar efficiences, especially in areas where staff and labour move from company to company, a simplification assumes that the 'likely cost' of a contract to each company is similar" (Harris \& McCaffer, 1983,p226). Many modellers have consequently adopted the assumption that each bideer has identical estimated costs (Larew,1976), true costs Gothkopf,1980; Fickwood,1972) or that estimated costs are similar (Brcemser,1968) or vary around some common mean (Oren \& Rothiropf,1975; Morrison \& Stevens,1980).

Tie applicaticn of statistical models to the cost/estimate variable hes already been examined in the previcus section. The varisbility of mark-ups has been modelled in a stochasiic simulation by Eiciswood (1972) by the Hormal distribution. Grinyer \& Whittarer (1973) found marix-ups to vary very little within firms ($6.8 \% \pm 0.35 \%$) and their discussions with other firms have "... confirmed the impression that mark-ups do not vary greatly between firms". A similar amalysis of Shaffer \& Micheau's data (1971) however indicates an average marirup of 5.40% (1.844 standard deviation), quite different figures. Similarities between bidders were observed in Whittaker's (1970) study of UK construction companies who "... used almost identical methods of cetermining costs and then all used almost the same percentage marir-up to arrive at their bid prices" inviting the conclusion that "... different firms attempt to place the same value on a specified contract. The differences that occur between estimated costs are primarily attributable to uncertainty" and that "... the statistical techniques which average the behaviour of competitors and aggregate the results of past competitions are the most appropriate methods with which to study the situation".

Many models assume competitors' actions to be "purely random" Morin \& Clough,1969) and, therefore, amenable to treatment as random variables and description by appropriate probability density distributions. The distribution of competitors' bids is sometimes expressed in terms of the distribution of the bid/cost estimate ratios, where the cost estimate value is that known by one of the bidders, or bid/average bid ratios (Whittaker,1970; McCaffer,1976a; Carr,1982). It then follows that
"... each time the decision maker bids on a contract against n competitors, a sample of the size n is drawn from this distribution of competitor bid to cost ratios" (Sugrue,1980,p500).

The assumption that all bidders take their bids from the same distribution enables estimation of the distribution parameters to be made by direct observation of the bids entered for each project.

7.5.2.1 Shape

Vickrey's (1961) early work assumes that all bids are drawn from the same Uniform distribution. Stcchastic simulation studies by Fine \& Hackemar (1970) have used the assurpition that bids are taken from a Uniform distribution claiming that bids generated in this way compared very favourably with the distribution of bids found in the Costain construction company recoris. Cauwelaert \& Heynif have also assumed a Uniform distribution for mathematical convenience, although they do claim that the assumption is "... perhaps not far from the truth" (Caulewaert \& Heynig,1979,p15). Whittaker's (1970) analysis of bids for 153 construction projects by four companies between 1968 and 1909 purported to show the Unifarm distribution to be a reasanable model. Whittaker's method of analysis, dividing each bid on each contract by the mean bid for that contract and pooling the resulting ratios, has been severely criticised as being "invalid" (McCaffer,1976a) mainly because of the distorting effect of the standardising procedure used and the information loss caused by pooling.

Several models have been proposed based on the assumption that bids are taken from a Hormal distribution (Alexander,1970; Emond,1971; Mitchell, 1977 and Carr,1983, for instance). Morrison \& Stevens (1980) also adopt this assumption in their stochastic simulations. Benjamin \& Meador (1979) point out that it is the bid/cost estimate ratios that are often taken to be Normally distributed. McCaffer's (1976a) study of bids for 384 road and 190 building projects in Belgium found the Normal distribution to be the most appropriate model, especially for the building projects. Various trend analyses were performed by McCaffer on these data but with little success, inviting the conclusion that the assumption of randomness was perhaps reasonable. Cauwelaert \& Heynig (1979,p18), in reviewing McCaffer's work, suggested that the conclusions regarding the Normal distribution and randomness were "...
consistent with the work of other researchers" neglecting, unfortunately, to provide any further information.

Park (1966) has used a statistical model of bid/cost estimate ratios that is positively skewed, a model considered to be appropriate by Beeston (1974) for bids for construction projects required by the Property Services Agency. The degree of skewness however, according to Beeston, was only slight and "for practical purposes" a Normal distribution would suffice. Another report on KcCaffer's roads data proposed an identical conclusion (McCaffer \& Pettit,1976).

The assumption of a Lognormal distribution to model bids is, according to Weverberg (1982), "... net deing tea bad ... at least as a first approximation". Klein (1975), fur instance, has assumed the Lognormal distribution to be appropriate for bics and Capen et al (1971) have adopted the distribution in modelling estinate value/bid ratios for oil tracts. There would seem, in fact, to be a degree of consensus regarding the Lognormal assumption fer ail and mineral tract. bids (Arps,1965; Brown,1966 and Crawford,1970). The consistency in the standard deviation implied by the Logncrmal assumption has also been observed by Hansmann \& Rivett (1959) and Pelto (1970) in their analyses of oil tracts and mineral rigits sales.

Friedman (1956) suggests a Gamma distribution to be generally appropriate, an assumption adopted by Dogherty \& Vozaki (1975) for ofl tract bids. Analysis of pooled bid/cost estimate ratios for 545 civil engineering and 63 mechanical eagineering projects has indicated a Gamma distribution to be the best fit (fallowed by the Lognormal and Yormal distributions) (Hossein,1977).

Finally, Oren \& Rothkopf (1975) have proposed a two parameter Weibull distribution to be a suitable model of bids in auctions generally. A summary of shape parameters is given in Table 7.3.

7.5.2.2 Spread and Location

Several researchers have estimated the average spread of bids for individual contracts. These estimates are given without discussion in Table 7.3.

Table 7.3 Distribution parameters for bids

Modeller	Shape	Spread	Location
AICBOR (1967) ${ }^{\circ}$		cv 6.8\%	
Alexander (1970) ${ }^{\text {c }}$	Normal		
Arps (1965) ${ }^{\text {a }}$	Lognormal		
Earnes (1971)m		cv 6.5\%	
Beeston (1974) ${ }^{\text {a }}$	Pos. skewed	cv 5.2-6\%	
Brown (1966) ${ }^{\text {a }}$	Lognormal		
Capen et al (1971)d	Lognormal		
Cauwelaert \& Heynig (1979)*	Uniform		
Cauwelaert \& Heynig (1979)	Normal		
Crawford (1970) ${ }^{\text {c }}$	Lognormal		
Dougherty \& Mozaki (1975)	Gamma		
Emond (1971)d	Normal		
Fine \& Hackemar (1970)	Uniform	cv 5\%	
Friedman (1956)	Gamma		
Grinyer \& Whittaker (1973) ${ }^{\text {e }}$	Uniform	cv 6.04\%	
Hossein (1977)k	Gamma		
Klein (1976)d	Lognormal		
Mcaffer (1976a) -	Hormal	cv 6.5\%	
McCaffer (1976a)	Normal	cv 7.5\%	
McCaffer (1976a)*	Normal	CV. 8.4\%	
McCaffer \& Pettit (1976) ${ }^{\text {d }}$	Pos. skewed	CV 8.4\%	
Mitchell (1977)*	Normal		
Morrison \& Stevens (1980)-	Hormal	19.1\% av.	
Oren \& Rothkopf (1975)*	Weibull		
Park (1966)m	Pos.skewed		
Pelto (1970)	Lognormal		
Shaffer \& Micheau (1971)p		cv 7.65\%	
Skitmore (1981a)		cV 6.4\%	
Weverberg (1982)	Lognormal	1.068	
Whittaker (1970)=	Uniform		

- Assumed for theoretical purposes
- Analysis of an 'adequate' sample of UK construction projects
c Analysis of 153 UK government construction prajects
- USA oil and mineral tracts - source of data unknown
- Assumed for simulation studies
- Analysis of 183 Belgian building projects
- "consistent with work of other researchers"
n USA construction projects - source of data unknown
1 Large sample of PSA projects
s Analysis of 384 Belgian roads contracts
k Analysis of 545 US civil engineering and 63 mechanical engineering projects
1 Analysis of 269 UK building projects
m Analysis of 159 UK construction projects
n Analysis of 16 Belgian bridges projects
- Analysis of 213 UK motorway projects
- Analysis of 50 USA construction projects

The location parameter will, of course, depend upon the size of the project. In the absence of any further information, the location parameter may be estimated for each project from the bids for that project. Location parameters for bid/cost estimate ratios represent, under the assumptions of the collective model, a measure of the relationship between a company's cost estimate and bid, in other words, the mark-up.
7.5.2.3 Relationships between the Probability Distributions of Bids and Other Factors

Johnston's (1978) analysis of bids for road projects found a significant positive sirewness during the years 1970 to 1972 ,and a slightly megative skewness during the years 1973 to 1975, a change that Joinsion attributed to the changing volume of project opportunities. Skitmere's (1981a) analysis of bidding projects data, however, faud an opposite trend to exist. Further analysis by Skitmore of parts ci bids suggests some relationship of an indeterminate nature may exist between skewness and market conditions.

The spread of bids has been analysed against project value by McCaffer (1976a) and Skitmore (1981a) and a possible but unconfirmed negative correlaticn obtained. A similar negative correlation has been observed by Morrison(1984) and Flanagan \& Norman(1985). Beeston (1983) has suggested thet changes in bid spread may be associated with changes inconditions over a few months, the rate of change being an important factor. Siritmere's (1981) analysis over time shows a dramatic increase in spread in the year 1974 (Fig. 7.1), which coincides with some rather extreme movements in the market at that time. Further analysis by Skitmore of parts of bids, implies some relationship of an indeterminate nature to exist between spread and market conditions.

It would seem perhaps that, in view of the indications revealed above, that some further studies of the influence of market conditions may be beneficial.

Fig.7.1 Variance over time

7.5.2.4 Distribution of Low Bids

An alternative approach is to model the winning bids as a probability density function. In this case, the usual procedure is to model the winning bid/estimated project value ratios (Hansmann \& Rivett,1975) or the winning bid/cost estimate ratios (Ackaff \& Sasieni,1968; Sugrue,1977 \& 1980). These ratios are often assumed to follow a Normal distribution (Ackoff \& Sasieni,1968; Sugrue,1980), an assumption tested empirically by Beeston (1983) and Sugrue (1977), the latter's chisquare test failing to reject the Icrmal assumption for 68 road low bid/cost estimate ratios. A slightly different version by Sasieni et al (1959) considers the ratios $(B-\mathbb{K}) / \mathbb{K}$, where B is the winning bid and K the cost estimate, to also follew a Yormal distribution.

Weverberg (1977) has consicered, in scme detail, two possible procedures, maximum likelihood and an iterative minimum mean square error procedure, for estimating two parameters of the foint distribution of estimated costs and lowest cppcsing bids. It was concluded that the minimum mean square error method compared favourably with maximum likelihood estimation, although the method of maximum likelihood was particularly appropriate in estimating parameters of multivariate lognormal distributions, as would be expected. An unfortunate aspect of this study was that both methods resulted in considerable estimation errors, especially for medium sized samples (Weverberg,1977,p197), although it was considered that with "fairly good" a priori knowledge of the parameters of the marginal distribution of estimated costs "... estimation of the remaining parameters of the joint distribution would be much easier and more efficient".

Three sets of data have been published which allow some analysis. Broemser's (1968) data from one contractor bidding for 76 USA construction projects indicates that the frequency distribution of low bid/cost estimate ratios has a sample mean of 0.993 with a standard deviation of 5.49\%. Similar data published by Shaffer \& Micheau (1971) from one contractor bidding for 50 USA building projects have a sample mean of 0.991 (8.19% standard deviation). Benjamin \& Meador's (1979) data covers 131 USA construction projects over a three year period, the distribution of low bid/cost estimates (which the authors assume to be Hormal) has a sample mean of $0.996(6.8 \%$ standard deviation). The similarity of the means of these independently obtained ratios is
striking and strongly suggests that the expected value of the cost estimate may be quite close to the project value as defined by the lowest bid.

7.5.3 Individual Competitors

Eroemser (1968) has observed that, although bidders' cost estimates may well be very similar due to common factors and that "... these common factors would probably account for a large proportion of the volume of the fob, the things that would be different among contractors would be the management skills in planning and using labour, materials, equipmeat and subcontractors". In addition, the bids depend upon the competitors' marir-up which will reflect "... the bidding policies whici are chosen to achieve their own objectives" (Mercer \& Russell,1969). It follows, therefcre, that "... every competitor will exhibit different bidding characteristics; some bid consistentiy high, some bid consistently low, some spread their bids uniformly over a wide range and scme may bid within a fairly well-defined and narrow limits (Park,1972,p24-27). Differences in level of bid (ie consistently high or consistently low) have been termed 'proximity' differences (Skitmore,1981b), said to reflect the relative efficiency (McCaffer,1976a) or 'ccmpetitive advantage' of competitors. Competitive advantage, according to Fuerst (1977) includes differences between the "... methods used, the efficiency and availability of equipment, ownership of supply sources, proximity to home office or sites of current contracts, and managerial skill in performing the work. Both policy dictated mark-up decisions and competitive advantage have been modelled as random variables" (Mercer \& Russell,1969; Fuerst,1977).

Several researchers have modelled individual bids, starting with Friedman (1956) and including Taylor (1963) and Morin \& Clough (1969). The approaches are similar to that of modelling competitors collectively in that competitors' bid/cost estimate ratios are obtained and probability density functions fitted to the ensuing frequency distributions (Friedman,1956; Taylor,1963; Benjamin,1972, for instance). Beeston (1982) has suggested using D ratios, in a similar manner to
 expressed as a percentage. Morin \& Clough (1969), on the other hand,
have used the relative frequencies of competitors' bid/cost estimate to own bid/cost estimate ratios.

Whilst all of the distribution parameters postulated for collective models necessarily apply to individual bidders, some modellers have proposed probability distributions specifically for the individual case. Griesmer et al (1967) assume bidders draw from a Uniform distribution unique to each, and Winkier \& Erociss (1980) have proposed models in which differing amcunts cf infcrmaticn (ie different variances) exist between bidders. Capen et al (1971), Curtis \& Maines (1973) and Fuerst (1977) have attempted to derive parameter estimates for each bidder by simulation techniques. Weverberg (1982) has used a multivariate technique to estimate parameters of ccalition bidding for oil leases, assuming the wianing bid to be a constant. Skitmore (1982) bas proposed a multivariaie approaci to a part of the parameter estimation problem, invoiving the solution of two sets of simultaneous equations to determine the variances and the relative means of the log transformation of bid values. Multivariate methods, however, often rely on the assumption of incependence between bidders.

7.5.3.1 The Independence Assumption

Most modellers since Friedman (1950) assume that errors in an individual bidder's cost estimates are independent of errors in previous cost estimates (within bidders) and also independent of errors in other bidders' cost estimates (between bidders). This assumption has also been generously applied to bids within and between bidders and also the true cost or actual cost/cost estimate and bid/cost estimate ratios. True or actual cost/estimated cost interactions have already been discussed. The way in which competitors behave in bidding may be influenced by several factors. These factors are considered to be those associated with the project decision environment. The effects of collusion are treated separately.

7.5.3.2 The Project Decision Environment

Several models have been proposed which incorporate features of the project generating environment in order to utilise any error trends
within bidders. Park (1980), for instance, has suggested that models of competitors' bids should incorporate the effects of changes in market conditions and Whittaker (1970), in using a discounted cash flow technique for the time element, has adjusted the assumption that past bidding behaviour of competitors is a good indicator of future behaviour to take account of the state of the mariet. Carr \& Sandahl (1978) have used multiple regression analysis (MRA) to predict the lowest bid of any competitor by incorporating a variable representing the "economic environment". Neufville et al (1977) have found "economic conditions" to be an important factor affecting bidiing beiaviour.

Project characteristics have also been recommended as preiictor variables (Christenson,1965; Broemser,1968; Benjamin,1972; Neufville et al,1977; Sugrue,1977; Carr \& Sandahl,1978; Morin \& Clough,1969). Relationships with the class of construction have been postulated (Shaffer \& Micheau,1971 and Cooire,1981), Morin \& Clough (1969) finding the ratios of bids by one contractor to cost estimates by another contractor to have a mean of $1.133,1.232$ and 1.333 for three classes of work. The influence of project size on bidding behaviour has been analysed by McCaffer (1976a); who found no correlations, Earvey (1979), whose MRA attempt to predict low bid/engineers' estimate ratios from variables including job size and Lange (1973) who found a sharp drop in his SECLOW quantities (the percentage difference between the lowest and the second lowest bidders) associated with the size of 451 Massachusetts projects. An analysis by Neufville et al (1977) also found the size of project to be important. Felto (1971) has fitted a complicated function to bidding data (for oil tracts) involving project location, a variable also used in Harvey's MRA. Surprisingly no studies have been documented using the client as a predictor variable.

Several writers have considered the effect of competitors. The number of bidders has been associated with the distribution of bids by McCaffer (1976a) (inconclusively) and Pelto* (1971) in his model. Benjamin (1970) and Harvey (1979) have also used the number of bidders as a predictor variable in their MRA's, although Broemser (1968), in a similar study, found the number of bidders to be of no statistical significance in his regression model for predicting the distribution of low bids. Carr \& Sandahl (1978) include the "make-up of competitors" in their MRA to predict low bids. A further discussion on the effect
of the number and identify of bidders is provided later in this section.

Several researchers have considered the implications of each bidder adopting similar (non-random) strategies (Rathkopf,1969; Oren \& Rothkopf,1975; Banerjee \& Ghosh,1969, for instance). Whilst some results of theoretical importance have been obtained, they only apply under certain restrictive assumptions. Some of these assumptions are of significance in the construction bidding situation for, as has been observed, when considering a competitor's reaction to a bidder's new strategy "... the degree of reaction will probably depend on the number of institutional factors not represented by the model [including] the speed and certainty with which competitors can discern a policy change and the extent to which the competitors in one auction are likely to be the same as the competitors in the succeeding auctions" (Oren \& Rothkopf,1975,p1088).

Some evidence also exists which indicates that likely outcomes have a bearing on competitors' behaviour. In Sheldon's investigations in the process plant industry "... nine [managers] stated that each contract was unique, hence information relating to past contracts would only be of use if each firm offered homogeneous equipment and technologies, and if contracts were undertaken at similar sites in similar conditions. The conclusion of most firms was that evidence on past bidding patterns was too difficult to quantify" (Sheldon,1982,p12). It is interesting to note, however, that whatever information was available was used by these organisations. Sugrue (1977) has also examined the effect of union labour on the distribution of low bid/cost estimate ratios for his 68 road projects. No differences were found between the unionised and non-unionised projects in this respect.

The degrading effects of time have been accomodated in Morin \& Clough's (1969) model by weighting the more recent data. A similar weighting was also applied to the bids of those competitors who most frequently competed for the same projects.

The association of bids with aspects of the decision environment has clearly been of interest to researchers in the field. The use of multivariate analyses would seem to be particularly apropriate in examining potential correlations between bids and likely
characteristics of the project generating and outcome environments. Little consensus is apparent as yet on the impact of any of the predictor variables employed except perhaps project.size, which has received frequent attention. Further work on this aspect of the problem would appear to be desirable. In Benjamin's words "... one of the most important directions for future research in the competitive bidding area is in the development of satisfactory multivariable statistical models to predict the behaviour of the competition in the bidding situation" (Benjamin,1972,p328).

7.5:3.3 Collusion

All of the models consulted rely on the assumption that no collaboration takes place between the bidders. However, as Mitchell (1977) has pointed out "... in any real-life bidding situation, there are many complicating factors; not least the possibility of collusion".

Sheldon (1982) has examined the aspect of collusion in some detail. In view of the uncertainty of competitive bidding and the degree of interdependence between firms engendered by such uncertainty, Sheldon holds that bidding may be conducted a priori through collusive agreements. He considers that such agreements would be "... an attractive means of maintaining a steady flow of work and achieving higher joint, risk-adjusted, discounted profits". Little evidence of collusive agreements seems to be available however, which is perhaps to be expected. Sheldon's view of the process plant industry is that the variety of process areas in contracting and also periodic excess capacity would be a destabilising factor in any such agreements. Barriers to entry of the industry are also discussed but it is concluded that "... the ability of firms to actually raise bid prices in excess of an average cost is a function of the buyer's sensitivity to price and non-price factors in a bid, rather than a function of the barriers to entry, and hence the ability of firms to actually limit prices is curtailed by the buyer's power". Insofar as the construction industry is concerned, collusive bidding seems even less likely than the process plant industry as barriers to entry are far less severe and the proliferation of projects is extensive, especially small projects. Collusion, if practised at all in the construction industry, must surely be restricted to a very limited number of specialised projects.

A more realistic proposition is that correlations exist between bidders due to some commonality between companies. "Common training, experience and information" (Winkler \& Brooks,1978) particularly in a "localised construction context" (Stark \& Mayer,1969) support the view that "positive correlations seem to be more appropriate than negative correlations" (Winkler \& Brooks,1980). The vary mechanism of the data generating process, where cost estimates are drawn independently, providing a basis for assessing competitors' bids, implies a dependency of some kind (Weverberg,1981).

Flanagan \& Norman's analysis of bids entered by three construction companies for 39 county council projects, found a discernable trend "... between specific contractors when bidding in competition, and that this trend can be expected to vary with different types of work, with work of different value ranges, or as a result of varying workloads of the contractors" (Flanagan \& Norman,1982,p29). An empirical analysis of 68 USA read contracts, on the other hand, found no evidence of any correlation between bidders (Sugrue,1977).

7.5.3.4 Hon-Serious and Unrealistic Bids

Whittaker (1970), as a result of his interviews with several construction companies, reported that "... the management concerned stated that all bids were 'serious and competitive' ... these were contracts that the company would have liked to win". McCaffer (1976a), however, who has some considerable experience in this field, has warned that some allowance may be needed for unrealistic bids in modelling competitors' bids.

One type of non-serious bid is known as the 'cover price', where the bidder enters a bid the value of which is advised by a competitor. The Institute of Quantity Surveyors (IQS) Sussex branch (1979), in an opinion survey involving "... a few individuals earning their living in preparing bills of quantities, estimates, managing contracts and business", found that cover prices are taken notwithstanding attempts to prevent the practice, adding that "... the responses showed a marked unanimity". The report concluded, however, that the cover prices "did not distort market prices". Daniels (1978), in describing the work of the Builders' Conference, revealed that bidders admitted to the use of
'cover prices' because of the cost of bidding, the high risk of losing, not wishing to offend and the short period allowed for building preparation. Moyles (1973) has suggested that, because of these constraints "... contractors will usually give detailed attention only to desirable contracts", the remainder being "... prepared in a more approximate manner with a risk allowance to cover for unforseen circumstances and for the less accurate method of estimating". Indeed, discussions at a conference entitled "Estimating, the Way Ahead" (1979), organised by the Building Trades Journal, openly revealed the practice of taking such cover prices, discussing alternative methods of acquiring such prices

The methods adopted by researchers in discounting these non-bona-fide bids have been inconsistent. Sourhwell's attempts (1971) to model bid sets simply excludes non-serious bids without further comment. Franks (1970) in comparing the variability of students' estimates with bids obtained for several "live" projects, arbitrarily excludes the upper of 20\% of bids as being probably non sericus. Morrison \& Stevens (1980) have considered excluding the highest two bicis in each set, whilst Whittaker's analysis (1970) of 153 contracts excluded all bids exceeding the average bid by a factor of 6 and any obviously abnormal sets (for instance where one bid was more than 21% higher than the next highest bid) were eliminated. Whittaker also imposed an additional restriction by including only the bids which satisfied the condition
(highest bid - lowest bid)/mean bid
§24\%

Pimm (1974), on the other hand, along with the majority of bidding strategists, does not advocate rejecting bids that look "wrong", although he suggests excluding bids his own firm know to be wrong because of arithmetical or judgemental errors.

McCaffer (1976a) claims to have discovered the presence of outliers during the performance of the Anderson-Darling test, due to the formation of unexpectedly long tails in the analysis. Since his data appeared to have been drawn from a general Normal distribution, a test developed by Grubbs (1950) is recommended. The test, however, has been criticised as inappropriate in this case, as the sample sizes are too small and that the presence of outliers is more likely to be indicative
of a wrongly assumed shape parameter than an 'unrealistic' bid (Skitmore,1981a).

Johnston (1978), far from eliminating suspect bids, considers them to be of great importance and, in calculating skewness, has suggested a possible correlation with the industry's work load. Analysis by Skitmore (1981) of a different set of data has rejected Johnston's findings.

A further reason for retaining the so-called 'unrealistic' bids is that some companies have beez found to have quite distinct bidding behavicur and what appears to be an unrealistic bid may be a genuine bid in some cases. In any event, non-serious bidders are not likely to have any effect on low bid models (Weverberg,1981; Eeeston,1983). It is concluded, therefore, that, in the absence of any reliable predictor cf known nen-sericus bids, it would be advisable to retain all bids in the model.

7.5.4 Data Limitations

A major criticis표 of models of competitors' bidding behaviour is based on the difficulty in obtaining the necessary data. Friedman's (1950) model is particularly susceptible to this criticism, demanding, as it does, the collection of bid/cost estimate ratios against each competitor in crier to construct a frequency distribution of sufficient dimensicns to ezable a probability density function to be fitted. Such a quantity of data does not seem to be generally available in the construction industry (Grinyer \& Whittaker,1973), a difficulty considered by some to bring into question the entire applicability of bidding models in the industry (Cooke,1981,p61). The situation deteriorates further when considering combinations of specified competitors due to the reduced amount of data available (Beeston,1983) to assess the joint probability distribution of each possible sub-set of competitors, 2^{m} for n competitors (Christenson,1965). Added to this are the typical characteristics of the construction bidding situation in that "... past histories of bidding behaviour are relatively short and only a small number of potential competitors participate in a particular contract" (Weverberg,1981). It is not surprising to find that "... the experience of the contractor studies seems to indicate that it is of little value
to try and estimate the distribution of the bid-cost ratios of known competitors ... [as] there are relatively few competitors who are bid against often enough to provide sufficient information to estimate these distributions with any confidence" (Benjamin,1972,p328). A further difficulty that has been encountered is that not all (if any) competitors may be known for a project.

Data difficulties and unknown competitors have been anticipated by Friedman's (1956) collective competitors model, termed the average bidder', where all competitors are assumed to beiave in a similar manner, that is, their bids are considered to be drawn from fientical distributions. The majority of empirical studies rely on the collective competitors model, the individual competitor model being restricted to competitors encountered most frequently ('key' competitors), mainly due to the extreme difficulties involved in obtaining stable parameter estimates for individual competitors (see Capen et al,1971; Curtis \& Maines,1973 and Fuerst,1977, for instance).

Apart from resorting to modelling the distribution of low bids, with the accompanying loss of information, only two appraaches appear to be feasible. The first is to use the collective competitor model on the assumption that competing bidders do behave in a similar manner, and the second is to adopt a multi-variable approach along the lines of Weverberg (1982) and Skitmore (1982). There are some grounds for accepting the first approach to be reasonable for "... although for some companies quite distinct bidding behaviour in terms of mean and spread are found, pooling of companies into 'average competitors' does not seem to be a major cause of bias: for many companies behaviour is sufficiently similar" (Weverberg,1982,p26). In the context of the bidding problem it would seem that differences in spread are of more concera than differences in mean (Weverberg,1982,p62). Insofar as the second approach is concerned, data can be collected on all contracts irrespective of whether the collector enters a bid or not, thereby reducing the informational problems of the uni-variate approach normally employed. Success is not guaranteed, however, for, as Weverberg (1982) observes "... naive approaches based on pairwise independence and assuming univariate analyses are inevitably quite unreliable. Even using multivariate methods differences in bidding behaviour are not easy to detect".

7.5.5 Project Acquisition

The allocation of projects by potential clients depends on the client's allocation criteria which may include such factors as price, speed, quality, reliability, flexibility and control. These criteria determine the global procurement methods chosen (such as traditional, design and build, or management contract), the construction companies to be involved, and the value of the project. It is generally assumed that the price of the project is the client's main interest and, in the majority of cases, this is reflected in the competitive traditional apprach where the lowest bidder is awarded the project. Such an apprach is not the universal practice however. There are instances of projects being awarded to construction companies offering sic:tar durations or, directly or indirectly, greater reliability, better quality and greater financial security. On some occasions the second or even third lowest bidder has been known the acquire the project. One reasan for this is the view that the lowest bidder may have entered a 'suicidally' low bid due to, perhaps, some gross deficiency in his cost estimate. Cauwelaert \& Heynig's (1978) 'Belgian' solution propases a method of identifying such low bids in order to avoid allocating projects to these bidders.

Simmonds (1968a) has proposed a method of modelling the various features offered by the company in its attempt to acquire a new project in terms of mark-up or mark-up equivalent. By this method, non-price features relative to competitors,are evaluated subjectively for their likely effect on project acquisition.

Very little evidence appears to be available on the impact of non-price features and the allocation of project to bidders other than those entering the lowest bid. Benjamin's (1969) analysis of 125 construction projects found only one case of a project being awarded to anyone other than the lowest bidder.

7.5.6 Factors Affecting the Likelihood of Entering the Lowest Bid

The competitive pressures in the construction industry, it has been said, are probably more intense than any other industry (Park,1972,p24.1). In the presence of such competition it is not
altogether surprising to find that "... juiging from the attitudes of some companies, competitive bidding does not result in competition based upon costs or profit margins, but actually produces a lottery in which the inherent uncertainty of the process decides the winner" (Whittaker,1970). Indeed, McCaffer (1976a) has found "... substantial evidence that existing bidding processes are little more than random". Pim's (1974) analysis of the number of projects awarded to four construction companies indicates that the average number of projects acquired is generally the reciprocal of the average number of bidders competing, the froportion that would only be won by 'chance' (Table 7.4).

Table 7.4 Frequency of low bids

Company	Ho. of Projects	No. of bids	Bids per project	\% win by chance	\% actually won
A	41	249	6.1	16.4	17.0
B	36	183	7.0	14.2	15.4
C	19	88	4.6	21.6	21.1
D	35	202	5.8	21.6	17.1

Source: Pim (1974, p541)

This would suggest an extremely simple model in which the probability P of entering the lowest bid is the reciprocal of n, the total number of bicders. The value of n, however, may not be known with certainty but may, as has been discussed earlier, itself be modelled by a probability density function say $f(n)$.

Research by Eroemser (1969), however, indicates that n is not significantly correlated with P, although many consider n to be a very important factor (Park,1962, for instance).

Empirical attempts to link other factors with P have also met with limited success. Gates (1967) and McCaffer (1976a), for instance, have examined (inconclusively) the influence of project size, and Broemser's (1968) MRA using several predictor variables was unable to explain most of the variance, concluding that "... we expect most of the
remaining variance, ie, the standard error of 5.18%, is due to the difference between cost estimates".

A great deal of attention has centered at the theoretical level on the actions of individual competitors, information about which has been regarded as "critical" (Griesmer et al,1963). Most models implicitly require the analyst to develop probability distributions for any competitor's bid (Neufville et al,1977), which means that the model builder is faced with "... the problem of explicating probability laws for opposing bids" (Weverberg,1981). Carr (1982) has shown that differences in assumptions of the spreads of opposing bids can have significant effects on results, altiough asymmetrical information (different spreads) produce a "very messy" theory (Klein,1976). Edelmann (1965) and Flanagan a Jorman (1982) have, nevertheless, derived a matriz ci award probabilities for eaci bidder.

In recognition of the informational difficulties, Park (1966) has suggested considering individual competitors when six or less are present and Morin \& Clough (1969) have used the 'key' competitor analysis for those competitors encountered on in least 40% of bidding situations.

The most popular factor that has been associated with P is the difference between the bid and cost estimate, commonly termed the 'mark-up', as this represents "... the underlying assumption of bidding theory in that for each marginal change of mark-up there is a corresponding change in the prabability [F] of success " (Cooke,1981,p61).
7.5.7 The Probability (P) of Entering the Lowest Bid as a Function of Mark-Up

It has been assumed that a company may estimate the prior probability of P for a "particular bid", this probability being determined from the company's expectations of its competitors' bids. It follows, therefore, that P "... will vary continuously with the amount bid which may be varied almost continuously" (Benjamin,1970). Edelmann's (1965) model relies on the intuitive assessment of the value of P as a function of the bid. An alternative approach has been to fit a curve to the
percentage cumulative observed rate of bidding success for a given cost plus a percentage mark-up (Benson,1970). Friedman (1956) has suggested that a value for P for a particular project can be estimated by combining the probabilities of underbidding each individual competitor. Friedman's model has been described many times, probably the most cogent description being that of Fuerst (1976):

```
"Assume for a letting under consideration that the bid of
each competitor, \(C_{i}, i=1, \ldots, n\), is independently drawn
fram \(g_{1}\left(b_{i} \mid c\right)\) - a probability density function of the bid
of \(C_{1}\), conditional upon the actual cost, \(c\). Also, any
competitor winning the contract is assumed to have the
same actual cost. Therefore
    \(P\left(C_{1}\right.\) wins \()=\int_{b_{1}-0}^{\infty} g_{1}\left(b_{1}\right) \int_{b_{2}-b_{1}}^{\infty} g_{2}\left(b_{2} \ldots \int_{b_{n}-b_{1}}^{\infty} g_{n}\left(b_{n}\right) d b_{n} \ldots d b_{2}, d b_{1}\right.\)
in which, fer notational ease, \(g_{1}\left(b_{1}\right)\) has been written
for \(g_{1}\left(b_{1} \mid c\right) "\)
(Fuerst, 1976, p174).
```

If bidec: C_{1} 's bid is replaced by cost estimate c_{1}, plus a maris-up m then the above becomes

Friedman then advocates obtaining $f_{1}\left(c_{1}\right)$ and $g_{i}\left(b_{1}\right)$ empirically, based on cbservations from past lettings, from the frequency distributions of actual cost/cost estimate and bid/cost estimate ratios respectively. However, as Fuerst (and others) observe "... both a cost estimate and a competitor's bid should be considered random variables, and the density function of the ratio of two random variables is almost always complexly related to the density functions of the individual random variables". A further problem that occurs with the use of ratios is that, if the ratio of bids and cost estimates is to be considered as truly: independent of the bids and cost estimates, then the ratio must always be constant, as proved by Rothkopf (1980).

Two alternative approaches appear to be available in circumventing these problems. One approach adopted by Grinyer \& Whittaker (1973) assumes that the ratio of bids to average bids, for any project, form a Uniform density function and then estimating, via a combination of managerial judgement and past data, the value of the mean of the
density function for each contract to be bid. Grinyer \& Whittaker's assumption of Uniformly distributed bids has, however, been rejected by McCaffer (1976a) on methodological grounds, as previously mentioned. McCaffer (1976a) has also questioned the accuracy of prediction of the mean bid by this approach.

The other approach has been to utilise the distribution of low bids, irrespective of the identity of the bidders, by compiling a frequency distribution of low bid/cost estimate ratios. This approach, whilst overcoming the problems to some extent, suffers from informational loss, as already discussed. It has, however, been claimed to be increasingly beneficial as individual compeitors' distributions differ (Weverberg,1981,p19). This must clearly depend on the predictability of the identity of the incividual competitors. Estimates of P based on the low bid distribution are lirely to be rather poor in the absence of a consistently keen, but absent, competiter, for instance.

A third and, as yet untried, appraach avoids the use of ratios entirely in estimating function parameters by a multi-variate technique (Skitmore, 1982). The advantage of this approach is that it avoids the usual problems associated with ratios by dealing with the log values of the bid and cost estimate variables, thus enabling these variables to be handled separately. Some aspects of this approach are examined in the next Chapters.

A further difficulty that arises with the above formulae is that bids, as has been discussed, are not expected to be independent, for several reasons. No models have been proposed, however, to deal with this problem in situations where more than two bidders are involved.

Two theoretical conclusions are of interest with the Friedman model. Firstly, where symmetric information exists (identical functions) for all competitors, a value of P can be estimated by order statistics (Curtis \& Maines,1973; McCaffer,1976a; Klein,1976 and Mitchell,1977, for instance); and secondly, it has been shown that, under certain restrictive conditions, the expected value of the winning bid "... is surely equal to the true value" of the project (Wilson,1979 and Milgrom,1979, for instance).

This chapter has examined in some detail the possibility of simplifying some aspects of the project selection decision by means of statistical models. The frequency distribution of the size of the project opportunities has been found, in one case, to be Exponential and the work content of the projects modelled as a series of random variables. A Poisson model has been proposed to model the distribution of the number of competitors involved and several regression models have been devised to predict the number of competitors, none of which appeers to have been been particularly successful. A predictive technique termed the multidistribution model (MD) has been used to predict the identitiy of competitors and further models have been developed which purpcrit to give the probability of certain competitors being present in a project bidding situation.

Actual and estimated costs have been extensively modelled stochastically, the degree of independence between these two variables being a major debate. Individual aspects of costs and estimated costs have been considered amenable to statistical modelling, including labour, materials, sub-contractors, quantity related costs, weather and seasons, costs of estimating and additional costs. Many proposals have been reviewed defining the nature of cost distributions and these are summarised in Table 7.2.

Relatively little attention has been paid to modelling project income in a statistical manner, except that a Beta distribution has been applied to cash flows.

The bidding behaviour of competitors, both collectively and individually, has been the subject of many statistical models, the distributional characteristics of which are summarised in Table 7.3. Some possible effects of market conditions have been noted. The distribution of low bids in relation to cost estimates has also been treated in a similar manner, a Normal probability density function often being considered appropriate. An interesting result arising from the analysis of three sets of published data indicates the expected value of low bid/cost estimate ratio to be approximately unity.

The behaviour of individual competitors has been modelled separately in some cases. The assumption that the behaviour of bidders is independent of events, including the actions of competitors, 'economic conditions', type and possibly size of project and location has been questioned as being an oversimplification although little evidence appears to be available to determine the significance of this. The use of MRA has been recommended in identifying correlations of these events with individual bids.

The possibility of collusion has also been discussed and is considered to be rarely practised in the construction industry. It is thought, however, that a subverted form of collusion may exist because of commonalities between companies. Hon-serious and unrealistic bids have also been considered for possible separate treatment with the conclusion that, in the absence of any identification procedures, such bids may be more fruitfully retained in any general analysis.

Data limitations appear to be severe except for collective competitors, low bids and certain key competitors. A multi-variate technique, however, has been proposed which may alleviate the problem.

Project allocation has been considered to depend on many possible client controlled factors and a method has been reviewed which aggregates these factors into a mark-up adjustment.

The effect of the mark-up on the probability (P) of entering the lowest bid has been found to be contained in a model first proposed by Friedman (1956). The model essentially requires some knowledge of the probability distribution of bids for each competitor and the probability distribution of actual/estimated costs of the decisionmaker's organisation. The problems associated with bid/estimated cost and actual/estimated cost ratios indicate that an alternative approach may be required. The use of collective and low bid model has been considered and the multi-variate approach again identified as a possible suitable alternative.

Statistical models would appear to be reasonable approximations of many aspects of the project decision environment, if only because of the volume of studies reported, only a sample of which, have been reviewed in this Chapter. Perhaps the most important aspect of the
entire project decision system is whether a project is acquired or not, as this event will have a considerable impact on the state of the outcome environment, both initially and particularly over a period of time. The liklihood of project acquisition would seem, as has been seen, to be a strong candidate for modelling in a statistical manner in terms of the probability of entering the lowest bid for the project. An estimate of this probability, if it can be obtained with sufficient accuracy, could then be applied to the model states previously outlined by inputing a probabilistic element to those states of the model that have hitherto been regarded as conditional upon acquisition.

The remaining Chapters describe an empirical study investigating the suitability of simple statistical modelling, including some of those reviewed in this Cazpter, of aspects of the project selecticn and bidding problem.

CEAPTER 8

This chapter contains a sumary of the first part of an empirical analysis of bidding data for construction projects. The data consisted of three sets (referred to as Cases 1,2,3) of bids entered for projects in two geographical locations of the UK. Details are provided in Appendix B.

Three aspects are examined to identify the suitability of modelling the data in a simple statistical manner, the frequency of project values, the frequency of the number of bids entered for each project and the distribution of bid values for each project. The second part of the analysis, which examined aspects involving the individual bidders, is continued in Chapter 9.

8.2 Project Values

8.2.1 Distribution of project values

Figures 8.1 to 8.3 show the frequency of project values (lowest bids) as histograms for each of the 3 cases studied. Cases 2 \& 3 provide data for all projects let in two geographical regions whilst Case 1 covers only projects in which bids were eatered by one firm. The histograms for Cases 2 \& 3 suggests that an exponential model may well approximate the data and a chi-square test may also indicate a good fit (cf. Hossein, 1977). However, closer inspection of the left-hand tails of Cases $2 \& 3$ (Figures $8.4 \& 8.5$) suggest that lower valued contracts do not behave as expected by the exponential distribution as the frequencies flatten out and start to fall with very low value projects. Several parametric distributions thought to have a similar shape to the shape indicated by the histograms were fitted to the data and tested for goodness of fit.

8.2.2 The Exponential model

The Exponential distribution was fitted to the standardised values y_{i} $=x_{i} / \bar{x}$ and the observed frequency of y_{i} compared with the expected
Fig 8.1 Case 1: Frequency distribution of project size (lowest bid)

(\%) Kjuanbasy

Fig.8.2 Case 2: Frequency distribution of project size (low bids)

Fig 8.4 Case 2: LH tall of frequency distribution of project size (low blds)

Fig 8.5 Case 3: LH tall of frequency distribution of project size (low bid) up to 250000

frequency $\operatorname{Pr}\left(y_{i}\right)=1-e^{-y i}$. For Case 1 , both the chi-square test $\left(x^{2}(6)=8.9\right)$ and the Kolmogorov-Smirnov test ($\mathrm{K}-\mathrm{S}_{(51)}=0.16$) do not reject the null hypothesis at the 5% level. Case $2\left(x^{2}(16)=164.6\right)$, $\left.\mathrm{K}-\mathrm{S}_{(218)}=0.28\right)$ and Case $3\left(\mathrm{X}^{2}(24)=92.5 ; \mathrm{K}-\mathrm{S}(373)=0.12\right)$, however, do reject the null hypothesis at the 5% level. This result is not surprising for it is known that, for the Exponential distribution $\mu_{y}=\sigma_{y}$ which implies for these standardized values that s_{y} approximates to unity, which clearly does not apply in Cases 2 and 3.

8.2.3 The Gamma model

The Ganma distribution was fitted to the values x_{i} such that $f(x)=$ $\lambda(\lambda x)^{k-1} e^{-\lambda x / \Gamma(k), ~ w h e r e ~} k=\bar{x}^{2} / s_{x}{ }^{2}$ and $\lambda=\bar{x} / s_{x}{ }^{2}$. The observed frequency of x_{i} was compared with the expected frequency of $f(x)$. In all cases except the K-S test for Case 1 the null hypothesis was rejected at the 5% level. This result is also not surprising as, for values of k less than unity, the shape of the Gamma distribution is a reverse J shape similar to that of the Exponential distribution. Such a shape, as was previously noted, is not likely to be very representative of the distribution of the observed values.

8.2.4 The Beta model

The Beta distribution of the first kind was fitted to the standardised values $y_{i}=\left(x_{i}-\min x\right) /(\max x-\min x)$
$f(y)=\frac{\Gamma(t)}{\Gamma(r) \Gamma(t-r)} y^{r-1}(1-y)^{t-r-1}$, values for r and t being
estimated from $\overline{\mathrm{y}}=\frac{\mathrm{r}}{\mathrm{t}}$ and $\mathrm{s}_{\mathrm{y}}{ }^{2}=r(t-r) / t^{2}(t+1)$. The observed
frequency of y_{i} was compared with the expected frequency of $f(y)$. In all cases both the chi-square and $K-S$ test reject the null hypothesis at the 5\% level. A comparison of the observed coefficient of skewness $Y_{1 y}$ and that expected of the Beta distribution ie.
$Y_{1}=\frac{1}{\sigma^{3}} \frac{r}{t}\left\{\frac{(r+2)(r-1)}{(t+2)(t+1)}-\frac{3 r(r+1)}{t(t+1)}+\frac{2 r^{2}}{t^{2}}\right\}$
indicates the differences (Table 8.1).

