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ABSTRACT 

Recent applications in the use of light gauge steel 
members have been concerned with developing large scale 
systems built entirely from cold-formed steel members. An 

explicit analysis of such structures is complicated by the 
different phenomena that the structure may be prone to during 
loading. In particular, elastic buckling phenomena is an 
important consideration in the design of such structures 
since the load at which buckling occurs often provides a 
close upper bound to the carrying capacity of the structure. 

The first part of this two-part thesis (Part I, 
Chaptersl-8) has been devoted to general methods of analysis 
of the torsional-flexural buckling of thin-walled structures. 
A review of previous investigations and the available methods 
of solution is presented. A general finite element formulation 

of the torsional-flexural buckling of thin-walled structures 
has been derived. The resulting elastic geometric matrix can 
be used to analyse structures with monosymmetrical members. 
It also includes the effect of sectorial-mon osymmetry for 

cross-sections without any axis of symmetry. A general trans- 
formation matrix has been developed to allow for the applica- 
tion of the finite element method to the three-dimensional 

elastic stability analysis of space and portal frames. The 

validity and accuracy of the new finite element formulation, 

have been checked by analysing a number of different elastic 
lateral buckling problems for which exact or highly accurate 

solutions by other techniques are available. 

An experimental program was carried out on simply 

supported cold-formed steel z-beams. The first part of this 

program was undertaken to check the validity of the finite 

element calculations of the bimoments caused by nonuniform 
torsion. The second part was devoted to elastic lateral 

buckling of z-beams under combined bending and torsion. 
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The second part of this thesis (Part II, Chapter 9) 

deals with the analysis of hipped roof structures with 

corrugated steel roof sheeting. A simple theoretical model 
has been suggested. The model has been used to perform an 

elastic linear analysis of the behaviour of two types of the 

hipped roof structures. The theoretical results are 

compared with previous experimental results for these two 

structures. 
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1. 

CHAPTER ONE 

INTRODUCTION 

The conventional analysis of linearly elastic 
structures carrying static loads is always performed under 
the assumption that stable equilibrium exists between internal 

and external forces. This includes neglecting the reduction 
of the stiffness due to the change of the structure-geometry. 
However, with the increase in the value of the static load 
the structure may be prone to the effect of one of the stabi- 
lity phenomena. A condition of instability exists when the 

structure starts to lose its stiffness. This is characterised 
by the fact that the deformations of the structure correspon- 
ding to a given load factor can reach infinite values for 

arbitrarily small (infinitesimal) load increments. If the 

entire structure remains perfectly elastic until buckling 

commences, this type of buckling is called elastic buckling. 
The load level at this stage is defined as the elastic 
buckling load or the elastic critical load. 

In the fundamental case of buckling it is assumed 
that a thin-walled long column with open cross section buckles 
by flexure in the plane of the least rigidity. However, 

under uniform axial compression a column with cruciform cross 
sectional shape buckles torsionally while its longitudinal 

axis remains straight. In general, buckling of columns takes 

place in a combined torsional and flexural mode. -The in-plane 
displacements of the cross section can be analysed as a trans- 
lation of the shear center and a rotation about it. 

A beam bent in the plane of the greatest flexural 

rigidity may buckle laterally in a similar manner. The 
flexural-torsional buckling load may represent the ultimate 
strength of thin-walled unbraced beams. 

For more than 25 years the common use of cold-formed 
members in building has been almost limited to secondary 
systems such as the roof purlins and the side beams of. steel 
frameworks. The use of cold-formed steel members for primary 
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systems, such as portal and space frames has been comparatively 
rare. This may be due to the lack of information concerning 
the behaviour of such structures and the need for theoretical 
techniques to analyse the different phenomena that may occur 
during loading. However, recent applications have been 

concerned with developing steel portal and space frames built 

entirely of cold-formed members. 

The design of plane frames built of hot-rolled 

members is often based on the in-plane behaviour alone. For 

such consideration to be valid, the resistance of the frame 
to the out of plane displacements must be sufficiently high. 
Light gauge steel portal frames, however, have a high tendency 
to twist, warp, and buckle laterally under in-plane loading. 
Torsional-flexural buckling is an important consideration in 

the design of such frames. 

Although the torsional-flexural buckling of single 
span and continuous beams has been extensively studied, little 

has been reported about the torsional-flexural buckling of 
plane and space frames. Most of the studies carried out in 
this field were limited to certain frame shapes and special 
loading conditions. 

The finite element method is well recognised as a 
powerful technique to be used for the linear analysis of 
complex and irregular structural systems. During the last 
15 years, the method has been extended by many investigators 
to deal with torsional-flexural buckling problems. However, 

the application of the method has generally been limited to 

single span or continuous beams. 

The study reported in the first part of this thesis 
(Part I) was undertaken in order to establish a finite element 
formulation for the torsional-flexural buckling of thin- 

walled beams, columns and frames. The new formulation was 
aimed to be applicable to any cross sectional shape. 

The first part of this thesis (Part I) contains eight 
chapters. An introduction is presented in the present 
chapter. Chapter two is devoted to three main items, namely, 
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a) Review of the general theory of the torsional- 

flexural behaviour of thin-walled structures. 

b) Methods used to analyse the torsional-flexural 
buckling. 

c) Review of previous studies on the torsional- 

flexural buckling. 

The derivation of the new finite element elastic 
stiffness and geometric matrices is presented in chapter three. 
The derivation is based on Vlasov's concept (1) of the 

torsional-flexural behaviour of thin-walled structures. The 

chapter also includes a new transformation matrix for the 

three-dimensional buckling analysis of plane and space frames. 

Chapter four presents a review of the different 

techniques used to predict the critical load from the elastic 
instability equation. It also includes the illustration of 
the finite element computer program used in this study. 

Chapter five is devoted to the calculations of the 

bimoments caused by the nonuniform torsion of a thin-walled 

structure. The finite element solutions for a number of 

problems are compared to closed form, highly accurate 

solutions and to experimentally determined bimoments. 

Chapter six presents the results of a theoretical 

study made by the finite element method to examine the 

validity and accuracy of the new formulation. Finite element 

solutions for a number of previously presented problems are 

given with the comparison with other solutions of these 

problems. 

Chapter seven deals with the lateral buckling of 

simply supported cold-formed Z-beams with end warping free. 

An experimental program was carried out to test five of these 

beams under different types of bending and torsional loading. 

The measured values of the displacements and critical loads 

are compared to the corresponding finite element solutions. 

The observations and conclusions of the present 

study are given in chapter eight. 
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CHAPTER TWO 

To rs ional -Flexural Buckling of Thin-Walled Structures, 

2.1. UNIFORM AND NONUNIFORM TORSION 

A thin-walled member exhibits warping displacements 

when it is twisted by uniform torque if the flanges at the 

end cross sections have no longitudinal restraint. Under 

such conditions warping is the same for all cross sections and 
the only stresses produced are the shearing stresses at each 
cross section of the member. The warping of the cross section 
of a twisted I-beam is shown in fig. 2.1. During twisting, 

plane sections do not remain plane, only the web remains plane 

while the flanges rotate bodily in two opposite directions. 

If some longitudinal restraint is applied to the 
flanges at any cross section, or if the torque varies along 
the length of the member, the flanges will then-be forced to 
take up a curvature in the longitudinal direction. As shown 
in fig. 2.2, where a cantilever beam is twisted by a concen- 
trated torque T applied at the free end, the curvature-of the 
flanges varies along the member and the flanges appear as 
being under two equal, but opposite bending moments, acting in 
their own plane'. The combination of the two bending moments 
induced in the flanges as a result of the nonuniform torque 
is called a bimoment. The longitudinal stresses caused by 

the bimoment can be very large and must be considered in the 

analysis. At any cross section the acting torque Tc, an be 
divided into two parts: 

a) T. due to St-venant shear stresses, and 

b) Tw due to the normal stresses induced by the bimoment. 

The present chapter contains three main parts, 
namely: 

Review of the general theory of torsional-flexural 
behaviour of thin-walled structures. 
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2. The different methods which can be used to analyse 
the torsional-flexural buckling Of thin-walled 

structures and the validity of each method. 

Review of the previous studies carried out to analyse 
the torsional-flexural buckling of thin-walled 

structures. 

2.2. COMBINED TORSIONAL-FLEXURAL BEHAVIOUR OF PRISMATIC MEMBERS 

Basic assumptions 

The basic assumptions of the theory of torsional- 

flexural behaviour of thin-walled prismatic members as given 
by Vlasov (1) are: 

a) The material of the structure is perfectly elastic. 

b) Small deflection theory is adopted. 

c) The member retains its cross-sectional shape while 
undergoing all deformations during loading but may 

warp perpendicular to the plane of the cross section. 

d) The shear deformations of the middle surface of the 

member can be neglected. 

2.2.2. Torsional-flexural behaviour of prismatic member 

The subject prismatic member with an arbitrarily 
chosen cross section is shown in fig. 2.3. The member is 

defined with respect to a rectangular co-ordinate system 

which is right handed. Axes y and z coincide with the two 

principal axes of the cross section while x coincides with 
the longitudinal centroidal axis of the member. 

The in-plane displacement of an arbitrary point m 

with co-ordinatesy and z (fig. 2-4) can be represented by the 

two components vM and wm in y and z directions respectively. 
These two components are given by, 

v- (Z 
0- 

(y 
0- 

(2.1) 

(2.2) 
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in which, y 0 and z0 are the shear center co-ordinates, v and 
w are the displacements of the shear center and 0x is the 

angle of twist of the cross section. The two in-plane 

displacements vm and wm are replaced in fig. 2.5 by another 
two components, tm in the direction tangential to the cross 

section at m and nm in the direction perpendicular to, the 

tangent. 

The tangential component tM is given by, 

tIn =v sin a+w cos a+H8x (2-3) 

where, 

H (yo- Y) Cos a- (zo-z) sin a (2-4) 

The shear strain at point m in the middle surface is given by, 

atM+ au 
in 

sh 33C asý 
(2-5) 

where, UM is the longitudinal displacement at point m. 
Applying the fourth assumption of the theory, the shear strain 
Y 

sh can be set to zero, hence, 

au at 
M`m 37 , -ax (2.6) 

Substituting for tm from equation 2.3 )and integrating with 
respect to s from s=o to s, the expression of the 
longitudinal displacement um becomes, 

s 
u 

o- 
iý z-ýy- 

Üx fHds (2.7) 

where, uo is the displacement, in x-direction, of point p 
from which s is measured, z and y are the Cartesian 

co-ordinates at point m, w and v' are the first derivatives 

of the shear center displacements with respect to x axis, 
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and e. is the first derivative. of the angle of twist eX with 
respect to x. The first three terms of equation 2.7 represent 
the effect of the axial load Px, bending moment My and bending 

moment Mz acting at the cross section. The fourth term of 
equation 2.7 represents the warping displacement caused by 
the nonuniform torsion. 

s 
The integration jH ds is known as the sectorial 

co-ordinate of point m. 

. 
2.2.3. Sectorial proporties of the cross section, 

2.2-3-1. Sectorial co-ordinate (w) 

As shown in fig. 2.6 the sectorial co-ordinate wm 
of point m represents double the area swept by the radius r 
when moving along the middle line of the cross section from 
the origin' p where s=o up to point m. The sectorial 
co-ordinate is taken positive when the radius r is rotating 
in the positive direction, that is to say counterclockwise 
about the shear center - The distribution of the sectorial 
co-ordinates for a Z-cross section is shown in fig. 2-7. 

2.2-3.2. Sectorial static moment of area 

The sectorial static moment at m on the middle line 
of the cross section is given by, 

sww 
dA (2.8) 

m 
of 

In which$ A is the area of the cross section. 

As for the Cartesian co-or, 
the sectorial co-ordinates 
the cross section at which 

sectorial co-ordinates can 

origin. 

dinates., the principal origin g of 
is the point on the middle line of 
%=o. The actual values of the 
be calculated with respect to this 
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2.2-3-3. Second sectorial moment of area 
(warpinR constant) 

The warping constant is a geometrical characteristic 
of the cross section and is given by-, 

Iw =fý; 
2 dA (2.9) 

A 

where,, ýi is calculated with respect to the principal origin of 
the sectorial co-ordinates g. 

It can be concluded that, in the theory of thin-walled 
structures, any point m on the middle line of the cross 
section is defined by the three co-ordin'ates y, z and Z5. The 

statical moments of area which are required to calculate the 
shear stresses at m are Sy, Sz and SW. The corresponding 
second moments of area for the cross section are Iy, Iz and IW 

2.2.4. First order equilibrium equations of combined 
torsional-flexural behaviour. 

The differential equations of equilibrium describing 
the first order torsional and flexural behaviour of a thin- 

walled prismatic member are, 

-EA 
!* 11 =P (2.10) 
dx x 

EI d4v 
=q 

Z dx4 y 

-EI 
d4w 

q (2.12) 
Y dx 4z 

4e 2dx 
Gj d ex 

-E14x (2.13) 

dX2 
w dx 

In which, Px is the normal force in x-direction, qy and qz are 
the uniformly distributed loads in y and z directions respec- 
tively and mx is the acting torque per unit length. 



2.2-5. Basic theory of torsional- flexural buckling 

The beam-column with doubly symmetrical I cross 
section shown in fig. 2.8 is loaded by a central thrust Px 

with biaxial eccentricities ez and ey which are constant along 
the length Z of the beam. If the initial deflection, due to 
the bending couplespis considered as very small, the second- 
order effect of the central thrust Px on the bending stresses 
can be neglected and the normal stress at any point is given by, 

=-Px 
PX eZ z 

A 
zy 

In investigating the stability of the initially 
deflected beam, Timoshenko (2) assumed that up to the moment 
of buckling the beam is essentially in a state of flexural 

equilibrium. At the moment of buckling, however, additional 
deflections are produced and the beam passes to a new form of 
equilibrium which is flexural-torsional. 

By calculating the intensities of the distributed 
lateral loads and torque produced by the initial compressive 
stresses when acting on the slightly displaced cross section, 
Timoshenko (2) presented the differential equations of 
equilibrium for the flexural-torsional buckling of the beam. 
These equations are, 

EI ýL4 v, pd, +ped20x=0 (2-15) 
Z dx 

.4x 
dx 2xZ 

dx 2 

EI d4w +p dLw 
-Ped2ax=0 (2.16) 

Y dx 4X dx 2xy 
dx 2 

E jw d4e. _ (GJ -P 
io)ýe. +Ped2v-Ped2w=o (2.17) 

4x-2xz2xy2 dx A dx dx dx 

where, in addition to the previously given notations, the 

constant 10 represents the polar moment of inertia about 

the shear center. 
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Vlasov (1) showed that if a longitudinal force Px 

is applied to the cross section at a point where the sectorial 

co-ordinate M is not equal to zero, this force can produce 
bimoments. He added the normal stresses caused by the 

bimoment to the three terms in equation (2.14) and studied 
the torsional-flexural buckling of the beam when the initial 

form of equilibrium is torsional-flexural. Vlasov's concept 
for the general case of torsional-flexural buckling is the 

basis of the new finite element formulation of the torsional- 

flexural buckling of thin-walled prismatic element presented 
in chapter three of this thesis. 

2.3. METHODS OF ANALYSING ELASTIC STABILITY PROBLEMS 

General 

Methods used to analyse the elastic stability 
problems of thin-walled structures may be classified as 
equilibrium methods, energy methods and numerical methods. 
Equilibrium methods are based on the solution of the differen- 
tial equations of equilibrium which represent the buckled 
form of the structure. On the other hand, energy methods and 
numerical methods do not require the solution of the differen- 
tial equilibrium equations. 

2.3-2. Equilibrium methods 

The differential equations of equilibrium representing 
the elastic lateral buckling of a given thin-walled structure 
are linear and homogeneous. The coefficients of these equations 
depend on the geometric and elastic characteristics of the 

structure and on the load factors. 

There are two procedures to derive the differential 

equations of equilibrium: 

a) By calculating the internal forces caused by the 

initial stresses of the loading system when acting 

on the slightly displaced member and considering the 

equilibrium between the external and internal forces 

at the moment of buckling (1,2). 
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b) By applying the principle of stationary energy and 
using the calculus of variations concept to derive 

the differential equations of equilibrium from the 

energy expression (3). 

The methods whichcan be used to solve the differential 

equations of equilibrium may be classified as exact (closed 

form) methods, and approximate methods. 

2.3.2.1. Exact-(closed form) solutions 

If a single load parameter is considered, the 

coefficients of the differential equations can be expressed 
in terms of this parameter. This parameter, together with the 

deformations, are the unknown quantities of the equations. 

The exact solution of the differential equilibrium 

equations is based on choosing suitable functions to 

represent the deformed state of the structure. These functions 

must satisfy the boundary and loading conditions of the 

structure. 

After substituting the assumed functions in the 

equilibrium equations and constructing the matrix of the 

coefficients, the determinant of this matrix is considered as 
the stability criterion. 

One of the few examples of elastic torsional-flexural 

buckling of beams that can be solved exactly, is that of a 

simply supported I-beam carrying a thrust PX with eccentricity 

ey which is constant along the length k of the be. m. The 

differential equilibrium equations for this case can be derived 

from equations 2.15-2.17 (section 2.2-5), and these equations 

become, 

2 
EI d4v +Pdv=0 Z dx4 X dx 2 

(2.18) 

EI d4-w +p d2w ped2 ex =0 (2.19) 
Y4x2xy dx dx dx2 
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EI d4x 
_ (GJ -P 

Io)d 26 
x-Pod 

2w 
=0 (2.20) 

w 
dx4 

xA 
dx 2xy dx 2 

The end conditions for a simply supported beam are: 

w= OX =o at z=o and z=k (2.21) 

d2vd2wd2 ex 
dx 2= dx 2- dx 2-0 at z=o and z=Z (2.22) 

These conditions are satisfied by taking v, w, and 
ex in the form, 

A sin 2-x 
,w=A sin jLx- 

, Ox =A sin 2x (2.23) 1z2z3P, 

Substituting by these functions into equations 
(2.18), (2.19), and (2.20) the differential equations of 
equilibrium become, 

2 
(EI 

Z-2-Px)A1=0 
(2.24) 

9 

(EI 
y t2 -px)A2+ Px. e Y' 

A3=0, (2.25) 

_12 
, O)A o (2.26) Px-e -A + (Elý -+ GJ -P -L y2P, 2xA3 

The first of these equations (eq. 2.24) shows that 
the buckling in the plane of symmetry is independent and the 

corresponding buckling load is the same as the Euler load. 
The second and third equations (eq. 2.25 and 2.26) show that 
the lateral buckling in the xy plane and the torsional buckling 
are coupled. The corresponding critical load can be obtained 
by equating to zero the determinant of these two equations. 
This condition is given by, 
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in which, 

(F 
y-p X) 

pxey 
A==0 (2.27) 

pxeyIo (F 
e-p X) 

22 
Fy = EI Tr FA (EI GJ Tr (2.28) 

y£2e10w 21 2 

By expanding the determinant A, the equation from 

which the critical load can be calculated is given by, 

px 2_ Rp 
x 

(F 
y 

+F )+ KF 
7F=0 

(2.29 ) 

0220 where K 2_ 2) and 10A (2-30) 

The smallest positive solution of equation 2.29 

gives the critical buckling load. 

Unfortunately, exact (closed form) solutions of-the 
differential equations of equilibrium are comparatively rare 
and limited to simple structures. There are, however, some 
approximate methods to solve the equilibrium equations and 
these methods will be explained now. 

2.3-2.2. Approximate solutions of the differential 

equations 

a) Infinite series solution 

In some cases the solution of the governing differen- 
tial equations of equilibrium can be carried out by assuming 
a suitable finite series to represent the deformations. This 

series must satisfy the loading and constraint conditions of 
the problem. The accuracy of the method depends on the 

number of terms taken from the series. Timoshenko (2) used 
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the method to study the lateral buckling of an I-beam 

subjected to a concentrated load. He used a trigonometric 

series to represent the angle of twist ex. In another 
application Trahair (4) showed that a Taylor series expansion 
can be used to express the twisted shape OX of the buckled 
beam. 

b) Iterative integration method 

Another approximate method for the solution of the 
differential equations of equilibrium is the iterative inte- 

gration method. The method is known as the Stodola-Vianello 

method (3) and is sometimes called the successive approximation 

method. 

The method is based on integrating numerically the 
differential equations of equilibrium starting from -an initial 

approximation for the deformed shape of the structure. This 

assumed shape must satisfy the boundary conditions. The 

numerical integration of the differential equations of 
equilibrium results in a new improved representation for the 
deformed shape of the structure. Then the procedure can be 

repeated to obtain a third estimate for the assumed function. 
In this way a series of functions can be generated, where 
each function corresponds to a certain value of the buckling 
load. The procedure can be continued until the desired 

accuracy is obtained. The applications of the iterative 

integration method have shown excellent agreement with the 

closed form solutions for beam and column stability 
problems (2,3,4). 

Finite difference solution 

The finite difference method is an approximate 
method for solving complex differential equations. The 

method can be applied to stability problems to give approxi- 
mate values for buckling loads in some cases when the 
differential equations of equilibrium cannot be solved in 

closed form. 
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The method is based on replacing the differential 

equationpwhich is applicable over a certain range of an 
independent variable x by a finite number of algebric 

equations, one for each of a number of points within the 

range of x. At each point, the differential operators of 
the dependent function f(x) are represented by finite 

difference approximations which can be given as combinations 

of the values of f(x) of neighbouring points, assuming some 

polynomial shape for the f(x) values. The boundary conditions 

of the differential equations are represented in the same way. 
The solution of the resulting homogeneous equations gives the 

desired unknowns of the problem. 

The application of the method to buckling problems 

can be demonstrated by analysing the lateral buckling of a 

simply supported I-beam loaded by a uniform bending moment 
M (3). The governing differential equation of the buckled 

form of the beam is given by, 

EI d4Eý 
- GJ d 26 M2 6 (2-31) 

w42 Z-I 
dx dx y 

The boundary conditions are, 

d E) 
at x=o and x (2-32) 

dx 2 

Dividing the span k of the beam into n equal 

parts of width b= X/n the values of e at the end and interior 

points are given by, 

eo'el'02' *** len-l, e n 
(2-33) 

If the interval width b is chosen -sufficiently 

small, the slope of the function e at the ith point may-be 

approximated by the slope of any of the two straight lines 

AB or BC (fig. 2.9) and then, 
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(! i-l) ' and (! i-e ) i+l -1 (2-34) 
dx i(leftf b dx i(right)= b 

d2e The differential operators 2, and 
d4' 

at the ith point 
dx dx4 

can also be given by, 

(d 
26) 

dx 2i 
2 ej + ei_l (2-35) 

b2 

-e 44e. +6e. 461 (d 
4) 

i-r2 1-1 1 i-i i-2 

dx b 
(2-36) 

Substituting the approximate values of the differential 

operators in the differential ealuat-ion (ea_. 2.31), the 

difference*equat-Jon which is valid at any point i is 

given by, 

e i+2 - K, 6i+l +K 26i - K, Oi_l + ei-2 =0 (2-37) 

whe re K, 4+ GJ t22 (2-38) 
EIý n 

and K=6+2 GJ Z2 M2 Z4 (2-39) 
2 EIw n2E2,1 n4 

wy 

and the boundary conditions give, 

eo = en =0. e-1 = -e 1 and en+l =- en-1 (2-40) 

Equation 2.37 is valid at n-1 points. It represents 

a system of linear homogeneous equations in the n-1 unknown 

values of the rotation ei* The approximate valu. e of the 

buckling moment Mc can be calculated by setting equal to zer. o 
the determinant of the coefficients of these equations. 
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The accuracy of the solution may be improved either 
by increasing the number of intervals into which the span Z 
is divided or by improving the accuracy of the representation 
of the differential operators. However, each of these two 

modifications increases the labour of solving the simultaneous 
equations and makes the method unsuitable for hand calculations. 
A finite differences computer program can then be developed to 

obtain more accurate results. 

d) Finite integral solution 

The finite integral method is an approximate technique 
for solving complex differential equations. The method is 

based on considering the differential equation as an integral 

equation in the highest derivative of the dependent variable 
f(x). As for the finite difference method the length k of 
the beam is divided into a number of equal parts n of width 
b where b= Z/n. The integral equation is then replaced by 

a finite number of homogeneous equations one for each point. 
The dependent variable f(x) and its lower derivatives are 
replaced by a combination of the values of the highest deri- 

vatives of f(x). 

The application of the method can be illustrated by 

analysing the lateral buckling of a simply supported beam with 
a narrow rectangular cross section loaded by uniform 
bending moment. The governing differential equation is 

given by, 

d20 +0o (2-41) 

where m 2' /GJ - EI 
y 

(2-42) 

Equation 2.41 can be rewritten in integral form, 

x 
R+K R dx dx + Ax +B0 (2-43) 

f0 
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where .R=d 
E) 

dx2 

The constants of integration A, and B can be deter- 

mined from the boundary and symmetry conditions. These 

conditions are, 

0=o at x=o and 018 o at x= Z/2 (2-44) 
dx 

Substituting these two conditions in equation 2.43 

gives, 

'ý/ 2 

AfR dx and Bo (2-45) 

0 

As in the finite difference method, the function R 

may be approximated by a parabola fitted to three adjacent 

values of R; this parabola is given by, 

R ax 
2+ bx +c (2-46) 

in which, 

Ri+j 22Ri +R i-l ,b 
Rj+j -R i-l 

- 2a xi and, 
2b 2b 

2 
c Ri a xi b xi (2-47) 

The integrals of 6 are given by, 

xi 

R dx 5R+8R. -R (2-48) 
f 

12 i-i i+l) 
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x i+l 
R dx = lb (4 R 12 i-i 

xi-i 

16 Ri +4 Ri+, ) (2-49) 

By making the second integral of the function R and 

substituting in equation 2.43 the integral equation becomes, 

-2 
R; - 

TTýb (12 Ri_l + 154 Ri + 60 R (2.50) 144 i+i) : -- , 

Equation 2.50 is valid at n-I points. it represents 
a system of linear homogeneous equations. The critical 
buckling mo=ent M. can be calculated by equating to zero the 
determinant of the coefficients of these equations. More 
details about the applications of the method to the stability 
problems can be found in references 5,6, and 7. 

Energy methods 

2.3-3.1. General 

The use of the energy method to solve the problems of 
elastic stability is based on the principle of the stationary 

value of energy which characterizes the equilibrium condition 
in an elastic system. This principle can be stated as: "the 

amount of total potential energy of an elastic structure does 

not change when the structure passes from its configuration of 

equilibrium to an infinitesimally near adjacent configuration". 
This can be expressed as, 

Uw +V= Stationary 

whe re , 

(2.51) 

U is the total potential energy, Uw is the potential 
of the applied load, and V is the strain energy. 

Equation 2.51 can be rewritten in the form, 

6u 
w+ 

6v =6 (uw + V) =o (2-52) 
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in which, 6Uw is the increase in the potential energy of the 

acting load and is equal to minus the work done by the load 
during the virtua-1 displacement, and 6V is the increase in 
the strain energy of the structure. 

The use of the method to solve stability problems 
often leads to approximate values of the critical buckling 
load. The solution depends on using approximate deformation 

shapes that satisfy the boundary conditions of the problem. 
The accuracy of the solution depends on how close the assumed 
deformation shapes compared to the exact ones. 

Timoshenko (2) was the first to use the energy method 
for the approximate solution of elastic stability problems. 
At about the same time, Ritz (3) published his general method 
for the direct solution of minimum problems in mathematical 

physics. Ritzfs method is quite general and it has many 
applications in stability problems. The method was later 

extended and refined by many investigators (3). The applica- 
tion of Ritz's method to elastic stability problems is 
illustrated in the next section. 

2.3.3.2. The Ritz method 

Considering the elastic lateral buckling of a simply 
supported beam with narrow rectangular cross section loaded 
by uniform bending moment M, the total potential energy U is 

given by, 

21)2m2 dO 2 
U= GJ d2 dx. - U, 

f 
(jx) dx (2-53) 

0 
dx 5r 0 

The angle of rotation Q can be expressed by the finite series, x 

6x =b lý)i +b 21P2 + ... --- +b 
nen 

(2-54) 

where,, ý)-terms are arbitrarily chosen functions of x called 
co-ordinate functions. These functions must satisfy the same 
boundary conditions as the angle of rotation ex The b-terms 

are a corresponding set of parameters. 
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Substituting from equation 2.54 into the energy 
expression (eq. 2.53) the total energy U can be given by, 

U=f (b 9 .., b mf (bl, .., b ) (2-55) 
11 EI * GJ 2 

in which, f 1 and f2 are quadratic forms of the parameters bl,,..., 
bn which are the variables of the problem. Applying the 

principle of stationary energy (eq. 2.52) the stability 
conditions are given by, 

3u 
Db 

(2.56) 

Equation 2.56 represents a system of n linear homogeneous 

equations from which the critical buckling moment Mc can be 

calculated by equating to zero the determinant of the 

coefficients of these equations. 

The-accuracy of Ritz's method may be improved by , 
increasing the number of terms of the finite series taken to 

represent the dependent function ex. However, success or 
failure in applyingthe method depends mainly on the proper 
choice of the co-ordinate functions q). These functions can 
be polynomials or transcendental functions. The only 
restriction is that they must satisfy the boundary conditions 
of the problem. However, in the majority of cases satisfac- 
tory results can be obtained only when the co-ordinate 
functions iP form a system of orthogonal functions (3). 

2-. 3.4. Numerical techniques based on the displacement method 

2.3.4.1. General 

The use of the closed form and energy solutions for 

analysing elastic stability problems is limited to simple 
structures such as single span beams and beam-columns. The 
difficulty of applying such methods to solve the more complex 
structures, such as continuous beams and frameslarises from the 
amount of calculations needed to solve the large sets of the 

resulting differential equations. 
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The advent of the electronic digital computer has 
made possible a completely new approach to deal with large 

sets of simultaneous equations. Nevertheless, the matrix 
formulation of large sets of equations has long been recognised 
as the most convenient way of representing the load-displace- 

ment relationship to meet the nature of the routine calcula- 
tions involved in computer programming. 

During the last twenty five years the applications 
of matrix methods have been extended to the analysis of 
elastic stability problems. However, most of these studies 
have been devoted to certain types of stability problems. 
The methods used in these applications can be divided into 
two main types, namely, 

The member stiffness-matrix method (with specific 
boundary conditions). 

2. The-finite element method. 

Both methods will now be reviewed and discussed with 
regard to their applications in elastic stability problems. 

2.3-4.2. Member stiffness-matrix method 

In the conventional analysis of elastic plane frames, the 
derivation of member stiffness factors is based on the 

assumption that the member carries bending moments and shear 
forces only. On the other hand, the differential equations 
of equilibrium governing the second-order behaviour of a beam- 

column member,, include the effect of the direct axial strains caused 
by axial forces. Thus, in comparison to the first-order 

stiffness matrix of an elastic member, the second-order matrix 
contains the same stiffness factors but modified by multi- 
plying factors called stability functions. Values of 
stability functions depend on the ratio between the acting 
axial force and the value of Euler buckling load. 

Credit probably goes to Livesley (8) for being the 
first to use the matrix stiffness method to analyse the in- 

plane elastic buckling of steel frameworks. He described a 
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computer program to carry out the analysis and predict the 

in-plane elastic buckling load for two-dimensional frames 

loaded at column tops. 

Renton (9) followed the same procedure to derive 

the stiffness matrix of the elastic torsional-flexural 

buckling of thin-walled members. He used this matrix to 

analyse the elastic stability problem of symmetrical space 
frames. His method has some limitations as it is applicable 

only to certain types of cross sections and to frames loaded 

only at the column tops. 

Chu and Rametsreiter (10) extended Renton's method 
to study the large deflection symmetrical and asymmetrical 

buckling modes of space frames. Later, Razzaq and Naim (11), 

used the same method to analyse the elastic stability of 

rigid-jointed unbraced single-story single-bay orthogonal 

space frames subjected to equal and unequal concentrated 

column top loads. 

Chaudhary (12) based his stiffness matrix on the 

closed form solution of the differential equilibrium equations 
for torsional-flexural buckling of thin-walled structures 

given by Vlasov (1). Aly and Sato (13), however, have shown 
in a later discussion of Chaudhary's proposed matrixpthat the 

accuracy of this matrix is subject to question. 

The derivation of the second-order stiffness matrix 

given by Renton (9) for the torsional-flexural buckling of 

axially loaded thin-walled columnvis based on the closed 
form solution of the Eulerian differential equations given 
by Kappus (14). These differential equations are, 

EI ýj4v ,p (ILv _zd26 
X) =0 (2-57) 

Z dx4 X dx 20 dx 2 

d4w d2wd26 
EI 

y 74 +Px (7-2 + Yo 2x) 0 (2.58) 
x x dx 
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d26 d40 22d20 
GJ x- EI x-p (y dw-Zdv+ i2 X)= o (2-59) 

dx 2w ýx4 x0 dx 20 dx 20 dx 2 

in which., yO and zo are the co-ordinates of the shear center 

with regard to the centroid. 

The solution of the differential equations (2-57 - 
2.59) for skew or double symmetrical section is given by, 

v=v acoo ýzx + Vbs in yzx + alx + ao (2.60) 

w=w aoos ýyx + 'ý%B in ýyx + ýjx + ao (2.61) 

e=ea cosh x+eb sinh Yý x+ ý) 1x+ý0 
(2.62) 

wherejv a, V b' wa, W b' 6a, 0 b' alp ý10 ý)19 a 01 
ao , and 1ý 0 are 

independent constantsof integration which can be evaluated 
from the end conditions and, 

)12 =P2=Px and 
2="I (GJ -Pi 

2) (2.63) 
yX 11 yz), ý fi x0 EI EI 

zw 

In solving the differential equations of equilibrium 
(2-57-2-59) with the chosen displacement functions (2.60-2-62). 

Renton (9) assumed that the joints are sufficiently stiff for 

wa rping to be heglected. The load acting at the two ends of 
the member can then be given by, 

my = -P (w Cos Ix+w si X) (2.64) 
xaýyb 'ý'y 

mz =px (Vacos 
zX+ 

Vb sinu z X) (2.65) 

mx = (GJ -Pi 
2) (2.66) 

x0 

py = -Pxýj and Pz= -P xa1 
(2.67) 
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The last four equations (2.64-2.67) define equal and 
opposite pairs of moments or forces acting at the ends. The 

stiffness matrix of the member can then be given by, 

a 

a 12 a22 Sjmmjric 

Ka 
13 a23 a 33 

(2.68) 

a 14 a24 a 34 a 44 

where., the submatrices 
[all], [a, 

2] and a are given in [ 
441 

Appendix A. 2.1. 

2.3-4-3. Finite element method 

The finite element method is a numerical technique 

whose active development has been pursued for a relatively 
short period of time. The method was originally developed to 

solve structural engineering problems, but the natural base 

of its theory makes it applicable to problems in many fields 

of engineering. 

The basic concept of the method, when used in 

structural engineering problems, is that a whole structure 
can be represented by an assemblage of subdivisions (the 

finite elements). A set of displacement functions is used to 
describe (approximatelyy the deformed state of the structure 
in terms of the displacements at the nodal points. The 

soluti on is formulated for each typified_unit and then combined 
to obtain the solution for the whole structure. 

In the conventional analysis of elastic linear 

structure by the finite element method, the energy concept 
is often used to derive the first-order stiffness matrix 
of the element. The energy concept can also be employed 
in elastic buckling problems to establish the second order 
load displacement relationship. In elastic buckling problems, 
however, the conventional linear stiffness matrix IKE] is 

supplemented by another matrix [KGI called geometric 
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(stability) matrix. This matrix represents the elastic 
effect of the applied load on the buckling deformations. 

For conditions of stable equilibrium, where the load 
factor is of a value less than its critical value, the 

element stiffness equation given by the first variation of 
the potential energy expression becomes, 

{P} = 
[K 

E] 
{A} + [KG] (A} (2.69) 

in which, [A}is the nodal displacement vector. 

Eq. 2.69 describes the second order behaviour of the element. 

In elastic stability problems it is usually assumed 
that prebuckling deformations have taken place and that the 

analysis is being conducted at a near buckling state. 
Eq. 2.69 can be modified to, 

{dP} = 
[[KE] + [K 

G]l fdAl (2-70) 

in which., {dA} is the matrix of vanishing small increments of 
the displacements and {dP} is the matrix of corresponding 
forces. 

At the critical load, more than one equilibrium 
state is possible and the deformations of the structure 
corresponding to a given load factor can reach infinite values 
for arbitrarily small (infinitesimal) load increments. Thus 

at the buckling stage eq. 2.70 becomes, 

Xe [KG]l (d3} = (2.71) 

where. p{dZ} represents the buckling deformations and Xc is an 
instability parameter (eigenvalue). 

The analysis begins with a chosen value of the applied 
load from which the individual element end forces are calculated 
through a pre buckling analysis. The end forces can then be 

used to formulate the geometric matrix [K 
Gj* The critical 
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load is equal to the instability parameter Xc times the 

chosen value of the load factor. The instability problem 
then becomes an eigenvalue problem of finding the instability 

parameter (eigenvalue) XC from the nontravial solution of 

eq. 2.71. Such solution exists when, 

IRE 1+ 
'ýc 

I RG. 1 
=0 (2-72) 

in whi-ch, 
IR 

El and 
IK 

GI are the two determinants corresponding 
to the stiffness matrices IKE] 

and [KGI respectively. 

The simplicity and broad application potential of 
the finite element method to structural stability'problems 
was made clear in a study of the beam-column problem reported 
by Rodden, et al (15), in 1963. In the same year Gallagher 
and Padlog (16) published a similar study in which they 

suggested cubic polynomials to represent the in-plane displa- 

cements of the beam-column member. Many applications of the 

method to elastic stability problems have since been presented; 
however, up to 1969 these applications were devoted to the 
in-plane flexural buckling (17,18,19,20). 

The extension of the finite element method to deal 

with elastic torsional-flexural buckling problems has been 

coupled with the growing use of light gauge steel members. 
Light gauge steel members, with their low torsional rigidity, 
have a high tendency to buckle in torsional or combined 
torsional-flexural modes. The basic theory of torsional- 

flexural buckling has been well established and explained by 

many authors (1,2,3). However, the applications of the 

theory have been limited to simple and regular structural 

systems. The finite element technique provides a very 

effective tool to cope with large scale and complex structures 

such as space frameworks. 

