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ABSTRACT

Recent applications in the use of light gauge steel
members have been concerned with developing large scale
systems built entirely from cold-formed steel members. An
explicit analysis of such structures is complicated by the
different phenomena that the structure may be prone to during
loading. In particular, elastic buckling phenomena is an
important consideration in the design of such structures
since the load at which buckling occurs often provides a

close upper bound to the carrying capacity of the structure.

The first part of this two-part thesis (Part I,
Chaptersl-8) has been devoted to general methods of analysils
of the torsional-flexural buckling of thin-walled structures.
A review of previous investigations and the available methods
of solution is presented. A general finite element formulation
of the torsional-flexural buckling of thin-walled structures
has been derived. The resulting elastic geometric matrix can
be used to analyse structures with monosymmetrical members.

It also includes the effect of sectorial-monosymmetry for
cross-sections without any axis of symmetry.‘ A general trans-
formation matrix has been developed to allow for the applica-
tion of the finite element method to the three-dimensional
elastic stability analysis of space and portal frames. The
validity and accuracy of the new finite element formulation.
have been checked by analysing a number of different elastic
lateral buckling problems for which exact or highly accurate

solutions by other techniques are avallable.

An experimental program was carriled out on simply
supported cold-formed steel z-beams. The first part of this
program was undertaken to check the validity of the finite
element calculations of the bimoments caused by nonuniform
torsion. The second part was devoted to elastic lateral
buckling of z-beams under combined bending and torsion.



The second part of this thesis (Part II, Chapter 9)
deals with the analysis of hipped roof structures with
corrugated steel roof sheeting. A simple theoretical model
has been suggested. The model has been used to perform an
elastic linear analysis of the behaviour of two types of the
hipped roof structures. The theoretical results are

compared with previous experimental results for these two
structures.

113
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CHAPTER ONE

INTRODUCTION

The conventional analysis of linearly elastic
structures carrying static loads is always performed under
the assumption that stable equilibrium exists between internal
and external forces. This includes neglecting the reduction
0f the stiffness due to the change of the structure geometry.
However, with the increase in the value of the static load
the structure may be prone to the effect of one of the stabi-
lity phenomena. A condition of instability exists when the
structure starts to lose its stiffness. This is characterised
by the fact that the deformations of the structure correspon-
ding to a given load factor can reach infinite values for
arbitrarily small (infinitesimal) load increments. If the
entire structure remains perfectly elastic until buckling
commences, this type of buckling is called elastic buckling.
The load level at this stage is defined as the elastic
buckling load or the elastic critical load.

In the fundamental case of buckling it is assumed
that a thin-walled long column with open cross section buckles
by flexure in the plane of the least rigidity. However,
under uniform axial compression a column with cruciform cross
sectional shape buckles torsionally while its longitudinal
axis remains straight. In general, buckling of columns takes
place in a combined torsional and flexural mode. -The in-plane
displacements of the cross section can be analysed as a trans-

lation of the shear céﬂter and a rotation about it.

A beam bent in the plane of the greatest flexural

rigidity may buckle laterally in a similar manner. The
flexural-torsional buckling load may represent the ultimate

strength of thin-walled unbraced beams.

For more than 25 years the common use of cold-formed
members in building has been almost limited to secondary
systems such as the roof purlins and the side beams of steel
frameworks. The use of cold-formed steel members for primary



systems, such as portal and space frames has been comparatively
rare. This may be due to the lack of information concerning
the behaviour of such structures and the need for theoretical
techniques to analyse the different phenomena that may occur
during loading. However, recent applications have been
concerned with developing steel portal and space frames built
entirely of cold-formed members.

The design of plane frames built of hot-rolled
members is often based on the in-plane behaviour alone. For
such consideration to be valid, the resistance of the frame
to the out of plane displacements must be sufficieﬂtly high.
Light gauge steel portal frames, however, have a high tendency
to twist, warp, and buckle laterally under in-plane loading.

Torsional-flexural buckling is an important consideration in
the design of such frames.

Although the torsional-flexural buckling of single
span and continuous beams has been extensively studied, little
has been reported about the torsional-flexural buckling of
plane and space frames. Most of the studies carried out in

this field were limited to certain frame shapes and special
loading conditions.

The finite element method is well recognised as a
powerful technique to be used for the linear analysis of
complex and irregular structural systems. During the last
15 years, the method has been extended by many investigators
to deal with torsional~flexural buckling problems. However,
the application of the method has generally been limited to

single span or continuous beams.

The study reported in the first part of this thesils
(Part I) was undertaken in order to establish a finite element
formulation for the torsional-flexural buckling of thin-
walled beams, columns and frames. The new formulation was
aimed to be applicable to any cross sectional shape.

The first part of this thesis (Part I) contains eight
chapters. An introduction is presented in the present
chapter. Chapter two is devoted to three main items, namely,




a) Review of the general theory of the torsional-

flexural behaviour of thin-walled structures.

b) Methods used to analyse the torsional-flexural
buckling.

c) Review of previous studies on the torsional-

flexural buckling.

The derivation of the new finite element elastic
stiffness and geometric matrices is presented in chapter three.
The derivation is based on Vlasov's concept (1) of the
torsional-flexural behaviour of thin-walled structures. The
chapter also i1ncludes a new transformation matrix for the

three-dimensional buckling analysis of plane and space frames.

Chapter four presents a review of the different
techniques used to predict the critical load from the elastic
instability equation. It also includes the illustration of

the finite element computer program used in this study.

Chapter five 1s devoted to the calculations of the
bimoments caused by the nonuniform torsion of a thin-walled
structure. The finite element solutions for a number of
problems are compared to closed form, highly accurate
solutions and to experimentally determined bimoments.

Chapter six presents the results of a theoretical
study made by the finite element method to examine the
validity and accuracy of the new formulation. Finite element
solutions for a number of previously presented problems are
given with the comparison with other solutions of these

problemns.