Table 8.1: Project values and the Beta distribution comparison of expected and observed coefficients of skewness

Statistic	Case		
	1	2	3
Expected $Y_{1 y}$	1.25	3.01	2.73
Observed $Y_{1 y}$	2.31	4.34	5.51

8.2.5 The Normal model (log transformation)

The Normal distribution was fitted to the standardized \log values, $\boldsymbol{z}_{\mathrm{i}}$ $=\left(y_{i}-\bar{y}\right) / s_{y}$ where $y_{i}=\ln \left(x_{i}\right)$ and the observed frequency of z_{i} compared with the expected frequency of $N(0,1)$. All tests except the K-S test for Case 2 failed to reject the null hypothesis at the 5\% level.
8.2.6 The Normal model (log-log transformation)

The normal distribution was fitted to the standardized log-log values, $z_{i}=\left(y_{i}-\bar{y}\right) / s_{y}$, where $y_{i}=\ln \left[\ln \left(x_{i}\right)\right]$, and the observed frequency of z_{i} compared with the expected frequency of $N(0,1)$. All tests failed to reject the null hypothesis at the 5% level. The chi-square tests of the standardized values for Case 2 is given in Table 8.2.

Table 8.2: Case 2 - Log-log transformation contract size (low bid) distribution

Chi-Square Test of Fit
Normal Distribution

From	To	Obs	Z	PHI	EXP CUM	EXP	x^{2}	
- INF	-1.750	11	-1.750000	0.040059	8.732896	8.732896	0.588552	
-1.750	-1.500	5	-1.500000	0.066807	14.563970	5.831074	0.118449	
-1.500	-1.000	16	-1.000000	0.158655	34.586845	20.022875	0.808252	
-1.000	-0.750	8	-0.750000	0.226627	49.404763	14.817917	3.137013	
-0.750	-0.500	26	-0.500000	0.308538	67.261183	17.856421	3.713952	
-0.500	-0.250	28	-0.250000	0.401294	87.482021	20.220838	2.992723	
0.250	0.000	23	0.000000	0.500000	109.000000	21.517979	0.102072	
0.000	0.250	16	0.250000	0.598706	130.517979	21.517979	1.415007	
0.250	0.500	16	0.500000	0.691462	150.738817	20.220838	0.881045	
0.500	0.750	17	0.750000	0.773373	168.595237	17.856421	0.041075	
0.750	1.000	14	1.000000	0.841345	183.413155	14.817917	0.045147	
1.000	1.250	14	1.250000	0.894350	194.968349	11.555195	0.517263	
1.250	1.500	7	1.500000	0.933193	203.436030	8.467681	0.254389	
1.500	+ INF	17	+ INF	1.000000	218.000000	14.563970	0.407461	
		218					218.000000	15.022399

Chi-square of 15.022399 (13 df), has probability of 0.305937

8.2.7 Conclusions

Table 8.3 summarises the results of the various models applied to the project values. As can be seen from the table, only the loglognormal model appears to fit all cases without rejection by the tests applied.

Table 8.3: Modelling project values

Statistic	Case		
	1	2	3
Exponential ($\mathrm{y}_{1}=\mathrm{x}_{\mathrm{i}} / \overline{\mathrm{x}}$)			
$\overline{\mathbf{y}}$	1.00	1.00	1.00
s_{y}	1.008	2.031	1.596
x^{2}	8.88* ${ }^{\text {(6) }}$	164.6(16)	92.5 (24)
K-S	$0.16{ }^{*}(51)$	0.28 (218)	0.12 (373)
Gamma			
$\overline{\mathbf{x}}$	1639369	138398	457650
s_{x}	1652622	281142	730440
$k=\bar{x}^{2} / s_{x}{ }^{2}$	0.984	0.242	0.393
$\lambda=\bar{x} / s_{x}{ }^{2}$	$6.002 \mathrm{E}-07$	$1.751 \mathrm{E}-06$	8.578 E-07
x^{2}	23.23 (7)	37.78(10)	89.45 (10)
K-S	$0.16{ }^{*}(51)$	0.269 (218)	0.265 (373)
Beta $\left\{y_{i}=\left(x_{i}-\min x /(\max x-\min x)\right\}\right.$			
$\min x$	248733	1172	8941
max x	7831865	2257024	8553300
$\overline{\mathbf{y}}$	0.183	0.061	0.053
s_{y}	0.218	0.125	0.085
r	0.395	0.163	0.305
t	2.153	2.678	5.808
x^{2}	26.16(6)	28.34 (9)	84.995 (10)
K-S	0.232 (51)	0.388 (218)	0.309 (373)

Lognormal

\bar{y}	13.945	10.731	12.421
s_{y}	0.834	1.463	1.066
X^{2}	$9.29^{*}(6)$	$32.76(14)$	$12.68^{*}(17)$
$\mathrm{K}-\mathrm{S}$	$0.109^{*}(51)$	$0.073^{*}(218)$	$0.038^{*}(373)$

Log-lognormal $\left\{y_{i}=\ln \left(\ln \left(x_{i}\right)\right)\right\}$

\bar{y}	2.633	2.364	2.516
s_{y}	0.059	0.137	0.086
X^{2}	$6.68^{*}(5)$	$15.02^{*}(13)$	$7.37^{*}(16)$
$\mathrm{K}-\mathrm{S}$	$0.107^{*}(51)$	$0.055^{*}(218)$	$0.021^{*}(373)$

* Null hypothesis not rejected at 5% level

8.3 The Number of Bidders

8.3.1 The distribution of the number of bidders per project

Friedman (1956) has suggested that the number of bidders k might have a Poisson distribution. That is if λ is the estimated number of bidders then:

$$
g(k)=\lambda^{k-1} e^{-\lambda / k}
$$

Estimates of $\lambda=\bar{x}$, where x_{i} is the number of bids recorded for each project, were obtained from the data and the Poisson function $g(x)$ fitted (Figures 8.6 \& 8.7). In all cases the null hypothesis was rejected by the chi-square test at the 5% level.

Friedman (1956) has further suggested that better estimates of λ may be obtained by predictions obtained from regressing the project value on the number of bidders. A regression was performed on the data of the project values (low bids) on the number of bids entered for each project (Table 8.4).

Table 8.4: Results of regression of project value on the number of bids per project

Case	α	β	Prod.mom corr.coeff	$t(\beta=0)$
1	5.825	$2.501 \mathrm{E}-07$	0.282	$2.06^{*}(49)$
2	5.245	$3.037 \mathrm{E}-07$	0.378	$6.00^{*}(216)$
3	4.918	$4.729 \mathrm{E}-07$	0.178	$3.48^{*}(371)$

[^2]Fig.8.6 Case 1: Frequency of bids per project

Case 2: Frequency of bids per project

Fig.8.7 Case 3: Frequency of bids per project

Although the product moment correlation coefficient was quite low, the t-test rejection of $\beta=0$ hypothesis was taken to be an indication that some relationship between project value and the number of bids per contract may exist. However, such small values of β were found difficult to handle computationally and, in view of the advantages found with the log transformation of project values in the previous section, it was decided to use the log project values to predict the number of bids per project. The average log project values were calculated for projects containing $x=1,2, \ldots$ bids. As Figure 8.8 shows, there appear to be marked differences in absolute values between the three cases although a similar trend is apparent in each case. For ease of comparison the log project values were plotted against the number of bidders per project and a polynomial least squares regression line fitted (Figures 8.9-8.11). Although some evidence was found in the Case 3 data of a curvilinear relationship, it was decided for the sake of simplicity to adopt a linear model. The results of the linear regression of log project value on the number of bidders per project are given in Table 8.5.

A second regression was performed, forcing the regression through zero for comparative purposes (Table 8.6).

Now having obtained a least squares linear prediction of the number of bids for a project, Friedman's assumption that the actual number of bids is a Poisson distribution can be tested as follows:-

Let the observed number of bids for project i be x_{i} and the expected number of bids for project i be λ_{i} then the probability that $0 \leqslant X_{i} \leqslant x_{i}$ is

$$
\operatorname{Pr}\left(x_{i}\right)=\Phi X^{2}\left\{2\left(x_{i}+1\right)\right\} 2\left(\lambda_{i}\right)
$$

and for all projects $(i=1,2, \ldots . ., c), \operatorname{Pr}\left(x_{i}\right)$ will be uniformly distributed between zero and unity. The calculations for Case lare shown in Tables 8.7 and 8.8. Table 8.6 summarizes the results in all three cases.
Fig 8.8 Number of bidders by average project value

Table 8.5: Distribution of observed number of bidders around regression prediction

$\mathrm{n}_{\mathrm{j}}=\alpha+\beta \mathrm{y}_{\mathrm{i}} \mathbf{j}$	Case		
	1	2	3
Regression Results			
$y_{i j}=\ln \left(x_{i j}\right)$			
Prod. mom. corr. coeff.	0.2714	0.489	0.460
α (SE)	$\begin{aligned} & -0.4129 \\ & (3.3737) \end{aligned}$	$\begin{aligned} & -2.4455 \\ & (0.9931) \end{aligned}$	$\begin{aligned} & -5.2745 \\ & (1.0483) \end{aligned}$
β (SE)	$\begin{gathered} 0.4767 \\ (0.2415) \end{gathered}$	$\begin{array}{r} 0.75585 \\ (0.0917) \end{array}$	$\begin{gathered} 0.8380 \\ (0.0841) \end{gathered}$
t-test ($\beta=0$)	1.97*(49)	8.24 (216)	9.97(371)
Residuals			

Test for Poisson distn.
x^{2}

$$
\begin{array}{lcc}
45.1(4) & 29.83(9) & 63.53(9) \\
0.231(51) & 0.134(219) & 0.136(372)
\end{array}
$$

K -S

Test for Normal distn.
x^{2}
10.11* $(5) \quad 8.49^{*}(9)$
10.06* (9)

K-S
0.117^{*} (51) $\quad 0.060^{*}(217) \quad 0.041^{*}(372)$

* Null hypothesis not rejected

Table 8.6: Distribution of observed number of bidders around regression prediction (forced through zero)

$\mathrm{n}_{\mathrm{j}}=\beta \mathrm{y}_{\mathrm{i} j}$	Case		
	1	2	3

Regression results

$$
y_{i j}=\ln \left(x_{i j}\right)
$$

Prod. mom. corr. coeff.	0.2714	0.489	0.460
$\alpha(S E)$	$0(0)$	$0(0)$	$0(0)$
$\beta(S E)$	0.4472	0.5321	0.4164
	(0.0143)	(0.0125)	(0.0074)
t-test $(\beta=0)$	$31.66(50)$	$42.56(219)$	$56.20(372)$

Residuals

Test for Poisson distn.

x^{2}	$41.77(4)$	$48.7(9)$	$57.10(9)$
k-s	$0.226(51)$	$0.113(217)$	$0.107(278)$

Test for Normal distn.
x^{2}
10.11* (5) 14.78*(9) 17.67 (9)
k-s
$0.113^{*}(51) \quad 0.072^{*}(217)^{0.071}{ }^{(372)}$

* Null hypothesis not rejected

Table 8.7: Regression predictions of number of bids per project (Case 1) and Poisson probability $\operatorname{Pr}\left(n_{j}\right)$ of residuals

Project (j)	No Bids $\left(\mathrm{n}_{\mathrm{j}}\right)$	$\begin{aligned} & \text { Value } \\ & \ln \left(x_{i j}\right) \end{aligned}$	Pred n_{j}	$\stackrel{\mathrm{Pr}}{\left(\mathrm{n}_{\mathrm{j}}\right)}$
1	6	14.186	6.350	0.5503
2	4	13.126	5.845	0.3064
3	7	14.052	6.286	0.7037
4	6	13.366	5.959	0.6129
5	6	12.872	5.724	0.6506
6	9	14.565	6.531	0.8747
7	7	14.936	6.707	0.6422
8	4	15.747	7.094	0.1646
9	6	13.678	6.108	0.5890
10	4	13.877	6.203	0.2588
11	6	14.381	6.443	0.5355
12	6	13.935	6.230	0.5694
13	4	13.346	5.950	0.2918
14	6	13.279	5.918	0.6195
15	6	14.173	6.344	0.5513
16	3	13.644	6.092	0.1432
17	10	12.010	5.790	0.6401
18	6	13.010	5.790	0.6401
19	9	14.866	6.674	0.8620
20	8	15.874	7.155	0.7087
21	7	15.132	6.801	0.6283
22	6	13.259	5.908	0.6210
23	5	14.292	6.401	0.3836
24	8	13.995	6.636	0.5053
25	6	14.785	6.636	0.5053
26	7	13.060	5.813	0.7693
27	4	14.239	6.375	0.2380
28	7	14.460	6.529	0.6686
29	6	13.122	5.843	0.6315
30	6	14.786	6.636	0.5052
31	6	13.304	5.929	0.6176
32	6	13.196	5.878	0.6259
33	6	13.584	6.063	0.5962
34	7	14.550	6.524	0.6693
35	6	13.619	6.080	0.5935
36	6	13.520	6.032	0.6011
37	9	15.707	7.075	0.8228
38	5	13.140	5.851	0.4698
39	7	13.197	5.878	0.7887
40	8	14.552	6.524	0.7887
41	6	14.223	6.368	0.5474
42	8	15.103	6.787	0.7564
43	6	13.352	5.953	0.6139
44	5	14.628	6.561	0.3603
45	4	14.000	6.261	0.2516
46	7	14.835	6.660	0.6493
47	8	14.151	6.333	0.8110
48	7	13.456	6.002	0.7437
49	5	12.424	5.510	0.5272
50	5	12.791	5.685	0.4975
51	6	13.176	5.869	0.6274
tal:	318	318.000		

Table 8.8: Test for Uniform distribution of $\operatorname{Pr}\left(\mathrm{n}_{\mathrm{j}}\right)$ \{Case 1]

Chi Square Test of Fit
Uniform distribution
From
To
To

Chi-Square of 38.771242 (4 df), has prob. of 0.000000 Kolmogorov-Smirnov Statistic $=0.231157$
Critical Value at 5\% level is approximately 0.190000 .
Rejected

8.3.2 Conclusions

Table 8.5 indicates that the regression does go some way towards predicting the number of bids from the project value (lowest bid), the β coefficient being significantly different to zero for Cases 2 and 3. The Poisson model for the distribution of the observed number of bidders around the predicted value was not found to be appropriate by the tests used. The Normal model, however, was found to be satisfactory.

8.4 The Distribution of Bids for Each Project

8.4.1 Shape

8.4.1.1 First impressions

A first impression of the shape of the distribution of bids was gained by calculating the weighted average of the third and fourth moments of the bids for each project as these moments are independent of the first and second moments.

The weighted averages of the coefficients of skewness and kurtosis were obtained in the manner of McCaffer (1976a) as follows:

$$
\begin{aligned}
& \bar{Y}_{1}=\frac{1}{N} \sum_{j=1}^{c} Y_{1 j} k_{j} \\
& \bar{Y}_{2}=\frac{1}{N} \sum_{j=1}^{c} Y_{2 j} k_{j}
\end{aligned}
$$

where Y_{1} and Y_{2} are the coefficients of skewness and kurtosis respectively (see Appendix A), k is the number of bids entered for projects $j=1,2, \ldots ., c$ and
Table 8.9: Average coefficients of skewness and kurtosis

No. of Bids (k)	No. of projects containing bids (m_{k})	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{km}_{\mathrm{k}}\right) \end{aligned}$	Av. skewness Coeffient $\left(\bar{Y}_{1 k}\right)$	$\begin{aligned} & \text { Weighted Total } \\ & \quad\left(\mathrm{km}_{\mathrm{k}} \overline{\mathrm{Y}}_{1 \mathrm{k}}\right) \end{aligned}$	Av. kurtosis Coefficient ($\overline{\mathrm{Y}}_{2 \mathrm{k}}$)	$\begin{aligned} & \text { Weighted Total } \\ & \quad\left(\mathrm{km}_{\mathrm{k}} \overrightarrow{\mathrm{Y}}_{2 \mathrm{k}}\right) \end{aligned}$
Case 1:						
3	1	3	-1.054	-3. 162		
4	6	24	0.138	3.324	0.040	0.958
5	5	25	0.678	16.951	-1.129	-28.231
6	21	126	0.191	24.027	-0.075	- 9.480
7	9	63	0.796*	50.164	0.648	40.805
8	5	40	0.837*	33.484	0.128	5.123
9	3	27	0.775	20.923	1.130	30.517
10	1	10	0.449	4.486	-0.756	- 7.557
Total:	51	318	$\bar{Y}_{1}=0.472^{*}$	150.197	$\bar{Y}_{2}=0.102$	32.135

* null hypothesis rejected at 5\% level
* null hypothesis rejected at 5\% level

No. of Bids (k)	No. of projects containing bids (m_{k})	$\begin{gathered} \text { Tolal } \\ \left(k+w_{k}\right) \end{gathered}$	Av. skewness Coefficient ($\bar{Y}_{i k}$)	Weighted Total $\left(\operatorname{lom}_{\mathrm{lk}} \overline{\mathrm{Y}}_{\mathrm{ikg}}\right)$	Av.kurtosis Guerficient. ($\overline{\mathrm{Y}}_{2 \mathrm{k}}$)	Weighted Total $\left(\mathrm{km} \mathrm{k}_{\mathrm{k}} \overline{\mathrm{Y}}_{2 \mathrm{k}}\right)$
Case 2:						
2	23	46				
3	16	48	-0.118	-5.658		
4	27	108	-0.097	-10.495	0.012	1.329
5	31	155	0.103	16.022	0.154	70.393
6	47	282	0.325*	91.784	0.424	119.534
7	35	245	0.119	29.107	-0.085	-20.825
8	20	160	0.171	27.425	-0.242	-38.674
9	12	108	0.303	32.738	0.813	87.834
10	2	20	0.307	6.149	0.009	0.186
11	2	22	0.004	0.088	-1.166	-25.650
13	1	13	0.371	4.825	-0.835	-10.856
14	2	28	0.564	15.791	2.383*	66.729
Total:	218	1235	$\bar{Y}_{1}=0.175^{*}$	207.778	$\bar{Y}_{2}=0.219$	250.002

No. of Bids (k)	No. of projects containing bids (m_{k})	Total ($k m_{k}$)	Av. skewness Coefficient ($\bar{Y}_{1 k}$)	Weighted Total $\left(\mathrm{km}_{\mathrm{k}} \bar{Y}_{1 k}\right)$	$\begin{aligned} & \text { Av. Kurtosis } \\ & \text { Coefficient } \\ & \left(\bar{Y}_{2 k}\right) \end{aligned}$	$\begin{aligned} & \text { Weighted Total } \\ & \left(k m_{k} \overline{\mathrm{Y}}_{2 k}\right) \end{aligned}$
Case 3:						
2	40	80				
3	53	159	-0.066	-10.479		
4	47	188	0.585*	110.024	$0.788{ }^{*}$	147.785
5	59	295	0.303^{*}	89.298	$0.834{ }^{*}$	248.021
6	85	510	0.188	95.793	0.043	21.879
7	48	336	0.256	85.882	0.078	26.188
8	28	224	0.325^{*}	72.883	-0.178	-38.690
9	8	72	0.351	25.307	0.826	59.456
10	4	40	0.284	11.373	-0.303	-12.115
11	1	11	0.948	10.123	0.489	5.381
Total:	373	1915	$\bar{Y}_{1}=0.267^{*}$	490.503	$\bar{Y}_{2}=0.273^{*}$	457.905

* null hypothesis rejected at 5% level

$$
N=\sum_{j=1}^{c} k_{j}
$$

The full calculation is shown in Table 8.8.

An approximate test for departure from the normal distribution was made from the standard error of the coefficient of skewness (SEY $=$ $f(6 / d f)$) and kurtosis ($\mathrm{SE}_{Y_{2}}=f(24 / \mathrm{df})$) where $\mathrm{df}=\mathrm{k}_{\mathrm{k}}$. Under the null hypothesis that the bids are normally distributed it was judged that $S E Y_{1}$ and $S E Y_{2}$ would have to be less than 1.96. Some values greater than 1.96 were recorded as indicated in Table 8.9, and in particular the significantly positive skewness coefficients in all cases. Reference to previously published work suggest that most data of this kind may be skewed in a similar manner (Table 8.10).

Table 8.10: Summary of weighted shape statistic for project bids

	Av. Skewness Coeff.	df	Av. Kurtosis Coeff.	df
Analysis	-0.012	108	0.642	108
McCaffer's (1976a) bridges	0.165^{*}	1631	0.204	1590
Skitmore (1981)	0.175^{*}	1189	0.219	1141
Case 2	0.210^{*}	1721	0.200	1721
McCaffer's (1976a) roads	0.267^{*}	1835	0.273^{*}	1676
Case 3	0.472^{*}	318	0.102	315
Case 1	0.518^{*}	1114	0.082	1114
McCaffer's (1976a) buildings				

[^3]8.4.1.2 The relationship between the coefficient of skewness and the number of bidders

It was considered possible that the number of bidders for the project may be associated in some way with the coefficient of skewness. A test was made for correlation by a linear regression. As Table 8.11 indicates, some correspondence does appear to exist between increasing numbers of bidders and increasing skewness, although the test used did not reject the null hypothesis. It was also considered that the observed correlation, such as it was, may well be a result of the confounding effects of project value.

Table 8.11: Results of regression of number of bidders per project against skewness coefficient

Regression	Case			
$Y_{1 j}=\alpha+\beta n_{j}$	1	\ldots	2	3

Product Moment Corr. Coeff.	0.268	0.111	0.048
α	0.5349	0.2227	0.1850
β	0.0836	0.0347	0.0321
t-test $(\beta=0)$	$1.94(49)$	$1.55(193)$	$0.87(331)$

8.4.1.3 The relationship between the coefficient of skewness and project value

Figure 8.12 shows the coefficients of skewness recorded for each project plotted against the log project value (lowest bid) for all cases together with the fitted second degree polynomial regression lines for each case. The plot suggests little correlation to exist between project value and the individual coefficients of skewness. The product moment correlation coefficients and t-tests on the β

coefficients of the linear regression generally confirm this view, certainly for Case 2 and 3 (Table 8.12).

Table 8.12: Results of regression of project value on the coefficients of skewness for each project

Case	α	β	Prod.Mom Corr.Coeff.	$t(\beta=0)$
1	0.183	$1.432 \mathrm{E}-07$	0.273	$1.93(49)$
2	0.123	$1.158 \mathrm{E}-07$	0.021	$0.43(193)$
3	0.206	$9.591 \mathrm{E}-08$	0.061	$1.31(331)$

The results for Case 1 do indicate some correlation but the relatively small number of projects involved (51) suggests that the correlation may be spurious.

8.4.1.4 Tests of distributional shape

8.4.1.4.1 Introduction

As no satisfactory evidence was found to suggest that the shape of the distribution of bids for each project was dependent on either the number of bids or project value it was decided to test the assumption that the shape of the distribution of bids for each project was the same for each project. In order to do this it was necessary to find a parametric shape that would reasonably model the distribution of bids for each project.

More formally, it is assumed that "each of a set of observations $x=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is independently drawn from a density $p\left(x_{i} \mid \theta, \sigma, \beta\right)$, where θ and σ are location and scale parameters, and β is a shape parameter that indexes a parametric family that contains the simplifying assumption as a special case β_{0}. " Spiegelhalter (1983, p401).

In the present context, where there are several sets of observations (one set for each project) for each case, the notation $x_{j}\left\{x_{1 j}, \ldots\right.$, $\left.x_{n j}\right\}$ is adopted and the density is $p\left(x_{i j} \mid \theta_{j}, \sigma_{j}, \beta\right)$ for the $j^{\text {th }}$ project ($j=1, \ldots, c$).

No global procedure appears to be available to estimate β from the data. It has been suggested that "we can go a long way in the process of approximation if we make the distribution used have the correct values [estimated from the data] of its first four moments" (Pearson, 1963, pl09). In determining β this implies the use of the third and fourth moments only and in particular the coefficient of skewness (Y_{1}) and kurtosis (Y_{2}), which are independent of any linear transformation of x. Two particular problems exist in this approach to these data. Firstly there are several sets of observations and therefore several estimates of Y_{1} and Y_{2}, that is $Y_{11}, Y_{12}, \ldots, Y_{1 c}$ and $Y_{21}, Y_{22}, \ldots, Y_{2 c}$. Secondly, each set of observations contains different, and few, values. It is clear therefore that some knowledge is needed of the distribution of small sample estimates of the standardized third and fourth moments of potential models. A procedure will also be required to combine the moments obtained from different sample sizes. In view of these considerations it was decided to limit the range of possible distribution options to those suggested in the literature, that is the Uniform, Normal, Gamma, Weibull and Log-normal distributions (Table 7.2).

The preceding preliminary conclusions on the shape of the distribution of bids strongly suggest a lack of symmetry (positive skewness) to exist and therefore that the Uniform and Normal distributions will not be appropriate. McCaffer (1976a), however, although finding a substantially high average coefficient of skewness for his Belgium building contracts later concluded, after a more sophisticated analysis involving small sampling distribution of the Anderson-Darling statistic, that the data could be regarded as Normally distributed. In addition, both the Uniform and Normal distributions have been frequently adopted in bidding models as particularly suited to further theoretical treatment. It was decided therefore to retain the Uniform and Normal models in the analysis.

Several tests are available to compare the five selected distributions. The ratio of geometric to arithmetic means for instance has been shown to be the uniformly most powerful (UMP) invariant test statistic for the gamma shape against exponential alternatives (Shorack, 1972). Englehardt \& Bain (1975) use the maximum likelihood estimate of the exponential distribution to test against various Weibull alternatives, whilst Farewell \& Prentice (1977) have parametised the comparative tests for Weibull, Gamma and Log-Normal by embedding in an extended generalized gamma family.

No UMP test for the Normal shape against parametric families appears to exist as yet. The optimal test for the Normal against Cauchy distributions has recently been obtained by Franck (1982); Geary's test statistic, the ratio of mean deviation to standard deviation has been shown by Uthoff (1973) to be asymptotically equivalent to the optimal test between the Normal and Laplace shapes; and Uthoff (1970) has also shown the ratio of range to standard deviation to be the optimal test between the Uniform and Normal shapes.

Shapiro et al (1968) have studied nine statistics for testing the Normal assumption, Shapiro-Wilks ' W ', the coefficient of Skewness Y_{1}, the coefficient of kurtosis Y_{2}, the Kolmogorov-Smirnov statistic K-S, Cramer Von Mises statistic CM, the weighted CM statistic WCM (Anderson-Darling), a modified $K-S$ statistic D, the chi-square statistic X^{2}, and the studentised range μ. The statistics were used in testing 45 alternative distributions in 12 families and 5 sample sizes $(10,15,20,30,50)$. Neither the Lognormal or Weibull distributions were examined. For the Group 5 distributions, that is where $\left|Y_{1}\right| \leqslant 0.3$, a typical value for bidding data, "none of the tests showed much sensitivity against the alternatives in this group" (Shapiro et al, 1968, pl366) as no power exceeded 24\% at $\alpha=5 \%$. The WCM (Anderson-Darling) test was found to exhibit "surprisingly low power", contrary to popular belief. The size of the samples used was found to be an important factor, sometimes having a dramatic effect on the power of the test.

On the evidence of literature it would appear that the unpredictability of small sample test statistics, certainly for almost symmetrical distributions, precludes the selection of a
particularly most powerful statistic and that a battery of such statistics would be needed. It was considered, however, that tests between the fixed shape Gamma, Weibull and Lognormal distributions would best be conducted by the parametised approach of Farewell \& Prentice and possibly by a comparison of log likelihood ratios.

Of the five types of probability distributions, only three, the Normal, Lognormal and Uniform distributions can be tested for shape without the need for estimates of parameters. These are usually referred to as parameter-free tests (Kendall \& Stuart, 1963). The general Lognormal test involves the log transformation of the data and is discussed in a later section.

8.4.1.4.2 Tests for Normal and Uniform shape

Several tests are available for distribution shape, mostly tests for departure from Normality. Pearson \& Hartley (1966, p67) indicate two methods of dealing with the problem in common use:
(i) A Normal curve is fitted to the sample data and the x^{2} (or Kolmagorov-Smirnov] test for goodness of fit appled.

Certain functions of the moments of the sample are calculated and the significance of their departure from the expected value for a Normal population is examined.

The same methods can, of course, be applied for distributions other than normal.

For small samples (eg. $n \leqslant 14$) the test (i) is unlikely to provide any meaningful results.

The most suitable approach would seem to be that adopted by McCaffer and Pettit (1976) which involves calculating the moment statistic for each sample (project) and testing the distribution of that statistic against the known distribution of the sample statistic for a theoretical universe. To do this, it is first necessary to know the distribution of the sample statistic for the various theoretical distributions under consideration.

Five different sample test statistics were considered as possible candidates for this purpose:

1. The sample coefficient of skewness, Y_{1}
2. The sample coefficient of kurtosis, \mathbf{Y}_{2}
3. Geary's 'a' statistic
4. The sample studentized range W / S
5. Anderson-Darling's A^{2} statistic
6. The sample coefficient of skewness, Y_{1}

The formula for calculating this statistic is given in Appendix A. The 5\% and 1% points of the distribution of Y_{1} for samples from a Normal population have been tabulated (see Pearson \& Hartley, 1966, Table 34B, p207). The points were obtained from a t-distribution approximation (except for $n=25$ where a Hansmann curve was used) (Pearson, 1963, pl06). As yet the exact distribution of Y_{1} is unknown for any distribution being considered in this study and even approximations are difficult as the sample size becomes small (McKay 1933a,b and Geary 1947a,b).
2. The sample coefficient of kurtosis, Y_{2}

The formula for calculating this statistic is given in Appendix A. The approximate upper and lower 5% and 1% points of the distribution of Y_{2} for samples from a Normal population have been tabulated for samples of size 50 and upwards (see Pearson \& Hartley, 1966, Table 34, p208) by fitting a Pearson type IV curve to the first four moments. Pearson (1963, pl06) shows that the third and fourth moments of Y_{2} follow a "very strange" trend for sample size n < 50 when the problem becomes even worse than the Y_{1} statistic. Pearson further adds that the distribution of the reciprocal may be easier to predict but no further information is available.
3. Geary's 'a' Statistic

Geary (1935, 1936) has suggested an alternative statistic which may be used for detecting changes in kurtosis, particularly when samples contain less than 50 observations. This statistic is
$a=\frac{\text { mean deviation }}{\text { standard deviation }}=\frac{\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|}{\left\{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right\}^{1 / 2}}$

The exact upper and lower 10, 5, and 1% points of the distribution of a few samples from a Normal population have been tabulated for sample of size $n=11,16,21$, ... (see Pearson \& Hartley, 1963, Table 34c, p207). No details are available either in Geary's original papers or elsewhere of the percentage points for other sample sizes and other parent distributions.
4. The Sample Studentized Range, W/S

McCaffer \& Pettit (1976a) have used the studentized, range statistic, W/S, to test a set of 350 roads and 185 building contracts. The test was applied to indicate whether the data more closely approximated a Normal or a Uniform parent population.

The statistic is:

$$
W / S=\frac{\text { range }}{\text { standard deviation }}=\frac{\max \left(x_{i}\right)-\min \left(x_{i}\right)}{\left\{(n-1)^{-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right\}^{1 / 2}}
$$

The exact upper and lower $0.0,0.5,1.0,2.5,5.0$ and 10.0% points of the distribution of W / S for samples from a Normal population have been tabulated for samples of size $n \geqslant 3$ (see Pearson \& Hartley, 1966, Table 29c, p200). McCaffer \& Pettit (1976, Table lb, p837) have also tabulated empirical upper 10\% points of the distribution of W / S for samples from a Uniform population by simulation of 1000 samples for $n=3(1) 18$. No tabulations are readily available for further percentage points or for other population distributions.
5. Anderson-Darling's A^{2} Statistic

McCaffer \& Pettitt (1976) have used the Anderson-Darling statistic, A^{2}, to test the assumption that their data were obtained from a Normal population. The statistic is calculated as follows:

x

Let $t_{i}=\Phi\left(y_{i}\right)$ with $\Phi(x)=\int_{-\infty} \frac{1}{1(2 \pi)} e^{-1 / 2 y^{2} d y}$
where $y_{i}=\frac{x_{i}-\bar{x}}{\left\{(n-1)^{-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right\}^{1 / 2}}$

Then

$$
A^{2}=-\sum_{i=1}^{n}(2 i-1)\left\{\ln z_{i}+\ln \left(1-z_{n-i+1}\right)\right\} / n-n
$$

where $z_{i}=i$ th smallest of $\left(t_{1}, \ldots, t_{n}\right)$

The approximate 0.5 (0.5), $0.95,0.975,0.99 \%$ points of the distribution of A^{2} for samples from a Normal population have been tabulated for samples of size $n=4,5,6, \ldots$ (see Pettitt, 1975, Table 2). The points were obtained from 10,000 simulated samples for each n and after applying a smoothing technique. No tabulations are readily available for percentage points from other population distributions.

The Anderson-Darling A^{2} statistic is closely related to the Cramér-von-Mises W^{2} statistic which, according to Pearson (1963), has a small sampling distribution as equally difficult to approximate as the Y_{2} statistic discussed above.

Generation of Approximate Sampling Distributions

It is clear that some difficulties exist in determining even approximations of the sampling distributions of the above test statistics. Work on the coefficients of skewness and kurtosis for normal populations has been continuing for over 50 years with limited success. The necessary percentage points for all but the Anderson-Darling A^{2} statistic for a normal population require some degree of preliminary analysis and even these will probably involve a lengthy quadrature process to achieve a reasonable approximations.

It was decided at this point therefore to generate the approximate percentage points by simulation (without smoothing) in order to gain an indication of the likely values.

As a major point of interest in the bidding literature centres on the Normal/Uniform assumption, it was decided to approximate the unknown percentage points for each of the five statistics for each of the two distribution. In doing this two alternative approaches are available. Firstly, the percentage points may be estimated by using one long run simulation and alternatively the percentage points may be estimated by taking the average of several small simulations. The point has been resolved by Juritz et al (1983) who conclude that the occurance of bias is smaller in the former case.

The Department of Civil Engineering's prime computer was therefore assigned the task of generating 20,000 random samples of size $n=$ 3(1)14 ($n=4(1) 14$ for the Y_{2} statistic) for ali the percentage points required. Each table took about 2 hours to compile (Tables 8.13 to 8.22).

Percentage points (where comparable) from the literature are included as a check against the accuracy of the programs.
Table 8.13: Percentage points of the skermess statistic Y_{1}
Empirical distribution obtained from 20,000 simulated n size
random samples from a normal population $N(1,0.01)$
Percentage Points

Percentage points of the skewness statistic Y_{1}
Empirical distribution obtained from 20,000 simulated n size random sample from a uniform population U (1, 0.01) Table 8.14:

| Size of
 Sample
 n | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | Bercentage Points | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | |

Table 8.15: Percentage points of the kurtosis statistic Y_{2}
Empirical distribution obtained from 20,000 simulated n size
random samples from a normal population N ($1,0.01$)

Size of Sample n	Percentage Points								
	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
4	-4.164	-2.596	-1.232	-0.107	0.719	1.325	1.732	2.316	3.083
5	-2.597	-2.011	-1.391	-0.757	-0.112	0.528	1.203	1.863	2.785
6	-1.921	-1.580	-1.217	-0.807	-0.341	0.205	0.781	1.527	2.480
7	-1.725	-1.324	-1.026	-0.724	-0.373	0.071	0.577	1.257	2.230
8	-1.572	-1.208	-0.012	-0.622	-0.330	0.020	0.485	1.126	2.103
9	-1.462	-1.145	-0.861	-0.586	-0.313	0.017	0.413	0.965	1.905
10	-1.381	-1.097	-0.840	-0.583	-0.315	-0.009	0.374	0.884	1.734
11	-1.311	-1.024	-0.789	-0.548	-0.287	-0.001.	0.359	0.832	1.691
12	-1.255	-0.988	-0.758	-0.532	-0.276	0.007	0.346	0.790	1.556
13	-1.202	-0.922	-0.693	-0.481	-0.251	0.011	0.328	0.760	1.517
14	-1.164	-0.922	-0.693	-0.481	-0.251	0.011	0.328	0.760	1.517
				-					

Table 8.16: Percentage points of the kurtosis statistic Y_{2}
Empirical distribution obtained from 20,000 simulated in size
random samples from a uniform population U(1, 0.01)

Size of Sample n	Percentage Poinl.s								
	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
4	-4.808	-3.399	-1.383	-0.713	0.360	1.149	1.684	2.338	3.154
5	-2.881	-2.501	-2.064	-1.512	-0.889	-0.161	0.624	1.541	2.585
6	-2.228	-1.870	-1.674	-1.390	-1.039	-0.567	0.029	0.803	1.992
7	-2.102	-1.782	-1.492	-1.236	-1.005	-0.725	-0.325	0.273	1.352
8	-1.941	-1.699	-1.457	-1.222	-0.978	-0.721	-0.411	0.022	0.913
9	-1.821	-1.602	-1.413	-1.217	-1.001	-0.759	-0.475	-0.088	0.618
10	-1.767	-1.560	-1.383	-1.222	-1.047	-0.833	-0.578	-0.218	0.357
11	-1.712	-1.530	-1.369	-1.207	-1.048	-0.867	-0.641	-0.319	0.217
12	-1.676	-1.508	-1.362	-1.217	-1.066	-0.902	-0.606	-0.417	0.081
13	-1.638	-1.477	-1.343	-1.212	-1.079	-0.924	-0.731	-0.469	-0.040
14	-1.622	-1.461	-1.330	-1.206	-1.072	-0.932	-0.750	-0.527	-0.122

Percentage points of Geary's statistic, a
Empirical distribution obtained from 20,000 simulated n size random samples from a normal population (1, 0.01) Table 8.17:

Size of	Percentage points								
Sample									
n	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
3	0.840	0.861	0.880	0.897	0.911	0.922	0.931	0.938	0.942
4	0.789	0.813	0.827	0.840	0.853	0.867	0.901 .	0.934	0.967
5	0.756	0.780	0.804	0.830	0.854	0.876	0.896	0.916	0.939
6	0.738	0.779	0.807	0.829	0.847	0.864	0.881	0.899	0.924
7	0.740	0.776	0.801	0.820	0.837	0.854	0.870	0.890	0.915
8	0.740	0.774	0.797	0.815	0.832	0.848	0.865	0.884	0.907
9	0.740	0.772	0.794	0.812	0.827	0.843	0.860	0.877	0.899
10	0.742	0.771	0.792	0.810	0.825	0.840	0.855	0.872	0.894
11	0.743 (0.7409)	0.772	0.732	0.808	0.823	0.837	0.852	0.869	0.890 (0.8899)
12	0.740	0.769	0.789	0.805	0.820	0.834	0.848	0.864	0.884
13	0.743	0.770	0.789	0.805	0.818	0.832	0.845	0.861	0.881
14	0.744	0.770	0.789	0.804	0.818	0.830	0.843	0.858	0.877
				-					

Note: figures in parentheses are from Pearson \& Hartley (1966, Table 34A, p.207)
Percentage points of Geary's_statisitc, a

Table 8.19: Percentage points of the studentized rancestinlistic W
Percentage Points
Note: Figures in parentheses are from Pearson \& Ilartley (1966, Table 29c, p. 200
Table 8.20:

Size of sample n	Percentage Points								
	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%
3	1.775	1.816	1,854	1.890	1.922	1,049	1.971	1.987	1.997 (1.997)
4	2.006	2.093	2.136	2.174	2.213	2.255	2.300	2.347	2.398 (2.394)
5	2.139	2.245	2.318	2.378	2.427	2.476	2.528	2.589	2.670 (2.666)
6	2.264	2.355	2.431	2.499	2.564	2.623	2.691	2.764	2.865 (2.861)
7	2.359	2.452	2.529	2.600	2.668	2.738	2.817	2.004	3.014 (3.026)
8	2.437	2.536	2.613	2.683	2.753	2.826	2.910	3.008	3.142 (3.317)
9	2.501	2.601	2.677	2.749	2.818	2.892	2.974	3.079	3.220 (3.204)
10	2.556	2.656	2.730	2.801	2.872	2.943	3.028	3.135	3.288 (3.292)
11	2.602	2.703	2.779	2.850	2.921	2.994	3.077	3.180	3.331 (3.336)
12	2.642	2.740	2.818	2.888	2.958	3.030	3.114	3.218	3.371 (3.374)
13	2.675	2.772	2.851	2.924	2.992	3.064	3.150	3.254	3.406 (3.406)
14	2.713	2.815	2.891	2.963	3.030	3.103	3.183	3.284	3.436 (3.480)

Table 8.21a: Percentage points of the Anderson-Darling_Statiatic A ${ }^{2}$ Empirical distribution obtained from 20,000 simulated n size
random samples from a normal population $N(1,0.01)$ Empirical distribution obtained from 20,000 simulated n size
random samples from a normal population $N(1,0.01)$
Percentage Points
$809 \quad 809$
\%06
0.432
0.484
0.518
0.535
0.554
0.564
0.571
0.580
0.583
0.580
0.590
0.596 0.383
0.400 0.424 0.437 0.451 0.460 0.462 0.470 0.472 0.473 0.483 $\% 08$

70\%

0.338 0.368 0.380 0.388 0.397 0.399 $\stackrel{10}{c}$ 0.405 0.408 $\stackrel{0}{7}$ 0.415

Size of Sample n	Percentage Points								
	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%
3	0.193	0.202	0.217	0.238	0.267	0.299	0.338	0.383	0.432
4	0.181	0.208	0.235	0.261	0.287	0.319	0.351	0.400	0.484
5	0.181	0.212	0.239	0.266	0.294	0.328	0.368	0.424	0.518
6	0.185	0.216	0.243	0.271	0.302	0,336	0.380	0.437	0.535
7	0.183	0.216	0.245	0.275	0.308	0.343	0.388	0.451	0.554
8	0.185	0.218	0.248	0.278	0.311	0.348	0.397	0.460	0.564
9	0.185	0.218	0.248	0.278	0.313	0.350	0.399	0.462	0.571
10	0.185	0.220	0.251	0.282	0.315	0.355	0.405	0.470	0.580
11	0.184	0.220	0.252	0.283	0.318	0.358	0.405	0.472	0.583
12	0.188	0.223	0.255	0.286	0.321	0.360	0.408	0.473	0.580
13	0.187	0.222	0.255	0.288	0.323	0.363	0.413	0.479	0.590
14	0.188	0.224	0.256	0.288	0.324	0.365	0.415	0.483	0.596

Table 8.2l(b): Percentage points of the Anderson-Darling statistic A^{2}
From Pettitt (1975, Table 2)
Percentage Points

Size of Sample n	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
3	-	-	-	-	-	-	-	-	-
4	0.182	0.209	0.236	0.262	0.289	0.319	0.353	0.400	0.481
5	0.182	0.212	0.240	0.267	0.297	0.330	0.369	0.424	0.516
6	0.183	0.214	0.243	0.272	0.303	0.337	0.380	0.439	0.538
7	0.183	0.216	0.246	0.275	0.307	0.343	0.388	0.450	0.553
8	0.184	0.218	0.248	0.278	0.311	0.348	0.394	0.458	0.564
9	0.185	0.219	0.250	0.280	0.314	0.352	0.398	0.464	0.572
10	0.186	0.220	0.251	0.282	0.316	0.354	0.402	0.469	0.578
11	0.186	0.221	0.252	0.284	0.318	0.357	0.405	0.472	0.584
12	0.187	0.222	0.254	0.285	0.320	0.359	0.408	0.476	0.588
13	0.187	0.223	0.255	0.287	0.322	0.361	0.410	0.478	0.591
14	0.187	0.224	0.255	0.288	0.323	0.362	0.412	0.481	0.594

Table 8.22: Percentage points of the Anderson-Darling statistic A^{2} Empirical distribution obtained from 20,000 simulated n size random samples from a uniform population $U(1,0.01)$

Size of	Percentage Points								
n	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%
3	0.193	0.204	0.222	0.247	0.277	0.313	0.352	0.395	0.440
4	0.187	0.217	0.247	0.276	0.306	0.335	0.370	0.422	0.505
5	0.192	0.227	0.257	0.285	0.315	0.351	0.394	0.451	0.538
6	0.196	0.232	0.263	0.294	0.327	0.365	0.410	0.470	0.561
7	0.201	0.238	0.270	0.302	0.338	0.377	0.425	0.489	0.592
8	0.204	0.243	0.277	0.311	0.348	0.389	0.439	0.505	0.607
9	0.209	0.248	0.286	0.322	0.361	0.405	0.456	0.524	0.629
10	0.210	0.254	0.291	0.329	0.368	0.413	0.466	0.537	0.649
11	0.215	0.260	0.298	0.337	0.377	0.122	0.478	0.552	0.666
12	0.222	0.268	0.308	0.348	0.391	0.439	0.495	0.571	0.690
13	0.225	0.273	0.315	0.356	0.400	0.449	0.509	0.583	0.704
14	0.229	0.279	0.323	0.364	0.408	0.460	0.519	0.596	0.718

The Joint Assessment of the Shape Assumption of Several Samples

Five methods of combining each statistic were considered:

1. Fishers method
2. Kolmogorov-Smirnov D^{-}statistic
3. Kolmogorov-Smirnov D^{+}statistic
4. Kolmogorov-Smirnov D statistic
5. x^{2} test.
6. Fishers Method

Pettitt (1975) has discussed the use of this method when testing for Normality with the AndersonDarling A^{2} statistic. If a_{i} is the sample value of the statistic A^{2} then

$$
S=-2 \ln \left(\underset{i}{\operatorname{k}} P_{i}\right) \quad P_{i}=P\left(A^{2} \leqslant a_{i}\right)
$$

has a $x^{2} 2 k$ degrees of freedom when the null hypothesis of Normality is true.
2. Kolmogorov-Smirnov's D^{-}Statistic

Pettitt (1975) suggests this alternative let k_{1}, k_{2}, \ldots, k_{10}, where k_{j} is the number of samples with values of significance probability, P_{i}, in the range $\{(j-1) / 10, j / 10\} j=1, \ldots, 10$

Then $T=\sup _{i}\left\{i / 10-\sum_{j=1}^{i} k_{i} / k\right\}$
is approximated by the Kolmogorov-Smirnov statistic
D^{-}, calculated from continuous data, with $P(T \geqslant x)$
$\leqslant P\left(D^{-} \geqslant x\right)$.
3. Kolmogorov-Smirnov's D^{+}Statistic

McCaffer \& Pettitt (1976) use this method in
analysing their building data. The formulae are as in 2 above except only positive deviations are considered. The distribution of D^{+}for categorized data is given by Conover (1972). McCaffer \& Pettitt (1976) found the $1,2.5,5,10$ and 15 percentage points by simulation.
4. Kolmogorov-Smirnov's D Statistic

This two-sided test again uses the formulae above but for the modulus of all deviations.
5. x^{2} Test

Letting k_{1}, \ldots, k_{10}, where k_{j} is the number of samples with values of significance probability, P_{i}, in the range $\left\{\left(j_{i} / 10\right)-0.1, j_{i} / 10\right\} j=1, \ldots$ 10.