Krahula (21) presented a finite element formulation 

of the first order torsional-flexural behaviour of thin-walled 

elements basing his derivation on the closed form solution of 
the differential equilibrium equations. Krajcinovic (22), 
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however, was the first to extend the scope of the finite 

element technique to elastic torsional-flexural buckling of 
thin-walled members. He used the energy method together 

with trigonometric displacement function's to derive the 

elastic stiffness matrix [K 
El and the geometric (instability) 

matrix [K 
G] * He concluded that in comparison to the exact 

solution the method gives an upper bound estimate for the 

elastic buckling load (22,23). 

Barsoum and Gallagher (24) presented a finite element 
formulation for the torsional and lateral instability analysis of 
beam-column members based on an approximate representation of 
the flexural and torsional displacement of the member. They used 
the energy concept to derive the elastic matrix 

[Kj 
and the 

geometric matrix [KGI 
. The method showed an excellent 

agreement with exact solutions of beam, column, and beam- 

column problems (24,25). The same procedure was followed by 

many investigators to analyse the elastic torsional-flexural 
buckling of continuous beams (26,28), unbraced and braced* 

portal frames (27), and one bay symmetrical space frames 
loaded at column tops (28). 

The finite element formulations presented so far 
lack generality and consistency. These formulationsl are 
applicable only to members with doubly symmetrical 'cross 
sections. Furthermore, the effect of external bimoment, which 
may be of great importance in light gauge steel members, has 

not been considered. 

In the next chapter (chapter 3), a new finite element 
formulation is presented. This formulation is based on 
Vlasov's concept (1) of the general behaviour of thin-wal 

, 
led 

members. T4e technique is valid for any cross sectional 

shape, and it includes new terms representing the bimoment 

influence for sections with no axes of symmetry. 

2.4. LITERATURE REVIEW OF PREVIOUS STUDIES OF TORSIONAL- 

FLEXURAL BUCKLING PROBLEMS 

Single span elements 

The elastic torsional and torsional-flexural buckling 

of thin-walled columrsloaded'by either axial or eccentric 
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thrust has been extensively studied and explained by many 

authors (1,2,3,29,30). Renton (32) presented the direct 

solution for axially loaded thin-walled bars with open 
cross section. Studies by Culver (31) were devoted to the closed 
form solution-of torsional-flexural buckling of simply supported 
beam-columns with open cross section. A comprehensive 
study carried out by Pekoz, et al (33), on eccentrically 
loaded cold-formed columns with single symmetrical open cross 
sections, has led to a simple but sufficiently accurate design 

procedure for such columns. 

The general theory of torsional-flexural buckling of 
single span beams with doubly'symmetrical cross sectionsphaving 
either simply supported or fixed end conditionsphas been 

presented by many investigators (1,2,3,34). A comprehensive 
literature survey of the work done in this subject has been 

presented by Lee (35).. Nethercot (36) has also presented 
another survey of the investigations concerning the lateral 
buckling of single span beams up to 1970. In addition, 
Nethercot and R. ockey (37) presented a simple design procedure 
for rapid estimation of the lateral buckling loads of simply 
supported I-beams. This procedure is based on introducing a 
lateral buckling coefficient in the critical moment expression, 
similar to the plate buckling coefficient. The procedure is 

valid for a wide variety of load cases and supporting 
conditions. 

The superior accuracy of the finite integral 
techniquepin comparison to the finite difference methodpfor 
solving differential equations was made clear in the important 

paper presented by Brown and Trahair (5). This technique was 
used by Trahair and Kitipornchai(38) to provide a simple linear 

approximation for the elastic lateral buckling load of simply 

supported stepped I-beams loaded with central concentrated 
loads. In another paper, using the same technique, Trahair 

and Kitipornchai(39) reported a comprehensive study of the 

lateral buckling of simply supported tapered I-beams. Another 

important application of the finite integral-technique is that 

presented by Anderson and Trahair (40) concerning the elastic 
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lateral buckling of monosYmmetric I-beams and cantilevers. 
They concluded that "the effect of monosymmetry is such that 
the critical load is larger when the tension flange is the 

smaller of the two flanges". Later in another publication 
Kitipornchai and Trahair (41) refined the procedure and 

provided simple design expressions for the elastic critical 
loads of monosymmetric I-beams and cantilevers. 

During the last 15 years the scope of the finite 

element method has been extended to cover torsional-flexural 
buckling analysis. The accuracy of the method has been 

confirmed for simple stability problems for which exact 
solutions are available (22,24,25,26). Nethercot and Rockey 
(42) used the finite element formulation presented by 
Barsoum and Gallagher (24) to analyse the torsional-flexural 
buckling of single span I-beams having different support 
conditions at each end. They developed simple expressions 
for the lateral buckling moment of beams loaded 15y either 
equal or unequal end moments. 

More recently Roberts (43) has presented a new 
approach to deal with elastic stability problems based on 
complete expressions for the strains including second order 
terms. The validity of some of these expressions has been 

checked by analysing a number of conventional stability 
problems using the energy method (43,44). However, it has 
been reported that the method can be extended to solve more 
complex problems by means of a suitable numerical technique(43). 

2.4.2. Continuous beams 

Under working conditions, the majority of the single 
span beamsdesigned as being simply supported are subjected to 

considerable elastic restraintspeither because of the size of 
the end connections or due to the bracing system provided to 

prevent buckling. These restraints increase the elastic' 

stability of the beam and may, in some cases, even change the 

mode of failure. 

The effect of individual end restraints on the 

elastic stability of single span beams has been the subject of 
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many theoretical and experimental studies. Flint (45) 

pointed out the importance of considering the influence of 
the elastic end restraints in the design of single span I- 

beams. He conducted an experimental and theoretical study of 
the effect of elastic lateral bracing on the elastic buckling 

load. Flint (45) carried out his theoretical analysis using 
the energy method. However, the analysis lacks the generality 

and is slightly in error, due to the neglect of the warping 

rigidity of the I-beam. 

In 1955, Austin et al (46) reported a theoretical 

study of the effect of flexural end restraints on the elastic 
buckling behaviour of single span I-beams under in-plane cases 
of loading. ' The beam was considered fully restrained against 
twisting at both ends. They applied a successive approximation 
procedure to solve the differentialýequations of equilibrium 
and presented a number of charts for evaluating the critical 
load for single span I-bearoloaded with in-plane loading, 

provided that the flexural stiffnesses of the elastic end 

restraints are known. 

Trahair (47) reported an investigation of the influence 

of individual symmetrical end restraints on the elastic 
lateral buckling load of single span' I-beams. The elastic 
restraints considered were: major axis rotation, minor axis 
rotation and torsional restraints, while end sections were 
either free to warp or fully restrained with respect to 

warping. 

In continuous beam structures, each span is elastically 

restrained against bending about major and minor axes and 

warping by the adjacent spans (or span) attached to it. The 

elastic stability of continuous beams was first analysed by 

Salvadori (48), who presented a lower bound approximation for 

the elastic lateral buckling load of narrow rectangular 

continuous beams. He treated the beam as a series of single 

span beams simply supported with respect to the minor axis 
bending and subjected to external major axis moments at the 

supports. 
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Trahair (49) extended the method used in reference 
(47) to the elastic lateral buckling of I-beam elements with 
any combination of symmetrical end restraints provided that 
the end twisting is prevented. He presented tables for the 

elastic buckling load and proposed an approximate technique, 
based on these tables, for evaluating the lateral buckling 
load of continuous beams, beams supported by cross beams and 
one bay symmetrical portal frames. In another paper Trahair 
(6) showed how to calculate the elastic buckling load for 

single span I-beams with unsymmetrical end restraint using 
the tables given in reference (49). 

The interaction buckling behaviour of two-span and 
symmetrical three-span continuous beams loaded with either 
central concentrated loads or uniformly distributed loads 

and fully restrained against twisting and lateral movement 
at the interior supports, has been investigated by Trahair 
(50,51). Trahair (50) proposed an approximate procedure to 

calculate the elastic torsional-flexural buckling load of 
narrow rectangular continuous beams by considering the inter- 

action effect between the spans during buckling. For a given 
span the procedure starts by reducing the minor axis bending 

and warping rigidities of the adjacent spans according to 
their in-plane bending moment values. Such reduced rigidities 
can be used to evaluate the end restraining effect on the span 
under consideration and then the buckling load can be estimated 
from previously presented tables (47,49). Trahair (50) also 
suggested a much easier technique to evaluate the lateral 
buckling loads of continuous beams from a simple interaction 

graph. This technique can be expressed for the two-span 

continuous beam shown in fig. 2.1-O. at by the interaction 

graph shown in fig. 2.10. b, in which: 

point 1 represents the lateral buckling load for 

the left span when the right span is unloaded; 

point 2 represents the lateral buckling load for 

the right span when the left span is unloaded, and 

iii) point 3 is the point of zero interaction, when the 
loading condition is such as to make both spans 
critical at the same time. 
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In addition, Trahair (51) presented a comprehensive experimen- 
tal study concerning the interaction buckling behaviour of 
continuous I-beams loaded by central concentrated loads in 

order to verify the theoretical procedure given in references 
47,49,50. He tested a series of high strength aluminium 
I-section continuous beams under different combinations of 
central concentrated loads. The general level of agreement 
between the experimental and analytical results was good. 

The studies reported by Hartmann (52,54,55) and 
Hartmann and Munse (53) were devoted to the-effect of elastic 
lateral bracing on the lateral instability of rigid-jointed 
structures. Hartmann's analytical procedure (52,53) has been 
based on, numerically integrating the differential equations 
of equilibrium, together with the continuity equations at the 
interior joints. Hartmann (54) used the method to investigate 
the effects of continuity and of the individual stiffness of 
lateral bracing on the lateral buckling behaviour of continuous 
I-beams loaded by central concentrated loads. He concluded 
that the approximate lower bound estimate of the critical load 

given by Salvadori (48) gives the actual critical load only 
if the loading condition is such as to make all spans buckle 
simultaneously without any interaction in the buckling plane. 
In a later discussion of Hartmannts paper (54), Trahair (56) 

showed that both Hartmann's procedure (54) and Salvadorits 
lower bound method lead to correct values of the buckling load 
only if all individual spans are critical at the same time. 
Trahair (56) also concluded that while the accuracy of 
Salvadorits method is not always good, especially for I-section 
beams, the Hartmann solution gives slightly overestimated 
values of the buckling load. However, in order to verify his 

procedure, Hartmann (55) conducted an experimental study on 
narrow rectangular two-span continuous beams loaded with 
different combinations of central concentrated loads and 
laterally supported by elastic bracing at the interior support. 
In general, the experimental results were in a good agreement 
with the analytical procedure. 
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With the extension of the finite element method to 

cover the elastic buckling problems, Powell and Klingner (26) 

applied the method to continuous beams. They checked their 
finite element formulation by analysing a two-span continuous 
I-beam with the same dimensions, properties, and loading 

conditions of that tested by Trahair (51). The comparison 
showed that the theoretical results are, in general,, below 
the corresponding experimental results. 

Nethercot and Trahair (57) suggested a simple method 
for hand calculations of the elastic buckling loads of 
laterally continuous beams. The method is based on using a 
moment modification factor m to allow for the type of 
loading and an effective length factor K to allow for the 

elastic restraints at the two ends of the segment under 
consideration. The critical bending moment Mc can then be 

calculated from, 

7T 
2 EI /GJ K2 91 2) 

w mcm (Tr EI 
y 

GJ, 
U 

(2.73) 

Nethercot and Trahair gave an empirical formula for evaluating 
the moment factor m and developed a chart for the effective 
length factor K. 

Later Dux and Kitipornchai (58) extended the method 
for numerical calculations of the elastic lateral buckling 
load. They treated the critical segment)together with the 
two adjacent segmentspas a sub-assemblage and prov. '-Ied a 
stiffness matrix for it. They also presented new charts for 
the effective length K which reflects the restraining effect 
of the adjacent segments. The results of their technique 

showed a good agreement with the more accurate finite element 

solution. 

2.4-3. Three-dimensional buckling analysis of plane and 
space frames 

In a three-dimensional frame analysis the acting 
load, or the resulting deflections, or both,, lie in three- 
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dimensional space. The exact analysis of such behaviour is 

complicated. On the other hand, it has been proved that the 
I simplified procedure of treating the structure as a series 

of two-dimensional frames restricted to move only in their 

own plane may not provide the correct description of the true 

behaviour of the structure. 

The comprehensive theoretical study reported by 

Hartmann (53), was devoted to'the effects of lateral 

continuity and of, individual elastic lateral bracing stiffnesses 
on the torsional-flexural buckling behaviour of plane frames. 
The study is restricted to single-story single-bay doubly 

symmetrical I-section frames with not more than two members 
meeting at a joint. Three cases of loading were considered' 
in the study, namely: a) a lateral (sway) force applied at- 
the top of one column, b) two equal transverse forces applied 
at the shear center of each of the two third points of the 
beam, and c) two axial loads applied at the column tops. 
Hartmann (53) showed that in comparison to his proposed method, 
Salvadorits lower bound procedure (48) can give reasonable 
values for the buckling load of the frame provided that the 
beam is considered fully restrained against warping at both 

ends. In another paper, Hartmann reported an experimental 
study concerning the effect of elastic stiffness of lateral' 
bracing on the torsional-flexural buckling of narrow rectan- 
gular plane frames loaded by an in-plane lateral (sway) force 

at the'top of one column. The comparison between. the experi- 
mental results and the corresponding theoretical values 
showed that the analytical technique (53) can be used to 

predict the critical load with good accuracy. 

The study reported by Renton (9) (Sec. 2.3-4.2) 

resulted in a matrix formulation for the torsional-flexural 
buckling analysis of axially. loaded thin-walled-columns with 
either doubly symmetric or monosymmetric or skew cross 
sections. In order to check the validity of the method 
Renton (9) carried out some. tests on rigid-jointed symmetrical 
space' frames loaded by different combinations of lateral and 
transverse forces' applied at column tops. The analytical 

results showed a satisfactory agreement with the test results. 
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Chu and Rampetsreiter (10) suggested a method to 

analyse the large deflection buckling of space frames based 

on the constant load technique. In this technique the load 
factor is maintained at a certain level and the deflection 
that provides the balancing internal forces has to be 

calculated through an iteration process. The load can then 
be increased to new value and again the procedure can be 

repeated to draw the load-deflection relationship from which 
the buckling load can be evaluated. Chu and Rampetsreiter 
used the stiffness matrix developed by Renton (9) for small 
deflection buckling and described a procedure to modify-the 
stiffness and transformation matrices at every load level to 
include the effect of the shortening caused by the compressive 
axial forces. 

Razzaq and Naim (11) reported a numerical study of 
the elastic torsional-flexural buckling of rigid-jointed 
symmetrical space frames with I-cross section members under 
different combinations of axial transverse loads applied at 
column tops. The analysis was based on the stiffness matrix 
presented by Renton (9) and extended by Chu and Rampetsreiter 
(10). The results showed that the effective length approach 
of calculating the critical load of plane or space frames 
may lead to underestimated values of the buckling load as it 
does not consider the three-dimensional interaction of the 
frame members. 

Trahair (59) suggested that the elastic buckling 
behaviour of a three-dimensional steel frame can be predicted 
by considering the biaxial bending and torsion of the individual 

members of the frame, together-with the interaction effect 
between these members. He presented a finite integral solution 
for the differential equations governing the torsional- 
flexural buckling of biaxially loaded beam-column members with 
elastic end restraints. 

, 
Vacharajittiphan and Trahair (60) reported a theore- 

tical and experimental study of the torsional-flexural buckling 

of one-bay symmetrical portal frame with members having doubly 

symmetrical I-section. Loads were concentrated at the two 
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column tops and at the center of the beam. The analytical 
procedure was based on using the finite integral technique to 

predict the elastic buckling load from the solution of the 

governing differential equations. The interaction behaviour C3 

of two types of fixed base portal frame was experimentally 
predicted and the comparison between the theoretical and 
experimental interaction curves showed a satisfactory agreement. 
In another paper the two authors (61) extended the analytical 
procedure to solve any shape of doubly symmetric I-portal 
frames under in-plane loading. 

Morino (62), reported a comprehensive study of the 
types of failure to which a space frame may be prone. He 
considered three modes of failure, namely, a), plastic mecha- 
nism failure, b) elastic buckling failure, and c) elasto- 
plastic failure. The elastic buckling analysis was carried 
out using the matrix displacement method and the critical load 
was predicted by the determinental approach for two modes of 
buckling, namely, a) twisting modes, and b), sway modes. 

Citipitioglu (63) presented an analytical study of 
the elastic buckling of one-sýory one-bay space frames loaded 
by vertical loads at the column tops using the 
matrix displacement method and taking into account the pre- 
buckling moments. He concluded that considering the pre- 
buckling moments may reduce the calculated value of the 
buckling load by not more than 10%. 

The warping behaviour at rigid joints between frame 
members at different inclinations forms a complex problem. 
Such behaviour depends on the joint angle, the individual 
lengthst the cross sectional shapes of the members meeting at 
the joint and the stiffness arrangement at the joint itself. 
In dealing with rigid jointed frames most of the researchers, 
however, have assumed that the joints are sufficiently stiff 
for warping to be prevented (9,10,11,53,60,61,62). 
Vacharajittiphan and Trahair (64), however, reported a 
comprehensive finite element study concerning the warping and 
distortional behaviour of rigid Joints between I-section 

members. They presented approximate expressions to evaluate 



38. 

the warping restraint stiffness at a given joint according 
to the type and number of stiffeners and the angle of the 
joint. In comparison to the finite element analysis these 

expressions have proved to give very conservative values of 
the warping restraint stiffness. 

The different factors effecting the stability of 
structural building frames have been reviewed by Birnstiel 

and Iffland (65). They suggested a procedure to include the 

effects of geometric nonlinearity, material nonlinearity and 
axial load in a general stability analysis of three-dimensional 

structures. In order to include the effect of axial forces 

on the bending stiffness, they followed. the procedure given 
by Renton (9) which dic. tates the use of proper stability 
functions to modify the conventional stiffness matrix of a 
three-dimensional member. 

To demonstrate the validity and accuracy of their 
finite element formulation of the lateral stability analysis 
of beam-columns, Tebedge and Tall (28) gave a lternative 

solutions for a variety of previously solved stability, 
problems. For example, they analysed the symmetrical space 
frame which was investigated by Morino (62) and the comparison 
showed a good agreement between the two procedures. 

2.4.4. The contribution made by this study 

The finite element method has proved to be the most 
generally applicable technique for analysing the torsional- 
flexural buckling of regular and irregular beam and column 
problems. However., the majority of the previously discussed 

applications of the method were limited to two dimensional 

systems (22,23,25,26,42,57). 

The effect of the out of plane bending (M 
z) was 

considered in the geometric matrix given by Barsoum and 
Gallagher (24). However, the positive direction taken for 

this bending is inconsistent with the sign-conventions 

adopted in the study. Furthermore, the elastic stiffness 

matrix given by the authors is not identical (in signs) to 

the conventional stiffness matrix. Thus a proper transfor- 

mation matrix is needed in order to perform a three-dimensional 
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frame analysis. Applications of the formulation given by 
Barsoum and Gallagher were limited to beam and column 
problems only (24,42,57). 

The geometric matrix presented by Tebedge and Tall 
(28), is identical to that given by Barsoum and Gallagher (24), 

and although the elastic stiffness matrix was not given in 
the paper, the procedure leads to the same stiffness matrix. 
The transformation matrix used by Tebedge and Tall (28) is 
inconsistent with both the stiffness and geometric matrices. 
The only space frame problem solved in the paper to check the 
validity of the formulation is that given by Morino (62)"in 

which the columnsof the frame were loaded equally on their 
tops and no bending moments were involved. 

The study reported in the first part of this thesis 

was undertaken in order to pre'sen't a general finite element 
formulation that can be used for the three-dimensional 
buckling analysis of framed structures, and that is not limited 
by the deficiencies'of the previous formulations mentioned 
above. The new formulation is based on the general theory of 
torsional-flexural buckling of thin-walled structures 
presented by Vlasov (1). The effect of externally acting 
bimoments in the general case of loading is included. This 

effect appears only if the cross section of the member has no 
axis of symmetry. For such sections a new sectorial charac- 
teristic called the "sectorial monosymmetric" constant (ý 

W) 
is introduced. 

A finite element computer program is described in 

chapter 4. The program can be used for first order, second 
order, and buckling analysis of elastic structures. The 

accuracy of the elastic stiffness matrix, when used to evaluate 
the bimoments caused by nonuniform torsion is discussed in 

chapter 5. The validity and accuracy of the new finite 

element formulation when employed to analyse buckling problems 
are discussed in. chapter 6. To. check the validity of the new 
terms which reflect the effect of. the external bimoments, an 

experimental and theoretical study of the torsional-flexural 

behaviour of simply supported Z-beams is presented in 

chapter 7. 
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CHAPTER THREE 

Finite Element Formulation of the Elastic Three-Dimensional 

Buckling Behaviour of Thin-walled Systems 

3.1. GENERAL 

A finite element formulation for the elastic three- 

dimensional buckling behaviour of thin-walled members is 

presented in this chapter. The formulation is based on the 

theory of torsional-flexural behaviour as described by 
Vlasov (1). 

Vlasov showed that self-balancing longitudinal forces 

applied to points of the cross section of a thin-walled 

beam-column member can distort the cross section. The warping 

of the cross section by either longitudinal or transverse 

load-applied out of the shear center can give rise to the 

normal stresses in the cross section. The generalized force 

corresponding to these normal stresses is called bimoment. 

It is assumed, in the analysis presented herein, that 

at the moment of buckling, the structure passes from a 
torsional-flexural equilibrium state to another torsional- 

flexural equilibrium but critical state. The b-imoment 

stresses are included as the fourth term to be added to the 

conventional three terms of the equation of normal stresses. 

The energy'concept has been used to derive the 

elastic matrix and the geometric matrix describing the 

buckling behaviour of the element. The derivation of these 

matrices has been based on the small deformation theory. Pre- 

buckling deformations are considered as very small, in 

comparison to the buckling deformations, and so their effect 

can be neglected. 

3.2. BIMOMENT 

The basic concept of bimoment was explained by 
Vlasov (1) for the case shown in fig. 3.1. Fig. 3-l. a. shows 

a cantilever beam with doubly symmetric I-cross section 
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subjected to an eccentric axial force Px. According to the 

elementary theory of bending, the eccentric force Px is 

equivalent to a combined system of axial thrust Px and pure 
bending in the two principal planes yx and zx. However, if 

the warping of the cross section is considered (theory of 
thin-walled structures) another system of longitudinal forces 
(fig. 3.1. e) must be added to the three components given by 
the elementary beam theory (fig. 3-l. b-3-l. d). As shown in 
fig. 3.1. e. the additional system of forces gives two equal 
and opposite bending moments acting in the. planes of the two 
flanges. This system is called a bimoment. 

The bimoment, caused by either an eccentric longitu- 
dinal force (fig. 3-1. e) or by a nonuniform torsion of 
transverse loads (fig. 2.2) is given by the expression. 

MFxh (3.1) 

where, B is the bimoment, ý is the flange in-plane bending 
,F 

moment, and h is the distance between the centroids of the 
two flanges. In terms of the normal stress a_ in the cross 
section, the bimoment B can also be given by, 

B 
fc, 

x 
ýj dA (3.2) 

A 

in which, ýj is the sectorial co-ordinate. 

The theory of bimoment and bimoment distribution in 

single span and continuous beams has been presented by many 
investigators (79-84). A review of these studies and the 

different methods of calculating the bimoment, including the 

finite element method with full comparison between the 

results of such methods are presented in chapter 5 of this 

thesis. Also presented in the same chapter is an experimental 
study of the warping stresses caused by nonuniform torsion 

of Z-beams. 
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If the bimoment BX acting at a given cross section 
(x = const. ) is known', the longitudinal normal stresses CB 

caused by this bimoment can be evaluated from the expression, 

xw (3-3) 
w 

in which, IW is the warping constant of the cross section. 

3.3. STRAIN ENERGY 

The subject prismatic element with an arbitrarily 
ch osen cross section is shown in fig. 2.3. Equation 2.7 

gives the longitudinal displacement um at an arbitrary I 

point m. Equation 2.7 can be rewritten in a more general 
form given by, 

um=u-wz-V, 

y- e'X W- (3-4) 

where, u is the average longitudinal displacement of the 

cross section (the longitudinal displacement caused by 

central thrust))and ý) is the sectorial co-ordinate with 

respect to the sectorial origin. The longitudinal normal 

strain can then be expressed by the equation, 

E: 
m=u-wz-vy- exw (3-5) 

The strain energy of the element can be divided into 

two main parts, namely, 1) strain energy due to normal 

stresses, and 2) strain energy due to shear stresses. 

Strain energy due to normal stresses 

The strain energy U1 caused by the normal stresses 
is given by, 

i2 dV (3.6) 2 

fe 

m 

v 
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in which, E is the modulus of elasticity of the material and 
V is the volume of the element. 

Substituting for em from eq. 3.5 and knowing that x 

and y are measured with respect to the principal axes ox and 

oy and the sectorial co-ordinate Zý is evaluated with respect 
to the sectorial origin, the strain energy Ul due to normal 

stresses becomes, 

91 
(A %2 *2 %%2 %%2 

1uyw+IZv+Iw ex ) dx (3-7) 

3.3.2. Strain energy due to shear stresses 

The shear strain due to shear forces is small and 

can be neglected (3). The strain energy U2 due to torsional 

shear is given by, 

u ": 
i GJ - 

62 dx 22x 
0 

(3.8) 

in which, GJ is the torsional stiffness of the element. 

The total strain energy Us for the element is the 

sum of U1 and U2 and is given by, 

91 
22222 u=1 (EAu + EI w+ EI v%' + EI 6' + GJO% ) dx (3.9) 

s2jyZwxx 
0 

3.4. THE POTENTIAL OF THE APPLIED LOAD 

The general expression of the normal stresses ax 

acting on the cross section x= constant in the precritical 

state is, 

a= 
PX MY mzB 

xAIyIz+ Y-W w (3-10) 
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in which, Px is the axial thrustyM 
y and Mz are the two 

bending moments about the principal axes oy and oz respectively, 
and B is the bimoment. 

The shear stress T is given by, 

mm 
TYS+S 

ti yy tiz z tiw 

where, t is the thickness of the cross section at the point 
where T is considered, MyI Mz and B are the first derivatives 

of the bending moments My and Mz and the bimoment B, Sy and 
Sz are the static moments of the considered part of the cross 
section about oy and oz axes and SW is the sectorial static 
moment of the same part. The static moments of area are 
given by, 

sss 
S3, =Ity ds, sz =ftz ds, and Sw 

ftw 
ds 

000 
(3-12) 

The transition of the element from the stable equili- 
brium state to the critical state is associated with the 

appearance of critical deformations. At the critical state 
the effect of the initial normal stresses ax acting on the 
deformed cross section can be presented in the form of three 
fictitious loads, 

a) qy fictitious distributed lateral load in y direction; 

b) 
z 

fictitious distributed lateral load in z direction; 

C) x 
fictitious distributed torque about the shear 
centers longitudinal axis. 

The evaluation of the lateral loads jy and 4z for 
the case when the bimoments B is equal to zero has been 
discussed by Vlasov (1). The intensities of these lateral 
loads are given by the expressions, 
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iy =- Px(v zoex) - (myox) (3-13) 

qz =- Px(w + yoex) + (Mzex) (3-14) 

The potential of these loads becomes, 

tl x I\ 
v PX(V zoeý )v dx (M e )v dx (3-15) 

x2yx 
00 

vP (w +ye )w dx + (Mzex)w dx (3-16) 221x0x 

Vlasov (1) showed that if the acting bimoment in the 

precritical stage B is equal to zero, the intensity of the 
fictitious distributed torque is given by, 

\% %% px (Y. w-Z0v+y06x+Z06x+iy0x 

m 

-6x (3-17) 

in which, yo and zo are the co-ordinates of the shear center, 
i 

Y' and iz are the radii of gyration about y and z axes, ýz 

and ay are geometrical characteristics of the cross section 
determined by the two equations, 

z3 dA + Y2 dA) - 2-z (3-18) 
f fIz, 

0 yAA 

3 ýz dA yz (3 +f2 dA) - 2-yo . 19) 
z 

fy 

AA 
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In the general case of loading (B-ý o) the effect of 
the initial bimoment B, when acting on the slightly deformed 

cross section, results in an additional distributed torque 
Aix. The intensity of this torque can be determined by the 

equation (1), 

Arnx = ßw (B 6x+B6 
X) 

(3.20) 

where, $w is a new geometrical characteristic of the cross 
section given by, 

aw 
wIý 

(3r2 + Z2 ) dA (3.21) 
A 

The total value of the uniform torque mx is, 

x mm Am (3.22) 

The potential of the applied load VT is the sum of 
the potentials of the fictitious lateral loads qy and qz and 
of the distributed torque ix Thus this potential can be 

obtained from the equation, 

V +V +V T1232 
[f 

p 
X(-W. W-V. V-yo(wý, +exw*) 

0 
Z0 (v 0x +e x v) -106x ýX) 

V\ Is I\ 
-my (exv +v ex +ýy, ex. ex) -m Y(2 exv +ý Y*ex. ex)- m Y, ex. v 

)+m m (e 
xw+w6x- 

ßz-ex ex 
Z 

(2 Oxw - ßz ex ex)+ Mz OX*w 

B ßw 6x 6x +Bßw0x0 
X] 

dx (3.23) 

in which, i0 is the polar radius of gyration with respect 
to the shear center. 
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3.5. POTENTIAL ENERGY IN TERMS OF THE EXTERNAL JOINT LOADS 

As shown in fig. 3.2. the element is subjected to the 

action of the following loads: 

a) Bending moment My with values M 
Yl and M 

Y2 at end 1 

and 2 respectively, 

b) Bending moment Mz with values Mzl and Mz2 at end 1 

and 2 respectively, 

c) Shearing force Qy with values Q 
Yl and Q 

Y2 at end 1 

and 2 respectively, 

d) Shearing force Q. with values Qzl and Qz2 at end 1 

and 2 respectively, 

e) Twisting moment MX about the shear center axis with 

values MX 

f) Bimoment B 

g) Axial forc 

respect to 

and 

wit 

eP x 
the 

M at end 1 and 2 
x2 

h values B1 and B2 at end 1 and 2 

with eccentricities e and e with yz 
centroid. 

The average bending moment My in the element (fig. 3-3) 

can be given by, 

m=i (M -m)+1QQ (£-x) +p e (3.24) 
y2 Yl y2 2z12z2xZ 

The average bending moment Mz (fig. 3-4) is, 

M1 (M M)+1Qx+1Q z2z 1- z22 yj 2 Y2(k-x)+P xey 
(3.25) 

One assumption is made in order to simplify the 
analysis, that is to consider 0v=v0 and 0w=w0 and by 

xxxx 
subsituting for the end forces from eq. 3.24 and 3.25 and 
their derivatives the potential of the applied load (eq. 3.23) 
becomes, 
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v=1 %% x\ Px ' n\ ) dx T (-v. v W. W 2CZv. 6 
x+2C y* w6x- c0.6 

x6x 

(M m+QZx+QZ (9, -x) ) (2 v' 6x + ßy Ox 6x) dx 
i 

yl y2 12 
0 

+1(mm+Qx+Q (9, -x» (2 w\\ 0ß66) dx 41Z i- Z2 Yl y2 xZxx 
0 

91 

-'j (Qzl- QZ2) (2 Jv+ ßy Cý ex) dx 
x 

(Q (2 0w 
yl- Q 

y2 Zx ex) dx 
0 

1a (B e+ B' 0e) dx (3.26) 
xxxx 

0 

where, C3r = (e 
y- YO) , Cz = (e 

z- ZO) and, 

Co =i2+eß+eß (3.27) 
yyZZ 

It can be noted that in eq. 3.26 the bimoment B has 

not been replaced by its values at end 1 and 2. The treatment 

of the bimoment by an approximate solution of the differential 

equation of nonuniform torsion will be given in section 3.7. 

3.6. DERIVATION OF THE ELEMENT MATRICES 

The derivation of the element matrices requires a 
suitable functional representation of the displaced behaviour 

of the element. The general form of each displacement 
function is given by, 

6= (3.28) 

in which, 6 is the displacement component, di are shape 
functions which often take the form of polynomials of the 

co-ordinate x, and Ai is a set of nodal displacements. 
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The shape functions used herein are those suggested 
by the exact solutions of axial and flexural behaviour of 
the element (24,26,28). The displacement components can be 

given by, 

[du] {ui} dju 1+d2u2 (3.2 9. 

{vJ = [dv] {vi} 

{wJ = 
[dw] {wi} 

(OXI: -- 
[de] {ei} 

d3 vi +d 4V2 +d 5$1 + d02 (3.29. b) 

w=d3w, +d 4W2 +d5 (ý, +d 02 (3.29. c) 

Ox =d36 xl 
+d46 

x2 
+ d5X1 +d 6X2 (3.29. d) 

in which, ul, vl. 9 wlP 0 and uvw0 are the displace- 
X1 2' 2' 2' x2 

ment components at end 1 and 2 respectively and, 

IP, =- (ý! -V) 1 ý, =- (ýiw-) 12. and X, =-( 
de 

X)i (3-30) 
2 dx 22 dx 2 dx 2 

The shape functions di are given by, 

d1xdZ (3.31. a) T2 91 

d23-3 (Z) (3-31. b) 3 91 

d= -2 (2ý) 
3+3 

(x) (3.31. e) 4ZZ 

x3 x2 d5 =-77 +2 T- -x (3-31. d) 

d x3 X2 (3-31. e) 6 72- + 91 

From eq. 3.9 the strain energy Us can be written as, 

Uf {C: }T [D]{e} dV (3-32) 

v 
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in which, {c) is the strain vectort {E: } T is the transpose of 
the strain vector and [D] is the matrix representing the 

generalized Hookean constant. 

Substituting for the strain c from eq. 3.28 the 

strain energy Us becomes, 

UE; = {Ai} T [KE] {A i} (3-33) 

where, [KE]'s the element stiffness matrix which can be evaluated 
from the integration, 

[KEJ 
=1f {d*' jT [D] {d". } dV (3-34) 

2 
v 

Following the same procedure, the potential of the applied 
load V can be given by the expression, 

[K 
GI 

{A 
i} (3-35) 

in which, 
[K 

G] is the element geometric matrix which can be 

written as, 

[KG] 
=f {di)T [P] {di} dV (3-36) 

V 

where, 
[P] is the matrix of the applied external loads. The 

total potential energy Up of the element is then given by 

the expression, 

up {A T 
[[KE 

+ [KG (3-37) 

Applying Castigliano's first theorem the element stiffness 
equation becomes, 

{P} = 
[[KE ]+ [K 

G]] {A i} 
(3-38) 
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The condition of elastic instability is characterised 
by the fact that at the buckling load the second variation of 
the total potential energy of the system is equal to zero. 
This condition leads to an expression for the buckling criterion 

which is given by, 

1iE1+ 
'ý' 

1 
Gl «"2 0 (3-39) 

in which 
IR 

El is the determinant of the stiffness matrix 
PEI 

IR 
GI is the determinant of the geometric matrix [K 

G] , and X is 
the instability parameter (eigenvalue). 

3.7. EVALUATION OF THE BIMOMENT TERMS IN THE GEOMETRIC, MATRIX 

The actual distribution of the bimoment B along the 

element is given by, 
C3 

BB sinh k(9, -x) +B sinh kx + Bt(x) (3-40) (x) ý1 sinh k9,2 sinh U 

in which, B, is the bimoment at end 1 of the element, B2 is the 
bimoment at end 2, Bt(x) is the bimoment at any cross section 
of the element due to the applied torsional loading and k is 

the bending-twisting parameter given by, 

GJ 
Ea Jw 

(3-41) j 

Vlasov'(1) showed that the bimoment B h(x) caused by 

a horizontal thrust Px when acting at point e on the cross 

section, where the sectorial co-ordinate is w ef can be given by, 

BPw cosh kx (3-42) 
h(x) xe cosh 

The total bimoment in the general case of loading 

becomes, 
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BB sinh k(Z-x) 
+B sinh kx +B sh kx (3-43) (x): -- 1 sinh k9.2 sinh kt t(x)- Pxweccoosh k9, 

2 

For a given value of the parameter k eq. 3.43 can 
be simplified to, 

B(x) = B, Fl(x) +B2F 2(x) + Bt(x) - Pxwe F 3(x) (3-44) 

By substituting forg(x) in eq. 3.26 the potential 
energy of the bimoment becomes, 

z 

V aw [f (BjFj (x) +BF+ Bt F e,, e B22 2(x) (x)-Pxwe 3(x x 
0 

(B 1 F, (x) +B2F2 (x) + Bt (x) - Pxwe F3 (x) )ex q dx (3-45) 

In making the integrations in eq. 3.45 two simplifi- 
cations have been made in order to keep the orthogonality of 
the approximate shape functions dis, used to define the angle 
of rotation 6x, and to keep the symmetry of the resulting 

geometric matrix. These two simplifications are, 

The term 00 \\ has been replaced by -0 
\2 

xxx 

2. The second term which includes ex6 
x 

has been neglected 

as it proves to disturb the symmetry of the resulting 

coefficients in the geometric matrix. The potential energy 
of the bimoment VB can then be given by, 

v 
B2 WS 

[(B, 
Fl (x) +B2 F2 (x) + Bt (x) - Pxwe F3 (X))O' I dx (3-46) 

0 

The integrations of eq. 3.46 have been carried out 
. %2 numerically. For example to calculate B, Fl(x)O dx, for 

0 
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a given value of kk (eq. 3.41), a unit bimoment B1=1 was 
applied at end 1 of the element assuming that the other end 
(end 2) is fully fixed. The distribution of the bimoment 
(F 

1 (x)) was calculated using the elastic stiffness matrix 
(first order) given by eq. 3.34. This approximate distribution 

of the bimoment has proved to be in very good agreement with 
the actual distribution given by eq. 3.40 as will be discussed 
in chapter 5 of this thesis. The bimoment B(x) due to B1=1 

%2 "2 
was then integrated with functions dI Of ex using a suitable 

subroutine presented in Appendix A-3.1. The procedure was 
repeated for B2=1 and Mx =1 to evaluate the potential VB 

in terms of the end forces Blv B 2' Mx and the end twisting and 

warping 0 
xl' 

0 
x2' and Xl' X2* The resulting coefficients--are 

tabulated in Appendix A-3.2 for kk values starting from kZ =0 

up to kZ = 10.0. As an approximation, F3 (x) has been treated 

as being equal to F2 W and that PxWe is an external end 
bimoment to be added to B1 and B 2* 

. 
3.8. STIFFNESS MATRIX 

By substituting for the derivatives of the shape 
functions d. in eq. 3.34 and integrating with respect to 

the volume of the element V the elastic stiffness matrix[KE] 

can be given by, - 
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EKE] 

47) 

where, 
EA b11 =-a11 

a22 "': 
12EIZ 

k3 
b 22 =- a22 

a 33 = 
12EI 

«7 b 33 a 33 -3 
Z 

a 
1-2GJ 12EI 

ba 44 T- +3 44 44 

ell ` all 

C22 = a22 

033 a 33 

ca 44 44 

oil- 
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a 55 
4EI 

: -- -Lý 
b 55 = 

2EI 
y ca 55 55 

, k 

a- 66 -4EIz 
- 

b 66 = 
2EI z a66 C66 

2, Z 

77 
2GJ,, Y. 