Chapter seven deals with the lateral buckling of
simply supported cold-formed Z-beams with end warping free.
An experimental program was carried out to test five of these
beams under different types of bending and torsional loading.
The measured values of the displacements and critical loads
are compared to the corresponding finite element solutions.

The observations and conclusions of the present

study are given in chapter eight.



CHAPTER TWO

Torsional-Flexural Buckling of Thin-Walled Structures

2.1, UNIFORM AND NONUNIFORM TORSION

A thin-walled member exhibits warping displacements
when 1t is twisted by uniform torque if the flanges at the
end cross sections have no longitudinal restraint. Under
such conditions warping is the same for all cross sections and
the only stresses produced are the shearing stresses at each
cross section of the member. The warping of the cross section
of a twisted I-beam is shown in fig. 2.l1l. During twisting,
plane sections do not remain plane, only the web remains plane

while the flanges rotate bodily in two opposite directions.

If some longitudinal restraint is applied to the
flanges at any cross section, or if the torque varies along
the length of the member, the flanges will then -be forced to
take up a curvature 1n the longitudinal direction. As shown
in fig. 2.2, where a cantilever beam 1s twisted by a concen-
trated torque T applied at the free end, the curvature  of the
flanges varies along the member and the flanges appear as
being under two equal,but opposite bending moments,acting in
their own plane. The combination of the two bending moments

induced in the flanges as a result of the nonuniform torque
is called a bimoment. The longitudinal stresses caused by
the bimoment can be very large and must be considered in the

analysis. At any cross section the acting torque T can be

divided into two parts:

a) T, due to St.venant shear stresses, and

b) T, due to the normal stresses induced by the bimoment.

The preéent chapter contains three main parts,

l. Review of the general theory of torsional-flexural
behaviour of thin-walled structures.



2. The different methods which can be used to analyse
the torsional-flexural buckling of thin-walled
structures and the validity of each method.

3. Review of the previous studies carried out to analyse

the torsional-flexural buckling of thin-walled

structures.

2.2. COMBINED TORSIONAL-FLEXURAL BEHAVIOUR OF PRISMATIC MEMBERS

2.2.1. Basic assumptions

The basic assumptions of the theory of torsional-
flexural behaviour of thin-walled prismatic members as given
by Vlasov (1) are:

a) The material of the structure is perfectly elastic.
b) Small deflection theory is adopted.

c) The member retains its cross-sectional shape while
undergoing all deformations during loading but may
warp perpendicular to the plane of the cross section.

d) The shear deformations of the middle surface of the
member can be neglected.

2e2 el Torsional-flexural behaviour of prismatic member

The subject prismatic member with an arbitrarily
chosen cross section is shown in fig. 2.3. The member 1is
defined with respect to a rectangular co-ordinate system
which is right handed. Axes y and z coincide with the two
principal axes of the cross section while x coincides with
the longitudinal centroidal axis of the member.

The in-plane displacement of an arbitrary point m

with co-ordinatesy and z (fig. 2.4) can be represented by the

two components v, and w_ in y and 2z directions respectively.

These two components are given by,

v, = V- (Zo - 2) 0, (2.1)

LA W+t (yo - y) ex (2.2)



in which,yO and zZ, are the shear center co-ordinates, v and
W are the displacements of the shear center and Gx is the
angle of twist of the cross section. The two in-plane
displacements v and w_oare replaced in fig. 2.5 by another
two components, tm in the direction tangential to the cross
section at m and n_din the direction perpendicular to the

tangent.

The tangential component t_is given by,

t

m V sin a + w cos o + H GX (2.3)

where,

H = (y_,-y) cos a - (z _-z) sin o (2.4)
The shear strain at point m in the middle surface is given by,
= e— g
YSh - T 38 (2-5)

where, U 1s the longitudinal displacement at point m.
Applying the fourth assumption of the theory, the shear strain
Ysh can be set to zero, hence,

ou ot
nl - m

Substituting for tm from equation 2.3 ,and integrating with
respect to s from s = o to s, the expression of the

longitudinal displaccnent u becomes,

u =u_v?z-\?‘y-§x[HdS (R.7)

where, u_ is the displacement, in x-direction, of point p
from which 8 is measured, 2z and y are the Cartesian

co=-ordinates at point m, w and v are the first derivatives

of the shear center displacements with respect to x axis,



.

and 6,1s the first derivative.of the angle of twist Gx with
respect to x. The first three terms of equation 2.7 represent
the effect of the axial load Px’ bending moment M_ and bending
moment Mz acting at the cross section. The fourth term of

equation 2.7 represents the warping displacement caused by
the nonuniform torsion.

S
The integration d[ H ds is known as the sectorial

co-ordinate of point m.

2ele3. Sectorial proporties of the ceross section

2e2.3.1. Sectorial co-ordinate (w)

As shown in fig. 2.6 the sectorial co-ordinate w

m
of point m

represents double the area swept by the radius r
when moving along the middle line of the cross section from

&

the origin' p where s = o up to point m. The sectorial
co-ordinate 1s taken positive when the radius r is rotating

in the positive direction,that is to say counterclockwise

about the shear center The distribution of the sectorial

co-ordinates for a Z-cross section is shown in fig. 2.7.

2.2.3.2. Sectorial static moment of area

The sectorial static moment at m on the middle line
of the cross section is given by,

S
W = ‘r w dA (2.8)
@)

In which, A is the area of the cross section.

As for the Cartesian co-ordinates,the principal origin g of
the sectorial co~ordinates is the point on the middle line of
the cross section at which %u = 0. The actual values of the

sectorial co-ordinates can be calculated with respect to this
origin.



- 2.2.3.3. Second sectorial moment of area
{(warping constant)

The warping constant is a geometrical characteristic

of the cross section and is given by,

I = ‘fraz A (2.9)
A

where,w is calculated with respect to the principal origin of
the sectorial co-ordinates g.