Then $T=\frac{\left(k^{j}-i / 10\right)^{2}}{i / 10}$
is approximated by the $X^{2}(9)$ statistic, providing $i / 10 \geqslant 5$ (a usual empirical constraint)

Discussion

Method 1 requires the probability P_{i} to be known for each value. Pettitt suggests interpolation of Table 8.21(b) in his example. Such interpolation would, it was considered, be an over-approximation.

Methods 2 \& 3 are both one-sided tests and their choice therefore is dependent on the alternative hypothesis. Not wishing to accept such a restriction at this stage a two-sided test was considered more appropriate.

Method 4 is a two-sided test but is intended for continuous distributions only. An adjustment such as Conover's (1972) or a simulation study was considered but it was decided to confine attention to Method 5, the Chi-Square test, at least until some initial assessment becomes available.
8.4.1.4.3 Test for fixed shape Gamma, Weibull and Lognormal distributions

Unlike the Normal and Uniform distributions, the fixed shape Gamma, Weibull and Lognormal distribution shapes are a function of their parameters. In order to test the distribution shape (under the current assumption that the distribution shapes are common for all projects), it is necessary to first estimate the parameters of the distributions.

The Generalized Gamma distribution which encompasses all three distributions requires the estimation of 3 parameters: a (location), b (shape) and k (a constant) where $b=1$ for Weibull and $k \rightarrow \infty$ for Lognormal (see Appendix A).

For bidding data:

$$
f\left(x_{j}\right)=\frac{b}{a_{j}^{b k \Gamma(k)}} x_{j}^{b k-1} \exp \left\{-\left(x_{j} / a_{j}\right)^{b}\right\} x>0
$$

The log-likelihood function is then:
$\ln L=N \ln b-N \ln \Gamma(k)-b k \sum_{j=1}^{c} n_{j} \ln a_{j}+(b k-1) \sum_{j=1}^{c} \sum_{i=1}^{c} \ln x_{i j}$
$-\sum_{j=1}^{c} \sum_{i=1}^{n_{j}}\left(x_{i j} / a_{j}\right)^{b}$
where $x_{i j}$ is the $i^{\text {th }}$ bid for the $j^{\text {th }}$ project ($j=1, \ldots$, c; $i=1, \ldots, n_{j}$)
n_{j} is the total number of bids for the $\mathrm{j}^{\text {th }}$ project
c is the total number of projects
$N=\sum_{j=1}^{C} n_{j}$ is the grand total number of bids

Values of a_{j} and either b or k can be obtained by solving the following formula obtained from the partial derivities of $2 n L$ with respect to a_{j} and b :
$N^{-1}-k \sum_{j=1}^{C} n_{j} \ln a_{j}+k \sum_{j=1}^{C} \sum_{i=1}^{n_{j}} \ln x_{i j}-\sum_{j=1}^{C} \sum_{i=1}^{n_{j}}$
$\left\{\left(x_{i j} / a_{j}\right)^{b} \ln \left(x_{i j} / a_{j}\right)\right\}=0$
where $a_{j}=\left(\sum_{i=1}^{n} x_{1 j}^{b} / k_{n j}\right)^{1 / b}$

For computing purposes:

$$
a_{j}=\bar{x}_{j}\left\{\left(k n_{j}\right)^{-1}{\underset{i}{j}=1}_{n_{j}}\left(x_{i j} / \bar{x}_{j}\right)^{b}\right\}^{1 / b}
$$

In testing for a Gamma disribution for instance equation (1) should be maximum when $b=1$. In testing for a Weibull or Lognormal distribution the maximum likelihood ratio is:

$$
M L R=\frac{\ln L_{C 1}}{\ln L_{C 2}}
$$

where
In $L_{C 1}$ is the maximum log-likelihood function
(Eqn.1) at $k=c_{1}$
 $\mathrm{k}=\mathrm{c}_{2}$
c_{1} is a small value
c_{2} is a large value
should have the property that：

MLR＞ 1.0 for the Weibull distribution
MLR＜ 1.0 for the Lognormal distribution
and the reverse for 0$\rangle \ell n I_{C 1}, 0<\ell ⿴ 囗 ⿱ 一 一 ⿻ 上 丨_{c 2}$（this latter case applied with these data）．

For the Gamma distribution an estimated value of $b \approx 1$ is anticipated，irrespective of MLR．

Because of the problem of roundoff errors it was found necessary to restrict the computations for values of $c_{1}=1$ and $c_{2}=10$ ．

The approximate distribution of the MLR test statistics were determined for each of the cases under study as described in the next section．

8．4．1．4．4 The Approximate Disribution of the Test Statistics

It was decided，in the absence of any a－priori hypothesis，to include all the tests in a battery as shown in Table 8．23．

An approximation of the distribution of the probability of the x^{2} test statistics for for Test $1-10$ and the test statistic for Test 11 were obtained by simulation．

The simulation procedure adopted was to generate random values from a specified distribution via the NAG pseudo－random number generator （initializing to a non－repeatable state after each simulation）for each project．

Table 8.23: The Test Battery

* Table 8.21b was, supplemented by Table 8.21(a) for sample sizes of 3

In order to simulate the data as closely as possible, estimates of the parameters were made for the $j^{\text {th }}$ project as follows:

1. Normally distributed bids

The population mean n_{j} and variance $\sigma_{j}{ }^{2}$
$\tilde{\mu}_{\mathbf{j}}=\overline{\mathbf{x}}_{\mathbf{j}}$
$\partial_{j}{ }^{2}=s_{j}{ }^{2}$
2. Uniformly distributed bids

The population minimum α_{j} and maximum β_{j}
$\hat{\alpha}_{j}=\bar{x}_{j}-\downarrow\left(12 s_{j}{ }^{2}\right)$
$\hat{\beta}_{j}=\bar{x}_{j}+\gamma\left(12 s_{j}{ }^{2}\right)$
3. Fixed shape Ganma, Weibull and Lognormal distributions

For the Gamma distribution the estimated population location a_{j} and the constant k were obtained by solving Eqn (2) with $b=1$. It was, unfortunately, not possible to generate pseudo-rancicm values from the Gamma distributions except for integers and half integer values of k. As values of k were estimated from the data (given $b=1$) the Gamma simulation and therefore Test 12, had to be abandoned at this stage. For the Weibull and Lognormal distributions the population location a_{j} and shape b were obtained by solving Eqn (2) with $k=1$ for Weibull and $k=10$ for Lognormal.

For the Lognormal distributed bids, estimates of the population mean μ_{j} and variance $\sigma_{j}{ }^{2}$ were

$$
\begin{aligned}
& \hat{\mu}_{j}=\frac{\hat{a}_{j} \Gamma\left(k+\frac{1}{\tilde{b}}\right)}{\Gamma(k)} \\
& \partial_{j}{ }^{2}=\hat{a}_{j}^{2}\left[\frac{\Gamma(k+\stackrel{2}{b})}{\Gamma(k)}-\left\{\frac{\Gamma\left(k+\frac{1}{\bar{b}}\right)^{2}}{\Gamma(k)}\right\}\right]
\end{aligned}
$$

Bids were generated via the following NAG routines:

Table 8.24: Random Number Generation

Distribution Type	NAG Routine	Parameters
Uniform	Gø5DAF	$\hat{\alpha}_{j}, \hat{\beta}_{j}$
Normal	Gø5DDF	$\hat{\mu}_{j}, \hat{o}_{j}$
Log-Normal	Gø5DEF	$\mathrm{A}_{j}, \mathrm{~B}_{\mathrm{j}}$
Weibull	Gø5DPF	$\hat{\mathrm{b}}, \hat{\mathrm{a}}_{\mathrm{j}} \mathrm{b}$

Where the Lognormal A_{j} and B_{j} are
$A_{j}=\ln \left(n_{j}{ }^{2}+1\right)$
$B_{j}=\ln \mu_{j}-\partial_{j}{ }^{2} / 2$
$n_{j}{ }^{2}=\theta_{j}{ }^{2} / \mu_{j}{ }^{2}$
Each case was simulated 1000 times for each of the four distributions, a total of 12000 iterations. Test statistics 1 to 10 were computed on each occasion a Normal and Uniform distribution was used and test statistic 11 was computed each time a Weibull or Lognormal distribution was used. The 1000 values of each of the 11 test statistics for each case were ordered and assigned probabilities calculated as follows:

$$
\operatorname{Pr}\left(t_{i}\right)=\frac{i}{1000}-\frac{1}{2000} \quad(i=1, \ldots, 1000)
$$

where t_{i} is the i th lowest test statistic.

The resulting $1,2 \not / 2,5,95,97 \%$ and 99% percentage points estimated for each test ${ }^{-1}$ statistic for each case are given in Tables 8.25 and 8.26.

Table 8.25: Critical percentage points obtained from simulated shape tests
(a) Case l - Normal distribution

			Test Statistics at:				
	1%	$2 \% \%$	5%	95%	$97 \% \%$	99%	
Test							
1	0.008454	0.019291	0.054539	0.950548	0.967323	0.989106	
2	0.010237	0.023545	0.058984	0.955835	0.971699	0.991468	
3	0.009723	0.022057	0.048105	0.950548	0.980082	0.994888	
4	0.012826	0.028742	0.061746	0.950548	0.980082	0.989106	
5	0.008454	0.028742	0.054539	0.950548	0.980082	0.989106	
6	0.004791	0.011172	0.022057	0.904842	0.950548	0.980082	
7	0.000034	0.000199	0.000700	0.657933	0.779188	0.883171	
8	0.000026	0.000109	0.000600	0.612637	0.772760	0.876297	
9	0.000001	0.000005	0.000036	0.493241	0.653447	0.734017	
10	0.000947	0.005529	0.016854	0.904842	0.967323	0.980082	

- Uniform distribution

	1%	$2 \% \%$	5%	95%	97%	99%
Test						
1	0.007344	0.019291	0.042374	0.929683	0.950548	0.980082
2	0.000003	0.000029	0.000123	0.657933	0.779188	0.980082
3	0.000007	0.000127	0.000515	0.694070	0.809752	0.904842
4	0.000001	0.000004	0.000022	0.493241	0.612637	0.772760
5	0.003590	0.009723	0.019291	0.904842	0.929683	0.980082
6	0.002682	0.008454	0.019291	0.904842	0.950548	0.980082
7	0.008879	0.026948	0.058984	0.955835	0.971699	0.991468
8	0.011172	0.022057	0.042374	0.950548	0.967323	0.989106
9	0.011172	0.025193	0.048105	0.950548	0.967323	0.989106
10	0.011172	0.025193	0.054539	0.967323	0.980082	0.989106

(b) Case 2 - Normal distribution

		Test Statistic at					
Test	1%	24%	5%	95%	$97 \% \%$	99%	
1	0.009998	0.027940	0.046361	0.934858	0.968223	0.990192	
2	0.006047	0.023007	0.053655	0.946195	0.970175	0.983535	
3	0.017137	0.037947	0.058318	0.955604	0.978372	0.991867	
4	0.008961	0.027940	0.051180	0.945790	0.968223	0.991867	
5	0.008638	0.016540	0.043382	0.940463	0.968223	0.981226	
6	0.001150	0.002501	0.006196	0.872546	0.940463	0.975257	
7	0.000000	0.000000	0.000000	0.032247	0.064022	0.121730	
8	0.000000	0.000000	0.000000	0.037947	0.082824	0.184626	
9	0.000000	0.000000	0.000000	0.002501	0.006431	0.018393	
10	0.000046	0.000321	0.001106	0.700892	0.811408	0.945790	

- Uniform distribution

Test

| 1 | 0.001294 | 0.004594 | 0.013351 | 0.880457 | 0.934858 | 0.981226 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.000000 | 0.000000 | 0.000000 | 0.009040 | 0.019754 | 0.068652 |
| 3 | 0.000000 | 0.000000 | 0.000000 | 0.043382 | 0.068505 | 0.142810 |
| 4 | 0.000000 | 0.000000 | 0.000000 | 0.001106 | 0.002700 | 0.008327 |
| 5 | 0.000033 | 0.000296 | 0.001063 | 0.690341 | 0.811408 | 0.928977 |
| 6 | 0.002599 | 0.007186 | 0.017755 | 0.902773 | 0.945790 | 0.981226 |
| 7 | 0.011023 | 0.028839 | 0.051775 | 0.940402 | 0.961578 | 0.990458 |
| 8 | 0.008638 | 0.022700 | 0.044849 | 0.955604 | 0.975257 | 0.986182 |
| 9 | 0.010751 | 0.022700 | 0.041960 | 0.945790 | 0.968223 | 0.983827 |
| 10 | 0.014865 | 0.021169 | 0.052886 | 0.934858 | 0.968223 | 0.990192 |

(c) Case 3 - Normal distribution

		Test Statistic at					
Test	1%	$2 \% \%$	5%	95%	$97 \% \%$	99%	
1	0.005791	0.022434	0.055721	0.947984	0.974830	0.990735	
2	0.007422	0.026435	0.049846	0.948439	0.969690	0.987608	
3	0.010817	0.023849	0.053632	0.947984	0.976707	0.991703	
4	0.006458	0.023368	0.045968	0.950904	0.974830	0.993429	
5	0.008552	0.026393	0.046868	0.956453	0.972862	0.988578	
6	0.000257	0.001151	0.002385	0.819409	0.909625	0.961618	
7	0.000000	0.000000	0.000000	0.005033	0.010341	0.032767	
8	0.000000	0.000000	0.000000	0.006600	0.018649	0.075286	
9	0.000000	0.000000	0.000000	0.000109	0.000499	0.001737	
10	0.000003	0.000042	0.000163	0.665235	0.780283	0.888579	

- Uniform distribution

1	0.001946	0.004969	0.013084	0.917432	0.953727	0.981798
2	0.000000	0.000000	0.000000	0.000580	0.002099	0.008879
3	0.000000	0.000000	0.000000	0.006892	0.016815	0.045968
4	0.000000	0.000000	0.000000	0.000038	0.000213	0.001074
5	0.000005	0.000051	0.000270	0.658995	0.774503	0.888579
6	0.000777	0.002729	0.008552	0.879577	0.935349	0.972862
7	0.014334	0.029094	0.053383	0.955190	0.980883	0.991468
8	0.011286	0.025347	0.052614	0.938651	0.972862	0.989694
9	0.005306	0.017527	0.053632	0.947984	0.970802	0.991703
10	0.008552	0.023849	0.044216	0.947984	0.972862	0.989694

Table 8.26: Critical percentage points obtained from the Weibull \& Lognormal distributions (Test 11)

Case

1
2
3
\% Points Weibull Lognormal Weibull Lognormal Weibull Lognormal

1%	0.99215	0.99951	0.99234	1.00051	0.99350	1.00045
$2 \% \%$	0.99303	0.99984	0.99300	1.00073	0.99370	1.00068
5%	0.99354	1.00024	0.99320	1.00110	0.99389	1.00078
95%	0.99809	1.00361	0.99604	1.00314	0.99600	1.00227
$97 \% \%$	0.99859	1.00394	0.99627	1.00334	0.99617	1.00248
99%	0.99894	1.00427	0.99670	1.00360	0.99634	1.00271

8.4.1.4.5 Results of Shape Tests

Having obtained the approximate critical values of the ten test statistics for Uniform and Normal distributions, and the one for the fixed shape Weibull and Lognormal, for each case, the next step was to decide which of the test statistics to apply to the data. There are clearly four hypotheses for each case, that the bids for each project can be adequately modelled by the (1) Uniform distribution $u\left(\alpha_{j \ell}, \beta_{j \ell}\right)$ (2), Normal distribution $N\left(\mu_{j \ell}, \sigma_{j \ell}{ }^{2}\right)$ (3), Weibull distribution $W\left(b_{\ell}, a_{j \ell}\right)(4), \log \operatorname{Normal}\left(A_{j \ell}, B_{j \ell}\right)$ where $\ell=1.2 .3$. the number of cases studied and the various parameters are estimated by the methods defined previously. A further hypothesis generalises to all cases by stating that the shape β is the same for all cases, ie. $\beta_{1}=\beta_{2}=\beta_{3}$.

At first glance it would seem rather unreasonable to apply all the tests available as the chances of the correct hypothesis being rejected would seem to be increased by the imposition of each further test. The degree to which such chances are increased is determined
by the degree of independence between tests. In this respect tests 1-10 are not entirely independent. Indeed, a detailed examination of these tests reveals a great deal of similarity. The major differences between the tests are centred on the use of Y_{1} and Y_{2} statistics which may or may not be correlated depending on the particular functional shape. In many cases, it was judged Y_{1} and Y_{2} are interrelated and thus the chances of a false rejection of the correct hypothesis would not be substantially reduced by the introduction of further tests.

Test 11 is rather different from Tests $1-10$ in that distinctly different parameters are involved and these two sets of tests may well be quite independent of each other. On the other hand these sets are testing for different shapes and it would therefore be entirely satisfactory if, say, normal distribution hypothesis was not rejected by Tests $1-10$ and Test 11 did reject both the Weibull and Lognormal distributions. The uses of multiple tests is not without precedent in modelling data, Ali \& Giacotto <1982), for instance, have tested the identical distribution hypothesis for stock market prices by using all their tests for alternatives. Hsu (1979) has noted that "when faced with the formality of significance testing, one may find difficulty in determining the overall significance level of the results of multiple tests. In the spirit of data analysis, however, it seems sensible to examine different aspects of the data by a variety of tests to help illuminate the nature of the data". Difficulties could, however, occur if Tests l-lO do not reject either the Uniform or Normal hypothesis and Test 11 did not reject either the Weibull or Log-Normal distributions, the next step must then be to devise a further test to distinguish between the non-rejected hypotheses. An alternative is that all hypotheses are rejected in which case a different model will be needed either by hypothesising another simple parametric distribution or by some simple transformation.

In the event it was decided that all tests should be applied at the 5\% level (two-tailed), this being regarded as not particularly severe although the ultimate effect on the decision model was not clear at that time. In addition the final hypothesis, that the distribution
shape is the same for all three cases was considered to offer particularly strong evidence of the suitability of a general hypothesis across all data of this kind.

The test statistics obtained from the data are provided in Table 8.27. It can be seen that for all cases the Uniform and fixed shape Weibull and Lognormal hypotheses must be rejected. The Normal distribution appears to fit reasonably well in Cases 1 \& 2 (except for Test 6 in Case 1) but not for Case 3. These findings do not confirm with the findings and assumptions of many researchers (see Table 7.3) although it should be recognized that in many cases the researchers are either concerned with the ratio of bids to cost estimates or different industries.

Table 8.27: Shape test statistics obtained from the data

Test	Case					
	1		2		3	
	Test Statistic	Hypo. Rejected	Test Statistic	Нуро. Rejected	Test Statistic	Нуро. Rejected
1	0.042374		0.052886		0.000024	U, N
2	0.816537	U	0.341961	U	0.003218	U, N
3	0.734017		0.423196	U	0.007515	N
4	0.809752	U	0.461272	U	0.252199	U
5	0.321175		0.160300		0.085634	
6	0.001998	U,N	0.126959		0.000022	U,N
7	0.319084		0.000001	U	0.000000	U
8	0.734017		0.000000	U	0.000001	U
9	0.292183		0.000018	U	0.000000	U
10	0.455567		0.583886		0.475795	
11	0.99868	W, L	1.00049	W, L	1.00005	W, L

U Uniform distribution
N Normal distribution
W Weibull distribution
L Log-Normal distribution

8.4.1.5 Transformations

In the event of the rejection of all hypotheses in all cases, two alternative courses of action are available as discussed in the
previous section, that is to try another parametric shape or investigate a suitable simple transformation. The difficulty with the former alternative is that the laborious procedure for generating an approximate distribution of the appropriate test statistic is required for each new hypothesis. The transformation option, however, offers a far simpler procedure in that Tests 1-10, which are parameter free may be used without modification. A further advantage of the transformation option is that a transformation may be found which enables the Normal model to be applied. Such a model would offer some considerable benefits in further testing. Barlett's test for equal variances, for instance, is particularly sensitive to the Normal assumption.

Two types of transformations were attempted, power and log transformations:

Power transformations

The data were transformed to $y_{i j}=x_{i j}{ }^{1 / p}$ and test statistics $1-10$ calculated for each value of $p=1,2, \ldots, 10$. The hypothesis rejections are given in Table 8.28. For Case 1 \& 2, values of $p=2$, 3, 4, \& 5 appear to provide values of $y_{i j}$ approximating the Normal distribution. This cannot be said however for Case 3 where all values of p failed to remove the positive skewness denoted by test statistic 1.

Table 8.28: Results of power transformations

Log transformations

The data were transformed to $y_{i j}=\ln \left(x_{i j}-m c_{j}\right)$ where values of c_{j} were obtained by two methods, the average bid value $c_{j}=\bar{x}_{j}$ and the lowest bid value $c_{j}=x_{j}(\min)$ expressed as $c_{j}=x_{1 j}$. The test statistics of values of $y_{i j}$ obtained from $m=0,0.1,0.2, \ldots, 0.8$ were computed and the test fails recorded. Table 8.29 indicates the results obtained. It would appear that for all cases values of $m=$ 0.1 to $m=0.5$ provide a suitable transformation to the Normal distribution for $c_{j}=\bar{x}_{j}$ and $m=0.1$ to 0.4 for $c_{j}=x_{1 j}$.

Table 8.29: Results of log transformations
(a) $y_{i j}=\ln \left(x_{i j}-m \bar{x}_{j}\right.$

(b) $y_{i j}=\ln \left(x_{i j}-m x_{i j}\right)$

0	4	10	$2-4,7-9$	1	$2-4,7-9$
0.1	4		$2-4,7-9$		$2-4,7-9$
0.2	3,4		$2-4,7-9$		$2-4,7-9$
0.3	3,4		$2-4,7-9$		$2-4,7-9$
0.4		3,4		$2-4,7-9$	
0.5		3,4	1	$2-4,7-9$	
0.6	5,8	3,5	1,6	$2-4,7-9$	
0.7	$5,8,9$	5	$1,4,6$	$1-4,6-9$	4
0.8	-	-	1,6	$1-4,6-9$	-

[-] no result available

8.4.2 Spread

8.4.2.1 General

Three commonly used statistics are available for expressing the spread of observations, the variance σ^{2}, the standard deviation σ, and the coefficient of variation $\mathrm{cv}=(100 \sigma) / \mu$. Estimates of these quantities are provided by the data in the form s^{2}, s and $c v=$ (100s)/X (see Appendix A).

For cases $\ell=1,2,3$ and projects $j=1,2, \ldots, c_{\ell}$

$$
\begin{aligned}
& \text { av. } \bar{x}_{\ell}=\frac{1}{c_{\ell}} \quad \sum_{j=1}^{\ell} \bar{x}_{j \ell} \\
& \text { av. } s_{\ell}{ }^{2}=\frac{1}{N_{\ell}-C_{\ell}+1} \sum_{j=1}^{C_{\ell}} s_{j \ell}{ }^{2}\left(n_{j \ell}-1\right) \\
& \text { av. } \operatorname{cv}_{\ell}=\frac{1}{c_{\ell}} \quad \sum_{j=1}^{\ell}\left(100 s_{j \ell} / \bar{x}_{j \ell}\right) \\
& \text { where } N_{\ell}=\sum_{j=1}^{C Q}{ }_{j \ell}
\end{aligned}
$$

Table 8.30: Spread statistics obtained from the data

Statistic	Case		
	1	2	3
No. of Projects:	51	218	373
Av. \bar{x}_{ℓ}	1691402	138605	493558
Av. s_{ℓ}	125003	24135	54378
Av. $c_{Q}=\left(100 s_{\ell} / \bar{x}_{\ell}\right.$	6.8	13.5	7.8

For data of this kind where the standard deviation is expected to be closely related to the value of the project the average cv is in popular use. Table 8.31 provides a comparison of the cv 's obtained from these data and those of other researchers.

The assumption that the project standard deviation was correlated with the project value (low bid) was examined by plotting the values. Figures 8.13 to 8.15 show the plots for all cases. A general trend is observable. The product-moment correlation coefficients tend to confirm this (Table 8.32). Tables were also constructed for the log transformations known to provide Normal distributions (Table 8.33).

Table 8.31: Mean coefficients of variation of construction bids

Source	Mean cv	No. of Projects
Fine \& Hackemar (1970)	5	"Adequate"
Beeston (1974)	5.2 to 6	"Large"
Grinyer \& Whittaker (1973)	6.04	153
Skitmore (1981)	6.4	269 (unweighted)
Barnes (1971)	6.5	159
McCaffer (1976)	6.5	185
AICBOR (1967)	6.8	213
Case 1	6.8	51
McCaffer (1976)	7.5	16 (bridges)
Case 3	7.8	373
McCaffer (1976)	8.4	384 (roads)
Case 2	13.5	218

CASE 1 - CONTRACT VAluE v standard deviation

Table 8.32: Results of regression of project value on the standard deviation of each project

Regression	Case		
	1	2	3
$\sigma_{\mathrm{x} j}=\alpha+\beta \mathrm{x}_{\mathrm{i} j}$			
Prod.mom.corr.coeff.	0.823	0.869	0.802
α	13748	652	4555
β	0.04355	0.05381	0.04860
$y_{i j}=\ln \left(x_{i j}\right)$			
$\sigma_{i j}=\alpha+\beta y_{i j}$			
Prod.mom.corr.coeff.	-0.248	-0.482	-0.283
α	0.21228	0.41038	0.20688
β	-0.01131	-0.02714	-0.01157

On this evidence the least squares approximation appears to provide reasonable predictions of the standard deviations. A plot of the residuals however suggests that the error term may be greater for larger project values, indicating a power or log transformation to be appropriate.

Estimates $\mathbf{s}^{\mathbf{2}}$ of variance are, however, known to be sensitive to distribution shape. For example, if the measure of kurtosis is $Y_{2}=$ 1 , the variance s^{2} is about 1.5 times as large as it is in a Normal population (Snedecor \& Cochran, 1980, p81). A further difficulty is that the regression technique assumes the error term is normally distributed whilst s^{2} is of course distributed as x^{2}. A better approach therefore was considered to be to attempt some variance stabilizing transformation.
Table 8.33: Results of regression of project value on the standard

$\sigma_{y \mathbf{j}}=\alpha+\beta y_{i j}$	Case 1					Case 2		Case 3				
	α	(SE)	β	(SE)	α	(SE)	β	(SE)	α	(SE)	β	(SE)
$\overline{\mathbf{y}_{\mathbf{i} \mathbf{j}}=\ln \left(\mathrm{x}_{\mathbf{i} \mathbf{j}}-\mathrm{m} \mathrm{x}_{\mathbf{j}}\right)}$												
$m=0$	0.21228	0.0882	-0.01131	0.0063	0.41038	0.0364	-0.02714	0.0036	0.20688	0.0254	-0.01157	0.0020
. 1	0.23945	0.0968	-0.01293	0.0069	0.45703	0.0399	-0.03059	0.0037	0.23144	0.0280	-0.01310	0.0023
. 2	0.27489	0.1075	-0.01508	0.0078	0.51693	0.0443	-0.03510	0.0042	0.24724	0.0298	-0.01395	0.0024
. 3	0.32312	0.1210	-0.01809	0.0089	0.59735	0.0500	-0.04130	0.0048	0.30487	0.0351	-0.01783	0.0029
. 4	0.39291	0.1339	-0.02255	0.0104	0.71294	0.0587	-0.05060	0.0057	0.36377	0.0405	-0.02178	0.0034
. 5	0.50400	0.1640	-0.02995	0.0124	0.90168	0.0695	-0.06640	0.0070	0.45335	0.0481	-0.02881	0.0041
. 6	0.71541	0.2030	-0.04475	0.0156	-	-	-	-	0.61014	0.0600	-0.03953	0.0053
$y_{i j}=\ln \left(\mathrm{x}_{\mathbf{i j}}-\mathrm{mx} \mathbf{1}_{\mathbf{j}}\right)$												
$\mathrm{m}=0$	0.21228	0.0882	-0.01131	0.0063	0.41038	0.0364	-0.02714	0.0036	0.20688	0.0254	-0.01157	0.0020
. 1	0.23037	0.0946	-0.01231	0.0068	0.44080	0.0387	-0.02926	0.0036	0.22519	0.0274	-0.01265	0.0022
. 2	0.25206	0.1022	-0.01351	0.0074	0.47654	0.0413	-0.03176	0.0030	0.24724	0.0298	-0.01395	0.0024
. 3	0.27858	0.1116	-0.01498	0.0082	0.51922	0.0445	-0.03474	0.0042	0.27436	0.0327	-0.01555	0.0027
. 4	0.31184	0.1220	-0.01682	0.0091	0.57125	0.0481	-0.03838	0.0048	0.30861	0.0362	-0.01759	0.0030
. 5	0.35497	0.1355	-0.01921	0.0102	0.63641	0.0526	-0.04294	0.0052	0.35337	0.0463	-0.02026	0.0035
. 6	0.41348	0.1527	-0.02458	0.0117	0.72105	0.0581	-0.04886	0.0059	0.41470	0.0464	-0.02393	0.0040

8.4.2.2 Bartlett's Test

The criterion statistic chosen for testing the successfulness of a variance stabilizing transformation was Bartlett's statistic where
$M=N \ln \left\{N^{-1} \sum_{j=1}^{c} v_{j} s_{j}{ }^{2}\right\}-\sum_{j=1}^{c} v_{j} \ln s_{j}{ }^{2}$
with parameters $k=c$ and $c_{1}=\sum_{j=1}^{c} v_{j}^{-1}-N^{-1}$
where $\mathrm{v}_{\mathrm{j}}=\mathrm{n}_{\mathbf{j}}-1 \quad$ and $\quad \mathrm{N}=\sum_{\mathrm{j}=1}^{\mathrm{c}} \mathrm{v}_{\mathrm{j}}$
for projects $j=1,2, \ldots, c \quad\left(s_{j}{ }^{2}\right.$ and n_{j} are defined in Appendix A)

The criterion statistic M / C where $C=1+c_{1} /^{3}(k-1)$ is closely approximated by x^{2} for ($k-1$) degrees of freedom.

Bartlett's test has been studied by several people, some comments by Pearson \& Hartley (1966) are worthy of mention.

1. Box (1953) has found that discrepancies from asymptotic Normal theory become larger as more variances are compared.
2. From Normal theory, all tests on variances depend on the ratio Z $=\Sigma\left(x_{i}-\bar{x}\right)^{2} / \sigma^{2}$, which is distributed like x^{2} with ($n-1$) degrees of freedom. This makes the test particularly sensitive to deviations from mesokurtosis.
3. Suppose that c samples of sizes $n_{j}(j=1,2, \ldots, c)$ are drawn from populations each of which have the same variance σ^{2} and the same kurtosis coefficient $Y 2$ then the $L R$ criterion for comparing c Normal variances (Barlett's test) is that $-2 \mathrm{ln} 8^{*} /\left(l^{*}+1 / Y_{2}\right)$ itself is distributed asymptotically as x^{2} with ($k-1$) degrees of freedom. The effects of this correction can be quite extreme. For instance, when $Y_{2}=-2$ the true probability of exceeding the asymptotic Normal theory critical value for $\alpha=0.05$ is 0.498 for 30 samples.
4. The lack of robustness in the variance test is so striking that Box (1953) was led to consider ℓ^{*} as a test statistic for kurtosis and found its sensitivity to be of the same order as the generally used tests for kurtosis!

There appear to be several practical approaches available:

1. Box and Anderson (1953) have suggested the correction : $M^{\prime}=M /(1+12 Y 2)$ where $Y 2$ is the population kurtosis coefficient. The correction however is generally applicable when the population coefficient is known and therefore may be misleading when Y_{2} is estimated from the data. In addition, investigations conducted by Nair and Bishop \& Nair showed that the correction is not always adequate if some of the r_{j} are 1.2 or 3.
2. Cox (1955, p28) has suggested using tests based on sample range for small companies (up to size 7 or 8).
3. Graph the estimated sample variances against some variable, say \bar{x}_{j}, and look for marked deviations (Anscombe, 1955, p29).
4. Divide the sample variances into groups of, say, project values and conduct an analysis of variance (ANOVA). Bartlett \& Kendall (1946) have shown the value of the logarithmic transformation for this approach.

The simplest procedure was found to be to restrict the use of Bartlett's test to transformed variables considered to be Normally distributed thereby diminishing the impact of any distortions resulting from the use of non-Normal variables. To overcome the problem of small samples it was decided to conduct a simulation to determine the approximate distribution of the probabilities given by the original Bartlett statistic.

8.4.2.3 Simulation Programme

A simulation programme was devised to ascertain the percentage points of the probabilities associated with Bartlett's statistic for each of the three cases under study. To match the data reasonably closely
and in anticipation of future analysis, the logs of the recorded bids were used $y_{i j}=\ln \left(x_{i j}\right)$ were used. The overall average variance for the case s^{2} was obtained and, together with the sample averages $\overline{\mathrm{y}}_{j}$, the bids were simulated from $N\left(\bar{y}_{j}, s^{2}\right)$ for the $j=1,2, \ldots, c$ projects. Bartlett's test statistic was then computed and the probability recorded. The procedure was repeated 1000 times for each case and the critical percentage points noted. The results of the simulations are provided in Table 8.34. The percentage points and the 'probabilities' are, as can be seen, roughly equivalent, approximate values at the 5% level being $0.049,0.055$ and 0.079 for Cases 1, $2 \& 3$ respectively.

Table 8.34: Simulated variance tests

Critical values of Barlett's probability (log simulation using average variance, normal distribution, 1000 trials)

Test Statistic	Case 2		
1%	0.007647	0.016044	0.018292
$2 \% \%$	0.016298	0.026412	0.045380
5%	0.048815	0.055181	0.078796
$7 \% \%$	0.070782	0.094707	0.112430
10%	0.086277	0.115414	0.145023
95%	0.942019	0.956412	0.965519
$97 \% \%$	0.967351	0.976530	0.981440
99%	0.987894	0.994715	0.995163

8.4.2.4 Variance stabilizing transformations

An advantage of applying variance stabilizing transformations is that the same transformations "often serves to normalize the distribution to which they apply" (Kendal and Stuart, 1961, p469). It is likely therefore that the reverse will also apply in that known Normalizing transformations may have a variance stabilizing effect.

It was found in the previous section that the transformation $y_{i j}=\ln \left(x_{i j}-m \bar{x}_{j}\right) \quad m=0.1,0.2,0.3,0.4,0.5$ and $y_{i j}=2 n\left(x_{i j}-m x_{i j}\right) m=0.1,0.2,0.3,0.4$
provided a reasonable Normalizing effect in all the cases. These transformations were therefore applied and the 'probability' estimated by Bartlett's statistic compared with that associated with the critical value at the 5% point in Table 8.34. The results of these tests can be found in Table 8.35. These results are quite conclusive in rejecting all the variance stabilizing attempts.

Further, casewise transformations were attempted for the power transformations $y_{i j}=x_{i j}{ }^{1 / p}(p=2,3, \ldots$, for Case $1 ; p=1, \ldots$ 5 for Case 2) which also resulted in conclusive rejections.

Table 8.35: Results of tests on variance stabilizing transformations

Transformation	'Probability' predicted by Bartlett's statistic					
	Case					
	1		2		3	
$y_{i j}=\ln \left(x_{i j}=m \bar{x}_{j}\right)$	$x^{2}(50)$	'prob'	$x^{2}(217)$	'prob'	$x^{2}(372)$	'prob'
$m=0.0$	175.3	0.000	622.0	0.000	834.0	0.000
0.1	175.4	0.000	623.3	0.000	834.3	0.000
0.2	175.8	0.000	625.2	0.000	835.2	0.000
0.3	176.6	0.000	632.2	0.000	837.6	0.000
0.4	178.5	0.000	645.3	0.000	843.0	0.000
0.5	182.5	0.000	678.2	0.000	855.0	0.000
0.6	194.1	0.000	-	-	888.4	0.000
$\mathrm{y}_{\mathrm{i} j}=\ln \left(\mathrm{x}_{\mathrm{i} j}-\mathrm{mx} \mathrm{x}_{1} \mathrm{j}\right)$						
$\mathrm{m}=0.0$	175.3	0.000	622.0	0.000	834.0	0.000
0.1	171.0	0.000	607.1	0.000	819.9	0.000
0.2	166.0	0.000	590.0	0.000	803.1	0.000
0.3	160.1	0.000	570.0	0.000	783.0	0.000
0.4	153.1	0.000	546.2	0.000	758.4	0.000
0.5	144.5	0.000	517.4	0.000	727.4	0.000
0.6	133.7	0.000	481.6	0.000	687.1	0.000

A refinement of $c_{j}=m \bar{x}_{j}$ and $c_{j}=m x_{1 j}$ in the above transformation was considered by the 3 parameter Lognormal model $\ln \left(x_{i j}\right)=y_{j} \sim N$ $\left(r_{j}, \mu_{j}, \sigma_{j}^{2}\right)$.

Using Aitcheson \& Brown's (1963) notation, ie. r_{j} is the 'location' of the parent variable X (where $y=\ln X$) and μ_{j} and σ^{2} are its parameters.

These methods of estimating r_{j}, μ_{j} and σ^{2} were considered. These were in Aitcheson \& Brown's order of preference:
(i) Cohen's least sample value method
(ii) The method of maximum likelihood
(iii) The method of moments
(i) Cohen's least sample value method

Estimates c_{j} of r_{j} are obtained from the equation:
$\theta\left(c_{j}\right)=\ln \left(x_{1 j}-c_{j}\right)-\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \ln \left(x_{i j}-c_{j}\right)-\nu\left[\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}\left\{\ln \left(x_{i j}-c_{j}\right)\right\}^{2}\right.$
$\left.-\frac{1}{n_{j}^{2}}\left\{\sum_{i=i}^{p_{j}} \ln \left(x_{i j}-c_{j}\right)\right\}^{2}\right]$

Where

$$
\begin{equation*}
m_{j}=\frac{1}{n_{j}} \quad \sum_{i=1}^{n_{j}^{j}} \ln \left(x_{i j}-c_{j}\right) \tag{2}
\end{equation*}
$$

$s_{j}{ }^{2}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}\left\{\ln \left(x_{i j}-c_{j}\right)\right\}-m_{j}^{2}$
$x_{1 j}$ is the lowest value in the j th sample
ν is the $N(0,1)$ quantile of the order $n_{i j / n j}$, and
c_{j}, m_{j}, and $s_{j}{ }^{2}$ are estimates of r_{j}, μ_{j} and $\sigma_{j}{ }^{2}$ respectively.

Applying Aitcheson \& Brown's rule of false position technique a solution to equation (l) was attempted, the results obtained being shown in Table 8.36. As can be seen only a few results were available. All other projects failed to produce a root of equation (1). The problem was probably caused by small sample sizes and the method had to be abandoned.

(ii) Method of maximum likelihood

This method was not recommended by Aitcheson \& Brown on theoretical grounds and on some tests done by them with simulated data (where the least sample value method was said to be more reliable). However, it was considered that the method of ML may converge better with these sample sizes.

In this case:
$\emptyset\left(c_{j}\right)=\sum_{i=1}^{n_{j}} \frac{1}{x_{i j}-c_{j}}\left[\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}\left\{\ln \left(x_{i g}-c_{j}\right)\right\}^{2}-\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \ln \left(x_{i j}-c_{j}\right)\right.$
$\left.-\frac{1}{n_{j}{ }^{2}}\left\{\sum_{i=1}^{n j} \ln \left(x_{i j}-c_{j}\right)\right\}^{2}\right]+\sum_{i}^{n}\left[\frac{\ln \left(x_{i j}-c_{j}\right)}{x_{i j}-c_{j}}\right]=0$
and m_{j} and $s_{j}{ }^{2}$ are obtained from equations (2) and (3) above. First attempts at evaluating equation (4) resulted in most low values of r_{j} satisfying the equation. The best method was found to be to take c_{j} as high as possible $c_{j} \rightarrow x_{1} j$ and take incremental reductions until (4) is satisfied.