15 +b 77 
GJ - 2, 

30 + 
2EIW 

vCa k 77 77 

a 53 -6EI y b 53 a 53 c 53 a 53 
Z2 

a62 =-6EIZ b 62 a62 c62 a62 

- GJ 6EIw 
74 10 Z2 

b74 a74 

bbb 35 53 26 62 

C74 =- ý'7 4 

47 ý-b 74 

(3-48) 

It can be noted from eq. 3.48 that the stiffness 

matrix KE resulting from the finite element analysis and based 

on an approximate representation of the element behaviour is 

identical to the conventional stiffness matrix given by a 

virtual work analysis except for the signs of a 62' b 62' C62' 

a 26' b26 and C26 * This is due to the sign of'the bending 

moments M 
Z1 and M 

z2 which follows the shape functions repre- 

senting the displacement v. However, in section 3.10 a 

suitable transformation matrix, to be used in a three dimensional 

analysis in conjunction with stiffness matrix KE' is presented. 

3.9. GEOMETRIC MATRIX 

By substituting for the derivatives of the shape 

functions d and the external end forces in eq. 3.36 and 

integrating with respect to the volume of the element V the 

geometric stiffness matrix can be given by, 
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u: Ve 1ý Ill I'vi "'i foxi. ý1., Oilxi 2,2 '- W2 'i' x2,1 22 -X2 

Id 
221 

d 33 
d 42 d 43 d 44 

d 53 Id 54 d 55 
d 62' d64' d661 

[KG] 
d 72 d 73 d 74 d 

e 22 l e24 e 26 e27 

e 33 '934 e 35 e 37 
e 42 e43 e44 e 45 e 46 e 47 

6 53' e 54' 8 55 e 57 
e 62 - 

e64 866 e 67- 
1 e 721 e 73 

je 1 
74 e 75 e 1 

76 je 77 

in which, 

Symmetric 

f 22 

33 
f 
42 

f43lf44 

f 
53 

f 
54 

f 551 
f 6ý f 64 

If661 

72 1'73 1`74 1'75 1'76 r77 

d 22 
1.2, P 

9. 
x f22 «2 d 22 e 22 d 22 

d 33 
1.2. P 

f 33 =d 33 33 d 33 

d 44 
1.2 G0Px 

2(Mvl-ý 0.3 Qz2 ß 

+ 0.3 ' 2(Mzl mz 
+ Qyl + Qy2] ßz 

ýb1 (B -B l« 2) + £ +K ti m 
x] 

ßw 

44 d 44 f 44 d 44 

d 55 
2Px 
-15 
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in which, K bl ,K b2 ,K b3' K b4' Ktl, K t2, K t3' and K t4 are the 

coefficients resulting from the numerical integration of 

eq. 3.46. Values of these coefficients for different kk 

values /G-J\ are presented in Appendix A-3.2. (k =V -f-I ) 
W 

In comparison with the geometric matrix presented by 

Barsoum and Gallagher (24), or that derived by Tebedge (28), 

or those presented by Powell (26), 
-Krajcinovic 

(22,23). it 

can be noted that the new geometric matrix given by eq. 3.49 

includes more terms which allow for more buckling cases to be 
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analysed. The advantages of the new geometric matrix can 
be stated as follows: 

The matrix can be used to analyse members having mono- 

symmetric c. -ýoss section. It includes the geometric 
characteristics and which reflect the effect of yz 
monosymme 

, 
try on the buckling behaviour of the member. 

The validity and accuracy of the new matrix has been 

examined by analysing a number of beam and cantilever 
problems for which experimental, or finite integral 

solutions are already available (ref. 40) as will be 

explained in chapter 6 of this thesis. 

2. The analysis has been carried out considering that up 
to buckling the bending deformations of the structure 
are accompanied by torsion and at the moment of buckling 
the structure passes to another flexural-torsional 

equilibrium shape. The effect of the bimoment caused by 

the external load is included in the geometric matrix. 
This effect is valid only for cross sections without any 
axis of symmetry. For these sections a new geometric 
constant ýW reflecting the effect of sectorial mono- 
symmetry is evaluated. In chapter 7 of this thesis an 

experimental and theoretical study (based on the new 
formulation) on cold-formed simply supported Z-beams 
loaded with concentrated loads is presented. The compari- 
son of the results is also presented as a check of the 

validity of the bimoment terms. in the geometric matrix. 

3. The signs of the terms which include M. 11 M 
z2' 

Qyl and 
Qy2 have been changed according to the sign conventions 

considered for the shape functions used to represent the 

displacements v and iý. Together with the transforma- 

tion matrix given in the following section (section 3.10) 

the new formulation can be used for a three dimensional 

buckling analysis. The validity and accuracy of the 

formulation have been examined by analysing a number of 

portal and space frame problems for which an analytical 

or experimental results are already available and the 

comparison is presented in chapter 6. ' 
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3.10. TRANSFORMATION OF AXES 

The sys tem of axes for the subject prismatic element 
has been defined at the beginning of the previous chapter and 
is shown in fig. 2.3. The x- axis was defined as coinciding 

with the centroidal line of the element while y and z axis 

coincide with the principal axes of the cross section. The 

three axes form a right-handed system. 

In order to carry out a general three dimensional 

frame analysis all forces and deflections must be stated in 

terms of one global system of axes. The transformation from 

a member local axes to the global system can be done through 

a matrix operation involving the use of a suitable transfor- 

mation matrix. 

Jennings and Majid (67) presented a general procedure 
for thefirst order elastic analysis of rigidly jointed space 
frames in which they took into account the secondary effect 

of the misalignment of the members using two displacement 

transformations. The procedure can be described by the 

following steps: 

Fora given member in a space frame structure if 
[6] 

is 

the column 'vector of the displacements at the two end 
joints of the member with respect to the global system 

of co-ordinates and 
[6] 

is the column vector correspon- 
ding to the components of these displacements in the 

local co-ordinate system of the member. the compatibility 

conditions give, 

aj 
r6] 

(3-51) 

in which, ai is the member transformation matrix given'by, 

00 

00 

ri 0 (3-52) 

0ri 
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and, 
mn 

m2n2 (3-53) 

m3n3 

in which (as' shown in fig. 3-5), klP ml, n, are the direction 

cosines of the local x axis with respect to the global X, Y, 

and Z axes respectively, k2' M2, n2 are the direction cosines 
of the local y axis and Z 3' m3, n3 are the direction 

cosines of the local z axis. 

2. The contribution Ki of member i to the overall stiffness 
matrix of the frame can be given by, 

i]T 
[Ki] 

a ki] 
[ 

i] -a (3-54) 

in which, ki is the local stiffness matrix of the member. 

3. To include the secondary effects caused by the misalign- 
ment of the members in the analysis of space frames, 
Jennings and Majid (67) suggested the use of a misalign- 
ment matrix and performing a double transformation of 
the displacements. Fig. 3.6 shows the misalignment of 
a given member 1-2 where AB is the line connecting 
joints A and B of the frame, PC, is the departure at 

end 1 from joint A in X-direction, Pc2 is the departure 

at end 2 from joint B in X-direction, qc and rc are the 

departures of the member netural axis from the line of 
joints AB in Y and Z-directions respectively. Jennings 

and Majid presented a misalignment matrix LEE] in terms 

of the departures P 
cl, 

Pc2 , qC and rc. The two displace- 

ment transformations lead to the general transformation 

matrix 
ra. ] 

which can be evaluated from the following 

equation, 

rai] 
= 

[ai] [F] (3-55) 
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Fig. 3.4 shows the positive directions of the end 

moments Mzl, and Mz2 in the positive directions which have 

been adopted in the analysis for the angles of rotation iý 1 
and ý) 2* Positive directions of ý) 1 and ip 2 have been dictated 

by the use of the shape functions d 3' d 4' d5 and d6 for the 

approximate representation of the'displacement 'v (eq. 3.3l. a-e). 

In order to carry out a three dimensional frame analysis based 

on the finite element formulation given in the previous sections 

of this chapter, the transformation matrix- Ia 
il has to be 

modified, first according to the sign conventions of Mzl and 
M 

z2, and secondly to include the war 
, 
ping transformation. 

According to the positive directions of ip, and ý2' the 

transformation matrix [ail can be modified to the matrix It 
il 

where, 

00 

00 
Itil= 

ri '0 ' 
(3-56) 

and, 

ki mi n1 

pil k2m2n2 (3-57) 

3m3 -n 3 

The analysis of the warping behaviour at the joints 

of a framedstructure presents a complex problem (9). In a 

comprehensive study concerning the warping behaviour of rigid- 

jointed double symmetric I-plane frames Vacharajittiphan and 
Trahair (64) reported that the warping behaviour depends on 

the angle of the joint and on the number and type of stiffeners 

used at the joint. Neverthelesst the results of their inves- 

tigation are far from being applicable in a large three 
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dimensional frame analysis. Previous studies on rigid jointed 

frames have assumed that the joints are sufficiently stiff 

for warping to be neglected (7,9,10,11,12,28,52,53). For 

membergmeeting at 180 0 angle, the continuity condition at the 

joint is such that the warping of one member is elastically 

restrained by the other. The transformation matrix given by 

eq. 3.56 has been modified to include the transformation of 

the warping, as the seventh ' 
degree of freedom at the joint. 

The submatrix ril given by eq. 3.57 can be replaced by the 

submatrix where, 

ki m1 

ý'2 M2 

-Z 3m3 

00 

n, 0 

n2 0 (3-58) 

-n 30 

0 

For rigidly jointed frames the boundary conditions at 

the. corner joints are such that the warping of the joint is 

prevented. 

The general transformation matrix 
Ptil which can be 

used together with the stiffness and geometric matrices given 

in the previous sections for a three dimensional second order 

and/or buckling analysis of frame and which include the 

secondary effect of the misalignment of the member axes, is 

given by, 

rIr oi 00 

0 
(3-59) 

00 ri roi 

1% 000 ri 
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in which, ri is given by eq. 3.53, r"i is given by eq. 3.57, 

r and r" are given, by the-following equations, oi oi 

b1 b4 b7 0 

b2 b5 b8 0 

01 b3 b6 b9 0 

0 0 0 0 

and, 

b b4 b7 0 

ý'2 1ý5 1ý 8 0 

0 ý3 b \6 
9 0 

L0 0 0 0 

(3.60) 

(3.61) 

where, 

b1=-rc9,2 +qcz3 

b3= qc k, +p 
cl 

z3 

b5=-rc ml - Pcl m3 

b7-rcn2+qcn3 

bg qc n, +P 
cl n3 

b2rcz1- PA k3 (3.62. 

b4-rcm2+qcm3 (3. b2. b) 

b6 qc m, +P 
cl m3 (3.62. e) 

b8 =-rc nl -P ci n3 (3.62. d) 

(3.62. 

and, b2, b 3' --ob 9 are obtained by switching P 
cl 

to 

Pc2 in b2, b 3' bg respectively. 

The buckling analysis of a given structure starts 

with the choice of an arbitrary value of the load factor and 
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by perfo'rming a linear elastic analysis the individual 

element end forces are found. By using these forces to form 

the geometric matrix the instability condition- can then be 

illustrated by eq. 3.39. The critical load is the lowest 

root of this equation'. - 

There mre. a number of methods fo, r, solving the 

stability, equation. These methods are reviewed in the next 

chapter. Attention is focused on Southwell plot method. 

-This method is employed in, a finite. computer program to 

predict the buckling load from a second order flexural- 

torsional analysis of the structure. Chapter four also 
includes a detailed description of this computer program. 

" ýý: kI 
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CHAPTER FOUR 
- 

Prediction of the Buckling Load 

THE BUCKLING CRITERION 

The second-order behaviour of a framed structure 
having n joints can be expressed by the following equation, 

F 
[[K 

+ 
[Kg (4'. 1) d=e 

el g 
Ad 

where, (F 
nI 

is the column vector of the external load acting 

at the joints of the frame, [Keel is the overall elastic 

stiffness matrix of the frame, LKgg] is the overall elastic 

geometric matrix, and {A 
n} 

is the joint displacement vector. 
The term TKee] + [K, g]J which represents the second-order 

matrix of the structuiýe can be obtained from the transforma- 

tion operation, 

i]T + 
[Kg 

tK+[K G]] 
rt 

j] 
(4.2) 

[[K 

e e] gTr E] 
n 

in which, 
[KE] 

and 
[K 

G] are the member stiffness and geometric T 
matrices in the local co-ordinate system, 

rtil 
, and 

rtil 
are 

the member transformation matrix and its transpose. 

The member stiffness and geometric matrices K E] 
1 

[KG] 
are given by equations 3.47 and 3.48 respectively, and 

the transformation matrix is given by eq. 3.59. 

In an elastic stability analysis, the applied load 

on the structure is regarded as a fixed loading pattern 

multiplied by some factor X. The critical load F can be 
cr 

defined as the load F multiplied by the smallest value of X 

at which the displacements of the structure become indeter- 

minate (bifurcation of equilibrium). 

This condition can be mathematically represented 
by the following relationship, 
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ýK 
e e] 

+ý 
[K 

gg]] 
1 ýn 1 *ý 0 (4-3) 

in which, {A d is the column vector of the buckling deforma- 

tions. 

For the non-trivial solution of eq. 4.3 the determi- 

nantal condition is given by, 

(4-4) 
eel +' 

jiýgg I 

in whichj, 
1ý-eej 

and 
IT"I 

are the determinants of the stiffness 

and geometric matrices respectively. The critical load can 

then be defined as the lowest root of eq. 4.4. 

Equation 4.4 is'known as the buckling'criterion. 

Below the first (lowest) critical load the determinant has a 

positive value. When the load is exceeded, the determinant 

becomes negative. The critical load can be determined by 

systematically searching for the load at which the determinant 

first changes its sign. 

4.2. SOLUTION OF THE STABILITY EQUATION 
I 

EiRenvalue solution 

The general form of the eigenvalue problems can be 

represented by the equation, 

ýA] 
- X[B] {R} =0 (4-5) 

in which 
[A], 

and 
[B] 

are symmetrical matrices, Xis a scalar 

called the eigenvalue, and {2} is a column vector called the 

eigenvector. Equations 4.4 and 4.5 are directly analogous. 

Thus the stability equation (eq. 4-4) can be 
' 

treated as an 

eigenvalue problem. The lowest eigenvalue X multiplied by 

the load factor gives the first (lowest) critical load of the 

structure. 
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Equation 4.5 has solutions other than zero only if 
the determinant of the coefficients vanishes. This condition 
can be represented by the following equation, 

a 11 - xi b 11 a 12 - Xi b 12 --a ln Xi bln 

a 21 -xib 21 a 22 -xib 22 --a 2n Xi b 2n =0 (4.6) 

aXbaX. baXb 
L nl i nl n2 i n2 nn i nnj 

The characteristic equation of the system can be 

derived by expand 
, 
ing eq. 4.6. The n roots resulting from 

the solution of the characteristic equation are the n eigen- 

values(X values) of eq. 4.5. The eigenvector {X i) corresponding 
to any eigenvalue Xi can be evaluated by substituting for Xi 

in eq. 4.5 and solving for the ratios of the elements in 
{xi} - 

The solution of eq. 4.5, by any of the computer-based 
methods, is often based on converting the problem into a 
standard eigenvalue problem, (69), which can be described by 

the equation, 

(4-7) 

where, the matrix H is given by, 

[B] -1 [A] (4.8) 

and 
[I] is the identity matrix. 

The solution of eq. 4.7 can be carried out using one 
of the computer-based methods for solving the eigenvalue 
problems. These methods can be divided into two main groups, 
namely, transformation methods and iterative-methods (69). 

The transformation methods can be used when all the eigen- 
values and eigenvectors are required. The iterative methods 
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can be applied when one or few eigenvalues and eigenvectors 
only are required. More details about these methods can be 
found in reference. 69,70 and 71. 

-4.2.2. 
Prediction of the buckling load from the load- 

displacement curve 

This method is based on performing a second-order 
analysis of the structure and predicting the critical load 

from the load-displacement relationship. The procedure starts 
by analysing the structure under a small value of the load 
factor in order to identify the largest component of the 
lateral displacements A., The load factor is then increased 

by a small positive increment and the corresponding value of 
the lateral displacement A. is to be calculated from a second- 

order analysis. The procedure is repeated in order to draw 

the load-displacement relationship until the curve becomes 

relatively flat. The maximum value of the loadpfrom the 

curve, orepresents the critical load of the structure. The 

increments of the load must be kept small in order to avoid 

arriving at higher buckling modes. 

4.2-3. Southwell method 

Southwell (72) proposed an analytical technique for 

calculating the Euler buckling load of a real column using a 
load-deflection plot made for loads below the buckling load 

itself. 

The method was later refined and applied by many 
investigators to predict the buckling loads for different 

types of stability problems such as beam-column (73), plane 
frameworks (74), plane trusses (75). pand unbraced plane frames 

with flexible joints (76). 

Southwell's method can briefly be illustrated as 
f ollows: 

If an elastic strut is not quite straight initially 

and if the initial imperfection of the central line at the 

mid-length of the strut is equal to the differential 

equation of equilibrium is, 
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d2p 
--1 +xU+ v) (4-9) 

dx 2 EI 
Z 

in which, v is the additional deflection, Px is the axial 

compressive force, and EI 
z 

is the flexural rigidity of the 

strut. 
Both v and ý can be represented by Fourier sine 

series with coefficients Tr 
n and v n, respectively (75). By 

substituting in eq. 4.9 the load-deflection relationship 
becomes, 

- F 

(4-10) 

in which, Pn is the nth critical load for the perfect strut. 

The first critical load P can be calculated from 
cr 

the equation, 

er 
(4.11) 

in which., 6 is the total deflection of the strut at its center. 

Equation 4.11 represents a rectangular hyperbola 

whose asymptotes are the axis P and the horizontal line 

P=P 
cr 

(77). Equation 4.11 can be rewritten in another 
form given by, 

cr 
(4.12) 

Equation 4.12 describes the standard Southwell plot which is 

shown in fig. 4.1. The critical buckling load P 
cr can be 

calculated from the slope of the plot. 

Fig. 4.2 shows an alternative representation of 
eq. 4.12 known as the modified Southwell plot. The plot 
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represents a linear relationship between P/6 and P. The 

critical load P 
cr 

is given by the intercept with the P axis, 
while the inverse slope gives vl* 

The modified Southwell plot is used in the finite 

element computer program to predict the buckling load from a 

second-order analysis as will be illustrated in the next part 

of this chapter. 

4.3. THE COMPUTER PROGRAM 

The main routines of the finite element computer 
program used in the study reported in this thesis were 
already developed by Daviesi. The program has been modified 
to include the geometric matrix and the transformation matrix 

which are presented in chapter three. 

The computer program can be used for the following 
types of analysis: 

a) Conventional elastic analysis of framed structures 

with maximum seven degrees of freedom at each joint 
(mode of analysis = o). 

b) Second-order torsional-flexural analysis of framed 

structures (mode of analysis = 12).. 

c) Torsional-flexural buckling analysis of framed 

structures (mode of analysis = 2). 

The input data for a given problem consists of the 

following: 

1. Joints : Each joint of the structure, including the 

supports, has to be numbered and identified by its co- 

ordinates with respect to the adopted global system of 

co-ordinates. Degre_es of freedom must also be give 
In 

according to the restraining conditions, at the joint. 

2. Members The members connecting the joints are 
divided into groups according to their ela'stic and cross 

sectional properties. Each member is identified by four 

integer numbers, the first refers to the group of the 

member, the second and third identify the two end joints 

Professor 
of Structural . 

Engineering, University of Salford. 
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of the member, while the fourth number specifies a third 

joint chosen to define the principal plane of the 

member. 

3. Loads : The applied loads are identified in the data 

sheet by the number of the loaded joint, the direction at 

which the load is applied (an integer from 1 to 7), and 
by the value of the load. 

The flow chart of the computer program is shown in 

fig. 4.4. The program consists mainly of the following sub- 
routines: 

a) Main subroutine, b) Subroutine MAPP, 

c) Subroutine SPACE, d) Subroutine BARS, 

e) Subroutine SOLVE, and f) Subroutine STORE. 

The main subroutine contains the basic organization 
and the iteration process to calculate the elastic critical 
load using the modified Southwell plot. 

The procedure'of calculating the torsional-flexural 
buckling load for a given structure starts by applying a small 
value of the load factor and by solving for the displacements 
the largest component of the deflection can be identified. An 

infinitesimal value of the load can then be applied at the 

critical joint in the critical direction in order to start the 

buckling displacements. 

The instability problem is linearized by carrying out 

a doubly iterative process. At each load level the singularity 

of the determinant [R 
ee. 

+ X Rgg] is checked. At each load 

level, also, an inner iteration is performed to find out the 

correct value of the displacement. This operation is carried 

out by solving repeatedly the second-order equation for the 

displacements until the percentage difference between two 

consecutive values of the critical displacement is less than 

the adopted value for the tolerance. This step is shown in 

fig. 4.3. 

Fig. 4.5. shows the flow chart of the inner iteration 

technique to calculate the correct value of the critical 
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displacement Acr at a given value of the load factor. The 

prediction of the critical load factor Xcr using the modified 
Southwell plot is illustrated by the flow chart in fig. 4.6. 

The procedure continues until the percentage difference between 

two consecutive predictions of X 
cr 

becomes less than the 

tolerance (0-005). A complete listing of the main subroutine, 

which includes the double iteration process, is given in 

Appendix A-4-1. 

The method used to solve the linear matrix equations 
is based on making use of the sparse nature of the stiffness 
matrices and operating on the non-zero elements only. The 

method has the advantage of preplanning the storage so that 
the exact size of each submatrix generated during the solution 
is evaluated and appropriate storage is reserved and addressed 
before the actual solution starts. The basic theory of the 

method will now be explained in more detail. 

The load-displacement relationship for an elastic 
structure having n joints can be described by the stiffness 
equation, F=K6 If this equation is expanded it 

can be rewritten as, 

FK 11 K 12 K ln 

F2K 21 K 22- K 2n 2 
(4-13) 

KKK 
n nl n2. nn n 

L- -i L -j 

where, the individual K terms are submatrices associated 

with the n joints of the structure. 

For the part of the structure which is shown in 

fig. 4.7, the submatrix equations of this part are given by, 
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Fb 

F 
c 

Fd 

Ft 

KIK bb bt b 

K 
cc 

K 
ct 

6c 

K dd K dt 6d (4-14) 

K 
ee 

K 
et 

6e 

KKKK lK 6 tb tc td te I tt t 

where, the K submatrices of the above equation are of a size 
depending on the number of degrees of freedom of the joints. 

Equation 4.14 can be rewritten in a partitioned form. 

as follows, 

FaK 
aa IK at, 

6a 

--. =-1 (4-15) 
F K- 

-I - 
t ta lKtt 6t 

I--- 

By eliminating joint t from the analysis (fig. 4.8), 
the following relationships are obtained, 

K* =-- K-KKK (4-16) 
aa aa at tt ta 

F*=F-KKF (4-17) 
aa at tt t 

kfter calculating 6 
a, 

6t can be evaluated by substituting for 
6a in eq. 4.15. By repeating the application of eq. 4.16 and 
4.17, the number of joints in the analysis reduces until for 
the last joint the displacement can be calculated from the 
following equation, 

6=F* (4-18) 
n nn n 

The sparse matrix Kaa is replaced by the dense matrix 
K 

aa 
As the stiffness matrix is symmetrical, K 

at 
is the 
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transpose of K ta so that it is sufficient to store only one 
of them. The elimination equations (eq. 4.16 and 4.17) show 
that it is only necessary to store the two matrices K tt- 

1 
and 

K ta 
(or their product). 

The solution starts with a 
establish a list of the joints at a 
elimination together with the joint 
imaginary connections which will be 

solution. The order of elimination 
do not include the joints with no d 

simple operation to 

near optimum order of 

connections including the 

created during the 

and the connection list 

egrees of freedom. 

The elimination order is performed by selecting, at 

each stage, to eliminate next the joint, or one of the joints, 

with the lowest sum of degrees of freedom for the joints to 

which it is connected, i. e. the joint with the smallest size 
for its connection matrix, K 

aa , 
in eq. 4.16. The connection 

list is contained in a two-dimensional integer array, MAP. 

The number of degrees of freedom for a given joint m is 

specified in a one-dimensional array JS, while another arrayt 
NM, is used to specify the sum of the number of the degrees 

of freedom of the joints connected to joint m, i. e. the size 

of Kaa at the current stage of the elimination process. The 

integer array JDF is used to specify, in a binary form, the 

active degrees of freedom at each joint. During the prelimi- 

nary mapping the solution process continues updating the 

arrays MAP and NM up to the last joint of the structure. A 

complete list of the subroutine MAPP which includes the 

procedure of preliminary mapping is given in Appendix A-4-2. 

The subroutine SPACE includes the formulation of 
the elastic stiffness matrix and the transformation matrix 

given by Jennings and Majid (67). It can be used for first- 

order analysis of framed structures provided that six degrees 

of freedom are considered at each joint. 

The subroutine BARS includes the formulation of the 

elastic stiffness and geometric matrices for the second-order 
and stability analysis of thin-walled structures. It also 
contains the formulation of the transformation matrix, which 
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is presented in chapter three, for performing a three- 

dimensional stability analysis of frames. A complete list 

of the subroutine BARS is given in Appendix A. 4. j. 

The stiffness and load matrix elements are stored in 

two linear arrays, in the working store, namely ADDR, and WADDR 

respectively. Having completed the mapping operation, the 

complete stiffness matrix for the structure is built up. member 
by member$in the form of submatrices which are entered at the 

appropriate addresses. The solution then proceeds by elimi- 

nating the joints one at a time according to the previously 

arranged elimination list using eq. 4.16 and 4.17. During 

the elimination process, stiffness terms of the form K-1 and 
-1 

tt 
K 

at -K tt and the modified load submatrices Fa, are written up 

to the backing store. These terms are required later for the 

evaluation of the joint displacements and member forces. 

The joint displacements and member forces are 

evaluated using eq. 4.17 and 4.18. These calculations are 

performed using the subroutine SOLVE. A complete list of this 

subroutine is given in Appendix A-4-4. 



F 

F 

Fig-4-2 Modified Southwell Plot 

7-. -.. n 

Fig. 43 The Inner Iteration Procedure 



Start job 
Preliminarv inDut 

'0 

V2 
(1) 
C) 
0 
F-4 

.H 
4-ý 

(D 

0 

4-3 
P-1 
Cd 

+3 
to 

. Input joint and member data 

. Optimise order of elimination of joints 

. Map storage for stiffness and load 

matrices 
Input load data to mapped locations 

. Form stiffness submatrices and store in 

mapped locations 

a) mode =o first-order analysis use 
(SPACE) 

b) mode = 12, or 2 second-order or 
stability analysis use (BARS) 

Eliminate joint:, g in optimum order 

I Evaluate joint displacements I 

Evaluate member forces 

Second-order 
, --- Is 
a first or second 

order analysis ? 

First-order 
print 

END 

Fig. 4-4. - Flow diagram of the computer program. 



I Enter data I 

Set up the elastic 
stiffness matrix Kee 

First-order analysis 
to calculate : 

The internal forces 

Set up the elastic 

geometric r. atrix K 
99 

Check the singularity 

New load 

factor 

Y=0.50 

Is----- 
ýLO the determinant 

I positive ? 

YES 

NO 

Second-order analysis 
to find the internal 

forces and displace- 

ments 

Select the critical A 

Is the piu entage difference of the 

critical, jess than the tolerance ?I 

YES 

New load factor 

I The displacements I 

Select the critical 
displacement A 

cr 

Fig. 4.5. - The flow chart of the computer operations to 
find the value of A 

cr at a given load factor. 



I Previous 
load factor 

New load factor 

Solve for the displacements 

and internal forces 

I 

Perform an inner iteration. 

as that shown in fig. 4.5 

1 

The calculations have 

converged at the given load 
factor 

Prediction of Xcr from 

the modified Southwell 

plot 
(P/6-P relationship) 

this prediction 
the first ? 

YES 

New load 

factor 

I 

Suggested Xcr 

Print final prediction 

/END\ 

Is the percen- 
tage difference 

NO 
of the last two 

predictions less 
than the 
tolerance ? 

NO 

YES 

Fig. 4.6. - The flow chart of the prediction of Xcr 
from the modified Southwell plot. 



Fig-4-7 Joints Connecting Part Of The Structure 

Fig-4-8 Imaginary Connections After Eliminating Joint t 



78. 

CHAPTER FIVE 

Bimoment Distribution in Thin-Walled Members 

5.1. INTRODUCTION 

The behaviour of thin-walled members subjected to 

either uniform or nonuniform torsion has become an important 

topic for investigation in recent years. The growing use of 

cold-formed light gauge members in the construction of steel 
frameworks has been the main reason behind the increasing 

number of studies reported in this subject. 

A thin-walled member subjected to torsion 'has the 

tendency to warp. However, if such warping is restr'ainedat 

any cross section, longitudinal stresses and displacements 

will be developed in the member. The generalized force 

corresponding to these longitudinal stresses is called bi- 

moment. The stresses and deformation arising in a thin-walled 

member as a result of the bimoments are of great importance 

and could be a major factor in the design. 

The fundamental theory of nonuniform torsion has been 

established and presented by many authors (1,2,3). Vlasov (1) 

was the first to introduce the term "bimoment" as the genera- 
lized force corresponding to the longitudinal stresses 

resulting from the nonuniform torsion. However, Vlasov's 

work was limited to single span beams with relatively simple 

cases of loading. 

Black (79) presented a comprehensive experimental and 
theoretical study on the evaluation of longitudinal stresses 
in single-span cold formed channel beams subjected to'combined 

bending and torsion. Black's theoretical analysis was based 

on simplifying the differential equation of torsion by neglec- 
ting the St. Venant torsional rigidity term. In order to 

examine the validity of the approximate theoretical procedure 
Black (79) compared the results with the corresponding closed 
form solutions. He proposed that the true value of the bi- 

moment can be calculated by multiplying the approximate value 
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by a correction factor. The correction factor depends on 
the value of kZ, where k GJ the type of loading and the 

V1 
=Ej 

W 
support conditions of the beam. 

In another paper, Black and Semple (80) reported a 
comprehensive study concerning the behaviour of thin-walled 

continuous beams under nonuniform torsion. They presented 
the closed form solution for the case of a three-span 

continuous beam loaded with central concentrated torque. 
They also suggested the use of the bimoment-distribution 

method which is directly analogous to the Hardy-Cross moment 
distribution technique, and provided expressions for the 

distribution and carry-over factors. This method was used by 

Walker (81) in his study of the different techniques of calculating 
the bimoment distribution of three-span continuous beams. The 

procedure was later refined and made more general by Khan and 
Tottenham (82) and applied by Medwadowshi (83) to a number of 

practical problems. 

A completely new approach to the problem of calcula- 
ting the bimoments of continuous structures has recently been 

proposed by Davies (84). He suggested that, as the differen- 

tial equation governing the torsional behaviour of thin-walled 

members is identical to the differential equation of second- 

order bending, the same technique of solution can be used. 
The method has proved to agree very well with the bimoment 

distribution method for a number of continuous beam problems 

previously presented by Walker (81), and Khan and Tottenham (82). 

This chapter presents a study on the different methods 

which can be used to calculate the bimoment distribution 

caused by the nonuniform torsion of thin-walled beams. These 

methods include the finite element formulation of the general 

elastic stiffness matrix given in chapter three of this thesis. 

The validity and accuracy of the finite element formulation of 
the torsional behaviour hasýbeen checked by analysing a number 
of problems for which highly accurate solutions are available. 
An experimental study on the longitudinal stresses arising in 

simply supported Z-beams unrestrained at the supports against 
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warping and subjected to combined bending and torsion is also 
presented. The measured longitudinal stresses are compared 
to'the corresponding theoretical values. 

5.2. METHODS USED FOR CALCULATING THE BIMOMENTS 

SinRle span beams 

Closed-form solutions 

The differential equation which describes the 

behaviour of a thin-walled beam subjected to nonuniform 
torsion is given by, 

EIW d4o 
x 

dx4 

d 2e 

- GJ 
dx 2x=m 

(5.1) 

in which, m is the 

per unit length. 

intensity of the external torsional couple 

Equation 5.1 can be rewritten in terms of the bimoment 

B as follows, 

d 2B 
- k2 Bm 

dx 2 
(5.2) 

GJ 
where, k= 

AE 

JW , and the bimoment B is given by, 
7- 

d2e 
B= EIW 

dx 2x1 
(5-3) 

The general solution of eq. 5.2 as given, by Vlasov 

takes the form, 

A1 cosh kx +A2 sinh kx +B0 (5-4) 

in which, A1 and A2 are constants of integration depending 

on the boundary and loading conditions, and Bo is the 

particular solution. 
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For a simply supported beam with length Z and 

subjected to central concentrated torque T, the particular 

solution Bo in eq. 5.4 is equal to zero. Because of the 

symmetry, the general solution need only be found for half 

the span. The boundary conditions are, 

at xo E) 
xoBo 

(5-5. a) 

dO 
x dB T 

0, ý x 
5.5. b) and at x2 dx x 

The general solution of the bimoment B as given by 

Vlasov (1) is, 

B=T sinh kx 
904x4 Z12 (5.6) 

2K- cosh kY. 12 

The angle of twist ex is given by, 

1T sinh Iýx +T (5.7) 
x EIw 2k 3 

cosh M'12 2EI 
(. 0 

k2- 

Similar forms of solution for B and ex can be 

obtained for other cases of loading and end conditions. 

5.2.1.2. Simplified solutions 

Black (79) suggested that if the torque component 

d26 
GJ x due to St. Venant shear stresses is much smaller 

dx 2 
d4e 

than that due to warping bending EI 
W x, eq. 5.1 can be 

simplified to, dx4 

d46 
EI 

w dx4 
x (5.8) 

Equation 5.8 is similar in form to the equation of 

plane bending which relates the deflection v and the 
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intensity q of the applied load (EI d4v 
q Thus for 

yzý x4 y 

a simply supported beam subjected to central concentrated 
torque T, the approximate value of the bimoment B at the 

middle cross section (x = 
i) is given by, 2 

B TZ 
at 

z (5-9) 
app. 2 

The approximate value of 0x at the middle cross 
section (x = 

9) 
can then be given by, 2 

T 93 0 -t x (5-10) 
x app. = 78 EI 

wj 

The accuracy of the approximate solution depends on 
the value of kk where k The error in the approxi- /GxJ/EIW* 

mate value of the bimoment can be evaluated by considering 
the ratio between the approximate and accurate values of the 

bimoment. Thus, for a simple beam with central concentrated 
torque T, the error is, 

B 
app k9. cosh kZ42 

at x= Z/2 -B- 2sinh kZ/2 ' 

Walker (81) suggested that the value B 
app/B can be 

considered as a correction factor F to the approximate 

value of bimoment. He provided a number of graphs for the 

correction factor F for different values of the non-dimen- 

sional beam property kZ. Under any case of torsional loading 

and boundary conditions, the accurate value of the bimoment 

at the middle cross section can then be calculated using the 
following equation, 

F.. B 
app 

(5-12) 
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Walker (81) presented the graphs of the correction 
factor F for simply supported beams and fixed end beams 

subjected to either central concentrated or uniformly dis- 

tributed torque. Such graphs can be used for design purposes. 

5.2.2. Continuous Beams 

5.2.2.1. Bimoment-distribution method 

This method can be applied in an analogous manner 
to the well known moment distribution method used for solving 

plane bending problems. Black and Semple (80) presented the 

expressions of the carry-over factor and the bimoment distri- 

bution factors for equal span continuous beams. Khan and 

Tottenham (82) established the method in wore general steps 
by defining the following coefficients needed for the 

calculations: 

a) Warping stiffness of the beam p: which is defined 

as the bimoment required at one end of a simple beam 

to produce a unit warping at this end while the 

other end being fully fixed against warping. 

b) Carry-over factor C: is the ratio between the-carry- 

over bimoment, developed at the fixed far end due to 

a unit warping at the near end, and the warping 

stiffness of the beam. 

c) Distribution factor D: is the ratio of the bimoment 

shared by a joining member to the balancing bimoment 

at the joint. 

Khan and Tottenham (82) presented the expressions 

of p and C for three different cases of boundary conditions 

namely, 

1. Beam fully restrained at the far end. 
2. Beam with far end restrained against rotation ex only. 
3. Beam with far end free. 

The warping stiffness p and the carry-over factor 

C for each of these three cases are given in Appendix A. 5.1. 
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After calculating both p and C for each span of 
the continuous beam the analysis can then be carried out in 

a similar manner as for the well known moment distribution 

method. 

, 
5.2.2.2. Analoay with second-order bendinp,, technique 

This method has been proposed by Davies (84) who 

suggested that, as the differential equation describing the 

torsional behaviour is identical to that of the second-order 
bending, identical techniques of analysis can be used. The 

governing differential equation of a prismatic beam subjected to 
bending Mz and axial tension P is given by, 

d4v d 2v 
- EI 

Z dx4 
+p 

dx 2=q (5-13) 

in which, qy is the intensity of the actiaý-uniform load in 

y direction. 

Equation 5.13 is similar, in form, to the governing 
differential equation of torsion (eq. 5.1). Thus the torsional 

behaviour of the beam can be treated as the second-order 
behaviour under combined bending and axial load. The solution 

can be given in the form of the modified stiffness matrix 

which includes the use of conventional stability functions (84). 