It can be concluded that,in the theory of thin-walled
structures,any point m on the middle line of the cross
section 1s defined by the three co-ordinates y, z and w. The
statical moments of area which are required to calculate the
shear stresses at m are S , SZ and S . The corresponding

J
second moments of area for the cross section are Iy' IZ and Iw'
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First order equilibrium egquations of combined

torsional-flexural behaviour.

The differential equations of equilibrium describing
the first order torsional and flexural behaviour of a thin-

walled prismatic member are,

du .
EASE = P (2.10)
AL
d7v
-— A ——— — 2-11
E I " a, ( )
A
d7w _
- R Iy 4 — qz (2112)
a6 dABx ‘
GJ X - FE T 7 = mx (2.13)
2 W dx

dx

In which, Px is the normal force in x-direction, qy and q, are
the uniformly distributed loads in y and z directions respec-
tively and m, is the acting torque per unit length.



2.2.5. Basic theory of torsional-flexural buckling

The beam-column with doubly symmetrical I cross
section shown in fig. 2.8 is loaded by a ceniral thrust P
with biaxial eccentricities e, and ey which are constant along
the length £ of the beam. If the initial deflection,due to
the bending couples,is considered as very small, the second-
order effect of the central thrust Px on the bending stresses
can be neglected and the normal stress at any point is given by,

£ =_I?E.__X_I_Y__..x_l.?._ (2.14)
Z Y

In investigating the stability of the initially
deflected beam, Timoshenko (2) assumed that up to the moment
of buckling the beam is essentially in a state of flexural
equilibrium. At the moment of buckling, however, additional
deflections are produced and the beam passes to a new form of
equilibrium which 1s flexural-torsional.

By calculating the intensities of the distributed
lateral loads and torque produced by the initial compressive
stresses when acting on the slightly displaced cross section,
Timoshenko (2) presented the differential equations of

equilibrium for the flexural-torsional buckling of the beam.
These equations are,

A 2 2
L, S5 +p S o Y% - (2.15)
dx dx 3 2
A 2 2
g W L p d7w p o 479 _ g (2.16)
y dx X dx2 X ¥y 2
T 29% _(gr-Pp. 10)® °x + P e_d°v - P e_dw = o (2.17)
W 7 X = 2 X 2 2 £ J T5
dx A dx dx dx

where, in addition to the previously given notations, the
constant I0 represents the polar moment of inertia about

the shear center.
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Vlasov (1) showed that if a longitudinal force Px'
is applied to the cross section at a point where the sectorial
co-ordinate @ is not equal to zero, this force can produce
bimoments. He added the normal stresses caused by the
bimoment to the three terms in equation (2.14) and studied
the torsional-flexural buckling of the beam when the initial
form of equilibrium is torsional-flexural. Vlasov's concept
for the general case of torsional-flexural buckling is the
basis of the new finite element formulation of the torsional-
flexural buckling of thin-walled prismatic element presented

in chapter three of this thesis.

2.3, METHODS OF ANALYSING ELASTIC STABILITY PROBLEMS

2.3.1. General

Methods used to analyse the elastic stability
problems of thin-walled structures may be classified as
equilibrium methods, energy methods and numerical methods.
Equilibrium methods are based on the solution of the differen-
tial equations of equilibrium which represent the buckled
form of the structure. On the other hand, energy methods and
numerical methods do not require the solution of the differen-
tial equilibrium equations.

2.3.2. Equilibrium methods

The differential equations of equilibrium representing
the elastic lateral buckling of a given thin-walled structure
are linear and homogeneous. The coefficients of these equations
depend on the geometric and elastic characteristics of the

structure and on the load factors.

There are two procedures to derive the differential

equations of equilibrium:

a) By calculating the internal forces caused by the
ijnitial stresses of the loading system when acting
on the slightly displaced member and considering the
equilibrium between the external and internal forces

at the moment of buckling (1,2).
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b) By applying the principle of stationary energy and
using the calculus of variations concept to derive
the differential equations of equilibrium from the
energy expression (3). |

The methods which can be used to solve the differential
equations of equilibrium may be classified as exact (closed
form) methods, and approximate methods.

2.3.2.1. Exact (closed form) solutions

If a single load parameter is considered, the
coefficients of the differential equations can be expressed
in terms of this parameter. This parameter,together with the

deformations,are the unknown quantities of the equations.

The exact solution of the differential equilibrium
equations is based on choosing suitable functions to
represent the deformed state of the structure. These functions

must satisfy the boundary and loading conditions of the
structure.

After substituting the assumed functions 1in the
equilibrium equations and constructing the matrix of the
coefficients, the determinant of this matrix is considered as

the stability criterion.

One of the few examples of elastic torsional-flexural
buckling of beams that can be solved exactly,is that of a
simply supported I-beam carrying a thrust P_ with eccentricity
©y which is constant along the length 2 of the be.m. The
differential equilibriym equations for this case can be derived

from equations 2.15-2.17 (section 2.2.5), and these equations

becone,
4 2
B1, &7 + P SX =0 | (2.18)
2 dx £ dx
yA 2 2 _
d¥w d%w d“6 = o (2.19)
EIy_——z~+ Px —5 - Pxey X
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/ I .2
e 9 9% _(ar - P_ —9yd 0, _p e d%w = o (2.20)

The end conditions for a simply supported beam are:

V = W = Bx = 0 at z = o and 2z = 2 (2.21)
2
2 2 d 06
-@-—12’-=g—-g=——§)-{-=o at z = o and z = & (R.22)
dx dx dx

These conditions are satisfied by taking Vv, W, and

Bx in the forn,

— s X — . X - 0 SX
v = A,sin T 2w Azsln 2 .’Bx ABSln 0 (2.23)