Table 8.36: Estimates of the location parameter \boldsymbol{c}_{j} using Cohen's Method

Case 1

Project (j)

3	1230385
20	7703505
21	878621
32	150505
47	1284251

Case 2

Project (j)	$c_{\boldsymbol{j}}$
32	19551
57	22634
108	395101
110	233835
148	40944
150	80949
165	102416
168	11211
193	4480
196	8312
198	1675

Case 3

Project (\mathbf{j})	$c_{\mathbf{j}}$	Project (\mathbf{j})	$c_{\mathbf{j}}$
		310	493965
20	204407	311	263673
34	174476	338	1135994
60	817300	340	301972
66	324919	343	123776
112	328319	344	106893
128	126932	361	6266600
146	63853	364	257940
180	378960	372	339484
195	753144	373	85002
231	333831		
238	424462		

This method, though better than the least value method, was not considered suitable as some solutions could not be obtained.
(iii) The Method of Moments

By this method estimates are obtained from:

$$
\begin{aligned}
& s_{j}^{2}=\ln \left(1+\mu_{j}^{2}\right) \\
& m_{j}=\ln \left[\ln \ell 2_{j}-\ln \left\{\mu_{j}^{2}\left(1+\mu_{j}^{2}\right)\right\}\right] \\
& c_{j}=\ell_{i j}-e^{m j}\left(1+\mu_{j}^{2}\right)^{3 / 2}
\end{aligned}
$$

Values of μ_{j} and $\&$ being obtained from the moments. However, as Aitcheson \& Brown observe, this method is not efficient except for small values of σ^{2}, which certainly do not exist in the parent populations under study.

A further approach was devised which utilized the homoscedasic assumption, ie. $\ln \left(x_{i j}\right)=y_{i j} \sim N\left(\mu_{j}, \sigma^{2}\right)$ as follows:

Let $y_{i j}=\ln \left(x_{i j}-c_{j}\right)$ where $y_{i j} \exists Y_{j} \sim N\left(\mu_{j}, \sigma^{2}\right)$

$$
\text { and } \quad x_{i j} \exists X_{j} \sim f\left(m_{j}, s_{j}{ }^{2}\right)
$$

and $z_{i j}=e^{y i j}$

$$
\begin{equation*}
z_{i j} \exists z_{j} \sim g\left(a_{j}, b_{j}^{2}\right) \tag{6}
\end{equation*}
$$

Then it is known that:

$$
\sigma^{2}=\ln \left[\frac{b_{j}^{2}}{a^{2} j}+1\right]
$$

and thus $a_{j}=b_{j}\left(e^{\sigma 2}-1\right)^{-1 / 2}$

But, from (5) and (6)

$$
z_{i j}=x_{i j}-c_{j}
$$

so, $\mathbf{a}_{\mathbf{j}}=\mathbf{m}_{\mathbf{j}}-\mathbf{c}_{\mathbf{j}}$
and $\mathrm{b}_{\mathrm{j}}{ }^{\mathbf{2}}=\mathrm{s}^{\mathbf{2}} \mathbf{j}$

Therefore substituting in (7)

$$
\begin{equation*}
c_{j}=m_{j}-s^{2} j\left(e^{\sigma 2}-1\right)^{-1 / 2} \tag{8}
\end{equation*}
$$

Estimates of m_{j} and $s^{2}{ }_{j}$ can be obtained from the data

$$
\begin{aligned}
\hat{m}_{j} & =\frac{1}{n_{j}} \sum_{i=1}^{n j} x_{i j} \\
\hat{s}^{2}{ }_{j} & =\frac{1}{n_{j-1}} \sum_{i=1}^{n_{j}}\left(x_{i j}-\hat{m}_{j}\right)^{2}
\end{aligned}
$$

It can be seen therefore that c_{j} is a function of σ^{2}, the common variance. The problem now is to find values of σ^{2} which will satisfy the Normal assumption.

This was done by a trial and error method involving guessing values of σ^{2}, solving (8) for c_{j}, inserting c_{j} values into $y_{i j}=\ln \left(x_{i j}-\right.$ c_{j}) and subjecting the resulting $y_{i j}$ values to Shape tests $1-10$ described in the previous section. The values of σ^{2} which satisfy all the tests for the normal assumption were found to be $0.05<\sigma_{1}$ < 0.9 for Case 1, $0.056<\sigma^{2} 2<0.062$ for Case 2, and $0.04<\sigma^{2}<0.1$ for Case 3. It can be seen therefore that $0.056<\sigma^{2}<0.062$ for all cases $\ell=1,2,3$.

The next step was to attempt to predict the c_{j} values obtained above from the project values $x_{i j}$ for each case. A plot of the calculated c_{j} values for each case for $\sigma^{2}=0.60$ is shown in Figure 8.13. A linear regression was performed of $x_{i j}$ on c_{j} for each case and for the pooled values of all cases. (Table 8.37).

Table 8.37: Results of regression of project values ($x_{i, j}$) on threshold values (c_{j}) for $\sigma^{2}=0.60$

Case	α	se	β	se
1	-43640	28462	0.8785	0.0122
2	-10909	1881	0.8541	0.0060
3	-14006	4694	0.8595	0.0055
$1-3$ (pooled)	-15517	3244	0.8650	0.0034

The standard errors of α and β suggest the ranges shown in Table 8.38 .

Table 8.38: Ranges of α and β

Case	α		β	
	From	To	From	To
1	+13284	-100564	0.8544	0.9029
2	-7147	-14671	0.8420	0.8661
3	-4618	-23394	0.8486	0.8704
$1-3$ (pooled)	-9029	-22005	0.8581	0.8719

Values for c_{j} were then calculated from $-9000<\alpha<-24000$ and 0.858 $<\beta<0.872$ for each case and the resulting $y_{i j}=\ln \left(x_{i j}-c_{j}\right)$ subjected to the tests for Normal shape and homogeneity. No cases were found where the data passed the Normal and homogeneity tests.

Futher analyses, not reported here, were conducted of the transformation $y_{i j}=\ln \left(x_{i j}-c_{j}\right)$ for $c_{j}=a+m x_{i j}$ with limited success for Cases 1 and 3. An additional model $c_{j}=a+m x_{i j}+b x_{i j}{ }^{2}$
was also introduced for Case 2 but with no improvement.

8.4.3 Conclusions

Five models of distributional shape of bids for each project were examined, Uniform, Normal, Weibull, Lognormal and Gamma. The evidence suggests that none of these first four shapes model all the data satisfactorily. The transformation $y_{i j}=\ln \left(x_{i j}-c_{j}\right)$ was found to provide values approximating the Normal distribution for c_{j} $=m \bar{x}_{j}(m=0.1,0.2,0.3,0.4,0.5)$ and $c_{j}=m x_{1 j}(m=0.1,0.2,0.3$, 0.4).

Estimates of the spread of bids for each project are not readily available. Several variance stabilizing transformations were attempted with little success. The main problem is that the test for homoscedasity (Bartlett's test) is dependent on the values being Normally distributed, this severely limiting the transformations available for these data. It is possible, however, that a non-parametric test for homoscedasity may be of benefit. It would seem therefore, in the absence of any further analyses, that approximate values of spread will have to be obtained by regression on the project values.

CHAPTER 9

The individual bidders

9.1 Introduction

The objective of this chapter is to identify simple statistical models of individual bidders sui generis. The first section proposes a procedure for estimating the probability that a specified bidder will enter a bid for a project. The second section examines the distribution of bids.
9.2 The Frobability that Certain Bidders Bid for a Project

The probability that a bidder i bids for a project $f(i=1,2, \ldots, r ; f=$ $1,2, \ldots, c$) is given by
$\operatorname{Pr}(i)=n_{i} / C$
where n_{1} is the number of projects on which bidder 1 has bid. Therefore, it can be stated, rather naively, that the probability of bidder i entering a bid for project $c+1$ is $\operatorname{Pr}(1)=n_{1} / c$ and the probability of any set of bidders say $1,1+1,1+2$ is $\operatorname{Pr}(1) \operatorname{Pr}(1+1) . \operatorname{Pr}(i+2)$, assuming independence. The independence assumption is, of course, not likely to hold with these data as it is generally believed that the same bidders frequently bid for the same projects. One approach to this is to estimate the covariance matrix of $\operatorname{Pr}(i) \operatorname{Pr}(i+1)$ from the data and further matrices for the higher order covariances $\operatorname{Pr}(i) \operatorname{Pr}(i+1) \operatorname{Pr}(i+2) \ldots$ It is not likely, however, that sufficient data will be available for this procedure. An alternative approach is to estimate $\operatorname{Pr}(i)$ as some function of the profect value, a procedure which, as it is generally considered that certain bidders are associated with certain profect characteristics, should go some way towards removing interdependencies amongst bidders.

The procedure adopted was to attempt to predict the likelihood of bidder i bidding by regressing the project value x_{1} on the binary $k=1$ if a bid was entered and $k=0$ if no bid was entered for project J. The
predicted values of k can then be treated as proxy probabilities for the probability that bidder i bids given a project value of x. The regression results for several of the most frequent bidders in Case 3 are given in Fable 9.1. No tests were made to ascertain the distribution of the residuals, but a reasonable assumption is that they are normally distributed, the standard error of the co-efficients can, therefore, be utilised in estimating the necessary distributional parameters.

This procedure can clearly be extended to a MRA involving several predictor variables representing project characteristics, none of which were available in the data studied.

Table 9.1. Results of regression of les project value (lowest bidder) on probability of a speciffed bidder eatering a bid

Pi (i bids) $=\alpha_{i}+\beta_{i} Y_{s}$
$y s=\ln \left(x_{1 j}\right)$

Bidder (1)	No of Bids	$\alpha(1)$	(SE)	$\beta(1)$	(SE)	t-test $(\beta=0)$
55	33	-0.45342	0.17036	0.04363	0.01366	3.19^{*}
115	32	0.24042	0.17010	-0.01245	0.01364	0.91
152	34	-1.21123	0.16133	0.10485	0.01294	8.10^{*}
173	36	0.24485	0.17940	-0.01194	0.01439	0.83
175	51	-0.26855	0.20784	0.03263	0.01667	1.96
268	57	0.82035	0.21601	-0.05374	0.01733	3.10
294	30	-0.52286	0.16235	0.04857	0.01302	3.73

*null hypothesis refected at 5\% level (2 tailed)

9.3. The Distribution of Bids Values Entered by Each Bidder

9.3.1. Introduction

Skitmore (1982) has proposed the model
$\ln \left(X_{i j}\right)=y_{i j} 3 Y_{i j} \sim f\left(\alpha_{1}+\beta_{j}, \sigma^{2}\right)$

Where $x_{i j}$ is bidcer 1 's bid for project $f(i=1,2, \ldots, r ; j=1,2, \ldots, c$) and $z_{2 s}$ is another bidider l 's bid for project $f(1=1,2, \ldots, c ; 1 \neq 1)$. Then, assuming bids are independent, estimates of the parameters in (1) may be cotained frem

```
\mp@subsup{\overline{y}}{1}{}-\mp@subsup{\overline{y}}{1}{2}\simeq\mp@subsup{\alpha}{i}{}-\mp@subsup{\alpha}{1}{}
s=1 \simeq |= =
```

by solving the two sets of equations:

$E\left[Y_{1}\right]-E\left[Y_{1}\right]$	$=\bar{z}_{11}$
$E\left[Y_{1}\right]-E\left[Y_{2}\right]$	$=\bar{z}_{12}$

$E\left[Y_{1}\right]-E\left[Y_{r}\right]=\bar{z}_{1 r}$
$E\left[Y_{r}\right]-E\left[Y_{r}\right]=\bar{z}_{r r}$,and
(2)
$\operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}\left[Y_{1}\right]=s^{2} 1_{1}$
$\operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}\left[Y_{2}\right]=s^{2} 12$
$\operatorname{Var}\left[Y_{1}\right]+\operatorname{Var}\left[Y_{r}\right]=s^{2} 1 r_{r}$
$\operatorname{Var}\left[X_{r}\right]+\operatorname{Var}\left[Y_{r}\right]=s^{2} r r$

Where

$$
z_{i 1 j}=\left(y_{i j}-y_{1 j}\right)
$$

$$
z_{i 1}=\frac{1}{n_{i 1}} \sum_{j=1}^{c} \delta_{i 1 j} z_{i 2 j}
$$

$$
s^{2}=\frac{1}{\left(n_{i 1}-1\right)} \sum_{j=1}^{e} \quad \delta_{i 1 j}\left(z_{i 1 j}-\bar{z}_{12}\right)=
$$

$$
n_{i 1}=\sum_{j=1}^{c} \delta_{i 1 j}
$$

$\delta_{i l j}=1$ when bideers \ddagger and 1 beth enter bids for Froject j, 0 otherwise

The problem can, theoretically, be salved by the standard regression procedure as follows.

Letting the event that bidder 1 bicis against bidder 1 be denoted by

which is indexed by:
$k=1$ for $W^{12}, k=2$ for $W^{13}, k=1-1$ for $W^{12}, k=r-1$ for $W^{1 r}$ $k=r$ for $W=3, k=r+1$ for $W=4, k=r+1-3$ for $W=1, k=2 r-3$ for $W^{2 n}$ $k=2 r-2$ for $W^{34}, k=2 r-1$ for $W^{35}, k=2 r+1-6$ for $W^{31}, k=3 r-6$ for W^{3}
$k=\left\{(1-1) r-\sum_{p_{\infty}=1}^{i-1} p\right\}+1$ for $W^{1,1+1} \ldots k=\left\{(1-1) r-\sum_{p=1}^{1-1} p\right\}+1$ for W^{11}

$$
k=i r-\sum_{p=1}^{ \pm} p \text { for } W^{1 r}
$$

$$
n=k=\left\{(r-1) r-\sum_{p=1}^{r} p\right\} \text { for } W^{r-1, r}
$$

Then if
$X_{k i s}=1$ when the event indexed by k occurs, which includes the
lower numbered bidder i, on contract j, and
$X_{k i s}=-1$ when the event indexed by k occurs, which includes the higher numbered bidder 1 , on contract f, otherwise
$X_{k+1}=0$
and $z_{k j}$ is the difference in bids between the two bidders when event k occurs on contract j

The normal equations are

$b_{1} X_{11 c}+b_{2} X_{12 c}+b_{3} X_{13 c}+\ldots+b_{1} X_{1 r c}=z_{1 c}$ $b_{1} X_{21 c}+b_{2} X_{22 c}+b_{3} X_{23 c}+\ldots+b_{1 r} X_{2 r c}=z_{2 c}$ $b_{1} \dot{X}_{k i c}+b_{z} \dot{X}_{k 2 c}+b_{3} \dot{X}_{k \xi c}+\ldots+b_{k} \dot{X}_{k r e}=\dot{z_{k c}}$ $b_{1} \dot{X}_{m 1 c}+b_{z} \dot{X}_{m 2 c}+b_{3} \dot{X}_{m 3 c}+\ldots+b_{1 i} \dot{X}_{m i r c}=\dot{z}_{m c}$

Estimates of $E\left[Y_{1}\right], E\left[Y_{2}\right], \ldots$ will therefore be provided by the vector
$B=C^{-1} D$
Where

And the variance of b_{i} is estimated by
$\operatorname{Var} b_{1}=\frac{S}{\mathbb{I}-r} c^{11}$

Where $S=\sum_{k}^{m} \sum_{j}^{c}\left\{z_{k j}-\left(b_{1} X_{k} 1 j+b_{z} X_{k 2 j}+\ldots+b_{r} X_{k r j}\right)\right\}^{2}$
and N is the total number of paired observations.

The major difficulty with this approach is in the sparseness of the matrix system. In each row (in eqn 4) there are r-2 empty cells. Afifi and Elashoff (1966) have reviewed the literature on the problem of handing multivariate data with observations missing for some or all of the variables under study noting that the estimation problems can often be simplified if the missing data follows certain patterns. Hocking \& Smith (1968) have used estimates of parameters from one part of a (mulitvariate normal) data structure to insert into the other parts prior to using an iterative procedure. Elman (1982) has
considered the use of direct and iterative methods of solving large sparse nonsymmetric systems of linear equations finding difficulties With direct methods due to the factoring process generating many more non-zeros than the coefficient matrix, thereby increasing the computational storage size needed. A further problem encountered was that the number of arithmetic operations could become excessive. His general conclusion was that "... although progress has been made in the development of orderings for the unknowns that decrease the complexity of directness for solving sparse problems ... many large sparse problems cannot be solved by direct methods on present day computers".

Some early tests on the data using matrix methods confirmed Elman's View that direct methods were unsuitable. The extreme sparseness of the data under study, in the froporticn or to $c(r-2)$, produced results severely distorted by computational rounding errors. It was, therefore, considered that an iterative procedure would be more appropriate.

9.3.2 The iterative procedure

The model adopted was, from eqn (1)
$y_{1 j}=\alpha_{1}+\beta_{1}+\epsilon_{11}$
Where $\epsilon_{1 j}$ is $f\left(0, \sigma^{2}\right)$
(it was goted that $y_{i j}-\mathcal{J}_{11}=\alpha_{i}-\alpha_{1}+\epsilon_{i j}-\epsilon_{i 1}$, where $\epsilon_{1 j}-\epsilon_{i 1}$ is f $\left(0, \sigma^{2}{ }_{1}+\sigma_{1}\right)^{\text {) and that, although appropriate for differences, eqn (5) }}$ was preferred as less information is lost).

Assuming $f\left(0, \sigma^{2_{1}}\right)$ is $N\left(0, \sigma^{2_{1}}\right)$
$y_{i j}$ has a pdf $\frac{1}{\sigma^{2} i} \exp \left\{-\frac{1}{2 \sigma^{2} i}\left(y_{i j}-\alpha_{i}-\beta_{j}\right) \geq\right\}$
The log-likelihood is
$\operatorname{lnL}=-\sum_{i=1}^{r}\left(n_{i} / 2\right) \ln \sigma^{2} i-k \sum_{i=1}^{r}\left(1 / \sigma^{2} z_{i}\right) \sum_{j=1}^{c} \delta_{i j}\left(y_{1 j}-\alpha_{i-1-1}\right)=$

Where Kroneka's $\delta_{i j}=1$ if bidder i bids for project j $=0$ if bidder i does not bid for praject j
$n_{i}=\sum_{j=1}^{c} \delta_{i j}=$ number of bids made by bidder 1

The MLL over $\alpha^{\prime} s, \beta^{\prime} s$ and $\sigma=$ is

$$
\begin{aligned}
& \frac{\delta \operatorname{lnI}}{\delta \beta j}=\sum_{1=1}^{r} \delta_{1 j}\left(y_{1 j}-\alpha_{1}-\beta_{3}\right) / \sigma^{2}=0 \\
& \Rightarrow \beta_{j}=\sum_{i=1}^{r} \delta_{i j}\left(y_{1 j}-\alpha_{i}\right) / n_{i} \\
& \frac{\delta 1 \Omega}{\delta \alpha_{1}}=\left(1 / \sigma^{\alpha_{i}}\right) \sum_{j=1}^{c} \delta_{i j}\left(y_{i j}-\alpha_{i}-\beta_{j}\right)=0 \\
& \Rightarrow \alpha_{i}=\sum_{j=1}^{c} \delta_{i j}\left(y_{i j}-\beta_{j}\right) / n_{i} \\
& \frac{\delta 1 \eta_{1}}{\delta \sigma^{2}}=\frac{-\eta_{1}}{2 \sigma^{2}}+\frac{1}{2 \sigma^{2 i}} \sum_{j=1}^{c} \delta_{i j}\left(y_{i j}-\alpha_{i}-\beta_{j}\right)=2 \\
& \Rightarrow \sigma_{1}=\frac{1}{n_{1}} \sum_{j=1}^{c} \delta_{13}\left(y_{1,}-\alpha_{i}-\beta_{1}\right)=
\end{aligned}
$$

The procedure used was to initialise all $\alpha_{1}=0$ and iterate equaticis (6) and (7) to convergence. The estimates of $\sigma \sum_{i}$ were adjusted fer bias by the approximation
$\hat{\sigma} z_{i}=\sigma z_{i}\left\{\frac{n_{i}}{\left(n_{i}-1\right)\left(1-\frac{c-1)}{N-r}\right.}\right\}$
where $\mathbb{N}=\sum_{i=1}^{c} n_{i}$, the total number of observations
For computational purposes it is unnecessary to introduce once only bidders, $n_{i}=1$, until after convergence of the iteration procedure. Convergence was taken to have occured when the change in estimated value of any α_{i} in consecutive iterations was less than e_{x}, where e_{x} is small (the appropriate value of e_{x} was found, after various trials, to be 0.000001).

The data were transformed by $y_{i j}=\ln \left(x_{i j}\right)$ and the values of β_{1}, α_{1} and $\sigma{ }_{1}$ obtained for each Case. The results for Case 1 are given in Table 9.3.

The distribution of the residuals was then inspected to obtain some impression of the nature of $f\left(0, \sigma^{2}\right)$ of $\epsilon_{i s}$.

Table 9.2 Sample of predictions from iterative procedure for Case 1
(a) $\alpha_{1} \& \sigma_{1}^{2}$ values

Bidder (i)	No of bids $\left(n_{1}\right)$	α_{1}	σ_{1}
6	2	0.01667	0.00052
8	1	0.00717	
12	1	-0.00871	
20	1	-0.07646	
24	7	-0.04071	0.00099
31	1	-0.03508	
55	20	0.03154	0.00253
60	1	0.06268	0.00292
64	1	-0.03523	
72	1	-0.02970	
73	2	0.00579	
75	4	-0.02239	0.00273
79	2	0.04906	0.00042
83		0.09766	0.00361

(b) β_{s} values

Project (j)	β_{j}
1	14.18677
2	13.15789
3	14.09286
4	13.42515
5	12.88743
6	14.58104
7	14.95664
8	15.82349
9	13.70479
10	13.90194

9.3.3 Distribution of aggregated residuals

9.3.3.1 Shape

Figs 9.1 to 9.3 indicate the frequency distribution of the residuals $z_{i s}$ $=y_{i j}-\alpha_{i}-\beta_{j i} y_{i j}=\ln \left(x_{i j}\right)$ for each of the three cases. The shape indicated in all the cases suggested that the Normal distribution may be an appropriate model. The cumulative probability plots (Fig 9.4 to 9.6), however, indicate that the Normal mocel may not be the =ost appropriate, the data being rather heavy tailed. Superimposition of the Normal curves on the histograms (Fig 9.1 to Fig 9.3) illustrates the position.

The plots suggest that the distribution of residuals may be stiniler fer each Case. This was tested by comparing the frequency distributicn of residuals for each Case with the frequency distribution of the pecled residuals for all Cases. On the assumption that the pooled residuals represent the total population of residuals, the chi-square test was applied to test the hypothesis that the residuals for each Case were samples from the total population. The results of this test indicated that the hypothesis should not be rejected, chi-square values of 2.9 (8 df), 3.6 (10 df) and 4.0 (14 df) being recorded for Cases 1,2 and 3 respectively, after having standardised the residual values by dividing by the estimated standard deviation for each Case.

Having concluded that the distribution of the (standardised) residuals could be considered to be the same for all Cases, the residuals were pooled and some tests applied to determine the shape of the resulting distribution.

9.3.3.2 Normal model

Visual inspection of the frequency distribution of the pooled residuals suggested the Normal model to be a possible approximation. On attempting to fit a Normal distribution of zero mean and unity variance it was immediately apparent that a smaller variance would provide a better visual fit. Several variances were, therefore, attempted (Fig 9.7). Plots of Normal order statistics against the frequency of the

Fig.9.1 Case 1: Distribution of residuals

Fig 9.2 Case 2: distribution of residuals

Residual value

Fig.9.3 Case 3: Distribution of residuals

Fig 9．4 Case 1：probability plot of residuals

Kコルənbəコf an！fe！nunコ
Fig 9．5 Case 2：probability plot of residuals

Kコuanba」f əヘ！feןnunว
Fig 9.6 Case 3: probability plot of residuals

- 8.6 pase

Kコuanbasf an!teןneñ

pooled residuals were made. Fig 9.8 shows the plot against $\mathbb{N}(0,1)$ and Fig 9.9 against $\mathbb{X}(0,0.6)$. This visual inspection suggested the $\mathbb{N}(0,0,6)$ model to be the best.approximation. This visual fit was not confirmed, however, by the chi-square and Kolmogorov-Smirnov goodness of fit tests (Table 9.3).

Table 9.3 Goodness of fit tests for various Normal distributions to the standardised pacled residuals

$\#(0, \sigma)$	$X^{2}(23)$	$\mathrm{K}-\mathrm{S}$
$\boldsymbol{\sigma}==1.0$	204	0.047
0.9	229	0.063
0.8	322	0.126
0.7	547	0.203
0.6	876	0.298

As the critical values at the 5% significance level are χ^{2} (23) < 35.17 and $D<0.024$ none of the Normal distributions attempted were judsed to be of a sufficiently good fit. The results for $\sigma^{2}=1.0$ are, of course, not surprising as $\sigma^{2}=1.0$ is the best estimate for standardised values.

The risual cioseness of the distribution of the pooled residuals ts a Normal distribution suggested that some function of the Normal distribution would be the best approach. Pearson's distributions were first consulted to checi the possibility that a relatively simple unique function may suffice.

- 9.3.3.3. Pearson's distributions

The criterion k was calculated from the formula

$$
k=\frac{\beta_{1}\left(\beta_{2}+3\right) z}{4\left(2 \beta_{2}-3 \beta_{1}-6\right)\left(4 \beta_{2}-3 \beta_{1}\right)}
$$

Fig. 98 Flot of Normal order statistics $N(0,1)$ against the frequency of the standardised pooled residuals

Fig.9.9 Plot of Normal order statistics $N(0,0.6)$ against the frequency of the standardised pooled residuals

and found to be between zero and unity, suggesting the Type IV distribution as the most appropriate. However, as Type IV distribution requires repeated numerical integration of the pdf in its application, it was decided that a computationally more efficient distribution should be adopted. One distribution of this type is the Gram-Chariler Type A series or the Edgeworth expansion.

9.3.3.4 Gram-Charlier series of Type A and Edgeworth's form

Enemall \& Stuart (1963,p162) note that the Type A series can encounter difficulties when cumulants above the fourth are included, unless the sixewness coefficient is "close enough" to zero. A coefficient of $\left.\left|\beta_{1}\right|\right\}$ $0 . \approx 5$ will produce a non-unimodal distribution with Edgeworth's form. Sinilarly, \mid Ral $\geqslant 0.50$ produces negative frequencies. The Gram-Charlier s€ries has a wider range of acceptability, but certainly mon-unimodal if \mid IT $\mid \geqslant 0.7$.

As the skewress coefficient of the pooled residuals was 0.05748 , it was considered that both Gram-Charlier and Edgeworth's form of Type A series would be appropriate for more than the fourth cumulant. Further consicierations (see Appendix A) on the similarity between the GramCiarlier and Edgeworth form indicated that only the Gram-Charlier series need be used.

The first 4 terms of the Gram-Charlier Type A series give a Cdf as follows:
$\begin{aligned} \operatorname{Cdf}(x)=\left\{1 /(2 \pi)^{n}\right\} & \int_{-\infty}^{\infty} \exp \left(-1 / 2 x^{2}\right) d x-\left[\left\{1 /(2 \pi)^{n} \exp \left(-1 / 2 x^{2}\right)\right\}\left\{\left(\mu_{3} / 6\right)\left(x^{2}-\right.\right.\right. \\ & \left.\left.+(1 / 24)\left(\mu_{4}-3\right)\left(x^{3}-3 x\right)\right\}\right]\end{aligned}$
where x is standardised.

The population moments μ_{3} and μ_{4} were estimated from the data as 0.16 and 6.03 respectively.

After a series of trials it was found that a value of 4.5 for the fourth movement produced a more satisfactory fit (Fig 9.10). See Appendix A for estimating moments of population. Tests of goodness of fit resulted in $\chi^{2}\langle z>\rangle=32.7$ and Kalmogorov's $D=0.012$ - the theoretical distribution not being significantly different from the data
Fig 9.10 DISTRIBUTION OF RESIDUALS (1)

(at 5\% significance).A casewise check was made to establish that the model was appropriate in all Cases, by fitting the model to the standardised residuals of each of the three sets of residuals (Figs 9.11 to 9.13).

Table 9.4 provides the results of the goodness of fit tests.

Table 9.4 Gram-Charlier Type A series - goodness of fit tests

Case	$X^{=}$	Df	Crit Value	Kolmogorov's D	Crit Value
1	13.3	15	25.0	0.035	0.081
2	19.8	23	35.0	0.016	0.040
3	31.5	24	36.0	0.019	0.032
all cases	32.7	27	-	0.012	-

As a final cieck, a simulation exercise was conducted in witici raicien standardised values were generated for each bidder fron a GramCherlier Type A distribution for $\mu_{3}=0.16$ and $\mu_{4}=4.5$ (see Appendix A for details). The chi-square and $K-S$ tests both failec to reject the null hypothesis in each and every Case. It was, therefore, conciuced that the Gram-Charlier series with parameters $\mu_{3}=0.16 \mu_{a}=4.5 \mathrm{was}$ a reasonable model of the standardised residuals.

9.3.3.5 Discussion

The discovery of high peaked, heavy tailed distributions is not a new phenomenon in empirical studies of data of these kind. Ali a Giacotto (1982), for instance, in their study of stock market prices found that "... the empirical distributions of price changes are usually high peaked with heavy tails when compared with the normal distribution". Studies by Clark (1973) and Hsu et al (1974) of simllar data suggest that "... if the price changes are normal but not identically distributed, it is likely that the empirical distributions would be highly peaked and heavy tailed compared to the Normal distribution" (All \& Giacotto,1982,p19) the major differences being attributed to the lack of tenability of the constant scale assumption.

Distribution of residauls (3)

On this evidence, therefore, it was decided to test the distribution of individual bidders' bids as determined by the distribution of the residuals ootained for each bidder. This was conducted along the lines of the previous Chapter in which the distribution of bids for each project was separately assessed before aggregating the test statistics.

9.3.4 Distribution of individual bidiers' bids

9.3.4.1 SEape

The distribution shape under consideration is that of the values $y_{1}+\hat{E}$ arcund $\hat{\alpha}_{i}$.

It was expected that the distribution of yis- $_{\text {is }}$ around α_{i} the estimated values weule have been modified by the estimation process, so a simulation scudy was conducted by generating the appropriate values of Y_{13} from $a \bar{x}\left(\mu_{j}, \sigma^{2}\right)$ distribution where μ_{j} and σ_{j} were estimated by

$$
\begin{aligned}
& \mu_{j}=\ln \left(\bar{X}_{j}\right)-1 / 2 \sigma_{j} \\
& \sigma z_{j}=\ln \left\{\left(\bar{x}_{j}{ }_{j} / s_{j} z_{j}\right)-1\right\}
\end{aligned}
$$

\bar{X}_{s} and s_{s} being obtained from the raw data. The resulting simulated bicis were tinen subjected to the iterative procedure, values for α_{1} and β_{1} computed and thence the values $z_{i j}=y_{1 j}-\beta_{j}$. The $z_{i j}$ values were then subjected to each of the shape tests in a similar manner to the last Chapter, except that tests statistics were derived for each bidder i instead of each project j. The probabilities of each resulting statistics were tested for Uniform distribution and the probability of the chi-square statistic obtained for the Case exactly as before. The process was repeated 1000 times for each Case and then again for the Lognormal distribution.

The critical values estimated from these simulations are shown in Table 9.5a. The critical values obtained for tests $6-10$ were considered to be of little use at this stage, due to their lack of relationship with the expected values. Tests $1-5$, however, were remarkably unaffected by the iterative procedure, the probabilities being very close to those

Table 9.5a Simulated test shape

Critical values (simulation of log values obtained by iteration, average variance, 1000 trials)

Case 1

		Test statistic at				
Test	1%	$2 \% \%$	5%	95%	97%	99%

Nerzal distribution

1	0.009706	0.023149	0.043157	0.964295	0.964295	0.994833
2	0.009594	0.023754	0.042327	0.939987	0.939987	0.904833
3	0.009706	0.028577	0.052778	0.934318	0.964295	0.904833
4	0.012107	0.035174	0.052778	0.934318	0.964295	0.984058
5	0.012107	0.028577	0.064317	0.934318	0.964295	0.984058
6	0.003923	0.018700	0.043157	0.934318	0.964295	0.994833
7	0.000064	0.000364	0.001945	0.726796	0.811000	0.939987
8	0.000104	0.001212	0.003113	0.845066	0.934318	0.934318
9	0.000038	0.000220	0.000954	0.788728	0.845066	0.894201
10	0.002465	0.012107	0.028577	0.934318	0.964295	0.964295

Oniferm distribution

1	0.009706	0.023149	0.043157	0.934318	0.964295	0.984058
2	0.001945	0.009544	0.031802	0.883825	0.939987	0.976507
3	0.002465	0.012107	0.028577	0.934318	0.964295	0.984058
4	0.003113	0.012107	0.028577	0.934318	0.934318	0.964295
5	0.012107	0.023149	0.043157	0.934318	0.964295	0.984098
6	0.007764	0.023149	0.052778	0.934318	0.964295	0.984058
7	0.002696	0.007207	0.023754	0.883825	0.939987	0.976507
8	0.003923	0.012107	0.028577	0.934318	0.964295	0.984058
9	0.000588	0.003923	0.015065	0.894201	0.964295	0.984058
10	0.004935	0.012107	0.035174	0.934318	0.964295	0.984058

Case 2

		Test statistic at				
Test	1%	$2 \% \%$	5%	95%	97%	99%

Normal distribution

1	0.012055	0.025360	0.045444	0.941662	0.968055	0.985481
2	0.007634	0.024786	0.043348	0.958280	0.976185	0.992385
3	0.012055	0.027091	0.051552	0.941662	0.968055	0.985481
4	0.012914	0.028931	0.048410	0.941662	0.068055	0.985481
5	0.014811	0.025360	0.045444	0.930822	0.974825	0.985481
6	0.001736	0.006892	0.015855	0.906175	0.941662	0.974825
7	0.000000	0.000000	0.000000	0.002416	0.007000	0.026883
8	0.000000	0.000000	0.000000	0.019421	0.048410	0.106543
9	0.000000	0.000000	0.000000	0.000354	0.001388	0.006892
10	0.000058	0.000222	0.000884	0.696088	0.811546	0.930822

Uniform distribution

1	0.005980	0.012914	0.032966	0.918984	0.941662	0.980619
2	0.000005	0.000034	0.000160	0.587075	0.711896	0.7835 .71
3	0.000022	0.000303	0.001109	0.716158	0.862344	0.918984
4	0.000005	0.000050	0.000222	0.614674	0.755509	0.877806
5	0.004826	0.016969	0.037518	0.951484	0.974825	0.989467
6	0.006892	0.020769	0.035174	0.960281	0.980619	0.989467
7	0.000008	0.000074	0.000417	0.687154	0.783571	0.888457
8	0.000101	0.000327	0.001109	0.793358	0.862344	0.941662
9	0.000000	0.000002	0.000011	0.439086	0.574097	0.755509
10	0.000139	0.000653	0.003616	0.829151	0.906175	0.968055

Table 9.5 b Results of tests of distribution shape for each bidder

Transformation	Test results (* no fails) Case		
$y_{i j}=\ln \left(x_{i j}-m \bar{x}_{j}\right)$			
$m=0.0$	*	*	2,3,5
II=0.1	*	*	2,3
m=0.2	*	5	2,3
m=0.3	*	5	2,3,5
$m=0.4$	*	2,5	2,3
$m=0.5$	*	-	2,3,5
$\mathrm{m}=0.6$	*	-	2,3,4

$y_{i j}=\ln \left(x_{1 j}-m x_{j}\right)$

$m=0.0$	$*$	$*$	$2,3,5$
$m=0.1$	$*$	$*$	2,3
$m=0.2$	$*$	$*$	2,3
$m=0.3$	$*$	$*$	2,3
$m=0.4$	$*$	$*$	$2,3,4,5$
$m=0.5$	$*$	$*$	2,5
$m=0.6$	$*$	$*$	$*$
$m=0.7$	$*$	1	$*$
$m=0.8$	$*$	1,5	$*$
$m=0.9$			$*$

$y_{11}=X_{1 j} 1 / F$

$\mathrm{p}=1$	2	$1,2,3,4,5$	$1,2,3,4,5$
$\mathrm{p}=2$	1	2,5	$1,2,3,4,5$
$\mathrm{p}=3$	$*$	$*$	$1,2,3,5$
$\mathrm{p}=4$	$*$	3,4	$1,2,3$
$\mathrm{p}=5$	$*$	$*$	2,3
$\mathrm{p}=6$	$*$	3	2,3
$\mathrm{p}=7$	$*$	3	$2,3,4$
$\mathrm{p}=8$	$*$		

expected. It was decided, therefore, to concentrate on Tests 1-5 to determine the suitability of the Lognormal model.

Table 9.5b gives the results of the shape tests for all Cases, using similar \log and power transformations to those used previously.

9.3.4.2 Spread

The possibility was considered that the distribution of Eartlett's test statistic may be affected by the iterative procedure in addition to the different sample sizes caused by the analysis of bidders instead of projects. , A further simulation study was, therefore, conducted by generating Lognormal bid values for each bidder with an equal variance (estimated from the data). The iterative procedure was implemented and the probability of Earlett's statistic computed from the residuals yıs β_{J} for each bidder. This was repeated 1000 times for Cases 1 and 2, 100 times for Case 3, due to the length of time for each trial (20 minutes for Case 3). The values at the critical percentage points are shown in Table 9.6. The low values obtained for Case 2 were unaccounted for but, as the same computer program was used for all cases, the values were accepted as being correct.

The results of the analysis of the actual Case data are given in Table 9.7 for the various transformations

Table 9.6 Simulated variance tests

Critical values of Bartlett's probability (simulation of log values obtained by iteration, average variance, Normal distribution)

Test Statistics			
at	1	CASE	
1%	0.010030	0.001980	3
$2 \% \%$	0.029890	0.003500	0.003340
5%	0.051730	0.008940	0.019610
$7 \% \%$	0.084520	0.016180	0.051555
10%	0.117130	0.021650	0.066625
95%	0.953750	0.771060	0.935750
$97 \% \%$	0.976570	0.828170	0.978470
99%	0.990170	0.932930	0.993800

Table 9.7 Results of tests for homoscedacity of bidders (Bartlett's test)

$y_{i j}=\ln \left(x_{i j}-\bar{x}_{j}\right)$

$m=0.0$	60.6	0.124	257.0	0.000	446.0	0.000
$m=0.1$	60.1	0.133	258.3	0.000	446.0	0.000
$m=0.2$	59.5	0.145	260.6	0.000	446.5	0.000
$m=0.3$	53.8	0.159	264.7	0.000	448.0	0.000
$m=0.4$	58.1	0.176	272.9	0.000	451.9	0.000
$m-0.5$	57.2	0.197	-	-	462.9	0.000
$m=0.6$	55.1	0.225	-	-	485.7	0.000

$y_{i j}=\ln \left(x_{i j}-x_{1 j}\right)$

$\mathrm{m}=0.0$	60.6	0.124	257.0	0.000	446.0	0.000
$\mathrm{~m}=0.1$	59.6	0.143	253.5	0.000	438.7	0.000
$\mathrm{~m}=0.2$	58.5	0.166	249.7	0.000	431.0	0.000
$\mathrm{~m}=0.3$	51.4	0.192	245.5	0.000	422.5	0.000
$\mathrm{~m}=0.4$	56.2	0.223	240.8	0.000	415.2	0.000
$\mathrm{~m}=0.5$	55.0	0.259	235.6	0.000	398.2	0.000
$\mathrm{~m}=0.6$	53.6	0.300	229.8	0.000	358.4	0.000
$\mathrm{~m}=0.7$	52.4	0.344	223.8	0.000	358.4	0.000
$\mathrm{~m}=0.8$	51.9	0.361	218.5	0.000	330.9	0.000
$\mathrm{~m}=0.9$	52.6	0.335	219.5	0.000	290.3	0.005
$\mathrm{~m}=0.95$	42.1	0.745	234.7	0.000	260.5	0.089

$y_{i j}=x_{i j} / p$						
$p=1$	125.5	0.050	1400.1	0.000	1733.1	0.000
$\mathrm{p}=2$	76.9	0.007	339.3	0.000	709.9	0.000
$\mathrm{p}=3$	62.1	0.098	204.6	0.000	540.6	0.000
$\mathrm{p}=4$	59.6	0.143	183.8	0.000	474.3	0.000
$\mathrm{p}=5$	58.8	0.160	183.4	0.000	449.4	0.000
$\mathrm{p}=6$	58.5	0.166	187.7	0.000	439.1	0.000
$\mathrm{p}=7$	58.5	0.167	192.9	0.000	434.4	0.000
$\mathrm{p}=8$	58.5	0.166	197.8	0.000	432.2	0.000

9.3.4.3 Location

A simplification of the model is that each bidder has the same location parameter ie $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{1}=\ldots=\alpha_{1}$. An approximate test: chosen was the analysis of variance (ANOVA). The ANOVA relies on the assumption that the data are Normally distributed and the variance are equal, although the test is known to be robust certainly as far as the Normal assumption is concerned (Kendall \& Stuart,1963,p465).

The AHOVA, in this case, involves the test statistic

$$
F=\frac{\operatorname{SSQ}_{E} /(r-2)}{S S Q_{w} /(N-C-r+1)}
$$

Where
$\operatorname{SSQ}_{\omega}=\sum_{1} \sum_{j} \delta_{i j}\left(y_{i j}-\alpha_{i}-\xi_{j}\right)=$
$S S Q_{E}=\sum I_{i}\left(\alpha_{i}-\bar{\alpha}\right)=$
$\bar{\alpha} \quad=\sum_{i} n_{i} \alpha_{i} / \sum_{i} n_{i}$

And F follows the F distribution with $\mathbb{I}-\mathrm{r}-\mathrm{C}+1$ and $\mathrm{r}-2$ degrees of freedom. An exmple for Case 1 is givez in Table 9.8.

Table 9.8 ANOVA example for Case 1 fyij $\left.=\ln \left(x_{i j}\right)\right\}$

Source	SSQ	df	Mean Square	F	Prob.
Between bidders	1.1312	91	0.0124	5.263	0.000
Within bidders	0.4134	175	0.0024		1
Total	1.5446	266	0.0058		

The results obtained for the various transformations are provided in Table 9.9. Apart from the raw data for Case 3 (which is considered to be highly non Normal and heterogeneous and, therefore, inappropriately tested by the F test), these results clearly indicate that the bidders cannot be modelled as bidding from a distribution with the same location parameters.

Table 9.9 ANOVA results for all Cases

Transformation	$1 \begin{gathered}\text { Cases } \\ 2\end{gathered}$					
	F	Prob	F	Prob	F	Prob
$y_{i j}=\ln \left(x_{i j}-\overline{m i n}_{j}\right)$						
$m=0.0$	5.26	0.000	4.54	0.000	2.59	0.000
m $=0.1$	5.29	0.000	4.54	0.000	2.59	0.000
$m=0.2$	5.35	0.000	4.53	0.000	2.58	0.000
$\underline{m}=0.3$	5.42	0.000	4.51	0.000	2.58	0.000
II $=0.4$	5.57	0.000	4.48	0.000	2.58	0.000
m $=0.5$	5.67	0.000	4.40	0.000	2.08	0.000
$m=0.6$	6.30	0.000	-	-	-	-
$Y_{i j}=I \sim\left(x_{i j}-\operatorname{IX}_{1 j}\right)$						
$m=0.0$	5.25	0.000	4.54	0.000	2.59	0.000
$z=0.1$	5.20	0.000	4.55	0.000	2.60	0.000
$m=0.2$	5.13	0.000	4.57	0.000	2.61	0.000
$m=0.3$	5.04	0.000	4.58	0.000	2.62	0.000
$z=0.4$	4.93	0.000	4.59	0.000	2.63	0.000
$m=0.5$	4.80	0.000	4.61	0.000	2.65	0.000
$m=0.6$	4.62	0.000	4.62	0.000	2.67	0.000
$z=0.7$	4.40	0.000	4.63	0.000	2.69	0.000
$m=0.8$	4.08	0.000	4.60	0.000	2.71	0.000
in $=0.9$	3.58	0.000	4.48	0.000	2.71	0.000
III $=0.95$	3.18	0.000	4.27	0.000	2.70	0.000
m $=0.99$	2.57	0.000	3.68	0.000	2.57	0.000
III $=0.999$	2.58	0.000	3.12	0.000	2.33	0.000
$Y_{i j}=Z_{i j}{ }^{1 / p}$						
$p=1$	2.58	0.000	1.93	0.000	1.11	0.104
$p=2$	3.70	0.000	3.32	0.000	1.87	0.000
$p=3$	4.23	0.000	3.87	0.000	2.16	0.000
$p=4$	4.50	0.000	4.10	0.000	2.29	0.000
$p=5$	4.66	0.000	4.22	0.000	2.37	0.000
$p=6$	4.77	0.000	4.30	0.000	2.41	0.000
$\mathrm{p}=7$	4.84	0.000	4.34	0.000	2.44	0.000
$p=8$	4.90	0.000	4.38	0.000	2.46	0.000

9.4 Analysis of one bidder

9.4.1 Introduction

The Case 1 data provided in Appendix B consists of a sub-set of material obtained from one construction company, referred to as bidder 304. The total set of data for bicier 304 contains details of all (85) projects in which the company was involved during the period under study. Much of these date are of a conficential mature, details of which are available from the writer, subject to bidder 304's prior consent. A brief summary of these profects is given in Table 9.10. The Table indicates a ratio of 0.192 far projects acquired to the known results, and 0.152 for those cbtained in competitive tender, that is Type 1 and 2 bids. (Type 1 bics are those commoniy termed genuine or bone fide bids, Type 2 are cever prices).