By replacing the bending terms by their corresponding torsional 

terms the load-displacement relationship becomes, 

T 
wl 2 ei 

91 

B 1 
EI 9, ý2 

w 
T 1 

w2 2 ei 

B2 
J L 91 2 

e7C 

1 1 

3 2 

exl- 

X1 
(5-14) 

ex2 

x2 
LJ 
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where, T 
wl' 

T 
w2 are the values of the warping torque at end 1 

and 2 of the element 1-2 of the beam respectively and Bl, B2 

are the bimoment values at the two ends respectively. 

The functions ý19 ý21 ý3' and ý4 are similar to the 

stability functions of the second-order bending analysis. 
These functions are given in Appendix A-5.2. 

A second-order plane frame computer program can then 

be used to carry out the analysis. 

5.2-3. Finite element method 

The elastic stiffness matrix presented in chapter three 

of this thesis can be used to analyse thin-walled structures 

under torsion. In order to examine the validity and accuracy 

of the finite element solutions of torsional problems, a 

number of examples, for which highly accurateýsolutions are 

availablp, were analysed using the computer program presented 
in chapter four of this thesis. 

Fig. 5.1 shows the finite element calculations of 
the correction factorsof the maximum bimoment of simply 

supported beams subjected to central concentrated torque T. 

The figure also shows the correction factors calculated by 

Walker (81) using eq. 5.6 as a ratio between the approximate 

solution (GJ = o) and the formal solution of the bimoment 

It can be seen that, up to a value of kk equal to 4.0, the 

two-element solution agrees very well with the closed form 

solution. For values of ki bigger than 4.0, the error in the 

two-element solution increases with the increase of kt. The 

four-element solution, however, agrees very well with the 

closed form solution for all the kZ values considered in the 

analysis. The same notations can be drawn from fig. 5.2 for 

the case of a fixed end beam loaded with central concentrated 
torque T. 

The details of the three-span continuous beam studied 
by Walker (81) is shown in fig. 5.3. Walker presented three 

solutions 1,, r this problem, namely, 
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a) Approximate solution by neglecting the St. Venant 

torque component 
GJ 

d2ex 

dx 2 

b) The bimoment distribution method 

c) The formal (closed-form) solution. 

These solutions, together with the finite element 

solution, are shown in fig. 5.4. It can be seen that the 

approximate method gives overestimated and unacceptable values 

of the bimoment. The bimoment distribution method -agree 
well with the closed form solution of the bimoment values at the 

interior supports and at mid-span of the beam. The finite 

element solution is much closer to the formal solution. The 

error in the finite element solution for the bimoment at mid- 

span is almost 1.8 per cent, while for the bimoment at the 

interior support it is almost 1.7 per cent only. 

Fig. 5.5 shows. the two-span continuous beam with 

overhanging end which was solved by Khan and Tottenham (82)v 

using the bimoment distribution method. Davies (84) presented 

another solution to this problem by the analogy with second- 

order bending technique (eq. 5.14). This problem has also 
been solved using the finite element computer program presented 
in chapter four of this thesis. It can be seen that the three 

solutions are almost identical. The bimoment values along the 

beam are given in table 5.1. The error in the finite element 

values is confined to the span which is loaded with uniformly 

distributed torque, where in the finite element solution the 

load is replaced by concentrated torques at the joints. 

It can be concluded that the finite element formula- 

tion of the elastic stiffness matrix can be used to predict 

with high accuracy the behaviour of beams subjected to 

torsional loads. 

5.3. EXPERIMENTAL STUDY OF COLD FORMED Z-BEAMS SUBJECTED 

TO COMBINED BENDING AND TORSION 

5.3-1. Object 

The purpose of the tests described in this section 
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was to study the behaviour of cold-formed steel Z-beams 

subjected to combined bending and torsion. A simply supported 
Z-beam was tested under three different cases of combined 
loading. Longitudinal stresses were measured at two cross 
sections of the beam. The test results were compared with 
the corresponding theoretical stresses. 

5.3.2. Test proaram 

Details of the Z-beam cross section are shown in 
fig. 5.6. The span of the beam was taken equal to 3.0 m. 
The beam was symmetrically loaded with two equal vertical 
concentrated loads. The distance between the two loads was 
equal, to 1.10 m. as shown in fig. 5.6. 

The test program consisted of a series of three tests 

as shown in fig. 5.7. During the first test, static loads 

were applied to the top flange at a distance equal to 2.0 cm 
from the web (fig. 5.7-a). In the second test the vertical 
loads were applied to the web at a distance equal to 3.0 cm. 
above the level of the bottom flange (fig. 5.7. b). During 
the last test (Test 3) the load was applied to the bottom 
flange at a distance equal to 2.0 from the web (fig. 5.7-c). 

5.3.3. Test rig 

The test rig was designed to simulate the following 

end, conditions for the beam ab shown in f ig. 5.7: 

Translational :ua is fixed, and ub is free 

v and vb are fixed 

wa and wb are fixed 

Rotational : exa and exb are fixed 

I dy) 
, and 

dv) 
are free AaA*Ab 

(ýa ý- cLw) and w are free dx abý 
(dLx w) 

b 

Warping : X1 and X2 are free 
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The test rig consisted of end support frames as 

shown in fig. 5.8. In order to achieve translational freedom 
in x direction or.. turntable was mounted on needle roller 
bearings. 

In order to simulate the twisting and warping 

conditions, light gauge steel ILI brackets were firmly 

attached between the upright members of the end support frames 

and each flange at the theoretical point of zero warping as 
shown in fig. 5.9. Reinforcement plates were bolted to each 
side of the web at each support in order to prevent the 
buckling of the web. The dimensions of these plates are 

shown in fig. 5.10. The restraining arrangements at the 

support am shown in plate 5.1. 

In each of the first and third tests, the static 
loads were applied to the loaded flange by means of steel 
hangers passing through holes in the flange. In the second 
test, each hanger was passing through a hole in a bracket 

connected to the bottom of the web. 

5.3-4. Instrumentation 

In order to measure the longitudinal strains caused 
by the combined bending and torsionptwo cross sections of the 

beam were provided with electrica1 resistance strain gauges. 
The locations of the two gauged cross sections are shown in 

fig. 5.1l. a. The locations of the strain gauges along the 

two cross-sections are shown in fig. 5.1l. b and 5.11-c. Each 

cross-section was provided with 13 strain gauges; five were 

attached to the web, three for each flange, and one per lip. 

The strain gauges were connected to a Solartron Orion Delta 

data logger (plate 5-4). Each strain gauge formed the active 

arm of a wheatstone bridge while the other three arms were 
built into the logger. The measured strains were printed at 

each load increment. 

5.3-5. Test results 
Static loads were applied to the beam in ten increments 

4.0 kg/hanger at each increment up to a load of 40.0 kg per 
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hanger. The load was kept at such a low value in order to 

avoid high geometric nonlinearity. 

Fig. 5.12 shows the increase in the maximum 
compressive strain in the top flange, with the increase of 
the applied load. It can be seen that the most critical case 
is the first case of loading when the top flange is loaded 
(Test 1). The load-otrain relationship of test 2 shows that 

the nonlinearity starts at a very low load level. In the 

third test where the load was applied to the bottom flange, 

the strain-load relationship is almost linear. In this case 
the torque caused by the eccentricity of the applied load 

works against the natural twist of the cross section, due to 

the load component in the direction of the major principal 

axis. 

The value of E, the modulus of elasticity, and 
Poisson's ratio, found for this beam were 190 kN/mm 2 

and 0.30 

respectively. The theoretical values of the longitudinal 

stresses were calculated using the equation given by Vlasov (1) 

for the combined bending and bimoment (eq. 3.10). The bending 

moment and the bimoment value were calculated using the finite 

element computer program presented in chapter four of this 

thesis. Two types of analysis hav 
'e 

been considered, namely, 

a) linear analysis, and b) second-order analysis. 

Fig. 5.13 shows the longitudinal strains of the 

cross section 1-1 of the beam under acting dead weight equal 
to 40.0 kg per each of the two hangers. It can be seen that 

the general level of agreement between the. theoretical values 

of the longitudinal strain calculated from a second-order 

analysis and the corresponding experimental values, is very 

good. Furthermore, the linear analysis(first order)leads to 

inaccurate values of the strain even at such low load level. 

Fig. 5.14 shows the longitudinal strains of cross- 

section 2-2 of the beam. Excellent agreement again is found 

between the theoretical longitudinal strains (from 
' 
second- 

order calculations) and the corresponding measured values. 
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It can be concluded that the finite element method 

gives highly accurate predictions of the bimoments for this 

type of problems. Nevertheless, the accuracy of a second- 
order analysis of Z-beams subjected to combined bending and 
torsion is still questionable. The validity of the small- 
displacement theory which has been considered in the deriva- 

tion of the finite element matrices will be discussed in 

chapter seven of this thesis. The effectlof high geometric 
nonlinearity has been avoided here by keeping the maximum 
value of the applied load very low (40.0 kg/hanger). 
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CHAPTER SIX 

Application of the Finite Element Method to Buckling Problems 

GENERAL 

The derivation of the new finite element formulation 

of the elastic torsional-flexural buckling of thin-walled 

structures has been given in chapter'3 where the main fea tures 

of the elastic stiffness and geometric matrices have been 
discussed. It is the purpose of this chapter to demonstrate 
the validity and accuracy of the finite element formulation 

by presenting solutions for a variety of problems for which 

exact or highly accurate solutions by alternative means are 

available. The study reported herein is'-limited to problems 

with no torsional displacements in the prebuckling stage (no 

external bimoments). The finite element computer program 
described in chapter 4 was used to predict the buckling loads. 

The chapter begins by presenting solutions to a 

number of conventional stability problems to illustrate the 

validity of the modified I'Southwell technique" which is 

employed in the computer program for evaluating the critical 
buckling loads. it then proceeds to establish the accuracy 

of the formulation when used to analyse more complex problems 

as will be discussed in the following sections. 

. 
6.2. CONVENTIONAL STABILITY PROBLEMS 

Four separate examples are discussed in this section. 
In each case the solutiong; vehýPý4 finite element is presented 
as a ratio of the exact solution given by Timoshenko (2). 

Pure torsional buckling 

The pure torsional buckling of an axially loaded ', 

strut with a cru'Ciform cross section is considered here. Under 

such loading the strut exhibits angular displacements only. 
The exact solution presented by Timoshenko (2) is given by, 
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.p=L(+ GJ) 
cr 12 (6.1) 

Fig. 6.1 shows the distribution of the angle of 
twist ex just prior to buckling given by the two-element 

solution. It can be seen from the table given that the two- 

element solution has an excellent agreement with the exact 
solution. Fig. 6.2 shows the modified Southwell plot from 

which the buckling load of the eight-element case has been 

predicted. In this case the plot is a straight line. 

6.2.2. Lateral buckling of a simple beam by uniform bending 

Fig. 6.3 shows a simply supported I-beam with length 

Z= 400 cm loaded by uniform bending moment MZ. The exact 

solution of this case as given by Timoshenko (2) is, 

Z 
/ll 2 

m EI (GJ + EI lý-) (6.2) 
cr£ v' yw 91 2 

It can be seen from fig. 6.3 that the two-element 

solution differSby only 0.66 per cent from the exact solution 

while for four and eight-element, the finite element solutions 

are 0.17 and 0.13 per cent in error, respectively. The 

modified Southwell plot for the eight-element solution is 

shown by fig. 6.4. 

6.2-3. Lateral bucklinpý of a simple beam by central 

concentrated load 

Fig. 6.5 shows a simply supported I-beam with length 

-Z = 400 cm loaded by central concentrated load Py acting at 
the shear center. The exact solution given by Timoshenko (2) 

is, 

GJ VIEIV y 
er = Yl (6-3) 
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in which, yj is a dimensionless factor which depends upon the 
2 

ratio (Z . GJ/EI 
W 

Values of yj are tabulated in reference 2. 

The results of the finite element calculations are given 
in fig,. 6-5- It can be seen that there is an excellent agreement 
between the finite element solutions and the exact value of 
M 

cr' 
The lateral displacement w of the middle cross section 

of the beam just prior to buckling is also shown in fig. 6.5, 

while fig. 6.6 shows the modified Southwell plot for the eight- 
element solutions. 

6.2.4. Lateral buckling of a cantilever beam by 

concentrated load at the free end 

The exact solution of this case was presented by 

Timoshenko (2), and is given by, 

Mcr 12 
VIEI v2 

GJ 
(6-4) 

91 

where, y2 is a dimensionless factor which depends on the ratio 
2 (Y' . GJ/EI 

W). 
Values of Y2 are tabulated in reference 2. 

Fig. 6.7 shows the finite element solutions, for this 

case. The finite element solutions give overestimated values 
for the buckling load. The error changes from 2.59 per cent 
for the two-element solution to 1.2 per cent for the eight- 

element solution. The lateral displacement w just prior, 
to buckling is shown in fig. 6.7, while fig. 6.8 iliustrates 

the three operations carried out by the computer program to 

predict the eight-element solution. 

It can be seen from the previous examples that the 

accuracy of the finite element solutions, when compared, to 

the exact solution, is excellent. The procedure followed to 

predict the buckling load, which is known as "the modified 
Southwell plot" has proved to. be a very efficient and straight 
forward technique. One major advantage of the computer 
program used is that it calculates the displacement so that 
the general shape of the buckling mode can be observed. 
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6.3. ELASTIC LATERAL BUCKLING OF CONTINUOUS BEAMS 

This section presents the results of a study carried 
out using the finite element computer program given in 
chapter 4 in order to examine the validity and accuracy of 
the method when used to analyse the torsional-flexural 
buckling of continuous beams. 

The effect of the elastic-lateral bracing at the 
interior supports on the elastic-lateral buckling load of 
continuous beams has been investigated using the finite 

element method. Solutions have been obtained for the problems 
studied by Hartmann (54). The comparison between the finite 

element solutions and Hartmann's procedure is presented in 

the first part of this section. 

The second part of this section deals with the elastic 
lateral buckling of continuous beams with all spans loaded 

where the spans interact during buckling. Finite element 

solutions for a series of continuous beams previously tested 

by Trahair (51) are given in the second part of this section. 

Elasticallv restrained continuous beams 

Hartmann (54) presented a theoretical study of the 

elastic buckling behaviour of continuous beams taking into 

account the effects of continuity and of lateral bracing 

stiffness on the critical load. Three types of lateral 

bracing stiffness, namely, a) axial stiffness, b) strong-axis 
flexural stiffness, and c) weak-axis flexural stiffness, were 

considered in the study. All loads were assumed to be acting 
through the shear center of the beam. 

The analytical procedure given by Hartmann (54) was 
based on dividing the beam into a number of segments n, where 

any segment i is a straight part of the beam between the ith 

and the(i +1)th joints. Applied loads, reactions and elastic 
restraints occur at the. specified joints connecting the 

segments. Hartmann (54) presented the differential equations 
which describe the buckling behaviour of segment i and the 

continuity equations at joints i and (i + 1) in terms of 
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the elastic stiffness of the lateral bracing at the joints. 
The solution of the differential equations was based on 
performing numerical integrations of the differential 

equations for a given set of boundary conditions and construc- 
ting the determinant of the resulting equations. This deter- 

minant is considered as the buckling criterion. 

For representing the axial stiffness Ku of the 
lateral bracing, Hartmann (54) used the nondimensional 
coefficient y suggested by Flint (45), where, 

Ku. Z3 
.1-- (6-5) 

48 EI 
y 

and in which, Ku is the axial stiffness of the lateral bracing, 

Z is the length of the beam, and Iy is the least moment of 
inertia of the beam cross section. 

The strong axis flexural stiffness Sx was also related 
to the torsional stiffness of the beam using the nondimensional 

coefficient 6 where, 

s 
X-9, 
GJ 

Fig. 6.9 shows the three types of continuous beam 

problems investigated by Hartmann (54). In order to present 
the finite element solutions for these cases the lateral 

bracing at the interior supports was simulated by beam mem bers 

having an area A br and strong axis moment of inertia I br* For 

a given value of the nondimensional coefficient y the cross 

sectional area of the bracing member Abr is given by, 

48 Y'Iy'p'br 
A br ý 

Z3 
(6.7) 

in which, k br is the length of the lateral bracing member. 

t 
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For a given value of 6 the moment of inertia of the 

assumed bracing member I br becomes, 

I br "2 
ý-GJ Z br 

(6.8) 
4EZ 

The critical buckling load P 
cr 

is given by, 

J (6.9) 
cr 2 výý 

in which, a is the critical load parameter. 

Hartmann (54) considered different values of the 

nondimensional beam property kZ where k=V GJ/EIw -He 
reported that for all the values of kt, using a value of y 

equal to 11.0ithe lateral displacement at the interior 

support was reduced to about 2 per cent of the maximum lateral 

displacement of the beam. Thus in each of the three types of 
problems considered in the study (fig. 6.9) the coefficient y 

was taken equal to 11.0. 

, Table 6.1 presents the values of the critical load 

parameter a calculated by the finite element method (4 elements/ 
span) for the case shown in fig. 6.9. a, where one of the two 

spans of the continuous beam is loaded with central concentra- 
ted load P. The table also shows the values of a given by 

Hartmann (54) and the corresponding lower-bound values calcula- 
ted using Salvadorits method, (48)., It can be seen that there 

is an excellent agreement between the values of a given by 

Hartmann (54) and the corresponding finite element values. 
The percentage difference of the finite element solutions 

compared to Hartmann's calculations for the case when kk =2 
and Sx* 9'IGJ = 370 is shown in fig. 6.10. For the four-element 

solution the difference is about 0.19 per cent while increasing 
the number of elements to which each span is divided to eight 
elements results in 0.09 per cent difference only. 
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The effect of the strong axis flexural stiffness of 
the lateral bracing on the critical load parameter a isshown 
in fig. 6.11 for different values of U. It can be seen 
that the general level of agreement between Hartmann's method 
and the finite element solutions is good. However, for low 

values of the nondimensional property Sx*ý'/GJ some differences 
between the two solutions can be noticed. The difference 
depends also on the value of U. For example if the value 
of Sx* k/GJ is taken equal to 50 the percentage difference for 

a beam having kX= - (narrow rectangular cross section) is 

almost zero, while for kk= 2.0 the percentage difference 
increases to 2.6 per cent. No details were given by Hartmann 
(54) about the approximate solution of the governing differen- 

tial equation representing the torsional behaviour of the 

beam. However, Nethercot (36) showed that the accuracy of 
Hartmann's method is dependent on the value of U. 

Fig. 6.12 shows the comparison between the finite 

element solution of the critical load parameter a and the 

values of a given by Hartmann (54) for the case shown iIn 
fig. 6.9. b. when each of the two spans of the continuous beam 

is loaded with a central concentrated load P. For beams with 

narrow rectangular cross section (kZ = -) , Hartmannt s method ' 

is in excellent agreement with the finite element method. For 

continuous beams with kk value equal to 4.0, Hartmann's 

method gives overestimated values of the critical load 

parameter a. 

Table 6.2 presents the values of the critical load 

parameter a for the case shown in fig. 6.9. c., where the 

central span of the three-span continuous beam is loaded at 
the middle with a transverse concentrated load P. It can be 

seen that, compared to the finite element solutions, for 

high values of the nondimensional coefficient Sx* 2/GJ-* the 

accuracy of Hartmann's method is very good e, ýen for beams 

with high values of the warping rigidity. 
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6.3.2. Interaction buckling of continuous beams 

Trahair presented a series of 
(6,49,50) concerning the effect of end 
elastic torsional-flexural buckling of 

elements. He showed that the buckling 

beam with only one span loaded can be 
the restraining effect of the unloaded 
loaded span. 

theoretical studies 
restraints on the 

symmetrical beam 
load of a continuous 

3alculated by considering 
adjacent spans on the 

For the two-span continuous beam shown in fig. 6.13 

the major axis bending MB is given by, 

m (dy) 
3EI 

z2 
B dx B* 'ý2 

(6.10) 

The effect of the major bending restraint on the bending moment 
MB can be given by, 

m (dv) 
3EIZ, 

B dx B" z1 

in which, is the major axis bending end restrain parameter. 
The parameter is given by, 

1 (6.12) 
1s 

Z1 
/S 

z2 

where, s 
Izl 

, and S z2 (6.13) 
zi =k1 z2 k2 

Following the same procedure, the minor axis flexural end 

restraint parameter ý2 and the end warping restraint parameter 

4 can be given by the two equations, 

1 (6.14 21+s 
yl 

/S 
y2 

and (6.15) 41+ hloSyl /h 2 -S y2 
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where, s=IIsI y2 
yl Y'l y2 =Z2 (6.16) 

and h1, h2 are the distances between the centroids of the 
flanges of the cross sections of span AB and BC respectively. 
If the same cross section is used for both spans then, 

1 (6.17) ý4 =1+ 91 212,1 

The critical buckling load Pcr is given by, 

cr": 
12 

v/i7; 
-uj- (6.18) 

91 

in which, y is the critical load parameter. 

Trahair (6) presented tables for the y values for 

different load cases and different values of the end restraint 
parameters ý,,, ý2' and ý 4* 

In another paper Trahair (50) discussed the case when 

all the spans of the continuous beam are loaded at the same 
time. In this case each span participates in the buckling 

behaviour of the beam by interacting with the adjacent spans. 
The critical buckling load of the continuous beam can then be 

evaluated by analysing the interaction behaviour of the indi- 

vidual spans. Fig. 6.14 shows a uniform two-span narrow 

rectangular continuous beam where the two spans are loaded with 

central concentrated loads P1 and P2 respectively. The beam 

is prevented from twisting and deflecting at the supports. 
The major axis flexural end restraint parameters of the two 

spans can be given by, 

1+pk 2/p z2 2211 (6.19) T-T Y, 2/Zl 

1+pk2 /P 12 1122 (6.20) 12 1+k 1/Z2 
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To satisfy the continuity condition at the interior 

support B in the lateral direction the minor axis end restraint 
parameters ý 21' and ý 22' must be related as follows: 

- ý21 z2 /xi 
ý22 ý1-ý 

21(l + 
(6.21) 

The critical buckling loads P lcr and P 2cr are given by, 

Y21 Y22 
- -VEI p V1EIYj GJ , and P 

-ýI 
- GJ (6.22) 

lcr k2 2cr P, 2 y2 
12 

where, y2l and 122 are the critical load parameters. 

For given values of the ratios k 21ýl and P 2/pl the 

major axis restraint parameters ý 11 and ý 12 can be calculated 
from eq. 6.19 and 6.20. By selecting the proper values of 
the minor axis restraint parameters ý 21 and 0 22' the values 

of 'ý22 and Y21 can be evaluated from graphs given by Trahair (50). 

Fig. 6.15 shows combinations of the critical load 

parameters for span ratio Z2 Al = 5.0, presented by Trahair (50). 

It can 'be noted that there are three significant combinations 

of the parameters Y22 and Y2 1 and these can be stated as 
follows: 

(i) P1>o, and P2 'ý 0 

in this case, 

-ý 01-, and ý '2 '* (6.23) Y22/y2l ' ý11 1+Y, 2/Yll 12 ' 

The minor axis restraint parameters are, 

ß21ý1 -+Z 
1 

79, ß22 -: - Co (6.24) 
21 
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P2 >0, and P0 

in this case, 

y2l/Y22 ý11 and ý 12 =1+1z /Z (6.25) 
12 

The minor axis restraint parameters are, 

0=- 00 9 and ý1 (6.26) 
21 22 =1+Z1 It 2 

(iii) Zero interaction 

In this case the minor axis restraint parameters 
a2l 'ý ý22 'm o and there is no minor axis interaction betwe. en 
the two spans. The major axis end restraint parameters a ill 
and ý 12 can be calculated from eq. 6.19 and 6.20. The critical 
load parameterp 121' and Y22 can then be evaluated from the 

graphs given by Trahair (50). 

The interaction diagram between these three significant 
combinations of the critical load has a curved shape as shown 
in fig. 6.15. Trahair (50) suggested that the interaction 

curve can sufficiently be approximated by linear relations 
between the three significant points as shown by the dotted 
lines in fig. 6.15. The comparison shown indicates that he 

was essentially correct. 

In order to examine the validity and accuracy of the 

analytical procedurepTrahair (51) carried out a series of 

experiments on high strength aluminium I-section continuous 
beams under different combinations of central concentrated 
loads. Each beam was prevented from twisting and deflecting 

laterally at the supports. Experimental critical loads were 

evaluated from the load and deflection measurements using the 

modified Southwell plot method. Trahair (51) showed that, in 

general, the calculated values of the experimental critical 
loads were higher than the measured failure loads by almost 
4.0 per cent. 
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Fig. 6.16 shows the three-span continuous beam 

(A-20.20.20.2) of reference (51) which have been analysed by 

the finite element method. The beam was prevented from 

twisting and deflecting laterally at the supports. Central 

transverse loads were applied to the beam at the level of 

the top flange. The two outer spans (right and left) were 

loaded with almost the same load P1 while the middle span was 

loaded with load P 2* 

In order to perform the finite element analysis, the 

additional effect of the load being applied at a distance h 
2 

above the shear center, where h is the height of the cross 

section, has to be considered. An additional term equal to 

Ph/2 corresponding to the degree of freedom ex at the loaded 

cross section of each span has been included in the geometric 

matrix. 

Table 6.3 shows the comparison between the finite 

element solutions (4 elements/span) and the experimental 

values of the critical load given by Trahair (51), for the 

three-span continuous beam shown in fig. 6.16. It can be seen 

that in general the values of the buckling load calculated by 

the finite element method are less than the corresponding 

experimental values. However, as mentioned before, Trahair 

(51) has pointed out that the extrapolated experimental 

critical loads were generally higher than his predicted 

failure loads by almost 4.0 per cent. 

Fig. 6.17 shows the percentage error of. the finite 

element solutions for the seventh test in table 6.3. High 

accuracy can be achieved by dividing each span into four 

elements. In comparison to the experimental value of the 

critical load, the eight-element solution differs by -0.9 

per cent only. 

Fig. 6.18 shows the interaction curve for the three- 

span continuous beam shown in fig. 6.16, calculated by three 

techniques, which are: 

(a) Extrapolating from the experimental measurements 

using the modified Southwell plot method. 
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(b) The finite element method using four elements per 
span. 

(c) The approximate method given by Trahair (50), which 
is based on analysing the interaction effect between 

Uhe individual spans. 

It can be seen that the approximate method presented 
by Trahair (50) is in good agreement with the finite element 
method for the three major points of the interaction curve 
(when P1=0, P2>0, when P2 = 0, P1>0, and at zero 
interaction). For the rest of the interaction curve, the 

finite element is in close agreement with the experimental 

results while the approximate method given by Trahaiý (50) is 

more conservative. 

Fig. 6.19 shows the distribution of the lateral 

displacement w at a near buckling stage for the case when 
the three spans of the beam are almost equally loaded. It 

can be seen that in this case buckling starts at the outer 

spans which are the most critical. The angle of twist ex has 

a similar distribution as shown in fig. 6.20. 

Fig. 6.21 shows the four steps carried out by the 

computer program to evaluate the buckling load from the 

calculated values of the lateral displacement w at the middle 

cross section of one outer span and the corresponding values 

of the load factor. 

6.4. ELASTIC LATERAL BUCKLING OF MONOSYMMETRIC BEAMS 

AND CANTILEVERS 

The effect of monosymmetry 

The differential equations of equilibrium which 
describe the buckling behaviour of a monosymmetric beam loaded 

with uniform bending moment Mz were presented by Timoshenko (2) 

as follows, 

d4w d46 
EI 

Y ý-x4 - Mz 
dx4x 

`ý 0 (6.27) 
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EI 
d4E) 

x- (GJ -Mß)d26x-md2w0 (6.28) 
w dx4 Z* Z dx 2Z ý-X7 

in which, 0z is the monosymmetric constant. 

For the cross section shown in fig. 6.22 the constant 
ýz is given by the equation, 

ýz Y3 dA + Z2 y dA) - 2yo (6.29) 
zAA 

The monosymmetric property ýz results from the effect 

of the bending stresses when acting on the buckled cross 

section. During buckling the bending compressive and tensile 

stresses acting on the slightly rotated cross section may 
form a resultant torque. For doubly symmetric I-beams' the 

resultant torque caused by the bending stresses is equal to 

zero (ý, = o). In monosymmetric beams, however, there is 

nobalance between the torque caused by the compressive 
bending stresses and that due to the bending tensile stresses 
Oz 4 o). Such effect causes a change in the effective tor- 

sional stiffness of the cross section as can be seen in 

eq. 6.28. The effect of monosymmetry is such that the critical 
load is larger when the tensile bending stresses acts on the 

smaller of the two flanges of the cross section. 

For a simply supported monosymmetric I-beam loaded 

with uniform bending moment Mz, the elastic buckling moment 
M 

cr 
is given by (40), 

Tr VIEIY 
GJ 

7r8 Z- + (n6)2 m �2 . 7r6%2 
er - 21 7- r (6-30) 

ý2- 

j J. 2 
7T 

where, =V//T to 

.z 
(6-31) 

and 6 
/EI 

(6-32) 2/ 
GJ 7. 
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In 1972, Anderson and Trahair (40) presented a 
comprehensive theoretical and experimental study concerning 
the buckling behaviour of monosymmetric beams and cantilevers 
under different loading cases. The theoretical analysis was 
based on using the finite integral method to solve the 

governing differential equations which describe the torsional- 
flexural buckling behaviour of monosymmetric beams. For 

simply supported beams loaded with central concentrated load 
P, the critical value of the load P 

cr 
is given by, (40) 

'y 2 /EP I_GJ 
cr 91 2Vy 

in which, 

intensity 
(40) v 

where, y 

(6-33) 

Y2 is the critical load parameter. 

If the acting load is uniformly distributed with 

u, the critical value of the load can be given by 

'y 3 
V//iI y 

ýG J 
er ' 73 y 

is the critical load parameter. 

(6-34) 

Anderson and Trahair (40) presented tables of y2 and 
Y3 values for monosymmetric beams and cantilevers. In order 
to verify the theoretical method Anderson and Trahair (40) 

carried out an experimental investigation on the buckling 

behaviour of high strength aluminium cantilevers with mono- 

symmetric I-cross section. Each cantilever was loaded at the free 

end with transverse concentrated load at a distance from 

the shear center. 

The effect of moment gradient in a monosymmetric 
beam was not included in any of the previous studies which 
presented a finite element formulation for the elastic 
torsional-flexural buckling of thin-walled systems (24,26,28). 

The new geometric stiffness matrix presented in chapter 3 of 
this thesis includes, for the first time, the effect of 
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monosymmetry. This effect appears, in the geometric matrix, 
as 'a reduction in the effective torsional stiffness in terms 

of the acting bending stresses. 

This section presents a study undertaken to examine 
the validity and accuracy of the finite element evaluation of 
the elastic lateral buckling loads of monosymmetric beams and 
cantilevers. Three types of problems have been studied, 

namely: 

a) Lateral buckling of simply supported monosymmetric 
I-beams under uniform bending moment. 

b) Lateral buckling of simply supported monosymmetric 
I-beams under central concentrated load. 

c) Lateral buckling of monosymmetric I-cantilevers 

loaded at the free end with transverse concentrated 
load. 

Two types of monosymmetric cross sections have been 

considered in this study and these are: 

(i) A cross section with R=0.10 and 6=-0.10 

(ii) A cross section with R=1.0 and 6=-0.60 

where, K and 6 are given by eq. 6.31 and 6.32 respectively. 

The finite element solutions of cases a, b and c 
have been compared with the corresponding values of the buckling 

loads evaluated using the theoretical method given by Anderson 

and Trahair (40). The validity of the finite element formu- 

lation has also been checked by analysing two of the canti- 
lever problems tested by Anderson and Trahair (40). The 

results of the finite element study will now be discussed. 

6.4.2. Simply supported beams by uniform moment 

Table 6-4. a. presents the finite element solutions 
for the simply supported monosymmetric beam with a cross 
section having R=0.10 and 6=-0.10, as ratios of the 

critical bending moment evaluated using eq. 6.30. It can 
be seen that there is an excellent agreement between the 

0 
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finite element solutions and the closed form solution of 

eq. 6.30. The two-element solution is in error by 0.44 per 

cent while the eight-element solution gives an error of 0.01 

per cent only. The finite element solutions for the simply 

supported beam with cross section type (ii) are given in 

table 6.4. b. Again, the finite element agrees very well with 
the closed form solution of this beam. 

6.4.1 3. Simply supported beams under central concentrated load 

A closed form solution for this case is not available. 
The results of the finite element analysis are given as ratios 
of the critical buckling load calculated using eq. 6.33, where 
the load parameter 72 has been taken from the tables given by 
Anderson and Trahair (40). 

Table 6-5. a. presents the finite element solutions 
for the beam with cross section type (i) (! ý = 0.10,6 =-0.10) 
while table 6-5. b. presents the results of the cross section 
type (ii) (K=1.0,6 =-0.60). It can be seen that 

' 
for- 

both examples the agreement between the two methods is very 
good, nevertheless, the convergence of the finite element 
solutions is slightly slower for the second type of cross- 
sectional properties (R = 1.0,6 =-0.60). 

6.4.4. Cantilevers loaded with transverse concentrated 
load at the free end 

Finite element solutions of this case are given in 
table 6.6. a. for the cantilever with a cross section type (i) 

and in table 6.6. b. for type (ii). The results are given as 
ratios of the critical buckling load calculated using the 

analytical procedure given by Anderson and Trahair (40). The 

level of agreement between the two methods is excellent as it 

can be seen from the tables. 

6.4.5. Comparison between the finite element solutions 
and the experimental results 

Anderson and Trahair (40) presented the results of 

an experimental study on the torsional-flexural buckling of 
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monosymmetric I-cantilevers. The study was undertaken to 

obtain a verification of the theoretical procedure given by 

the two authors (40) for calculating the elastic critical 
loads of monosymmetric beams and cantilevers. 

Finite element solutions of two of the cantilevers 
tested by Anderson and Trahair are presented in table 6.7. 

Each of the two cantilevers had a length of 65.0 inches and 

a cross sectional property, -R(-R2 = Tr2 EI 
W 

1GJ Z2) equal to 

, 
VEI 

y 
/GJ)/Z) for the two 0.475, while the values of 6(6 = ý7 

cantilevers were equal to + 0.18 and - 0.18 respectively. 
The concentrated load was applied to each cantilever along 

the y axis of cross section at the free end at a distance 

a from the shear center where a was taken equal to - 0.027 

and - 0.22 inches respectively. 

The results of the finite element analysis are 

given as ratios of the experimental buckling loads. The 

comparison given in table 6.7 shows an excellent correlation 
between the finite element method and the experimental values 
of the buckling load. It can also be seen from table 6.7 

that the theoretical method given by Anderson and Trahair 
(40) is not at the same level of agreement with the 

experimental results. The error in their method increases 

with the absolute increase of the distance a. 

It can be concluded that the new finite element 
formulation given in chapter three of this thesis can be 

used to analyse the torsional-flexural buckling of mono- 

symmetric beams and cantilevers. Compared to closed form 

Solutions, finite integral solutions and test results, 
the accuracy of the new finite element formulation has 

proved to be excellent. 
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6.5. TORSIONAL-FLEXURAL BUCKLING OF PLANE FRAMES 

The study reported in this section was undertaken 
to examine the validity and accuracy of the finite element 

formulation presented in chapter 3 when used to carry out a 
three-dimensional stability analysis of plane frames. The 

computer program presented in chapter 4 was used to evaluate 
the critical loads of a number of plane frame problems for 

which experimental results are already available. 

The first part of this section presents the finite 

element solutions for the lateral buckling loads of two elas- 

tically restrained, narrow rectangular plane frames. These 

two frames were tested by Hartmann (55) in order to obtain a 

verification to his theoretical method of analysis (53). 

The interaction buckling of doubly symmetric I-plane 

frames loaded with in-plane concentrated transverse loads was 

investigated both experimentally and theoretically by 

Vacharajittiphan and Trahair (60). A comparison between the 

finite element solutions and the experimental and theoretical 

results given by Vacharajittiphan and Trahair (60) is 

presented in the second part of this section. 

Torsional-flexural buckling of elastically restrained 

narrow re_ctanaular plane frames 

Hartmann (53) presented a theoretical method for 

the-elastic lateral buckling analysis of elastically res- 

trained single-story single-bay plane frames. The method has 

been based on performing numerical integrations of the 

governing differential equations which include the restraining 

effect of the lateral bracing. 

In order to examine the accuracy of the theoretical 

procedure, Hartmann (55) conducted an experimental investiga- 

tion on the elastic lateral buckling of narrow rectangular 

continuous beams and plane frames. Twenty rigid frame tests 

were carried out. The column bases of each frame were 
designed to be hinged in the plane of the frame and in the 

plane perpendicular to it, while the base rotation about the 
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longitudinal axis of the column was prevented. Each frame 

was loaded by sidesway loading applied to one of the knees of 
the frame at the mid-depth of the beam by means of a cable 

running over a pulley. There was a tendency for the bases to 

stick by friction at high, loads. 

In order to present t he finite element solutions for 

the tested frames, the lateral bracing at the knees was 

simulated by beam members having a cross sectional area A br 
and strong axis moment of inertia I br The cross sectional 

area A br is given by, 

48 yf.. I 
y 

br k3 br 
c 

(6-35) 

where, P. br is the length of the beam member representing the 

knee bracing and yf is the nondimensional coefficient used 
by Hartmann (55) to represent the axial stiffness Ku of the 

lateral bracing at the knees. 

The nondimensional coefficient yf is given by, 

K Z3 
Yf =u EI 

c (6.36) 
y 

in which, ZC is the length of the column of the frame, and Iy 

is the least moment of inertia of. the column's cross section. 

The strong axis moment of inertia I br of the beam 

member simulating the knee bracing is given by; 

16 -GJ P. br 4 'kb br (6-37) 

where, 6 is. the nondimensional coefficient used by Hartmann 
(55) to represent the torsional restraining effect of, the 

lateral bracing. 

The-nondimensional coefficient 6 is given by, 
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Sx"'b 
(6-38) 

GJ 

in which, Zb is the length of the beam and Sx is the strong 

axis flexural stiffness of the knee bracing. 

During the first series of tests (10 tests) the 

strong axis flexural stiffness of the knee bracing Sx was set 

equal to zero, while the axial stiffness Ku was varied. For 

the first, five tests in the series, the coefficient yf was 
held constant at a value of 20 while for the other five tests 

Yf was taken equal to 760. 

The effect of the axial stiffness of the lateral 

bracing KU on the critical buckling loads of the frame is 

shown in fig. 6.23. As there was a tendency for the column 
bases to stick by friction, Hartmann (50) presented the 

corresponding theoretical values of the critical load for 

both hinged based frames and for fixed based frames. It can 
be seen from fig. 6.23 that there is excellent agreement 
between the finite element method and the theoretical method 

of Hartmann (53), and that both methods agree very well with 
the experimental results. 