Substituting by these functions into equations
(2.18),(2.19), and (2.20) the differential equations of

equilibrium become,

ﬂ2 |
(EIZF - Px) Al = 0 : (2.24)
1T2
(EIy-;—z- - Px) A2+ PX- ey-AB = 0 (2.25)
1T2 | IO
Px'ey'A2+ (E%Dj;i + G - PX_K-)AB = 0 (2.26)

The first of these equations (eq. 2.2,) shows that
the buckling in the plane of symmetry is independent and the
corresponding buckling load is the same as the Euler load.
The second and third equations (eq. 2.25 and 2.26) show that

the lateral buckling in the xy plane and the torsional buckling
are coupled. The corresponding critical load can be obtained

by equating to zero the determinant of these two equations.
This condition is given by,
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A = = 0 (2.27)

in which,

2

2
m A L
-_— A —  e—— + S——— .
Fy = BI, T Fo =T-(ET, + GT-5) (2.28)

By expanding the determinant A,the equation from
which the critical load can be calculated is given by,

2

- K + = o
Px KPX(Fy+F¢) KFy F¢ O (2 2?)
= l02 2 Io
where K = — 5 5. and io = 5 (2.30)
(1,7-e,7)

The smallest positive solution of equation 2.29
gives the critical buckling load.

Unfortunately, exact (closed form) solutions of the
differential equations of equilibrium are comparatively rare
and limited to simple structures. There are, however, some
approximate methods to solve the equilibrium equations and

these methods will be explained now.

roximate solutions of the differential

equations

a) Infinite series solution

In some cases the solution of the governing differen-
tial equations of equilibrium can be carried out by assuming
a suitable finite series to represent the deformations. This
series must satisfy the loading and constraint conditions of
the problem. The accuracy of the method depends on the
number of terms taken from the series. Timoshenko (2) used
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the method to study the lateral buckling of an I-beam
subjected to a concentrated load. He used a trigonometric
series to represent the angle of twist Gx. In another
application Trahair (4) showed that a Taylor series expansion
can be used to express the twisted shape Gx of the buckled

beamn.

b) Iterative integration method

Another approximate method for the solution of the
differential equations of equilibrium is the iterative inte-
gration method. The method is known as the Stodola-Vianello
method (3) and is sometimes called the successive approximation
method.

The method is based on integrating numerically the
differential equations of equilibrium starting from an inijtial
approximation for the deformed shape of the structure. This
assumed shape must satisfy the boundary conditions. The
numerical integration of the differential equations of
equilibrjum results in a new improved representation for the
deformed shape of the structure. Then the procedure can be
repeated to obtain a third estimate for the assumed function.
In this way a series of functions can be generated, where
each function corresponds to a certain value of the buckling
load. The procedure can be continued until the desired
accuracy is obtained. The applications of the iterative
integration method have shown excellent agreement with the
closed form solutions for beam and column stability
problems (2,3,4).

c) Finite difference solution

The finite difference method is an approximate
method for solving complex differential equations. The
method can be applied to stability problems to give approxi-
mate values for buckling loads in some cases when the
differential equations of equilibrium cannot be solved in
closed form.
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The method is based on replacing the differential
equations,which is applicable over a certain range of an
independent variable x ,by a finite number of algebric
equations, one for each of a number of points within the
range of x. At each point, the differential operators of
the dependent function f(x) are represented by finite
difference approximations which can be given as combinations
of the values of f(x) of neighbouring points,assuming some
polynomial shape for the f(x) values. The boundary conditions
of the differential equations are represented 1in the same way.
The solution of the resulting homogeneous equations gives the

desired unknowns of the problenmn.

The application of the method to buckling problems
can be demonstrated by analysing the lateral buckling of a
simply supported I-beam loaded by a uniform bending moment

M (3). The governing differential equation of the buckled

form of the beam is given by,

L 2 2
e, &5 -6 S35 - M5 -, (2.31)
dx dx y

The boundary conditions are,

d% 6
g = — =0 at X = o and x = A (2.32)
dx

Dividing the span £ of the beam into n equal
parts of width b = £/n the values of 6 at the end and interior

points are given by,

60161,62, ¢o o ,Gi_l,ei,ei_l_l’___ ’en-l’en (2.33)

If the interval width b 1is chosen sufficiently
small,the slope of the function 6 at the ith point may be
approximated by the slope of any of the two straight lines
AB or BC (fig. 2.9) and then,
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6. 0O, 0. 6
_i- } -1, i+l - Vi
( )l(lEfty- ( )1(r1ght)' b - (2.34)
326 a%6
The differential operators =— , and A at the ith point
dx dx

can also be given by,

a%6 O541 - 293 * 959
(—%); = ——— (2.35)
dx b

< b Be.n = 4 Capq 68, = 4 S, - T8, _

(E_%){ = _;:3______A;é__z___&______&_i___i_é (2.36)
dx™ = b

Substituting the approximate values of the differential
operators in the differential equation (eq. 2.31), the

difference equation which is valid at any point i 1is

given Dby,
ei+2 - K1ei+1 ¥ Kzei B Klei_l * ei_g = 0 (2.37)
6T 2%
where Kl =4 t =/ (2.38)
EI n
W
2 2 4
and Ko = 6 + 2 GJ ¢~ _M_2 (2.39)
< ET n° E°I I n”
W T Wy

and the boundary conditions give,

6 =06_ = o | a-l - -el and en+l B en'l (2.40)

Equation 2.37 is valid at n-l1l points. It represents
a system of linear homogeneous equations in the n-l unknown
values of the rotation Bi. The approximate value of the
buckling moment M, can be calculated by setting equal to zero
the determinant of the coefficients of these equations.
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The accuracy of the solution may be improved either
by increasing the number of intervals into which the span &
1s divided or by improving the accuracy of the representation
of the differential operators. However, each of these two
modifications increases the labour of solving the simultaneous
equations and makes the method unsuitable for hand calculations.
A finite differences computer program can then be developed to

obtain more accurate results.

d) Finite integral solution

The finite integral method is an approximate technique
for solving complex differential equations. The method is
based on considering the differential equation as an integral
equation in the highest derivative of the dependent variable
f(x). As for the finite difference method the length & of
the beam is divided into a number of equal parts n of width
b where b = #/n. The integral equation is then replaced by
a finite number of homogeneous equations one for each point.