Table 9.10 Project details

Type	Won	Lost	Total
Package deal	-	1	1
Negotiated	2	-	2
Schedule of rates	-	2	2
Aborted	-	1	1
Type 2 bids	21	21	
Type 1 bids	11	43	54
Type 1 or 2 bids (undistinguisied)	1	3	4
Total	14	71	85

Details were not available of competitors' bids for several projects, although mark-up percentages were more freely available. Table 9.11 summarises the frequency of such projects where the relevant data was available. Table 9.12 indicates the projects won and lost where details of competitors' bids were. known. It is interesting to note that no Type 2 bids were responsible for obtaining projects, although discussions with bidder 304 indicated that projects were occasionally obtained on this basis.

Table 9.11 Data avallable

Type	Mark up known	all competitors bids known	Low bid only known
Type 2 bids	NA	17	-
Type 1 bids	57	34	7
Type 1 or 2 bids (undistinguished)	--	-	-
Totals	57	51	7

Table 9.12 Competitors' bids known

Type	Won	Lost	Total
Mark ups	10	47	57
Type 2 bids	--	17	17
Type 1 bids	8	26	34

Several analyses were conducted on these data to gain an indication of the modelling implications.

9.4.2 Detecting Type 2 bids

Three methods of detecting Type 2 bids were attempted: the highest bid In each contract, the highest bids relative to a bidder's alpha estimate, and the highest bids relative to a bidder's cost estimate.

9.4.2.1 The highest bid in each project

Bidder 304 recorded the highest bid on 14 projects as shown in Table 9.13.

Table 9.13 Projects in which bidder 304 entered the highest bid

Project no	Bid Type
3	1
5	1
11	1
13	1
17	2
26	1
27	1
34	2
35	2
39	1
40	2
45	2
49	2
51	1

The method, therefcre, detected six Type 2 bids out of 14 attempts, a factur of succeses of 6/14 = .429.

The actual number of Type 2 bids for bidder 304 was 17 out of 51, a factor of $17 / 51=.333$, and it would therefore seem that the method gives slightly better results than that would be obtained by pure chance.

0.4.2.2 The highest bids relative to a bidder's alpha value

On completion of the iterative procedure described previously, the values of $y=041-\beta_{j}-\alpha \approx 04(j=1,2, \ldots, c)$ were computed and the 10 highest values recorded, as shown in Table 9.14.

Table 9.14 Highest valued residuals for bidder 304

Project No (j)	yso4 $-\beta_{j}-\alpha_{304}$	Bid Type
40	0.146415	2
27	0.103807	1
51	0.088718	1
26	0.062546	1
17	0.057663	2
11	0.053072	1
13	0.047439	1
5	0.045233	1
43	0.038940	2
35	0.036022	2

The success rate here is $4 / 10=.4$, slightly worse than method 1 , and thus not considered to be appropriate.

9.4.2.3 Comparison between bidders

The most frequent competitor to bidder 304 was bidder 55, who entered bids for the same project on 20 occasions. A comparison was made of bidders 304 and 55 of cost estimates and bids, providing the ratios shown in Table 9.15.

Table 9.15 Comparison of bidders' 304 and 55 estimates and bids

$\begin{aligned} & \text { Project } \\ & \text { No } \end{aligned}$	5 E Etc	55- Pide
	304 Estimates	304 Eics
1	1.092	1.027
5	1.038	0.957
7	1.120	1.067
13	1.022	0.955
15	cover	1.136
18	cover	0.924
19	1.156	1.111
20	1.034	1.009
21	1.072	1.030
25	cover	0.972
26	0.945	0.900
29	cover	0.919
30	1.128	1.084
32	1.147	1.087
33	cover	0.993
42	1.062	1.036
44	1.090	1.058
45	cover	0.979
47	1.094	1.052
48	1.121	1.068

As Fig 9.14 shows, there appears to be a reasonably close correspondence between Bid/Cost Estimate and Bid/Bid ratios to justify the use of the latter ratios as a ranking device for the former. This is illustrated in Table 9.16, where both sets of ratios are rearranged in descending order. Thus the 5 highest ranked ratios are from identical sequence numbers for each ratio group.

Now let us consider bidder 55's attempts to identify cover prices submitted by 304. The obvious cases to look for are those where 304 bids are high relative to 55 estimates. But we do not know 55
estimates. However, his bids provide a reasonable substitution as we have seen, so let us now present the picture as 55 might see it for all cases (Table 9.17)

Table 9.16 Bid/estimate ratios

Ranking	Project number			
	55 Bid	ratio	55 B1d	ratio
	304 Estimate		304 Eid	
1		19		19
2		32		32
3		30		30
4		48		48
5		7		7
6		47		44
7		1		47
8		44		42
9		21		21
10		42		1
11		5		20
12		20		5
13		13		13
14		26		26

Table 9.17 As bidder 55 might see bidder 304

Praject No	304_Bids 55 Bids		Ratio
1		0.974	10
5	1.045	5	
7	0.937	15	
13	1.047	4	
15	0.880	20	
18	1.082	3	
19	0.900	19	
20	0.991	9	
21	0.971	11	
25	1.029	6	
26	1.111	1	
29	1.088	2	
30	0.922	17	
32	0.920	18	
33	1.007	8	
42	0.965	12	
44	0.945	14	
45	1.021	7	
47	0.951	13	
48		0.936	16

Now the assumption that the highest ratios predict 304's Type 2 bids can be examined (Table 9.18).

Table 9.18 Bidder 55's prediction of bidder 304's Type 2 bids

Project numbers for	Praject numbers for actual Type 2 bids
15	26
18	$29 *$
25	$18 *$
29	13
33	5
45	$25 *$

successful predictions

In this case the success rate is $3 / 6=0.5$ which is singhty better than the previous two methods.

9.4.2.4 Conclusion

Whilst all three methods detect Type 2 bids better than by pure chance, that is better than a rate of 0.333 , it was not considered thet any of the prediction methods were particularly successful or, consequentiy, that the presence of Type 2 bids would significantly distort the distributional analyses.

9.4.3 The distribution of mark-up values

The first analysis was to check if mark-up values were different, that is lower, for projects won from those where projects were not won. A total of 57 mark-up values were available, 46 of which were for projects not won. The average percentage mark-up value for the projects won was $5.265(s=2.543)$ whilst for those projects not won a value of $5.648(s=2.178)$ was obtained. There is clearly iftle difference between these averages, confirmed by the t-test at the 5\% significance level.

The distribution of mark-up values was then examined both for the percentage mark-up and the mark-up multiplier for possible parametric models. The frequency distribution of m is shown in Fig 9.15. The chi-square test was applied to test the goodness of fit of Normal models resulting in $X^{=}(5)=5.781$, which is well below the critical value at the 5% levels. A further chi-square test indicated that the log of the mark-up multiplier $m^{\prime}=\ln$ (bid/cost estimate) could also be regarded as Normally distributed $\chi^{2}(5)=3.065$. It was concluded, therefore, that Normal and Lognormal models provided a reasonable approximation to the percentage mark-up and the marisup multiplier respectively.

9.4.4 The distribution of low bid/cost estimate ratios

The data provided a total of 42 low bid/cost estimate ratios. Where bidder 304 entered the lowest bid himself the second lowest bid was taken. The mean value of 0.9896 is similar to the value obtained from data in the literature. The mode is 0.999. The frequency distribution of the ratios is shown in Fig 9.16. The literature suggests that the ratios can be considered to follow the Normal distribution. The chisquare test produced a value of $\chi^{2}(4)=10.041$ which has a probability of less than 0.05 and was taken to provide sufficient evidence to reject the null hypothesis. A similar test of the distribution of log ratios, however, resulted in $\chi^{2}\langle\alpha\rangle=7.06$, the probability of which is greater than 0,05 . It was concluded, therefore, that the Lognormal model provides a reasonable approximation to these data.
9.4.5 The probability of entering the lowest bid cordinal scale estimation)

An empirical estimation of the probability of bidder 304 entering the lowest value bid was made on the ordinal scale.

$$
\operatorname{Pr}\left(x_{304 j}<x_{1 j}, \text { for all } x_{i}, 1 \neq 304\right)=1-\frac{R_{1}}{\left(n_{j}+1\right)}
$$

Where R is the rank of bidder 304's bid compared with bids for project f and n_{j} is the number of bids entered for the project.

Fig.9.16 Frequency of low bid/cost estimate ratios

Thus, say, a bid which is ranked third for a project receiving a total of 5 bids in all, will be accorded an estimated empirical probability of $1-3 /(5+1)=0.5$. In this example, the lowest bid (ranked 1) and the highest bid (ranked 5) will be accorded an estimated empirical probability of 0.83 and 0.16 respectively. This, albeit rather crude, statistic was derived from the data available for bidder 304 partitioned into Type 1 and Type 2 bids. The resulting means, 0.490 ($s=0.253$) and 0.382 ($s=0.305$) for Types 1 and 2 respectively, were compared by the t-test resulting in a value of 1.42 with 59 degrees of freedom. The indication given by this rough test again coafins difficulty in distinguishing between Type 1 and Type 2 bics.

A plot of the empirical probabilities estimated in this way is proviced in Fig 9.17 to ascertain any correlation with marir-up values, $\overline{\mathrm{V}} \mathrm{E} \leq \mathrm{ai}$ inspection suggests that no such correlation exists.

A more detailed analysis of the probability of entering the lowest bid is contained in the next chapter.

9.5 Summary and Conclusions

A method has been proposed for estimating the probability that a particular bidder will enter a bid for a project of a certain value. The assumption is that the estimates of this probability are icrmally distributed, although this assumption was not tested. This techaique, it has been suggested, could be extended to a multivariate approach using other project characteristics as predictor variables.

The distribution of bid values entered by each bidder has been examined in relation to a inear model (1) in which the profect size is isolated. Some approaches to estimating the parameters of this model have been proposed and, in view of the sparsity of the implied matrix, an iterative procedure proposed. This procedure was applied to the data to obtain the required parameter estimates.

Inspection of the aggregated residuals resulting from fitting the linear model indicates that all three Cases are similarly shaped, a distribution fom a Gram-Charlier Type A series being fitted. Reference to the literature suggests that a highly peaked, heavy talled

Fig.9.17 Plot of mark-up against estimated empirical probability of entering the lowest bid

distribution of this kind may reflect differences in distributions for individual bidders and a further analysis was conducted to test for the existence of such differences. A procedure similar to that used in the previous Chapter was employed to determine the suitability of the normal model for individual bidder's bids. Such a model was found to be a reasonable approximation of suitably transformed bids in all three Cases (Table 9.5). Tests for variance stabilisation after similar transformations revealed that some degree of homoscedacity could be achieved (Table 9.7).

Comparisons of Tables 9.5 b and 9.7 indicates some quite pronounced differences between the three Cases. Case 1 bidders appear to be modelled well by the Normal disuribution for most of the transformations applied, the variances $\sigma \mathcal{I}_{1}$ being generally common amongst bidders. Case 2 bidders, however, seem to fit the Normal model better by the $y_{i j}=\ln \left(x_{1 j}-m x_{1 j}\right)$ transformation, for values of $0<m \leqslant 0.8$ but with no commensurate commonality of variance. Case 3 bidders, on the other hand, appear to be approximated by the Normal distribution after the $\mathrm{F}_{i j}=\ln \left(\mathrm{x}_{1 j}-\mathrm{x}_{1 j}\right)$ transformation for min.6, with common variances where $m=0.95$.

Tests for commonality of the locaticn parameter indicated that, with the transformation attempted, no such commonality was found to exist.

In examining the data obtained for Case 1 it was seen that bidder 304 entered Type 2 bids on one third of occasions. Several approaches to detecting the presence of Type 2 bids were attempted but none succeeded in identifying more than one half of these bics. The conclusion reached was that, as such bids were difficult to detect, their presence was unlikely to have any major influence on the analysis of distributions.

The distribution of bidder 304 's mark-up values was found to be adequately modelled by the Normal distribution (for percentage mark-up values) and the Lognormal distribution (for the mark-up multiplier values).

The distribution of low bid/cost estimate ratios was not found to follow the Normal distribution, the Lognormal model was, however, found to provide an adequate approximation. It was also noted that the mean
of this sample of ratios, 0.9896, was similar to other recorded instances of this statistic.

Finally, a crude approach to determining the probability of entering the lowest bid was advanced in which an estimate of the empirical probability was derived from the ordered bids. This estimated empirical probability was then compared with Type 1 and 2 bids and marix-up values for any indication of possible trends. Little evidence of any such trends was detected.

Table 9.19 summarises the various models and applications, together with the parameter estimates, found to be appropriate for the aspects of tie bideing model examined in Chapters 8 and 9.

The foilowing Chapter considers some implications of these cenclusions cn the project selection/bidding model outlined in the earlier Chapters.

Table 9.19 Summary of models successfully fitted
(1) Project value $\operatorname{Pr}\left(\mathrm{X}_{\mathrm{j}}\right)$
(i) Model: $W_{3}-E \operatorname{spn}(\lambda)$

Transformation: $w_{j}=x_{i_{j}} / \bar{x}_{j}$
Parameter estimate:
Case $1 \lambda=1$
(ii) Model: $\mathrm{Fi}_{\mathrm{i}} \sim \mathrm{H}\left(\mu, \sigma^{2}\right)$

Transformation: $y_{j}=\ln \left(x_{1 j}\right)$
Parameter estimates:
Case $1 \begin{aligned} & \mu=13.945 \\ & \\ & \sigma=0.834\end{aligned} \quad$ Case $3 \quad \begin{aligned} & \mu=12.421 \\ & \sigma=1.060\end{aligned}$
(iii) Model: $z_{j} \sim \mathbb{H}\left(\mu, \sigma^{2}\right)$

Transformation: $\quad z_{j}=\ln \left\{1 д\left(x_{j}\right)\right\}$
Parameter estimates:
Case $1 \begin{aligned} & \mu=2.033 \\ & \\ & \sigma=0.059\end{aligned} \quad$ Cuse $2 \quad \begin{aligned} & \mu=2.364 \\ & \sigma=0.137\end{aligned} \quad$ Case $3 \quad \mu=2.516$ $\sigma=0.059 \quad \sigma=0.137 \quad \sigma=0.086$
(2) Number of bidders $\operatorname{Pr}\left(n_{j}\right)$
(1) Model: $n_{j}=\beta y_{j}$

Transformation: $y_{j}=\ln \left(X_{1 j}\right)$
Parameter estimates:
Case $1 \beta=0.4472 \quad$ Case $2 \quad \beta=0.5321$ $S E=0.0143 \quad S E=0.0125$
(ii) Model: $n_{j}=\alpha+\beta y_{j}$

Transformation: $y_{j}=\ln \left(x_{1 j}\right)$
Parameter estimates:
Case $1 \alpha=-0.4129 \quad$ Case $2 \alpha=-2.4455 \quad$ Case $3 \alpha=-5.2745$
$S E=3.3737 \quad S E=0.9931$
$\beta=0.4670 \quad \beta=0.7559$
$S E=1.0483$
$S E=0.2415$
$S E=0.0917$
$\beta=0.8380$
$S E=0.0841$
(3) Specified bidder enters a bid $\operatorname{Pr}(1)$
(i) Kodel: $i=\alpha_{i}+\beta_{i} y_{j}$

Transformation: $y_{j}=\ln \left(x_{1}\right)$
Parameter estimates:
calculated for each bidder eg. Case $1 \alpha_{5 s}=-0.4534$
$S E_{55}=0.1704$ $\beta_{55}=0.0436$ $S_{55}=0.1366$
(4) Bid values $\operatorname{Pr}\left(X_{1 j}\right)$
(1) Model: $\nabla_{1}(p) \sim \mathbb{L}(.,$.

Transformation: $V_{i j(p)}=\mathrm{X}_{1 j} 1 / 0$
Parameter estimates:
Case $12 \leqslant p \leqslant 10 \quad$ Case $20 \leqslant p \leqslant 5$
(ii) Model: $\mathrm{H}_{1 j(m) \sim \mathrm{H}}\left(., \sigma^{2}(\mathrm{~m})\right.$)

Transformation: $y_{i j<m)}=\ln \left(x_{i j}-\mathbb{m}_{j}\right)$
Parameter estimates:
Case $1 \quad 0.0 \leqslant m \leqslant 0.5 \quad \sigma_{j<0.0)}=0.21228-0.0113 y_{j}(0.0)$ $\left.\sigma_{j}<0.1\right)=0.23945-0.0129 y_{j}\langle 0.1\rangle$ $\sigma_{j<0 . z)}=0.27489-0.0151 y_{j}(0.2$) $\sigma_{j}(0.3)=0.32312-0.0181 y_{j}(0.3)$ $\sigma_{j}(0.4)=0.39291-0.0226 y_{s}(0.4)$ $\sigma_{j}(0.5)=0.50400-0.0300 y_{j}(0.5)$
Case $20.1 \leqslant m \leqslant 0.5$

Case $3 \quad 0.1 \leqslant m \leqslant 0.5$ $\left.\sigma_{j}<0.1\right)=0.45703-0.0306 y_{j}(0.1)$ $\sigma_{j<0 . z}=0.51693-0.0351 y_{j}(0.2)$ $\sigma_{s<0.3}=0.59735-0.0413 y_{s}(0.3)$ $\sigma_{j}(0.4)=0.71294-0.0506 y_{j}(0.4)$ $\sigma_{1}(0.5)=0.90168-0.0604 y_{j}(0.5)$ $\sigma_{j}(0.1)=0.23144-0.0131 y_{s}<0.1$; $\sigma_{j<0.2}=0.24724-0.0140 y_{j}<0.2$; $\sigma_{j}(0.3)=0.30487-0.0178 y_{j}(0.3)$ $\sigma_{j}(0.3)=0.36377-0.0218 y_{j}(0.4)$ $\sigma_{j}(0.5)=0.45335-0.02881_{i}(0.5)$
(iii) Model: $y_{i j(m)}-H\left(0, \sigma^{2}(m)\right)$

Transformation: $y_{i j(m)}=\ln \left(X_{i j}-\operatorname{mX}_{1 j}\right)$
Parameter estimates:
Case $\left.1 \quad 0.0 \leqslant m \leqslant 0.5 \quad \sigma_{1<0} 0.0\right\rangle=0.21228-0.0113 y_{j}<0.02$
$\sigma_{j}(0.1)=0.23037-0.0123 y_{j}(0.1)$ $\left.\sigma_{j}(0.2)=0.25206-0.0135 y_{j}<0.2\right)$ $\sigma_{j}(0.3)=0.27858-0.0150 y_{j}(0.3)$ $\sigma_{j}(0.4)=0.31184-0.0168 y_{f}(0.4)$ $\sigma_{j}(0.5)=0.41348-0.0246 y_{j}(0.5)$
Case $\left.20.1 \leqslant m \leqslant 0.6 \quad \sigma_{j}<0.1 \geqslant=0.44080-0.0293 y_{s}<0.1\right)$ $\sigma_{j<0.2)}=0.47654-0.0318 y_{j}(0.2)$ $\sigma_{j}(0.3)=0.51922-0.0347 y_{j}(0.3)$ $\sigma_{j}(0.4)=0.57125-0.0384 \mathrm{y}_{\mathrm{s}}(0.4)$ $\sigma_{j}(0.5)=0.63641-0.0429 y_{j}(0.5)$ $\sigma_{j}(0.6)=0.72105-0.0489 y_{s}(0.6)$
Case $3 \quad 0.1 \leqslant m \leqslant 0.6 \quad \sigma_{j}(0.1)=0.22519-0.0127 y_{1}(0.1)$ $\sigma_{j}(0 . z)=0.24724-0.0140 y_{j}(0.2)$ $\sigma_{j}(0.3)=0.27436-0.0156 y_{i}(0.3)$ $\sigma_{i}(0.4)=0.30861-0.0176 y_{j}(0.4)$ $\sigma_{j}(0.5)=0.35337-0.0203 y_{j}(0.5)$ $\sigma_{j}(0.6)=0.41470-0.0239 y_{j}(0.6)$
(iv) Model: $\nabla_{i j}(p)=\alpha_{i}(p)+\beta_{j}(p)+\infty(p)$, where $e(p)-H\left(0, \sigma^{2}(p)\right)$ Transformation: $V_{i j}=X_{i j}>/ p$
Parameter estimates:
Case $1 \quad 3 \leqslant p \leqslant 8 \quad$ Case $2 \quad p=3,5,6,8$ α_{i} and β_{j} estimated by iterative procedure
(v) Model: $\mathrm{F}_{1 j(m)}=\alpha_{i(m)}+\beta_{i}(m)+e_{(m)}$, where $e_{(m)} \sim H\left(0, \sigma_{i}^{2}(m)\right)$

Transformation: $y_{i j}=\ln \left(X_{i j}-\operatorname{mix}_{j}\right)$
Parameter estimates:
Case $1 \quad 0 \leqslant m \leqslant 0.6$ Case $20 \leqslant m \leqslant 0.1$ α_{i} and β_{j} estimated by iterative procedure
 Transformation: $\quad y_{i j}=\ln \left(x_{i j}-\operatorname{mx}_{i j}\right)$
Parameter estimates:
Case $10 \leqslant m \leqslant 0.95 \quad$ Case $20 \leqslant m \leqslant 0.8 \quad$ Case $3 \quad 0.6 \leqslant m \leqslant 0.9$ α_{i} and β_{j} estimated by iterative procedure
(5) Mark-up values $\operatorname{Pr}\left(b_{j}\right)$
(i) Kodel: $b_{j} \sim \lambda\left(\mu, o^{2}\right)$

Transformation: $b_{j}=100\left(x j / c_{j}\right)-100$
Parameter estimates:
Case $1 \mu=5.573$
$\sigma=2.2542$
(ii) Model: $b_{j} \sim H\left(\mu, \sigma^{2}\right)$

Transformation: $b_{j}=\ln \left(x_{j} / c_{j}\right)$
Parameter estimates:
Case $1 \mu=0.05022$
$\sigma=0.01748$
(6) Low bid/cost estimate ratio $\operatorname{Pr}\left(R_{j}\right)$
(i) Hodel: $R_{j}=\lambda\left(\mu, \sigma^{2}\right)$

Transformation: $R_{j}=X_{1 j} / C_{j}$
Parameter estimates:
Case $1 \mu=0.9896$
$\sigma=0.0710$

CHAPTER 10

On estimating the probability of entering the lowest bid

10.1 Introduction

A major aspect of the project selection and bidding decision is that some pricr knowledge is needed of future events. The effect of statistical mocielling is to enable an indication of the likelihood or probability of occurrence of future events to be estimated. One of the most important of these future events is whether a project will be oitained, wiich, in many cases, is determined by entering the lowest bid. This Chapter examines the application of models icientified in the previcus two Ciapters in deriving the probability of entering the lowest bic.

10.2 Gezeral proposition

The genezal proposition is that a bid can be acequately modellez as being a razdom value from a probability distribution unique to the bidder at the time of bidding.

Some comments are particularly relevant:
(1) The bid is a value entered supposedly simultaneously with bids frem other competitors for certain rights, eg. to obtain propetty in return for the value of the bid, or to dellver services in return for the value of the bid.
(2) Phil oscophically, there can be no certainty in attributing causal rules to phenomena, the best hope being to devise a model exhibiting similar behavioural characteristics. The adequacy of the model depends on the circumstances. One method of measuring the degree of adequacy might be to examine the - cost consequences of differences between the behaviour of the model and that of the 'real world'.
(3) A random value is regarded in the strict statistical sense, sometimes termed the 'noise' in the system.
(4) Associated with random values is the statistical concept of
the probability of a value occuring. Kany theoretical probability distributions have been studied and, in some cases, their properties well defined.
(5) Each bidder has his own unique probability distribution, different from other bidders.
(6) Changes in bidding behaviour taise place over time.
(7) A major difficulty is in predicting the apprepriate probability distributions from the information available.

10.3 Probability of entering the lewest bid

Let x_{2} represent a possible bid by the ith bicien for a project then, if the competition is modelled as the joint distribution of two or more variabies, the probability that x_{1} enters the lowest bid is given by

$$
\begin{align*}
& \operatorname{Pr}\left(x_{1}<x_{i} \text { for all } i, i \neq 1\right)= \\
& \int_{x_{1}=-\infty}^{\infty} \int_{x_{2}=x_{1}}^{\infty} \int_{x_{3}=x_{1}}^{\infty} \ldots \int_{x_{n}=x_{1}}^{\infty} f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) d x_{n} \ldots d x_{3} d x_{2} d x_{1} \text { (1) } \\
& \text { If the above, for instance, is a multivariate nermal distribution } \\
& \text { then } \\
& f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)= \\
& d F=(2 \pi)^{-n(n)\left|\nabla^{-1}\right| \exp \left\{-1 / 2\left(x-\mu_{x}\right) v^{-1}\left(x-\mu_{x}\right)\right\} \pi d x} \tag{2}\\
& \text { (Kendall\& Stuart,1963, vol.1. p349) }
\end{align*}
$$

Where x is the vector of $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
μ_{x} is the vector of means for $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ ∇ is the variance/co-variance matrix eg. $V=\left(\begin{array}{cc}\sigma=1 & p \sigma_{1} \sigma= \\ p \sigma_{1} \sigma= & \sigma=2\end{array}\right)$ for the bivariate normal distribution

Now assuming that the non-diagonal elements of V are zero, ie the variables are independent if normally distributed, it follows from (1) that

Pr $\left(x,<x_{1}\right.$ for all $\left.i, i \neq 1\right)=$
$\int_{-\infty}^{\infty} f_{i}\left(x_{i}\right) \cdot\left\{\prod_{i=2}^{n} \int_{x_{i}=x_{1}}^{\infty} f_{i}\left(x_{i}\right) d x_{i}\right\} d x_{i}$
In the case of the uniform (rectangular) distribution, it follows that
$\operatorname{Pr}\left(x_{1}<x_{i}, i \neq 1\right)=\int_{a_{1}}^{b_{1}}\left(b_{1}-a_{1}\right)^{-1} \cdot\left\{\prod_{1=2}^{n} \int_{x_{1}=x_{1}}^{b_{1}}\left(b_{1}-a_{1}\right)^{-1} d x_{i}\right\} d x_{1}$

Similarly, in the case of the Normal distribution
$\operatorname{Pr}\left(x_{1}<x_{i}, i \neq 1\right)=$
$\int_{-\infty}^{\infty}\left\{(2 \pi)^{\left.n_{2}\right\}^{-1}} \exp \left(-i k x^{2}\right) \cdot\left\{\prod_{i=2}^{n} \int_{x_{i}=\left(\sigma_{1} x_{1}+\mu_{1}-\mu_{i}\right) \sigma_{1}-1}^{\infty}\left\{(2 \pi)^{\left.n_{2}\right\}-1} \exp \left(-1 i x^{2}\right)_{i} d x_{i}\right\} d x_{1}\right.\right.$
written in standard form.
And for the special case where $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=\ldots=f_{n}\left(x_{1 n}\right)$
$\operatorname{Pr}\left(x_{1}\left\langle x_{1}, i \neq 1\right)=n^{-1}\right.$

10.4 Identity of bidders known

The analysis of bids in Chapters 8 and 9 indicates that eqn (6) is likely to be an oversimplification. The transformation $y_{1 j}=\ln \left(x_{1 j}-\right.$ mxis) (\& $0.6 \leqslant m \leqslant 0.8$) has been found to have a normalising effect (Table 9.19, Model 4 vi), which suggests eqn (5) to be the most appropriate. On the assumption that the distributions successfully fitted to the data would apply to future events, the transformation $y_{1} \mathrm{~s}$ $=\ln \left(x_{i j}-0.8 x_{j}\right)$ was performed, the iterative procedure described in Chapter 9 applied and estimates α_{i} and $s^{2}{ }_{1}$ obtained. Once only bidders ($n_{i}=1$) were assigned an 'average' variance
$s^{2} \sum_{i} \sum_{i} \delta_{i j}\left(y_{i j}-\beta_{j}-\alpha_{i}\right)=/(N-c-r+1)$

The resulting estimates are reproduced in Appendix C.

The estimated expected probability $E[p]$ of entering the lowest bid can now be obtained by inserting the estimates of μ_{1} and $\sigma^{2}{ }_{1}$ into eqn (5). It is clear that estimates of μ_{1} and $\sigma \sum_{i}$, though efficient and largely unbiased, may not be very precise. A simulation study was, therefore, conducted to gain an indication of the distribution of P. This was conducted on the bidders involved in the first project in Case 1, bidders 55, 73, 134, 150, 154 and 304. The estimates α and $s=$ for μ and σ^{2} for these bidders are, from Appendix $C, 0.05083$ (0.03510), 0.06594 (0.03277), -0.01402 (0.02540), -0.11644 (0.01250), -0.03027 (0.05618) and 0.00000 (0.03204). (Bidder 304 's μ is fixed at zero, the estimate of μ for the other bidders being relative to this, only the difference between μ 's being required by eqn (5). New estimates of μ_{1} and σ_{1} were generated from the α_{1} and $s_{1} \boldsymbol{z}_{1}$ values in accordance with their approzinate sampling distributions.
$\mu_{i} \sim \mathbb{Z}\left(\alpha_{i}, s_{i} z_{i} / n_{i}\right)$
$\sigma_{i}\left(n_{i}-1\right) / s_{i} \sim \chi^{=}\left(n_{i}-1\right) \quad n_{i}>1$
$\alpha=z_{i}(\mathbb{I}-c-r+1) / E_{i}^{2} \sim X^{=}(N-c-r+1) \quad n_{i}=1$

The probability of bidder 304 entering the lowest bid against the five competitors was computed from eqn (5) and repeated 100 times with different values of μ_{i} and σ_{1}. The resulting frequency distribution of P is shown in Fig 10.1.

The results confirm the suspicion that estimates of P may not be very precise with values ranging from 0 to 0.25 .

10.5 Identity of bidders not known

In the absence of knowledge of the identity of competitors on a future project, two possible approaches were considered. One approach is to model all competitors as equal, Friedman's 'average bidder'. This approach, however, was considered to be an oversimplification as a result of the analysis in Chapter 9.

The alternative is to attempt to predict the identity of competitors. This approach was adopted by utilising the results of the regression

Fig 10.1 Frequency of probability of bidder 304 entering lowest bid against bidders 55, 73, 134, 150, 154

analysis described in Chapter 9. The regression coefficients and standard errors were obtained for all bidders (Appendix D).

A simulation study was conducted, as described in the previous section, with the additional feature of the identity of the competitors being predicted by the regression formula (Table 9.19, Model 3i). The procedure adopted was to compute the probability of each bidder entering a bid
$\mathrm{pr}(\mathrm{i})=\mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{y}_{\mathrm{j}}$
where a_{1} and b_{i} were obtained from Appendix D and $y_{i}=\ln \left(x_{1}\right)$ ($x_{1 \mathrm{j}}=1454515$ in this examole).

In order to accommodate the imprecision of the estimates of a_{i} and b_{i} the standard error of the estimates was utilised in generating new estimates of a_{i} and b_{i} for eaci iteration in accordance with their approximate sampling distributions

$$
\begin{aligned}
& a_{i} \sim \mathbb{Y}\left(a_{i}, S E^{2} a_{i}\right) \\
& b_{i} \sim \mathbb{Y}\left(b_{i}, S E^{2} b_{i}\right)
\end{aligned}
$$

The five bidders with the highest values of $\operatorname{pr}(i)$ were selected and the procedure outlined in section 10.4 repeated. The resulting frequency of probabilities is given in Fig 10.2.

The results in this case indicate a somewhat greater spread of probability estimates together with many more low values of P. The explanation of the increased frequency of low P values is due to occurrence of bidders with substantially lower μ values and/or greater $\sigma=$ values.

10.6 Number of bidders not known

From the analysis in Chapter 8 it would seem that some estimate of the number of bidders competing for a project can be made based on the project value. In Case 1, for instance, the number of bidders is predicted by

$$
n_{s}=-0.4129=0.4676 \mathrm{y}_{\mathrm{j}}
$$

Fig 10.2 Frequency of probability of bidder 304 entering lowest bid against 5 unspecified competitors

where $y_{j}=\ln \left(x_{1 j}\right)$, the standard error of the coefficients being 3.3737 and 0.2415 respectively, n_{j} being rounded to the nearest integer (Table 9.19, Model 2ii).

The simulation described in section 10.5 was repeated but, with the number of bidders being obtained by simulation of the coefficients in accordance with their approximate sampling distributions. A total of 150 iterations were made and, in 22 cases, the number of bidders was predicted to be one or less. The frequency distribution of the resulting 128 probability estimates is given in Fig 10.3.

The results indicate a wider spread of P estimates and a considerable number below 0.025 .
10.7 Project value not known

Where the project value is not known even approximately, a simulation procedure can be invoired utilising the results of the analysis in Chapter 8.

For Case 1, a prediction of project value may be obtained from the result

Once again, a simulation study was conducted to generate project values and, hence, the probability of bidder 304 entering the lowest bid. The results for 50 iterations are given in Table 10.1. On 7 occasions the number of bidders predicted was one or less. The probabilities of entering the lowest bid are shown for the remaining cases, together with an indication of expected income ie project value x probability of entering the lowest bid.

The major criticism is that the number of bidders generated by the model appears to be rather wild. The reason for this may be due to the insufficiency of data in the Case 1 analysis.

The procedure was repeated for Cases 2 and 3 , for bidders 2 and 3 respectively, using Models $4 \mathrm{vi}, 3 i, 2 i 1$ and liif (Table 9.19) for the
Fig 10.3 Frequency of probability bidder 304 entering lowest bld agalnst an unspecified

Table 10.1 Results of simulation of bidder 304 ＇s bidding for projects of unspecified value

Fsexut	VA：	ご®	Fxom（\％）	
？	ลcrses．	\pm	0.2 .80	こマで。
z	くこここご，	三	O． $0^{\text {O }}$	ごロ\％
ت	－-0.4	E	0.00000	，
4	こーこの－	\pm	コ．$\because=:$	－ミごく，
E	二为。	7	G60ET	－ラごロ。
5	こ－－	\div	ことこここ	－2：
7	\therefore 二Eら。	4	－ 0	7－-0.
E	さミご，	7	2．27ッミ	：－\％－\％
7	三こち．す。	\bigcirc	0.000%	5%
10	ミーシきも。	－		ET5\％
：	二〇〇，	三	$\therefore \because$	ごご\％
2－	くここここ。	$=$	ごミごー	$\div 5 \bigcirc 50$.
：	ここごこご，	－		EEiog．
$\underline{-4}$	$\therefore こ こ こ ゙ せ ?$	$\bar{\square}$	こー－	－＋Eご。
E	，ミニージャ。	三	2．$=:$	テご気。
$\pm \dot{8}$	こミここち，	\div	こ．ご気	ここご。
97	こここ．－2．	$=$	6． 0000	
15	ここごきご，	\vdots	こ．こミご	
\pm		0		
$=0$		\cdots	とここここ	E5E．
\because	－	\ni	0.2000	\％
－	－こoき\％	$=$	－ 0 －	TE 98.
35		7	0.8405	$54+64$.
24	$: こ そ \div$ ご	\therefore	O．6Ese	5－57\％
35		－		
2	¢ミ\％	E	2.8048	
27		－：		
E	こせさこづ，	三		52205
39	$\because 2741$ ．	i	$0 \cdot 250$	$\therefore 20{ }^{\circ}$
30		7	0.02002	¢ ごミ0．
F1	そこちご，	$=$	3.00000	0.
\pm	\therefore Soces	\equiv	$3006=$	56.
Ez	EF，	$-\bar{\square}$	0.60000	0.
34	1．6s－s．	：	0.00000	！．
35		-4		
3i	$\pm \pm 00-1$.	さニ	0.00000	1.
± 7	$\because 4.94 \%$ 。	\dot{S}	0.85	17583.3
38	$14 \div 4$ ．	7	0.5800	ここ7，3．
5		1		
40	ミヶミここプ．	－	0.68577	374757
$\frac{4}{4}$	\＆4：35．	－	0.05296	
4	¢5：	7	0.00000	0 ．
44	4キラここう。	\pm	0.004 .0	2054．
45	ミージアジ	\because	0.00000	0.
$4 i$	¢5\％	5	0.00015	：21．
47	－00697．	7	0.027 .47	8467
46	778こ\％．	7	0.0064.	AF\％\％．
49		\pm		
$E 0$	ミマaこらこ。	7	0.01534	8E\％5．

appropriate Case. Only the simulations generating the predicted presence of the reference bidder were recorded (Tables 10.2 and 10.3). The Case 2 simulation of 500 iterations produced only one project with one or less bidders and Case 3 with 500 iterations produced only four such projects.
10.8 The probability of entering the lowest bid for a given marix-up

Consiciering a bic x to comprise a cost estimate c and a $=9 r i r-u p$ mitiplier m, then letsing $\mathrm{mg}(\mathrm{c})=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)$, it follows from eqn(2) that
$E=\left(E c\left(z_{1}\right)=\int_{-\infty}^{\infty} m g(c) \cdot\left\{\prod_{i=2}^{n} \int_{x_{i}=m c}^{\infty} f_{i}\left(z_{i}\right) d z_{1}\right\} d c\right.$
and therefere, for the Uniform distributica
$\operatorname{Fr}\left(\operatorname{mc}\left(x_{i}\right)=\int_{a_{c}}^{b_{c}} m\left(b_{c}-a_{c}\right)^{-1} \cdot\left\{\prod_{i=2}^{n} \int_{x_{i}=m C}^{b_{2}}\left(b_{i}-a_{i}\right)^{-1} d x_{i}\right\} d c\right.$
and for the Normal distribution
$\operatorname{Fr}\left(\mathbb{E} C\left(x_{i}\right)=\right.$
written in standard form

A special case is where
$f_{2}\left(x_{2}\right)=f_{3}\left(x_{3}\right)=\ldots=f_{n}\left(x_{n}\right)$
which provides the general result, from eqn(6)
$\operatorname{Pr}\left(\operatorname{mc}\left(x_{i}\right)=\int_{-\infty}^{\infty} \operatorname{mg}(c) \cdot\left\{\int_{x_{1}=m c}^{\infty} f_{m}\left(x_{n}\right) d x_{17}\right\}^{n-1} d c\right.$
for the Uniform distribution, from eqn(7) and (9)
$\operatorname{Pr}\left(m c\left\langle x_{1}\right)=\int_{a_{c}}^{b_{c}} m\left(b_{c}-a_{c}\right)^{-1} \cdot\left\{\int_{x_{n}=m c}^{b_{n n}}\left(b_{n-1}-a_{n}\right)^{-1} d x_{n n}\right\}^{n-1} d c\right.$

Table 10．2 Results of simulation of bidder 2＇s bidding（Case 2）

Fri：mie	VAlle	EDes	F5E（W）	EAGuTACDRE
7	FEO．	\because	0.20292	ごE＊
\therefore	二ates．	0	2．0．7E	ごッバ。
44	－3FE．	$?$	0.742	207\％．
4	74009	7	0.00745	E®4．
\because	$\therefore 0700$ E．	8	$0 . \operatorname{ces} 48$	70.4.
E0	HEEE．	4	0.05058	¢－0こ\％．
56		5	0.0 .8 E	$\bigcirc 0$
F	$\therefore=58$.	7	0．こうごき	62： 0.
9	「ミニこ。	\ddagger	$0.44 \bigcirc こ=$	$4{ }^{-8}$
こも	ソッさこ。	$\overline{7}$	0.00020	9.
こミミ	Qogee	\leq	$0.6: \pm 08$	$\pm \div 7$.
\therefore－	2） 50% 。	7	$0.02=79$	E0．
－	－520．	7	0.2757	ここご，
三－	：0090．	8	$0.04=5$	Aこ0ゴ
－2\％	$2 ¢ \div$ ミ。	7	$0.20: 5$	$\because \pm 47 \leq$
－	¢三ご\％	$\dot{\square}$	$0.0005:$	ごき
＝	三゙，	7	12.03097	こご
こ：	EsEag．	± 0	0.00003	6.
O	\because ミF。	5	0．0：5：7	EEA．
三	ceesa．	3	0.049 こ	ご気。
－	三『こ\％\％	3	0.37 BE	ここうく。
－85	－$-7 \bigcirc+$	\bar{T}	$0 . \mathrm{EEEE}$	5－8．
E0	－ricou．	9	0.64508	13？：00．
Es	： 205% ．	5	0．0 5 － 5	70s．
E\％	E：704．	5	$0.05 E 70$	305.
－	¢4074．	$\dot{\circ}$	0.41 .81	－ 5.50.
A $=$	23085a．	9	0.00952	2373．
9	－7452．	$\dot{8}$	0.4905	5－宁，
4%		7	0.03673	$4 \mathrm{cos}$.
ミ40	¢02こ。	E	0.6955	CEE．
三年	33943．	3	0.0175	5\％0．
三こち	二－0：0．	E	0.1075	40こE．
三s：	2050．3．	7	0.35 F	68590.
Eご	7E！	9	0.11 ± 5	8731.
E\％	75759.	7	0.00444	329.
E05		1		
505	$\because \pm 52$.	7	0.10088	－20．
¢ 20	4950.	is	$0.4072=$	1esers．
820	こ 4゙7\％	8	0.88216	126828．
¿こ：	775.539	4	0.35710	20．9\％${ }^{\circ}$
EE	14\％70E．	9	0.00000	1730．
¢ET	108ES．	5	0.07204	17350
－0：	1594E：8．	11	0.00423	¢゙フ4．
$\div 3$	107\％	7	0.1203	17.22.
718	5054.	7	0.1850	10290.
\％	242 e \％	3	0.5 Jbis	13.500.
733	22457．	7	0.00001	－ 0.0
7 ± 1	21500．	7	0.04858	
756	740685	6	0.78324	$7-808$.
757	6023 S ．	1	0.10 .974	－64．
770	」こ10こ．	6	0.0 .4304 0.000 .9	29.
775	490% ．	$?$	0.00069	¢ 4 ¢
776	$\because \pm 527$.	7	0.0698	154773.
730	95゙から3．	s		－ 4 515
737	419.8.	8	$0.34-50$	14＊＊

Table 10．3 Results of simulation of bidder 3 ＇s bids（Case 3）

FEoj．	VA゙－：	こここ	Esen！$\%$	Examorue
三	边	7	－．	
E	EE000．	三	2．00こ	アテロここ，
\because		\％	0.897%	$\therefore 504 \leq$
4	$\pm 507: 0$	$\overline{7}$	2．55\％	
7		\pm		
\equiv	こここここ。	\bar{i}	2．こごこ	こここ゚こ。
5	$\because \because$	7	0.0 .937	天ご，
$\pm \pm$		三	O．6Eこ？	
－	－ヶッ゙こき，	7	0.09521	4507.
± 9	－0こE0．	7	0．00こE	290 －
こ\％	$\because \mathrm{Os}$－	\because	－－＝\％	Eses\％．
三！		\div	6．0－69	$\bigcirc 7504$.
＋${ }^{4}$		－	0． $0^{\text {a }}$	7743：
ここ	－\％＋	F	$0.095 こ$	E¢\％\％
$\because 4$	二心Ez心0．	4	0.3075	29：784．
25：	－¢ ¢－	7	$0 . こ 05 シ 4$	こi987．
277	－4005．	F	0.7075	1695：．．
－90		1		
504	145：09．	$\dot{3}$	0．ここここム	E7214．
5	的600：	\because	0.80 .974	こここうこ4．
51%	こちきご。	7	0．0さご0さ	2－40．
		6	0.30446	170349.
こ5ic	－EEETE．	7	0.07154	「0s4z．
E45		1		
ご2	ここちこご，	三	0.25027	30057．
57	$\because 9.5$ Fe．	5	0.1775 .3	205017.
30	こ巨すミ0．0．	9	0.17615	500357.
$4 \% 7$	：Eこ．57．	s	0.03 EEJ	453．
4.9	牙行ここ。	E	0.04064	158\％
447	44449 ．	5	0.56726	$25 こ 14$.
45	50：5E4．	$\dot{¢}$	0.12540	
482		1		
485	200304．	7	0.278 .6	5972．
497	11384E4．	i	0.50000	124557．

and for the Normal distribution, from eqn (8) and (9)
$\operatorname{Pr}\left(m c<x_{1}\right)=$

$$
\int_{-\infty}^{\infty} m\left\{(2 \pi)^{\left.-m_{n}\right\}-1} \cdot \exp (-1 / c=) \cdot\left\{\begin{array}{l}
\int_{x_{n}=\left(m \sigma_{c}+m \mu_{c}-\mu_{n}\right) \sigma_{n}-1}^{\infty}\{(2 \pi) \cdot m\}-1 \cdot \exp \left(-k_{2}=n\right) d x_{17} \tag{11}
\end{array}\right\}^{n-1} d c\right.
$$

Analysis of the cata indicates that a similar form to eqn(8) is desirable. Eq̧ (8), hewever, assumes that the cost estimate can be considered to be adecuately modelled by the Normal distribution. This is, of course, not necessarily the case for, if the bid is assumed to be three parameter Logaormally distributed with threshold parameter r, then it is higily unlikely that the cost estimate will also be similarly distributed except in rather special circumstances ($r=0$ for instance).