During the second series of tests, the nondimensional 

coefficient yf, which reflects the effect of the axial stiff- 

ness of the lateral bracing at the knee Joints Ku in terms of 
the shear stiffness of the column, was held constant at a 

value equal to 760. The nondimensional coefficient 6, which 

represents the effect of the strong axis flexural stiffness 

of the lateral bracing Sx in terms of the torsional stiffness 

of the beam of the frame, was varied. For the first five 

tests in the series, 6f was held constant at a value equal to 

4.0, while for the last five tests 6f was taken equal to 7.30. 

Fig. 6.24 shows the effect of the strong axis flexural 

stiffness of the lateral bracing on the critical buckling load 

of the frame. The theoretical results are presented for the 

case when the bases of the frame are hinged and also for the 

case when these bases are fixed in the plane of the frame. 
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The level of agreement between the finite element solutions 
and the corresponding experimental buckling loads for the 
first five tests in the series (6 = 4-0) is good. However, 

the results of the other five tests (6 = 7.30) are higher 

than the corresponding values of the buckling given by the 

finite element method. Hartmann (55) reported that the 

results of these five tests were higher than expected due to 
the friction at the bases of the frame which changed the end 
conditions from hinged to partially fixed in the plane perpen- 
dicular to the plane of the frame. The comparison in fig. 
6.24 also shows that, for values of 6 between zero and 8, 

Hartmann's theoretical method seems to give overestimated 

values of the buckling load in comparison with the correspon- 
ding finite element solutions. This confirms what was 

previously found in section 6.3-1. when discussing the 

continuous beam problems (fig. 6.11 and 6.12). 

. 5.2. Interaction buckling of doublv symmetric T-portal 

frames 

In 1973, Vacharajittiphan and Trahair (60) proposed 

a theoretical method for analysing the elastic lateral 

buckling of doubly symmetric I-portal frames loaded with in- 

plane concentrated transverse loads. The method is based on 

using the finite integral technique to solve the governing 
differential equations which describe the buckling behaviour 

of the frame. 

In order to obtain a verification of the theoretical 

procedure, Vacharajittphan and Trahair (60) carried out a 

series of tests on two small scale portal frames made of high 

strength aluminium I-section. The lower end of each column 

was fully fixed. The beam-to column joints were designed to 

transfer all the structural action except the binoments. 

Rigid lateral supports were provided to prevent the lateral 

movements at the knee joints of each frame. Each frame was 
loaded with two equal concentrated loads P1 each, applied 

vertically at the column tops, while the beam was loaded at 
the middle of the span with vertical load P 2* 
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Fig. 6.25 shows the dimensions of the first group 
of frames tested by Vacharajittphan and Trahair (60). The 

interaction curve for this group of frames is also shown in 

fig. 6.25. The level of agreement between the finite element 

calculations and the measured values of the buckling load is 

excellent. It can also be seen that the theoretical method 

given by Vacharajittphan and Trahair (60) seems to give 

underestimated values of the buckling load. 

Fig. 6.26 presents the interaction buckling curve of 
the second group of frames which had a column-to beam length 

ratio equal to 2.0. Again the finite element solutions of 
this case agree very well with the corresponding test results. 

6.6. THREE-DIMENSIONAL BUCKLING ANALYSIS OF SPACE FRAMES 

The problem of analysing the elastic buckling 

behaviour of space frames has been for many years a topic for 

investigation by many research workers. The comprehensive 

study presented by Renton (9) formed a good attempt toward 

establishing an analytical procedure to deal with such 

problems. However, the procedure is limited to space frames 

loaded at the corner joints only. The method has been previous- 
ly discussed in chapter 2 of this thesis. 

In 1980, Razzaq and Naim (11) presented a theoretical 

study on the elastic instability behaviour of rigid-jointed 

unbraced single-story single-bay space frames subjected to 

equal or unequal concentrated column top loads. The study 

was based on applying the modified elastic stiffness matrix 

proposed by Renton (9) to carry out a aecond-order elastic 

analysis of the space frames. By selecting the proper 
buckling mode in each loading case, the value of the load at 

which the load-displacement curve became relatively flat, 

was taken as the critical load. 

The study reported herein was undertaken to examine 
the validity and accuracy of the finite element solutions of 
the three-dimensional buckling analysis of space frames. 

Finite element solutions of the space frame problems considered 
by Razzaq and Naim (11) are presented in table 6.8. 
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Fig. 6.27 shows the dimensions and the loading system 

of the rigid jointed space frame studied by Razzaq and Naim 

(11). Static vertical concentrated loads Pl. P 2' P3 and P4 

were applied at the column tops. These loads can be defined 

in terms of a load parameter Q as, 

pi = XiSQ , and i=1,2,3.4 (6-39) 

where, Ai is a constant load multiplication factor. 

Table 6.8 shows the comparison between the finite 

element calculations of the buckling loads and the correspon- 
ding values given by Razzaq and Naim (11). For the first case 
(case a), when the four columns of the frame are equally 
loaded, the finite element method gives only 0.03 per cent 
more than the buckling load given by Razzaq and Naim (11). 
The convergence of the finite element solutions for this case 
of loading is shown in table 6.9. The agreement between the 
two methods for the second case of loading (case b), when the 
four columns of the frame are all loaded but not equally, is 

excellent. The finite element solution differs by 0.04 per 

cent only from the value of the buckling load given by 

Razzaq and Naim (11). 

In case 'c' of loading, where only one column is 
loaded, the finite element method gives a value of the 

buckling load almost 10.0 per cent less than the corresponding 

value given by Razzaq and Naim (11). No detailed information 

has been given in reference (11) about this case -However, 
this difference may be due to the buckling mode considered 
by Razzaq and Naim (11) not being the critical one. The 

analytical procedure given by Razzaq and Naim (11) gives 

correct predictions of the buckling load as long as the 

critical joint is one of the corner joints of the frame. 

However, in this case of loading, the critical joint lies on 
the longest beam near the loaded joint. Thus, the procedure 
followed by Razzaq and Naim (11) may# in some cases, lead to 

overestimated buckling loads. 
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The level of agreement between the two methods for' 

the rest of the loading cases is good. While the difference 

in the results in cases Id' and If' is almost 2.0 per cent, 

the difference in case Iel decreases to 1.5 per cent only. 

6.7. SUMMARY AND CONCLUSIONS 

The applicability of the finite element method has 

been demonstrated by analysing a variety of torsional-flexural 

buckling problems using the computer program presented in 

chapter 4 of this thesis. In all cases, good convergence and 

excellent accuracy have been obtained by using few elements. 
The results of the cases considered can be summarised in the 

following points: 

Four types of conventional buckling problems were 
investigated, namely, 

1. pure torsional buckling of an axially loaded strut; 
lateral buckling of a simply supported beam by 
uniform bending; 

lateral buckling of a simply supported beam by central 
concentrated load; 

lateral buckling of a cantilever beam by a concentrated 
load at the free end. 

Finite element solutions of these problems were 
compared with closed-form solutions (2). The comparison 
showed a good convergence of the finite element solutions and 
excellent agreement with the closed-form solutions. 

(b) The following types of continuous beam problems were 
analysed: 

1. elastically restrained continuous beams; 

interaction buckling of continuous beams. 

The, first part (1) was devoted to the effect of 
lateral bracing stiffness on the buckling behaviour of 

continuous beam. Solutions have been presented for the 

problems analysed theoretically by Hartmann (54). 

The accuracy of Hartmann's method is dependent on the warping 
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rigidity of the beam dross-section. For beams with narrow 

rectangular cross-section, the accuracy of Hartmann's method 

is very good. The accuracy decreases with the increase of 

the warping rigidity EIW of the beam. 

The interaction behaviour between the adjacent spans 

of a continuous beam has been investigated using the finite 

element method. The comparison with test results, previously 

given by Trahair (51), showed good correlation and excellent 

accuracy of the finite element solutions. 

(c) The new geometric matrix presented in chapter 3 of 
this thesis contains new terms corresponding to the 

effect of monosymmetry. In order to examine the 

validity and accuracy of the new terms, the following 
types of problems have been investigated: 

1. lateral buckling of simply supported monosymmetric 
I-beams by uniform moment; 

2. lateral buckling of simply supported monosymmetric 
I-beams subjected to central concentrated load; 

3. lateral buckling of monosymmetric cantilevers under 

concentrated load at the free end. 

The comparison with closed form, finite integral 

solutions (40), and test results (40) showed a good conver- 

gence and excellent accuracy of the finite element solutions 
in all cases. 

(d) Finite element solutions of the three-dimensional 
buckling behaviour of plane frames, were oUained. 
The comparison was made with previous test results 
for two types of problems, namely, 

buckling of elastically restrained narrow rectangular 

plane frames under sidesway loading (53); 

2. Interaction buckling of doubly symmetric I-portal 

frames subjected to transverse vertical loads (60). 

In both cases, good agreement has been observed 

between the finite element solutions and the corresponding 

test results, using four elements per each frame member. 
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(e) The validity and accuracy of the finite element 
analysis of the three-dimensional buckling behaviour 

of space frames have been examined. Finite element 

solutions were obtained for the cases investigated 

theoretically by Razzaq and Naim (11), using the 

second-order matrix method proposed by Renton (9). 

The comparison showed good agreement between the finite 

element solutions, using 4 elements per member, and 
the corresponding values of buckling load given'by 
Razzaq and Naim (11). However, the study showed that 

the procedure followed by Razzaq tnd Naim (11) to 

predict the buckling load from the load-displacement 

relationship may, in some cases, lead to overestimated 
buckling loads. 
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(ci)i=0-10, And S=-0.10 

(b)K=1.0, And S=-0.60 

2ELEMENTS 4ELEMENTS 1 6 ELEM. BELEM. 

1.0045 1.0004 0.9995 1.0001 

2ELEMENTS 4 ELEM. 6 ELEM 8 ELEM. 

1.0007 1.0005 0.9971 1DOO 1 

Table 6.4. Finite Element Solutions For Monosymmetric 
Simply Supported Beams Under Uniform Moment 

y 
Iý 

py 

. 46 
3c 

W=010, And S=-0.10 

b) 1-(= 1.0, And0.60 

2 ELEM 4 ELEM 6 ELEM 8 ELEM 

1052 1.0033 1D032 1.0032 

2ELEM 4 ELEM 6 ELEM 8 ELEM 

1.1863, 1.0348 1.0 1 Bi 1.0105 

Table 6.5. Finite Element Solutions For Monosymmetric 

Simply Supported Beams Under Central Load Py 



ýy 
py 

(a)l<=O. lOAnd S=0.10 

(b)R=1.0 And 8=0.60 

2 ELEM 4ELEM J -6 ELEM I BELEM 

1.0810 1.0149 1D078 1.0064 

2 ELEM 4ELEM 6 ELEM BELEM 

1.0356 1.0029 1.0028 0.9987_ 

Table 6.6 Finite Element Solutions Of Monosymmetric 
Cantilevers Loaded With Py At The Free End 

ly 

65.0 

6=0.1 8Anda=0.0 27 

R=1.0052 

2ELEM 4ELEM 6ELEM 8ELEM 

tO 471 1.0082 1.000S 0.996S 

R=Ratio Between Theoretical Result Given 
In Ref -40 And The Experimental Value 

Of The Critical Load 

(b) S=- 018 And a z-0.22 
2ELEM 4ELEM 6 ELEM 8 ELEM 

1,0457 1.0017 IDO 12__ 1.0013 

R=1.0265 

Table 6.7. Finite Element Solutions Of The Monosymmetric 
CantileversTested By Anderson And Trahair" ( 40) -, 
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LOADING P LOAD MULTIPLIC. FACTORS FINITE ELEMENT SOLUTIONS 

CASE 
IN KIPS 

REF-(II) 
X, 12 A3 4 CRITICAL 

JOINT 
CRITICAL 
Deg-OfFreE 

Criticat Load 
Factor 

A 601.0 1.0 1.005 
1 

1.0 1.0 16 U 1.0003 

B 590.0 2.0 4.0 2.0 1.0 10 U 1.0004 

C 520.0 1.0 0005 - 24 W Q9012 

U 576.0 - 1.0 1.0 30 u 1.0190 

E 590.0 1.0 Q005 V05 1B U 1.0149 

f 591.0 1.0 1.0 1.0 - 32 U 09824 

Table. 6-8 Finite Element Solutions For The Space 
Frames Studied By Razzaq And Naim (11) 



NU OF ELEMEN 1 2 3 4 PER MEMBER 
FINITE ELEMENT 

1.0160 1.008 1.0036 1.0003 
SOLUTIONS 

Table. 6.9 Convergence Of The Finite Element 
SolUtions For The Space Frame Loaded 

With Case (ci) Of Loading. 
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CHAPTER SEVEN 

Second-Order Torsional-Flexural Behaviour of Z-Beams 

7.1. INTRODUCTION 

The validity and accuracy of the new finite element 
formulation of the second-order torsional-flexural behaviour 

of thin-walled members presented in this study has been 

examined by analysing a number of different stability problems 

as has been illustrated in chapter 6. However, the comparisons 

were limited to structures loaded with in-plane flexural 

loading only, where prebuckling deformations can be neglected. 

In each of the problems considered the cross-section of the 

structure members had at least one axis of symmetry. 

The derivation of the stiffness and geometric matrices 

was based on the small deflection theory where the prebuckling 
deformations are ignored. In Z-beams, however, a transverse 

vertical load will have a lateral component in the plane of 
the maximum rigidity. This load component causes a compara 
tively large displacement component before buckling starts. 

The geometric (stability) matrix, presented in 

chapter 3 contains new terms representing the effect of 

sectorial monosymmetry for cross-sections with no axis of 

symmetry. This effect results from the longitudinal stresses 

caused by the warping moments (bimoments) and is given in 

terms of the sectorial cross-sectional property ýW This 

coefficient can be calculate using equation 3.32. 

-ed in this chapter was undertaken to The study report 

obtain quantitative information on the second-order and 

stability behaviour of Z-beams under combined bending and 
torsion. A test program was undertaken and the results are 

compared with the finite element solutions. Two types of 
theoretical analyses were performed. The effect of sectorial 

monosymmetry was not included in the first solution, while 
this effect was considered in the second analysis. 
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7.2. TEST PROGRAM , 
The test program consisted of a series of five tests. 

The tested beams were of the same type and cross-sectional 
dimensions as the simply supported Z-beams used for the 

bimoiaent tests reported in chapter, 5. The details of the 

cross-section are shown in fig. 5.6. 

The first two beams had 

other three tests, the span was 

was loaded with two equal point 
the quarter and three quarter p 
Loading arrangements in each of 
fig. 7.1. 

a span of 3.0 m, while in the 

equal to 2.0 m. Each beam 

loads applied to the beam at 
oints by means of hangers. 

the five tests are shown in 

The test rig shown in fig. 5.8 and 5.9 was used to 

simulate the required end conditions of the tested beams. 

These end conditions were identical to those of the tests 

reported in chapter 5. A full description of these end condi- 

tions is given in section 5.3-3. 

Static loads were applied incrementally to the beam 

while the horizontal displacements of the flanges of the beam 

were measured at the quarter, half, and three-quarter points. 

At each cross-section, the angle of twist was calculated from 

the difference of the lateral displacements between the top and 
bottom ends of the, web.. Vertical deflections were measured 

at the mid-span cross-section. Locations of the 26 dial 

gauges used for the displacement measurements are shown in 

fig. 7.2. 

7.3. TESTING PROCEDURE 

During the first test (B - 1) dead weights were 

applied to the top flange of the beam by means of two hangers. 

Load increments were kept small. The support movements were 

measured after each load increment. 

The test rig was designed to simulate the end 

conditions of free warping and fully restrained twist. During 

the test, however, it was noticed that the ILI brackets, 

which were connected to the flanges at the theoretical point 



Plate 7.1 Beam B-2 at the moment of failure 
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PlaTe 7.21 T, ý'eb and flange failure of beajfi B-2 
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of zev-o warping (fig. 5-9), were loose allowing for slight 
twisting at the supports. In order to prevent this twisting, 

the connections of the ILI brackets with the flanges of the 

Z-beam were made sufficiently stiff by using two nuts for 

each flange to L-bracket connection and carefully tightening 

these nuts. The check showed that these arrangements success- 

fully prevented the web from twisting. Nevertheless, these 

stiffening arrangements imposed a noticeable restraint for 

the warping of the flanges. It was then decided to continue 
the test program with the same rig and to compare the results 

with the theoretical solutions of the two limiting conditions, 

namely, a) end warping free, and b) end warping restrained. 

All beams were tested up to failure. In each of the 
five conducted tests, overall buckling started first 
followed by a complete collapse of the mid-span cross-section. 
Failure shapes of beams B-2 and B-3 are shown in plates 
7.1 - 7.4. 

7.4. DISCUSSION OF THE RESULTS 

After each load increment, the deflection at each dial 

gauge was recorded. The vertical and horizontal displacements 

of the web were resolved into components in the directions of 
the two principal axes of the Z-cross-section. Horizontal move- 

ments at the top and bottom ends of the web were used to evaluate 
the angle of twist at the corresponding cross-section. Expe- 

rimental displacements are compared with the corresponding 
theoretical values. As previously mentioned, the theoretical 

analysis was done twice, firstly by neglecting the effect of the 
bimoment. The calculations were repeated taking into account 
the new geometric matrix terms which reflect the effect of 
the longitudinal stresses caused by the bimoment. 

The study presented in chapter 5 of this thesis has 

proved that the accuracy of the finite ellement calculation 

of the bimoments is excellent. For calculating the potential 

energy of the bimoment, the integration of eq. 3.46 was 

carried out numerically using the subroutine BIMOM which is 

given in appendix A-3-1. Values of the coefficients resulting 
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from the integration, K bl, K b2' -* ' and KW depend on 

the ratio kt, where k= /-G-J1EIw and X is the span of the 

beam. 

Fig. 7.3,7.4, and 7.5 show the comparison of the 

displacements for beam B-1. In comparison to the theoretical 

results, the experimental values of the displacements lay 

between the results of the free end warping model and those 

of the fully restrained end warping model. However, the value 

of the horizontal displacement of the shear center are closer 
to the results of the fully restrained warping model. 
Including the effect of bimoment did not affect the results 

of the fully restrained end warping model. The bimoment 

stresses, however, increase the displacements calculated 

using the free end warping model. 

The theoretical and experimental results of beam B-2 

are given in fig. 7.6,7.7, and 7.8. In this loading case 

the effect of bimoment stresses is very small and does not 

change the values of the calculated displacements. Fig. 7.8 

shows the comparison of the angle of twist. It can be seen 
that up to a load of 0.75 kN per hanger, the theoretical 

results of the angle of twist ex, calculated using the free 

end warping model, are very close to the test values. With 

increasing load the angle of twist 6 starts to change X-1 
direction and the difference between", the theoretical and" 

experimental results begins to increase. This difference 

could be due to the large displacements exhibited by the 

beam at high load levels which makes the small deflection, 

theory insufficient to deal with this type of problems. 

In the other three tests (B - 3,4,5) loads were 

applied at the bottom flange level. The kk value of these 

beams is equal to 1.04 which is almost, 2/3 of the kX value 

of the 3.0 m span beam (B - 1,2). Thus the coefficient Kbll 

K b2' . *. *, g K t4 have bigger values in comparison with the 

coefficients of the 3.0 m span beams. 

The results of tests B-3, B-4 and B-5 are shown 
in fig. 7.9 - 7-17. It can be seen that the effect of 



Plate 7.3 Beam B-3 at the moment of failure 
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Plate 7.4 Web and flange failure ol beam B-3 
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bimoment stresses is greater in these three tests in compari- 

son with the previous two tests. Nevertheless, this effect 
is limited to the results of the free end warping model. 

Fig. 7.17 shows the comparison of the angle of twist 

ex for beam B-5. The agreement between the theoretical 

and test results is good up to a load of 0.50 M per hanger. 

At load levels higher than 0.50 kN, the theoretical model 

gives underestimated values for the angle of twist ex. The 

difference between the theoretical and test results increases 

with the increase of the applied load. Again, this difference may 
be due to the large displacements exhibited by the beam at 
high load levels which makes the small deflection theory 

insufficient to solve-this problem. 

Table 7.1 presents the comparison between the theore- 

tical predictions of overall buckling loads and the actual 
failure loads of beams B-1-B-5. For thefirst two 
beams, B-1 and B-2, the theoretical buckling loads of 
the free end warping model are close to the actual failure 
loads. The theoretical loads are higher by almost 6.0 per 
cent for beam B-1 and by almost 22.0 per cent for beam B-2. 
For the rest of the beams the theoretical models give highly 

overestimated values of the buckling load. That may be due to the 
large displacements which took place in the prebuckling stage. 

7-5. CONCLUSIONS 

A number of important conclusions can be drawn from 
the discussion in section 7-4: 

1. The effect of the bimoment stresses is dependent on the 
beam property kk , where k =V GJ/EI 

W. 
For the two values 

of kZ considered in the study (kZ = 1.56,1.04) the effect 

of the bimoment stresses has been confined to the case of 
free warping at the supports. If the ends of the beam 

are fully restrained against warping, the effect of the 

bimoment stresses is very small and can be neglected. 

2. The calculations of the buckling load have shown that 

the small displacement theory is not always sufficient to 
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deal with Z-beams subjected to combined bending and 
torsion. Under such loading the beam exhibits large 
displacements before it tends to'buckle in a torsional- 
flexural mode. 

The test rig was designed to simulate the boundary condi- 
tions of free end warping and full restraint against end 
twist. The warping conditions were not accurately 
simulated. The connection between the L-bracket and the 
flange of the beam slightly prevented the longitudinal- 

movement of the flange changing the conditions of the 
supports to semi-restrained warping. 
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Experimental Theoretical buckling load 

Test failure load 
kN/hanger 

warping free warping restr. 

B-1 1.245 1.318 3.012 

B-2 1.920 2.350 3.968 

B-3 3.333 6.550' 12-545 

B-4 2.963 6.014 11.805 

B-5 3.755 7.626 13.212 

Table 7.1. Finite element solutions of the buckling 
loads in comparison with experimental 
failure loads. 
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CHAPTER EIGHT 

n nV rIT TT Cl T MT 

The object of the work presented in the first part 
(Part I) of this thesis has been to develop a general finite 

element formulation for the torsional and lateral instability 

analysis of thin-walled structures. The new formulation is 

based on the theory of thin-walled structures presented by 

Vlasov (1). 

The validity and accuracy of 

examined by presenting solutions for 

problems which already have exact or 
derived by alternative means. The g 
between the finite element solutions 
of these problems was excellent. 

the new formulation were 

a number of instability 

highly accurate solutions 

aneral level of agreement 

and the existing solutions 

A test program was carried out in order to obtain 
information on the behaviour of Z-beams subjected to combined 
bending and torsion and the validity of the finite element 

analysis of such beams. The first part of this teat program 

was devoted to the evaluation of the longitudinal stresses 

caused by the bimoment and the accuracy of the finite element 

calculations of the bimoment values. The second part was 

performed in order to examine the accuracy of the finite 

element analysis of the second-order and buckling behaviour 

of Z-beams. 

PRINCIPAL CONCLUSIONS 

8.1.1. 

The derivation of the stiffness and geometric matrices 
has been based on the assumption that at the instant of 

buckling the structure passes from a torsional-flexural dis- 

placement shape to another torsional-flexural shape. This 

means that the bimoment stresses are included in the analysis. 
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8.1.2. 

Compared to the previously presented forms of the 

geometric (stability) matrix, 22,23,24,26,28), the geometric 

matrix derived in this thesis contains new terms allowing for 

more types of buckling problems to be analysed. The study 

undertaken to examine the validity of the new finite element 
formulation results in the following conclusions: 

The geometric matrix can be used to predict, with 
excellent accuracy, the torsional-flexural behaviour 

of monosymmetric beams and cantilevers loaded with 
in-plane transverse forces. The matrix includes the 

geometric characteristics ýy and ýz which re ' 
fleet the 

effect of monosymmetry on the buckling behaviour, of 
the beam. The new terms of the geometric matrix, 
corresponding to the effect of monosymmetry, have not 
been presented in any previous study. 

(ii) In comparison with the previous studies, (24,28), the 

signs of the forces M 
zl' 

Mz21 Qyl , and Q 
y2 , 

in the 

geometric matrix, have been corrected according to 
the sign conventions of the shape functions used to 

represent the displacement v. In order to carry out 

" three-dimensional instability analysis of frames, 

" new transformation matrix has been developed. The 

method has successfully been applied to torsional- 
flexural buckling problems of plane and space frames. 

Excellent agreement was demonstrated between the 

finite element solutions and the available experimental 
or highly accurate solutions of these problems. 

8.1.3. 

By including the bimoment stresses as the fourth term 

in the equation of normal stresses, and by performing a 
numerical integration of the potential energy of the bimoment, 

new terms appear in the geometric matrix. Each of these terms 

is function of a cross-sectional property$ ýw, called the 

coefficient of sectorial monosymmetry. This coefficient is 

valid only for cross sections with no axis of symmetry. 
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8.1.4. 

The test program was performed in two separate parts. 
The first part was devoted to the evaluation of the longitu- 

dinal stresses caused by the bimoment. The second part was 

conducted to study the second-order behaviour of Z-beams. 

Conclusions drawn from the comparison between the experimental 

and theoretical results were that: 

The elastic stiffness matrix, presented in chapter 3 

of this thesis, can be used to predict, with excellent 

accuracy, the bimoment in thin-walled structures 

subjected to nonuniform torsion. 

The effect of the bimoment on the second-order 
behaviour of Z-beams depends on the beam property kZ 

and on the end conditions of the beam. For beams with 

ends fully restrained against warping, the effect of 
bimoment stresses is very small and can be neglected. 

The small deflection theory is not always sufficient 
to deal with Z-beams subjected to combined bending 

and torsion. This is due to the large displacements 

that often take place before the beam tends to buckle. 

8.1.5. 

A finite element computer program was used to carry 

out the theoretical calculations. The program was already 

available before the start of this project but it had to be 

modified according to the new finite element formu'ation. 

The method used to predict the buckling load from the load- 

displacement results is the modified Southwell plot technique. 

The method has proved to be applicable to all buckling 

problems presented in this study. 

8.2. SUGGESTED FURTHER WORK 

8.2.1. 

The application of the new formulation to three- 

dimensional problems of plane and space frames was carried 

out assuming that the joints are sufficiently stiff for 
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warping to be neglected. The study reported by Vacharajittiphan, 

and Trahair (64), showed that this assumption is not always 
the correct one. The results of their study is rather difficult 

to incorporate in the analysis. With the growing use of cold- 

formed steel members to construct portal and space frames 

the warping behaviour of the joints, which are not always 

sufficiently rigid, plays an important role in the behaviour 

of the frame. There is a need to present information about 
the actual warping behaviour of the frame joints. 

. 
8.2.2. 

A finite element formulation based on large displace- 

ment theory is needed to allow for the analysis of cross- 

sections with no axis of symmetry. The Z-beam tests have 

shown that the existing technique which is restricted to small 
deformations is not sufficient and leads to overestimated 
values of the buckling load. 



PART (II) 
------------- 
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CHAPTER NINE 

Diaphragm Action in Truncated Pyramid Structures with Folded 

Plate Roofs. 

9.1. INTRODUCTION 

Safety and economy are always the two major criterions 
of structural design. Achieving a safe but lighter and more 

economical structure has always been the main motivation for 

any development in structural engineering. 

The improved utilisation of the mechanical properties 
of structural materials has led to a better shaping of, elements 
with economical distributions of the material. It has also 
helped in creating more advanced structural concepts, and new 
methods of analysis to achieve an optimal use of material 
capabilities. 

It has been realised, through experimental investiga- 
tions, that the classical way of analysing the structure as 
main and secondary systems and going consecutively from 

secondary to main is not always the right approach to describe 
the proper behaviour of the structure. In fact, each component 
part has its own contribution to the whole stiffness of the 

structure. In many cases the structure should be treated as 

one system with different types of element, each with its own 
function. 

The contribution of the steel skin to the stiffness 

of a steel framed building can result in-a substantial decrease 

in the traditionally calculated stresses and displacements. 

Theories to explain the steel skin action have led to new low- 

cost structures in which the in-plane strength of the sheeting 

plays a dominant role in the structure behaviour. 

In 1974, at Mytchett near Camberly, Surrey, a full size 
low-cost skin building was tested (1,2) in accordance with 
BS449 Appendix AD). The building was one of the units 
developed by the Metropolitan Architects Consortium for 

Education (MACE) to be used as nursery schools. The roof of 
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the building had the shape of a truncated pyramid with light 

cold formed framing members and covered by corrugated steel 

sheeting of trapezoidal profile. Later in 1980 a similar 
test was carried out, in the Department of Civil Engineering 

of the University of Salford, to study the behaviour of a two- 

bay Pyradome structure prefabricated by Oldroyd Brothers Ltd. (4). 

There was no precise method to analyse such structures, thus 

it was necessary to test a typical unit to satisfy the requi- 

rements of BS449(3). 

The stability of both, the MACE unit and the two-bay 

Pyradome structurepdepends on the diaphragm action of the roof 

sheeting. Apart from the approximate calculations given in 

references 1 and 2 for the MACE building no precise method, to 

the knowledge of the writer, has been presented to analyse 

such structures. The study reported in this chapter was under- 
taken to establish a theoretical method for predicting the 

elastic behaviour of the truncated pyramid structures,, parti- 

cularly under asymmetrical loading. 

Initially, a single trapezoidal panel of the roof was 

studied under in-plan cases of loading using three methods of 

analysis, the finite element, full frame simulation, and 

simple truss modeling. The results have shown that the simple 
truss modeling is sufficient to explain the displacement 

configurations of the trapezoidal panel and to predict the 

fastener forces. The MACE unit has then been simulated with 

a space frame model having truss members to represent the 

in-plane shear flexibility of the roof sheeting. The two- 

bay Pyradome structure has also been analysed using the same 

procedure. 

Because it was not possible to simulate precisely the 

degree of fixity of the connections between the frame members 

forming the skeleton of the structure, two limit bounds have 

been considered, namely: a) hinged connections, and b) fully 

rigid connections. 

A full comparison between the calculated displacements 

and those recorded during the test is presented at the end of 
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p 

this chapter. This comparison has shown that the proposed 
method can be used to predict the deflections of such 
structures with sufficient accuracy. The resulting forces in 
the sheet to frame member fasteners predicted from the space 
frame model of the MACE unit are also presented and discussed 

in section 11.5.2. 

9.2. STRESSED SKIN DIAPHRAGM ACTION 

9.2.1. General 

The term diaphragm denotes a planar system with a 
thickness that is very small compared with the overall - 
dimensions. Such a system possesses substantial rigidity in 

its own plane while it remains very flexible in the transverse 

direction. This property makes the diaphragm enormously 

capable of resisting in-plane shear forces. 

-Steel sheeting, properly fastened to the supporting 

elements of a steel framework, acts as a series of shear 
diaphragms. Such diaphragms may be used either in a secondary 
sense to support the structure against sway or in a primary 
sense in the case of shell-type structures and folded plates. 

9.2.2. Historical background 

As indicated by Nilson (5), the first attempt to study 
the diaphragm action was carried out in California in 1947 by 

C. B. Johnson and F. J. Converse, where a full-scale building 

was tested under the effect of lateral loads. 

In 1960, Nilson (5), presented the results of some 

experimental investigations carried out in the University of 
Cornell to study the factqrs that influence the behaviour of 

shear diaphragms. He then suggested the so called "Cantilever 

test" as an experimental technique to evaluate the shear 
flexibility of diaphragms. 

Ammar and Nilson (6) studied the behaviour of shear 
panels using different types of corrugated and orthotropic 
sheet. They pointed out the need for theoretical methods to 

predict the shear flexibility, and proposed a finite element 
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model to describe the distribution of internal forces in the 
diaphragm. 

In 1973, after a research program lasting almost 
20 years, Bryan (8) published the first book in the stressed 

skin action. This book represents the first comprehensive 
guide to the use of the shear diaphragm action in the design 

of steel frames. To make use of such action, he suggested 
that the flexibility of a complete diaphragm can be obtained 
by calculating each of the component flexibilities and summing 
them. 

Davies and Lawson (9,10) showed that the expression 

given by Bryan (8) for the distortional flexibility of the 

corrugated profile (Cl. 1) is not always valid, and can lead 

to wrong estimate of the deflections. They described an 

energy technique to calculate C1.1, checked it with tests and 
finite element results, and provided tables for practical 

applications. Later, Davies (11) improved the method, 

proposing a more accurate representation for the distortional 

shape of the corrugated profile. 

Finite element modeling has been adopted as the most 

appropriate method to study, in detail, the distribution of 
internal forces and deflections. Nevertheless, the amount of 
data and the special type computer program required make it 

difficult to be used. Davies (12) suggested a simplified 

method of analysis whereby the diaphragm components can be 

simulated by a plane frame with different types of element. 
The analysis can then be carried out using a conventional 

plane frame computer program. The method showed an excellent 

agreement with the finite element modeling. 

So far, the most comprehensive study concerning the 

stressed skin diaphragm action is the book published by 
Davies and Bryan (13) in 1982. The book deals with every 
aspect in the subject and discusses, in detail, 'many techniques 
to incorporate the diaphragm action in the design of steel 
structures. 
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9.2-3. Diaphragm action 

Fig. 9.1 shows a pitched roof portal frame clad with 
corrugated steel sheeting. Under the effect of the vertical 
load, shown by the arrows at the top of the frames. ýthe apexes 
tend to move downwards while the eaves tend to move outwards. 
This movement is accompanied by in-plane distortion of the 

roof sheeting. The sheeting, with its enormous in-plane 

stiffness, tends to resist this movement by acting as the web 
of a deep plate girder. The two outermost purlins, at the 

eave and apex, form the flanges of this girder, and carry the 

axial forces due to bending. The end gables should be capable 

of carrying the reactions of the deep plate girder to the 

foundation (8,13). 

Another important application of the shear diaphragm 

action is to be used to prevent sway of the flat-roofed 

structures. In the structure shown by fig. 9.2, side loads at 

eaves level, are applied directly in the plane of the sheeting. 
The deep plate girder composed of the sheeting and the two 

outermost purlins, at the eaves, carries the lateral load back 
to the end gables. Such gables may transfer the lateral load 

to the foundation by diagonal bracing or the gable may act as 

a vertical diaphragm if it is sheeted. Vertical loads are 
taken by the main system which can be designed as a simple beam 

and column structure. The horizontal wind bracing, in the 

plane of the roof, can be omitted (7,13). 

Fig. 9.3 shows a low-cost building with folded plate 

roof. Such buildings rely entirely on the diaphragm action of 
the roof sheeting to carry lateral and vertical loads to 

the end supports. Uniformly distributed load on the roof is 

transferred by the sheeting to the fold lines. Line loads on 
the fold lines resolve themselves into in-plane loads acting 
in the two plate elements which meet at a given fold line. 
Each plate element with its two fold line members forms a 
deep plate girder system with a span equal to the length of 
the structure. The load is carried by the deep girders to 

the stiff end gables and then to the foundations (13). 
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9.2. 
_4. 

Diaphragm arrangements and components 

9.2.4.1. Basic arrangements 

Fig. 9.4. shows the two basic arrangements of shear 
diaphragms. The span of the profiled sheeting may be directed 

either perpendicular to the span of the diaphragm (fig. 9-4. a) 
or parallel to it (fig. 9.4. b). 

. 
The design unit of a diaphragm is defined as the area 

of sheeting enclosed by two consecutive rafters and by the 

edge members. The diaphragm may be fastened either on all 
four sides (direct shear transfer) or on two-sides to the 

perpendicular members only (indirect shear transfer), (13). 

9.2.4.2. Components of a diaphraýZm panel 

a) Individual lengths of profiled sheeting. 
b) Perpendicular members. The sheeting must be firmly 

fastened to these members. 

c) Parallel members. 
d) Seam fasteners: connect1longitudinal edges of 

adjacent sheet widths. 

e) Sheet to perpendicular member fasteners. 

f) Sheet to parallel member fasteners: If the parallel 

and perpendicular members are at the same level, the 

sheeting can directly be connected to the parallel 

members. 

g) Shear connectors: If the perpendicular members pass 

over the parallel members shear connectors, with depth 

equal to the difference in level, can be used to 

connect the sheeting to the parallel members. 

h) Connections between perpendicular and parallel members: 
If the sheeting is fastened on four sides these 

connections have no importance in the diaphragm 

action (13). 

9.2.4.3. Failure modes 

The possible failure modes of the diaphragm are: 

a) Seam failure. 
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b) Failure in shear connectors (if used) at the panel ends. 
C) Failure in the fasteners connecting the'sheet to 

perpendic-lar members. 
d) Failure due to buckling of the sheeting. 

e) Failure of the outermost perpendicular members due to 

axial forces. 

The diaphragm is most likely to fail by one of the 
first three modes (12). 

9.2.5. Structural behaviour of hipped roof structures 

A somewhat different example of a structure stability 
by diaphragm action is the MACE building shown in fig. 9.5. 
Under uniformly distributed vertical load the lower horizontal 
frame members act as a tension ring supported by the corner 
columns and the roof sheeting. The upper horizontal frame 

members form a compression,, which is supported mainly by the 
hip members. The upper horizontal members carry their line 
loads back to the apex joints by bending action. At a given 
apex joint the resulting load can be resolved into axial 
components in the three framing members meeting at this joint. 
Thus the frame member forces are statically determinate and 
can be calculated without considering the stressed skin action 
which is of a secondary nature in this loading case. 

The bending of the frame members is restrained by the 

stressed skin action in the plane of the roof. This restraining 
effect results in a significant reduction of the bending and 
deflection of the hip members in particular (2,13). 

Under asymmetric loading, however, the stability of 
the structure depends mainly on the stressed skin action of 
the trapezoidal panels of the roof. The axial forces in the 
frame members meeting at the apex joints no longer balance 

and a complex three-dimensional behaviour of the structure 
results. The behaviour of hipped roof structures under 
asymmetrical loading could only be predicted by testing a 
full-scale unit (13). 

The theoretical method proposed in this chapter to 

analyse the hipped roof structures will be shown to be in good 
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agreement with the experimental results of: a) the test 

carried out on the MACE building which was constructed on 
site and, b) the prefabricated two-bay Pyradome structure. 