The dependent variable f(x) and its lower derivatives are
replaced by a combination of the values of the highest deri-

vatives of f(x).

The application of the method can be illustrated by

analysing the lateral buckling of a simply supported beam with
a narrow rectangular cross section loaded by uniform
bending moment. The governing differential equation 1is

given by,
2 -
d2+K08 = o (2.41)
dx
where » K = szGJ-EIy (2.42)

Equation 2.41 can be rewritten in integral form,

X
R+E(J’IRdxdx+Ax+B)= 0 (2.43)

O
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where , R = —>

The constants of integration A, and B can be deter-
mined from the boundary and symmetry conditions. These

conditions are,

O = 0o at x o and (%g- =0 at x = 2/2 (2.4L4)

Substituting these two conditions in equation 2.43

gives,
2/2

A=-JRdX and B

O

(2.45)

"
O

As in the finite difference method, the function R
may be approximated by a parabola fitted to three adjacent

values of R; this parabola is given by,

2

R = ax™ + bx + c (2.46)
in which,
R. - 2 R.+R. R, - R
4 = i+l 5 i “i-1 , b o= i+l 1f1 - 2a x, and .,
2b 2b
c= R, - a x° - b x (2.47)
i i i
The integrals of 6 are given by,
>3
_ b _
J R dx = 15 (5 Ri-l + 8 Ri Ri'l'l) (2.48)

X3j-1
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_ b
J R dx = ) (Z*Ri-l + 16 R; + 4 Ri+1) (2.49)

By méking the second integral of the function R and
substituting in equation 2.43 the integral equation becomes,

QO N
O
|....l
(7
<

O
-
RE
{3,
m
ck
S
|
)
‘O
0O
j-4
'3

3 ¢l

r h

|
M, can te czlculzted by eguating to zero the

LY

a systen c¢f line
buckling mozernt
deterninant of the coelficisnis of these equations. More

details gbout the applicaliicns of The method to the stability

problems can be found in references 5, 6, and 7.

2.3.3, Energv methods
2.3.3.1. General

The use of the energy method to solve the problems of
elastic stability is based on the principle of the stationary
value of energy which characterizes the equilibrium condition
in an elastic system. This principle can be stated as: "the
amount of total potential energy of an elastic structure does
not change when the siructure passes from its configuration of
equilibrium to an infinitesimally near adjacent configuration'.

This can be expressed as,

U=0_+V = Stationary (2.51)

where,

U is the total potential energy, Uw is the potential
of the applied load, and V 1is the strain energy.

Equation 2.51 can be rewritten in the form,

SU. + 8V =6 (Uw + V) =0 (2.52)
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in which, GUW is the increase in the potential energy of the
acting load and is equal to minus the work done by the load
during the virtua’ displacement, and 8V is the increase in

the strain energy of the structure.

The use of the method to solve stability problems

often leads to approximate values of the critical buckling
load. The solution depends on using approximate deformation -
shapes that satisfy the boundary conditions of the problem.
The accuracy of the solution depends on how close the assumed

deformation shapes compared to the exact ones.

Timoshénko (2) was the first to use the energy method

for the approximate solution of elastic stability problems.
At about the same time, Ritz (3) published his general method

for the direct solution of minimum problems in mathematical
physics. Ritz's method is quite general and it has many
applications in stability problems. The method was later
extended and refined by many investigators (3). The applica-
tion of Ritz's method to elastic stability problems is

illustrated in the next section.

2¢3.3.2. The Ritz method

Considering the elastic lateral buckling of a simply
supported beam with narrow rectangular cross section loaded
by uniform bending moment M, the total potential energy U is

given by,
L L
3°9 2 M= 36\~
U = GJ (—=) dx - T (""';{') dx (2.53)
o X | J o0

The angle of rotation 6, can be expressed by the finite series,

B, = byl + byu, +:o0 et DY (2.54)

where,y-terms are arbitrarily chosen functions of x called
co-ordinate functions. These functions must satisfy the same
boundary conditions as the angle of rotation Bx. The b-terms

are a corresponding set of parameters.
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Substituting from equation 2.54 into the energy
expression (eq. 2.53) the total energy U can be given by,

2

_ M
U = fl(bl, -ubn) - EIy'GJ f2 (bll "tbn) (2-55)

in which,fl and f2 are quadratic forms of the parameters bl.m”
bn which are the variables of the problem. Applying the
principle of stationary energy (eq. 2.52) the stability

conditions are given by,

1,2,  .,n) (2.56)

———-:0

oU (i
1
abi
Equation 2.56hrepresents a system of n linear homogeneous

equations from which the critical buckling moment M, can be

calculated by equating to zero the determinant of the

coefficients of these equations.

The 'accuracy of Ritz's method may be improved by
increasing the number of terms of the finite series taken to
represent the dependent function Bx. However, success or
failure in applying the method depends mainly on the proper
choice of the co-ordinate functions Y. These functions can
be polynomials or transcendental functions. The only
restriction is that they must satisfy the boundary conditions
of the problem. However, in the majority of cases satisfac-
tory results can be obtained only when the co-ordinate
functions ¢ form a system of orthogonal functions (3).

2e3.le Numerical technigues based on the displacement method

2.3.4.1. General

The use of the closed form and energy solutions for

analysing elastic stability problems is 1limited to simple
structures such as single span beams and beam.columns. The

difficulty of applying such methods to solve the more complex
structures,such as continuous beams and frames,arises from the
amount of calculations needed to solve the large sets of the

resulting differential equations.
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The advent of the electronic digital computer has
made possible a completely new approach to deal with large
sets of simultaneous equations. Nevertheless, the matrix
formulation of large sets of equations has long been recognised
as the most convenient way of representing the load-displace-
ment relationship to meet the nature of the routine calcula-
tions involved in computer programming.