Several approacies appear to be available
(1) Include the cost estimate as another bidder in the iterative procedure described in Chapter 9. This will provide estimates of μ and $\sigma=$. An indication of the appropriate distribution model may be obtained by fitting candidate parametric distributions to the ensuing residuals. One of the Fearson or Gram-Charlier forms may be appropriate.
(2) Utilise the probability cistribution of the marix-up in some way, eg. by simulation of

$$
\ln \left(c_{j}-0.8 x_{1 J}\right)=\ln \left[\left\{\exp \left(\alpha_{1}+\beta_{i}\right)-0.8 x_{1 J}\left(m_{j}-1\right)\right\} / m_{J}\right]
$$

where α_{1} and m_{s} are random variables with assumed distributions and estimated parameters (Table 9.19, Model 5ii, M~^(0.05022,0.01748~)
(3) Utilise the knowledge that $E\left[x_{1,} / \mathcal{C}_{3}\right] \simeq 1$ or the ratio distribution generally (Table 9.19, Model 6i).

This Chapter has provided an introduction to an application of the models fitted to the data analysed in the previous two Chapters. This application, estimating the probability of entering the lowest bid for future projects, is clearly in its infancy insofar as the multivariate approach adopted in this research is concerned. The present indications are, however, that the estimates of probability are not very precise. The implications of imprecise probability estimates derived in this manner is considered to be worthy of further study. Additional woris is aiso needed in devising a suitable model of the cost estinate distribution and hence the distribution of expenditure, income and prefit.

CHAPTER 11

Summary and conclusions

The thesis has examined the construction organisation's project selection and bidding decision to identify suitable models for conceptualising and formulating the problem.

Chapter 1 introduced the subject of decisions and their relationship with objectives indicating "luck" and "foresight", in the face of some degree of "uncertainty", to be key elements, demending supporting knowledge oi available decision options and outcomes.

Chapter 2 exanined the types of decisions made by constructicn crganisatioss and the decision choice process involoing the identifieation, evaluation and selection of options. Cerporate decisica systems and their use in construction companies were discussed. Scme reascns for the lack of use of such systems were icentified, including proolezs associatec with the level of managerial ability, the ceordination of aims and objectives, communication, accuracy of forecasts. capital policies, and political or economic uncertainty overseas. The special characteristics of the industry and the complexity of the constructicn process, together with the time and informational constraints, appear to be further factors. The relevance of existiag problem solving techniques was also regarded as an important issue.

The scope of a decision system was considered to involve internal and external environments and an array of both economic and social goals over a perici of time. Plans, it would seem, need to be made ahead of environmental changes and on a contingent basis to suit the decisionmaker. This requires some indication of future events which may be gained by a device such as Ansoff's "weak signals" or simulation studies.

The practical needs of a decision system are centred on the tension between risk and cost in striving for simplicity and, at the same time, versatility in accommodating the potential preferences of the decisionmaker.

In designing such a system, the accent is on providing suitable management informational support to provide the necessary sensitive system of indicators. This requires information from both internal and external sources in the appropriate manner and time, covering relevant aspects of the general environment, economic, technical and political factors of production, competition and future demand. Difficulties were anticipated in determining the exact nature of informational needs by analysis of the current process. A mere suitable approach was considered to be through the development of a conceptual model which reflects the pivotal factors of the frcblem. No such model, however, appeared to be available in the present contert. A basic model was, therefore, proposed (Fig 2.1) in which options are identified, evaluated and selected on an incremental basis by comparison with the previous 'best' selection.

Chapter 3 extended the basic model into the project selection decision by considering deterministic aspects of the problem. The decision enviranment was defined and diviced into the project generating and the decision outcome environments. The outcome environment was further divided into aspirational (people) and non-aspirational (money and property) aspects. Maslow's needs/èives hierachy was tentatively proposed as a means of determining effects of decisions on the.state of the aspirational environment (development states) and same measures of non-aspirational states noted. The resolution of the conflict between different aspects of the outcome environment was discussed in terms of resource control, in whici the type of crganisational structure is seen to be a major facker.

The relationship between project characteristics and the outcome environment was examined and four major and interrelated factors type of work, client, location and competitors - identified as accounting for over 97% of reasons underlying the project selection decision.

The criteria for project selection were examined in terms of company objectives, suggesting that multiple and conflicting objectives often exist. Some proposals were considered for formulating and solving multiple attribute problems of this nature.

Chapter 4 introduced time-dependent aspects of the decision. These were considered to be implicated in the causal relationship between the outcome environment and projects together with the dimensional effect generally. The effect of time was seen to redefine the problem from that of simultaneous to sequential selection. The effect of a decision on further project opportunities was discussed in terms of marketing. The implications for evaluation and selection are that knowledge is needed of states at any moment in time.

Gottinger's 'sequential machine' model has been applied to the decision system as a means of accommodating the dynamical complexities introduced by the time considerations, a possible configuration being outlined in Fig 4.2.

Chapter 5 introduced the aspect of imperfect knowledge and the considerable uncertainties that inure the decision environment. The subject was addressed in terms of the relationship between the prototype (real world) and the model (perception of the real world). Various approaches were outlined in which changes in the prototype can be modelled and predicted by the use of proxy measures. The volume and type of project opportunities was considered to be related to political, economic, social and technological factors. Further information appears to be available directly through market intelligence activities.

Predicting events in the outcome environment has been discussed, based on information of project characteristics and the nature of tasks and performance. The prediction process itself has been examined and several approaches to anticipating its actions and accuracy considered.

Four separate studies were consulted to identify project selection methods for non-deterministic models with multiple criteria, indicating that some aspects of the problem may be dealt with probabilistically but that sensitivity tests together with the decision-maker's subjective judgement should also be employed.

A final conceptual model was provided in Fig 5.4, which incorporates the major features of the decision. This was conceived as consisting of several machines, by Gottinger's definition, representing the project generation, decision and outcome events. Such a model typifies a
system of "intermediate complexity", suggesting that the model should be aimed at improvements rather than optimality, sensitivity analysis to formal hypothesis testing, an interaction between humans and machines, and the system should be integrated with other systems. Computer simulation was also associated with systems of this type.

Chapter 6 completed the specification of the project decision system by defining the various options available to the decision-maker. Several general decisicn strategies were considered as possible option identification rules. Low and high risir exogenous factors and strategies were identified as two general groupings,low risk strategies being commonly acopted except in unusual circumstances.

Consideration fi future cecisions led to the proposal of a nested set of decision macines with a facility to simulate future events.

The final versizn of the complete system was then examined in terms of computationsi lead. The major difficulty was found to be in the size of the set ci potential option combinations and some possible strategies ideatified to alleviate the situation.

Chapter 7 continued the examination of simplifying models by considering statistical approaches to some aspects of the problem. Models of construction demand and the occurrence of project characteristics were discussed together with such aspects of the outcome enviroment as cost and estimated cost. Various likely probability distibution types and parameters were introduced and these are summarised in Table 7.2. Income and cash flow were examined similarly.

Statistical models of collective competitors' bidding behaviour were considered (Table 7.3) together with the relationship with other factors such as the state of the market. The distribution of lowest bids was examined in relation to cost estimates and a close similarity noted between the expected value of the cost estimate and lowest bid.

Models of individual bidding behaviour were found to be usually derived from bid/cost estimate ratios, although multivariate methods have been proposed. The independence assumption was also noted.

Several models were found to incorporate features of the project generating environment in order to utilise error trends. These include game theoretic approaches, where each bidder is. assumed to adopt similar (non-random) strategies. The degrading effects of time on the data was also considered.

Collusion was not generally thought to be prevalent in the construction industry and it was considered that non-serious and unrealistic bids should not be removed from any analysis without any reliable means of detection.

Data limitations were consicered to be a major problem in attempting to fit mociels to bidding data by univariate analysis. Iwo approaches were consicered to be feasible, using the collective competitar model or a multivariable procedure.

Project acquisition was consicered and some wcris on exclucing suicidally low bids noted, together with Simmencis proposals for accomodating non-price features.

There appears to be a great deal of support for the ∇ fiew that the likelihood of entering the lowest bid for a project is largely determined by chance, the popular view being that, fer each marginal change in mark-up there is a corresponding change in the probability of success. An expression of this conditional probability has been incluced.

Chapters 8 and 9 describe an analysis of three sets (Cases) of bidding data for indications of suitable models. Several parametric distributions were posited for the frequency of project value (lowest bid), the Log-lognormal model being found the most appropriate for all three Cases. Friedman's suggestion that the number of bidders followed a Poisson distribution was not found to be appropriate, a regression prediction on log project value with Normally distributed errors being preferred.

The distribution of bids was found to be generally positively skewed, coincident with other work in the field. No significant relationship was found between the number of bidders or project values and the coefficient of skewness.

Several tests were considered to evaluate models of distributional shape of bids. Due to the small sizes of the samples involved, the percentage points of the distribution of the sample statistics for each test had to be estimated by simulation (Tables 8.13 to 8.22). Further simulations were carried out on the data structure for each Case to ascertain the critical values (Tables 9.25 to 9.26). The results of these tests suggested that neither the Mormal, Uniform, Weibull or fixed shape Lognormal models would be appropriate in all Cases. Various power and log transformations were applied with some success.

Several power and leg variacce stabilising transformations were attempted and tested by a version of Eartlett's test. An attempted three parameter log transfarmaticn was also made by estimating the threshold value in the =enner prescribed by Aitcheson \& Brown. Iczecf the recommeaded methocs were feund accegtable but a further apprach utilising the homoscedssic assumption achiered a satisfactory solutien. It was not found possibie, however, to predict the thresiold vaiues from the project value. It was concluced, therefore, that the spread parameter would have to be precicted by a simple regression on project value.

A method of predicting the identity of the bidders was proposed, in which the 'probability' of a bidcer entering a bid is estimated by a regression of (log) project value.

The distribution of bicis entered by each bidder was investigated by a multivariate analysis. The standard regression method was found to be inappropriate due to the large sparse matrices involved. An iterative procedure was devised and the distribution of bids analysed indirectly through the residuals obtained after fitting the model to the log data. The distribution of the pooled residuals was not found to follow a Normal distribution, but the Gram-Charlier Type A series provided a reasonable approximation with $\mu_{3}=0.16$ and $\mu_{4}=4.5$ in all three Cases.

Some consultation with the literature suggested high peaked, heavy tailed distributions of this kind to be associated with the aggregation of values from different distributions. It was, therefore, decided to test the distribution of individual bidders' bids. This was done in a similar manner to that described for the distribution of profect bids,
by simulating bids for individual bidders and tabulating the critical values of the statistics for both the shape and variance (Bartlett's) tests (Table 9.5a and 9.6). The results of these tests indicated marked differences between the Cases, although the transformation $y_{1 j}=\ln \left(x_{i j}\right.$ - $\left.m x_{1 J}\right)(0.6 \leqslant m(0.8)$ did appear to produce a Normal distribution in all Cases. Tests for the homoscedasic assumption met with little success and tests for equal location parameters also failed generally for the power and log transformations applied.

Analyses of details obtained from an individual bidder supported the view that Type 2 (cover) bids are very difficult to detect, the best of the methods applied only detecting three in six attempts. The distribution of the mark-up values were considered to be Normal and Lognormal for the percentage and multiplier mark-up values respectively. The distribution of low bid/cost estimate ratios was found to be more appropriately modelled by the Lognormal distribution than the Normal distributions.

A summary of the models successfully fitted to the data was provided in Table 9.19. These models are concerned with six variables: (1) project value; (2) the number of bids entered for a project; (3) the probability that a specified bidder enters a bid; (4) the bid values: (5) the mark-up value; and (6) low bid/cost estimate ratios.

The Exponential model was found to fit the distribution of project values for Cases 1 and 3 data and the Lognormal model for all Cases.

The numbers of bidders were predicted by the standard regession of 108 project value (forced through the origin) for Cases 1 and 2, and for all Cases when not forced through the origin.

The probability that a specified bidder enters a bid was predicted by the standard regression on log project value (parameter estimates for all bidders are contained in Appendix D).

The distribution of bids for all (unidentified) bidders followed a Normal distribution after a suitable power transformation for Cases 1 and 2, and a three parameter Lognormal distribution for all three Cases. The distribution of bids for identified bidders was found to be Normal for Cases 1 and 2 after a suitable power transformation, three
parameter Lognormal for Cases 1 and 2 with the threshold parameter estimated from the mean bid, and three parameter Lognormal for all Cases with the threshold parameter estimated from the lowest bid.

The Normal and Lognormal model was found to fit the distribution of mark-up values expressed as a percentage and ratios of bid to cost estimates respectively.

The Lognormal model was found to fit the ratios of low bid to cost estimates

Chapter 10 examined the application of the models identified in the empirical analysis in deriving the probability of entering the lowest bid. The general proposition is made that a bid can be adequately modelled as being a random value from a probability distribution unique to the bidder at the time of bidding.

The theoretical probability of entering the lowest bid was advanced and empirical estimates obtained in a series of examples. The examples considered the cases where (1) the identity of the bidders is known, (2) the number of bidders is known (3) the project value is known, (4) none of the above is known. The distribution of probabilities was found to be rather imprecise.

Some final considerations concerned the probability of entering the lowest bid for a given mark-up. The theory was advanced and some approaches proposed for modelling the distribution of cost estimates.

Suggestions for further research

The first part of the research proposed a conceptual model of the project selection and bidding environment. As the model is the first to encapsulate all the factors involved it is necessarily of a post hoc nature. The next step would be to examine the validity of the model by empirical analysis by means of a structured questionnaire and case studies. In addition to verification and modification where necessary, an important contribution would be to estimate the strengths of relationships between factors. The dynamical nature of the situation under study suggests that a form of causal analysis may be appropriate.

A natural development on completion of such an analysis would be then to construct a practical decision system for testing and development in a 'live' situation.

Statistical modelling of factors is, despite over 30 years of research, clearly still in its infancy. A substantial amount of further empirical analysis is yet needed to establish the reliablity of such models. Some of the apparently important factors identified in the first part of the research, such as project characteristics and the project generating environment generally, have not received any attention at all.

Two fundamental approaches appear to be available. One is to start with the assumption that the problem is purely deterministic, develop solution techniques, and gradually relax the assumption by introducing appropriate random variables. The alternative approach would be to consider the whole problem as probabilistic and gradually introduce deterministic or partially deterministic decision or explanatory variables.The first of these approaches is exemplified in Chapters 2 to 6 of this thesis as a convenient means of analysing the literature. The second approach has effectively been adopted in the subsequent statistical analyses of some empirical data. The intention in both parts of the research has been to establish a sound foundation for both approaches.

ACKOFF, R.L., \& SASIEII,M. (1968) Competitive problems of operations research ch.13. John Wiley a Sons, New York

ADAM, J.H. (1905) Longman Concise Dictionary of Business English. Longman Yorix Press. ISBN 0-582-84221-2

ADLER, I. (1963) Probability and statistics for everyman Dobson Book Lted, Lenden

ADRIAI, J.J.. (1973) Quantitive methcds in construction management American Elsevier Publishing Co. Inc. Chapter 8 "Estimating \& Building" IEEN 0-444-00134-4

AFIFI, A.A., \& ELASHOFF, R.M. (1966) American Statistical Asscciation Jcural vol.61. Sept. p595-606. "Missing observations in multi variate statistics. 1. Review of the literature".

AGIEV, R.A. (1972) Naval Research Logistics Quarterly vol.19. pi37-143. "Sequential bia selection by stochastic approximation"

AGJILAR, I.F.J. (1967) Scanning the business environment MacMillan, New Yeris

AICEOR, aSSOCIATED INDUSTRIAL CONSULTANTS LIMITED AND EUSINESS OFERATIOXS EESEARCH LIMITED (1967) Report of the Joint Consulting Team ca Serial Contracting for Road Construction Ministry of Transport

AITCHISOX, J., \& BROWN, J.A.C. (1957) The log-normal distribution Cambridge at the University Press. SBI S21 040116

AIEXANDEK, A.B. (1970) What price estimating accuracy? paper no 534. Metal Fabricating Institute Inc., Rockford, Illinols

AII, M.A., \& GIACOTTO, C. (1982) Journal of the American Statistical Association Karch. vol.77. no.377. p19-28. "The identical distribution hypothests for stock market prices - location - and scale shift alternatives"

ALLISON, G.T. (1971) The essence of a decision: explaining the cuban missile crisis Little Brook, Boston

ANDREW, J. (1973) Building Technology and Management vol.11. no.9. p. 18 "What is our business, and what should it be?"

ANDREWS, K.R. (1980) The concept of corporate strategy 2nd.ed.R.D.Irwin
ANSCOMBE, F.J. (1955) Journal of the Royal Statistical Society Series B vol.xvi1. no.1. p26-34. "Permutation theory in the derivities of robust criteria and the study of departures from assumption - discussion"

ANSOFF, H.I. (1965) Corporate strategy Penguin
ANSOFF, H.I. (1979) Strategic management MacMillan ISBN 0-333-19086-4
ANSOFF, H.I. (1984) Implanting strategic management Prentice/Hall International ISBN 0-13-451808-X

ARGENTI, J. (1974) Systematic corporate planning Nelson
ARIS, R. (1978) Mathematical modelling techniques Pitman
ARMSTRONG, K. (1972) The development and appraisal of a computerised estimating system MSc thesis Loughborough University of Technology

ARPS, J.J. (1965) Journal of Petroleum Technology vol.17. p1033-1039. "A strategy for sealed bidding"

ASHWORTH, A. (1977) Regression analysis for bullding contracters. An assessment of its potential MSc thesis Loughborough University of Technology

ASHWORTH, A., à SKITMOEE, E.M. (1983) Accuracy in estimating Occasional Paper no.27. The Chartered Insitute of Euilding ISBM 0-906000-57-X

ATKINS, K.J. (1975) Bidding, finance and cash flow in the constructica industry PhD thesis University of Bradford

EAHRAMI (1981) Design cf corporate planning systems PhD thesis
University of Aston in Ex-mingham
BALL, R.J. (1977) Euilaing Tecinology and Management vol.15. no.2. p4-5 "Education $f=$ tip manage=ent"

EANERJEE, E.F., \& GEOSH, P.I. (1969) A problem of sequential competitive biddings in Acivancing Frontiers in Operational Research ed. H.S. RaO, N.K. Jaiswal A A. Ghosal. Hincustan Publishing Company, Delhi

EARNARD, R.F. (1981) Euilcing Technology and Management Sept. p21-24 "A strategic apriasal system for small firms"

BARNES, N.M.I. (1971) The design and use of experimental bills of quantities fer civil engineering contracts PbD thesis. pl263 Feb University of Henciester Institute of Science and Technology

BARNES, N.M.L. (1974) " Financial control of construction" $1 n$ Vearne, S.H. ed Control of Civil Eagineering Frojects ch.5. Edward Arnold

BARNES, N.M.L., \& LAU, K.T. (1974) "Bidding strategies and company performance in process plant contracting" in Third International Cost Engineering Symposium. Association of Cost Engineers

BECKMANN, M.J. (1974) Operations Research vol.22. p510-513. "A note on cost estimation and the optimal bidding strategy"

BEESTON, D.T. (1974) One statistician's view of estimating Cost Study 3 July RICS Building Cost Information Service

BEESTON, D.T. (1982) Estimating market variance in building cost techniques: new directions ed. P.S. Brandon. E \& F.N. Spon ISBN 0-419-12940-5 p265-277

BEESTON, D.T. (1983) Statistical methods for building price data E \& F.N. Spon ISBN 0-419-12270-2

EEEES, J., a DIEPEVEEN, W.J. (1985) Construction Kanagement and Economics vol.3. p25-31 "Flexible planning in construction firms"

EENGTSSON, S. (1985) Building Technology and Management Nov. p32-34
"The orgnisation and management of construction"
BEIJAMIX, N.B.H. (1969) Competitive bidding for building construction contracts PhD dissertation Stanford University

BEYJAMIN, $\mathbb{K} . B . H$. (1972) Journal of the Construction Division, proceeding of the American Society of Civil Engineers vol.98. no.C02. p313-330 "Ccompetitive bidding: the probability of winning"

EEEJAMIS, N.B.H., a MEADOR, R.C. (1979) Jourael of the Construction Divisicn ASCE vol.105. no.CO1. March. p25-40 "Ccmparison ef Frieiman's and Gates' competitive bidding medels"

EENTETT, J., \& BARNES, M. (1979) Chartered Quantity Surveycr vel.2. no.3. October. p53-56 "Six factors which influence bills. Outline cf a theory of measurement"

BEINETT, J., \& FINE, B. (1980) ireasurement in complexity in constuction projects SRC Research Report GR/A/1342.4 (Final zeport) by Department oí Construction Management, University of Reading Agril

EESIETT, J., \& ORMEROD, F.N. (1984) Constucticn Management and Economics vol.2.p.225-263."Simulation applied to censtruction Frojects"

EEISON, P.H. (1970) Operaticas Research vol.18. p1220-1224 "Selecting price quatations for an industrial firm's sale of individual contract projects"

BISEOP,.P.H. \& NAIR,U.S. (1939) Supplement to the Jourasl of the Royal Statistical Society vol.6.p.89-90.

EOSDER, C.S. (1979) Operations Fesearch 27 Mar-ADF. p209-224 "Cennging the future of operations research"

EOOTI, A.E. (1981) The design of management information systems to hancle uncertainty and complexity: a critical review of curreat fractice M.Phil thesis, North East London Polytechnic

EOX, G.E. (1953) Biometrika vol.40. p.318-334 "Non-normality and tests on variances"

EOX, G.E.P., \& ANDERSON, S.L. (1955) Journal of the Royal Statistical Society Series B vol.xvii. no.1. p26-34 "Permutation theory in the derivative of robust criteria and the study of departures from assumption"

BRECH, E.F.L. (1975) Construction management in principle and practice Longman

BROEMSER, G.M. (1968) Competitive bidding in the construction industry PhD dissertation, Stanford University

BROWI, D.M. (1974) A comparative study of four building organisations in relation to their environment MSc thesis, University of Bath

BROWN, K.C. (1966) A theoretical and statistical study of decision making under uncertainty - competitive bidding for leases of offshore petroleum tracts PhD dissertation, Southern Methodist University, Dallas

BUDD, A. (1978) The politics of economic planning Fontana/Collins
BULLOCK, A., \& STALLYBRASS, O. (1977) The Fontana Dictionary of Modern Thought Fontana/Collins

BUNY, D.W. (1975) The resolution of uncertainty in decision and policy analysis PhD thesis, University of London

BURTON, F.M. (1972) A regional economic model of the construction industry PhD thesis, University of Pittsburgh

CALVERT, R.E. (1981) Introduction to Building Management 4th ed. Eutterworths ISBI 0-408-00520-3

CAMEROX, I. (1980) To the farthest ends of the earth: the bistory of the Royal Geograjiicai Society 1830 - 1980 Macdonald ISBS 0-354-04478-8

CAMPBELL, A., BLOOK, Y., \& GROOME, C. (1974) Building Technology and Haragement vol.12. zo.9. p16-21 "Demand management and the construction industries now and in tie future"

CASTON, J. (1978) Euilding Technology and Kanagement Jan pi3-14
"Demand forecasting"
CAPEN, E.C., CLAPP, R.V., \& CAMPBELL, W.M. (1971) Jouraal of Fetroleum
Technology June p641-Е̄ろ "Competitive bidding in high risk situations"
CARR, R.I. (1982) Jouraal of the Construction Division, Proceeding of the American Society of Civil Eagineers vol.108. no.CO4. Dec. p639-650 "General bidding model"

CARR, R.I. (1983) Journal of Construction Engineering and Management, Proceedings of the American Society of Civil Engineers vol.109. no.1. March. p61-73 "Impact of number of bidders on competition"

CARR, R.I., \& SANDAHL, J.W. (1978) Journal of the Construction Division ASCE vol.104. no.CO1. March. p15-26 "Bidding strategy using multiple regression"

CASE, K.E. (1972) IEEE Transactions on Engineering Management vol.19. no.4. November "Consideration of variability in cost engineering"

CASEY, B.J., \& SHAFFER, L.R. (1964) An evaluation of some competitive bid strategy models for contractors Report no.4. Department of Civil Engineering, University of Illinats

CAUWELAERT, F.V., \& HEYNIG, E. (1978) Journal of the Construction Division ASCE vol.105. no.C01. March. p13-23 "Correction of bidding errors: the belgian solution"

CHANDLER, A.D. (1962) Strategy and structure: chapters in the history of american enterprize Cambridge, Mass., MIT Press

CHEETHAM, D.W. (1980) Management by objectives - the philosophies and techniques with reference to a case study of its application within a building contracting company Proc. 8th CIB Trienniel Congr., Oslo, June, vol. 16

CHRISTENSON, C. (1965) Strategic aspects of competitive bidding for corporate securities Boston Division of Research, Graduate School of Eusiness Administration, Harvard University, p72-89

CLARK, F.D. \& LORENZONI, A.B. (1985) Applied cost engineering 2nd ed. Marcell Dekker Inc., Dew Yori

CLARK, P. (1973) Econometrica vol.41. p135-156 "A subordinated stochastic process mociel with finite variance for speculative prices"

COMDOM, J.H., \& THOMPSOX, K. (1982) Belle chess Larciware in "Advances in Computer Chess" ed. M.R.B. Clarke, Pergamon Fress, Jew Yerk, p45-54

COMOVER, W.J. (1972) Journal of the Americaz Stetistical Society vol.67. F591-596 " A Kolmegeror gcodness-oi-fit test ef discontinucus distributions"

COOKE, B. (1981) Contract planning and centractual procedures MacMillan ISEN 0-333-30720-8

COTGROVE, S. (1980) Risí, value, conflict and folitical legitimacy ch.7.
COX, D.R. (1955) Jouraal of the Royal Statistical Society, Series B vol.xvii. no.1. pl-34 "Permutation theory in the derivaticn of robust criteria and the study of departures from assumption - discussion"

CRAWFORD, P.B. (1970) Journal of Fetroleum Technology vol.22. p283-289 "Texas offshore bidding patterns"

CURTIS, F.J., \& MAINES, P.W. (1973) OMEGA vol.1. no.5. p613-619 "Closed Competitive Bidding"
CUSACK, M.M. (1981) Time cost models: their use in decisicn making in the construction industry with particular reference to the use of the micro-computer PhD thesis, University of Bath

CYERT, R.M., \& MARCH, J.G. (1963) A behavioural thecry of the firm Prentice-Hall

DAMIELS, R. (1978) Building 30 June p49 "Keeping tabs on tenders"
DICKENSON, G.A. (1979) Utility theory and attitudes towards risk in management decision making MLitt thesis, Unversity of Glasgow
DIEKMANN, J.E., MAYER, R.H. Jr., \& STARK, R.M., (1982) Jourall of the Construction Division Proceedings of the American Society of Civil Engineers vol.108. no.CO3. Sept. p379-389 "Coping with uncertainty in unit price contracting"

DIEKMANN, J., \& NELSON, M. (1981) Journal of Construction Engineering \& Management American Society of Civil Engineers, March "Construction claim causes and resolution studied"

DIEPEVEEN, W.J. (1985) Options for Contracting Firms International Council for Building Research, Studies and Documentation

DIEPEVEEN, W.J., \& BENES, J. (1978) A model for corporate planning in the construction firm in Proc. CIB W-65. 2nd Symp on Org. and Man. of Const. Haifa, Israel. Oct31-Nov2. Int. Council for Building Res. vol.2. p111-81

DIEPEVEEN, W.J., BEIES, J., \& SCHAT, I. (1985) Innovation and product developmeat CIB-w65 Workshop, Zermatt, Switzerland (working paper)

DOUGHERTY, E.L., \& JOZAKI, M. (1975) Journal of Fetroleum Technolcer March. p340-350 "Determining optimum bid fraction"

DRESEEL, G. (1965) Organisation and management of a constructica company Transl. by A.B. Philips, Maclaren \& Sons

DRESSEL, G. (c.1980) Ccmpany concept: basis for a target-orieated company palioy Leailet na.53 ifA-Leonberg, West Germany

DROR, I. (1964) Fujlic Admizistration Review vol.24. no.3. Sept. p1953-7 "Mudding thraugh: science cr inertia"

DRUCKER, F.F. (1955) The practise of management Mercury
DRUCKER, F.F. (1959) Kazagement Science vol.5. no.3. April "Lagg-ianae planning: cialleage to Management Science"

DUFF, A.R. (1976) Building Technology and Management July/August. p19,p45 "Controi of costs allowances for uncertainty"

EDELMANI, F. (1965) Harvard Business Review vol.43. July/August. p53-č "Art and science of competitive bidding"

EDWARDS, J.F., \& HaRRIS, D.J. (1977) Long Range Planning June "Planning in a state oí turbulence ${ }^{n}$

EDMOXD, L.J. (1971) Cost and Management Sept, Oct. p6-11 "Analytical strategy for the competitive price setter"

ELMAX, H.C. (1982) Iterative methods for large sparse nonsymmet-ic systems of linear equations PhD thesis, Yale University

ENGELHARDT, M., \& BAIN, L.J. (1975) Technometrics vol.17. p353-356 "Tests of two parameter exponentiality against three parameter Veibull alternatives"

ERIKSON, C.A., \& BOYER, LEROY.T. (1976) Journal of the COnstruction Division ASCE vol.102. no.C03. Sept. p455-464 "Estimating - state of the art"

ETZIONI, A. (1967) Fublic Administration Review vol.27. Dec. p385-392 "Mixed scanning: a third approach to decision making"

EWIWG, D.W. (1968) The practise of planning Collier MacMillan

FAREWELL, V.T., \& PRENTICE, R.L. (1977) Technometrics vol:19. no.1. Feb. p69-75 "A study of distributional shape in life testing"

FELLOWS, R.F., \& LAITGFORD, D.A. (1980) Building Technology and Management Oct. p36-39 "Decision theory and tendering"

FELLOWS, R.F., LAMGFORD, D.A., NEWCOMBE, R., \& URRY, S.A. (1983) Construction management in practice Construction Press. ISBI 0-582-30522-5

FINE, B. (1970) Construction Progress 14 July. p3-4 "Simulation technique ciallenges management"

FINE, B. (1974) Euticing 25 October. p115-121 "Tendering Strategy"
FINE, B., \& EACKEMAR, G. (1970) Building Technology and Management Sept. p8-9 "Estimating and bidiing strategy"

FLAMAGAN, R. (1980) Teader price and time predicition of construction wori D Fill thesis, University of Aston in Birmingham

FLANAGAN, R., \& HOEMAT, G. (1982) Building Technology and Management April. p25-28 "\& examination of the tendering pattern of individual building contracters"

FLASAGAN, R., a FOEMAX, G. (1985) Construction Kanagement and Economics vol.3. p.145-161 "Sealed bid auctions: an applicaticn to the building industry"

FOSTER, P.R. (1974) Long range planning and the construction industry MSC thesis, University of Bath

FRAXCK, W.E. (1982) Journal of the American Statistical Assocfation vol.76. p1002-1005 "The most powerful invariant test of normal versus Cauchy with applications to stake alternatives"

FRANKS, J. (1970) Building 12 June. p133-134 "An exercise in cost (price?) estimating"

FRAZER, R.V. (1981) Facing uncertainty in more than one independent variable: the behaviour of firms and implications for policy D Phil thesis, University of Oxiord

FREESON, R. (1977) Building Technology and Management vol.15. no.1. p11-12 "Minister's view of our industry in the next few years"

FRIEDMAN, L. (1956) Operations Research vol.4. p104-112 "A competitive bidding strategy"

FRYER, B.G. (1977) The development of managers in the construction industry MSc thesis, University of Salford

FRYER, B.G. (1985) The practice of construction management Collins ISBX 0-00-383030-6

FUERST, M. (1976) Journal of the Construction Division ASCE vol.102. no.CO1. March. p169-177 "Bidding models: truths and comments"

FUERST, M. (1977) Journal of the Construction Division ASCE vol.103. no.CO1. March. p139-152 "Theory for competitive bidding"

GATES, M. (1960) Journal of the Construction Division ASCE vol.86. no.CO3. p13-35 "Statistical and economic analysis of a bidding trend"

GATES, M. (1967) Journal of the Construction Division ASCE vol.93. no.CO1. March. p75-107 "Bidding strategies and probabilities"

GATES, M. (1971) Journal of the Construction Division ASCE vol.97. no.CO2. Nov. p277-303 "Bidding contingencies and probabilities"

GEARY, R.C. (1947a) Biometrika vol.34. fô8-97 "The frequency distribution of $b^{\text {b/ }}$, for samples of all sizes drawn at randcm from a normal population"

GEARY, R.C. (1947b) Biometrika vol.34. p209-242 "Testing far acraglity"
GILCHRIST, W. (1984) Statistical modelling Wiley. ISEs 0-471-90380-9
GILL, P.M. (1968) Systems management techniques for builders and contractors McGraw-Hill

GOODLAD, J.B. (1974) Acccunting fer constrictien and تajegeaent: an introduction"

GOITINGER, H.W. (1983) Coping with cemplerity: ferseectives for economics, management and social sciences D Reicel Fublishing Company ISEX 90-277-1510-6

GREEN, M.F. (1978) Froceedings of the CIE-iVE 2ad sjupcsium on organisation and management of constriction vol.1. Oct. pII-185-200 "Construction cost forecasting - the potential for using simple probability techniques"

GRIESMER, J.H., LEVITAN, R.E. \& SUBIK, M. (1967) Faval. Research Legistics Quarterly vol.14. p415-433 "Towards a study of bidding processes, part 4: games with unknown costs"

GRINYER, P.H. (1972) Building Technology and Management, vol.10. no.2. Feb. p8-14 "Systematic strategic planning for constiction firms"

GRINYER, P.H. \& WHITTAKER, J.D. (1973) Operaticnal Fesearch Quarterly vol.24. no.2. p181-191 "Managerial judgement in a competitive bidding model"

GRUBES, F.E. (1950) Annals of Maths and Statistics vol.21. p27-58 "Sample criteria for testing outlying observations"

HACKEMAR, G.C. (1970) Building Technology and Management Dec. p6-7 "Profit and competition: estimating and bidding strategy"

HACKETT, R.D. \& GUION, R. (1985) Organisational bebaviour and human decision processes vol.35. p340-381 "A re-evaluation of the absenteeism-job satisfaction relationship"

HâFELE, W. (1974) American Scientist vol. 62 (4). p438-447 " A systems approach to energy"

HANSSMANN, F. \& RIVETT, B.H.P. (1959) Operational Research Quarterly vol.10. no.1. p49-55 "Competitive Bidding"

HARDING, P. (1985) The construction company and its systems in "Information systems in construction management: principles and applications" ed. P Barton ch.14. p210-222

HARRIS, F. \& McCaFFER, R. (1983) Modern Construction Kanagement 2nd ed. Gromach ISBN 0-246-11818-0

HARRISON, R.S. (1981) Estimating and tendering - some aspects of theory and practice The Chartered Institute of Building, Estimating Information Service no.41. ISSN 03088073

HARRISON, R.S. Tendering policy and strategy in construction projects. their financial policy and control. ed. R.A. Burgess. ch.7. p51-51 Construction Press ISBN 0-86095-876-0

HARVEY, J.R. (1979) Competitive bidding on canadian public construction contracts, stochastic analysis for optimization PhD thesis, School of Eusiness Administration, University of Western Ontario

HILLEBRANDT, P.M. (1974) EConomic theory and the constructicn ineusery Mackillan ISEN 0-333-14944-0

HILLS, W.D. (1985) The Confection Machine The MIT Press ISEI 0-26z-08157-1

HOCKIXG, R.R., \& SMITH, W.B. (1968) American Statistical Association Journal vol.63. March. p159-173. "Estimation of parameters in the multivariate normal distribution with missing observations".

HOLDERMAN, D. (1984) American Frofessional Constructor Vinter. p15-18 "Characteristics of an unsuccessful contractor"

HOSSEIN, B.R. (1977) Risk analysis of tendering policies for capital projects PhD thesis, University of Bradford

HSU, D.A. (1979) Journal of the American Statistical Associaticn vol.74. p31-40 "Detecting shifts of parameter in Gamma sequence with applications to stock pile and air traffic flow analysis"

HSU, D.A., MILLER, R.B., \& WICHERN, D.W. (1974) Journal of the Americes Statistical Association vol.69. p108-113 "On the stable Paretian behaviour of stock market prices"

HUMPHREYS, G.A. (1977) Financial planning and project cost control techniques applied to building management M Phil thesis, University of Aston in Birmingham

HUNT, G. (1986) Survey of computer applications in construction unpublished communication

HURWICZ, L. (1959) "Optimality and informational efficiency of. resource allocation processes" ch.3. in Mathematical Methods in the Social Sciences Stanford University Press, Stanford, California

IBBS, C.W. \& CRANDALL K.C. (1982) Journal of the Construction Division, Froceedings of the American Society of Civil Engineers vol.108. no.CO2. June ISSN 0569-7948/82/0002-0187
I.Q.S. SUSSEX BRANCH COMMITTEE (1979) The Quantity Surveyor vol.37. no.7. March. p384-386 "Tenders"

IRELAND, V. (1985) Construction Management and Economics vol.3. p59-87 "The role of managerial actions in the cost, time and quality performance of high-rise commercial building projects"

JARMAN, R.J. (1978) Building production in a capitalist economy, the response of a sample of building companies to changing mariet conditions M.Soc.Sc thesis, University of Birmingham

JEXSEIT, A. (1976) Future prospects of OR paper presented at Euro II Congress, Stocirholm, Sweden

JEPSON, W.R. \& NICHOLSON, M.P. (1972) Karketing and Building Manegement Medical \& Technical Publishing Co Ltd SBI 852-000-46-4

JOHISOH, G.J. \& SCHOLES, K. (1984) Exploring corporate staateg7 Prentice/Hall International ISBX 0-13-295924-0

JOHISTON, R.H. (1978) Optimisation of the selective ccmpetitive tendering system by the construction client: Transport and Read Laboratory Report 855 DOG

JURITZ, J.M., JURITZ, J.W.F. a STEPHENS, M.A. (1983) Jouraal of the American Statistical Association vol.78, no.382. p441-444 MO the accuracy of simulated percentage points"

KAHM, R (1981) Work and Health Wiley, New York
KANGARI, R. \& BOYER, L.T. (1981) Journal of the Construction Divisici ASCE vol.107. no.CO4. Dec. p597-608 "Project selection under risk"

KEEXEY, R.L. \& RAIFFA, H. (1976) Decisions with multiple objectives: preferences and value trade-offs Wiley, New York

KELLY, G.A. (1955) Fsychology of personal constructs W.W. Jorton
Kempaner, T. (1976) A Handbook of Management Penguin
KENDALL, M.G. \& STUART, A. (1961) The Advanced Theory of Statistics vol.2. "Interference and Relationship", Charles Griffin

KENDALL, M.G., \& STUART, A. (1963) The Advanced Theory of Statistics vol.1. "Distribution Theory" Charles Griffin

KING, W.R. \& CLELAND, D.I. (1978) Strategic planning and policy, Van Hostrund Reinhold Co

KLEIN, J.D. (1976) Joint ventures and bidding for offshore oil in "Bidding and Auctioning for Procurement and Allocation" ed. Y. Amihud, New York University Press

KMIETOWICZ, Z.W. \& PEARMAN A.D. (1981) Decision Theory and Incomplete Knowledge Gower ISBN 0-566-00327-9

KOONTZ, H. \& O'DONNELL,H. (1972) Principles of Management: an analysis of managerial functions 5th.ed.McGraw Hill

LANGE, J.E. (1973) The bidding process in the construction industry PhD thesis, Harvard University, cambridge, Massachusetts

LAMGFORD, D.S. \& WONG, C.W. (1979) Building Technology and Managenent April. p21-23 "Towards assessing risi"

LaNSLEY, P. (1981) Maintaining the company's workload in a changing market The Chartered Institute of Building

LaNSLEY, P., QUince, T. \& LEA, E. (1979) Flexibility and efficiency in construction mazagement. The final report on a research profect with the financial support of the DoE, Building Industry Group, Ashbridge Management Research Unit (unpublished)

IANSLEY, P., QUINCE, T. \& LEA, E. (1980) Building Techaology and Kanagement Dec. p42-43 "Flexibility and efficiency in construction management"

LAYSLEY, P. (1981) Building Technology and Management Dec. p7-9,p12 "Corporate planning for the small builder"

LANSLEY, P. (1983) Case stucies of the constraints to the application of construction management research Department of Constructicn Yanagement, University of Reading
LAREW, R.E. (1976) A quantitative approach to estimating and pricing in a construction company PhD thesis, University of Iowa

LEECH, D.J. \& EARTHROWL, D.L. (1972) Aeronautical Journal vol.76. p575577 "Predicting design costs"

LEECH, D.J. \& JENKINS, D.J. (1978) Journal of the Operational Research Society vol.29. no.12. pi203-1208 "Simulating the work of a tendering technical company"
LEVINSON, H.C. (1953) Operations Research vol.1. p220-239 "Experiences in commercial operations research"

LIDDLE, C. (1979) Chartered Quantity Surveyor vol.2. no.3. Oct. p58-60 "Process Engineering - the QS role"
LINDBLOM, C.E. (1959) Public Administration Review vol.19. no.2. p79-88 "The science of muddling through"

McCAFFER, R. (1976a) Contractor's bidding behaviour and tender price prediction PhD thesis, Loughborough University of Technology. Sept
McCAFFER, R. (1976b) The Frofect Hanager vol.1. issue.5. Sept. p3-5 "The effect of estimating accuracies"
McCAFFER, R. \& PETTITT, A.N. (1976) Operational Research Quarterly vol.27,4,1. p835-843 "Distribution of bids for buildings and road contracts"

McCALL, F.E. (977) World Construction vol.30. pt.5. p65,68,70-71 "Pricing for profits"

MoCRIMMON, K.R. (1973) An overview of multiple objective decision making in J.L. Cochrane \& M. Zeleny (eds) "Multiple criteria decision making" University of South Caarolina Press

McRAY, A.T. (1933a) Biometrika vol.25. p204-210 "The distribution of bw, samples of four from a normal universe"

MCFAY, A.T. (1933b) Biometrika vol.25. p411-415 "The distributica of $b=$ in samples of four from a normal universe"

MACEEXEIE, R.I. \& HARRIS, F.C. (1984) Building Technology ane Kanggeneat vol.22. ne.5. p25-29 "Money, the only motivator"

MAJID, S.A. (1967) Resource forecasting models for private kcusias projects PhD thesis, University of Manchester Institute of Sciezce a=d Technology

MANIERINGS, R. (1970) A study of factors affectig success in tendering for building woriss MSc thesis, University of Masceseser Institute of Science and Technoicgy

MAISSOM, K. (1985) Higher productivity through imjraved werisig conditions Cib-W65 workshop, Zermats, Switzerland (woriang Faper)

MASLOW, A.E. (1954) Motivation and Fersonality Harper \& Eew, Jew Yorix
MERCER, A. \& RUSSELL, J.I.T. (1969) Operational Research Quarterly vol.20. no.2. p209-221 "Recurrent competitve bidding"

MERKIOFER, M.W. (1977) Management Sclence vol.23. p716-727 "The'value of information given flexibility"

MIIGROM, P.R. (1981) Econometrica vol.49. no.4. July. p921-943 "Raticael expectations, information acquisition and competitive biécing"

MITCHELL, M.S. (1977) Applied Statistics vol.2. no.2. Sept. p191-194 "The probability of being the lowest bidder"

MITIZRERG, H. (1975) Policy as a field of management theory Aix-e=Provence (woriking paper)

MINTZBERG, H. (1979) The Structuring of Organisations Prentice Hall
MOOD, A.M. (1983) Introduction to Policy Analysis Edward Arnold ISBX 0-7131-3473-9

MOORE, A.B. (1984) Marketing management in construction:"a guide for contractors Butterworths ISBN 0-408-01196-3

MORIX, T.L. \& CLOUGH, R.H. (1969) Journal of the Construction Division, Proceedings of the American Society of Civil Engineers vol.95. no.CO1. July. p85-106 "OPBID: competitive bidding strategy model"

MORRISON, N. (1984) Construction Management and Economics vol.2. no.1. p57-75. "The accuracy of quantity surveyors' cost estimating".