9.3. LOADING TESTS ON THE MACE UNIT AND THE PYRADOME 
STRUCTURE 

9.3-1. The MACE unit 

Fig. 9.5 shows a typical MACE type 30 unit building 

constructed by the Metropolitan Architects Consortium for 
Education and tested in accordance with BS449. The roof was 
square in plan and had a truncated pyramid shape. Framing 

members, following the changes in slope, were constructed from 

cold formed steel. Details of the cross sections of these 

members are given in fig. 9.5. 

Intermediate supports were provided by cladding panels 
to allow the lower square members to span 10.80 m between 

the columns. At each ofthe four corners, two bracing members 

were used to support the column and they were designed to 

resist lateral wind loads. 

The top square members were designed to support a roof 
light on top of the roof. In the test, this light panel was 

replaced by a timber deck through which the load from the roof 
light was applied (1,2). 

The roof sheeting had a trapezoidal profile with 80 mm 
depth and a net thickness of 0.67 mm. It was fastened-to the 

supporting frame members, on all four sides, with 6.1 mm 
diameter self-drilling self-tapping screws through the troughs 

of alternate corrugations. Seam fasteners were self-drilling 

self-tapping screws with 4.1 mm diameter and placed at 250 mm 

centers. 

9.3.2. The MACE unit loading tests 

As it was not possible, at the time the structure was 
I/ designed to make a reliable prediction of the behaviour, the 

structure- particularly under asymmetrical loading, a full- 

scale unit had to be tested to satisfy the requirements of 
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BS449 (3). The test program was divided into two parts: 
a) stiffness tests, and b) strength tests. 

a) Stiffness tests 

Three different tests were carried out to satisfy the 

stiffness requirements: 

Test 1. Load = Dead load + 1.5 x imposed load over 
the whole area. 

Test 2. Load = Dead load +2x wind load (horizontal 

at eaves level). 

Test 3. Load = Dead load + 1.5 x imposed load over half 
the area of the roof (asymmetric loading). 

In each of the first two tests the load was maintained 
for 24 hours, then released and the recoveries were evaluated. 
In the third test, after recording the deflections, the load 

was kept on the roof to carry out the strength tests. 

b) Strength tests 

Test 4. Load = Self wt, +2x (dead + imposed load) 

covering the entire roof. 

Test 5. Load = load in test 4+2x wind load 
(horizontal at eaves level). 

In test 5 the load was maintained for 24 hours then 

the structure was unloaded and the recoveries were measured. 

As this was a test on an actual structure which was 

required for later use, no tests to failure were undertaken. 

Vertical loads were applied directly to the roof 

sheeting using sand bags weighing 56 lb each. Plywood sheets 

were used to distribute the load of the bags. Lateral loads, '- 

simulating the wind effect, were applied by a system of 
pulleys and wires at eaves level; wind test was carried out 
in two steps: 

a) Lateral load of 2.46 kN/m applied to one side of the 

structure. 
b) Lateral load of 1.23 kN/m applied to two opposite sides. 
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In each test the load was applied in four or five 

increments while deflection readings were recorded using dial 

gauges supported on scaffolding. The recorded deflections are 

presented and discussed in section (9-5.2.1) together with 
the corresponding theoretical results. 

9.3-3. The two-bay Pyradome structure 

Fig. 9.37 shows the two-bay Pyradome structure cons- 
tructed by Oldroyd Brothers Ltd., and tested in the Department 

of Civil Engineering of the University of Salford (4). The 

structure took the shape of two MACE units connected together 

along one eave. The trapezoidal units forming the roof were 
prefabricated industrially and bolted together on site to form 

the shape of two truncated pyramids. Details of the framing 

members are given in fig. 11-37. 

The sheeting used had a trapezoidal profile with 
60 mm depth and 0.7 mm thickness. It was fastened to the 

supporting members on all four sides through every corrugation 
trough using Teks code 3.2 self-drilling self-tapping screws. 
Similar fasteners were used and placed at 200mm centers to 

connect longitudinal edges of adjacent sheet widths (4). 

9.3-4. Loading tests on the two-bay Pyradome 

The test program included three main vertical load 

tests and five side loading tests (4). The vertical loading 

tests were: 

Test 1: Load taken up to working load (0.8 kN/m 2) 
applied 

uniformly over the entire area of the roof. , 
Test 2: Load taken up to acceptance test load (1.19 kN/m 2 

applied uniformly over the entire area of the roof. 

Test 3: Initially the load was applied over the whole area 
2 

of the roof up to 0.4 kN/m The load was then 
increased over area 'A' only (fig. 9.39) up to 

full working load (asymmetrical loading). After 

deflection reading had been recorded the load was 
increased over area IBI (fig. 9.39) up to full 
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working load. The load was then increased over 
the entire area of the roof up to prototype test 

load (1-48 kN/m 2 ). Vertical loads were applied 

using sand bags each weighing 25 kg. 

To carry out the side 
, 
loading tests the two columns 

at to' and IS' (fig. 9.39) were lifted above the anchor bolts 

of the bases and supported on skates prior to loading. Side 
loads were applied as concentrated loads at the base level 

using hydraulic jacks. These tests are explained in detail 
in reference 141. 

During vertical and side loading tests the vertical 
and horizontal movements were recorded after every-load 
increment at sixteen locations using dial gauges. The recorded 
displacements of the working load test (test 1) and the 

asymmetric loading test (test 3) are considered in section 
(9.5.3) together with the corresponding theoretical results. 

9.4. THE BEHAVIOUR OF THE PLANE TRAPEZOIDAL PANEL 

9.4-1. General 

The roof of the MACE unit, shown by fig. 9.5, is 

composed of four plane trapezoidal diaphragms supported by 
the four corner columns. Each diaphragm acts as a deep plate 

girder with variable depth. Frame members represent the two 

flanges while the roof sheeting acts as the web of the deep 

girder. 

Under uniformly distributed vertical loading the 

stressed skin action of the sheeting is of secondary nature. 
Under asymmetrical loading, however, the stability of the 

structure depends mainly on the diaphragm action of the 

trapezoidal panels. 

A comprehensive analysis of the behaviour of the 
trapezoidal panel, under in-plane cases of loading, is 
described herein. The analysis was carried out using three 
different techniques to simulate the shear flexibility of 
the diaphragm. A full comparison of the results is 

presented later. 
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The three techniques used are: 

1. Finite element modeling 
2. Plane frame simulation 
3. Simple truss analysis. 

The four in-plane cases of loading considered in the 

analysis are: 

Case 1: Uniformly distributed load of 2.6 kN/m acting 
upward along the bottom chord of the trapezoidal 

panel (the component of 2.46 kN/m horizontal 

wind load along one of the eaves). 

Case 2: Two vertical concentrated loads of 10.0 kN each 
acting downward at the two top corners of the 
trapezoidal panel. 

Case 3: One vertical load of 10.0'kN acting downward at 
a top corner of the trapezoidal. 

Case 4: One horizontal load (parallel to the chords) of 
10.0 kN acting at a top corner of the trapezoidal. 

The analysis was carried out for two different types 

of connections at the junctions of the framing member, namely 
a) hinged connections, and b) fully rigid connections. 

9.4.2. Finite element modeling 

The finite element modeling of regular shear diaphragms 

was first proposed by Ammar and Nilson (6). Davies and others 
(2) used the method to analyse the trapezoidal panel of the 
MACE unit under the action of uniform wind load, considering 
hinged corner joints. 

Fig. 9.7 shows the finite element model described in 

reference 2 and used in the present analysis. Five types of 
elements have been used to simulate the components of the 
trapezoidal diaphragm. These types are: 

1. Orthotropic rectangular plate elements 
2. Orthotropic triangular plate elements 
3. Beam elements 
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4. Spring elements for sheet to frame fasteners 
5. Spring elements for seam fasteners. 

Each of these element types will now be considered 
in turn. 

Design of rectangular plate elements 

The steel corrugated sheeting can be represented by 
two-dimensional orthotropic rectangular elements with two 
degrees of freedom at each node. To derive the 8x8 stiffness 

matrix of the element Ammar and Nilson (6) developed the 

elasticity matrix D where, 

D 
-Y 

1y- 

xy yx 

E -y E 
x xy x 

y YX yy 
00 

0 

0 

(1-Y 
xy Yyx )Geff 

in whichjE y and Ex are the effective moduli of elasticity 
along the two axes of orthotropy, y and x, y yx and y xy are 
the corresponding values of Poisson's ratio and G 

eff 
is the 

effective shear modulus. The two modu li of elasticity can be 

calculated from the expressions given by Ammar and Nilson (6) 

as follows: 

t 

3r 
E0 

x and E 

E0 (9.2) 

E0 (9-3) h 
4- 

Figg. 9.6. 

I/ J- 
7-ý 

Profile dimensions. 

in whichto = the developed length of one corrugation, EO = 
the modulus of elasticity of the material, 10 and I are given by, 

Io = dt3 (9-4) 
12 

and I= t(b h2+2L 3) (9-5) 
03o 

where, the notations are given in fig. 9.6. 
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The two values of Poisson's ratio, yyx and yxyp can 
be calculated from the following relations: 

y zrx = YO (9.6) 

and y xy. 
Ex = yyx. Ey (9.7) 

where y0 is the value of Poisson's ratio for the material. 

An expression for the effective shear modulus G 
eff 

can be deriven from the total shear deformations of the 

sheeting (14). This expression takes the form: 

t 0/ 

[d2*5 
2(l+y )(l+ 2h (9.8) =E eff t1 -5 b0 

in which b= the depth of the diaphragm, parallel to the 

corrugations, and R= the profile constant which is function 

of the profile dimensions and the arrangement of sheet to 
frame fasteners (13). 

9.4.2.2. Orthotropic triangular elements 

It is strongly recommended to avoid the use of such 

elements in the diaphragm analysis as far as possible (13). 

However, they have been used in the present analysis as infil 

pieces at the inclined edges of the diaphragm. The elastic 

properties, previously mentioned for rectangular elements, have 
been used to derive the 6x6 stiffness matrix of the ortho- 
tropic triangular element. 

9.4.2-3. Beam elements 

Beam elements have three degrees of freedom at each 
node, to represent the frame members of the diaphragm. 

9.4.2.4. 
-Sprina elements for sheet to frame fasteners 

Fig. 9.9 shows the spring element with zero size used 
to simulate the sheet to frame members fasteners and the seam 
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fasteners. Each spring has equal stiffness, Kx and Ky in the 

two orthogonal directions, x and y. Each frame to sheet 
fastener has been simulated individually since they tend to 

have different values of force and displacement. 

9.4.2-5. Spring elements for seam fasteners 

In a given seam line the fasteners have similar values 

of force. Instead of modeling each seam fastener individually 

they have been replaced by a small number of equivalent spring 
elements placed along the seam line at the nodes of the rectan- 
gular elements. 

The flexibility of both the sheet to frame member 
fasteners and the seam fasteners'has been taken as 0-151n, 9110 
in the two orthogonal directions. 

The finite element computer program used to carry out 
the analysis is that used by Davies and others (2). 

9.4-3. Plane frame simulation 
This method was first proposed by Davies (12) who 

applied it to regular diaphragms and to diaphragms with 
openings and showed that it agrees well with the finite 

element analysis of these types of diaphragms. 

The method is based on representing the diaphragm 

assembly by a number of, prismatic members forming an in-plane 

frame. The analysis can then be, carried out using a conven- 
tional plane frame computer program. 

The analysis of a rectangular diaphragm can always be 

simplified by eliminating the x-component of the displacement 

at each joint (12). Hence, spring elements having only axial 

stiffness in Y-direction K can be used to simulate the sheet 
to frame member fasteners. 

y 
In the trapezoidal diaphragm, 

however, the x-component of the strain produced by the axial.. 
force of the inclined member has. to be included in the analysis. 

. The model used to, simulate the shear flexibility of 
the trapezoidal diaphragmýis shown in fig. 9.8. The joints 

were allowed to move in x-direction. An additional type of 
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spring element has been provided beside those used for 

rectangular diaphragm analysis (12). Such elements simulate 
the flexibility of the sheet to frame fasteners, in x-direction. 
Types of elements used in the model will now be considered. 

9.4-3.1. Beam elements 

Conventional beam elements with three degrees of 
freedom at each node have been used to represent the frame 

members. 

9.4.3.2. 
--Dia, zonal truss members representing the 

sheetinq 

Each diagonal member has been used to 

shear flexibility of a sheet width p, where 
of sheet to frame fasteners. By equating the 

of a width p of the sheeting to that of the 
diagonal member, the cross sectional area A 
takes the value, 

b-t-G 
A=_, eff 

p-E-h 
2 

where: 

simulate the 

p is the pitch 

shear displacement 

equivalent 
of that diagonal 

(9-9) 

b= depth of diaphragm panel represented by the 
diagonal member, 

E= the elasticity modulus of the material, 
Z= length of the diagonal member, 
Geff = effective shear modulus of sheeting, given 

by equation 9.8, 
h and t are the depth and thickness of the sheeting 

profile. 

9.4-3-3. Vertical truss members 
These members have been used to satisfy the compatibi- 

lity condition at the joints connected to the diagonal 

member. They have been chosen with sufficient stiffness for 

strain to be neglected. The vertical member has been given a 

cross sectional area equal to 2tot, where 9,0 is the developed 

length of one corrugation. Cý 
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9.4-3.4. Prismatic members representing the seam 
fasteners 

The total flexibility of the seam fasteners in a given 

seam has been simulated by a prismatic member having axial 

stiffness. The cross sectional area A of such member takes 

the value, 

(9-10) 
n-E-f 

in which, length of the member, 'E elasticity'modulus, 
n= number of fasteners in the given seam, and f. = flexibility 

of a seam fastener (taken 0.15 mm/kN). 

9.4-3-5. Spring elements for sheet to frame fasteners 

As mentioned before, it is necessary to model sheet to 
frame member fasteners precisely. In the present analysis 
spring elements with finite length have been used to represent 
these fasteners. The y-component of flexibility has been 
simulated by vertical springs with 1.0 mm length. Inclined 

springs have been provided to simulate the x-component of 
flexibility. Details of these springs are shown in figs. 9.10 

and 9.11. 

9.4.4. Simple truss analysis 

This method is an extension to the approximate method 

of regular diaphragms analysis proposed by Bryan (8) and later 

modified by Davies (11,14). As illustrated by fig. 9.12, the 

trapezoidal diaphragm is simulated by a plane truss system. 
Diagonal members have been designed for the overall shear 
flexibility of the diaphragm. Edge members are allowed to 

carry in-plane bending. Vertical members have enough stiffness 
for their axial strain to be neglected. 

The overall flexibility of the diaphragm assembly can 
be evaluated by considering each component flexibilities and 

adding them together. These flexibilities are: 
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a. C 1.1 : due to distortion of the sheeting profile 

b. C 1.2 : due to shear strain in the sheeting 

C. C 2.1 : due to movement at the sheet to perpendicular 

member fasteners 

d. C2.2 : due to movement in the seam fasteners 

e. C3: due to axial strain in the edge frame members. 

The expressions used to calculate these flexibilities 

are presented in appendix A. 9.1. The overall shear flexibility 

C of the diaphragm assembly takes the form: 

C=C+c+c+c+c 1.1 1.2 2.1 2.2 3 

The cross sectional area Ad of the diagonal member 
used to simulate overall shear flexibility of a diaphragm 

width can be calculated from: 

Ad=P, d2 

E-C-Cos e 
(9.12) 

in which, Z' d- = length of the diagonal, and 0= angle of 
inclination of the diagonal with respect to the direction 

perpendicular to the corrugations. 

The derivation of equ. 9.12 is presented in 

appendix A. 9.1. 

9-4.5'. Comparison between the results of the three methods 

A full comparison between the 
ýresults 

of the three 

methods used to study the behaviour of the trapezoidal 

diaphragm is given in figs. 9.13 up to 9.29. Four different 

cases of in-plane loading have been considered in the analysis. 
The comparison of the deflections has shown that the full 

frame simulation and the simple truss model both agree well 

with the more accurate finite element method. 

The sheet to frame member fastener forces have been 

calculated from the internal forces given by the simple truss 
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model by making use of the distribution of fastener forces 

given by the finite element method. The procedure is given 
in appendix A. 9.1. The same procedure can be applied using 

the distribution of fastener forces given by the full frame 

simulation of the trapezoidal diaphragm. However, the local 

fastener forces can be calculated directly, from-the internal 

forces of the simple truss model by considering only the 

fasteners at the joint. This may lead to overestimated values 
for the fastener forces as will be explained in the following 

discussion. 

The comparison of the fastener forces, -calculated by 

the three methods of analysis used in the study is given in 
fig. 9.29 and table 9.1. 

The following observations can be drawn from the 

comparison: I 

1. As illustrated by the figs. 9.21 - 9.23, under asymmetric 
load, either vertical (case 3) or horizontal (case 4), 
the deflections of thebotbom and top flanges take 'asymmetric 

shapes. The figures show an excellent agreement between 
the results of the-three methods. The largest error in 
the simple truss method in comparison to the finite 

element method is about 3% (figs. 9.21 and 9.25)1 Never- 
thelesspit is obvious that the method results in almost 
identical shapes of deflection under asymmetric load. 

2. Under symmetrical vertical load acting at the top flange 
(case 2), the full frame simulation and the finite element 
method give almost identical values for thedeflection of 
the top and bottom flanges (figs. 9.17 - 9.21). Considering 

hinged corner joints, the error in the simple truss method 
is about 9.5%, (figs. 9.17 and 9-19)-, "or rigid joints, 
17owever, the results are almost identical to that of the 

other two methods (figs. 9.18 and 9.20). 

3. The comparison of the deflections under uniform wind load 

is shown by figs. 9.13,9.14,9.15 and 9.16., Compared to 

the finite element, the largest error in. the full frame 

simulation is about 5% (fig- 9--13). The error in the 
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simple truss method is almost 8.7% for the maximum 
deflection, and about 11% at mid-span (fig. 9.13). The 
difference between the two limit bounds considered in the 

analysis is significant in this loading case. The maximum 
deflection of the rigid corners model, (fig. 11.14), is 

about 66% of that calculated with hinged corners model, 
(fig. 9.13). The ratio is about 37j', o for themid-span 

deflection. 

4. Fig. 9.29 shows the distribution of fastener forces and 
the axial forces in the frame memberfunder wind action 
(case 1) for the diaphragm with hinged corners. It should 
be noted that high local fastener forces occur at the apex 
joint and directly opposite to it in the bottom flange. 

This shows the need to strengthen the sheet to frame 

member connection at those locations by adding more 
fasteners. 

5. Table 9.1 shows the comparison of the forces-in the 

critical fasteners, calculated by the three methods used 
to analyse the trapezoidal diaphragm. Under symmetrical 
loading acting at the top flange (case 2) the acting 

shear produces very small fastener forces. In cases 1,3 

and 4 fasteners at the apex joints are the most critical. 
In case 1, where the load is distributed uniformly along 
the bottom flange, the maximum fastener force calculated 
by the finite element is 2.42 kN. For the, same fastener 

the full frame simulation gives a value of 2.71 M, which 
is higher by almost ll%jwhile the simple truss-, method 

gives a value of 2.52 M, which is higher than the finite 

element result by 4% only. Considering only the local 

fasteners at the joint, the internal forces given by the 

simple truss model give a value of 3.25 M for the same 
fastener. This is higher than the finite element result 
by almost 34%. Under asymmetrical loading, the maximum 
fastener force calculated by the full frame simulation is 
higher than the finite element value by almost 17%, while 
the simple truss method again gives 4% higher than the 
finite element method. 
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It can be concluded that the simple truss method can 
be used to predict the deflections of the trapezoidal 
diaphragm with sufficient accuracy. The method has also shown 
an excellent agreement with the finite element'method in 

calculating the fastener forces. The full frame simulation 

agrees well with the finite element method in calculating both 
the displacements and the fastener forces. Moreover, the 

method has the advantage that it can be applied using a conven- 
tional plane frame computer program. 

9.5. ANALYSIS OF THE MACE UNIT AND THE TWO-BAY PYRADOME 

The model used in the analysis 

Fig. 9.30 shows a plan view of the space frame model' 

used to analyse the MACE structure. The overall shear flexibi- 

lity of the trapezoidal panels forming the roof has been 

simulated by in-plane truss elements. The four cases of 
loading considered in the study are shown in fig. 9.31. The 

model has been solved for two types of end conditions: 

a) Considering hinged connections between the frame 

members. 

b) Considering that such connections are fully rigid. 

The model used to study the two-bay Pyradome structure 
is presented in fig. 9.38. Two cases of uniform load have 

been considered in the analysis. They are shown'in fig. 9.39. 

A more simplified model has been proposed. This model 

can be used to offer approximate and easily calculated values 

of the deflection. In this model, the overall shear flexibi- 

lity of the trapezoidal panel has been sinulated by two 

diagonal members formingan x-truss panel. The results of 

using this model are given in tables 9.4 and 9.5, and in 
fig. 11-32. 

The analysis has been carried out. using the computer 
program described in chapter (4) and the SAP4 program (15). 
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9.5.2. Comparison and discussion of the results 

9.5.2.1. The MACE unit deflections I 

a. Uniformly distributed load over the entire roof 

Table 9.2 presents the comparison between the theore- 
tical and experimental value of the displacements for this 
loading case. The increase in the experimental value of the 
deflection of the apex joint (joint 1) compared to the 

corresponding theoretical value was probably due to movement 
of the bolted connection during the test. Such movement at 
the apex joint may also be the reason for the increase in the 

value of the experimental deflection at the mid point of the 

apex member, in comparison to the theoretical value. However, 

such increase is much smaller as the apex member is restrained 
by the stressed skin action of the sheeting. The experimental 

value of the vertical deflection at the mid point of the hip 

member lies in between the two limits of the corresponding 
theoretical deflection. The deflection at this point is mainly 
due to the bending action of the hip member. Such bending is 

restrained by the stressed skin action of the adjacent sheeting. 

It should be noted that the measured deflections-are 

in most cases quite small and certainly sufficiently small for 

the influence of movement in bolted joints to be significant. 
Bearing this in mind, the general level of agreement1be. tween 

the test results and the corresponding theoretical values of 
the deflection, given by the simple truss model, is good. 

Table 9.4 shows the comparison between the experimental 

values of the deflection and the corresponding theoretical 

values calculated with the x-diagonals model. It can be seen 
that this alternative simulation of the shear flexibility of 
the diaphragms results in a stiffer model which gives under- 

estimated values of the deflection. 

b. Horizontal wind load (cases c, and d) 

. 
Jable 9.3 presents the comparison between the experi- 

mental., theoretical deflections in the two wind cases considered 
in the analysis. Apart from some high experimental results, 
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which will now be discussed, the general pattern of agreement 
between the analysis and the test results is good. 

In case IV of loading, where the load is acting at 
the level of two opposite. eave beams, the calculated 

value of the two horizontal displacements 3-x and 9-x at the 

mid point of the two opposite apex members are equal. The 

two corresponding experimental values are, however,, not equal. 
The difference between them is almost 9.5% which is an 
indication of the variability of the experimental results. 
On the other hand, the difference between the two experimental 

values of the horizontal displacement at the mid point of the 

two opposite eave beams, which may again be expected to be 

equal, is about 26%. In case 'c' of loading, -where the total 

load of case Id' is applied to only one eave, the experimental 

value of the horizontal displacements at the mid point of the 

two apex members are close to the corresponding theoretical 

values. However, the experimental value of the horizontal 

displacement at the mid point of the loaded eave joints is 

about 60% greater than the corresponding theoretical value and 
drops to 40% increase in the experimental displacement at the 

mid point of the unloaded eave. The high increase of the 

measured displacements at the mid point of the two eave beams 

is probably because of three factors: 

a) The previous analysis of the trapezoidal diaphragm 

has shown that, under uniform load acting along the 

bottom flange (wind load), the simple truss model has 

given about 11% less than the more accurate finite 

element method for the mid-span deflection. 

b) The difference in the level of disagreement for the 

loaded and unloaded eaves in case Ic' of loading may 
indicate some local effect of the. concentrated load. 

c) For the relatively small displacements involved there 

is always likely to be a significant increase in the 

displacement due to movement in bolted joints. 

The comparison between the experimental deflections 

and the corresponding theoretical values, given by the x- 
diagonal model, is presented in table 9.5. Again the 
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comparison reflects the increase in the stiffness of the 

model compared to the simple truss model. 

c. Asymmetric load 

Fig. 9.32 shows, the comparison of the deflections 

under the action of the asymmetric load. The comparatively 
large deflections, obtained in the case has shown that the 

asymmetric load represents the most critical loading condition 
for this structure. It can be seen, from the comparison, 
that the displacements measured during the test lie in between 
the two limits, of the corresponding theoretical values. The 

experimental value of the displacement at a given location in 

the loaded half of the roof is close to the mean value of the 

two limit bounds. However, in the unloaded half of the roof 
the experimental displacement at a given location is much 

closer to the lower limit of the corresponding theoretical 

displacement. This could be because the bolts of the unloaded 

apex joint tended to stick by friction under the high internal 

forces produced in this case. 

Fig. 9.32 also shows the results of the x-diagonals 

model. The pattern of agreement is similar to that discussed 

above for the simple truss model. However, as in the other 

cases of loading, the model shows more stiffness than the 

simple truss model. 

9.5.2.2. Critical. fastener forces calculated from the model 

of the MACE unit 

The failure modes of a diaphragm assembly have been - 

explained in section 9.2-4.3; however, the most likely modes 

are those involving fasteners. Thus to check the safety of 
the structure it is essential to calculate the fastener forces. 

It has been shown in the analysis of the trapezoidal 

panel (section 9-4.5) that the simple truss method agr I ees well 
with finite element method for calculating the fastener forces. 
The individual fastener forces of the MACE unit roof have been 

calculated from the internal force distribution given by the 
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space frame model by making use of the distribution shape of 
fastener forces given by the finiteelement analysis of the 
trapezoidal panel. 

Fig. 9.33 shows the forces in the fasteners at the 

apex joints and opposite to them When the structure is loaded 
2 by uniformly distributed load of 0.81 kN/m It can be seen 

that under such loading the stressed skin action is of a' 
secondary nature. 

Fig. 9.34 shows the fastener forces when the roof is 
loaded asymmetrically. It is obvious that under this load 

the stability of the structure is dependent on the stressed 

skin action of the roof sheeting. It can be seen that high 

local forces occur in the fasteners at the apex joints. The 

value of the force in the most critical fastener is between 

4.23 kN (hinged corners model) and 0.70 kN (rigid corners 

model). The ultimate capacity of an individual fastener is 

approximately 4.0 M. However, the comparison of the displace- 

ments under asymmetrical loading (fig. 9.32) has shown that 

experimental displacements are closer to the corresponding 
theoretical values given by the rigid corners model than to 

the values given by the hinged corners model. Nevertheless 

these high local fastener forces show the need to strengthen 
the sheet to frame member connection by increasing the 

fasteners to every corrugation in the critical regions. 

The critical fastener forces under horizontal wind 
loading are shown in figs. 9.35 and 9.36. It can be seen that 

the stressed skin action is confined to the lo. aded panels. 
In case 1c' of loading, when the horizontal wind load is acting 

along one eave beam, the force in the most critical fastener 

is between 3.22 kN (hinged corners model) and 2.36 kN (rigid 

corners model). The. critical fasteners are thus safe but 

nevertheless they represent a potential weakness and again it 
is recommended to increase the fasteners to every corrugation 
in the critical-locations. 
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9.5-3. The two-bay Pyradome deflections 

Table 9.6 presents the comparison between the experi- 
mental deflections and the corresponding theoretical values, 
for the two cases of loading considered in the analysis. 
Apart from the high experimental deflections of the valley 
beam, the pattern of agreement between the experimental and 
theoretical deflections is good. The increase of the experi- 
mental deflection of the valley beam was probably due to 

movement of the bolts which were connecting the two beams of 
the valley member. The fastener forces can be calculated 
following the same procedure used for the MACE building. 

CONCLUSIONS 

1. The objective of the work reported in this chapter 
has been to present a theoretical model capable of describing 

the behaviour of the hipped roof structures under vertical 

and lateral loads. Under certain cases of loading, the 

stability of such structures depends entirely on the stressed 

skin action of the trapezoidal sheet panels which form the 

roof. 

2. Three methods of analysis have been used to study the 

behaviour of the trapezoidal diaphragm under different cases 

of in-plane loading. The full frame simulation has proved to 

be in excellent agreement with the finite element method in 

predicting the displacements. However, the method slightly 

overestimated the fastener forces. On the other handpthe 

simple truss method has shown a good agreement with the 

finite element method in predicting both the displacements 

and the fastener forces. 

3. The MACE structure has been modeled using simple truss 

panels to simulate the overall shear flexibility of the 
trapezoidal panels of the roof. The comparison between the 
theoretical and experimental deflections has shown that the 

simple truss model can be used to express the behaviour of 
the hipped roof structures with sufficient accuracy. 

4. The critical fastener forces have been calculated 
using the internal forces given by the space frame model of 
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the MACE building. The procedure of calculation is based on 
using the distribution shape of fastener forces given by the 
finite element analysis of the trapezoidal panel of the hipped 

roof (Appendix A. 9.2). The calculated fastener forces when 
the structure is loaded asymmetrically shows the need to 

strengthen the. sheet to frame member connections in the 
highly stressed regions by increasing the fasteners to every 
corrugation 

5. A similar study has been carried out on the two-bay 

Pyradome structure. The theoretical deflections calculated 

with the proposed model have again shown adequate agreement 

with the corresponding experimental values. 
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ly 
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6" 7 

DISPL. 1N mm 

Table9_2 Experimental And Theoretical Displacements 
Un'der U. D. L., 0.8 1- KN Im2 

ft V. 
CASE C WIND ON OLNE SIDE" CASE"DIAND ON BOTH SIDW 

JOINT DIRECTION 
E 

THEORETICAL THEORET ICAL 
EXPERIM - 

HINGED FIXED U(PERIME HINGED FIXED 

3 oc 1.80 223 2.14 2ý5 3.54 -273 

4 oc 243 172 1.68 623 3.92, 295 

5 m 9ý5 614 k2l 494 3.92 2.95 

6 y, -0.15 _Q50 -0.55 -0.05 -0.0 
0.0 

7 T 1.50 1.62 1.57 2.17 1.82 176 

8 1 1.90 202 1.95 1.75 1.82 176 

9 cc 3.35 4.94 3.23 
ýZ. 

42 3.54 2.73 

10 Y -0.10 QO 4 -Q04 -OP 2 0.0 0.0- 

EXPERIMENTAL THEORETICAL 
JOINT DIRECTION 

RESULTS HINGED FIXED 

1 Z 12.60 
ý9.26 

9.06 

2 z 7.50 10.50 535 

3 z 13.90 12.60 10-78 

3 1 0.95 0.65 0.19 

4 T 4.17 3.50 3.35 

7 z 0.11 Q2-8 0.25 

7 oc 0.92 1.05 1.0 2 

Table 9.3 Experimental And Theoretical Displacements Under Wind 
Load Cases 
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8 

5 

X-DIAGONALS MODEL 

DISPL. IN mm 

4 

I 
JOINT DIRECTION 

EXPERIMENTAL TH EORET I CAL 

RESULTS HINGED FIXED 

1 z 12.60 B-S7 8.20 

2 2 7.50 4.42 3.91 

3 z 13.90 8.93 B. S7 

3 m 0.9s 0.10 0.10 

4 cc 4.17 3.15 2.50 

7 z 0.11 0.27 0.26 

7 cc 0.92 0.97 0.93 

Table. 9.4 Comparison Between Experimental Results And The 
2 Results Of The X- Diagonals Model (U. D. L 0.81 KN W 

CASE'C"ý41ND ON ONE SIDE" CASE VVIND ON BOTH SIDES' 

JOINT DIRECTION THEORETICAL THEORETICAL 
EXPERIME. 

HINGED FIXED 
EXPERIME. 

HINGED FIXED 

3 oc 1.80 2.34 2.27 2.65 2.59 Z27 

4 oc 2.43 1.82 1.67 6.23 3.69 3.47 

5 T 9.85 5.67 5.27 4.94 3.69 3.47 

6 y -0-15 -0-41 -OL 1 -Q05 -0-14 0.0 

7 m 1.50 I. S7 1.58 2J 7 1.77 1.77 

8 3c 1.90 1.70 1.96 1.75 1.77 1.77 

9 CC 3.35 3.56 Z27 21+2 2.59 2.27 

01 y1 -0-10 0.0 -0.02 -0.02 1 -002 0.0 

Table. 9.5 Comparison Between Experimental Results And The Results Of 
The X-Diagonals Model (Wind Load Cases) 
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A27 '12\! L-/ 1 
6 

a 39 

49 

Aý, CASEW CASE (B) 
EXPER. THEORETICAL RESULTS EXPER. THEORETICAL RESULTS 

RESULTS HINGED FIXED RESULTS HINGED FIXED 

1 12.0 15.95 8.31 5.50 8.00 k06 

2 7.0 728 7.19 3.50 -Q94 2028 

3 7.0 7.96 747 k5 0 6.24 5.44 

4- 12.0 16.01 5.17 1 ZO 1598 5.19 

5 90 816 752 9.0 1Q89 945 

6 8.50 10.80 6.68 8.0 12.01 9.50 

7 9.0 922 7.77 50 9.18 ý55 

8 8.50 9.63 5.35 850 11.03 6. Bl 

9 2.0 0.17 0.16 1.50 0.17 0.17 

10 1350 9.28 7.01 13.0 9. " 7.18 

11 19.50 11.69 9.86 18.0 1064 8. B 

12 lz5o 9.20 6.81 11.0 7.30 5.30 

13 9.0 8.00 8.02 8.0 1 1. Bo 9.65 

14 9.50 lQol 
. 
ý24 550 M 6.76 

15 12.0 1600* 5.40 16.50 15.97 5.31 

16 20 2.04 1.20 2.50 1.26 0.61 

Table. 9.6 Vertical Deflections-IJ. D. L. And Asymmetric Load 
For The Two - Bay Pyradome 
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7 '12 14X 
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APPENDIX A. 2.1. 

The second-order stiffness matrix given by Renton 

This matrix is valid for skew and doubly symmetrical 

cross sections. The submatrices all ,a 12 .....,, a 44 of the 

second order stiffness matrix K in eq. 2.68 as given by 

Renton (9), are, 

EA 
00000 

12EI 
[a - 6EI 

y 
Z35 12] 022 

6EI 
009,3 1) 502 

ý2 0 

p1l] = -P33] ' 
[14] : -- r12] =- P43] 

x0 
EI 

04 Y03 
22] 

0 

x0 
2EI 

24] 0 2, 
y P4 

00 

0000 

-6EI z 0 [a23] =00 
91.2 

ý2 

4EI 
z 

6EI 
y 

13Z2 ý)2 0 

0 

aa 0 and 44] 22] 
2EI 

t 
Yý 

4 

(A. 2.2) 

(A. 2-4) 

in which, 
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2 

c0tz+ (A. 2-5) 
22 7- 12(1-4) 34241 

2ý1 ýl 9ý and T2=xZ (A. 2. 
12z EI 2-25-z 

values 01,02 ..., and 05 can be calculated from 

T= 
Px Z2 

and, EI 

GJ -P2 2) 

xx0 
where liz (GJ Pxio (A. 2.7) 

c 
AIL 

2 tanh uxt W 

pxz2 

L 
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APPENDIX A. 3.1 
--------------------- 

SUBROUTINE BIMOM 
------------------------ 

SUBROUTINE BIMOM(ID 
DOUBLE PRECISION FA, EA, CA, DA, FEA, FCA, FDA, ECA, 

1 EDA, CDA, F1, El, Yl, Zl, X2, X3 
DOUBLE PRECISION CFM, FM, CC(110) 
DOUBLE PRECISION Rl, R2, R3, R4, R5, R6, R7, R8, R9, RlO 
DOUBLE PRECISION SUMR1, SUMR2, SUMR3, SUMR4, SUMR5, SUMR6, 

1 SUMR7, SUMR8, SUMR9, SUMR10 
DIMENSION FA(110), EA(110), CA(110), DA(110), FEA(110), 

1 FCA(110), FDA(110), ECA(110), EDA(110), CDA(110) 
DIMENSION Rl(110), R2(110), R3(110), R4(110), R5(110), 

1 R6(110), R7(110), R8(110), R9(110), RlO(110) 
DIMENSION SUMR1(110), SUMR2(110), SUMR3(110), SUMR4(110), 

1 SUMR5(110), SUMR6(110), SUMR7(110), SUMR8(110), SUMR9(110), 
2 SUMR10(110) 

COMMON/FUNCT/FA, EA, CA, DA, FEA, FCA, FDA, ECA, EDA, CDA, E1, El 
1 Yl, Zl, Xl, X3 

COMMON/FACTOR/Rl, R2, R3, R4, R5, R6, R7, R8, R9, RIO 
COMMON/SUMM/SUMR1, SUMR2, SUMR3, SUMR4, SUMR5, SUMR6, SUMR7 

1 SUMR8, SUMR9, SUMR10 
COMMON/FORCS/FM(35000), CFM(35000) 

Do 10 I=1,81 
Xl=0.0125*(I-1) 
X2=Xl*Xl 
X3=X2*Xl 
Fl=6.0*(X2-Xl) 
El=-Fl 
Yl=(-3.0*X2+4.0*Xl-1.0) 
Zl=(2.0*Xl-3.0*X2) 
FA(I)=Fl*Fl 
EA(I)=El*El 
CA(I)=Yl*Yl 
DA(I)=Zl*Zl 
FEA(I)=Fl*El 
FCA(I)=Fl*Yl 
FDA(I)=Fl*Zl 
ECA(I)=El*Yl 
EDA(I)=El*Zl 
CDA(I)=Yl*Zl 
IF(I. LT. 2)GO TO 8 
CC(I)=-CFM(14*(I-1)) 
SL=0.50*(CC(I)-CC(I-1)) 
Rl(I)=(FA(I-1)*CC(I-1)+FA(I)*CC(I)+0.50*FA(I-1)*CC(I)+ 

1 0.50*FA(I)*CC(I-1))/240.0 
R2(I)=(EA(I-1)*CC(I-1)+EA(I)*CC(I)+0.50*EA(I-1)*CC(I)+ 

1 0.50*EA(I)*CC(I-1))/240.0 
R3(I)=(CA(I-1)*CC(I-1)+CA(I)*CC(I)+0.50*CA(I-1)*CC(I)+ 

1 0.50*CA(I)*CC(I-1))/240.0 
R4(I)=(DA(I-1)*CC(I-1)+DA(I)*CC(I)+0.50*DA(I-1)*CC(I)+ 

1 0.50*DA(I)*CC(I-1))/240.0 
R5(1)=(FEA(I-1)*CC(I-1)+FEA(I)*CC(I)+0.50*FEA(I-1)*CC(I)+ 

1 0.50*FEA(I)*CC(I-1))/240.0 
R6(I)=(FCA(I-1)*CC(I-1)+FCA(I)*CC(I)+0.50*FCA(I-1)*CC(I)+ 

1 0.50*FCA(I)*CC(I-1))/240.0 
R7(I)=(FDA(I-1)*CC(I-1)+FDA(I)*CC(I)+0.50*FDA(I-1)*CC(I)+ 
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1 0.50*FDA(I)*CC(I-1))/240.0 
R8(I)=(ECA(I-1)*CC(I-1)+ECA(I)*CC(I)+0.50*ECA(1-1)*CC(I)+ 

1 0.50*ECA(I)*CC(I-1))/240.0 
R9(I)=(EDA(I-1)*CC(I-1)+EDA(I)*CC(I)+0.50*EDA(I-1)*CC(I)+ 

1 0.50*EDA(I)*CC(I-1))/240.0 
RlO(I)=(CDA(I-1)*Cr'I-1)+CDA(I)*CC(I)+0.50*CDA(I-1)*CC(I)+ 

1 0.50*CDA(I)*CC(I-1))/240.0 
SUMR1(I)=SUMR1(I-1)+Rl(I) 
SUMR2(I)=SUMR2(I-1)+R2(I) 
SUMR3(I)=SUMR3(I-1)+R3(I) 
SUMR4(I)=SUMR4(I-1)+R4(I) 
SUMR5(I)=SUMR5(I-1)+R5(I) 
SUMR6(I)=SUMR6(I-1)+R6(I) 
SUMR7(I)=SUMR7(I-1)+R7(I) 
SUMR8(I)=SUMR8(I-1)+R8(I) 
SUMR9(I)=SUMR9(I-1)+R9(I) 
SUMR10(I)=SUMR10(I-1)+RlO(I) 
GO TO 10 

8 CC(I)=O. O 
SUMR1(1)=O. O 
SUMR2(1)=O. O 
SUMR3(1)=O. O 
SUMR4(1)=O. O 
SUMR5 (1 ) =0.0 
SUMR6(1)=D. O 
SUMR7(1)=O. O 
SUMR8(1)=O. O 
SUMR9 (1 ) =0.0 
SUMR10(1)=O. O 

10 CONTINUE 
WRITE(8,100)SUMRI(81) 

100 FORMATUAH RR1, E15.6) 
WRITE(8,101)SUMR2(81) 

101 FORMATUAH RR2, E15.6) 
WRITE(8,102)SUMR3(81) 

102 FORMATUAH RR3, E15.6) 
WRITE(8,103)SUMR4(81) 

103 FORMAMAH RR4, E15.6) 
WRITE(8,104)SUMR5(81) 

104 FORMATUAH RR5, El5.6) 
WRITE(8,105)SUMR6(81) 

105 FORMATUAH RR6, E15.6) 
WRITE(8,106)SUMR7(81) 

106 FORMATUAH RR7, E15.6) 
WRITE(8,107)SUMR8(81) 

107 FORMATUAH RR8, E15.6) 
WRITE(8,108)SUMR9(81) 

108 FORMATUAH RR9, E15.6) 
WRITE(8,109)SUMR10(81) 

109 FORMAT(//5H RR10, E15.6) 
RETURN 
END 
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APPENDIX A-3.2. 
Coefficients Kb and Kt of the geometric matrix 

Fact. K bl K b2 K b3 K b4 K ti K t2 K t3 K t4 

0.01 0.5999 0.0652 0.0501 0.0166 0.30 0.0334 0.0250 0.0083 

0.05 0.5995 0.0652 0.0500 0.0166 0.30 0.0333 0.0250 0.0083 

0.10 0.5979 0.0650 0.0499 0.0166 0.299 0.0332 0.0249 0.0083 

0.25 0.5869 0.0640 0.0489 0.0163 0.292 0.0326 0.0243 0.0081 

0.50 0.5513 0.0607 0.0456 0.0155 0.2700 0. '0297 '0.0223 0.0076 

0.75 
1 
0.5014 0.0561 0.0410 0.0144 0.2396 0.0268 0.0196 0.0069 

1.0 0.4463 0.0510 0.0359 0.0132 1 0.2o63 0.0236 0.0166 0.0061 

2.0 0.2642 0.0347 0.0190 0.0094 0.1006 0.0132 0.0072 0.0036 

3.0 0.1642 0.0263 0.0 0.0074 0.0495 0.0079 0.0029 0.0022 

4.0 0.1091 0.0218 0.0040 0.0063 0.0263 0.0053 0.0010 0.0015 

5.0 0.0760 0.0192 0.0012 0.0055 0.0150 0.0038 0.0002 0.0011 

6.0 0.0548 0.0173 0.0006 0.0050 0.0090 0.0029 0.0 0.0008 

7.0 0.0406 0.0159 -0.0016 0.0045 0.0058 0.0023 -0.0002 0.0006 

8.0 0.0308 0.0147 -0.0022 0.0040 0.0038 0.0018 -0.0002 0.0005 

9.0 0.0238 0.0138 -0.0025 0.0036 0.0026 
1 
0.0015 -0-0003 0.0004 

10.0 
L 

0.0188 0.0130 -0.0026 0.0033 
I 

... 

0.0019 
I 

0.0013 

-- 
-0-0003 
I 

0.0003 
II 

Table A-5.2. Bimoment coefficients K bl- K t4 
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APPENDIX A. 4.1 
---------------- 

MAIN SUBROUTINE 
-------------------- 

C 
c 

C 
C FIRST AND SECOND ORDER ANALYSIS OF SPACE FRAMES 

DOUBLE PRECISION A, BM, CM, DM, EM, FM, WJ, CFM 
INTEGER*4 JDF 
CHARACTER*10 RESFIL, DATFIL 
DIMENSION XL(1000), YL(1000), ZL(1000), NM(1000), 

1 JS(1000), JDF(3000) 
DIMENSION ITN(5000), JA(5000), JB(5000), JC(5000), 

I QC(5000), RC(5000) 
DIMENSION DM(8000), EM(8000), PCA(5000), PCB(5000) 
DIMENSION NT(400), MAP(1000,500), WJ(6000), A(8000), 

1 BM(8000), CM(80000) 
DIMENSION EY(50), GR(50), AR(50), GQ(50), GQR(50), GJ(50), 

1 QS(50), RS(50) 
INTEGER ADDR(1000), WADDR(1000), ORD(1000), NST(1000), P, Q 
DIMENSION GG(50,5), FFW(50,8), PAY(50), PAZ(50), 

1 WLO(1000), JLO(2000) 
COMMON/FORCS/FM(35000), CFM(35000) 
COMMON/BARMS/GG, FFW, PAY, PAZ, JLO, WLO 
COMMON/SPMTS/EY, AR, GR, GQ, GQR, GJ, QS, RS 
COMMON/JOINT/XL, YL, ZL, WJ 
COMMON/MISC/A, BM, CM, DM, EM 
COMMON/INTS/NM, JS, JDF, NT, MAP, WADDR, ADDR, ORD, NST 
COMMON/SPMEM/ITN, JA, JB, JC, QC, RC, PCA, PCB 
COMMON/NITS/NJS, NPMS, NPMTS, NILS, NJOLD, NPREV, NMS, 

1 NEISTOR, NSTOR, ISTOW, NSTOW, IM, JOB, NPRMS, DET 
2 NBMS, NBMTS, MODE, JCN, JCDF, CRD, FLAM, NLJS, TOL 
3 NMTS, NINTS 

c 
C MODE 0= SINGLE ANALYSIS - SEVERAL LOAD VECTORS 
C MODE 1= STABILITY ANALYSIS AT SINGLE LOAD LEVEL 
C MODE 2= REPEATED CYCLES TO CRITICAL LOAD 
C 
C ADD 10 TO MODE FOR INCREMENTAL LOADING USING INPUT 
C LOAD AS FIRST STEP 
C 

IOBUFFER=16384 
DO 9123 IJK=1,23 
PRINT* 

9123 CONTINUE 
WRITE $p) 
WRITE (*. *'("PROGRAMME SPACE")') 
PRINT* 
PRINT* 
PRINT* 

.C 
C 
777 PRINT* 

PRINT* 
WRITE (*.. '("NAME OF RESULTS FILE 
READ (*, '(W) RESFIL 
OPEN (UNIT=8pFILE=RESFILpSTATUS='UNKNOWN'pERR=777) 
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888 PRINT* 
PRINT* 
WRITE (*, #'("NAME OF DATA FILE 
READ (*p'(A)') DATFIL 
OPEN (UNIT=9pFILE=DATFIL, STATUS='OLD'pERR=888) 
OýEN (UNIT=lOpSTATUS=ISCRATCHI, FORM=IUNFORMATTEDI) 
OoPEN (UNIT=11, STATUS=ISCRATCHI, FORM=IUNFORMATTEDI) 

NPRINT=O 
100 FORMAT(lHl//47X, 34HSTABILITY ANALYSIS OF 

+ SPACE FRAMES/47Xp34(lH*) 
+//////43Xp23(2H* )/43XplH*p43XplH*/ 
+43Xp45H* PROGRAM TO ANALYSE THE TORSIONAL/FLEXURAL 
+/43X, 45H* BEHAVIOUR OF SPACE FRAMES CONTAINING: 
+/43X, lH*p43X, lH*/ 
+43XP45H* Ell BARSOUM TYPE MEMBERS WITH SEVEN 
+/43X, 45H* DEGREES OF FREEDOM. 
+/43X.. l H*., 43X,, l H*/ 
+43X, 45H* [21 MEMBERS WITH OFFSET SHEAR CENTRES 
+/43X, 45H* AND NEUTRAL AXES. 
+/43X, lH*.. 43X, lH*/43Xp23(2H* 

WRITE(8plOO) 
101 FORMAT(I5,18A4) 
900 READ(9pl0l)JOB,, (A(I), I=1,18) 

IF(JOB. LE. -l)GO TO 999 
102 FORMAT(l3HlJOB NUMBER , 16/lX, 10(lH*)) 
103 FORMAT(lX.. 12HJOB NUMBER p16/11(lH*)) 

IF(NPRINT)3,3.4 
3 WRITE(8,103)JOB 

GOTO 9 
4 WRITE(8,102) JOB 
9 CONTINUE 

IIPRINT=NPRINT+l 
112 FORMAT(//lH 18A4/1) 

WRITE(8,112)(A(I), I=1,18) 
770 FORMATU/13H SPACE FRAMES/lX, 12(lH*)) 

WRITE(8,770) 
NMS=O 
NPRMS=O 
NPREV=O 
NJOLD=O 
NSTOR=O 
NSTOW=O 
FLAM=1.0 

C ICOUNT COUNTS NUMBER OF DIFFERENT LOAD LEVELS 
C NI COUNTS CYCLES AT A GIVEN LOAD 
C NIT COUNTS TOTAL NUMBER OF CYCLES 
C NEG COUNTS NUMBER OF NEGATIVE DETERMINANT CONDITIONS 
c ENCOUNTERED 
C ICREV COUNTS NUMBER OF REVERSALS OF SIGN OF CRITICAL 
C DEFLECTION 

ICOUNT=O 
NI=Q 
NIT=O 
NEG=O 
ICREV=O 
DET1=1.0 
CRDO=0.0 
WNEG=1000000000.0 
NCY=20 
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REWIND 10 
REWIND 11 
IM=50 

301 CALL MAPPUSTEP) 
C 

IF(NBMS. EQ. O)GO TO 7 
J=14*NBMS 
DO 2 I=1, J 
CFM(I)=O. O 

2 FM(I)=O. O 
7 I=O 

IF(NMS. GT. D)CALL SPACEM 
IF(NBMS. GT. O)CALL BARS(I, NIT) 

B 210.0 
CALL SOLVE(B) 
IF(NlT. EQ. O. OR. DET1. EQ. 1.0)DET1=DET 
IF(DET. LT. O. O)GO TO 991 
IF(NINTS. GT. O)GO TO 301 

C 
I=10 
IF(NMS. GT. O)CALL SPACE(I) 
IF(NBMS. GT. O)CALL BARS(I, NIT) 

RECOVER BLOCK DATA FROM TAPE 
IF(NPREV. LT. 1)GO TO 200 
DO 250 I=1,7 

250 BACKSPACE 10 
READ(10)NMS, NJS, NMTS, NJOLD, NPREV, NINTS, NE, ISTOR, ISTOW, 

1 NSTOR, NSTOW 
CALL STORE(7,1, ISTOR-NSTOR, A, l) 
READ(10)(ITN(I), JA(l), JB(I), JC(I), QC(I), RC(I), PCA(I), 

1 PCB(I), I=1, NMS) 
READ(10)(JS(I), JDF(I), ORD(I), ADDR(I), WADDR(I), NST(I), 

1 XL(I), YL(I), ZL(I), I=1, NJS) 
iýEAD(10)(EY(I), AR(I), GR(I), GQ(I), GQR(I), GJ(I), QS(I), 

1 RS(I), I=1, NMTS) 
J=NJS-NINTS 
READ(10)((MAP(I, K), K=I, IM), I=1, J) 
J=ISTOW-NSTOW 
Do 260 I=1, NSTOW 

260 CM(I)=WJ(I) 
Do 255 I=1, NSTOW 

255 WJ(WADDR(1+NJS-NINTS)+I-1)=CM(I) 
READ(10)(WJ(I), I=1, J) 
Do 253 1=1,7 

253 BACKSPACE 10 
tF(JOB. LT. 30000)GO To 257 
CALL STORE(9,1, ISTOR, A, l) 
IF(ISTOW. LE. 100)WRITE(8,256)(WJ(I), I=1, ISTOW) 

256 FORMATU/100H lOE12.4/)) 
257 B=0.0 

CALL SOLVE(B) 
GO TO 5 

C 
C SEQUENCE FOR SECOND ORDER ITERATIONS 
C FM(I) HOLDS MEMBER FORCES AT LAST CONVERGENCE. 
C LOAD FACTOR = WAL 
C FM(I) ARE FACTORED TO PREDICTION SO DIRECTLY COMPARABLE 
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C WITH CFM(D 
C CURRENT VALUES OF FORCES ARE IN CFM(D 

200 IF(MODE. EQ. O)GO TO 900 
NI=NI+l 
NIT=NIT+l 
Z=DET/DET1 
WRITE(8,107)NI, CRD, DET, Z 
IF(CRD. EQ. O. O. AND. CRDO. EQ. O. O. AND. NI. GE. 2)GO TO 902 

107 FORMAT(/20H CRITICAL DEFLECTION, I3, El5.6,15H DET 
1 ERMINANT, E15.6, FlO. 5) 

IF(CRD. EQ. O. O)GO TO 315 
IF(ABS((CRD-CRDO)/CRD). LT. TOL)GO TO 313 

315 IF(CRD*CRDO. LT. O. O)ICREV=ICREV+l 
IF(ICREV. GE. 3)GO TO 973 
IF(NI. GE. NCY. AND. MODE. EQ. 2)GO TO 973 
IF(NI. GE. NCY)GO TO 900 
CRDO=CRD 
IF(MODE. NE. 3)GO TO 15 
J=14*NBMS 
Do 383 I=1, J 

383 CFM(I)=FM(I) 
GO TO 15 

ARRIVES AT LABEL 313 IF CONVERGED AT GIVEN LOAD FACTOR 
313 ICOUNT=ICOUNT+l 

IF(MODE. EQ. 1)GO TO 900 
WRITE(8,108) 

108 FORMATU/26H CALCULATION HAS CONVERGED) 
Z=FLAM/CRD 
WNEW=5.0*FLAM/3.0 
IF(ICOUNT. EQ. 1)GO TO 319 
IF(NIT. EQ. O)GO TO 319 
ZO=WWO/CO 
Y=ZO-Z 
IF(Y. EQ. O. O)GO TO 993 
WNEW=FLAM+(FLAM-WWO)*Z/Y 
WRITE(8,109)WNEW 

109 FORMATUMH PREDICTION, E15.6) 
IF(ABS((WNEW-PRED)/PRED). LT. TOL. AND. ISTEP. EQ. 0) 

1 GO TO 900 
IF(WNEW. LT. WNEG)GO TO 319 
WRITE(8,147)WNEG 

147 FORMAT(/32H PREDICTION TOO HIGH - REDUCE TO, El5.6) 
WNEW=WNEG 

319 IF(ICOUNT. GT. NCY)GO TO 900 
WWO=FLAM - 
FLAM=0.75*WNEW+0.25*Wwo 

IF(ISTEP. EQ. O)GO TO 411 
X=WWO+1.0 
IF(X. GT. FLAM. AND. ICOUNT. GE. 2)GO TO 411 
IF(ISTEP. GT. 20)GO TO 411 
ISTEP=ISTEP+l 
FLAM=X 
GO TO 412 

411 ISTEP=O 
412 CONTINUE 

C 
FACTOR=FLAM/WWO 
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PRED=WNEW, 
C 0-2 C RD 
CRDO=CRD*FACTOR 
NI=O 
ICREV=O 
WAL=FLAM 
J=14*NBMS 
DO 371 I=1, J 
CFM(I)=CFM(I)*FACTOR 

371 FM(I)=CFM(I) 
WRITE(8,110)FLAM, FACTOR, FM(l), FM(2), FM(3), FM(4) 

110 FORMAT(/16H NEW LOAD FACTOR, E12.5,9H FACTOR, 
1 E12.5,10X, 4El3.5) 

C *** 
C TAPE RECOVERY REQUIRED (REWIND) 
C *** 
C PREPARE FOR RECYCLING 

15 DO 10 I=1, ISTOW 
10 WJ(I)=O. O 

CALL STORE(4,1, ISTOR, A, l) 
IF(NLJS. EQ. O)GO TO 7 
DO 11 I=1, NLJS 
KA=JLO(2*I-11) 
K=WADDR(KA)+JLO(2*I)-l 
DO 11 J=1, NILS 
IW=K+(J-1)*JS(KA) 

11 WJ(IW)=WJ(IW)+WLO(I)*FLAM 
IF(JOB. LT. 20000)GO TO 7 
WRITE(8,385) 
J=14*NBMS 
WRITE(8,386)(CFM(I), I=1, J) 

385 FORMAV/13H FORCE MATRIX/lH 
386 FORMATUE13.5) 
390 FORMATM ) 

WRITE(8,390) 
GO TO 7 

c 
C ARRIVES IF NEGATIVE DETERMINANT HAS BEEN FOUND 

991 WRITE(8,992) 
992 FORMATU/30H HALTED - NEGATIVE DETERMINANT) 

IF(MODE. EQ. O)GO TO 900 
C *** 
C TAPE RECOVERY REQUIRED (REWIND) 
C *** 

973 ICREV=O 
IF(NIT. GT. 15U)WRITE(8,974) 

974 FORMATU/16H TOO MANY CYCLES) 
IF(NIT. GT. 150)GO TO 900 
NEG=NEG+l 
IF(NEG. GT. NCY)GO TO 900 
IF(FLAM. LT. WNEG)WNEG=FLAM 
IF(ICOUNT. EQ. O)GO TO 8 
FLAM=FLAM-0.24*(WNEW-WWO) 
FACTOR=FLAM/WAL 
GO TO 387 

8 FLAM=0.5*FLAM 
FACTOR=0.5 

387 NI=O 
J=14*NBMS 
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DO 388 I=l, j 

383 CFM(I)=FM(I)*FACTOR 
WRITE(8,110)FLAM, FACTOR, CFM(l), CFM(2), CFM(3) CFM(4) 
GO TO 15 

993 WRITE(8,111) 
111 FORMATM/14H NO PREDICTION) 

GO TO 900 
902 WRITE(8,903) 
903 FORMATU/34H REPEATED ZERO CRITICAL DEFLECTION) 

C 

GO TO 
999 CLOSE 

CLOSE 
CLOSE 
CLOSE 
STOP 
END 

900 
(8) 
(9) 
(10) 
0 1) 
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APPENDIX A. 4.2 
---------------- 

SUBROUTINE MAPP 
-------------------- 

C 
C 
C 
c 
C 

SUBROUTINE MAPP(ISTEP) 
DOUBLE PRECISION A, BM, CM, DM, EM, WJ 
INTEGER*4 JDF 
DIMENSION XL(1000), YL(1000), ZL(1000), NM(1000), 

1 JS(1000), JDF(3000) 
DIMENSION ITN(5000), JA(5000), JB(5000), JC(5000), 

1 QC(5000), RC(5000) 
DIMENSION EY(50), GR(50), AR(50), GQ(50), GQR(50), GJ(50), 

1 QS(50), RS(50), BW(50) 
, DIMENSION NT(400), MAP(1000,500), WJ(6000), A(8000), 

1 BM(8000), CM(80000) 
DIMENSION DM(8000), EM(8000), PCA(5000), PCB(5000) 
INTEGER ADDR(1000), WADDR(1000), ORD(1000), NST(1000), 

1 P, Q, S, T 
DIMENSION GG(50,5), FFW(50,8), PAY(50), PAZ(50), 

,, 
l WLO(1000), JLO(2000) 

COMMON/BARMS/GG, QZZ, PAY, PAZ, JLO, WLO 
COMMON/JOINT/XL, YL, ZL, WJ 
COMMON/NITS/NJS, NPMS, NPMTS, NILS, NJOLD, NPREV, NMSj 

1 NE, ISTOR, NSTOR, ISTOW, NSTOW, IM, JOB, NPRMS, DET 
2 NBMS, NBMTS, MODE, JCN, JCDF, CRD, FLAM, NLJS, TOL 
3 NMTS, NINTS 

COMMON/INTS/NM, JS, JDF, NT, MAP, WADDR, ADDR, ORD, NST 
COMMON/MISC/A, BM, CM, DM, EM 
COMMON/SPMEM/ITN, JA, JB, JC, QC, RC, PCA, PCB 
COMMON/SPMTS/EY, AR, GROGQ, GQR, GJ, QS, RS, BW 
IW=NSTOW+l 
DO 7 I=IW, 600 

7 WJ(I)=O. O 
NE=O 

C READ ROUTINE FOR SPACE FRAMES 
NPRMS=NPRMS+NMS 
IF(NPREV. GT. O)READ(9,160)NJS, NMS, NBMS 
IF(NPREV. EQ. O)READ(9,160)NJS, NMS, NMTS, NBMS, NBMTS, 

1 JCN, JCDF, TOL, MODE 
160 FORMAT(8I5, FlO. O) 

WRITE(8,193)NJS, NMS.. NMTS, NBMS, NBMTS 
193 FORMAT(/I5,, 7H JOINTS, I12,14H SPACi MEMBERS, 14,6H'TY 

1 PES, I2,16H BARSOUM MEMBERS, 14,6H TYPES/) 
IF(NPREV. GT. O)GO-TO-3 
IF(JCN. EQ. O)JCDF=l 
IF(JCN. EQ. O)JCN=l 
IF(TOL. EQ. O. O)TOL=0.005 

172 FORMATUH MODEI2/) 
WRITE(8,172)MODE 

173 FORMAT(15H CRITICAL JOINT, I5,5X, 26HCRITICAL DEGREE 0 
1F FREEDOM, I5/) 

IF(MODE. NE. O)WRITE(8,173)JCN, JCDF 
174 FORMATOOH TOLERANCE, F12.6//) 
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ISTEP=O 
IF(MODE. LE. 9)GO TO 270 
MODE=MODE-10 
ISTEP=l 

270 CONTINUE 

WRITE(8,174)TOL 
175 FORMAT(19H JOINT CO-ORDINATES/lX, 18(lH*)//) 

WRITE(8,175) 
3 NJS=NJS+NPREV 

161 FORMAT (Il 19,3Fl 0.0) 
162 FORMATOF10.0) 

IW=NPREV+l 
Do 401 I=IW, NJS 
NST(I)=O 
Nm(I)=0 
READ(9,161)JS(I), JDF(I), XL(I), YL(I),, ZL(I) 

195 FORMAT(6H JOINT, 214,3X, I8,3El8.6) 
WRITE(8,195)I, JS(I), JDF(I), XL(I), YL(I), ZL(I) 
DO 401 J=1, IM 

401 MAP(I, J)=O 
163 FORMAT(4I5,4F10.0) 

IF(NPREV. GT. O)GO TO 304 
IW=NMTS+NBMTS 
WRITE(8,500) 

500 FORMATU/19H MEM BER INFORMATION/lX, 18(lH*)/) 
DO 402 I=1, IW 
READ(9,162)EY(I), AR(I), GR(I), GQ(I), GQR(I), GJ(I), 

1 QS(I), RS(I) 
196 FORMAT(/5H TYPE, 12,8E14.6) 

WRITE(8,196)I, EY(I), AR(I), GR(I), GQ(I), GQR(I), GJ(I), 
1 QS(I), RS(I) 

IF(I. GT. NBMTS)GO To 402 
READ(9,662)(GG(I, J), J=1,5), PAY(I), PAZ(I), BW(I) 
WRITE(8,665)(GG(I, J), J=1,5), PAY(I), PAZ(I), BW(I) 
READ(9,662)(FFW(I, J), J=1,8) 
WRITE(8,661)(FFW(I, J), I=1,8) 

NOTE THAT GG(I, l) IS POLAR M OF I ABOUT SHEAR CENTRE 
665 FORMAT(13H BARSOUM TYPE, 4x, 8El2.5) 
661 FORMAT(17H BIMOMENT FACTORS, 4X, 8El2.5) 
662 FORMAT(8FlO. O) 
402 CONTINUE 
304 T=NMS+NBMS 

WRITE(8,176) 
176 FORMAT(//lH 

DO 404 I=1, T 
READ(9,163)ITN(I), JA(I), JB(I), JC(I), QC(I), RC(I), 

1 PCA(I), PCB(I) 
197 FORMATUH MEMBER, 14, Il2,3I5,12X, 4El5.6) 

WRITE(8,197)I, ITN(I), JA(I), JB(I), JC(I), QC(I), RC(I).. 
1 PCA(I), PCB(I) 

J=ABS(JA(I))-NJOLD+NPREV 
K=ABS(JB(I))-NJOLD+NPREV 
IF(JS(K). EQ. O)GO TO 403 
IW=NST(J) 
DO 43 L=1, IW 
IF(MAP(J, L). EQ. K)GO To 403 

43 CONTINUE 
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NST(J)=NST(J)+l' 
NMW ) =NM(J ) +J S(K) 
MAP(J, NST(J))=K 

403 IF(JS(J). EQ. O)GO To 404 
IW=NST(K) 
Do 44 L=1, IW 
IF(MAP(K, L). EQ. J)GO To 404 

44 CONTINUE 
NST(K) =NST(K) +1 
NM(K)=NM(K)+JS(J) 
MAP(K, NST(K))=J 

404 CONTINUE 
READ(9,160)NLJS, NILS, NINTS 

C PRELIMINARY STORE MAP COMPLETE END OF SPACE FRAME DATA 
C START FINAL STORE MAP OR CONSIDER NEXT REDUCTION 

WRITE(8,129) 
129 FORMAT(///lX, 15HSTORAGE DETAILS/lX, 15(lH*)//) 
200 J=1000 

IW=NJS-NINTS 
DO 13 I=1, IW 
IF(JS(D. EQ. 0)GOTO13 
IF(NM(I). GE. J)GOT013 
IF(NM(I). LT. 0)GOTO13 
J=NM(D 
K=I 

13 CONTINUE 
IF(J. EQ. O)GO TO 57 
IF(J. LT. 999)GO TO 19 
WRITE(8,113) 

113 FORMAT(/26H ELIMINATION PLAN COMPLEM) 
GO TO 21 

57 WRITE(8,123)K, J, S 
123 FORMAT(11H LAST JOINT, 3I6) 

NE=NE+l 
ORD(NE)=K 
GO TO 21 

19 S=NST(K)+l 
111 FORMAT(16H ELIMINATE JOINT, I4,14H MEMBERS 14 

1 9H STORING 14) 
WRITE(8,111)K, J, S 
NE=NE+l 
ORD(NE)=K 
NM(K)=-NM(K) 
J=NST(K) 
DO 14 I=1, J 
N=MAP(K, I) 
IF(N. LT. O)GOT014, 
IW=NST(N) 
DO 18 Q=1, IW 
IF(MAP(N, Q). NE. K)GOT018 
MAP(N, Q)=-MAP(N, Q) 
NM(N)=NM(N)-JS(K) 

18 CONTINUE 
DO 85 L=1, J 
IF(MAP(K, L). LT. 0)GOTO85 
IF(I. EQ. L)GOTO85 
S=O 
IW=NST(N) 
DO 16 P=1, IW 
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IF(MAP(N, P). NE. MAP(K, L))GOT016 
S=2 

16 CONTINUE 
IF(S. GT. 1)GOT085 
NM(N)=NM(N)+JS(MAP(K, L)) 
NST(N)=NST(N)+l 
MAP(N, NST(N))=MAP(K, L) 
IF(NST(N). LT. IM-3)GO TO 85 
NM(N)=l 

120 FORMAT(28H FORCED ELIMINATION REQUIRED, 2I6) 
WRITE(8,120)N, NST(N) 

85 CONTINUE 
14 CONTINUE 
CONSIDER NEXT REDUCTION 

GO To 200 
STORE MAP LAID OUT COMPILE ADDRESSES 

21 S=l 
P=j 
Do 20 I=1, NJS 
WADDR(I)=P 
ADDR(I)=S 
P=P+JS(I)*NILS 

114 FORMAT06,9HADDRESS 16,2110) 
WRITE(8,114)I, NST(I), ADDR(I), WADDR(I) 
IF(NST(I). LT. 1)GO TO 20 
IW=NST(I) 
DO 22 J=1, IW 
IF(IABS(MAP(I, J)). LT. I)GO TO 22 
S=S+JS(I)*JS(IABS(MAP(I, J))) 

22 CONTINUE 
20 S=S+JS(I)*JS(I) 

S=S-l 
P=P-l 

115 FORMATOOH STORAGE 2110) 
WRITE(8,115)S, P 

FINAL STORE MAP COMPLETE 
ISTOW=P 
ISTOR=S 
DO 50 I=1, NJS 

116 FORMATM JS, 15,6H MAP 2014) 
50 WRITE(8,116)NM(I), (MAP(I, J), J=1,20) 

IF(NLJS. EQ. O)GO TO 53 
READ IN LOAD VECTORS 

916 FORMAT(///16H LOADING DETAILS/lX, 15(IH*)) 
WRITE(8,916) 

127 FORMAT(//5H NLJS, 15,7H NILS, 15,8H NINTS, I5//) 
WRITE(8,127)NLJS, NILS, NINTS 
DO 24 I=1, NLJS 

105 FORMAT(2I5,7FlO. 5) 
READ(9,105)K, L, (BM(J), J=1, NILS) 
WRITE(8,194)K, L, (BM(J), J=1, NILS) 

194 FORMAT(6H JOINT, I4, I2,7E15.6) 
K=K-NJOLD+NPREV 
WLO( I) =BM(1 ) 
JLO(2*I-1)=K 
JLO(2*I)=L 
DO 24 J=1, NILS 
M=WADDR(K)+L-1+(J-1)*JS(K) 
WJ(M)=BM(J)+WJ(M) 



24 CONTINUE 
WRITE(8,128) 

128 FORMAT(lH ///lH 
53 CALL STORE(4, NSTOR+1, ISTOR-NSTOR, A, l) 

C ADJUST INTERFACE TERMS TO CONFORM TO NEW ADDRESSES 
IF(NPREV. LT. 1)GO TO 256 
DO 255 I=1, NPREV 
J=NPREV+1-I 
K=NT(J+1)-NT(J) 
CALL STORE(3, NT(J), K, A, 1). 
CALL STORE(4, NT(J), K, A, l) 

255 CALL STORE(2, ADDR(J), K, A, l) 
256 RETURN 

END 

170. 
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l-'APPENDIX A. 4.3 
----------------- 

SUBROUTINE BARS 
------------------ 

c 
c 
c 

SUBROUTINE BARS(IC, NI) 
DOUBLE PRECISION A, BM, CM, DM, EM, FM, WJ, CFM 
DOUBLE PRECISION XLG, X, Y, Z, AA, AB, B1, B2, SO, FSS, XX, XXX, 

1 BB, CC, DD, CL1, CM1, CN1, CL2, CM2, CN2, CL3, CM3, CN3 
INTEGER*4 JDF 
DIMENSION XL(1000), YL(1000), ZL(1000), NM(1000), JS(1000) 

1 ITN(5000), JA(5000), JB(5000), JC(5000), QC(5000) 
2 EY(50), GR(50), AR(50), GQ(50), GQR(50), GJ(50), QS(50) 
3 NT(400), MAP(1000,500), WJ(6000), A(8000), BM(8000) 
4 DM(8000), EM(8000), PCA(5000), PCB(5000), JDF(3000), 
5 -GG(50,5), BW(50), PAY(50), PAZ(50), JLO(2000), WLO(1000) 
6 RC(5000), RS(50), CM(80000), FFW((50,8) 

INTEGER ADDR(1000), WADDR(1000), ORD(1000), NST(1000)p 
1 P, Q, R, T 

REAL MX, MY, MZ, MY1, MY2, MZ1, MZ2, MW, MW1, MW2 
COMMON/FORCS/FM(35000), CFM(35000) 
COMMON/JOINT/XL, YL, ZL, WJ 
COMMON/NITS/NJS, NPMS, NPMTS, NILS, NJOLD, NPREV, NMS, NMTS, 

1 
-NE, 

ISTOR, NSTOR, ISTOW, NSTOW, IM, JOB, NPRMS, DET, NINTS 
2 NBMS, NBMTS, MODE, JCN, JCDF, CRD, FLAM, NLJS, TOL 

COMMON/INTS/NM, JS, JDF, NT, MAP, WADDR, ADDR, ORD, NST 
COMMON/BARMS/GG, FFW, PAY, PAZ, JLO, WLO 
COMMON/MISC/A, BM, CM, DM, EM 
COMMON/SPMEM/ITN, JA, JB, JC, QC, RC, PCA, PCB 
COMMON/SPMTS/EY, AR, GR, GQ, GQR, GJ, QS, RS, BW 
IF(IC. GT. 5. AND. JOB. GT. 999)WRITE(8,150) 

150 FORMAT(//14H MEMBER FORCES/lX, 13(lH*)) 
DO 459 II=1, NBMS 
I=II 

EVALUATE LENGTH AND DIRECTION COSINES - MEMBER I 
P=ABS(JA(I))-NJOLD+NPREV 
Q'4ABS(JB(I))-NJOLD+NPREV 
R=ABS(JC(I))-NJOLD+NPREV 
XLG=SQRT((XL(Q)-XL(P))**2+(YL(Q)-YL(P))**2+(ZL(Q)- 

1 ZL(P))**2) 
CL1=(XL(Q)-XL(P))/XLG 
CM1=(YL(Q)-YL(P))/XLG 
CN1=(ZL(Q)-ZL(P))/XLG 
AA=(CL1*(XL(R)-XL(P))+CM1*(YL(R)-YL(P))+CN1*(ZL(R)- 

1 ZL(P)))/XLG 
X=XL(P)+AA*(XL(Q)-XL(P)) 
Y=YL(P)+AA*(YL(Q)-YL(P)) 
Z=ZL(P)+AA*(ZL(Q)-ZL(P)) 
AB=SQRT((XL(R)-X)**2+(YL(R)-Y)**2+(ZL(R)-Z)**2) 
CL2= (XL(R)-X) /AB 
CM2=(YL(R)-Y)/AB 
CN2=(ZL(R)-Z)/AB 
CL3=CM1*CN2-CM2*CN1 
CM3=CN1*CL2-CN2*CL1 
CN3=CL1*CM2-CL2*CM1 
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164 FORMAT(/3E15.6,26H DIRECTION COSINES MEMBER, 15, 

1 9H LENGTH, E15.6) 
165 FORMAT(3E15.6) 

IF(IC. GT. 5. OR. NI. GT. O)GO TO 449 
WRITE(8,164)CL1, CM1, CN1, I, XLG 
WRITE(8,165)CL2, CM2, CN2 
WRITE(8,165)CL3, CM3, CN3 
IF(I. EQ. NBMS)WRITE(8,166) 

166 FORMATOH /1H ) 

C BUILD TRANSFORMATION MATRIX IN DM(14*14) 
c 

449 DO 450 J=1,196 
450 DM(J)=O. O 

CR=RC(I) 
CQ=QC(I) 
PA=PCA(I) 
PB=PCB(I) 
DM(1)=CL1 

-DM(2)=CM1 
DM(3)=CN1 
DM(15)=CL2 
DM(16)=CM2 
DM(17)=CN2 
DM(29)=CL3 
DM(30)=CM3 
DM(31)=CN3 
DO 447 J=1,3 
Do 447 K=1,3 
L=J+3+14*(K+2) 
M=J+14* (K-1 
DM(L)=DM(M) 

447 CONTINUE 
DM(74)=-CL3 
DM(75)=-CM3 
DM(76)=-CN3 
DM(4)=-CR*CL2-CQ*CL3 
DM(5)=-CR*CM2-CQ*CM3 
DM(6)=-CR*CN2-CQ*CN3 
DM(18)=-CR*CL1+PA*CL3 
DM(19)=-CR*CM1+PA*CM3 
DM(20)=-CR*CN1+PA*CN3 
DM(32)=CQ*CL1+PA*CL2 
DM(33)=CQ*CM1+PA*CM2 
DM(34)=CQ*CN1+PA*CN2 
DM(106)=CL1 
DM(107)=cmi 
DM(108)=CN1 
DM(120)=CL2 
DM(121)=CM2 
DM(122)=CN2 
DM(134)=CL3 
DM(135)=CM3 
DM(136)=CN3 
DM(151)=CL1 
DM(152)=CM1 
DM(153)=CN1 
DM(165)=CL2 
DM(166)=CM2 
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DM(167)=CN2 
DM(179)=-CL3 
DM(180)=-CM3 
DM(181)=-CN3 
DM(109)=-CR*CL2-CQ*CL3 
DM(110)=-CR*CM2-CQ*CM3 
DM(111)=-CR*CN2-CQ*CN3 
DM(123)=-CR*CL1+PB*CL3 
DM(124)=-CR*CM1+PB*CM3 
DM(125)=-CR*CN1+PB*CN3 
DM(137)=CQ*CL1+PB*CL2 
DM(138)=CQ*CM1+PB*CM2 
DM(139)=CQ*CN1+PB*CN2 
DM(91)=1.0 
DM(196)=1.0 
IF(IC. LE. 5. AND. NI. LE. O. AND. II. LE. 1)WRITE(8,399)(DM(J) 

1 J=1,196) 
399 FORMAT(/22H TRANSFORMATION MATRIX/14(/lH 14F8.4)) 

BUILD STIFFNESS MATRIX IN MEMBER COORDINATES IN A(14X14) 

I=ITN(II) 
DO 451 J=1,196 

451 A(J)=O. O 
E=EY(I) 
AA=AR(I) 
GZ=GR(I) 
GY=GQ(I) 
GK=GJ(I) 
ECW=E*GQR(I) 
GO=GG(I, l) 
Gl=GG(I, 2) 
G2=GG(I, 3) 
G3=GG(I, 4) 
G4=GG(I, 5) 
J=14*(II-1) 
FX=-CFM(J+l) 
QY1=-CFM(J+2) 
QZ1 =-CFM(J+3) 
MX=-CFM(J+4) 
Myl=-CFM(J+5) 
MZ1=-ýCFM(J+6) 
MW1=-CFM(J+7) 
QY2=-CFM(J+9) 
QZ2=-CFM(J+10) 
MY2=-CFM(J+12) 
MZ2=-CFM(J+13) 
MW2=-CFM(J+14) 
PY=-PAY(I)*FLAM 
PZ=-PAZ(I)*FLAM 
ZO=RS(I) 
Yo=QS(I) 
Bl=(Gl+G2)/GY-2.0*ZO 
B2=(G3+G4)/GZ-2.0*Yo 
SO=GO/AA+YO*Bl+ZO*B2 
FSS=FX*SO 
XX=XLG*XLG 
XXX=XX*XLG 
A(1)=E*AA/XLG 
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AA=1.2*FX/XLG 
BB=-FX/10.0 
CC=FX*XLG/7.5 
DD=-FX*XLG/30.0 
MY=MYl-MY2 
MZ=MZ1-MZ2 
MW=MW1-MW2 
A(8)=-A(l) 
A(16)=12.0*E*GZ/XXX+AA 
A(18)=0.6*MY/XLG+0.05*QZ1+0.55*QZ2 
A(20)=-6.0*E*GZ/XX+BB 
A(21)=-0.05*MY-0.05*QZ2*XLG 
A(23)=-A(16) 
A(25)=-0.6*MY/XLG-0.55*Qzl-0.05*QZ2 
A(27)=A(20) 
A(28)=-0.05*MY-0.05*QZ1*XLG 
A(31)=12.0*E*GY/XXX+AA 
A(32)=-0.6*MZ/XLG-0.05*QY1-0.55*QY2 
A(33)=-6.0*E*GY/XX+BB 
A(35)=0.05*MZ+0.05*QY2*XLG 
A(38)=-A(31) 
A(39)=0.6*mz/XLG+0.55*QY1+0.05*QY2 
A(40)=A(33) 
A(42)=0.05*mz+0.05*QY1*XLG 
A(46)=1.2*GK/XLG+12.0*ECW/XXX+1.2*FSS/XLG+0.3*(2.0*MY/ 

1 XLG+QZ1+QZ2)*Bl+0.3*(2.0*MZ/XLG+QY1+QY2)*B2+(FFW1*MW 
2 /XLG+FFW5*MX)*BW 

A(47)=0.55*MZ+0.1*QY1*XLG+0.45*QY2*XLG 
A(48)=-0.55*MY-0.1*QZ1*XLG-0.45*QZ2*XLG 
A(49)=-GK/10.0-6.0*ECW/XX-FSS/10.0-0.05*(MY+QZ1*XLG) 

1 *Bl-0.05*(MZ+QY1*XLG)*B2-(FFW3*MW+FFW7*MX*XLG)*BW 
A(51)=-0.6*MY/XLG-0.05*QZ1-0.55*QZ2 
A(52)=0.6*MZ/XLG+0.05*QY1+0.55*QY2 
A(53)=-A(46) 
A(54)=0.05*MZ-0.05*QY1*XLG+0.1*QY2*XLG 
A(55)=-0.05*MY+0.05*QZ1*XLG-0.1*QZ2*XLG 
A(56)=-GK/10.0-6.0*ECW/XX-FSS/10.0-0.05*(MY+QZ2*XLG)* 

1 Bl-0.05*(MZ+QY1*XLG)*B2-(FFW3*MW+FFW7*MX*XLG)*BW 
A(61)=4.0*E*GY/XLG+CC 
A(63)=-MZ*XLG/15.0-QY1*XX/60.0-0.05*QY2*XX 
A(66)=-A(33) 
A(67)=-0.05*MZ-0.1*QY1*XLG+0.05*QY2*XLG 
A(68)=2.0*E*GY/XLG+DD 
A(70)=MZ*XLG/60.0+QY2*XX/60.0 
A(76)=4.0*E*GZ/XLG+CC 
A(77)=MY*XLG/15.0+QZI*XX/60.0+0.05*QZ2*XX 
A(79)=-A(20) 
A(81)., --0.05*MY+0.1*QZ1*XLG-0.05*QZ2*XLG 
A(83)=2.0*E*GZ/XLG+DD 
A(84)=-MY*XLG/60.0-QZ2*XX/60.0 
A(91)=GK*XLG/7.5+4.0*ECW/XLG+FSS*XLG/7.5+(MY*XLG/15.0 

1 +QZ1*XX/60.0+QZ2*XX/20.0)*Bl+(MZ*XLG/15.0+QY1*XX/60.0 
2 +QY2*XX/20.0)*B2+(FFW2*MW*XLG+FFW6*MX*XX)*BW 

A(93)=0.05*MY+0.05*QZ2*XLG 
A(94)=-0.05*MZ-0.05*QY2*XLG 
A(95)=-A(56) 
A(96)=MZ*XLG/60.0+QY1*XX/60.0 
A(97)=-MY*XLG/60.0-QZ1*XX/60.0 
A(98)=-GK*XLG/30.0+2.0*ECW/XLG-FSS*XLG/30.0-(MY*XLG/60.0 
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1 +(QZ1+QZ2)*XX/120.0)*Bl-(MZ*XLG/60.0+(QY1+QY2)*XX/120.0 
2 )*B2-(FFW4*MW*XLG+FFW8*MX*XX)*BW 

A(106)=A(l) 
A(121)=A(16) 
A(123)=0.6*MY/XLG+0.55*Qzl+0.05*QZ2 
A (125) =-A (20) 
A(126)=0.05*MY+0.05*QZ1*XLG 
A (136) =A (31 
A(137)=-0.6*MZ/XLG-0.55*QY1-0.05*QY2 
A(138)=-A(33) 
A(140)=-0.05*MZ-0.05*QY1*XLG 
A(151)=A(46)+(PY+PZ) 
A(152)=-0.55*MZ-0.45*QY1*XLG-0.1*QY2*XLG 
A(153)=0.55*MY+0.45*QZ1*XLG+0.1*QZ2*XLG 
A (15 4) =-A (49) 
A(166)=A(61) 
A(168)=-MZ*XLG/15.0-0.05*QY1*XX-QY2*XX/60.0 
A(181)=A(76) 
A(182)=MY*XLG/15.0+0.05*QZI*XX+QZ2*XX/60.0 
A(196)=A(91)+(QZ1-QZ2)*XX*Bl/30.0+(QY1-QY2)*XX*B2/30.0 
Do 452 J=1,14 
Do 452 K=1,14- 
IF(J. GE. K)GO TO 452 
A(J+14*(K-1))=A(K+14*(J-1)) 

452 CONTINUE 
IF(IC. GT. 5)GO TO 480 

FORM T. K. T(TRANS) 

CALL XMULT(14,14,14, DM, A, BM) 
CALL XTRAN(14,14, DM, A) 
CALL XMULT(14,14,14, BM, A, EM) 

C TRANSFORMED STIFFNESS MATRIX IS NOW IN EM. SPLIT INTO 
C INTO 7X7 BLOCKS AND ADD INTO STORE 
C 

IF(JS(P). EQ. O)GO TO 454 
DO 456 J=1,7 

DO 456 K=1,7 
456 A(K+7*(J-1))=EM(K+14i(J-1)) 

1101 FORMAT(7H SORTSQ, lOI8) 
IF(JOB. GE. 20000)WRITE(8,1101)P, JS(p), JDF(P), ADDR(P) 
IF(JS(P). NE. 7)CALL SORTSQ(7, JDF(P), A) 
CALL STORE(1, ADDR(P), JS(P)**2, A, l) 
IF(JS(Q). EQ. O)GO TO 459 
IF(Q. LT. P)GO TO 454' 
DO 460 J=1,7 
DO 460 K=1,7 

460 A(K+7*(J-1))=EM(K+98+14*(J-J)) 
1102 FORMAT(7H SORTG, lOI8) '' 

IF(JOB. GE. 20000)WRITE(8,1102)P, JS(P), JDF(P), Q, JS(Q), JDF(Q) 
IF(JS(P)*JS(Q). NE. 49)CALL SORTG(7, JDF(P), 7, JDF(Q), A) 
K=0 
IW=NST(P) 
DO 462 J=1, IW 
IF(IABS(MAP(P, J)). LT. P)GO TO 462 
IF(IABS(MAP(P, J)). NE. Q)GO TO 463 
T=K 

463 K=K+JS(P)*JS(IABS(MAP(P, J))) 
462 CONTINUE 
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T=T+JS(P)*JS(P)+ADDR(P) 
CALL STORE(1, T, JS(P)*JS(Q), A, l) 

CONSIDER TERMS FOR END 2 

454 IF(JS(Q). EQ. O)GO TO 459 
DO 465 J=1,7 
DO 465 K=1,7 

465 A(K+7*(J-1))=EM(K+105+14*(J-1)) 
IF(JOB. GE. 20000)WRITE(8,1101)Q, JS(Q), JDF(Q), ADDR(Q) 
IF(JS(Q). NE. 7)CALL SORTSQ(7, JDF(Q), A) 
CALL STORE(1, ADDR(Q), JS(Q)**2, A, l) 
IF(JS(P). EQ. O)GO TO 459 
IF(P. LT. Q)GO TO 459 
DO 467 J=1,7 
DO 467 K=1,7 

467 A(K+7*(J-1))=EM(K+7+14*(J-1)) 
IF(JOB. GE. 20000)WRITE(8,1102)Q, JS(Q), JDF(Q), P, JS(P), JDF(P) 
IF(JS(P)*JS(Q). NE. 49)CALL SORTG(7, JDF(Q), 7, JDF(P), A) 
K=O 
IW=NST(Q) 
DO 469 J=1, IW 
IF(IABS(MAP(Q, J)). LT. Q)GO TO 469 
IF(IABS(MAP(Q, J)). NE. P)GO TO 470 
T=K 

470 K=K+JS(Q)*JS(IABS(MAP(Q, J))) 
469 CONTINUE 

T=T+JS(Q)*JS(Q)+ADDR(Q) 
CALL STORE(I, T, JS(Q)*JS(P), A, l) 
GO TO 459 

C STIFFNESS MATRIX TERMS ENTERED - NEXT SEQUENCE EVALUATES 
C MEMBER FORCES 
C 

480 IW=NILS*JS(P) 
DO 484 J=1, IW 

484 EM(J)=WJ(WADDR(P)+J-1) 
IF(JS(P). NE. 7)CALL UNSORT(7, JDF(P), NILS, EM) 
IW=NILS*JS(Q) 
Do 486 J=1, IW 

486 BM(J)=WJ(WADDR(Q)+J-1) 
IF(JS(Q). NE. 7)CALL UNSORT(7, JDF(Q), NILS, BM) 
Do 488 K=1, NILS 
Do 488 J=1,7 
L=NILS-K 
EM(J+14*L)=EM(J+7*L) 

488 EM(J+7+14*L)=BM(J+7*L) 
C MEMBER DISPLACEMENTS END 1 AND END 2 NOW CONSECUTIVE IN EM 

CALL XTRAN(14,14, DM, BM) 
CALL XMULT(14,14,14, A, BM, DM) 
CALL XMULT(14,14, NILS, DM, EM, A) 

100 L=II+NPRMS 
Do 489 J=1, NILS 

489 WRITE(8,170)L, (A((J-1)*14+K), K=1,14) 
170 FORMAT(I4,7El5.6/4X, 7El5.6/IH ) 

C EVALUATION OF MEMBER FORCES COMPLETE - COLLECTED IN*CFM 

DO 490 J=1,14 
490 CFM(14*(II-1)+J)=A(J) 
459 CONTINUE 

WRITE(8,167) 
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167 FORMAT(lH ) 

IF(IC. LT. 5)GO TO 211 
IW=NBMS*14 
WRITE(11)(CFM(I), I-'21, IW) 

C STORE CURRENT MEMBER FORCES ON TAPE 
211 IF(JOB. GT. 10000. AND. IC. LT. 5)CALL 

RETURN 
END 

1 
STORE(9,1, ISTOR, A, l) 
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APPENDIX A. 4.4 
----------------- 

SUBROUTINE SOLV(B) 
----------------------- 

SUBROUTINE SOLVE(B) 
DOUBLE PRECISION A, BM, CM, DM, EM, WJ 
INTEGER*4 JDF 
DIMENSION XL(1000), YL(1000), ZL(1000), NM(1000), JS(1000) 

1 JDF(3000) 
DIMENSION ITN(5000), JA(5000), JB(5000), JC(5000), QC(5000) 

1 RC(5000) 
DIMENSION EY(50), GR(50), AR(50), GQ(50), GQR(50), GJ(50), 

1 QS(50), RS(50), BW(50) 
DIMENSION NT(400), MAP(1000,500), WJ(6000), A(8000), 

1 BM(8000), CM(80000) 
DIMENSION DM(8000), EM(BOOO), PCA(5000), PCB(5000) 
INTEGER ADDR(1000), WADDR(1000), ORD(1000), NST(1000), 

1 P, Q, R, S, T 
DIMENSION GG(50,5), FFW(50,8), PAY(50), PAZ(50), 

1 WLO(1000), JLO(2000) 
COMMON/BARMS/GG, FFW, PAY, PAZ, JLO, WLO 
COMMON/JOINT/XL, YL, ZL, WJ 
COMMON/NITS/NJS, NPMS, NPMTS, NILS, NJOLD, NPREV, NMS, NMTS, 

1 NE, ISTOR, NSTOR, ISTOW, NSTOW, IM, JOB, NPRMS, DET, NINTS 
2 NBMS, NBMTS, MODE, JCN, JCDF, CRD, FLAM, NLJS, TOL 

COMMON/INTS/NM, JS, JDF, NT, MAP, WADDR, ADDR, ORD, NST 

COMMON/MISC/A, BM, CM, DM, EM 
COMMON/SPMEM/ITN, JA, JB, JC, QC, RC, PCA, PCB 
COMMON/SPMTS/EY, AR, GR, GQ, GQR, GJ, QS, RS, BW 

BASIC INVERSION BLOCK 
263 DO 60 I=1, NE 

IF(B. LT. 5.0)GO TO 240 
K=ORD(I) 

EXTRACT AND INVERT KBB; WRITE BACK INVERT, STORE INVERT 

IN BM 
T=ADDR(K) 
CALL STORE(3, T, JS(K)*JS(K), BM, l) 

CALL XINVT(JS(K), BM, A DET) 
IF(DET. LT. O. O)RETURN ' 

CALL STORE(2, T, JS(K)*JS(K), A, l) 

EVALUATE (INVERT KBB)*WB AND WRITE BACK TO WB 
R=WADDR(K) 
IW--; JS(K)*NILS 
DO 63 J=1, IW 

63 DM(J)=WJ(R+J-1) 
CALL XMULT(JS(K), JS(K), NILS, A DM, BM) 
DO 64 J=1, IW 

64 WJ(R+J-1)=BM(J) 
IF(I. EQ. NE. AND. NINTS. EQ. O)GO TO 60 

EXTRACT KBA BLOCK BY BLOCK, STORE BLOCKS END TO END IN CM 
90 NS=O 

NB=O 
T=ADDR(K)+JS(K)*JS(K) 
R=O 
IW=NST(K) 
DO 65 J=1, IW 
N=IABS(MAP(K, J)) 
IF(MAP(K, J). LT. O)GO TO 66 
NB=NB+l 
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NS=NS+JS(N) 
NT (NB) =N 
IF(N. LT. K)GO To 67 
CALL STORE(3, T, JS(K)*JS(N), CM, R+l) 
R=R+JS(K)*JS(N) 

66 IF(N. LT. K)GO TO 65 
T=T+JS(K)*JS(N) 
GO TO 65 

67 IC=ADDR(N)+JS(N)*JS(N) 
IV=NST(N) 
DO 69 P=1, IV 
IF(IABS(MAP(N, P)). LT. N)GO To 69 
IF(IABS(MAP(N, P)). NE. K)GO TO 70, 
CALL STORE(3, IC, JS(K)*JS(N), Em, l) 
IU=JS(K) 
IY=JS(N) 
DO 71 Q=1, IU 
DO 71 L=1, IY 

71 CM(R+Q+JS(K)*(L-1))=EM(L+JS(N)*(Q-1)) 
R-=R+JS(N)*JS(K) 

70 IC=IC+JS(N)*JS(IABS(MAP(N, P))), 
69 CONTINUE 
65 CONTINUE 

IF(B. LT. 5.0)GO TO 91 
IF(NS. EQ. O)GO TO 60 

EVALUATE KAB(INVERT KBB)WB AND SUBTRACT FROM WA 
CALL XTRAN(JS(K), NS, CM, DM) 
CALL XMULT(NS, JS(K), NILS, DM, BM, CM) 
NR=O 
DO 82 J=1, NB 
DO 72 P=1, NILS 
IW=JS(NT(J)) 
DO 72 Q=1, IW 
AA=WJ(WADDR(NT(J))-l+Q+JS(NT(J))*(P-1)) 
WJ(WADDR(NT(J))-l+Q+JS(NT(J))=AA-CM(NR+Q+NS*(P-1)) 

1 *(P-1)) 
72 CONTINUE 
82 NR=NR+JS(NT(J)) 
EVALUATE KAB(INVERT KBB)KBA AND SUBTRACT BLOCK BY BLOCK 

FROM KAA 
CALL XMULT(NS, JS(K), JS(K), DM, A, BM) 
CALL XTRAN(NS, JS(K), DM, A) 
CALL XMULT(NS, JS(K), NS, BM, A, CM) 
tj C =0 
DO 73'Q=1, NB 
NR=O 
DO 74 P=1, NB'' 
IF(NT(Q). LT. NT(P))GO TO 76 
IW=JS(NT(Q)) 
IV=JS(NT(P)) 
DO 75 N=1, IW 
DO 75 M=1, IV 

75 BM(M+JS(NT(P))*(N-1))=CM(NR+M+NS*(NC+N-1)) 
IF(NT(Q). NE. NT(P))GO TO 77 
CALL STORE(5pADDR(NT(P)), JS(NT(P))*JS(NT(P))OBMl) 
GO TO 76 

77 IC=ADDR(NT(P))+JS(NT(P))**2 
IW=NST(NT(P)) 
DO 79 N=1, IW 
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IF(IA8S(MAP(NT(P), N)). LT. NT(P))GO TO 79 
IF(IABS(MAP(NT(P), N)). NE. NT(Q))GO TO 80' 
CALL STORE(5, IC, JS(NT(P))*JS(NT(Q)), BM, l) 

80 IC=IC+JS(NT(P))*JS(IABS(MAP(NT(P), N))) 
79 CONTINUE 
76 NR=NR+JS(NT(P)) 
74 CONTINUE 

NC=NC+JS(NT(Q)) 
73 CONTINUE 

C REDUCTION OF JOINT K COMPLETE 
C END OF BASIC INVERSION BLOCK 

GO TO 60 
C 
C EVALUATE DISPLACEMENTS IN REVERSE ORDER OF REDUCTION 

240 K=ORD(NE-I+l) 
IF(I. EQ. 1. AND. NINTS. EQ. O)GO TO 98 
GO TO 90 

C EXTRACT KBA BLOCK BY BLOCK INTO CM, PUT (INVERT KBB) IN 
C BM, WA IN DM 

91 IF(NS. EQ. O)GO TO 98 
CALL STORE(3, ADDR(K), JS(K)*JS(K), BM, l) 
NR=O 
DO 93 L=1, NB 
DO 94 P=1, NILS 
IW=JS(NT(L)) 
DO 94 Q=1, IW 

94 DM(NR+Q+NS*(P-1))=WJ(WADDR(NT(L))+Q-1+JS(NT(L))*(P-1)) 
93 NR=NR+JS(NT(L)) 
EVALUATE (INVT. KBB)KBA(WA) RESULT IN CM. DISPLACEMENTS 

IN DM AND WJ 
CALL XMULT(JS(K), JS(K), NS, BM, CM, A) 
CALL XMULT(JS(K), NS, NILS, A, DM, CM) 
IV=JS(K)*NILS 
DO 92 J=1, IV 
DM(J)=WJ(WADDR(K)+J-1)-CM(J) 

92 WJ(WADDR(K)+J-1)=DM(J) 
98 CONTINUE 
60 CONTINUE 

c 
C EVALUATION OF JOINT DISPLACEMENTS COMPLETE 
C 

IF(JOB. GT. 30000)CALL STORE(9,1, ISTOR, A, l) 
IF(JOB. GT. 30000. AND. ISTOW. LE. 100)WRITE(8,256)(WJ(I), 

1 I=1, ISTOW) 
256 FORMATU/100H lOE12.4/)) 

IF(B. LT. 5.0)GO TO 261 
IF(NINTS. LT. 1)8=0.0 
IF(NINTS. LT. 1)GO TO 263 

141-FORMAT(I4,7El5.6/) 
TRANSFER ALL BLOCK DATA TO TAPE 

NSTOR=ISTOR+1-ADDR(1+NJS-NINTS) 
NSTOW=ISTOW+1-WADDR(1+NJS-NINTS) 

155 FORMATMOH RETAINING, 2I6/) 
WRITE(8,155)NSTOR, NSTOW 
WRITE(10)NMS, NJS, NMTS, NJOLD, NPREV, NINTS, NE, ISTORpISTOW 

1 pNSTOR, NSTOW 
CALL STORE(6,1, ISTOR-NSTORpA, l) 
WRITE(10)(ITN(I), JA(I), JB(I), JC(I), QC(I), RC(I), PCA(I), 
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1 PCB(I), I=1, NMS) 
WRITE(10)(JS(I), JDF(I), ORD(I), ADDR(I), WADDR(I), NST(I), 

1 XL(I), YL(I), ZL(I), I=1, NJS) 
WRITE(10)(EY(I), AR(I), GR(I), GQ(I), GQR(I), GJ(I), QS(I), 

1 RS(I), I=1, NMTS) 
J=NJS-NINTS 
WRITE(10)((MAP(I, K), K=1, IM), I=1, J) 
J=ISTOW-NSTOW 
! JRITE(10) (WJ (I) I-21, J) 

C 
C MOVE ALL INTERFACE TERMS TO BASE OF STORAGE 

DO 272 I=1, NINTS 
S=NST(I) 
K=I+NJS-NINTS 
NM(I)=NM(K) 
NST(I)=NST(K) 
JS(I)=JS(K) 
JDF(I)=JDF(K) 
XL(I)=XL(K) 
YL(I)=YL(K) 
ZL(I)=ZL(K) 
NT(I)=l+ADDR(K)-ADDR(1+NJS-NINTS) 
P=NJS-NINTS 
Q=O 
T=NST(I) 
IF(T. LE. O)GO TO 271 
DO 84 J=1, T 
N=IABS(MAP(K, J)) 
IF(N. LE. P)GO TO 59 
Q=Q+l 
MAP(I, Q)=(N-P)*MAP(K, J)/N 
GO TO 84 

59 NST(I)=NST(I)-l 
84 CONTINUE 

271 IW=Q+l 
IF(IW. GT. S)GO TO 272 
oO 85 J=IW, S 

, 35 MAP(I, J)=O 
272 CONTINUE 

NT(NINTS+1)=NSTOR+l 
DO 86 I=1, NSTOW 

86 WJ(I)=WJ(WADDR(1+NJS-NINTS)+I-1) 
CALL STORE(8, ADDR(1+NJS-NINTS), NSTOR, A, l) 
NJOLD=NJOLD+NJS-NPREV 
NPREV=NINTS 
IF(JOB. GT. 30000)CALL STORE(9,1, ISTOR, A, l) 
IF(JOB. GT. 30000. AND. ISTOW. LE. 100)WRITE(8,256)(WJ(I), I=1, ISTOW) 
RETURN 

261 WRITE(8,140) 
140 FORMAT(///24H DISPLACEMENTS AT JOINTS/lX, 24(lH*)/lH 

Q=7 
IF(NBMS. LE. O)Q=6 
DO 23 K=1, NJS 
IF(JS(K). EQ. O)GO TO 23 
P=K+NJOLD-NPREV 
IV=JS(K)*NILS 
DO 22 I=1, IV 

22 BM(I)=WJ(WADDR(K)+I-1) 
IF(JS(K). NE. Q)CALL UNSORT(Q, JDF(K), NILS, BM) 
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DO 21 J=1, NILS 
N=Q* 0-1) +1 
IW=N+Q-1 

21 WRITE(8,141)P, (BM(M), M=N, IW) 
IF(P. EQ. JCN)CRD=BM(JCDF) 

23 CONTINUE 
END 
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SUBROUTINE STORE 

---------------------- 
SUBROUTINE STORE(IT, IADDR, ISIZE, ARG, II) 
DOUBLE PRECISION ST, ARG 
DIMENSION ST(16000), ARG(800) 
COMMON/XST/ST 
IF(ISIZE. EQ. O)RETURN 
GO TO(1,2,3,4,5,6,7,8,9), IT 

1 DO 10 I=1, ISIZE 
10 ST(IADDR+I-1)=ST(IADDR+I-1)+ARG(II+I-1) 

GO TO 99 
2 DO 11 I=1, ISIZE 

11 ST(IADDR+I-1)=ARG(II+I-1) 
GO TO 99 

3 DO 12 I=1, ISIZE 
12 ARG(II+I-1)=ST(IADDR+I-1) 

GO TO 99 
4 DO 13 I=I, ISIZE 

13 ST(IADDR+I-1)-'20 
GO TO 99 

5 DO 14 I=1, ISIZE 
14 ST(IADDR+I-1)=ST(IADDR+I-1)-ARG(II+I-1) 

GO TO 99 
6 WRITE(10)(ST(IADDR+I-1), I=1, ISIZE) 

GO TO 99 
7 READ(10) (ST(IADDR+I-1), I. =l, ISIZE) 

GO TO 99 
8 DO 15 I=1, ISIZE 

15 ST(II+I-1)=ST(IADDR+I-1) 
GO TO 99 

140 FORMAT(/12H PRINT STORE) 
9 WRITE(8,140) 

179 FORMAT(I5,2H 902.4) 
IW=(ISIZE+8)/9 
00 144 I=1, IW 
J=9*I-8 

144 WRITE(8,179)J, (ST(J+9*(I-1)), J=1,9) 
WRITE (8,141 

141 FORMATOH 
99 RETURN 

END 
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SUBROUTINE UNSORT 
----------------------- 

SUBROUTINE UNSORT(JS, IJDF, NILS, B) 
DOUBLE PRECISION B, C 
INTEGER*4 IJDF, JDF, K, IL, IM 
DIMENSION 13(49), C(49), IT(7) 
COMMON/US/C 
JDF=IJDF 
M=O 
IL=JS 
IM=10 
K=IM**(IL-1) 
DO 5 I=1, JS 
IT(I)=O 
IF(JDF. LT. K)GO TO 5 
M=M+l 
IT(I)=2 
JDF=JDF-K 

5 K=K/IM 
IB=O 
Do 3 J=1, JS 
IF(IT(J). GT. 1)GO TO 8 
Do 2 I=1, NILS 

2 C(J+is*(I-1))=O. O 
GO TO 3 

8 IB=IB+l 
Do 7 I=1, NILS 

7 C(J+JS*(I-1))=B(IB+M*(I-1)) 
3 CONTINUE 

IW=JS*NILS 
Do 4 I=1, IW 

4 B(I)=C(I) 
RETURN 
END 
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SUBROUTINE SORTSQ 
---------------------- 

SUBROUTINE SORTSQ(IQ, IJR, TEIIM) 
DOUBLE PRECISION TERM 
INTEGER*4 IR, IJR, K, L, M 
DIMENSION TERM(49), I(7) 
L=IQ 
M=10 
IR=IJR 

-K=M**(L-1) 
DO 3 J=1, IQ 
I(J)=O 
IF(IR. LT. K)GO TO 2 
IR=IR-K 
I(J)=2 

2 K=K/M 
3 CONTINUE 

IC=o 
DO 6 J=1, IQ 
IF(I(J). LT. 1)GO TO 6 
DO 5 KK=1, IQ 
IF(I(KK). LT. 1)GO TO 5 
IC=IC+l 
TERM(IC)=TERM(KK+IQ*(J-1)) 

5 CONTINUE 
6 CONTINUE 

RETURN 
END 

--------------------- 
SUBROUTINE SORTG 

--------------------- 
SUBROUTINE SORTG(IAQ,. IAR, IBQ, JBR, TERM) 
DOUBLE PRECISION TERM 
INTEGER*4 IAR, ýAR, IBR, JBR, K, L, LB, M 
DIMENSION TERM(49), IA(7), IB(7) 
L=IAQ 
LB=IBQ 
M=10 
IAR=JAR 
IBR=JBR 
K=M**(L-1) 
DO 6 J=1, IAQ 
IA(J)=O 
IF(IAR. LT. K)GO TO 2 
IAR=IAR-K 
IA(J)=2 

2 K=K/M 
6 CONTINUE 

K=M**(LB-1) 
DO 3 J=I, If3Q 
IB(J)=O 
IF(IBR. LT. K)GO TO 4 
IBR=IBR-K 
IB(J)=2 

4 K=K/M 
3 CONTINUE 

'LC=O 
DO 7 KK=1, IBQ 
IF(IB(KK). LT. 1)GO TO 7 
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DO 5 J=1, IAQ 
IF(IA(J). LT. 1)GO TO 5 
IC=IC+l 
TERM(IC)=TERM(J+IAQ*(KK-1)) 

5 CONTINUE 
7 CONTINUE 

RETURN 
END 

SUBROUTINE XTRAN 

SUBROUTINE XTRAN(M, N, B, C) 
DOUBLE PRECISION B, C 
DIMENSION B(M, N), C(N, M) 
DO 2 I=1, M 
DO 2 J=1, N 
C(J, I)=B(I, J) 
RETURN 
END 

SUBROUTINE XMULT 
-------------------- 

SUBROUTINE XMULT(L, M, N, A, B, C) 
DOUBLE PRECISION A, B, C 
DIMENSION A(L, M), B(M, N), C(LN) 
DO 2 I=11L 
DO 2 J=1, N 
C(I, J)=O 
DO 2 K=1, M 
C(I, J)=C(I, J)+A(I, K)*i3(K, J) 
RETURN 
END 

-------------------- 
SUBROUTINE XINVT 

-------------------- 
SUBROUTINE XINVT(IP, B, C, DET) 
DOUBLE PRECISION B, CAP, AT 
DIMENSION B(49), C(49) 
IF(IP. EQ. 1)GO TO 9 
IW=IP*IP 
DO 2 I=1, IW 

2 C(I)=o 
DO 3 I=1, IP 

3 C(I+IP*(I-1))=1.0 
IW=IP-l 
DO 5 IQ=1, IW 
K=IP-IQ+l 
AP=B(K+IP*(K-1)) 
IK=K-1 
DO 5 I=1, IK 
AT=B(I+IP*(K-1))/AP 
DO 5 J=1, IP 
B(I+IP*(J-1))=B(I+IP*(J-1))-B(K+IP*(J-1))*AT 

5 C(I+IP*(J-1))=C(I+IP*(J-1))-C(K+IP*(J-1))*AT 
MATRIX NOW REDUCED TO UPPER TRIANGLE FORM 

DO 6 IQ=1, IW 
AP=B(IQ+IP*(IQ-1)) 
IK=IQ+l 
DO 6 I=IK, IP 
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AT=B(I+IP*(IQ-1))/AP 
DO 6 J=1, IP 
B(I+IP*(J-1))=B(I+IP*(J-1))-B(IQ+IP*(J-1))*AT 

6 C(I+ip*(j-1))=C(I+IP*(J-1))-C(IQ+IP*(J-1))*AT 
C MATRIX NOW REDUCED TO DIAGONAL FORM 

DET=1.0 
DO 7 I=1, IP 
DO 12 J=1, IP 

12 C(I+jp*(J-J))=C(I+IP*(J-1))/B(I+IP*(I-1)) 
7 DET=DET*B(I+IP*(I-1)) 

GO TO 8 
9 DET=B(l) 

C(1)=1.0/B(l) 
8 RETURN 

END 
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APPENDIX A. 5.1. 

Calculation of warpinR stiffness p and carry-over factor C 

Three cases were considered by Khan and Tottenham (79) as 
follows: 

(i) Beam fully restrained at the far end 

The boundary conditions are: 

at x=o: ex =0v and x=1 
(A-5-l. a) 

at x=k: 6x =0. and x=o 
(A-5-l. b) 

The warping stiffness p is given by, 

k9, (kR, cosh kZ - sinh kt) EIW 

kksinh kk + 2(l + cosh kZ) k 
(A-5.2. ) 

and the carry-over factor C is, 

sinh kZ - k9, (A. 5-. 3. T-9, cosh kZ - sinh IcT 

(ii) Beam with far end restrained against rotation 0x 

The boundary conditions for this case are, 

at x=o: ex =ov and 6x=1 (A-5.4. a) 

at x=Z: 6x =o. and B=o (A-5-4. b) 

The warping stiffness p is given by, 

P _(kk 
)2 s inh Ict EI 

W (A. 5.5. ) kk cosh kZ - sinh kP. k 

The carry-over factor C is equal to zero in this case. 
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(iii) Beam with far end free 

The boundary conditions of this case are, 

at o: 0=o, and ý=1 (A-5.6. a) xx 

at x: B=o, and T=o (A-5.6. b) 

The warping stiffness is given by, 

k9, sinh k9, 
EI 

w (A 
. 5.7. ) 

cosh k9, pl 

The carry-over factor C is equal to zero in this case. 

APPENDIX A-5.2. 
- 

The constant functions ý1-ý4 in the bimoment-warping matrix 

These functions are given by, 

ýl = 2S (1 + C) +72 (A-5.8. a) 

(ý2 =s (i + C) (A. 5.8. b) 

ý3 = sc (A-5.8. c) 

4=s 
(A. 5.8. d) 

where, the functions S and C are given by, 

S1+ 2-r coth 2T) (A. 5.9. a) tanh T-T 

and C 2T - sinh 2T (A-5-9. b) 
sinh 2T - 2T cosh 2T 

where T VI'GJIEIw (A-5-10. ) 2 
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APPENDIX A. 9.1. 

Calculation of diaphraRm flexibility 

Notations 

a Length of panel in the direction perpendicular to 

the corrugations (mm). 

b Depth of panel in the direction parallel to the 

corrugations (mm). 

alva 4 Correction factors to allow for intermediate 

perpendicular members. 

Non-dimensional sheeting constant for distortional 

flexibility. 

E Modulus of elasticity. 

Y Poisson's ratio of the frame members material. 

Sp Flexibility of sheet to perpendicular member 
fastener (mm/kN) - 

Ss Flexibility of a seam fastener (mm/k. N). 

n sh : Number of sheet widths per panel. 

np 

ýl 

A 

e 

d 

h 

t 

Number of seam fasteners per seam line. 

Total number of perpendicular members. 

Factor depends upon whether the profile is fixed as 
a sheeting or decking and on the number of sheet to 

a perpendicular member fasteners in a sheet width. 

Cross sectional area (mm 2) 
of an edge member. 

Angle of inclination of a diagonal member of the 

model with respect to the direction perpendicular 
to the corrugations. 

Pitch of corrugations (mm). 

Height of profile (mm). 

Net thickness of sheeting. 



191. 

A. 9.1.2. Flexibility due to distortion of the sheeting profile 

cad 
2-. 5 

a, a4 

Et2.5 b2 

9.1) 

Tables for the correction factors a1 and a4 and for the non- 
dimensional factor K are presented in reference (13). 

A. 9-1.3. Flexibility due to shear strain in the sheet 

c 2a(l V) 
[I+L2h/d)] 

(A. 9.2) 
1.2 Etb 

A. 9.1.4. Flexibility due to movement at the sheet to 
perpendicular member fasteners 

2.1 
2a-S 

p -P (A. 9-3) 

b2 

A. 9-1-5. Flexibility due to movement in the seam fasteners 

2.2 
2S,: 

). 
S 

p 
(n, 

h - 1) 

2n 
sSp+ý1npS 

9-4) 

A. 9.1.6. Flexibility due to axial strain in the frame members 

-3E-A 
2a3 

2 
f 

A. 9.1.7. Area o diagonal simulatinR the ove 
of a sheet nanel 

9-5) 

snear 

As shown in fig. l. d. the vertical component of the 
force in the diagonal member is given by, 

Q E-A d A-Cose (A. 9.6) Y' d 
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A=C CosO when Q=1.0 kN 

then subsituting frA, the area of 
the diagonal member takes the form, 

Pd (A. 9.7) 

EC Cos e 

It should be noted that equation (A. 9-7) has been 

derived for the case when the two edge chords are parallel. 
In this case the axial strain of the edge members is due to 

in-plane bending. In the trapezoidal panels of the truss simu- 
lating the diaphragm, the inclined edge member has its own sharc 
in carrying the shearing force in the panel. As the axial 

stiffness of this member is large in comparison to that of 
the diagonal member, the vertical component of the strain 

caused by shear can be neglected and the area of the diagonal 

member can be calculated using equation (A. 9.7). 

APPENDIX A. 9.2. 

Calculation of fastener forces from the results of-the simple 
truss model 

F, F, vF and FL are the fastener 

forces given by the finite -4- 

element method; 

V is the vertical component of 
the force between the sheet and 
the frame members at joint ICI , 

FD Cos e- FV (A. 9.8) 

1+ -1 F +F +F (A. 9.9) F 
[( 

Fig. A. 9.2. 

The maximum fastener force at joint ICI takes the value, 

(A. 9.10) 

F ig. A. 9.1. 
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