During the last twenty five years the applications
of matrix methods have been extended to the analysis of
elastic stability problems. However, most of these studies
have been devoted to certain types of stability problens.
The methods used in these applications can be divided into

two main types, namely,

1. The member stiffness-matrix method (with specific
boundary conditions).

2. The finite element method.

Both methods will now be reviewed and discussed with
regard to their applications in elastic stability probleums.

2e3ehe2. Member stiffness-matrix method

In the conventional analysis of elastic plane frames, the
derivation of member stiffness factors is based on the |
assumption that the member carries bending moments and shear
forces only. On the other hand, the differential equations
of equilibrium governing the second-order behaviour of a beam-
column member, include the effect of the direct axial strains caused
by axial forces. Thus, in comparison to the first-order
stiffness matrix of an elastic member, the second-order matrix
contains the same stiffness factors but modified by multi-
plying factors called stability functions. Values of
stability functions depend on the ratio between the acting
axial force and the value of Euler buckling load.

Credit probably goes to Livesley (8) for being the
first to use the matrix stiffness method to analyse the in-
plane elastic buckling of steel frameworks. He described a
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computer program to carry out the analysis and predict the
in-plane elastic buckling load for two-dlmensional frames

loaded at column tops.

Renton (9) followed the same procedure to derive
the stiffness matrix of the elastic torsional-flexural
buckling of thin-walled members. He used this matrix to
analyse the elastic stability problem of symmetrical space
frames. His method has some limitations as it is applicable

only to certain types of cross sections and to frames loaded

only at the column tops.

Chu and Rametsreiter (10) extended Renton's method
to study the large deflection symmetrical and asymmetrical
buckling modes of space frames. Later, Razzaq and Naim (11),
used the same method to analyse the elastic stability of
rigid-jointed unbraced single-story single-bay orthogonal

space frames subjected to equal and unequal concentrated

column top loads.

Chaudhary (12) based his stiffness matrix on the
closed form solution of the differential equilibrium equations
for torsional-flexural buckling of thin-walled structures
given by Vlasov (1). Aly and Sato (13), however, have shown
in a later discussion of Chaudhary's proposed matrix,that the

accuracy of this matrix i1s subject to question.

The derivation of the second-order stiffness matrix
given by Renton (9) for the torsional-flexural buckling of |
axially loaded thin-walled column,is based on the closed
form solution of the Eulerian differential equations given
by Kappus (14). These differential equations are,

2
A 2 d™ 0
d~v d™7v X
EI S + p (X . 2 ) = o (2.57)
Z dxz* X dx2 O dx2
a4 a2 dzex
EI -— + P (—-§'+ J 5 ) = o (2.58)
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in which,y_ and z, are the co-ordinates of the shear center

with regard to the centroid.

The solution of the differential equations (2.57 -
2.59) for skew or double symmetrical section is given by,

v = vacos‘fzx + vbSin.sz toagx toa (2.60)
W = wacos/pyx + WbSin,Pyx t Byx t BO (2.61)
0 = Bacosh P¢x + ebSithP¢X Fogyx t o (2.62)

where,v_, Vi, W,» Wy 6., 6,5 29, Byy ¥y, @, B, and Y _ are
independent constants of integration which can be evaluated

from the end conditions and,

d

2 _F 1 L L2
= _E_}g_ and ).ld) = BT (GJ - P i) (2.63)

Jr® B )

Y

In solving the differential equations of equilibrium
(2.57-2.59) with the chosen displacement functions (2.60-2.62),
Renton (9) assumed that the joints are sufficiently stiff for
warplng to be heglected. The load acting at the two ends of
the member can then be given by,

My = -P_ (waco€yy x + wbSi%Fy X ) (2.64)
M, = P_ (Vacoffz X + vbsieyz x) | (2.65)
M, = (GJ - P_1%) u, (2.66)
P, = -Py8y » and P = -Pooy (2.67)
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The last four equations (2.64-2.67) define equal and
opposite pairs of moments or forces acting at the ends. The
stiffness matrix of the member can then be given by,

K = (2.68)

where, the submatrices [all] ’ [::112] » .. and [aAA] are given 1in
Appendix A.2.1.

2.3.be3., Finite element method

The finite element method is a numerical technique
whose active development has been pursued for a relatively
short period of time. The method was originally developed to
solve structural engineering problems, but the natural base
of its theory makes it appllcable to problems in many fields

of engineering.

The basic concept of the method, when used in
structural engineering problems, is that a whole structure
can be represented by an assemblage of subdivisions (the
finite elements). A set of displacement functions is used to
describe (approximately) the deformed state of the structuré
in terms of the displacements at the nodal points. The
solution is formulated for each typified unit and then combined
to obtain the solution for the whole structu;e.

il

In the conventional analysis of elastic linear
structure by the finite element method, the energy concept
is often used to derive the first-order stiffness matrix

of the element. The energy concept can also be employed
in elastic buckling problems to establish the second order
load displacement relationship. In elastic buckling problems,

however, the conventional linear stiffness matrix [KE] is
supplemented by another matrix [FG] called geometric |
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(stability) matrix. This matrix represents the elastic
effect of the applied load on the buckling deformations.

For conditions of stable equilibrium, where the load
factor is of a value less than its critical value, the
element stiffness equation given by the first variation of

the potential energy expression becomes,

(P} = [KE]{A} n [KG] (A} (2.69)

in which, {A}is the nodal displacement vector.
Eq. 2.69 describes the second order behaviour of the element.

In elastic stability problems it is usually assuned
that prebuckling deformations have taken place and that the
analysis is being conducted at a near buckling state.