MORRISON, N. \& STEVENS, S. (1980) Construction Cost Data Base 2nd annual report of research project by Dept of Construction Management, University of Reading, for Property Services Agency, Directorate of Quantity Surveying Services, DOE

MOSS, S.J. (1981) An economic theory of business strategy: an essay in dynamics without equilibrium. M. Roberstson, Oxford. ISBN 0-85520-386-2

MOYLES, B.F. (1973) An analysis of the contractor's estimating process MSc thesis, Loughborough University of Technology

MURRAY, J.A. (1978) Towardis a contingency model of strategic decision ESSEC, CERCY conference. April (worixing paper)

MURRAY, M. (1980) The interaction of the theory of corporate plan=ing and the microeconomic theory of the firm in the development cf corporate planning mociels MEc thesis, University of Bath

WAERT, P.A. \& WEVERDEEGE, M. (1973) Jouraal of the Operational Resesrah Society vol.29. no.4. p361-372 "Cost unceriainty in competitive bidetng models"

VAIR, U.S. (1938) Bicmetriik vol.30.p.274-294.
HEALE, R.H. (1985) Frincipal facters in the design and prectice? implementation of computer based contract control systems in info Systems in Construction Management ed by P. Earton ch.7. Batsford ISBN 0-7134-4790-7

NEIL, J. (1978) Contstruction cost estimating concepts and their application PhD dissertaticn, Texas A \& M University

NEO, R.B. (1976) InternationeI construction contracting PhD thesis, Heriot Watt University Gower Press

NEUFVILLE, R.D., HAMI, E.T. \& LESAGE, Y. (1977) Jouraal of the Construction Division vol.103. 20.C01. March. p57-70 MBidding medel: effects of bidders' risk aversicn"

NEUMANI VON, J. (1909) FFoiabilistic logics and the synthesis of rellable organisms from unreliable components in "Automata Studies" ed C.E. Shannon Princeton University Press

WEWCOMBE, R. (1976) The evolution and structure of the construction firm MSc thesis, University College London

MISS, J.F. (1965) Custom production, theory and practise, with special emphasis on the goals and pricing procedures of the contract construction industry PhD (Ec) thesis, University of Illinois

OREN, S.S. \& ROTHKOPF, M.H. (1975) Operations Research vol.23. no.6. Nov Dec. "Optimal bidding in sequential auctions"

ORTEGA-REICHERT, A. (1968) Models for competitive bidding under uncertainty Technical Report no.103. Department of Operations Research, Stanford University

OTVAY, H. \& PAHIER, P. (1980 Risk assessment in "Risk and Chance" ed. J. Dowie \& P. Lefrere ch.8. p148-160

PAIS, A. (1982) Subtle is the Lord... the science and life of Albert Einstein Oxford University Press ISBM 0-19-853907-X

PARK, W.R. (1962) Engineering News Record vol.168. p38-40 "How low to bid to get both job and profit"

PARK, W.R. (1966) The strategy of contracting for profit Frentice-Hall
PaRK, W.R. (1972) Cost Engineering Analysis J. Wiley, Jew Icrk
PARK, W.R. (1980) Journal of the Constructicn Divisica, Amenican Society of Civil Engineers vol.106. no.C02. p225-225 "Comparison of Friedman's and Gates' competitive bidding models - discussicn"

PARRY-LEWIS, J. (1968) Bidding cycles anc E-itain's growth MacM土11an
FEARSON, E.S. (1963) Biometrika vol.50, no.42. p95-111 "Scme problems arising in approximating to probability distributions, using moments"

PEARSON, E.S. a HARTLEY, H.O. (1963) Bicmetrita tabies for statisticians vol.1.Cambridge at the University Press

PEIRCE, C.S. (1980) Collected papers ed. C. Hartsiorn a P. Veiss, cited in Bork, A. "Randomness and the twentieth century" in Risk and Chance ed. J. Dowie \& P. Lefrere, Oxford University Press

PELTO, C.R. (1971) Journal of the American Statistical Association vol.66. p456-460 "The statistical structure of bidding for oil and mineral rights"

PETERS, T.J. \& WATERMAN, R.H.J. (1982) In search of excelleace Harper \& Row ISBI 0-06-015042-4

PEITITT, A.N. (1975) Small sample percentage points of the AcciersonDarling statistic for testing normality Kath.Res. 20.71 . Dept of Mathematics, Loughborough University of Technology

PIM, J.C. (1974) National Builder Nov 1984 p541-545. Feb 1975 p50-57. March 1975 p94-95. Oct 1975 p361-365. March 1976 p68-70
"Competitive tendering and bidding strategy"
PORTER, M.E. (1980) Competitive strategy The Free Press ISBN 0-02-925360-8

PORTSMOUTH POLYTECHYIC, DEPT OF SURVEYING (1974) Acceptable levels of risk SMM Development Unit

PROSPER, J. (1984) Bulding Technology and Management May. p24 "The right type of training"

PYE, R. (1978) JORSA vol.29. p215-227 "A formal decision theoretic approach to flexibility and robustness"

RAIFFA, H. (1968) Decision analysis Addison-Wesley
RAJAB, Z.T.S. (1981) An investigation into the nature and extent of corporate planning in construction companies MSc thesis, Herriot Watt University

RICKMOOD, A.K. (1972) An investigation into the tenability of bidding theory and techniques, and proposals for a bidding game MSc thesis, Loughborough University of Technology

ROCKEACH (1973) The nature of human values The Free Press, New York
ROSENHEAD, J.V. et al (1972) Operations Research Quarterly vol.23. p413431 "Robustness and optimality as criteria for strategic decisicns"

ROTHKOPF, M.H. (1969) Hanegement Science vol.15. no.7. March. p362-373 "A model of rational competitive bidding"

ROTHKOPF, M.H. (1980) Operations Research vol.28. no.3. pt.1. May-June. p570-577 "Cn multiplicative bidding strategies"

RUEEY, H. \& MILIER, V.W. (1966) Construction and Professicna! Management MacMillan p229-265 "A statistical apprcach to bidding"

RUTLAND, P. (1984) Euilding Technology and Kanagement vol.22. no.9. pi7 "What determines success?"

SASIENI, M., YASPAN, A. \& FRIEDMAN, L (1959) Competitive strategies in operations research: methods and problems ch.7. J. Wiley, New York
S.E.B.I. (c.1965) Study A Report submitted by UMIST to the Ministry of Public Buildings and Works (in Jepson \& \#icholson 1972 p29)

SHACKLE, G.L.S. (1952) Expectations in economics Cambridge University Press

SHAFFER, L. R. \& MICHEAU, T.W. (1971) Journal of the Construction Division, Froceedings of the American Society of Civil Engineers vol.97. no.C01. March. p113-126 "Bidding with competitive strategy models"

SHAFFER, L..R. \& MICHEAU, T.W. (1973) Journal of the Construction Division, Proceeding of the American Society of Civil Engineers vol.99. no.C01. July. p205-206 "Discussion - bidding with competitive strategy models"

SHAPIRO, S.S., WILK, B.B. \& CHEN, H.J. (1968) Journal of the American Statistical Association vol.63. pl343-1372 "A comparitive study of various tests of normality"

SHELDON, I.M. (1982) Competitive bidding and objectives of the firm, with reference to the UK process plant contracting industry Occasional Paper no.8210. Dept of Management Science, UMIST

SHORACK, G.R. (1972) Journal of the American Statistical Association vol.67. p213-4 "The best test of exponentiality against gamma alternatives"

SIDWELL, A. (1984) Building Technology and Kanagement vol.22. no.6. p2122 "Management of opportunities"

SIMMONDS, K. (1968a) Operational Research Quarterly vol.19. no.1. p5-14 "Competitive bidding: deciding the best conditions for non-price features"

SIMMONDS, K. (1968b) Operational Research Quarterly vol.19. no.1. p325 "Adjusting bias in cost estimates: viewpoints"

SIMON, H.A. (1960) Administrative Eehaviour 2nd ed. MacMillan
SRITMORE, R.M. (1981a) Bidding dispersion - an investigation into a zethod of messuring the accuracy of building cost estimates MSc thesis, University of Salford

SEITMORE, R.M. (1981b) Chartered Quantity Surveyor vol.4.p.128-129. "Why © \mathfrak{c} tenders vary?"

SKITMORE, R.M. (1982) A biciing model in Euilding Cost Techniques: New Directives ed. P.S. Brandon E. \& F.E. Spon ISEI 0-419-12940-5 p278-289

SEITMORE, R.M. (1985) The influence of professional expertise in construction price forecasts Dept of Civil Engineering, University of Salford ISBN

SMART, P.M. (1976) Design budget allocation and project selection PhD thesis, University of Wales

SMITH, J.G. (1985) Eusiness Strategy Blackwell ISEN 0-631-13986-9
SMITH, B.T. \& CASE, J.H. (1975) Management Science vol.22. p487-497 "Jash equilibria in sealed bid auctions"

SXEDECOR, G.W. \& COCHRAN W.G. (1980) Statistical Methods ath ed. The Iowa State University Press ISBN 0-8136-1560-6

SOUTH, L.E. (1979) Construction companies and demand fluctuations MSc thesis, Loughborough University of Technology

SOUTHYELL, J. (1971) Building Cost Forecasting Selected papers on a systematic approach to forecasting bullding costs presented to the Quantity Surveyors (Research and Information) Committee, RICS

SOWA, J.F. (1984) Conceptual estructures: information processing in mind and machine Addison-Wesley ISBN 0-201-14472-7

SPIEGELHALTER, D.J. (1983) Biometrika vol.70. no.2. Aug. p401-409 "Diagnostic tests of distributional shape"

SPOONER, J.E. (1971) Journal of the Construction Division, American Society of Cost Engineers vol.97. no.CO1. p345 "Bidding with competitive strategy models - discussion"

SPOONER, J.E. (1974) Journal of the Construction Division, American Society of Cost Engineers vol.100. no.CO1. p65-77 "Probabilistic estimating"

STACEY, E.W. (1962) Annals of aMthematical Statistics vol.33. pli871192 "A generalization of the gamma distribution"

STACEY, E.W. \& MILHRAM, G.A. (1965) Technometrics vol.7. p349-358 "Parameter estimation for a generalized gamma distribution"

STACEY, N. (1979) Building Oct. p63-64 "Estimates of uncertainty"
STARK, R.M. (1976) An estimating technology for unbalancing bid proposals" in Eidding and Auctioning Procedures and Allocations ch.3. p21-34

STARK, R.M. \& MAYER, R.H. (1971) Operations Fesearch vol.19. p469-483 "Some multi-contract decisicn-theoretic competitive bidding models"

STEINBRUNNER (1974) The cybernetic theory of decision Princeton University Fress, Jew Jersey

SUGRUE, P.K. (19.77) The cesign and evaluation of three competitive bidding mociels for applicaticn in the construction industry phd thesis, University of Massachusetts

SUGRUE, P.í. (1980) Joural of the Construction Division, American Society of Civil E=ginners vol.106. no.CO4. Dec. p49g-505 "An optimum bid appreximatice acdel"

TAVISTOCK IVEIIUUE OF EUKAS RELATIONS (1966) Interdependence and uncertainty: a stuciy of the building industry Tavistocik Publications

TAYLOR, N. (1963) Fesearci frogram in marketing Special publication of Institute of Euilding and Economic Research, Graduate School of Business Administration, University of California at Berkeley p28-44 "A bidding model fer timber purciasing"

THOMPSON, P. (1981) Organization and economics of construction McGrawHill ISBI 0-07-084122-5

TJOSVOLD, D. (1985) Orgazizational behaviour and human decision processes vol.35 p281-293 "Power and social context in superiorsubordinate intercetion"

TOFFLER, A. (1971) Future siocir Pan Publications

UTHOFF, V.A. (1970) Jourasi of the American Statistical Association vol.65. p1597-1600 "An optimum test property of two well known statistics"

UTHOFF, V.A. (1973) Annals of Statistics vol.1. p170-4 "The most powerful scale and location invariant test of the normal versus the double exponential"

VERGARA, A.J. (1977) Frobabilistic estimating and applications of portfolio theory in construction PhD dissertation.University of Illinois

VERGARA, A.J. \& BOYER, L.T. (1974) Journal of the Construction Division, American Society of Civil Engineers vol.100. no.C04. Dec. p543-552 "Proababilistic approach to estimating and cost control"

VICKREY, W. (1961) Journal of Finance vol.16. p8-37 "Counterspeculation auctions and competitive sealed transfers"

WADE, R.L. \& HARRIS, B. (1976) Journal of the Construction Division ASCE vol.102. no.CO1. March. p197-211 "LOMARK: a bidding strategy"

WAGMER, H.M. (1971) Operations Research Oct. pl259-1281 "The ABC of OR"
WEVERBERGH, M. (1977) Competitive bidding - games, decisicn making and cost uncertainty Doctoral thesis, Universitaire Faculteiten SintIgratius te Antwerpen UFSIA/78*03141

WEVERBERGH, M. (1978) The Gates-Friedman centroversy: a critical review werising paper 78-41. April. Centrum vect Eedrijfeecenomie en Eedrijfseconometrie Universiteir Antwerpen - UFSIA

WEVERBERGH, M. (1981) Cempetitive bidding zociels: an overriew working paper 81-72. Aug. Centrum voor Bedriffseccicaie ez Bedrifiseconometrie Universiteit Antwerpen - UFSIA

WEVEREERGH, M. (1982) Competitive bidaing: estimating the joint distribution of bids worixing paper $\varepsilon 2-79$. Dec. Centrum voor Eedriffseconomie en Eedrijfeeconometrie Oniversiteit Antwersen -UFSIA

WHITTAKER, J.D. (1970) A study of competitive bidding with particular reference to the construction industry $F h D$ thesis, City University, London

WILLENBROCK, J.H. (1972) A comparative stucy cf expected menetary value and expected utility value bidding strategy models PhD thesis, The Pennsylvania State University

VILSON, A. (1982) Experiments in probabilistic cost zodelling in Eullding Cost Techniques: New Directions ed. P.S. Brandon pl69-180 E \& F.J. Spon ISBI 0-419-12940-5

WILSON, A.J. (1979) Need-important asc zedd-satisfaction for construction operatives MSC thesis, Loughbcrough University of Technology

WILSON, R. (1979) Review of Economic Studies val.44. p511-518 "A bidding model of perfect competition"

WINKLER, R.L. \& BROOKES, D.G. (1980) Operations Research vol.28, no.3. pt.1. May-June. p603-613 "Competitive bidding with dependent value estimates"

WOLF, C. \& KALLEY, G.S. (1983) Risk management in cost engineering application of utility theory in AACE 27th Annual Meeting Transactions, Philadelphia, Pennsylvania ISBN 0-930284-17-8

WONG, C. (1978) Bidding strategy in the building industry MSc thesis, Erunel University

WOODWARD, J.F. (1975) Quantitive methods in construction management and design MacMillan SBN 333-17720-7

YOUNG, M. (1978) Analysis of the relationship between model-building and decision-making PhD thesis, University of Oxford

ZINN, D.C., LESSO, W.G. a GIVENS, G.R. (1975) OILSIM - a simulation model for evaluating aiternative bidding strategies paper presented at 96th Annual Meeting of the ASME Dec.

APPETDIX A

Statistical formulae

A STATISTICAL FORMULAE

1 Calculation of mean, variance and coefficients of skewness and kurtosis

For a sample of values of $x_{i}(i=1,2, \ldots, n)$, the mean, variance ccefficients of sirewness and kurtosis ($\bar{x}, \mathrm{~s}=, Y_{1}, Y=$ respectively) of the population were estimated as follows:

$$
\begin{aligned}
& \bar{x}=(1 / n) \sum_{1=1}^{n} x_{1} \\
& s^{2}=n /(n-1) \cdot m_{2} \\
& Y_{1}=\mu_{3} / s^{3 / 2} \\
& Y_{2}=\left(\mu_{4} / s^{2}\right)-3
\end{aligned}
$$

wiere

$$
\begin{aligned}
& \mu_{3}=\frac{n}{(n-1)(n-2)} \cdot m_{3} \\
& \mu_{4}=\frac{n^{2}}{(n-1)(n-2)(n-3)} \cdot\left\{(n+1) m_{4}-3(n-1) m^{3} z^{2}\right)+3 s^{2}
\end{aligned}
$$

and
$m_{r}=\sum_{i=1}^{n}\left(x_{i}-x\right)^{n}$
2. Probability distributions
(a) The Uniform (rectangular) distribution, $U(\alpha, \beta)$

```
\(f(x)=(\beta-\alpha)^{-1} \quad \alpha<x<\beta\)
\(F(x)=(x-\alpha) /(\beta-\alpha)\)
\(E[x]=(\beta+\alpha) / 2\)
\(\operatorname{\nabla ar}[x]=(\beta-\alpha)=112\)
\(Y_{1}=0\)
\(Y_{2}=-1.2\)
\(a\) is estimated by \(a\) \{-in
\(f\) is estimated by 2 (
Randcm number gezersict, HAG: GOEDAF (parameters \(\alpha \& \beta\) )
```

(b) The Normal (Gaussian) distribution. $\mathbb{N}(\mu, \sigma=)$
$f(x)=\left\{\sigma(2 \pi)^{n-1} \cdot \in \operatorname{Exp}\{-(x-\mu)=/ 2 \sigma=\} \quad-\infty\langle x\langle\infty, 0\rangle 0\right.$
$F(x)$ is intractabie
$F(z)$, the standard ycrmal deviate, where $z=(x-x) / \sigma$, is available in tatular form or fAG:S15ABF
$E[x]=\mu$
$\operatorname{Var}[\mathrm{x}]=\sigma^{2}$
$Y_{1}=0$
$Y_{2}=0$
Random number generator, NAG: GO5DDF (parameters $\mu \& \sigma$)
(c) The Exponential distribution. Expn(λ)

```
    f(x)=\lambdae -\lambdax}\quad0\leqslantx\leqslant\infty,\lambda}
    F(x) = 1- --\lambdax
    E[x] = \lambda-1
```

$\operatorname{Var}[x]=\lambda^{-2}$
$Y_{1}=2$
(d) The Poisson distribution. $P(\lambda)$

```
\(f(x)=\left(\lambda^{*} e^{-\lambda}\right) / x!\quad x=0,1,2, \ldots\)
\(F(x)=\sum_{r=0}^{x}\left(\lambda r e^{-\lambda}\right) / r!=\chi_{z}^{2} z(x+1)=2 \lambda\)
\(E[x]=\lambda\)
\(\operatorname{Var}[\mathrm{x}]=\lambda\)
\(Y_{1}=\lambda^{-r_{2}}\)
```

(e) The Gama distribution. $G(\alpha, \lambda)$
$f(x)=\lambda(\lambda x)^{\alpha-i} e^{-\lambda x / \Gamma(\alpha)} \quad 0 \geqslant x \geqslant \infty, \alpha>0, \lambda>0$
$F(x)$, no form found, the approach tarea was to evaluate $\int_{0}^{x} f(x) d x$ by numerical integration
$E[x]=\alpha / \lambda$
$\operatorname{Var}[x]=\alpha / \lambda^{2}$
$Y_{1}=2 \alpha^{-m}$
α is estimated by $\bar{x}^{2} / s^{2} \times$
λ is estimated by $\overline{\mathrm{x}} / \mathrm{s}^{2} \mathrm{x}$
(f) The Beta distribution of the first kind. $B T(a, b, \alpha, \beta)$

```
fx}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}(x-a\mp@subsup{)}{}{\alpha-1}(b-x\mp@subsup{)}{}{\beta-1
a\leqslantx\leqslantb, \alpha,\beta>0
Fx}(x)=\mp@subsup{F}{y}{}{(x-a)/(b-a)} obtained by NAG:GO1BDF
E[x] = a+\alpha(\alpha+\beta)-1(b-\alpha)
Var[x] = (b-a)=\alpha\beta(\alpha+\beta)-2(\alpha+\beta+1)-1
Y}=\frac{2(\beta-\alpha)(\alpha+\beta+1)\mp@subsup{r}{}{n}}{(\alpha+\beta+2)(\alpha\beta\mp@subsup{)}{}{n}
    (\alpha+\beta+2)(\alpha\beta)m
```

Estimates of a, b, α and β were obtained by letting
$\begin{array}{lll}a & =x_{i} & \text { (min }\} \\ b & =x_{i} & \{\max \}\end{array}$
and solving
$z=a+\alpha(\alpha+\beta)^{-1}(b-a), \quad$ and
$s_{x}^{2}=(b-a)=\alpha \beta(\alpha+\beta)^{-2}(\alpha+\beta+1)^{-1}$
(g) The Legnormal distribution $\lambda(\mu, \sigma=)$

```
\(f(x)=\ln x \cap \mathbb{V}\left(\mu, \sigma^{2}\right)\)
\(0 \leqslant x \leqslant \infty\)
\(\bar{F}(x)=\ln x \cap \bar{\Sigma}\left(\mu, \sigma^{2}\right)\) - see Normal distribution
\(E[z]=\exp (\mu+i, j \sigma=)\)
\(\operatorname{Var}(z)=\exp \left(\sigma^{2}\right)\left\{\exp \left(\sigma^{2}-1\right)\right\} \exp (2 \mu)\)
\(Y_{1}=\left\{\exp \left(\sigma^{2}\right)+2\right\}\left\{\exp \left(\sigma^{2}\right)-1\right\}^{n}\)
Eandom numer generator, NAG: G05DDF (parameters \(\alpha, \beta\) )
where \(\alpha=\ln \left(\gamma^{2}+1\right)\)
\(\beta=\ln (\mu)-\sigma^{2} / 2\)
\(\tau^{2}=\sigma=/ \mu^{2}\)
```

(h) The Weibull distribution. $W(m, \lambda)$
$f(x)=\lambda$ mx $^{m-1} \exp \left(-\lambda x^{m}\right) \quad x \geqslant 0$
$F(x)=1-\exp \left(-\lambda x^{m}\right)$
Estimates of λ and m were obtained by solving
$n \mathbb{m}^{-1}+\sum_{i=1}^{n} \ln x_{1}-\lambda^{m} \ln \lambda \sum_{i=1}^{n} x_{1}^{m}=0$
where $\left.\left.\lambda=\ln \left(\ln \sum_{1} x^{\prime \prime}\right)_{1}\right)^{-1}\right\}^{1 / m}$
Random number generator, NAG: G05DPF (parameters m, λ^{m})
(i) The Generalized Gamma distribution. $G(a, b, k)$
$f(x)=b\left\{a^{b k} \Gamma(k)\right\}^{-1} x^{\Delta k-1} \cdot \exp \left\{-(x / a)^{b}\right\}$

This distribution subsumes several others for

$G(a, b=1, k=1)$	is the Exponential distribution
$G(a, b, k=1)$	is the Weibull distribution
$G(a, b=1, k)$	is the Gamma distribution
$G(a, b, k \rightarrow \infty)$	is the Lognormal distribution
amongst others (Stacey \& Milhram, 1965)	

The log-likelihood function is
$\ln I=\operatorname{nln} b-\ln \left[(k)-b k n \ln a+(b k-1) \sum_{i=1}^{n} \ln x_{i}-\sum_{i=1}^{n}\left(x_{i} / a\right) 0\right.$
The partial derivities with respect to a and b are

$\frac{\delta(1-T)}{\delta z}=b a^{1-b} \sum_{1} x_{i}-b k n a^{-1}$
Yaxi페피 likelihood estimates of a and b are therefore obtained by salving (for a given value of k)


```
    where a=( [ x m/kn)'/b
```

As $\sum x_{i}$ can be very large, for computational purposes

$$
\left.a=\bar{x} f\left(k_{n}\right)^{-1} \sum\left(x_{i} / \bar{x}\right)^{b}\right\}^{1 / b}
$$

Estimate of k were then obtained by observing the value of k which maximises the log-likelihood function above.
(j) The Gram-Charlier Series of Type A

The series $g^{i v e s}$ an expansion of $(2 \pi)^{-h} \cdot \exp \left(-1 / 2 x^{2}\right)$ as follows:$\operatorname{pdf}(x)=(2 \pi)^{-m} \cdot \exp \left(-1 / 2 x^{2}\right) \sum_{r=0}^{G} C_{r} H_{r}$ for the first seven degrees
where $C_{0}=1$
$C_{1}=0$
$C_{2}=\neq 2\left(\mu_{2}-1\right)$
$C_{3}=(1 / 6) \mu_{3}$
$C_{4}=(1 / 24)\left(\mu_{4}-6 \mu_{z}+3\right)$
$C_{5}=(1 / 120)\left(\mu_{5}-10 \mu_{3}\right)$
$C_{6}=(1 / 720)\left(\mu_{6}-15 \mu_{4}+45 \mu_{z}-15\right)$
and
$H_{0}=1$
$\mathrm{H}_{1}=\mathrm{x}$
$\mathrm{H}_{2}=\mathrm{x}^{2}-1$
$H_{3}=x^{5}-3 x$
$H_{4}=x^{4}-6 x^{2}+3$
$H_{5}=x^{5}-10 x^{3}+15 x$
$H_{5}=x^{6}-15 x^{4}+45 x^{2}-15$
and $\mu_{2}, \mu_{3}, \ldots, \mu_{r}$ are the $r^{\text {th }}$ moments about the mean in the data, $\mu^{r}=n^{-1} \sum\left(x-\mu_{1}\right) r$, where
$\mathrm{n}=$ the number of data points
$\mu_{1}=n^{-1} \sum x$
The $\operatorname{Cdf}(x)=\Phi(x)-\left\{(2 \pi)^{-m_{2}}\right\} \cdot \exp \left(-\nmid x^{2}\right) \cdot \sum C_{r} H_{r-1}$
where $\Phi(x)=\left\{(2 \pi)^{-m}\right\} \int_{-\infty}^{x} \exp (-k / 2 t=) d t$

Randiom number generator:
Considering the standardised values
$\operatorname{Pr}(x)=\Phi(x)-\left[\{(2 \pi)-m\} \cdot \exp (-2 x=) \cdot\left\{\left(\mu_{3} / 6\right)\left(x^{2}-1\right)+\right.\right.$ $\left.\left.+(1 / 24)\left(\mu_{4}-3\right)\left(x^{2}-3 x\right)\right\}\right]$

For a given projebility, $\bar{F}=(z)$, the value of x can be obrained by solving the transeajental equation by a Newton-Raphson procedure
$\Phi(x)-\left\{\left\{(2 \pi)^{-n}\right\} . \exp \left(-i z z^{2}\right) \cdot\left\{\left(\mu_{3} / 6\right)\left(x^{2}-1\right)+(1 / 24)\left(\mu_{4}-3\right)\left(x^{=}-3 x\right)\right\}\right]-$
$-F F(x)=0$
Thus by generating $=$ racien value for $\operatorname{Fr}(x)$ from a Unifera distribution (range 0 to 1), an appropriate value of x can be computed.

Although appearing rather laboricus, values of x were found to be generated at the rate of approximately 100 per second!
(k) Edgeworth's form of the Iyfe a Series
$\operatorname{Pdf}(x)=\left\{(2 \pi)-k_{2}\right\}, \exp \left(-k_{2}=\right),\left[1+\left(k_{3} / 6\right) E_{3}+\left(k_{4} / 24\right) H_{4}+\left(k_{5} / 120\right) H_{5}+\right.$
$\left.\left.+\left\{\left(k_{6}+10 k^{=}\right)^{3}\right) / 720\right\} \mathrm{H}_{3}\right\}$
where k_{3}, k_{4}, k_{5} and k_{5} are the $3^{\mathrm{rad}}, 4^{\mathrm{th}}, 5^{\mathrm{th}}$ and 6^{th} cumulants of the data respectively, and the data is standardised. In this case the Cdif(x) is given by:-
$\operatorname{Cdf}(x)=\Phi(x)=\{(2 \pi)-m)\} \cdot \exp \left(-1 / x^{2}\right) \cdot\left[0+\left(k_{3} / 6\right) H_{z}+\left(k_{4} / 24\right) H_{3}+\right.$ $\left.+\left(k_{5} / 120\right) \mathrm{H}_{4}+\left\{\left(k_{6}+10 k^{2}\right) / 720\right) \mathrm{H}_{5}\right]$
where $\Phi(x)=\int_{-\infty}^{x}\left((2 \pi)^{-1}\right) \cdot \exp (-12 / t) d t$
Hote: for moments about the mean

```
\(k_{2}=\mu_{2}\)
\(k_{3}=\mu_{3}\)
\(k_{4}=\mu_{4}-3 \mu^{2} z_{2}\)
\(k_{5}=\mu_{5}-10 \mu_{3} \mu_{2}\)
\(k_{6}=\mu_{6}-15 \mu_{a} \mu_{2}-10 \mu^{2} 3+30 \mu^{3}{ }_{2}\)
```


Comparison with the Gram-Charlier Type A Series

```
The Gram-Charlier. Series is
\alpha(x) \stackrel{E C Cr Hr}{r}
    r=0
where }\alpha(x)={(2\pi\mp@subsup{)}{}{-m}}.\operatorname{exp}(-1/2\mp@subsup{x}{}{2}
```

and
$C_{0}=1$
$C_{1}=0$
$C_{2}=k\left(\mu_{z}-1\right)$
$C_{3}=\mu_{3} / 6$
$c_{4}=\left(\mu_{4}-\sigma_{2}+3\right) / 24$
$C_{5}=\left(\mu_{5}-10 \mu_{3} / 120\right.$
$C_{s}=\left(\mu_{s}-15 \mu_{4}+45 \mu_{z}-15\right) / 720$
The Edgeworth form is

```
\alpha(z) }\mp@subsup{\sum}{r=0}{E}\mp@subsup{C}{r}{}\mp@subsup{H}{r}{
```

where $\alpha(x)$ and H_{r} are identical to the Gram-Charliter Series (in
stancard farm), but
$C_{0}=1$
$C_{1}=0$
$C_{2}=0$
$\mathrm{C}_{3}=\mathrm{k}_{3} / 6$
$C_{4}=k_{4} / 24$
$C_{5}=k_{5} / 120$
$C_{6}=\left(k_{6}+10 k^{2} 3\right) / 720$
Expressing the Gram-Charlier Series in terms of k (and standardising) we obtain
$C_{0}=1$
$C_{1}=0$
$C_{2}=0$
$C_{3}=\mu_{3} / 6=k_{3} / 6$
$C_{4}=\left(\mu_{4}-6 \mu_{z}+3\right) / 24 \rightarrow k_{4} / 24$
$C_{5}=\left(\mu_{5}-10 \mu_{3}\right) / 120 \rightarrow k_{3} / 120$
$C_{5}=\left(\mu_{6}-15 \mu_{4}+45 \mu_{2}-15\right) / 720 \rightarrow\left(k_{6}+10 k^{2}{ }_{3}\right) / 720$
Therefore, for the first seven terms, the formulae are identical.

APPESDIX B

Bidding data

Case 1

Case 1 data were donated by a construction company operating in the London area. The data covered all the company's bidding activities during a twelve month period in the early 1980's for a total of 86 projects. Due to the confidential nature of the data it has not been possible to reproduce all the information available in this thesis. Of the data that has been reproduced, certain minor changes have been made to obscure the identity of the company involved. The project numbers, fer instance, are not reproduced in chronological order. Similarly, the codes given to the various bidders are not in alphabetical order. The bids themselves, however, remain intact.

Details of the type of projects were available but not used in the analysis. Some of the data were incomplete, that is the value of some bids or the identity of bidders were not known by the company. In saveral cases it was possible to supplement these data from the Case 3 source.

The resulting number of projects for which a full set of bids, together with the identity of the bidder, were available for analysis totalled 51.

The number of occasions that the same two bidders were in competition with one another is given in the following table.

Number of occasions met	Number of pairs
1	438
2	94
3	20
4	11
5	4
6	3
7	3
8	3
9	1
10	2
12	2
20	1

The most frequent competitors were bidders 55 and 304 , who met on 20 occasions.

Details were also available of bidder 304 's cost estimates for 34 of the projects.

Froject number	Cost estimate
1	1386652
2	505291
3	1271146
5	389214
6	2058210
7	2919754
8	7035339
10	1012702
11	181845
12	1053099
13	652341
19	2884614
20	7646123
21	3705840
22	580203
23	155854
24	179413
26	515061
27	1770389
28	2062491
30	2538005
32	530190
35	830407
36	706737
37	550787
38	1530976
41	3641105
42	2187217
44	2787585
46	1381542
47	751767
48	351803
50	645858
51	

A total of 93 bidders entered 318 bids for the 51 projects. A full data listing follows.

Case 2

Case 2 data were donated by Lancashire County Council for project bids over approximately four years prior to July 1982. Details for 258 projects were provided in precoded format. In some cases, codes were missing or no tender had been received. In other cases the codes or bids were illegible. The resulting number of projects for which a full set of bids, together with the identity of the bidder, were available for analysis totalled 218.

The number of occesions that the same two biccers were in competition with each other is given in the following table.

Sumber of occasices	
met	Numieer of pairs
1	1224
2	264
3	99
4	62
5	34
6	25
7	15
8	16
9	9
10	6
11	5
12	5
13	8
14	4
17	4
19	2
20	1
21	1
26	1

A total of 187 bidders entered 1235 bids for the 218 projects. A full data listing follows.

Lancashire County Council

Mr. R.M. Skitmore, 25 Meadway, Penwortham, Nr. Preston.

Please ask for	Preston(0772)	Yourref	Ourref
Mr. H. Edwards	263153		Q/HE/JM

Dear Martin,
I enclose with this letter some 258 copies of tenders received for County Council projects to assist you with the Paper that you are preparing on Contractors' success or otherwise in tendering.

As I explained to you on the telephone, I wish to preserve the confidentiality of the tendering procedure and this has been achieved by giving every firm that has submitted a tender a number and recording that number against the respective tender list for which that firm quoted.

I hope this will assist you in carrying out your analysis. The period of time for which these tenders cover is approximately four years and relates to capital works as opposed to maintenance contracts.

I tried to contact you by telephone, but I appreciate you may now be away on leave, hence the purpose of forwarding these schedules to you. Should you require any further assistance, no doubt you can let me know.

Kind regards.

Sample data proforma for Case 2 data (project 3)

cost fuctuatim				FIPM Parcs			
		$\begin{aligned} & \text { Clause } 23 \\ & \text { Deletede } \end{aligned}$	$(\mathrm{j}) /$			$\begin{gathered} \text { Clause } 23 \\ \text { Deleted } \end{gathered}$	(j)
5.525	59	154			$1 /$		7
499334		27			,		
Es	co	$8 /$			1		
5,8614	-	204		1	-	-1	
3.2	50	581		7		\cdots	
515,51:5	-0	/30		1.		/	
5241.20	-0,	62		1		1	
543291		95		7		7	
569.6 .55		1252		/--		$\%-$	
N	coul	-18	L-V			,	

PRO.	BID	BLR	B1D	DDR	8ID	DNR	810	nur	EID	BLR	B10	BRR	日ID P	PASE.	5	
213	9512.	111	12446.	25	19010.	129	47004.	47	53365.	11	57120.					
311	39448.	62	43261.	${ }^{84}$		55	32771.	90	36.029.	17	37413.	116	39730.	. 105	29934.	156
215	28134.	26	28903.	$\begin{array}{r}89 \\ 152 \\ \hline 8\end{array}$	17301.	153	1765?.	154	19910.	155	32110.	171	$42787{ }^{\circ}$		43827.	6.6
216	16038.	151	17284.	152	39111.	119	39030.	22	10170.	76 719	41715.					
217	37132.	111	38814.	121	11813.	191	12912.	4	14154.	217						
218	9550.	218	10683.													

Case 3

Case 3 data were obtained from the records of a bidding information agency in the London area. The agency held details of most bids for most projects in the London area in card form. A period of one week was spent copying a sample of project data for the period November 1976 to February 1977. The bids and associated bidders' aames were recorded and the names later encoded for analysis. The resulting number of projects for which a full set of bids, together with the icentity of the bidders, were available for analysis totailec 373.

The number of occasions that the same two bidders were in competition with each other is given in the following table.

Number of occesions met	Humber of pairs
1	2817
2	473
3	132
4	68
5	21
6	8
7	7
8	1
9	1
11	1

A total of 350 bidders entered 1915 bids for the 373 Frojects. A full data listing follows.