Eq. 2.69 can be modified to, :

(dP} = [[KE] ; [KG]] (da) (2.70)

in which,{dA} is the matrix of vanishing small increments of
the displacements and {dP} is the matrix of corresponding

forces.

At the critical load, more than one equilibrium
state 1s possible and the deformations of the structure
corresponding to a given load factor can reach infinite values
for arbitrarily small (infinitesimal) load increments. Thus
at the buckling stage eq. 2.70 becomes,

I:[KE] RS [KG]] (da} = o (2.71)

whera,{dZ} represents the buckling deformations and Ac is an

instability parameter (eigenvalue).

The analysis begins with a choseﬁ value of the applied
load from which the individual element end forces are calculated
through a prebuckling analysis. The end forces can then be
used to formulate the geometric matrix-[Kdl. The critical
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load is equal to the instability parameter kc times the
chosen value of the load factor. The instability problem
then becomes an eigenvalue problem of finding the instability
parameter (eigenvalue) Ac from the nontravial solution of

eq. R.71. Such solution exists when,

KE t Ac

KGJ = 0 (2.72)

in which,'K I and IKGI are the two determinants corresponding
to the stiffness matrices [ﬁ ] and [Kd] respectively.

The simplicity and broad application potential of
the finite element method to structural stability’problemé
was made clear in g study of the beam-column problem reported
by Rodden, et al (15), in 1963. In the same year Gallagher
and Padlog (16) published a similar study in which they
suggested cubic polynomials to represent the in-plane displa-
cements of the beam-column member. Many applications of the
method to elastic stability problems have since been presented;
however, up to 1969 these applications were devoted to the
in-plane flexural buckling (17,18,19,20).

The extension of the finite element method to deal
with elastic torsional-flexural buckling problems has been
coupled with the growing use of light gauge steel members.
Light gauge steel members, with their low torsional rigidity,
have a high tendency to buckle 1in torsional or combined
torsional-flexural modes. The basic theory of torsional-
flexural buckling has been well established and explained by
many authors (1,2,3). However, the applications of the
theory have been limited to simple and regular structural
systems. The finite element technique provides a very
effective tool to cope with large scale and complex stiructures

such as space frameworks.

Krahula (21) presented a finite element formulation
of the first order torsional-flexural behaviour of thin-walled
elements basing his derivation on the closed form solution of
the differential equilibrium equations. Krajcinovic (22),
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however, was the first to extend the scope of the finite
element technique to elastic torsional-flexural buckling of
thin-walled members. He used the energy method together
with trigonometric displacement functions to derive the
elastic stiffness matrix [Kﬁ] and the geometric (instability)
matrix [Ké] . He concluded that in comparison to the exact
solution the method gives an upper bound estimate for the
elastic buckling load (22,23). |

Barsoum and Gallagher (24) presented a finite element
formulation for the torsional and lateral instability analysis of
beam-column members based on an approximate representation of
the flexural and torsional displacement of the member. They used
the energy concept to derive the elastic matrix [kﬁ] and the
geometric matrix [Ké] . The method showed an excellent
agreement with exact solutions of beam, column, and beam-
column problems (24,25). The same procedure was followed by
many investigators to analyse the elastic torsional-flexural
buckling of continuous beams (26,28), unbraced and braced

portal frames (27), and one bay symmetrical space frames
loaded at column tops (28).

The finite element formulations presented so far
lack generality and consistency. These formulations are
applicable only to members with doubly symmetrical cross
sections. Furthermore, the effect of external bimoment, which
may be of great importance in light gauge steel members, has
not been considered.

In the next chapter (chapter 3), a new finite element
formulation is presented. This formulation is based on
Vlasov's concept (1) of the general behaviour of thin-walled
members. The technique is valid for any cross sectional
shape, and it includes new terms representing the bimoment
influence for sections with no axes of symmetry. |

2ol e LITERATURE REVIEW OF PREVIQOUS STUDIES OF TORSIONAL=-
FLEXURAL BUCKLING PROBLEMS

2ebol. Single span elements

The elastic torsional and torsional-flexural buckling
of thin-walled columrs loaded by either axial or eccentric
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thrust has been extensively studied and explained by many
authors (1,2,3,29,30). Renton (32) presented the direct
solution for axially loaded thin-walled bars with open

cross section. Studies by Culver (31) were devoted to the closed
form solution of torsional-flexural buckling of simply supported
beam-columns with open cross section. A comprehensive

study carried out by Pekoz, et al (33), on eccentrically

loaded cold-formed columns with single symmetrical open cross
sections, has led to a simple but sufficiently accurate design
procedure for such columns.

The general theory of torsional-flexural buckling of
single span beams with doubly symmetrical cross sections,having
elther simply supported or fixed end conditions,has been
presented by many investigators (1,2,3,34). A comprehensive
literature survey of the work done in this subject has been
presented by Lee (35). . Nethercot (36) has also presented
another survey of the investigations concerning the lateral
buckling of single span beams up to 1970, In addition,
Nethercot and Rockey (37) presented a simple design procedure
for rapid estimation of the lateral buckling loads of simply
supported I-beams. This procedure is based on introducing a
lateral buckling coefficient in the critical moment expression,
similar to the plate buckling coefficient. The prdcedure is

valid for a wide variety of load cases and supporting
conditions.

The superior accuracy of the finite integral
technique,in comparison to the finite difference method,for
solving differential equations was made clear in the important
paper presented by Brown and Trahair (5). This technique was
used by Trahair and Kitipornchai(38) to provide a simple linear
approximation for the elastic lateral buckling load of simply
supported stepped I-beams loaded with central concentrated
loads. In another paper, using the same technique, Trahair
and Kitipornchai(39) reported a comprehensive study of the
lateral buckling of simply supported tapered I-beams. Another
important application of the finite integral  technique is that
presented by Anderson and Trahair (40) concerning the elastic
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lateral buckling of monosymmetric I-beams and cantilevers,
They concluded that "the effect of monosymmetry is such that
the critical load 1s larger when the tension flange 1is the
smaller of the two flanges". Later in another publication
Kitipornchai and Trahair (41) refined the procedure and
provided simple design expressions for the elastic critical
loads of monosymmetric I-beams and cantilevers.

During the last 15 years the scope of the finite
element method has been extended to cover torsional-flexural
buckling analysis. The accuracy of the method has been
confirmed for simple stability problems for which exact
solutions are available (R2,24,25,26). Nethercot and Rockey
(42) used the finite element formulation presented by
Barsoum and Gallagher (24) to analyse the torsional-flexural
buckling of single span I-beams having different support
conditions at each end. They developed simple expressions
for the lateral buckling moment of beams loaded By either
equal or unequal end moments.

More recently Roberts (43) has presented a new
approach to deal with elastic stability problems based on
complete expressions for the strains including second order
terms. The validity of some of these expressions has been
checked by analysing a number of conventional stability

problems using the energy method (43,44). However, it has
been reported that the method can be extended to solve more

complex problems by means of a suitable numerical technique(43).

Lelyelds Continuous beamns

Under working conditions, the majdrity of the single
span beamsdesigned as being simply supported are subjected to
considerable elastic restraintsseither because of the size of

the end connections or due to the bracing system provided to
prevent buckling. These restraints increase the elastic

stability of the beam and may, in some cases, even change the

mode of failure.

The effect of individual end restraints on the
elastic stability of single span beams has been the subject of
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many theoretical and experimental studies. Flint (45)

pointed out the importance of considering the influence of

the elastic end restraints in the design of single span I-
beams. He conducted an experimental and theoretical study of
the effect of elastic lateral bracing on the elastic buckling
load. Flint (45) carried out his theoretical analysis using
the energy method. However, the analysis lacks the generalilty
and is slightly in error, due to the neglect of the warping

rigidity of the I-beam.

In 1955, Austin et al (46) reported a theoretical
study of the effect of flexural end restraints on the elastic

buckling behaviour of single span I-beams under in-plane cases
of loading. The beam was considered fully restrained against
twisting at both ends. They applied a successive approximation
procedure to solve the differential equations of equilibrium
and presented a number of charts for evaluating the critical
load for single span I-beamsloaded with in-plane loading,
provided that the flexural stiffnesses of the elastic end
restraints are known.

Trahair (47) reported an investigation of the influence
of individual symmetrical end restraints on the elastic
lateral buckling load of single span I-beams. The elastic
restraints considered were: major axis rotation, minor axis
rotation and torsional restraints, while end sections were

either free to warp or fully restrained with respect to
warping.

In continuous beam structures, each span is elastically
restrained against bending about major and minor axes and
warping by the adjacent spans (or span) attached to it. The
elastic stability of continuous beams was first analysed by
Salvadori (48), who presented a lower bound approximation for
the elastic lateral buckling load of narrow rectangular
continuous beams. He treated the beam as a serlies of single
span beams simply supported with respect to the minor axis
bending and subjected to external major axis moments at the

supports.



32,

Trahair (49) extended the method used in reference
(L7) to the elastic lateral buckling of I-beam elements with
any combination of symmetrical end restraints provided that
the end twisting is prevented. He presented tables for the
elastic buckling load and proposed an approximate technique,
based on these tables, for evaluating the lateral buckling
load of continuous beams, beams supported by cross beams and
one bay symmetrical portal frames. In another paper Trahair
(6) showed how to calculate the elastic buckling load for
single span I-beams with unsymmetrical end restraint using
the tables given in reference (49).

The interaction buckling behaviour of two-span and
symmetrical three-span continuous beams loaded with either\
central concentrated loads or uniformly distributed loads
and fully restrained against twisting and lateral movement
at the interior supports, has been investigated by Trahair
(50,51). Trahair (50) proposed an approximate procedure to
calculate the elastic torsional-flexural buckling load of
narrow rectangular continuous beams by considering the inter-
action effect between the spans during buckling. For a given
span the procedure starts by reducing the minor axis bending
and warping rigidities of the adjacent spans according to
their in-plane bending moment values. Such reduced rigidities
can be used to evaluate the end restraining effect on the span
under consideration and then the buckling load can be estimated
from previously presented tables (47,49). Trahair (50) also
suggested a much easier technique to evaluate the lateral
buckling loads of continuous beams from a simple interaction
graph. This technique can be expressed for the two-span
continuous beam shown in fig. 2.10.a, by the interaction
graph shown in fig. 2.10.b, in which:

i) point 1 represents the lateral buckling load for
the left span when the right span is unloaded;

1i) point 2 represents the lateral buckling load for
the right span when the left span 1s unloaded, and

11i) point 3 is the point of zero interaction, when the
loading condition is such as to make both spans

critical at the same time.
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In addition, Trahair (51) presented a comprehensive experimen-
tal study concerning the interaction buckling behaviour of
continuous I-beams loaded by central concentrated loads in
order to verify the theoretical procedure given in references
47, 49, 50. He tested a series of high strength aluminium
I-section continuous beams under different combinations of
central concentrated loads. The general level of agreement
between the experimental and analytical results was good.

The studies reported by Hartmann (52,54,55) and
Hartmann and Munse (53) were devoted to the effect of elastic
lateral bracing on the lateral instability of rigid-jointed
structures. Hartmann's analytical procedure (52,53) has been
based on numerically integrating the differential equations
of equilibrium, together with the continuity equations at the
interior joints. Hartmann (54) used the method to investigate
the effects of continuity and of the individual stiffness of
lateral bracing on the lateral buckling behaviour of continuous
I1-beams loaded by central concentrated loads. He concluded
that the approximaie lower bound estimate of the critical load
given by Salvadori (48) gives the actual critical load only
if the loading condition is such as to make <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>