FROJ

51	225117.	187	244117.	60°	239719.	3	200731.	262										
55	719720.	107	718179.	186	727070.	152	659200.	161	697010.	89	610100．	206						
56	387398.	111	302264.	30.3	104311.3.	55	356000.	713	353171.	3.3	3.30127.	5.3	311179.	76				
57	48026.	106	51353.	66	47980．	115							512125.	183	5.83156.	124	514360	162
$5 B$	$\begin{aligned} & 593271 . \\ & 513795 . \end{aligned}$	$\begin{array}{r} 35 \\ 105 \end{array}$	511145.	221	579955.	175	552200．	291	572464.	137	527071.	77	012125.	183	こ日3イコく	124	W14360．	162
59	42552.	123	39907.	180										301	日52423．	186		
60	840570．	173	852690．	221	1036452.	97	945166.	268	070000．	122		$\begin{array}{r} 291 \\ 97 \end{array}$	セn8597．	301	＊－2423．	1a		
61	2070257.	3032	2007408.	79	1997700．	1352	2135100	1752	2057275.		2159160.							
62	113859.	163	110740.	110														
63	A73181．	181	481559．	115	190517.	83	516149	226	510052	73	496315．	103						
\＆ 4	623103.	150	577765.	175	585110.	55						297						
65	2687891.	200	2681867．	293	2727238.	1502	2619450.	55	2639883.	117	2590000	27						
63	407179.	300	102797．	137	120190.	294	121736.	23	39015．2．	76 207	399250	${ }_{2}^{23}$	507000	$\begin{array}{r} 52 \\ 210 \end{array}$	627665.	132		
67	628277.	300	616816.	164	626816.	3	616396.	294	601861.	207	651963.	213	1816913．	81	169000.	112		
68	201625.	106	205713.	154	136210.	124	201254．	287	182479.	308	185970．	212	1816913.	81	16900）．			
69	111172.	173	122720．	268	168391.	36	190347.	62	174775.	43								
70	152005.	173	153978.	235	15398？．	26	138725.	198	15063？．	3								
71	35912.	217	31158.	58								26.	527000	130	18.2150.	271	547000.	165
72	568329．	175	56.1707.	187	547765.	55	519000.	287	539000.	251	561000.	261	527000.	130	18．2150．	81	547000．	180
73	156332.	219	108735.	217	135000.	75	169767.	224					133376.	76	120739.	67		
74	134549.	163	133110.	137	127667.	161	121395.	131	142781．	270	127900.	37 183	133376.	76	12.073.	67		
755	290625.	133	291219．	117	292608．	82	300000.	$15 ?$	284751．	122	306663．	183						
76	39910.	309	44759.	72										170		17		
77	731733.	280	697462.	221	715010.	150	775955.	175	719400.	151	731209 ＊	291	714121.	170	730695.	13		
78	1979578.	173	2096950	292	19705s2．	117	2036115．	223	202515．5．	123	1890304.	162						
79	134731.	310	138670.	252	111992.	186	129392．	184	132509.	16								
00	700266.	310	731537.	268	710555.	176	776728．	291	697000.	87	774132.	151						
81	108212.	307	102340.	221	112324.	268	121706.	311	97792.	253	101750.	70						
87	125117.	219	106761.	291	101481.	297	121320.	151	1192313.	154	391004.	9.3						
83	173627.	135	101195.	145	107520.	140	109675.	227										
04	111397.	135	124135.	55	121716.	115	139031.	145	126350.	272								
ES	330521.	247	354321.	236	301152.	221	267856．	51	310614.	115	275797	60						
05	69876．	154	55517.	86														
87	151744．	106	148357.	166	135416.	281	1．6975．	115	139891.	199								
83	S9478．	19.3	58973.	46														
89	217657.	173	240230.	268	226412．	135	224891．	151	227135.	115	200117.	312	262000					
70	326957.	141	319202.	278	323719.	26	323975.	229	318050.	23	326913.	$29 ?$	310325．	115				
91	112622.	163	125872.	291	123369.	122	119394.	67	92050.	20	135387.	37	114678.	131				
72	162332.	163	156251．	276	172113.	76	181121．	1.51										
93	47916.	268	46597.	16														
94	1224004.	217	1230111．	280	1240513.	55	1207830.	150	1251213.	261								
95	367305.	268	313187.	300	369750.	54	356114.	278	313593.	23.3	333333.	279	355000．	29.3	334750.	215		
96	79533.	268	87910．	235														
97	103675.	268	115322.	235	98759．	10												
98	19746.	24	54601．	236	50861.	60												
99	174200.	57	179829.	311														
100	461503.	118	497000.	285	455587．	303	3 47：440．	276	＇18820日．	115	3 45：932．	114						
101	86785.	18	－92250．	54	182125.	130	72879．	215	108350．	115 139								
102	303987.	161	311255．	163	315000.	173	3 30．355．	268	3 289576.	139	315821．	235	319000.	1.02	299561．	313		
10.3	955514.	217	7 97550？．	86	6 981001．	235	925000．	297	7 759229．	$6 ?$	979104．	294						
101	305765.	30	312833.	206	6 329015．	311												
105	302825.	300	295381．	137	7 305623．	$26 ?$	2299587	50	279163.	119								
106	1717625.	－ 303	1886006．	135	1\＆15287．	151	1525903.	124	1 155336：．	61								
107	121871.	－ 221	124858.	300	－126961．	164	4 130506．	259										

气

108	203611.	221	202799.	266	212932.	175	221156.	60	226714.	201								
109	368643.	236	350839.	24	372000 .	303	35915 .	283	310856.	111	366072.	260	335941.	191	359750.	23		
110	011737.	268	030010.	164	770000.	297	7177170.	304										
111	179506.	310	510633.	150	158932.	55	471311.	241	490000.	112	4*i64.70.	152	115141.	211				
112	393420.	183	416637.	308	392107.	131	$10{ }^{15554545 .}$	17.5	373013.	294	10.364.7.	111	377267.	157				
113	156997.	268	161182.	60	161825.	6	161531.	125	165000.	62								
114	57800.	217	82918.	197	59975.	175	5795.	18S										
115	57963.	81	99476.	115	102117.	103	97023.	61	90151.	7	105143.	31						
116	79565.	15.5	80959.	1.3	89211.	151	950913.	4										
117	249171.	2.81	255129.	137	251679	151	214759.	79	256231.	50	237009.	306						
11 1	710026.	233	737163.	79	715607.	118	71735?.	30.3	74475\%.	97	717649.	115						
119	199184.	219	187980.	106	206437.	2417	705751.	115	203376.	66	2035119.	221	1117929.	296				
120	257990.	193	266518.	159	202000.	107	321750.	112	26555\%.	170	2460137.	154						
121	289697.	268	238017.	307	3055117.	271	305114.	17	327400.	60								
122	119055.	155	434195.	173	129222.	184	105129.	268	3137797.	54	1:1071.	6	1133905.	112	117138.	125		
123	3357738.	208	3067577.	2003	3056270.	173	3250065.	79	3158076.	303	3313415.	235	3235592.	2943	3363354.			
124	601310.	193	580055.	151	518261.	67	557532.	31.3	549797.	56								
125	135955.	175	131763.	173														
126	3375319.	175	3100000.	152														
127	56215.	175	51631.	197	36490.	306												
128	136357.	159	127338.	217	129053.	24	127267.	294	127206.	14	1511730.	112	1217020.	151				
129	105174.	175	302217.	106	387017.	117	308190.	214	393110.	110								
130	1159352.	303	1071765.	20	1120302.	121	1115695.	313	1000000.	40	1175000	311						
131	39755.	309	39809.	46	37272.	100	42000.	149										
132	338530.	173	337986.	268	330330.	292	311440.	223	325980.	37								
133	115966.	154	117761.	272	126733.	3	104105.	50										
134	252211.	106	260848.	12	259450.	115												
135	53577.	184	4957?.	16	50821.	134												
136	371862.	106	393879.	12	303079.	115	500001.	107	355702.	153								
137	125993%.	55	1207809.	152	1379730.	3	1270000.	124	1282700.	122	1101011.	198	1267957	256 273				
138	289413.	55	238230.	71	277600.	110	270722.	132	202201.	185	236956.	147	235971.	273				
139	390373.	55	306554.	237	360873.	15	1796135.	132	375577.	185								
140	191767.	163	22923A.	201	212279.	75	105716.	53	207000.	291	212910.	70	211743.	65				
111	725534.	99	575000.	221	577000.	160	607170.	152										
142	93785.	173	91053.	201	91187.	250												
113	5382813.	88	572050.	193	529611.	211	197930.	59	559828.	186	501712.	152						
141	332000.	80	307712.	236	3:6312.	221	351119.	104	375619.	118	329904.	115	331118.	151	333797.	56	351000.	41.
	335000.	231	392739.	205														
145	170945.	268	187476.	175	191060.	151	107000.	291	182002.	102	182000.	77						
116	239000.	16	199663.	17.3	194900.	35	179831.	104	223169.	112	257213.	249	205413.	63				
147	240103.	310	262671.	221	247713.	163	26.2525.	2.14	250000.	152	2A6059.	157						
118	108930.	159	132572.	173	177025.	268	177044.	6	168731.	115								
149	290893.	118	231311.	246	267777.	114	256793.	151	248500.	71								
150	201528.	21	173748.	116	208324.	35	220210.	66	204328.	151	231177.	60						
151	180220.	221	217407.	272	171029.	76								192				
152	196018.	57	182191.	300	190690.	154	109775.	312	185949.	111	177000.	215	1773%	172				
153	228675.	271	214777.	238														
154	68949.	106	62218.	47 165					-620040									
155	436498.	164	621333.	155	643215.	241	592722.	268	625040.	26	590837.	220	633143.	151	630394.	36		
158	134777.	08	345260.	118	319754.	115	358937.	151	321777.	242								
157	158957.	175	13A5L0.	53														
159	198595.	175	102001.	194	170123.	220												
159	88252.	175	93653.	260	100300.	21	E0762.	96										
160	2278850.	193	3271116.	175	2191128.	217	2036387.	55	2269976:	106								
16	903251.	193	926918.	217	931060.	303	927577.	187	955671.	291	879300.	152	949850.	183	1119276.	108		

FRO．J	EID	BDR	日ID	DER	EID	ILR	ato	ODR	BrD	DITR	OID	Mrin	IId Page		1			
162	20012.	55	21202.	180														
18.3	107496.	204	122000.	15														
161	186817.	171	151955.	175	245527.	291	220261．	212	189510．	201	179000．	20						
$16: 5$	168977.	73	146626.	1.33	189905.	313												
166	50791.	263	40705.	250														
167	359130.	252	330636.	29	381900.	21.5	354392.	145	350102	306	356962.	1111						
163	65000.	252	62305.	268	67000.	311												
169	82340.	268	R6963．	311														
170	59120.	263	69000.	311														
171	116915.	309	124362．	175	108723.	46	123124．	160										
172	77793．	309	76998.	293	76137．	12h	$031 / 3$.	159										
173	15245.	309	52040.	80						135	159691.	176	1 E5516．	100				
171	142870．	268	153794．	155	165506. 2655968.	276 154	137584．	181	2703596．	2372	25020．5n．	$\begin{aligned} & 176 \\ & 129 \end{aligned}$	13S116．					
175	283551．	247 42	770079．	237	607966．	270	703137.	95	798264.	151								
177	1726716.	217	1499937.	3031	1508336.	2211	1137000.	297	1622031.	121	1637000.	231	1505000．	129				
170	720112.	174	726000.	30	754720.	77	692620.	152	6717000.	197	712000.	162	733000.	32				
179	1531238.	118	1479690.	79	1693051	15	1655173.	272	1550000．	271	1530267.	231						
180	408434.	268	429220.	164	407771.	86	486212．	156	416170.	152	421971.	62						
181	78857.	141	92209.	219	92650．	15	108000.	269										
182	132682.	241	122255.	154	121920.	295												
183	66522.	221	58009.	36	64231.	19	72376.	17	59795	47								
184	1265492.	310	1146219.	315	1285000.	175	1218472	217	1102733.	152	1216707.	301						
18.5	101924．	268	66037．	185														
186	526000.	48	463000.	51	525373.	60	590889	110	475070.	14.4	516922.	311						
187	109315.	173	102618．	244	97474．	102	91797.	56 273										
188	1020578.	161	1503477	163	1220237．	308	943004．	273	988000.	251	1015750．	261						
109	31589.	267	30709.	268	37016．	166	29039.	106										
190	327459.	150	334000.	55	3131 日可	256	445000.	265										
191	76476．	156	82795.	159	65927.	248												
192	21830．	$2 \mathrm{E1}$	23388.	118														
193	177425.	281	139561．	260	141592．	105	14.3971.	100	155235.	311								
174	301985.	221	276796.	273	321030.	310	273011.	117	2月374．3．	251	279176.	136	3178180	169				
175	94027 B ．	251	773860.	131	892633.	294	771150.	176	B10121．	76	769450．	23	779885.	70				
196	91113.	268	85412．	276	95133.	135	84259．	79										
197	120000.	84	107010.	18 B	107670．	154	106067.	${ }^{6}$										
198	2005662.	137	2250000.	152	2076535.	132	2141000.	230	2172921.	262								
199	116396.	234	111300.	101	107949.	246												
200	279357.	159	203337.	175	263764.	24												
201	16.320.	159	21192．	260														
202	1382699.	118	1373000．	175	1151530.	5.5	1767212．	262	1259933.	213	1190105.	69						
20.3	106613．	55	424945.	237	121971.	210	438726．	． 30										
204	213016.	118	211703.	173	223721.	263	225000．	102	224000.	255	216859.	256						
20.5	1372930.	303	1359258.	132	1169500.	297	1347514.	313	1385629.	10	1271503.	203	1142557.	167				
206	108443.	184	111657.	134														
207 209	158013．	260 163	166780. 226557.	175	173000. 223804.	115 139	（162673．	194 313	$216907 .$	100 37	$211812 .$	$15 h$	21302.5	76	215626．	171	238332．	279
	208068．	67 150	510000.	181	540000.	182	2532071.	251	． 520000.	25	540562.	8						
210	678589.	150	705802.	175	681378．	5	663960．	256	691050.	154								
211	297426．	55	340000.	150	339791.	80												
212	149900.	134	126612.	217	109274．	86	122182．	157	125000．	214								
213	87063.	143	9 9 8004．	268	90927．	127												
214	526776.	276	573000.	235	559816．	175	517772.	53	314031.	113	515893．	291	503946.	78				
215	186726.	134	179981.	291	185160．	118												

PROJ	日in	HDR	H10	RIIR	B10	ELIR	BID	nur	Hifo	RLir	Hin	nor	fin fage		6			
271	120960.	1691	119266.	31.3	108000.	14	114960.	1201	104500.	37.1	110901.	147						
272	122820.	221	119186.	276	112967.	141	116928.	2131	117720.	1161	124000.							
27.5	194679.	99	176158.	150	175009.	30 B	196218.	1021	184904.	37								
274	97960.	260	99411.	288	71018.	157												
275	110273.	260	116131.	115	110131.	115	112876.	311										
276	157770.	291	174118.	131	150800.	150	161465.	1731	125529.	1576	398321.	82	127319.	123	149331.	170		
277	423960.	159	430267.	276	110732.	175	391573.				398321.							
278	120743.	116	109469.	251	112219.	250												
279	82903.	116	75214.	101	071187.	75												
280	3618787.	1343	3174226.	1873	3119755. 243200.	175 109	3657262.	137	$\begin{array}{r} 342103 . \\ 29633.5 . \end{array}$	$\begin{array}{r} 170 \\ 313 \end{array}$	$\begin{aligned} & 395000 . \\ & 211031 . \end{aligned}$	2511	241339.	123	2130763.	23.3	270503.	76
291	$\begin{aligned} & 273442 . \\ & 261843 \end{aligned}$	$\begin{array}{r} 268 \\ 67 \end{array}$	257739.	153	243200.	109	27071.											
282	521824.	221	511306.	150	516262.	247	575657.	60	6,07803.	10								
24.3	805287.	221	80737?.	271	011870.	115	710571.	3018	794317.	104 152	78186700.	1182			641665.	251		
204	631536.	150	665816.	20	661725.	161	636002.	301	207955.	175	214971.	175	199621.	29	b-166s.			
20.5	216185.	276	192777.	217	201821.	19.3	201674.		207\%).		214\%7.							
286	179952.	118	137626.	134	180390.	1180		95	112008.	317								
289	72901.	268	68169.	26														
290	405660.	268	373000.	57	422320.	175	433763.	51	415841.	310	410126.	311	427624.	315				
291	88313.	260	122390.	268	121555.	175	111217.											
292	218351.	94	255000.	101	249000.	262												
29.3	105059.	94	383000.	174	389180.	152	109107.	230	6773 AC.	175	682105.	6						
294	635108.	308	633943.	159	627100.	200	612000.	323	214112.	323	227500.	37						
295 294	234157.	86 268	236017.	268 217	426535.	104	301976.	304	437981.	324	363103.	256						
296	406310.	2.68 173	372332. 105022.	198	- 5200 .	84	97224.	288	103900.	200	102102.	321						
298	129075.	111	113450.	23	121937.	194	137820.	325										
299	930927.	164	895214.	304	958835.	60	723500.	297										
300	163728.	164	172400.	175	174850.	187	161300.	117										
301	114924.	84	106416.	263	128624.	301	108102.	75										
302	51163.	185	50346.	101	53270.	${ }^{2} 2$												
303	84879.	185	78350.	95	75600.	292	4522685.								440197.	279	455133.	326
304	522073.	163	470000.	156	447000.	41 301	451.685.	272 54	293810.	151	496710.	157	2h519h.	327				
30.5	318150.	159	272447.	288	286181.	31 106	277822.	$\checkmark 4$	293610.		309710.							
306	70962.	288	69777.	267	66427.	106												
307	150613.	281	120677.	S0			519213.		490269.		605036.	60	553911.	151				
310	499731.	217	509260.	328	502931.	79	498947.	275	655553.	150								
311	281109.	164	327960.	303	208791.	323	296106.	329	283S19.	69	202719	321	29024:5.	37	295582.		311222.	21
312	126109.	300	162050.	163	111510.	198												
314 315	228113. 178930.	276 48	262900.	175	170817.	157												
316	129350.	163	439885.	157	178973.	122	141238.	241	493177.	37								
317	159465.	118	135959.	86	122230.	106	136500.	1.35	${ }^{12} 8672570$	151	${ }_{2550794}{ }^{12796}$	1515	137075.		136111.			
318	2118064.	150	2306974.	- 310	2458150.	187	2365000		2660270.		2530784.							
319	262332.	. 16	250209.	310	276138.	181	235078.	252	1 301000.	185	260349.		235000.					
320	307822.	. 266	312875.	- 193	385209.	170	1598025.	276	6 159902).	25	16.98170.	. 294						
331	1585460.	. 164	1524192.	- 266	1561234.	- 137	7 215396.	260	190071.	270	191196.	- 156						
322	196716.	. 161	1203286	- 163	$4{ }^{201721 .}$	- 237			3595271.	33								
323 324	505150.	- 16	6617597	- 134	${ }^{4} \mathrm{~S} 46000.0$ 218375.	- 420	2 2211700	. 121	1 23195\%.	. 1011	330000.	. 1 H						

APPEXDIX C

Estimates of α_{1} and σ^{2} obtained after the transformation $y_{i j}=\ln \left(x_{1 j}-0.8 x_{1 j}\right)$

CASE 2

关
nifiln
兰

N.t.00
=

$\stackrel{9}{\Xi}$
玉
鱼
ALIFIIN

$\stackrel{\cong}{\cong}$

品
E
E
$=1$

$$
\rightarrow-1+1
$$

APPEHDIX D

Estimates of regression coefficients
$\alpha_{i}+\beta_{i}$ for prediction of
'probability' a specified bidder enters a bid

CASE 1

ELR	d． F －	AFifin	5E	ETA	SE
$\dot{\square}$	$=$	－0．20525	0.46501	0．02－8＝	0.05050
\％	$:$	－0．2273．	0.3555	0.0178	0.025 ar
± 2	2	－0．05： 0 －	$0.3 こ=00$	$0.006 \div$	0.02359
In	\therefore	－2．70こと	0.35888	$0.05: 36$	0.05293
E－	$\overline{7}$	6.77529	0.82700	－0．04804	0.05820
三－	\pm	0.6309%	$0.3 こ こ ゙$	－0．0437	$0.05=7$
E	20	－6．Fジご	－ 2 64：	0.07609	$0.08=37$
0	－	－－057う	0.445 .8	0.07722	$0.05: 74$
$\dot{-}$	－	－8．000：4	－ここここ	$0.001+2$	0.08 ± 00
7	i	9． $230 \leq ?$	$0.95=5$	－0．020．03	0.06500
T		－2．07 685	$0.5 \square 4 \%$	0.00672	$0.02=5$
7	2	0.30508	0.4678 ？	－0．0：506	0.0 .59
79	4		0．64EEE	－2．020：	0.0454 E
E	2	2．06803	0.4 － 0 ¢	－0．00：78	0.50
E	\because	口－ミヲミ	C．EこE	－0．0こちを	O．：
F	：	－$-2 \pm こ=$	$0 . E=20$	c．00207	0．0ここう
$\because 7$	－	2． O （0）		－．0E090	$0.25 シ \%$
77	\because	－0．08449	0.405	$0.007 \div$	0.0 EES
$\therefore 02$	\pm	$0.5 E 606$	0．ごきロこ	－0．02570	0.0%
200	1	0.150 .7	$0 . E 347$	－0．008．3\％	$0.0=5 \%$
± 07	－	－0．Eこここ7	0．こごちシ	0．0：722	0.0 EEF
$\because 5$	E	－0．478． 3	$0.40=9$	$0.0 \leq 7: 0$	0.0 － 6 －
1．	$=$	－3．0ヶ5\％	0．5¢0Ez	$0.01: 50$	0.0 .4070
$\because: 7$	4	－0．7－0． 7	0．5－55：	$0.020: 7$	$0.04 \equiv 74$
$\pm \pm$	2	0.70 .8	$0.45 \% 66$	－0．047	$0.0 \leq=0$
－	1	0.54282	0.35205	－0．023：3	$0.0 \div 377$
± 2	\pm	0.37510	$0.3 こ さ ら を ~$	－0．05E45	$0.0=2$
1 ± 4	± 8	－0．855	1.01463	0.07323	0.05823
－シ	E	－0．47859	0.71431	0.04 こここ	$0.0 E 15$
145	2	0.56439	0.4035	－0．0．75s	$0.05 \pm \pm 7$
± 45	1	－0．09805	0.35484	0.00844	0.0257
$1 \equiv 0$	\dot{e}	－0．72937	0.76574	0.08023	$0.05=10$
1ミこ	9	－．$=1825$	0.87665	0.10718	0.00 ± 57
$1 \equiv 4$	：？	0.56541	1．024	－0．02E13	0.075 .5
157	5	0.80942	0.71 ± 81	－0．0E：01	0.05075
12.5	z	－0．12914	0.46579	0.01157	0.035 E
± 70	10	－0．800．	0.94500	0.07575	0.06787
173	4	0.51343	0.64710	－0．03117	0.04632
185	1	0.14060	0.35431	－0．00868	0.02357
1的	2	－0．56147	0.46143	0.04307	0.0 .3303
187	3	－0．0．8558	0.55062	0.05410	0.03799
190	1	0.32012	0.33249	－0．0315：5	0.03350
19：	4	－1．76526	0.59414	0.13221	0.04253
17.3	2	－1．13294	0.4353 .5	0.08405	0.031 .38
201	5	0.04039	0.71900	0.00415	0.05147
217	s	1.00505	0.70804	－0．00363	0.05507
221	10	－1．85385	0.91412	0.14700	0.06544
37	3	－0．36754	0.5670 .3	0.02340	0.04059
247	3	－1．48343	0.52440	0.11057	0.03754
3：	1	0.04707	0.33534	－0．00197	0.02400
252	3	1.03675	0．55147	－0．07013	0.05942
254	1	－0．00014	0.3 .3575	0.00142	0.03400
256	2	－1．07242	0.44 ± 58	0.07873	0.03161

263	1	0.3510	0.53138	$-0.0 \leq 49$	0.03378
266	4	－-007 ± 6	$0.65: 20$	0.07708	0.04519
269	7	1． 45700	0.80505	－0．00751	0.05851
278	\pm	－1．3：578	O．EEBE	0.05988	0.0582
280	ε	－-40377	0.05054	0.4591	0.06089
25：	E	－6．82ここ	Q．Es0E：	0.04893	0.040 ± 2
2S宜	2	0.3 ± 230	0.467%	－0．01933	0.05048
29.	7	1． $3.4 \div 0$	0.3055	－0．1007\％	0.05779
272	2	$0.5 \div 5: 7$	0.4050	－6．0364？	0.035
293	E	－6．000．0	O．E®こご	0.0052	$0.0 \div 0=$
274	4	－0．20ヶこ	C． 245%	0.02593	0.04853
E0：	\pm	－2．0．535		0.0085	0.02595
． 303	2	9，0－2cs	0．$¢$ ¢Fここ	－ 0.00235	0.03 Sc 0
E08	E	－0．25750	O．ひデミ	0.02045	0.08282
ミ：－	．	0.580%	O．	－6．008 5	0.0595
こ：7		C．Eこ＝	C．Eこここち	－6．02こ：4	0．0ごアテ
345	1	0.3002	0.305	－6．0ごご5	0.025 O
こご	\pm	くッすこう		－6．0こ780	$0.02 E=$
3e0	！	－0．0こ＝5	0.2000	$0.00=07$	0.02379
30：	\pm	C．EEここさ	$0.5 \div=0$	－0．0．208	0.02585
502	1	$0.450 \div 4$	0.505	－2． 20.080	0.02357
364	$=$	C．ESta	0.46 ES：	－0．0275	$0.0 こ こ さ 7$
E－	2	0.5053	0．40ここ。	－0．05585	0.0 .3 .57
こes	\pm	－6．072	C．$=00$	0.00834	0.0255
Ee7	1	0.27518	0.3029	－0．03783	0.02351
Esa	\pm	0．ETEs？	O．ご达	－0．03985	$0.025=1$
56	1	0.5758	0． 2 EES	－0．03738	0.02531
370	－	0.5750	0.55568	－0．05038	0.02531
3\％	$?$	－0．4．45	$0.40+8$	0.0324%	$0.03323:$
372	\because	－0．4E090	0.32050	0.05 ± 37	0.02500
373	\because	－0．4E890	0.32325	$0.0 こ \div!7$	0.03550
374	\pm	－0．00014	0．きここここ	0.00142	0.02400
375	$!$	0.15057	0.33475	－0．00737	0.02 .576
370	1	0．ごさここ	$0 . こ こ ゙ 0$	－0．0ここう8	0.02377
577	1	$0.3=0 \pm 2$	0.3554	－0．02	0.023 E 0
375	1	0.520 ± 2	O．$\because=24$	－0．02：	0.025 E
． 377	1	0.2577 .3	$0.5 .5 シ 5=$	－0．0．70	0.03597
こ50	1	0.85026	$0 . 玉 こ こ \dot{*}$	－0．04379	0.02317
38：	1	$0.40=1.4$	0.32593	－0．05こ？4	$0.0235 ?$

CASE 2

-ila vur nixhorr

5.5	35	－0．4504？	0.17	0	0
Es	12	$0.05=20$	0.10230	0.00072	0．0．035
57	3	0.02 .82	0.06431	－0．0025	0.00936
59	Z	0.00 .57	0.04 .450	－0．00．77	0.0035
59	3	－0．0200．	0.05477	9．00ここ0	0.00435
¢ 0	± 4	0.21 ± 5	O．12E：	－0．003？	0.00827
$0:$	1	0.0 .2253	$0.05: 40$	－0．00\％3？	$0.000=?$
$\dot{8}$	10	－0．07 $=3$	0.0500	$0.6052:$	0.00707
\dot{C}	$!$	$0.00 \% 77$	0.051%	－0．00057	0.0053
6\％	－	－0．0ここう	$0.00 こ$	0.00050	$0.00=\square$
¢	1	0．03：3	$0.02-44$	－0．00659	0.0020
Ei	z	$0.07 \pm$	0.00%	－600EE	0.6045
6.	4	0.02541	$0.06=87$	－0．00\％40	0.00002
¢	\pm	－0．0ここ戸ミ	0.0505	0.005 E	0.002 E
69	2	－0．0．8\％	$0.04 \div 5$	0.00801	0．00EES
70	\pm	0．00E：	O．03：	－0．0060	$0.002 E 2$
71	z	－0．0こうら	0.04457	$0.00 こ 5$－	0.00350
72	$=$	－0．0020E	$0.05 \pm \div$	0.00022	$0.00 こ こ$
7	4	0.03 ± 44	0.05253	－0．00：7．5	0.00503
74	三	0.0 ここう	0.0050	－9．00：5	0.00453
$7 \pm$	3	0.04771	0.06590	－0．00こう？	0.00281
Ti	12	－\％．03\％	0．107こう	0.004 .7	$0.008 \% 0$
77	6	0.02 .07	0.0780	－2．00040	0.00804
7 E	三	－0．0A23A	0.058%	0.00150	0.05050
78	$\therefore 0$	0.00278	0.00321	2.00201	12.00758
50	\pm	－0．0025	$0.05: 4 \%$	0.900 .5	$0.00 こ こ こ$
E：	2	0.60784	0.0 ¢AAS	－0．000こ0	
E2	三	－602－18	0.0057	G．00078	0．00Eら
E3	3	－0．0こここ0	$0.0 こ ゙ \div 2 ?$	0.004%	0.00453
84	F	0．2790	$0.65=5$	－0．000E	0.0075
5	\because	－0．02045	$0.05-40$	0.00231	$0.00=5$
Ei	10	0.10277	$0.082: 4$	－0．008－2	0.00787
67	i	－0．024：1	$0.05=-1$	9．002：	$0.002=2$
80	$\stackrel{\text { A }}{ }$	0.01520	0.0625	－0．005E0	$0.00 E 02$
E\％	$\overline{3}$	－0．6ここう	0.02522	$0.00 \cdot 5=$	0.00435
80	\pm	0．6Fここ	0.004 .1	－0．00：	0.0043 A
91	2	$0.122: 0$	0.04440	－0．0013．5	0.003 こ6
92	$=$	0.18803	$0.05=49$	－0．014E	$0.001: 77$
8.5	4	－0．01200	0.00202	0.00183	0.0050%
84	\pm	－0．：270．	0.102 E	0.01250	$0.005=5$
5	7	－0．02E34	0.08243	0.00379	0.00083
96	1	0.03505	$0.05-40$	－0．00こ45	0.00252
97	2	－0．087：0	0.0481 .4	0.00744	0.00354
98	\pm	0.03004	0.03181	－0．00220	0.00232
78	14	－0．4332h	0.11294	0.03790	0.00906
00	\pm	0.01752	0.03143	－0．00118	0.00232
10：	1	0.03775	0.03137	－0．00292	0.0025 ？
102	12	0.13004	0.10718	－0．00788	0.00860
03	3	0.01081	0.05431	－0．0002？	0.00436
\％	11	0.35209	0.10174	－0．02355	0.00816
03	3	－0．00979	0.05431	0.00144	0.00436
－	17	0.57578	0.1235	－0．02682	0.01003
0.	1	－0．00792	0.03144	0.00085	0.00252
00	2	－0．02007	0.04437	0.00269	0.00355
09	1	0.00306	0.03144	－0．00003	0.00552

110	2	0.03047	0.04439	-0.00202	0.00356
± 11	2	0.00075	0.044141	－0．00012	0.00353
± 12	9	0.05473	0.08329	－0．00243	0.00718
115	4	－0．035s2	0.06235	0.00375	0.00502
114	$?$	0.05789	0.04437	－0．00197	0.00356
115	32	0.24042	0.17010	-0.01243	0.01564
11.	$\overline{5}$	0.11337	0.08796	－0．00：40	0.00706
± 7	12	－0．E229	0.10970	0.6093	0.00052
$1-8$	23	0.01500	0.1548 ？	0.00457	0.01242
118	\div	0.00505	0.08203	0.00020	0.00802
5	2	0.02174	$0.048 \% 0$	－0．00153	0.0025
12：	\pm	0.02507	$0.03: 41$	－0．0008	0.00582
22	± 2	－0．07527	0.10715	0.00565	0.00457
－＝	1	0．0ことここ	0.05132	－0．00152	$0.0025 \pm$
124	\because	－0．2こ21？	0.10177	0.02106	0.00818
－	$\dot{8}$	－0．0ミ介边	0.07641	0.005 ± 7	0.00043
20	1	0.05728	$0.031: 9$	-2.00279	0.00252
－7	\pm	0.0350	0.03140	－0．0022．	0.00252
－2	1	$0.05=96$	$0.03: 44$	－0．00071	0.003 E
－	$\bar{\square}$	－0．149亏0	0.05369	0.01272	$0.004 \pm \pm$
0	1	$0.0 こ セ \% 8$	0.103139	－0．00250	$0.00=2$
－	\div		0.03140	－0．005 5	0.00030
\％	$\dot{\square}$	－0．6201	0.07588	0.05506	0.00609
－	三	－0．602E	0.04045	$0.0005=$	$0.005 E 5$
4	23	－6．6EEF2	0.14004	0.00703	0.02123
3	12	0.615 ± 4	0.10727	0.00151	0.60201
－	\because	－9．000：4	0.05144	0.000 .3	0.60532
	12	－2， －2	0.10027	0.02874	0．00EE？
\＃	－	－0．02＊E？	0.05143	0.00 .37	0.0023 ？
\％	Ξ	0.1200	0.05797	－6．00750	0.00760
	2	0.0287	0.084 .4	－0．00054	0.00530
	$\dot{\square}$	$0.1 \pm 90 \%$	0.07021	－0．60こ？	0.00 ± 2
\％	2	－60ご，	0.04638	0.00257	－0．03E5
－	\pm	$0.025 \pm$	0.03144	－0．0005	0.052
\bigcirc	E	－6－6057	0.06592	0．00：3？	0.02558
	\bar{F}	O．093：E	0.07523	－0．00393	0.0078
	\because	6．03：	0．02：-4	－0．00こ50	6.9025
4	\pm	0.0250	0.6504	－9．02こ0	0.0025
¢ 8	\bar{E}	－0．0－85	0.07545	0.00250	0.002 .3
\％		$0.0241 \div$	0.03544	－0．002：2	Q．002E
± 0	$=$	－G．E：AB	0.1403	O．06Fs5	$0.612-4$
	E	－2．0A¢A1	6．559	0.0375	$0.0 \times 0 \%$
	＝	－-2.3	0.2655	\％．0．05	0.028% ？
	－	－06124	$6.044 \% 0$	0.60 .48	0.0025
	≥ 7		0.15497	0.04104	04083
	8	－900こう	0.0552	6．002－2	0.087 ¢
E\％	i	9．0E67	0.07647	－60．0s	0.028
可	± 2	0．1ニシミこ	0.20751	－6．005\％	$0.028=8$
	－	0.6508	0.0353	$\cdots 0.0027$	0.6050
	$\because 0$	0.20200	0．9ごア2	－0．01－25	0.05025
	－	$0.0=202$	0.05142	2．00．89	－602？
101	－	－0．0205	$0.05: 12$	0.002 E	0.0022
ioz	E	－0．77032	0.068 ± 7	4.02 .3 .3	0.00506
160	25	0.100^{4}	0.10022	－600こE	0.02203
－4．4	E\％	－0．357？	$0 . \therefore 6.44$	$0.03=82$	0.02275

$-0.06 E$
-0.020

2.
0
2

$0.01=$

[^4]

$\begin{aligned} & -9.2=0 \\ & -0.02 \end{aligned}$
0.00000
－0．03iz
0.08470
0.100%
－0．05050
$0.00=5$
$0 . \therefore=44$
－0．02\％1：
－0．うここ二j
－0．0025
2.027
$0 .$
0.05
－2．075 5
－0．2－3：9
－0．$E= \pm 0$
－0．0E5
－0．0．140
0.0108
－0．00－7
－3．08E2
0.0505
0.0 .045
0．0．76．
－0460？
－8．25：
0.004
0.0008
－606こご
－0．0．こう\％
0.03004
－9．038E\％
$0.002=$
－0．070．3
0．024T
C－6゙心夊4
$0.00 \%=5$
6．0．？
－－ExEF
0.055%
－6．4ic30
－0．00．27
－0．07 0^{2}
のッヂご
0．0．5
－\％＝\％
－6\％
－300．0．3
． 6

2.0032
0.0202
と．ごご
0.620
0.00 .5
$60=$
－：ここ
－

－
$=$
$=$

－ 0
$0.00=5$
0.00 cc ？
の．9．00？
COCT：
－$-: E$ シ
$\because 26 E$

$8-2$
$0.02=$
$0.05:$
5,6
$\therefore 8:=2$
$0.60=$
$0-6=$
$0.605=5$
く，こここ
0.
G．
0
-2
－C0：
G．0ロごニ
0.0076
$0.00=2$
$0.0 日-5$
0.0
6.6075
2.0299
$\therefore-\mathrm{BC}$
$960=$
－ $6=$
$5 \cdot 00=2$
0．00゙ニ

0.2006

$01 r^{2}+2$
-627
$2.2=$
－
8
\vdots
\vdots
\vdots
\vdots
－ここ二ミ

$0-6$
C．5Eご
$\therefore \therefore=\div$
－
3
18
10
10
08

60.73	
c．20．72	0.
－ 00 0 E	$2.00=5$
0.20424	0.00 ± 3
9．69\％\％4	$0.80 ¢ 29$
－6．025家	0.927%
$\bigcirc 00030$	0.0045
0.0220	0.00
－0－4．4	6.0085
0.0014	0.
－ 5040	0.0
0.00478	0．00ご
ミ．こここき	0.80
G． 0 030	0.0050
¢． 0.346	$0.00=0$
0．0．5こ＝	2．04153
\therefore ご，	$0.006=7$
$0.0 \wedge 557$	0.0 －02
－8．00527	0.0055
－0．02932	0.0275
5.6502	$2020 \leq 5$
O．dras	
－50＝0	$2.00=0$
O．0．5E	0.000 .0
－60\％21	5.606 .5
G．20：$=$	0．20ごこ
O，OECO	0.60%
$\because 2 \pm 5$	S． 20
－20ES	9.
0.0000	6
－$\because .00: 29$	0
c．0．-7	0.
$\therefore 2.90$	Groc
c．ese	0.00
－ 6 Ca	$\therefore .00$
－8．00＝	0.3
6．coseo	2.00
0.00587	0.00
$\therefore 5: 263$	$8.60=$
r．ondo	6．0．${ }^{\text {a }}$
－2030	2.
\therefore O\％ 0	0.8
$\square \mathrm{c}$ \％？	4
0．\％こ	0．002E2
$\because 6 \%$ \％	0.650
0.0020	\therefore
－6．002－7	$0.20=5$
－ $500 \mathrm{~g}=5$	0.024
－ a	0.00
0．032	G60こ
$\because 806$	2．60－82
6．06se	0．00こ2
0.6050	$0.60: \%$
\％\％\％	\bigcirc
$\square .0600$	0.

E

5

[^5]
CASE 3

ㅍ．7

On005	
0.5050	
0．6ここう	0．80？
	9．50－\＃7
－Bug\％ra	O． $6: \%$
G．	2.50%
50854	
$9 \ldots 003$	
O．b00z	－0安
¢ ¢－\％	B． $6 \dot{4}+$
0．605：	0．06\％
－0．0038	－¢0\％ 0^{3}
－6asag	の．0゙こご
－¢COTA	¢．ららごき
－0．0ㄴ0．	O．05－
－6．00＝40	O．COE2
－0．00270	O．02ここ2
9．0．22	$\square .00 \pm 5$
0．6昗	0.0665
－6，	6． $\mathrm{Sa}_{6} \mathrm{z}$ ？
6\％	
\therefore Oビご	\square－6\％
－－0こここう	0．0ごシ
－6\％\％す	
－－¢0゙心	O．006\％
二．0゙っこも	O．5c忥
－5．06ここ	O．05ここ
9．60274	
0.090%	－－－
－6．00－2	－GJTas
－ 0.0020	O．5．0ここ
0．00゙54	0.00%－
－6．00ご気	0．00ごこ
－5：	－500－3
－\％060	O．
．$\quad 8.4$ ？	－心6゙ごこ
0． 6 Oここ	¢，ひごごら
\therefore E0－ 2	－い心ご？
O．00\％	9， 50
6，Wirs3\％	－cot＝i
O．03A－4	0.00%
－ジ吅？	0． 0 \％
0.0 atat	－心0こご
－－． 0.0	2．00ごごご
－0．006\％	O． 0^{6}
9．06is	O，心－
c．00ごこ	6． 06 ¢
－600\％	
－602\％	C．00゙ら
－-0.04	
O．030	0．00゙心
$\because 0.0$	On 天
¢－\％\％	

シーM
$5:$

$$
\begin{array}{r}
0 \\
-0 \\
0 \\
0 \\
0 \\
-6 \\
-0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-0 \\
-0 \\
-0 \\
0
\end{array}
$$

$$
\begin{array}{ll}
-60 & 0 \\
-0-20 & 0
\end{array}
$$

$$
\begin{array}{ll}
6020 & 0.004 \\
60 y=0 & 0.002
\end{array}
$$

$$
0.00 . E=
$$

$$
-2.0205
$$

G6094

$$
0.504 z
$$

$$
\begin{array}{rr}
-605 & 0.050 \\
\therefore-6-20
\end{array}
$$

$$
-6
$$

$$
8=0
$$

$$
-6.65
$$

$$
\begin{aligned}
& 0 . \cot \\
& 0.000
\end{aligned}
$$

$$
-3.030
$$

$$
\therefore \bullet-2=2
$$

$$
\text { - }-20
$$

$$
\begin{aligned}
& 10-E 0 \\
& 0,0
\end{aligned}
$$

62-

$$
0.500
$$

-

く．ン2こ．
0.50 .90
－
－ 02.77
C－E

$-608=7$
-606
$6.66=7$
$\because 6 \pi 1$
0.0200

ッ．

0.668
$\square \mathrm{Baco}$

G.

$0.02=$
00000
－0．06：21
0.05478
0.10040
$-0.0 .850$
0.00320
－0． 2×42
－ 0.04 ± 1
－0．00ce
－8ごご
cosent
\therefore OESE
－9，
－6．80ㅋ％
－3．0500
－5．0375
－ 0.00 .0
－0．0E7
－00ご
$\square 6054$
0.0835
4.02045
0.02504
0.04 .5
－5．25057
0．00．4．
$0.035 \cdot 8$
6.20034
－0．0
－0．60．675
0.00004
－0．0EEz
0．05．2う
－1． 28
C．02\％
2．0．cit
0.005%
0.0577
－0．020 07
－0．1273
0.05085
0.80 .58
－0．061：7
0．46122
0.8903
0.6502
0.020
－0．0．657
－0．0－00．
．0614．4
0.06 F

0．03：41
0.0430 .3
0.085
$0.08 \geq 14$
0．00．43
$0.05-4.3$
0.64
0.058
$0.0-2 \div$
0.04205
0.050%
0.65 .40
0.0 ¢\％
$0.04 \div$
$0.5 \pm=0$
O．0EこE
0.0757
0．0こミママ
0.044
0.0445
O．085：
9． 0.48
0.6400
2， 0×4
0.04 A 5
0.0 ceio
0.95450
0.0 －0\％4
$0.04 \% 7$
0.0500
0.14%
0.15844
0．03こ01
$0.00-2$
0．0ヶ\％
0.0700
0．0\％－2
0.04480
0.0 E®
0.076 .3
0.06 － 0
0.0595
0.0608
$0.0 \div 8 \bigcirc$
C．0．644
G．0．ES！
O．0．0．4
0.2 .801
$0.0 .40 \%$
$\therefore .06201$
0.030 .8
6.07048
0.03544
C．OE

0.00208	0.00252
0.0258	0.01273
0.00080	0.00322
0.60002	0.0050
－0．0035	0.00001
－0．00202	0．0000
0.00 .5 .5	0.0023 ？
9．00927	0．00E5
E．O－-2	$0.008=9$
－．0．0－5	$0.323=2$
$0.0-304$	0.60 .97
O－roze	0.002 ± 2
5.6024	0.00232
－0．00．0こ	9．65E：
－9．0057	0.003 ± 3
0．027E	0．60\％
C．rozeo	5， 0.02
0．0土50	0.60507
O－0．095	$0.00=51$
0.02034	0.0025
－60009	0.00 ± 5
5.0050	O．6059
$4.000{ }^{2}$	－00ここ？
－5．0．05	$0.00 \mathrm{E}=$
－ Co －05	$0.50 \leq \pm 0$
－9．0心－	0.0005
－6， 6 年	0.0002
－， 258	O．0085
－3， 054	0.60532
－こ．うご坛	
－6．006－5	0.654
6．00こら	いつこここ
C．00ご方	$0.60: 53$
－ $0.00=0$	$0.002 E 2$
2．00\％0	0．607\％？
－$-00=$	0．03Ex
\therefore－	0.005 E
－0．02－7	0． 0 －2
－0．0以うこ？	0.00508
$0.800=$	0.604 E
－ 0.0005	0.0025
C－6\％－3	$0.023:$
$60-23$	$0.005: 5$
－006\％4	0.00 as：
B．00：5．	0.0043 S
0.005	0.002 －
0．0．78	0.2054
－ 0 －	0.0650
－606－74	0.0175
－-23	0.005 －
6．0．37	c．00E02
0.0027	$0.00=2$
c．0024？	0.000 .3
－0．000：	0.002 E
E．E0034	$0.00 \% 50$

（10．0．

0.03573	0
0.02 .72	0.
O．6idaj	$0.003=$
$0.000 \% 4$	0
0．0．0874	0.60
－0．20535	$0 \cdot 202$
U．custa	0.60
0.000%	$\because \mathrm{O}$
－0．0．－44	0.50
0.004	0.
0.66 .040	0.6
0．00474	0
－¢0ここの	0.0
0.00508	C．
二， OE E	－．
0.065	C－2：
$0.5 \therefore 2 \mathrm{Br}$	0． 0.0 E
0.645	0.0
	0.6
－0．0．00\％	0.
Q，Ex－23	0.50
6．00\％	－
－ 2.6050	2．60\％
$0 \cdot 3 \pm 5$	9.50
\＆，	0.50
0．5－5	O．0
0．30－00	－
0.38 安	¢
\therefore ¢\％	－
8， $0=0$	6.92
C．Coz	0.50
O．	6
－6－5900	5
－GE－2\％	0.
－6．05\％	
$\therefore .000$	0.5
0．00こ5	0
ancers	$\underline{\square}$
0.0020	0.6
－E－E	0.5
の日心．0゙	
－8509	－
0.0605	
－0．00\％	0
¢，0\％－2\％	
6.0437	－
－600－5	0
－6．c．aj	0.60
0.05 y	6.0
$\therefore 006$	0
0．40\％ 5	
0.00630	
0.00 .5	c．
－csem	0

0.00050	$0.0043=$
0.60007	0.002 C
-0.006\%	$0.00=-3$
0.005E	0.0020.
0.00506	0.0055
0.0015	0.00203
-0.00.5is	$0.00-5 ?$
0.0050	0.0023
0.60000	$0.00=3$?
0.0050	$0.005=$
9.00018	0.602 E
0.0096	0.0028
0.00018	0.00272
$0.0007 \pm$	0.0023
0.00205	0.00238
-0.00.07	0.002
0.00.8i	$0.00=3$
0.00 .05	0.00 ± 5
- 0.064	3.0053
-0.006-4	0.0020
-0.02\%38	0.0052
0.0002	$0.602=$
0.0005	0.602-7
-0.0003E	0.00252
-0.00033	$0.00=5$?
0.002 E	0.02 OE
-0.00:32	$0.00=52$
-0.00-20	0.0025

[^0]: "... clearly part of the process of defining effectiveness
 is by results ... [but] success also has a time dimension.

[^1]: " Depth. Every search is characterized by a depth n, which is the number of steps from start to finish. If a problem has no solution, n may be infinite. If a problem has multiple solutions, $n_{\text {_may }}$ vary for different search paths.

 Branching Factor. At each step in the search there may be many possible ways to proceed. The branching factor k is the number of options at each step.

 Direction. A search may be data-directed when it goes forward from the original data, it may be goal-directed when it starts at the goal and goes backward, or it may be bi-directional when it does some searching from both ends.

[^2]: * rejects null hypothesis at 5% level.

[^3]: * null hypothesis rejected at 5% level

[^4]:
 alatan

[^5]:

