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S UMMRY 
. 

A description of the experimental investigation of the aerodynamic 

characteristics of variable geometry of an aircraft model is 

presented. Aerodynamically, the model is tested-for a sweep 

range of 00,12.5 0 32.5 0, and 52.5 0 and incidence range of 00 to 

00 20 in 4 intervals. All the presýure distributionson the wi. ng, 

glove, and body are recorded for each wind tunnel test. 

Aerodynamic forces and moments were also taken through a balance 

mechanism system which is attached to the model. This is 

connected to an independent computer terminal and a Teletype 

printer. Initially, a flow visualization to test the flow separa- 

tion on the wing model was carried out. 

A three-dimensional subsonic program, which was already developed 

by Hawker Siddeley Aviation Limited, was modified for our purposes 

in order to carry out numerical calculation of the aerodynamic 

characteristics and investigate the interference of wing and body. 

This programme has also been developed to include the 

compressibility effects and compare these results with those for 

incompressible flow. The three-dimensional numerical solution was 

a Panel method for the subsonic. taie. This investigates the three- 

dimensional flow-field usi. ng a distribution of quadrilateral vortex 

panels, the effects-of which'are sAx=ed'to calculate the aerodynamic 

characteristics of the model. 
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This subsonic theory was applied to caI cu late the 

characteristics of the'wind tunnel model over'a similar ra. nge 

of sweep and incidence*to those tested, for Mach numbers of 0 and 

0.5. As the only input data required is the configuration geometry 

and the flight condition, howeVer, the program can b. e used to 

calculate the aerodymamics of any wihg-body arrangement specified 

by the user. The program includes the capability of analysing 

both fixed-wing and variable sweep-wing configurations. This 

computational method is capable of being applied to general 

arbitrary subsonic three-dimensional potential flows, including 

inlet flow fields. In panel methods, the velocity potential at 

any point in a flow field is expressed'in terms of the induced 

effects of source and doublet (or vortex) sheet distributed on the 

boundary surfaces. The configuration surfaces are divided into 

panels, and essentially, this is a general three-dimensional 

boundary value problem solver that is capable of being applied to 

most problems that can be modelled within the limitations of 

potential flow. Compressibility effects are approximated by the 

Gdthert rule. 

Comparisons were made between the subsonic calculations and 

the experimental results and some other theoretical results - 

Hence , an indication of agreement and accuracy among them is 

seen , which is good up toa certa in degree of incidence (about 10* )- 

Owing to viscous effects, the experimental results for lift coefficient 

show a signifident decline in size with respect to subsonic calculated 

results. Wing-body interference was calculated for subsonic flows 

and found to be favourable 
. 
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Similarly, a general supersonic program was developed for numerical 

analysis of the aerodynamic characteristics of a thin wi. ng. The 

theory was extended to include wi. hg-body interferences. This 

extended treatment consists of slender'body theory combined with a 

thin wing solution using a "characteristic box" method for super- 

s. onic analysis. Streamwi§e pressure-distributions on an 

aircraft wing are presented*, and also-some aerodynamic force and 

rapent coefficients of this wing are-presented. 

Finally, for wing body interact ion analysis , 
the Nielsen 

method. was used. All the relevant computations including centre 

of pressure position and interferences of wing and body for a 

combined model are presented. Comparisons of the supersonic 

results with some theoretical and experimental results shows 

good agreement. The interference calculations in this case 

showed favourabte effects , which very broadly tend to be lower 

than those catcul a ted for subsonic flow - 
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CM Coefficient of moment. 
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INTRODUCTION 

This thesis is concerned with investigation and research directed to- 

wards the aerodynamics of variable geometry wing-body combinations. 

These studies lie in a very broad field of numerical work for subsonic 

and supersonic flow investigation. Some experimental tests were carried 

out on a scaled variable geometry wing-body model in low speed wind 

tunnel. For subsonic studies extensive efforts were made to extend, modify 

develope and validate a three-dimensional potential flow programme using 

a surface distribution of Quadrilateral Vortex-rings (or panels) for 

this purpose. This method was also developed for compressible flow using 

the Gothert transformation for wing-body combinations. Subsonic results are 

compared for wing-body combinations in Chapter (9). Effects of variable 

geometry wing are indicated on the overall wing-body lift coefficient 

CL for 0*, 12-50,32.5% 52-! ýsweep wing for some selected low 

and high incidences. 

Interference effects are also shown for the wing-body combinations 

and compared with the wing and body alone results. Effects of the V- 

notch on low sweep wings ( 0" and 12.5" ) are investigated for the wing 

body, and their combinations and compared with a similar sets of results 

for the wing-body cobinationswithno V-notch on the wing. In subsonic 

calculations of forces and moments for the wing-body combinations are 

based on projected planform area and mean chord respectively. This 

reference area and mean chord are kept consistent for each wing sweep. 

Comparisons of subsonic results with experimental results for lift 

coefficient CL for the wing-body combinations are shown in Chapter (9),, 

and effects of viscous flow and inviscid flow are identified in these 
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comparisons. The modified panel method has a wide range of applic- 

ations for calculation of aerodynamics of variable wings and mutual 

interference of wing-body combinations. Encouraging results from this 

subsonic method in comparison with the experimental results gives an 

indication of accuracy of panel method. 

Nevertheless, the vortex strength, aerodynamic forces and moments 

calculations and study of this method is shown in Chapter (3). The 

present experimental work was carried out to provide a comparison with 

the theoretical prediction method. However, the results obtained pro- 

vide useful experimental evidence of wing-body aerodynamics and form a 

positive contribution to knowledge in this area. In these wind tunnel 

tests, force and moment coefficients were derived for the same ranges of 

sweep angle as theoretical subsonic results. 

Effects of tripping devices were investigated in order to create an 

attached turbulent flow on the wing surface. Some of these surface flow 

photos show at about what incidence angle the flow starts separating. 

In some cases a three-dimensional classical spiral separation was observed. 

Effects of tripping devices on the wing surface flow and consequently 

on the overall wing-body lift coefficients are identified and they 

are presented in Chapter (9)s at the same time, the effects of tripping 

device on the wing pressure readings were recorded and found to be 

vertually independent of tripping device ( minute changes in their 

readings). The pressure coefficients on the wing surfaces are 

compared with some other theoretical and experimental results and 

they are presented in Chapter (9). In order to fit the best curve 

through experimental Cp readings of the wing surface, thin aerofoil 

theory is used to shape the pressure distribution and hence to 
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determine section lift at any wing spanwise stations. The method is shown in 

Chapter (4) and section lift coefficient results are compared with some other 

experimental results and are shown in Chapter (9). 

A supersonic two-dimensional potential flow theory was developed to 

perform a numerical integration to solve the integral equation for a wing 

planform. This is carried out by expressing the downwash as a summation 

of the velocity potential over the area of the wing in the Mach forecone for 

linearised, steady supersonic flow. Hence, the pressure coefficient 

distribution, and the lift coefficient, pitching moment coefficient 

were found on a wing planform. In the numerical calculations of velocity 

potential on the wing planform, several numerical techniques were 

developed for calculation of the pressure coefficient cp . Some of 

these numerical techniques are shown in Chapter (6) to (8). Finally, this 

supersonic potential flow method is developed to calculate the mutual in- 

terference of wing-boby combinations. Comparisons of Cp distribution 

for a rectangular wing with some experimental and theoretical results 

are encouraging and are shown in the corresponding section of Chapter (9). 

Full study of this supersonic method for velocity potential, pressure 

coefficient, lift and pitching moment coefficients and mutual interference 

calculations and their procedures are shown in Chapter (6) to (8). This 

new development is a contribution to numerical solutions of supersonic 

potential flow theory and hence supersonic calculations of forces and 

moments and mutual interference of wing-boby combinations. 



-5- 

I. -I INTRODUCTION TO WINGIBODY INTERFERENCE 

EFFECTS 

"When we are considering the interference between a swept, or 

unswept, wing and fuselage, we should bear in mind that the 

basic design concept of such an aircraft starts from an 

assumption that these interference effects are small". 

Thus D. Kuchemann introduces the topic of wing/body interference 

in a historical survey. This concept goes back to Cayley (1.1) 

who proposed in 1809 that human engineers, in contrast to nature, 

could do well to keep the organs for providing volume, lift, 

propulsion, and controls separate and largely independent. 

Present design trends run against this principle, especially with 

swept-winged aircraft; the flows past the wing and the fuselage 

tend to become less independent of one another and the interfer- 

ence effects tend to become large and significant. This means 

that we must try not only to know more about what the interference 

effects are but also to develop design methods where the 

interference effects are used to bring us back to those types of 

flow which would obtain if wings and bodies would still be largely 

independent. Therefore, we must concern ourselves with two 

problems: to determine the flow past given shapes; and to design 

shapes which give a prescribed flow. 
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In the reference paper he also shows the major effects that 

wing sweep angle and dihedral angle can have on the inter- 

ference with the fuselage. In this case the method of 

singularities was applied for calculation of inviscid 

incompressible flow fields for some simple cases with and 

without lift. 

A large volume of research has been carried out by D -Kuchemann 

into the aerodynamic design aspects of swept wings. Refs. 

(1.6) and (1.7) are concerned with the development of methods 

for calculating the flow over sweptback wings at subcritical 

speeds and for alleviating the adverse root and tip effects. 

In Ref (1.6) a linear theory solution for the flow at zero 

lift over a sheared wing and at the centre section of a semi- 

infinite sweptback wing is given. Then from a simple method 

for calculating the loading (1.7) over a sweptback wing of 

any aspect ratio, a method inspired by Prandtl's concept (1.8) 

of an effective and induced incidence for obtaining the loading 

over a wing of high aspect ratio but reducing to R. T. Jones' 

solution (1.9) for a wing of small aspect ratio, D -Kuchemann 

and his colleagues ultimately developed what came to be known 

as the "RAE Standard Method" (1.10). This enabled one to 

calculate the chordwise pressure distribution at any station on 

a cambered, twisted sweptback wing of arbitrary planform and 

section variation across the span. 

Weber (1.11) has carried out some studieson interference effects 
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between a fuselage and a lifting wing, in inviscid incompress- 

ible flow. She has considered the special case of an infinite 

wing (swept or unswept) with constant chord, attached to a 

cylindrical fuselage of circular cross-section in the mid-wing 

position when the axis of the fuselage is parallel to the main- 

stream. 

There has been much world-wide effort towards the design of 

swept wing aircraft cruising at low supersonic and high subsonic 

Mach numbers. Continuous improvement of the ML/D parameter 

has enabled the latest generation of subsonic high speed 

commercial jets to fly at higher cruise Mach numbers. To achieve 

these gains, a swept wing design gives the best possible type of 

wing flow. 

A comprehensive design method intended to achieve this aim has 

been developed by Lock and Bridgewater (1.12), based on super- 

sonic (or sonic) linearised theory but taking into account the 

principal non-linear effects in a crude but reasonably effective 

way. 

Bridgewater, Lock and Lee (1.13) have performed some 

investigations on wing-body half-models. From combinations of 

two different body shapes and two distinct swept wings designed 

according to the principles of Ref (1.12), they have produced 

theoretical and experimental studies for swept-wing body 

configurations, and found conditions for the correct shaping of 
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the body waisting, etc. These studies lead to reductions in 

drag at high subsonic and low supersonic speeds. 

A method has been described -which permits the calculation of 

pressure distributions on lifting wing-body combinations in sub- 

critical flow (1.14). Also Ref (1.15) is concerned with the 

general case of three-dimensional circulatory flow and the 

. application to lifting wing-body combinations. To illustrate 

the applicability of the method, in wing-body interference 

studies, a comparison of wasured and calculated pressure 

distributions for three widely different wing-body combinations 

are shown in Ref (1.14). In order to be able to separate the 

effect of the body on the wing pressure distribution 

calculations have in all cases been performed for both the com- 

plete configuration and the wing alone. 

1.2 AERODYNAMIC PRINCIPLES FOR THE DESIGN OF SWEPT WINGS 

In the preliminary design of an aircraft it is necessary to decide 

upon which combination of sweep, thickness/chord ratio, and 

cruise CL will satisfy the desigh requirements for a certain 

cruise Mach number and aircraft payload. The final choice is a 

vxmpromise between aerodynamic performance at high and low speeds 

-and structure -weight. For instance,, increasing the thickness/ 

zchord ratio, t/c, reduces the tring weight for a given strength but 

-also reduces the drag rise Mach number. Increasing sweep allows 

,a 
large t/c to be used, but also tends to reduce the low speed 

-C LWx available and may make it necessary to use complex, and 
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expensive high-lift devices to obtain satisfactory airfield 

performance. Increasing sweep may also lead to larger 

torsional loads on the wing and possible aeroeleastic problems 

which may cancel some of the gains due to increased t/c. For 

any particular application the condition that shock waves on 

the wing should be absent or small in strength usually leads to 

a fairly narrow range of design variables. A further 

condition is the necessity to avoid boundary layer separation 

-which in conjunction with the above, can be used in many cases 

to determine the optimun design pressure distribution for sub- 

critical flow. 

Bagley (1.16) and (1.17) has given a general. approach which 

enables the possible combinations of t/c,, sweep angle 0,, Mach 

number M, design lift coefficient C L' thickness distribution 

and upper surface pressure distribution to be found approximately, 

to avoid the formation of strong shock waves. It is assumed that 

-the wing will have suitable camber, twist and thickness variation 

across the span to maintain straight isobars and the aerodynamic 

performance will ideally be that of the sheared wing. 

Lighthill (1.18), Thwaites (1.19). Eppler (1.20) and Sinnott, 

Osborne (1.21) in their methods use a general routine for two- 

dimensional calculation of conventional aerofoils on infinite 

-sheared wings. They are generally used when thick or highly 

cambered aerofoils, or aerofoils with suction slots,, are required, 

-which are treated accurately. 



In the general case, the flow over the wing at subsonic or 

supersonic speeds can be solved by a differential equation for 

the velocity potential. There is a discontinuity in the 

solutions for the differential equation in mixed transition 

flow. Sears (1.22) has discussed some of these problems -in 
his report. Also, Bagley (1.23) in his paper, zonsidered that 

it is this discontinuity solution which corresponds to a flow 

with shock waves and a pressure drag forceon the body and which 

is due to change of entropy through the shock. In 'Section (4) 

he also shows the outcome of many investigations on aerodynamic 

design of aircraft, including the most effective use of swept 

wing principles. From experiment he showed that as the Mach 

number increases to achieve a better aerodynamic design, the 

angle of sweep needs to be increased and consequently there will 

be a fall in aspect ratio. Rogers and Hall's description (1.24) 

of the transonic flow development on swept wings shows that, 

although the obvious signs of the supercritical flow are manifest 

4irst on the outer part of -the wing, the origins uf these 

-phenomena can be found near the centre of the wing. The basic 

aim is to preserve a low drag and a well-behaved flow up to as 

high a Mach number as possible. 

-The interference between a central luselage, -crather auxiliary 

bodies, and the swept wing can *Iso be used to improve the isobar 

., pattern of the wing. -At subsonic speeds. Iuchemann (1.25) and 

Hartley (1.26) have shown how a properly shaped I%taistedu body 

could be designed to produce a junction velocity distribution 
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similar to that on the correspondi-ng infinite sheared wing. 

A different approach to the design of swept wings can be 

iderived by considering the far field. Jones (1.27) showed 

that a necessary and sufficient condition for the drag due 

to lift to be a minimum on a wing of given planform and total 

lift was that the load should be distributed in such a fashion 

that the downwash in the combined forward and reverse flow 

fields should be uniform over the whole planform. 

Another method of finding the appropriate loading, and the 

camber shape which produces it, has been developed by Ginzel 

and Multhopp (1.28). who use a polynomial expression for the 

loading. 

Lmax (1.29) has shown how the "supersonic area rule" should be 

generalized to extend to lifting configurations. The drag 

according to linearized supersonic theory can then be expressed 

in terms of the lengthwise distributions of the areas and forces 

on sections intercepted by planes parallel to the waves of the 

Mach cone. 

A wing-fuselage combination with low drag for high speeds can 

be constructed by utilising a wing of fairly high sweep. it is 

well known that a sheared wing of infinite span has zero wave 

drag below its critical Mach number, which has an upper bound of 

unity if the angle of sweep is high enough and the wing is thin 

enough. This was pointed out by Kuchemann and Weber (1.6). who 
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also showed hDW the extra wave drag, of a swept, wing of finite 

span could be avoided by combiring- it with a suitably shaped 

body. A practical method for designing the body in a super- 

sonic mainstream, which was begun by Hartley.. has been developed 

by Bagley (1.16). 

Kuchemann and Hartley. (1.26) have shown how the body might be 

-designed to reduce the high subsonic drag rise by controlling 

the rate at which the shockwave. on the upper surface of the wing 

moves back towards the trailing edge as the Mach number increases. 

Whitcomb (1.30) has shown experimentally determined drag curves 

from two NACA tests, one on a wing with 450 sweepback whose Mach 

number M 
CS was I. OF, and the other by Fischetti (1.31), on a 

60 0 sweptback wing with M 
CS approximately equal to 1.3. These 

two models were designed by the area rule, but Bagley (1.32) has 

shown that the junction shape of Whitcomb's model (1.30) does 

not in fact produce a pressure distribution in -the junction which 

is substantially the same as that as the corresponding sheared 

wing. 

Around 1970, Kuchemann illustrated some new methods of 

calculating wing-bDdy interference. Kuchemann (1.5) 

distinguished between methods where the sources are put on the 

surface of the two interfering bodies. as in the A. M. O. Smith 
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treatment (1.33) of the Neumann problem and his own approach in 

which the sources are placed either wholly inside the bodies or 

both inside and on the surface. 

Consider first the case of a non-lifting configuration of given 

shape, where both the wing and fuselage can be represented by a 

distribution of sources and sinks. Two distinct approaches to 

the problem have been proposed: 

(1) The sources are put on the surface of the two bodies 

(2) The sources are either wholly inside the bodies or both 

I inside and on-the surface. 

In the first case, the Neumann problem must be solved. This has 

been treated by A. M. O. Smith (1.33) who also provided a widely 

used computer program for Dbtaining numerical answers by using 

the panel method. In the second case discussed abovethis couidbe 

effected by adding an image system of the wing sources inside 

the fuselage such that the latter remains a stream surface. 

The first theory of this kind was provided by Liese and Vaudrey 

(1.34) who added the source distribution along the axis of a 

fuselage to that over the chordal plane of a wing. 

Among the numerical techniques available, the inethod of finite 

elements shows considerable promise because of its ability to 

handle configurations of arbitrary geometry (l. -35). Many 

investigations have been carried out to write numerical programs 
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based on the superposition of finite elements. For example, 

there is the incompressible potential flow program developed by 

Hess and Smith at Douglas (1.33) and the 'fan-in-wing" program 

developed by Rubbert and others at Boeing (1.36). There are 

also numerous planar and nonplanar lifting surface programs, 

a summary of which can be found in (1.37). Wing-bocLy-nacelle 

interference at subsonic speeds is treated in (1.38) while 

supersonic nacelle-on-ving interference is described in (1.39). 

For wing-body interference,, there is the procedure based on the 

subsonic-supersonic lifting surface elements described by 

Woodward (1.40) and the subsonic vortex-lattice procedures 

developed by Kalman, Rodden, and Giesing (1.41). This wealth 

of procedures Andicates the essential soundness of the' finite 

element approach and also illustrates the fact that special 

programs can be developed for special problems with reasonable 

effort. 

Ref (1-42) gives an approach to the use of finite element 

methods for predicting the aerodynamics a wing-body combinations, 

which can be represented by a collection of line sources and 

doublets, and surface panels representing thickness and lift. 

. A. M. O. Smith, Ref (1.33) has represented the surface of the wing 

and body by a large number of quadrilateral panels, each carrying 

a source distribution of constant strength. In addition to this 

a system of horse-shoe vortices is applied, as in the method of 

Rubbert and Saaris (1.43), to cover the surface of discontinuity 
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behind the wing and body, the camber surface of the wing and its 

extension inside the body. 

Stewartson (1.44) has carried out some extensive work on the 

interference between a body, consisting of an infinitely long 

circular cylinder aligned with the direction of motion, and a 

thin wing lying approximately in the diametral plane of the 

cylinder. In his numerical procedure, he used a panel distri- 

bution of sources with linear or non-linear hyperbolic equations. 

Schneider (1.45) has experimentally investigated the effects of 

interference on wing-body combinations in the subsonic, transonic, 

and supersonic speed ranges. The wings he used for these 

investigations were a rectangular wing, a sweptback wing, and a 

delta wing. 

Falkner (1.46) used the vortex-lattice method for the flow 

solution. The use of discrete horseshoe vortices with swept bound 

legs was demonstrated in a number of similar and independent develop- 

cents of the vortex-lattice method by Rubbert (1.47), Dulmovits 

(1.48). Hedman (1.49), and Belotserkovskii (1.50). Later solutions 

for steady flow have replaced the horseshoe vortex system by a 

quadrilateral ring vortex system on the mean camber surface 

throughout the lifting surfaces except near the trailing edges, 

where a horseshoe vortex is placed. This approach has been taken 

by Monical (1.51). Rubbert and Saaris (1.43) and Tulinius (1.52). 
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Rubbert and Saaris also account for thickness effects by placing 

a system of source panels on the airfoil surface, whereas 

Tulinius treats thickness by using a source-lattice system on the 

mean camber surface. A rather different finite element is the 

constant pressure panel proposed by Woodward (1.40) in his study 

to unify the subsonic and supersonic analyses of wing-body combina- 

tions. Unfortunately, Woodwards unified approach does not have 

the accuracy at subsonic speeds that it achieves at supersonic 

speeds. 

Some recent work by Kariappa and Smith (1.53) demonstrated the 

utility of a triangular facet, whose displacements could be made 

compatible with structural elements used for analysing the wing 

deformations. The Woodward (1.40) area element also appears 

adaptable to oscillatory. as well as steady, motion of lifting 

systems (see Ashley Part 1, (1.98)). Woodward (1.54) used a 

potential panel method for calculation of interference in subsonic 

. and supersonic flow. At Dornier a selection of numerical and 

semi-empirical methods in fluid mechanics has been established 

(1.55) which have application to the analysis and design of general 

aviation and transport aircraft as well as fighter type configura- 

tions and missile weapon systems in the subsonic and transonic speed 

. -regime. A great amount of effort and emphasis has been placed on 

the validation of these methods and on establishing limits for their 

applicability. In these works the panel method is also used to 

study the mutual interference between different components of a 

configuration. 
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Johnson and Rubbert (1.56) have recently developed curved panels 

with varying source and doublet strengths across the boundary 

surfaces, which are being incorporated in the PMAIR computation system 

and are described in Ref (1.56). Source and doublet strengths 

-are assigned to each panel and are determined by the solution of 

a set of linear algebraic equations relating the. singularity 

strengths to the boundary Conditions. For computational conven- 

-ience the boundary surfaces are divided into small panels. 

AERODYNAMIC INTERFERENCE IN-SUPERSONIC AIRPLANE DESIGN 

In supersonic flow the aerodynamic interference between airplane 

components is strong owingto the confined zone of influence of 

supersonic pressure fields. There is a discussion of a method 

used to optimize the interference between wing and body, wing 

and engine nacelles, and between the wing and trimming surfaces 

by E. J. Kane and W. D. Middleton (1.57). 

Early investigations (Refs 1.58 to 1.60) showed that significant 

supersonic aerodynamic interference could exist between a wing 

and body. Methods were developed to aid in exploiting this 

interference by Sheppard and Lomax (Refs 1.61 to 1.62). The 

efforts led to what is classically known. -as-the area rule, which 

-results from an examination of disturbances produced by a config- 

uration far from its axis. Also. a complementary near field 

method, based upon the work of Lighthill (1.63) and Whitham (1.64). 

is presented, while the near field method is not specially suited 
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to the design problem, it is useful in the analysis of designs 

derived from area rule techniques. Lighthill suggested that the 

pressure field -produced by a body of revolution can be computed 

using a variation of a linear method, this was developed by 

Vitham. The technique, in essencej uses linear theory to predict 

the magnitude of disturbances produced in the flow field by a 

body of revolution. and then adjusts the location of these 

-disturbances by modifying the characteristic lines emanating from 

the body. 

Carlson and Middleton have shown in Ref (1.65) that through the 

use of a simple transformation the pressure field can be 

calculated using standard numericat techniques. Flow disturbances 

along characteristic lines produced by a body of arbitrary cross 

section are related to those produced by an axial source 

distribution whose strength is function of the body cross section 

area distribution. This technique, which gives to'minimum drag 

-shapes, leads to alterations in body cross section to compensate 

for the presence of wing so as to reduce wave drag. The inter- 

ference of body on the wing and wing on the body are calculated 

as part of the procedure. 

Sigalla and Hallstaff in Ref (1.66). INichols in Ref (1.67). and 

Swan in Ref (1.68) have carried out some research on the aero- 

4ynamic interference between bodies adjacent to the wing and the 

wing itself. For instance, proper plac nt and shaping of 

emgine nacelles and proper contouring of the local wing surface 
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can result in significant improvements in airplane drag and 

pitching moment. 

Bagley, in Ref (1.23). has done some research on swept or M-wing 

planfoms with about 550 sweepback mounted on a waisted fuselage 

and cruising at about M=1.2. 

TRANSONIC PROBLEMS 

A recent method of solving flow by Hunt, (1.69) such as 

the "panel method is discussed for subcritical flow in the 

transonic regime. The aim is to cope with more complex 

geometries approaching -that of the complete aircraft and other 

more complex flow situations such as shock-boundary layer 

interaction and areas of separating flow. The 'exact' method 

which solves the potential equation for the flow with exact 

boundary conditions has the advantage that there is only one 

dependent variable with a consequent saving of computer storage 

and computer time, but there is the disadvantage that the flow is 

assumed to be isentropic. In order to allow for the shocks 

correctly in inviscid flow and to produce a satisfactory model of 

the shock-boundary layer interaction, Rizzi (1.70) has solved the 

Euler equations, using a finite volume technique. 

Refs (1.25) and (1.26) are concerned with how to eliminate or at 

least alleviate the loss in itobar sweep near the root of an 

untreated swept wing-body combination and thus, how to delay the 
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first appearance of a strong shockwave in the flow around a wing 

of a given sweepback and thickness/chord ratio. Haines has also 

carried out some extensive tests and Investigations on the design 

of wing sections for a sweptback case at transonic speeds (1.71). 

Ref (1.72) offers some numerical solutions for. tranSDnic flows 

past wing-body combinations. This inviscid transonic small 

perturbation program (1.72), treats the neit wing at tow position 

with no other allowance for the body apart from an estimate for 

a mean increase of M=0.01 due to the expansion around the body 

nose. . 

Lawrence and Flax, 1954, Ferrari 1957, also have published some 

of their survey (1.73), (1.74) articles in this field. Thwaites 

(1.75) (in Chapter XII) has summarised steady incompressible flow 

theory for both two-dimensional biplanes and infinite arrays of 

lifting airfoils. Garrick (1.76,1.77), has also made early 

contributions using the exact method of conformal transformation. 

The extension of non-linear and small perturbation solutions for 

a compressible fluid appears An Chapter 12 of Woods (1.78). The 

theory of oscillating cascades was fully developed by Sohngen and 

-Heister (1.79). for the incompressible case, and more recently, 

with' inclusion of compressibility effects by authors such as Jones 

and Rao (1.80) and Bland (1.81). The interesting attempt to 

construct non-linear incompressible solutions for general unsteady 
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motions of interacting airfoils is typified by Giesing (1.82). 

Djojod ihard jo and Widnall H-H) made some attempt to 

de termi ne _the evolution of the wake and loading of an 
k' 

isolated wing with finite thickness and incidence 
.- The 

use of slen'der'- body idealization was made the richest 

sourýc e of cat cut ations f or the interferenc eof wing - body 

combina tions by Ward (I. B4) 
I 

The most comprehensive exploitation of these concepts for forces 

and moment estimation appears in Nielsen (1.85), especially his 

Chapter 5 on interference. Chapter 2 of Ferrari (1.74) also 

summa rize st he applicat ion to combinations of wings, bodies, and 

tails. From the extensive literature on slender-body methods 

adapt ed to interacting flows one other paper by Bryson(l .86 )is 

singled out. His use of the momentum theorem of fluid mechanics 

to determine lateral forces and other stability derivatives is a 

landmark in the evolution of this subject. 

Hayes and Probstei n (1 . 87) devel oped mapy approxi mate schemes f or 

non-linear numerical methods for supersonic flight. Typically 
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-the elliptic field up to the sonic line was first determined by. 

finite-difference integration of the governing equations behind 

. some estimated position of the bow shock wave. At higher Mach 

-numbers, the Ishcr-k layer" is thin. and quasi -one-dimensi onal 

approximations like the method of integral. relations simplified 

this process and yielded the shock shape produced by a given 

body. The method of characteristics was the early choice for 

analysis of supersonic regions and still proves valuable for 

certain wholly supersonic flows (see e. g. Powers and Beeman 

As of the present writing, none of the non-linear numerical 

schemes has been applied to general wing-body combinations. The 

nost promising would seem to be that of Grossman, Marconi and 

Moretti (1.89). and Moretti and Abbett (1.90). The flow around 

blunt noses is rendered hyperbolic by introducing artificial time 

dependence, then conducting a finite-difference solution of the 

unsteady equations until the steady state is reached. For-super- 

sonic and hypersonic regions, a straightforward downstream 

"marching" computation is chosen in preference to characteristics. 

Some recent research discussed at a meeting held at the NASA Ames 

Research Centre is given in Ref (1.91). AGARD (Advisory Group 

for Aeronautical Research and Development) have devoted some 

conference time to research in these fields, especially in inter- 

ference, and this was organized by different panels of KATO (1.92) 

and (1.93). Also Ref (1.93) of AGARD contains extensive theory 
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and examples on unsteady notion of interacting systems of 

lifting surfaces (three-dimensional biplanes, ving-tail combina- 

tions, complete empennages, etc. ). which are deemed to fall 

within the present scope. 

An extension of Falkner's method to the oscillatory case was 

given by Runyan and Woolston (1.94) in an early form of the 

Kernel-function isethod. This solution was soon reconsidered in 

view of the successes of the newer vortex-lattice method. 

The extension of the vortex-lattice method has become known as 

the doublet-lattice method and resulted from similar and independ- 

ent developments by Landahl and Stark (1.37), Albano and Rodden 

(1.95), Petkas (1.96), and Houbolt (1.97). A number of further 

developments and applications of the doublet-lattice method have 

been made by Rodden, Giesing and Kalman (1.41). 

The history of finite-element methods for interacting lifting 

surfaces may be traced back to the work of Etkin 11.98) and Pines. 

Dugundii, and Neuringer (1.99) on planar wings.. In Ref (1.99) 

authors divided the planform and the disturbed area ("diaphragm") 

of the xy plane off the planform into small square elements or 

facets. Each facet was covered with an oscillatory source sheet 

of constant strength amplitude. A matrix of aerodynamic influence 

coefficients was constructed, giving the upwash w at the centre of 

each facet due to each source element whose influence could be felt 

there. In the event that the wing motion is specified and the 

1*undary condition as well, the loading can be predicted and the 
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source strengths may be determined from the boundary conditions. 

Once these, source strengths are determined. pressure distributions 

and resultant loads will be fcwnd from a linearized theory. 

Because of advances in computer technology them resulted a speed 

increase of benefit to computational analysis. Therefore, in 

1975, Chapman and Mark (1.100) for the first time believed that 

it will be possible by the late 1980's to solve the full Navier- 

Stokes equations, in spite of the complexity and variation of 

scale in different regions of the flow which have rendered 

numerical solutions of these equations impracticable to date. 
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1.4 VARIABLE GEOMETRY AIRCRAFT 

In the case of an aircraft which is required to operate 

efficiently in both the subsonic. and supersonic regimes , 
variable wing sweep is a desirable feature. 

Wings can then be swept back when the aircraft is 

being flown at high speeds and swept forward again when flying at 

low speeds. Some coutries, wth advanced technotojessuch as knerica,, 

Russia, United KingdDm, France, etc., have already been success- 

ful in constructing, flying, and even entering into military 

service, aircraft with variable-sweep wings designed to undertake 

important and difficult roles. Some of the variable geometry 

aircraft from different countries are listed below and for details 

refer to "Jane's All The World's Aircraft" Book. 

(I) MERICA 

1) General Dynamics F-111 

2) Grumman F-14 Tomcat 

3) Rockwell International B-1 

4) Bell -X-5 
5) Boeing 733 (SST) 

(II) RUSSIA 

1) Mikoyan MIG-23 

2) Sukhoi SU-78 

3) Tupolev Backfire 
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(111) U. K. 

1) Panavia-MRCA 

2) Short SB5 

FRANCE 

1 1) Dassault Mirage G8 

tEWMY, ITALY 

1) Panavia. MRCA Tornado 
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Introduction. 

A scale model of a variable geometry aircraft was built for testing 

in the wind tunnel in order to determine the basic aerodynamic force 

and moment coefficients, together with pressure distributions. The 

effect of sweep angle on the aerodynamic forces and moments was invest- 

igated and comparisons between the experimental readings and theoretical 

predictions described in Chapter (3) were made. The corresponding 

results are shown in Chapter, (9). Observations were made of the bound- 

ary layer behaviour on the wing surface. Effort were made to create an 

turbulent boundary layer on the wing surface by insertion of tripping 

devices. Some flow visualisation pictures are shown in Chapter (9). 

This chapter also contains a description of the construction of the 

model wing, glove, fuselage and othe parts. Description of the wind 

tunnel used for testing and the experimental arrangements are presented. 

The force and moment coefficients for the model were derived from 

measurements of the pressure distrubution over the surface of the model, 

using a numerical integration scheme. 

(2.2) Experimental Programme. 

The configuration that was selected for the model was 

similar to the B -1 bomber, variable sweep aircraft. The sweep angles 
0 C. tested were 00,12.50,32.5 , 52.5 , This range of sweep was selected 

to give a complete picture of aerodynamic forces and moments. The 

maximum incidence for the aircraft was selected to be 200,, although 

separation was occuring on the wing surface was about le incidence. 
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Therefore tests were carried out, starting from ý incidence and 

proceeding to 200incidence in steps of e. This range of incidence 

gives a good view of the effects on the aerodynamic forces and moments. 

2.3 Descritption of the experimental set-up. 

The general layout of the wind tunnel is shown in Fig (2.1). 

A general view of the complete test equipment and the model is shown 

in Figs (2.2) to (2.6). A turntable was made to hold the model with 

the wing hanging vertically downwards. This table is attached to the 

6 component balance ( with electro - mechanical output system) situated 

on the top of working section of wind tunnel No. 1 in the Aerodynamics 

Laboratory. An. electric motor within the balance enables the table and 

attached model to rotate on an axis set at 1/4 root chord of the wing. 

perpendicular to the turntable. This rotation allows the model to have 

a variable angle of incidence, relative to the flow direction. 

Pressure distributions on the wing, glove, and the body were measured. 

All the forces and moments acting upon the model were recorded in the 

form of electrical voltage signals by the independent computer system 

which was connected to the balance output system. 

The wing carries four drilled holes for the four different sweep 

settings. There is a hole through the top and bottom of the glove 

surfaces, so that it is possible to lock the wing for each of the four 

sweep angles to the. glove by a bolt. The pressure distributions were 

taken over the top and bottom wing surfaces, the top and bottom glove 

surfaces and the body surface. Finally, oil flow visualization tests 

were carried, and tripping devices were used to create a turbulent 

attach flow region on the wing surface. 
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(2.4) The Wind Tunnel. 

The wind tunnel is one of the most important facil ities available 

for experimental work in aerodynamics. Its purpose is to provide a 

region of controlled airflow into which models can be inserted. For 

this purpose the flow in the working section should be uniform in 

speed and direction and free from vorticity. Such perfections can 

never be achieved in practice, and the quality of a wind tunnel is 

related to the closeness to which the airflow in the working section 

approaches the ideal. 

Usually, there are two types of working section, closed or open. 

There are some advantages and disadvantages associated with these 

two types of working section. Firstly the closed working section con- 

strains the airflow within the solid walls. While the open working 

section lets the airflow expand because there are no solid walls. 

Secondly, for closed working section there is a greater efficiency (i. e. 

reduced power losses) and better control of the airflow. A closed 

working section enables measurement of pressures at points on the 

walls, while an open working section allows easier access to the 

model and easier visual study of the flow. 

For the present work a closed working section wind tunnel was used. 

This tunnel is of a low speed, closed - return type. The working 

section is 3ft high (i. e. 91.44 cm), 4ft wide (i. e. 121.92 cm) and 

5.9ft long (i. e. 179.83 cm. ). The tunnel is fitted with a screen and 

honeycomb air-straightener in the settling chamber. The air is accelerated 

by a 3.5: 1 contraction prior to entering the working section. The 

maximum airspeed of 40 m/sec (i. e. motor speed of 1,100 R. P. M. ) is 
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produced by means of a 25 hp electric motor. The speed is continuously 

variable down to 17 m/sec. The velocity distribution across the 

empty working section is within +1 per cent of the mean velocity, 

and the variation in flow direction does not exceed :t 1/2 degree, and 

turbulence level is. 0.3 %. The air is circulated by a4 bladed wooden 

fan which is driven by the electric motor through a transmission 

system consisting of a pair of bevel gears and a flexible coupling. 

The Reynolds number in experimental tests was found to be about 

(0.82 to 1.64) x 106. Fig (2.1) shows a schematic view of the wind 

tunnel . 

2.5 Calibration Of The Wind Tunnel. 

To calibrate the working section of wind tunnel No. I which was used 

for the aerodynamic tests on the model, first the wind tunnel speed 

was set to 1,100 R. P. M. The tunnel was initially calibrated, using 

a Pitot-static tube in the working section. All the pressure readings 

were directed towards the determination of the calibration factors 

K, and K2 which are defined as follows: - 

K, =P Total -P Static K2 =P Static -P Atm-os 

PA PB PTotal 
- 

PStatic 

Where PA_ reference static pressure upstream of the contraction. 

pB= 
reference " 11 downstream of " 

Hence K, and K2 were found to be 1.137 and -0.18 respectively. 
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Pressure readings were converted to C 
p, values by use of these factors 

as follows: 

cp =I(pp 
Atmos K2 

Kj P A- pB 

and in this case . 

Cp 1p- PAtmos 
+ 0.1Z 

1-137 
(p 

A- PB 

2.6 Pressure Measuring Techniques 

The total number of points at which pressure readings were taken is 

72 on the fuselage in six chordwise rows, and 48 on the glove in four 

chordwise rows. On the top and bottom surfaces there are 4 pressure 

holes along the wing chord for different sweep angle settings, in 

seven different spanwise positions. Therefore this constituted total 

of 112 holes on the top and 112 holes on the bottom of the wing surfce. 

All the pressure tappings were connected to a paraffin multitube 

manometer. A total of 24 pressure tubes were used to take pressure 

readings on the model. The reference pressure readings PA and PB 

were taken in cm of paraffin on the paraffin manometer as well as on 

the Betz manometer in mm of water. Thus, it was possible to deduce, 

the values of pressure coefficients Cp from the values of the pressures, 

for each of the pressure tappings. 



-so- 

(2.7) Conversion Of Readings To Wind Axes. 

The aerodynamic forces and moments acting o n, the model were recorded 

in forms of electrical voltages and then printed by a small teletype 

printer connected to the aerodynamic balance mechanism. Because the 

model was hanging down from the balance strut all forces and moments 

acting on the model have to be corrected and converted to the 

horizontal (conventional) principle ones of the aircraft. Some more 

details can be found in Appendix (A). 

2.8 Model Specification 

In this section, details of the model, which has a fuselage in the 

form of a slender body of revolution, are presented. The model was 

made in three main parts: a half fuselage, the glove, and the wing. 

As shown in Figs (2.2) to (2.4) the fuselage of this model is made of 

solid wood, and consists of three sections; an ellipsoidal part for 

the nose, semi-circular cylinder for the main middle section, and a 

body of revolution formed by rotating a circular arc for the tail 

position. Because of symmetry about the centre plane of the aircraft, 

a half model was used so that only a starboard glove and wing were 

made. Pressure holes were drilled along a single line on the surface 

of each part of the model parallel to the axis of symmetry and passing 

through the leading point. The surface distances between these pressure 

holes on each surface line are different. There are four holes on 

each streamwise line of tubing of the wing, and twelve holes on the 

glove and fuselage in the same direction on each line. These static 

pressure tapping were constructed by fitting brass tubes of 0.094 (3/32)in 

outside diameter into the pre-drilled pressuregrooves. 
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In order to investigate the effect of the wind tunnel on the model and the 

static pressure readings, the model was first supported vertically 

downwards, and secondly horizontally. All the differences in static 

pressures for corresponding tubes were minute and negligible, Therefore 

tests with the model mounted vertically were used for the main results: 

This decision was mde because in the vertical position tests were simpler 

to conduct and the model could be mounted directly onto the balance 

with incidence changes being produced by the balance yaw motor. All 

the details of the individual parts of the model, are set out in the 

following sections. 

(2.9) The Geomtry Of The Aircraft Model. 

Research was carried out Into some actual variable sweep aircraft 

designs and these studied for an ideal model. The investigations 

were carri ed out to fi nd a su I tabl e va riabl e geometry wi ng ai rcraf t 

having well defined and known geometry. Eventually, after a search, 

the geometry of the Bomber B-I was found to be set out in some detail 

in the aeronautical Journals Refs. (2.1) and (2.2). 

The actual wing aerofoil section geometry chosen was NACA. 64, A210 

which was selected from page 430 and 596 - 597 of Ref. (2.3). The 

dimensions and all the details are described In the following sections. 



-52- 

(2.10) Wing Model Geometries, 

The wing planform was designed to be the same as the B-1 wing, 

as shown in Fig (2.7). It was necessary to have a v-notch gap 

between the root and glove to allow the wing to cover the full 

range of the variable sweep positions. The actual wing aerofoil 

section,. was selected to be rather thin In order to be suitable for 

subsonic and supersonic design conditions. The geometry of the 

wing is shown in Fig (2.8) and the details are as follows: 

1) Leading Edge Semi-span 27.2" 

2) Trailing Edge Semi-span 22.4" 

3) Root chord 12.11' 

4) Tip chord 3.2" 

5) Maximum thickness chord 

ratio (t/c) 6.3% 

6) Aspect Ratio 3.24 
C 

Cross-sectional geometries and some drawings across the chord are 

shown in Figs (2.16) for different positions along the span. The 

wing was made of three layers, the top layer of solid hardwood 

(mahogany), the middle a thin plate of aluminium and the lower also of 

the same hardwood material. First the wing was cut in a rectangular 

shape, then machined into a triangular shape, and finally into the 

appropriate geometry. As shown in Fig (2.8), the apex angle of the 

wing was about 16.140. The angles of tip with leading edge and trail- 

ing edge are 112 0 and 84 0 and the angles between the root and the L. E. 

and T. E. are 310 and 1330 respectively. Near the root leading edge on 
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the 1/4 chordline, the pivot pin was located for the variable sweep 

and the leadind edge close to the ping was machined to follow circular 

arc shape with its centre at the pin centre. The location of this 

centre is 1.91' below the leading edge, and with a radius of 2.3" for 

an 1490 arc angle as shown in Fig (2.8). 

Four pressure tubes were sunk inside the top surface of the wing 

along the four spanwise grooves shown in Fig (2.10), see also 

F1gs (2.2) to (2.6) of the model photographs for a better view. 

These four tubes were set in the wing, so that their chordal 

position ratios were 3/16,7/16,11/16, and 15/16 of the chord 

length, all the way along the span. 

(2.10.1) Wing Model Manufacturing Procedure. 

Owing to the lack of suitable equipment such as a tilting table etc., 

which are used for making three dimensional wing and aerofoil models 

in industry, there was some difficulty in manufacturing accurately the 

wing geometry specified. Therefore a method was decided upon for 

making the aerofoil shape which was chosen for the wing. In this method, 

to make the wing aerofoil sections, two perpendicular axes were used 

to enable the milling machine operation to be simplified. One 

horizontal axis was locatid on the ox-axis of the wing, perpendicular 

to the wing leading edge, as shown in Fig (2.9). The other horizontal 

axis was located on the oy-axis, along the leading edge span. The 

wing section geometry was recalculated in tems of sections at right 

angle to the leading edge. When the wing is rotated through angles 

9 about a vertical axis (i. e. which is perpendicular to the wing plane) 



-54- 

the streamwise wing sections change. For each different angle of rotation 
9. corresponding coordinates x, y,, of the wing, and the corresponding 

values of thickness ratio were specified for these streamwise sections. 

There are seven spanwise stations along the wing with pressure tappings. 

At each station along the chord four pressure tappings were drilled 

through the wing, for different sweep settings. Therefore at each 

station A to G in Fig (2.10) , there were sixteen pressure tappings 

on the upper surface and the lower surface of the wing. However, these 

pressure tappings were reduced to fourteen for some stations, because 

of small distances between the first tube tappings for different sweep 

settings. Details of these pressure tappings allowed us to take 

static pressure readings for different angles of sweep and different 

angles of incidence, on the wing surface. 

(2.11) Glove Unit Details. 

This unit is originally made of mahogany, with a chord length of 28.2" 

and 51' span in a rectangular block shape 3" thick. It then was machined 

into an aerofoil shape, approximately that of NACA. 64. A210 Ref (2.3)-, 

with a total root chord of 28.21' and a tip chord of 16.2" and then it 

was tapered down from 3" thickness at the root to about 2.2" at the tip. 

All the coordinates and aerofoil shapes are shown in Figs (2.11). 

Once the outer glove shape had been completed, then the inside of the 

glove was sawn out, so that it made room for the wing to be swept inside 

it as shown in Figs (2.2), (2.4). (2.5), (2.6), and (2.12). A pin hole 
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of about JO was drilled throu§h the top and bottom surfaces of the glove 

for a sweep pin (hinge). This hole is located on the glove mid-span 

chord line at a chord-wise distance of 14" from the tip of the root 

chord. 

A mild steel load bracket was designed to act as a cantildver and 

this takes all the loadfrom the glove and the wing. This load bracket 

is fitted inside the fuselage at one end, and passes throuth the 

glove at the other end, holding the wing. 

(2.11.1) Pressure Tubes On The Glove Unit 

Two sets of pressure tubes on the top and two sets on the bottom 

surfaces of the glove unit are sunk inside four pregrooved channels. 

After the pressure tubes were inserted inside the grooves, they were 

covered by a quick setting epoxy adhesive, namely ARALDITE. This 

epoxy adhesive became clear after drying out and then five holes were 

drilled in (i. e. drill no. 16). The pressure tubes on each surface 

of the glove were divided into two halves, the leading edge half and 

the trailing edge half. These two halves were taken out from the flat 

side of the fuselage through a slot and by a right angle turn at the 

glove root, through the body-glove junction. Every pressure tube on 

the glove surface carries twelve pressure tapping holes in the chordwise 

direction. 
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(2,12) Fuselage Model Specification, 

The fuselage model is made of a solid mahogany. It consists of three 

sections, a semi-elliptical shape at the nose, a semi-circular cylinder 

for a body section, and a rotated circular-arc shape for the tail section. 

However, owing to symmetry of the model with its centre plane, it was 

initially decided to make only one half of the aircraft model and 

hence only starboard half was tested in the wind tunnel for the exper- 

imental purposes. 

(2.12.1) Pressure Tappings On The Fuselage. 

There were 6 chordwise pressure tubes on the fuselage surface. All 

the tubes were taken out through a slot in the fuselage. Therefore 

the static pressure distribution on the fuselage could be recorded. 

Figs (2.2), (2.4), (2.12), (2.14), and (2.15) show some geometry 

and details of the fuselage. Also photographs of the model are shown 

in Figs. (2.2) to (2.6) which present a better view. Fig (2.15) shows 

the positions of pressure tubes on the fuselage surface, and also it shows 

details of the pressure tapping holes on the fuselage., These pressure 

tubes were located on the fuselage at angles of 20,300,710,1540,1650, 

and 1780 in a clockwise direction. Each of these tubes carries 

12 pressure holes. After all the pressure tapping were installed'on 

the model it was left to dry out and eventually it was smoothed down, 

in order to reduce the skin drag. Drilling of the pressure tapping 

holes was carried out along the chord. Finally, the load bracket was 

assembled by locating it inside the slot inside the fuselage. The location 
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of this slot in the fuselage is At 42,5% length from the nose, and 

ill from the fuselage centre line. 

(2.13) Description Of The Load Bracket. 

This bracket was made of mild steel, with dimensions of 6.1" length, 

21' width, and 1.7ý height. One end of this bracket was attached to 

the flat side of the fuselage, and the other end was fixed inside the 

glove slot. Fig (2.13) shows all the dimensions of the bracket. 
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I/ F. I 

FIG-C2.7 ) THE B -1 BOMBER (VARIABLE SWEEP WING) 
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CHAPTER 

SUBSONIC FLOW ANALYSIS FOR A 

VARIABLE GEOMETRY WING 
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3.1 SUBSONIC WING/BODY INTERFERENCE 

The main object of this chý pter is to describe a method used to 

cai c ulate the steady three dimensional potential flow around t ifting non-planar 

configurations. A program based on this method is used [ater to investigate 

the effects of different wing sweep angles on the acrodynamic charac f erisfics 

0f wing /body c orrbin2fions for a subsonic f low 

The method for these calculations is based on a surface 

distribution of quadrilateral vortex rings (for convenience it 

shall be referred to here as QUADVORT). Each quadrilateral element 

has a control point at which the boundary condition of zero flow 

(vortex induced plus free stream) through the surface is specified. 

The vortex ring strengths are solved after evaluating all the 

vortex-ring influence coefficients for each control point in turn 

and applying the boundary condition. The vortex strengths are then 

used to obtain surface velocities, pressures, forces and moments. 

The method has been programmed in Fortran for an I. C. L. 1904S 

Computer using University of Salford facilities which can handle 

150 vortex-ring elements at this stage. The program is not yet 

up to production standard. 

The results which are presented, include the cases of a thin wing 

only and of a wing /body plus the glove for both the compressible 

and the incompressible cases. 
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At preliminary stages of numerical work on this program, some 

problems involving the main program, compilations and other 

difficulties were encountered. In some cases these difficulties 

were in the actual numerical work associated with input of 

different configurations, number of elements etc. 

3.2 THE BASIC PROBLEM AND MAIN ASSUMPTIONS 

The basic problem is the calculation of the velocity distribution 

on and around lifting wing and wing/body configurations together 

with the force and moment vectors. The geometry of such 

configurations may be reasonably arbitrary in the sense that under 

real flow conditions, regions of separation should be small and 

lines of separation well defined (e. g. the wing trailing edge). 

The main assumptions which were used for this purpose are as 

f ol 1 ows: 

(1) The flow is subsonic and steady. 

(2) Viscous regions are approximated by (or enclosed within) 

vortex sheets, external to which potential flow exists. 

(3) The position and shape of free vortex sheets are specified 

at the outset. 
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3.3 QUADVORT DESCRIPTION 

3.3.1 FEATURES OF THE QUADRILATERAL VORTEX-RING 

The basis of the theoretical model is a system of quadrilateral 

vortex-rings (each of constant strength) covering the entire 

surface of agiven geometry, e. g, wing, wing-fuselage, FIG (3.1a) - and 

extending to infinity downstream from the line of separation. 

Vortex-rings representing the wake close at infinity downstream 

since the conditions in the wake are constant (in steady flow). 

This system of vortex-rings is a discrete representation of the 

vortex sheet which, in classical theory, replaces the surface and 

wake. 

Adjacent sides Of quadrilateral elements are coincident, hence 

the effect of using closed vortex-rings is the same as that of a 

vortex lattice; the strength of each vortex element in the lattice 

is given by the difference in the strengths of adjacent vortex- 

rings. However, a closed vortex-ring is self sufficient, since it 

satisfies all the vortex laws, and provides a more suitable basis 

for numerical handling on a computer, particularly for complicated 

shapes. 

The velocity potential due to vortex-ring (of any shape) is 

identical to that due to a uniform distribution of doublets over 

any surface bounded by the ring (Art. 150 Reference 3.2) the 

doublet axes being normal to the surface. Thus the vortex-ring 
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model is equivalent to a piecewise constant distribution of 

(normal) doublets over the surface and wake. The vortex model, 

however, provides a more intuitive physical picture of the flow. 

3.4 METHOD OUTLINE 

There are four distinct steps in the method: - 

Geometry: reduction of the input surface coordinates 

into quadrilateral vortex-ring element parameters. 

Influence Coefficients: a control point is taken in 

each element in turn and the induced velocity influence 

coefficients at that point are evaluated for all the 

vortex-ring elements. 

Vortex-Ring Strength : the vortex-ring 

strengths are calculated such that the zero normal velocity 

condition (vortex induced + free stream) is satisfied 

at all the control points. Trailing vortices, which 

for the first solution are assumed streamwise, are then 

divided into a number of straight line segments which 

are relaxed into the local flow directions. The change 

in the vortex wake influence at the control points is 

then evaluated and a second solution obtained for the 

vortex-ring strengths. The process is repeated by 

iteration. The number of iterations is an input 
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parameter and generally two iterations are 

sufficient for practical purposes. 

(IV) After vortex-ring strengths are evaluated the 

lift, vortex drag and moments are calculated. 

Velocity-field calculations are performed at the 

end of the programme if required. 

.5 GEOMETRY 

3.5.1 SURFACE PANELS 

The input of surface coordinates for 3-D problems can be extremely 

lengthy and can give rise to mistakes which can be expensive in 

terms of delays and computer re-runs. An attempt has been made 

here to simplify the input by dividing the surface up into a number 

of panels and to generate as many of the surface points as possible 

within the Computer. At this stage linear interpolation between 

input points has been used; more sophisticated schemes may be 

introduced later. 

Two basic panels are provided for: 

(i) Double curvature panels require all vortex quadrilateral 

corner points to be input. 

(ii) Single curvature panels are defined only at the "root" 
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and "tip": intermediate vortex quadrilateral corner 

points are derived within the program by linear 

interpolation. 

Surfaces can be built up from a number of such panels FIG (3.1b). 

The distribution of quadrilateral elements in these panels must 

follow certain rules and these are discussed later. 

3.5.2 WAKE GEOMETRY 

Trailing vortex lines are approximated by a number of straight 

line segments, the last segment being semi-infinite. They are 

defined at the "root" and "tip" of each wing panel and intermediate 

lines are obtained by linear interpolation. 

3.5.3 ELEMENT PARAMETERS 

Each quadrilateral vortex-ring element is specified by a number of 

parameters: 

(1) The x, y, z coordinates of the four corner points. 

(II) The control point, at which the boundary condition 

is specified. 

(III) The element area, S. 
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(IV) The components of the unit vector n, normal to the 

surface at the control point. 

The element area and unit normal vector are obtained, i. e. 

referring to Sketch (3-1) 

1 
Area of parallelogram -. s 

2 

ljýljx 11ý21X Sin6 
22 

S= 1-IR11 IR 
Sine 

2 1- ' -21 

vector or cross product R1xR2 1- 1ý11'1ý21 Sin6. n where n is 

unit vector normal 

both vectors R1 and 

E2' 

Hence RxR=S. n 
-1 -2 

2 Therefore s= Sn. Sn RxRxR 
4 -1 2' 2 

I=/ (51 R 2)*(ýl xR 2) 

2 
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!, xR2 
Hence n= 

2. S 

The control point is taken as the mean of the four corner points 

at this stage - this is discussed later. 

3.6 INFLUENCE COEFFICIENTS 

3.6.1 INDUCED VELOCITY 

The induced velocity due to a line vortex segment in vector 

notation is, referring to Sketch (3.2): 

,b 
x (r. ds) 

3 4r 
a, 

Reference (3.3) 

where T is the density of vorticity per unit length of filament, 

and: 

a as 

ds = sdcx 
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Thus q reduces to: 

Taxba. b 
q=- .1....... (3.2) 

41T axb. a xb 

where 1ý1 = výa-. ý , the modulus of vector a, etc. 

For a quadrilateral vortex-ring equation (3.2) is used four times. 

Since most vortex line elements belong to two neighbouring quad- 

rilaterals (with opposite vorticity signs), the induced velocity 

coefficient for each line segment need only be evaluated once and 

the contribution added to or subtracted from the neighbouring 

quadrilateral coefficients. 

A feature which has not been included in the program at this stage, 

but which should eventually provide a useful reduction in run 

times, is the possibility of considering vortex-ring elements which 

are well removed from a control point as elemental doublets. 

3.6.2 SEMI-INFINITE VORTICES 

Vector b in equation (3.2) can be written 

b=b. t 

where t being a unit vector. 
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Equation (3.2) then becomes: 

raxta. t 

4-ff axt. a xtb Ti 

Thus the semi-infinite line vortices: 

-raxtýIIa. 
t' 

q Lim +1-I- 1-1 4Tr axt. a xba 

raxta. t 
i. e. q. I--........ (3.3) 

4Tr axt. a xta 

and in the limit as b tends to -, t is the unit vector in the 

direction of the vortex. 

The vortex-ring adjacent to the trailing edge or any line from 

which afree shect springs. is thus treated in a special way: the induced 

velocity for such elements is the sum of the influence of a number 

of straight line segments (equation (3.2)) and two semi-infinite 

lines (equation (3.3)) as shown in Sketch (3-3). 

Thus the velocity induced at a control point by a given vortex-ring 

- whether closed on the surface or extending to infinity can be 

written: - 
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q=rg 

where g is the induced velocity coefficient for the influence of 

the vortex-ring acting at that control point. 

3.6.3 CASES OF SYMMETRY AND GROUND EFFECT 

In many problems, e. g. wings and wi ng-fusel ages at zero side-slip , 

considerable advantage can be taken in terms of number of elements 

by the fact that surface elements are reflected across the plane 

(or planes) of symmetry. Thus only one half of the problem need 

be represented by surface elements (for one plane of symmetry). 

The influence coefficients of image elements are evaluated by 

considering the velocity induced at the control point image by the 

real element and reversing the sign of the velocity component normal 

to the plane. The influence coefficients of corresponding real and 

image elements are added together since the vortex strengths are 

equal. The same procedure can be applied to the reflection across 

the ground plane in ground-effect problems. 

3.7 SOLVING FOR VORTEX-RING STRENGTHS 

3.7.1 THE BOUNDARY CONDITION 

If there are N vortex-ring elements, each element control point is 

taken in turn and the induced velocity coefficients evaluated for 

all N vortex-rings. 
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The total velocity at the i control point is therefore: 

N 
yj + J1 lrk gjk} ........ (3.4) 

where UCO is the onset velocity 

Qjk is the induced velocity coefficient for the 

influence of the kth vortex-ring acting at 

the jth control point. 

(These vectors are stored on magnetic tape 

for later use in the program). 

rk is the "strength" of the kth vortex-ring 

The boundary condition of zero flow through the surface is now 

specified 

Yj . 2j = 

where n being the unit normal vector to the surface at 

the jth control point. 

Thus from equation (3.4) 

E {r 1 
k=l k gik '% -Co 
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There are N such equations, one for each control point, i. e.: 

ý 
{r A+B0i=1,2, N ....... (3.5) 

k=l k' ik) i= 

A jkl j, k=1,2, --- N are now (scalar) influence coefficients 

for the normal components of induced velocity. 

Bjs i=1,2 - ----- N are the normal components of free stream 

velocity at the control points. 

3.7.2 METHOD OF SOLUTION 

Equation (3.5) could be solved by standard matrix inversion schemes. 

For N greater than about 100 however, storage space in the computer 

becomes a major problem and matrix partitioning would have to be 

used. An alternative procedure would be to adopt a successive 

approximation scheme, but this has often shown a slow convergence 

for aerofoil section problems using a 2-D version of the A. M. O. 

Smith method (3.4). 

For QUADVORT a direct method has been developed which appears to 

offer advantages in terms of computer storage requirement and in 

speed of solution (particularly for this type of problem where 

matrix A jk is conveniently formed row by row). The procedure is 

based on the successive orthogonalisation (or vector) method for 

solving simultaneous equations by Purcell (3.5) 
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Briefly, take the jth equation: 

rIA il + r2 A j2 + r3 A j3 + --- + rN A iN +Biý 

This can be considered as the dot product of two vectors: 

Ci. 2 =0 

where Ci= (A jr A j2'---' A jN' Bi) 

2= (rl9r 2' r 3'---' r N' 1) 

The dot product of vectors is zero if the vectors are orthogonal. 

Thus, in the procedure, sets of linearly independent vectors are 

constructed which are successively orthogonal to each row Ci. 

When all rows have been considered there is one vector, D_, which 

is orthogonal to all CP j=1,2, ---, N and which thus contains the 

solution for F. 

The computer storage requirement is low because only one row of the 

matrix A is required at a time (and once operated on can be over 

written) and an area Of size ( N)2 is sufficient to hold the relevant 

data for the intermediate sets of vectors. The procedure has been 

developed to hold this area on disc so that in principle a very large 

number of equations can now be solved directlY. 

The presence of the trailing vortex sheet makes the problem non- 

linear since two basic unknowns - the geometrical shape of the 
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trailing sheet (which is a streamline surface) and the overall 

distribution of vorticity - are independent. 

Linearised solutions of the wing-problem have assumed the trailing 

sheet to lie in the plane of the wing, this is reasonable for 

problems having small angle of incidence. For more general 

solutions, however, the trailing vortex sheet can be greatly dis- 

torted and displaced from the wing plane. 

An iterative scheme has been developed whereby the free trailing 

vortex sheet is progressively relaxed into local streamline 

directions: an initial guess for the vortex sheet location enables 

a vortex-ring strength solution to be obtained, this solution is 

then used to calculate streamline directions in the vicinity of 

the wake; the vorticity vectors can then be relocated and a 

second vortex-ring strength solution obtained and so on. 

At each stage of the iteration only the new set of free vortex 

sheet influence coefficients need be calculated - the solid surface 

coefficients remain constant. (A wake relaxation scheme has been 

demonstrated for lifting line models by Butter (3.6), and also 

Joppa (3.7), and should be feasible for the lifting surface method). 

The above discussion mainly applies to the wing wake. Treatment 

of the fuselage wake is less clear, although it should be included 

in a wake iteration procedure. The fuselage can be represented 

either by an infinite vortex tube or by an annular wing. In our 
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case the latter method is used, and here the vortex-ring 
distribution starts at the front of the fuselage and ends in 

semi-infinite line vortices, FIG (3.2); the set of trailing 

vortex lines is considered as a crude representation of the 
fuselage wake. 

3.8 VELOCITIES AND FORCES 

Substitution of r,, k=1,2, ---, N in equation (3.4), (after 

recalling the induced velocity coefficients 9j k from the magnetic 
tape store) gives the tangential velocity at each control point 
due to the free stream and vortex-ring elements. To this must be 

added the contribution Av from the local velocity sheet which the 

concentrated vortices were assumed to replace initially. This 
further contribution arises from the difference in tangential 

velocity across the vortex sheet-onlY the mean, value, vm has been 

computed at this stage, see Sketch (3.4) 

ie 
YU = Ym+ AV 

YL = Ym - AV 

"SECTION" OF 
VORTEX SHEET 

SKETCH (3.4) 
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The magnitude of vorticity at the control point is 

=- ! LI 
=2 

Av I= -y/2 

-y is derived from the vortex-ring strengths by assuming each 

vortex to be spread evenly across its 'element width', Sketch 

(3.5). 

Y k-I y k+l 

Fk-l kr k-I ontrol points 

a0 

-1 

11 

K- IK F"r 1 F, Ir f- 

SKETCH (3.5) 

= 
rk - rk-1 

etc. kk 

The direction of the Av vector associated with the local vorticity 

is taken normal to the vortex. 

Thus for each quadrilateral vortex, the surface vorticity contri- 

bution can be calculated at the mid-point of each side. A linear 
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interpolation between the sides provides the contribution at the 

control point, where the final velocity vectors (upper and lower 

or inner and outer) are thus obtained. Alternatively the local 

vorticity contribution could be obtained directly at the control 

point by considering the vortices as replacing segments of linear 

vorticity, rather than uniform, and solving for the corner -y 

values directly. (SKETCH 3.8). 

The forces and moments can be obtained directly from a summation 

of the forces and moments of each surface vortex segment in the 

system: 

Here the force on a vortex segment is: 

E=pvx (F S) See Sketch (3.6) 

where v being the local velocity, which is taken as the mean of 

the control point values on either side of the segment . 

V 

M 

SKETCH (3.6) 



- 94 - 

The moment of this force about a point P is 

RF 

R being the position vector of the centre of the vortex, say, with 

respect to P. 

SurTming all such contributions gives the overall forces and moment 

vectors. If the summation is done in strips say across the wing 

chord, then the spanwise load distribution and centre of pressure 

locations can be derived. In fact the total circulation at a 

section on thin wings is the trailing edge vortex-ring element, 

strength (for thick wings it is the resultant of trailing edge 

element strengths). 

3.8.1 VELOCITIES AT POINTS OFF THE SURFACE 

The F solution can be used to obtain velocities at any point in the 

field of flow away from the vortex sheets. Equation (3.4) is used 

after calculating new influence coefficients g at the points 

required. 

3 .9 TWO-DIMENSIONAL FACTORS AFFECTING THE DISTRIBUTION OF SURFACE ELEMENTS 

3 . 9.1 KUTTA CONDITION 

In Falkner's (3.8) vortex lattice method the Kutta condition was 
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satisfied by a suitable choice of chordwise loading functions. 

Later vortex lattice methods due to Hedman (3.9), 

Belotserkovskii (3-10) and Rubbert (3.11) solve the vortex 

lattice strengths directly without the aid of loading functions; 

the Kutta condition is now satisfied (on a 2-D basis at least) 

by a suitable placing of the bound vortex elements and the points 

at which the boundary condition is specified. It has been shown 

Refs. (3.9), (3.10) for 2-D conditions that if the chord is 

divided into a number of equal elements then this aerofoil theory 

lift and pitching moment values are obtained when the bound 

vortices are placed at panel quarter chord points and the boundary 

condition is specified at each element three quarter chord point 

(see Sketch 3.7). 

PANELS 

L. E Iz -I 

0.25k 

n .7 5Z 

VORTICES 

SKETCH 3.7 

3.10 QUADVORT ELEMENTS 

CONTROL POINTS 

T. E 

For the QUADVORT model it is more logical to consider each 

quadrilateral as an element of surface rather than forming a 

separate system of panel elements. In this case control point 

location is discussed in relation to the quadrilateral corners. 
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Also the local normal vector at the control point is taken as 

the nomal to the quadrilateral and approximates very closely 

to the actual surface normal vector at the control point 

location. (Special care must be taken when considering the 

normal vectors for the panel system on curved surfaces since 

the slope of a panel does not approximate to the slope of the 

actual surface at the control point). 

For thin wings the vortex-ring distribution can be arranged 

to follow standard vortex lattice practice in that the leading 

element vortex is set back a quarter element width from the 

leading edge and the last control point is placed a quarter 

element width upstream of the trailing edge. 

3.11 VORTEX SHEET REPRESENTATION 

Alternatively the basic vorticity distribution in 2-D can be 

approximated by a number of straight line segments 

(Sketch 3.8) which in turn can be approximated by 'point' 

vortices positioned at the mid-point of each segment. it 

can be shown that with equal segments control points should be 

placed mid-way between vortices. 
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IBUTION 

ION 

Yk+l 
9 7- , 

-ti ces 

control 
points 

SKETCH 3.8 

T 1his approach has been applied to the 2-D thin aerofoil problem 

using 20 equal segments across the chord and the result compared 

with that of exact thin aerofoil theory. The error in CL was 

0.5% and the general order of error in vorticity values was 1.5%. 

The largest errors in vorticity occurred at the first and last 

seginents where the linear approximation to the exact distribution 

(Y aE) is poor unless a very large number of segments are used. 
/i 

x- 

i 

Considering the exact distribution it is found that the mean value 

of vorticity over the leading edge segment actually occurs at 0.25Z 

of the segment (which is in close agreement with the 25% panel width 

adopted for standard vortex lattice work). Taking the vorticity 

value which was calculated from the vortex at the first segment mid- 
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point and transferring it to the 0.25k point gives close agreement 

with the exact value there. (i. e. the calculated 'point' vortex 

strength divided by the segment width equals the mean vorticity 

level over the segment, as it should). A similar 'adjustment' is 

possible at the trailing edge. 

Although the above considerations are based on equal segments, 

reasonable results are obtained using unequal segments provided 

these are distributed in a regular manner (e. g. a cosine 

distribution). When unequal spacing is used the 'point' vortex 

induced velocity (at the mid-point between vortices) does not match 

exactly the velocity induced by the linear vorticity segments. 

A small control point displacement, which is a function of the 

ratio of neighbouring element widths, is being considered in the 

hope of reducing the error so that more general element 

distributions may be used. 

3.12 THREE-DIMENSIONAL FACTORS 

3.12.1 CONTROL POINT LOCATION 

the two-dimensional vorticity considerations have been used as the 

basis for control point location in QUADVORT, with the result that 

control points are placed at the mean of the four corner points of 

each quadrilateral vortex-ring. Thus the 2-D considerations are 

satisfied at least for rectangular shaped elements. However, for 

more general quadrilateral shapes this may not be the correct 
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location. In the case of a rectangular element the mean point 

is also the interior point at which the velocity induced by the 

vortex-ring is a minimum. It is possible that the minimum 

induced velocity point is a better criterion for control point 

location than the means of the corner points: a velocity rather 

than geometrical criterion would seem to provide a more logical 

basis for the control points location. 

3.12.2 WING TIP 

The spanwise distribution of elements on thin wings requires 

special treatment. Rubbert (3.11) has demonstrated that with 

the vortex lattice method the tip vortices should be inset by 

one quarter element width from the actual tip to maintain 

consistent results. This has not been proved rigorously. It 

could be argued however, that since each panel element of the 

wing is in effect being represented by a lifting line and since 

such representation for an isolated panel would have trailing 

vortices spring from approximately a quarter panel semi-span in- 

board from its tips (1-7r/4) of the semi-span for elliptic loading), 

then such an inset should apply to all elements which have a free 

tip. 

The inset of tip vortices also applies for thick wings in which 

the tip has been left open. 
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3.13 OUTLINE OF THE SUBSONIC PROGRAM AND DATA PREPARATION 

The subsonic program can be applied to a wide range of problems 

in principle e. g. wing/flap with or without tailplane or fuselage 

in free air or in ground effect or inside a wind tunnel. 

The wing is represented by a mean surface distribution of quad- 

rilateral vortex-ring element as previously described, shown in 

Fig (3.4) the strengths of which are determined after applying 

the boundary conditions of zero normal components of velocity 

(i. e. free-stream plus vortex induced) at a control point in each 

equadrilateral element. 

Trailing vortices, which for the first solution are assumed stream- 

wise, are then divided into a number of straight line segments 

which relaxed into the local flow directions. The change in the 

vortex wake influence at the control points is the evaluated and a 

second solution obtained for the vortex ring strengths. 

The process is repeated by iteration. The number of iterations is 

an input parameter and generally two iterations are sufficient for 

practical purposes. After the vortex ring strengths are evaluated 

the program calculates lift, vortex drag and moments. 

3.13.1 SUBSONIC DATA PREPARATION 

A problem may be represented by up to 3 components (e. g. a wing. 
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tailplane and pylon) on which up to 150 vortex ring elements 

and up to 31 trailing vortices may be placed (total). For 

the 
symmetrical problems, coordinate system is shown in FIG (3.3). 

Each component is defined at a number of spanwise stations (up 

to 10 per component). Figure (3.4) and linear interpolation is 

employed within the program to generate additional points on the 

surface between the stations spanwise intervals may be either 

equal (and generated within the program) or unequal (and input 

separately). The maximum total number of spanwise intervals 

(columns) on a component is 30. 

At each station x, y, z, coordinates of the leading and trailing 

edges are either generated within the program (using linear inter- 

polation) or input sepirately. The maximum total number of chord- 

wise intervals (Rows) on a component is 20. The number of Rows 

(NR) and number of columns (NC) on a component should be chosen to 

give an element aspect ratio of one or higher. 

Generally the minimum values for NR and NC should be 4 and 10 

respectively. If a component is close to another (i. e. within 2 

or 3 element width) then the elements should be closely matched 

across the gap so that the control points on one surface lie 

approximately equi-distant from the nearest vortices on the other 

surface. A similar restriction is necessary when a component lies 

close to the wake from another component. 

The length of trailing vortex segments should be of the order I to 
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3 times the distance apart of their upstream ends. This is to 

ensure 6 convergence of the vortex movements. The segment 

representation should go a short distance beyond the region of 

interest. 

Flaps are defined (if required) by the hinge line(i. e. row)and by 

the spanwise one(i. e. columns)which contains the flap-edges 

FIG (3.5). Within the program additional vortex ring elements are 

generated at the flap edges FIG (3.6) and the flaps deflected to 

the specified angle. (Note that this deflection opens a gap at the 

centre-line when the hinge-line is swept). Also velocity field 

calculations are carried out (if required) over a 'box' defined by 

four position vectors FIG (3.8). The vectors between the first 

point and the other three points defined the base edges of the 

scanning box and are divided into a number of intervals. The 

intervals define grid lines within the box FIG (3.8) and the 

velocity vector is calculated at every point where grid lines cross. 

The local velocity contribution (tangential to sheet) at trailing 

vortex sheet intersections is included in this calculation. 

3.13.2 SUBSONIC DATA INPUT 

The data is input on paper tape which is in free fomat, or can be 

punched on cards or could be documented in a file. The subsonic 

program is dumped on magnetic tape, All the corresponding results 

are saved separately during the program loading in three 
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stages. Whichever results are needed for any calculation purpose 

can be accessed. The following control cards (data input) must 

be kept in order, because each control card (or line) corresponds 

to a certain specific input which corresponds to "Read" statements 

in the main program. The square bracketed items may be input 

either on separate lines or together on one line for the bracket. 

CARD NO. 

1 

2 

3 

5 

6 

8 

READ STATEMENT SPECIFIC PURPOSE 

NCAS Number of cases. All the follow- 

ing data must be input for each 

case. (i. e. wing, tailplane, 

fuselage). 

HEADING Up to 50 characters of text. 

ALPHA>O Angle of Incidence (of x-axis) 

in degrees. 

PHI = 0.0 Side slip angle in degrees (not 

yet tested) 

SW Reference area (Total effective 

area of the wings) 

CBAR Reference chord (mean chord) 

Semispan Reference semispan 

(RMP(I), I=1,2,3) x, y, z coordinates of reference 

moment point. 
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CARD NO. 

9 

READ STATEMENT 

D 
max , 

AMACH 

SPECIFIC PURPOSE 

D 
max = 1000.0 (This controls 

the use of a simple for 

field equation to reduce run 

times (see Reference 3.12) 

(AMACH is Mach number for 

compressible flow) 

10. 

II 

12 

13 

14 

15 

NWT Number of components (up to 3) 

(wing must be component 1) 

IT Number of iterations for wake max 
shape (suggest 2) 

is (=O for no symmetry 

(=l if z-x plane is plane of 

symmetry). 

IG (=O for free air 

(=I for ground effect. 

NX (=O if velocity field calcu- 

lation not required. 

(=l if velocity field calcu- 

lation is required. 

H If IG=l, height of origin above, 

the ground FIG (3.4). If IG=O; 

No input. 
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CARD NO. 

Input 16 

these two 
cards only 

If NX=l 
17 

READ STATEMENT 

(NXP(I), I=1,2,3) 

SPECIFIC PURPOSE 

Number of intervals on each edge 

of scan box. 

((RX(I, N), 1=1,2,3), Four position vectors defining the 

N=1,2,3,4) scan box 

Then for each component (i. e. wing or fuselage) all the following data 

must be input. (Items 18 to 30). 

CARD NO. READ STATEMENT SPECIFIC PURPOSE 

18 NST Number of stations defined on com- 

ponent, 2< NST 4 10 

19 NPT Number of vortex ring corner points 

chordwise across the component, 

2 ic NPT ý 21 (=NR+I) 

20 For each station (1 to NST) input A, B and C below 

A) XL YL ZL XT YT ZT Leading edge and trailing edge co- 

ordinates. 

B) 

Input =I 

All vortex corner points, x, y, z coords. 

input (with quarter-element chordwise shift). 

2- input x, z coords. only - y constant. 

3- input x coords. only -y and z constant 

4- no coords. input; program generates corner 

points using linear interpolation between 

L. E. and T. E.; equal segments and quarter 

segment shift are automatic. 
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CARD NO. READ STATEMENT SPECIFIC PURPOSE 

c MI) Y(I) Z(I)p 11- ----- NPT) if INPUT =1 

(X(I) Z(I) ,11. NPT) if INPUT =2 

(X(I). I- ----- NPT) if INPUT =3 

NO INPUT if INPUT =4 

21 SEG Trailing vortex segment length 

(suggested value 0.5) 

NPVT on Number of points defining a 
one - 
line trailing vortex (up to 30 - but 

watch the run time) suggested 

value 2 

22 TIP Tip edge inset in element 'spans' 

(suggested value 0.25) 

NTIP on Number of additional trailing vor- one - 
line tices at wing tip edge. (i. e. for 

tip edge separations at large 

. 
incidence). 

23 INTERP =1 program assumes equal inter- 

vals between defined stations, 

and sets tip vortex in from 

the edge by the TIP value 

2 leading edge column point 

y values must be input. The 

tip inset is performed in See 

the program as for INTERP=l Item 
29 

3 As for 2 but input z values 

(e. g. for a tin) 
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CARD NO. READ STATEMENT SPECIFIC PURPOSE 

24 (NINT(I), I=l ------ (NST-1)) Number of intervals between 

stations I and I+l. Maximum 

total number of intervals on 

a component is 30. 

25 NFT Number of flaps on the compon- 

ent. (up to 5 but 2 is the 

maximum tried so far) 

26 MF 1 MF 2 Inboard and outboard columns' 

which contains flap edges. only 
if 

27 NRFH Row which contains flap N FT 
- Repej4 

hinge at upstream edge. 
for 
each 

)flap, 
on ths, 

component 

28 6f Flap deflection normal to 

hinge line, in degrees. 

Positive downwards. 

29 No input if INTERP =1 

Y(I) if INTERP =2 1=1 ------ (TOTAL no. of columns plus 1) 

Z(I) if INTERP =3 

30 XYZ Coordinates of 2nd point on 

vortex No. I when defining 

wing geometry only. 
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3.14 COMPRESSIBILITY 

In order to introduce compressibility effects, use may be 

made of transformation methods which can extend the application of incompressible 

flow methods within the subcri tic2l Mach number range. One of a number 

of existing approximate compressibility corrections may be employed, for 

exampt e the Prandtl-Glauert rule on aerofoil sections and Gbthert 

transformation for wings and fuselages. The simple 
Gbthert transforwtion is accurate enough for a linearised compress- 

ible flow in the range of 0.4 < Mco < 0.8, thus this theory is employed 

here for both fuselage and wing. Refs (3-13), (3.14), (3.1-5). 

3.15 COMPRESSIBILITY CORRECTIONS 

3.1s. 1 LINEARIZED COMPRESSIBLE FLOW 

To derive the Othert linearized compressible flow correction 

(Ref. 3.13 ), consider the velocity perturbation potential ý which 

satisfies the equation 

(1 _. M2) 
ý2ý 

+ 
1! 1 

+ 
2.! j 

=0 
. @X2 ay 2 qZ2 

(ýý <I for subsonic flow) 

.................. 

We 

note fbat in compressible flow the linearized pressure coefficient is 

gi ven by: 

Cpc 2 3ý (3 . 7) 
ax 
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where UCO is velocity of undisturbed flow. 

W, Z 

m 

X, U 

SKETCH (3 .9) 

Also the velocity components are: 

U,, +ý (b ýx 

v= 

az 

If the x coorýinate is trarsformed by writing ý= x, leaving 
I- 

-M 
z 
00 

y, z alone and 0 is changed to ýi (suffix i stands for incompressible) 

then the basic equation of flow potential becomes: 

a 2ýi 

ý 

a2ýi 

+ 

a2oi 
0 

....... (3-b 
a ý2 ay2aI 
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Using the flow tangency condition then, we have 

w=1 ao ýf 
u 
co 

Lý. Dz ax 
(3 

where z= f(x, y) is the equation of the wing surface. 

Transforming equation (3-7) to the incompressible state willgive 

2 cpi =-- 
u 
Co 

(3.10) 

For the boundary condition that flow should be tangential to the 

surface of wing we must h2Ve 

w 
U 

Slope of surface 

Now the tangency Condi ti on becor4(E x 
- M: 

co 

1 3ýi ýf af 

;z CO ax 

If X 2 
then equation (3.11) can be modified to 

M 
CO 

Dýc 
12) (3 

U 
CO 

az . ....... xU OD 
z 



Therefore the pressure coefficient 

for an incompressible condition 

will become: 

22A --M", - 
cpi 

uco 

z 

Incompressible 

SKETCH 3.1,0 

23ý 
M2) c) 

= (1 _ M2) Cp 
Co Uýx 

Co 

Hence 

cpc = 1/(l - M') Cpj 
w 

z 

Compressible 

P-1 

For further det2ilS of c compressibility c. -rrecticns on subsonic forces 2nd 

moments refer to Apper. ýýx tB) 
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Grid lines 

9 

R3 

Planes 

The base eage vootors RI , R2 R3 are formed from the four corner 
points given in the input (Item 77ý. 

R1 R2, U are dividad into a n-=ber of equal intervals according 
to the input values of NXP, . NXPZ , 1-,, X-P. 3 respectively (Item 16). 

All the points genereted within the box by the a-- intervals are 
Scanned; the scan moves along grid lines parallel to a and intervals 
on R2 change next followea by those on RI. 

FIGURE ý3-. 8)' THE 'BOX'FOR VELOCITY FIELD CALCULATION 



- 123 - 

CHAPTER 

AEROFOIL DESIGN AND AERODYNAMIC CALCULATIONS 

FOR THE WIND TUNNEL TEST MODEI 
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4.1 INTRODUCTION 

This chapter is devoted mainly to the design of the aerofoil 

section for the wing model and to the use of thin aerofoil 

theory in the final aerodynamic calculations. The aerofoil 

camber line and thickness distributions for all the variable 

sweep cases are used, in which to find the best curve fitting for the expe, -ALnt2l, 

pressure difference coefficients Jin order to evatu2te secticn lift along the wing span -A 

programe is written for this purpose vvhicý evaluates the pressure distributions 

.C Irom the experimental data and to feed them into the program 

for the final calculations of lift force. All the other aero- 

dynamic forces and moments were measured experimentally and 

their corresponding graphs are shown in the results chapter. 

4.2 DESIGN OF CAMBER LINE AND THICKNESS FUNCTION FOR THE WlNG 

In order to calculate the camber line equation and the thickness 

function for the wing, we need to find the equation of the 

wing surfaces for all angles of sweep. To do this, first of all 

the general equation is derived and then the surface equation for 

our chosen angles of sweep is found. Now, the camber line and 

thickness function ordinates are given by 

Camber Line = (Y u +y L )/2xC 

Thickness Function = (Y U-YL) /2xC 

(4.1) 

(4.2) 
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where YU and YL. are the surface'iquations for the'ýpper'and 

lower sorfaces respectively, and C is the chord length. 

4.3 SURFACE EQUATION FOR VARIABLE SWEEP 

Considering the wing planform shown in Sketch (4.1) 

yz 

1 

SKETCH 4.1 

chord- 

In this case *= 16.14 09a=4.035 09y= 90 - 16.14 = 73.86 09 

0 102.105 

The angle of sweep is measured at the 1-chord line, so that chord 

length will vary as the angle of sweep e changes. Thus their 

dependence can be represented by the following equation: 

Cs c (C x Siny)/Sin (e) s9.9. o (4-3) 

Si 
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Knowing that the geomWy of the wi. hg can be repýesented as 

si -Cx Cot(e 

where S is the leading edge length. and 

s2=Cx Cos N 0) 

where S is the trailing edge length, 2 

s3=S2-Cx Sin(a+e)/Siný 

....... (4.4), 

(4-5)9 

e.. (4.6)9, 

equation (4.6) can be modified by substituting S2 and non- 

dimensionalising as follows: 

S3 
=I- (Sin(*) x Sin(a+e))/Sin(ý) 

S2 

Here 0 is angle of sweep, which in the experiments is chosen to 

000 be 12.5 , 32.5 , and 52.5 

The wing surface coordinates can be given by the following equation 

for any a, ngle of sweep: 

Ys YxC Siný x Sin(cc48) X 
(4.7) 

cs c _FS Sine 
-c 
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Equation (4.7). can be simplified'by'substituting from equation 

14-3) . SO that the surface coordinates'can be'6valuated from a 

2-Dimensional aerofoll section as follows. 

ys Y Sine.. ' Sihý. Sin(a+0) -] 
-x- x cC Siny Sine s 

or 

ys" Y [Siný 
- Siný x Sin(a+B) /Siny 

csc 

where 
Y% 

and 
XC % values are shown in Table (4.1) from Ref (2.3). 'C 

This equation at a 00 sweep can be shown to be: 

ysy 
I- 01788 - 0.02036 x ........ (4.9) 

sI 

In this case values of 
YS/Cs % are shown in Table (4.2) for the 

upper and lower surface in Y U/C and 
Y L. /C form respectively. 

Equation (4.8) can be applied for selected values of sweep angle 

as follows: 

4.3.1 SURFACE EQUATION FOR THE WING AT 12.50 SWEEP 

The corresponding equation will be : 

YS y 
041 - 0.08232 

s 

ic 
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For this case all the*new values'of YU and Y L. are thown. for 

the upper and lower surface ire shmkn in Table (4.3). 

4.3.2 SURFACE EQUATION FOR THE WING AT-32". 50 SWEEP 

Similarly equation of surface coordinates'for 6= 32.5 0 sweep 

can be deduced to be: 

! 
-S x (0.976 - 0.1723 (4.11) 

Cs c 

All the surface geometries, i. e. 
y U/C and 

y L/C are shown for the 

upper and lower surface in Table (4.4). 

4.3.3 SURFACE EQUATION FOR THE WING AT 52.5 0 SWEEP 

Finally, the surface equation for a sweep angle of 52.5 0 can be 

represented by the following form: 

sx (0.793 - 0.24142 'Es- ýc 

The corresponding values of 
y U/C and 

YL/C 
are shown in Table 

(4.5). 

By evaluation of equations (4.9) to (4.12) all the corresponding 

surface coordinates for different sweep can be deduced, and 
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consequently the corresponding thickness-functions and camber 

lines can be evaluated by evaluation of equations (4.1) and 

(4.2). In Figs. (4.1) and (4.2), the'thiCknes§/chord 1 
ratios C 

are shown'about 6% and the corresoonding camber lines have an 

approximately parabolic behaviour. 

4.4 2-DIMENSIONAL THIN AEROFOIL THEORY FOR CAMBER LINES 

AT INCIDENCE 

A camber line y=yc (x), where o4xcc, at incidence a to a 

stream of speed U can be 

represented by a vortex 

distribution of strength 

K(x) per unit length 

along the chord line 

y=o, for o4x<c. 

y 

Under the transformation of the x-coordinate given by 

x=1 c(I-Cose), it is possible to expand the chordwise vortex 2 
distribution K in the form as follows. Ref. (4.1). 

x 

Co 
K= 2U (Ao. cöt i- 6+E An. Sinne) 

2 n=l 

where each tem gives zero loading at the trailing edge (c, o) and 

the leading tem in cot 
1e 

represents the distribution of 2 
vorticity found for a flat plate y-o, for ocxcc. This 

latter distribution has a leadi. ng-edge singularity so that for any 

bKL I LM 4. Z 
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incidence a which. gives'Ao J b, there itill be a leadi. ng edge 

suction tem giving a corhponent of total force on the*c4mber 

line in the'direction of negitive ý. 

By applying flow tangency conditions at the'chord line it is 

possibI6 to show that the 'A' coefficients are related to-the 

camber-line shape by the eqbation. 

lyc Co 
m a-AO +E An. Cosne 

dx n=l 
(4.14) 

Equation ý4.14) can be modified and the following equations can 

be derived for the 'A' coefficients: 

, Tr 
1 dy 

Ao =a--C d0 (4.15) 
Tr u-x* 

0 
'IT 

2 dy 
c An Cos. n. e. de, 

....... (4.16) 
7r dx 

where n=1,2,3, 

The resulting lift and moment coefficients are given by the 

following equations: 

CL = 2w (Ao A, ), 

CM, - Z7r(A 2-A, ), 
s. o. (4.17) 
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where the resulting moment is taken*about the J-ýhbrd, point- 

Substituting for the 'A' coefficients in the Fourier Expansion 

for K gives: Ref (3.13). 

2U- 
/X/C'C 

+ 
dy 

c 
dZ 

dg Tr 

X, C ix-_X/1 
-ICIC 

: 

The chordwise velocity increment u due to the vortex distribution 

is given by 

K 
u=±7 where ± refer to upper and lower surfaces 

respectively, and the linearised value of pressure coefficient 

will be given by 

; 2u I Cp =; 2 Ao cot e+Z An. Sinn. e (4.19) -IT II n=l 

So the pressure difference across the camber line is given by 

ACP =4, Ao cot Ze +1 An. Sinne 
, 0.. * ... (4.20) 

n=I 
L 
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4.5 SIMPLE SWEEP THEORY APPLIED TO-CONSTANT SECTION WINGS' 

AT SWEEP BACK ANGLE A 

This theory shows that on the'wi. ng the pressure coefficient is 

given by: 

CP ý CP2-D COSA * 

where CP2-D refers to the pressure ý06fficient on the unswept 

wing having identical streamwise section and incidence. 

4.6 IMPROVEMEUTS IN LINEARISED THIN AEROFOIL THEORY FOR 

MODERATELY THICK SWEPT AND TAPERED WINGS (KUCHEMANN AND 

WEBER) 

The vortex distribution used in linearised thin aerofoil theory 

for camber lines at incidence together with the source distribution 

used to represent thickness effects, are used as the basis of a 

method to predict the pressure distribution Ref (4.3) over a 

moderately thick aerofoil section under 2-dimensional incompressible 

flow conditions. An additional vortex distribution is necessary 

to allow for the effect of thicknessF that it is the surface 

velocity which should be calculated not the chordwise velocity - 

increment. 

Also due to the effect of slope of the aerofoil surface, particularly 

near a rounded leadi. ng edge, 'it is necessary to use the Weber 
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factor .I 
+* 

dy 
+ -dyt. )] 

4-1 
(ý' 

X-C - dx 

to convert total chordwise velocity to surface velocity, and then 

to use a full Bernoulli's exorestion to calculate the Cp 

distribution as follows: 

2 

u 
cpI surfa 

PLsurfac 

....... (4.22) 

where U is the undisturbed velocity, and Yt(x) is the thickness 

distribution. 

With wing sweep and taper, three dimensional effects are 

introduced so that the final expression obtained by Kuchemann and 

Weber (Ref. (4.3))for surface velocity in incompressible flow is 

Vsurface 2 
[1 +f I +f 2] D (U) + cosae + f4 sinct D( U) -n* 

L. u 'Cosae 
[f 

3 e] 

+ g, cosa D(. u, ) -i +3 Cosae + 94 s'ýCt] ee 
L 

- cos 2 «e -1- 
D(U -1 . ... *.. v (4.23) 
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where 

dyc.. ý dyt, 
D(u /COSA 

dx dx 
(4.24) 

is the Weber factor, and ae is the effective incidence of the 

section given by ae =a- aj, where the induced incidence Cli is 

due to the trailing vortex'distribution. 

If wing thickness effectsare small and the Cp values are required 

over that portion of the wing not too close to the centre section 

or tips, equation (4.23) may be simplified by writing 

fI=0 (a thickness tem) 

f2=0 (a centre section thickness term) 

_X/c -x/C dy z/c 
f3 = COSA- i* C -�c T--Z-Fc TX---u x7-c 

/-XT 

0, 

COSA -X/c 4x Tc- 

91 a (a thickness tem) 

.c 
I -! X/c dy VC -dý 93 SinA. -(- 

'C (7- 
7r X/c d; tic 

0 



- 135 - 

9-- SinA-( I'X/c 
4 X/c 

h, =0 (a correction to the'spanwise velocity tem 

due to the'thicknesi tem g, ) 

Thus for small incidence and camber 

2 Ly c dý Iý XIC c 

- 
"e 

'I 
-ý/c 

-XIC 
1t CosA[, 

/cc +- u IT 

/ 

X/C dý 
/T 

ol 

c'2 

-7/c -x- dy 
c 

dz 
+ /D(U c /D(V) /ýix / -c -cre- x---e > x. # 

SinA[L 
e/ //cc 

01 
-ýCc( 

x 71c 

: (4.25) 

and if D(, U) has values which are appreciably different from I only 

where 
dy I is significant, then we obtain the result -a -x 

4 COSA -4/C dy 
LCP +7 

i-x- 
c [ý j x/ 

d' fc r c X'c 1 

+( 
dyý)/COSA X/c w x/c 

0 
dZ 

A'-e/c 
(X-Z]) 

rx 

: (4-26) 

which is equation ý. 24), the 2-dimensional thin aerofoil result-, 
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multiplied by the factor COSA 
(Ly' 2 [I 

+(-Ux-c ) /COSA 
.I 

2 

Now over the rest of the'aerofoil chord 
( 

-ax 
C*)/Co. sA will be neg- 

ligible so that a fairly accurate value of section lift coefficient 

will be obtained from the following formula 

CL = 21r (A' +1A `) ....... (4.27) 0 «2 1 

I CO I 
where ACP =4 , A* cot 0+Z An. Si nn. 0 

.'....... 
(4.28) 0 Iz n=l 

r 

and Pý ct e1 

11 LYC. 
dO CosA 

L0 
7r dx 

7r 

en 
2 LYC 

CosnO. d6 'CosA 

67f 
dx 

(where n=1,2,3, ---) 

4.7 FITTING OF CHORDWISE LOADING CURVES TO MEASURE 

VALUES OF &Cp 

For a. general parabolic camber line of maximum camber Xc, the 

camber line equation is 
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yc = 4X (1 X% 
C' 

and the'Glauert coefficients 

Ao, Al. A2 --- etc. have the' values A6 =a e-CosAs 
Af 1 = 4X. CosA, Aj = 2 Aj = 3 Aý 4ý 0 ------ 

If the values of ACp are formed from experiment at four locations 

x37 11 15 
-E = T6, T-6, rg, r6, then we can fit the pressure difference 

distribution into a curve of the following form: 

ACp =4 (AO, * Cot -Z e+Z ; 
n. Si nne) ....... 

(4.29) 
n=l 

1 4 (AO'. Cot -Ze + Aj SinO) 

for a general parabolic camber line through the 4 points, which 

will correspond to 

cose 5 Cose =I Cose 39 Cose 7 
"a 123S4S 

Now a least squares fit can be used for values of A0 and A1. The 

least squares values of A0 and AI will be found by minimising the 

following expressions by using the equation (4.29): 

S=S. ACpi -4 (Aý Cot ei + A' Sine, ) ....... (4-30) 

C 
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This minimum will occur when as as 
TA -6 ý IA-j r' 0 

r441.141 

i. e. when A. E Cot2-'7ej +Vt Cot e Sine -E Acpi coty ej 0. icl. 
1 

J=j Iii -4 j=l 

4 

....... (4.31) 

44 
20 =w AO r Cot ý6 Sine, + A-* E Sin E ACpj Sinei 0 

(4.32) 

Solution of the above equations can be determined by matrix analysis 

by solving the two simultaneous equation. The solution is as 

fol I ows: 

sIIs 
12 

A` o 
s 21 s 22_ 

s S. - 
11 12 

iý -Z 

s 
S. - 

21 22_ 

/L 

/A 
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wherO' -Sl- s- 12 12 

Ls 22 s 2il 

-4 and sr Acpi. cot ei 
i=j 

41- 
s 12 ýE Cot-7 li-Sin8i 

i=l 

4 
sZ &Cpi. Sin0i 21 j=l 

4 
S 

22 iZi 
Sin 20 

1 

A Cot2 
16 

s 
12 7i 91 

1 () Sinei S22 =r* Cot'Z 

Now using the values of A0 and Al', we can evaluate the lift 

coefficient as follows: 

CL - 2Tr (AO + -2 ... s. (4.33) 



- 140 - 

Therefore 

4 
cE ACpi Cot Oi (2 S! n28 Co e Si noi) L 4A 1 -1 . 

1fi i ifi , -r 1 

+iE1 LCpi. Sinei (-2 
i 
1: 

1 
Cot Y0V Sine i+E 

Cot2 -Z 60> 

(4.34) 

All the summations in the equation (4.34) are calculated and 

tabulated in Table (4.6). Using values from this table, equation 

(4.34) can be modified as follows: 

385xIT 15 Cot 10 331 Sin0 CL 
4x1637 ifi 

ACpi " -u- «2 i- mý5 i, 

or 

CL ý 0.596996 ACPI + 0.235152 ACP2 + 0.086285 'ý% 

0.012543 ACP4 

(4.35) 

where ACpi is the static pressure differencebetORe top surface 

and lower surface taken from the experimental wind tunnel tests. 

This equation gives a general parabolic camber line fit to measured 
Acp I 
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TABLE'- (4.1 )- 

NACA 64A210 

Slope of Radius through L. E 0.095 

L. E. Radius = 0.687 

T. E. Radius = 0.023 

(STATIONS AND ORDINATES GIVEN IN PER CENT OF AEROFOIL CHORD) 

UPPER SURFACE LOWER SURFACE 

STATION -4 c 
ORDINATE Y-% 

c 
STATION 

c 
ORDINATE X% 

x 
0 0 0 0 
- 0.424 0.856 0.576 -0.744 

0.665 1.044 0.835 -0.886 
1.153 1.342 1.347 -1.100 
2.387 1.895 2.613 -1.473 
4.874 2.685 5.126 -1.963 
7.369 3.288 7.631 -2.316 
9.868 a. 792 10.132 -2.60 

14.874 4.592 15.126 -3.030 
19.885 5.200 20.115 -3.340 
24.900 5.656 25.100 -3.554 
29.917 5.984 30.083 -3.688 
34.935 6.192 35.065 -3.744 
39.955 6.274 40.045 -3.716 
44.975 6.208 45.025 -3.580 
49.994 6.014 50.006 -3.354 
55.012 5.714 54.988 -3.062 
60.028 5.323 59.972 -2.719 
65.042 4.852 64.958 -2.342 
70.054 4.310 69.946 -1.944 
75.063 3.702 74.937' -1.542 
80.076 3.037 79 924 -1.167. 
85.074 2.301 84.926 -0.859 
90.052 1.551 89.948 -0.571 
95.027 0.785 94.974 -0.295 

100.00 0.021 100.00 -0.021 



TABLE (4.2). 

NEW GEOMETRY OF THE WING AEROFOIL SECTION, CAMBER 
LINE AND THICKNESS FUNCTION AT OX 0 SWEEP 

y'-y 
s- = 

. 
1.018 - 0.0202 

cs 

STATION 
NO. 

UPPER 
SURFACE 
%ys 

Cs 

LOWER 
SURFACE 

Ys 

Cs 

CAMBER 
LINE % 

N+ YL) 
/C 

2 

THICKNESS 
FUNCTION % 
(Y U-y L) /C 

2 

1 0.0 0.0 0.0 0.0 

2 0.871 -0.76 0.056 0.816 

3 1.93 -1.499 0.216 1.715 

4 3.85 -2.64 0.61 3.25 

5 5.27 -3.386 0.942 4.33 

6 5.73 -3.60 1.065 4.67 

7 6.26 -3.79 1.235 5.03 

8 6.263 -3.61 1.327 4.94 

9 6.06 -3.38 1.34 4.72 

10 5.35 -2.73 1.31 4.04 

11 4.33 -1.95 1.19 3.14 
12 3.04 -1.17 0.935 2.105 
13 2.3 -0.86 0.72 1.58 
14 0.784 -0.29 0.25 0.54 

15 0.021 -0.021 0.0 0.021 



TAB LE- (4.3) 

NEW GEOMETRY OF THE WING AEROFOIL SECTION, CAMBER LINE, 

AND THICKNESS FUNCTION AT 12.50 OF SWEEP 
JYS 

y 

cs 
11 

- 041 - 0.08232 - 
fl 

STATION 
No. 

UPPER SURFACE 
% Ys 

Cs 

LOWER 
SURFACE 
%ys 

"c -s 

CAMBER 
LINE % 

(Y U, +, y L) /C 
2 

THICKNESS 
FUNCTION % 
(Y U -, y L) 
- /C 

2 

1 0.0 0.0 0.0 0.0 

2 0.891 -0.77 0.061 0.831 

3 1.97 -1.53 0.22 1.75 

4 3.92 -2.69 0.615 3.31 

5 5.33 -3.42 0.96 4.38 

6 5.77 -3.63 1.07 4.70 

7 6.27 -3.79 1.24 5.03 

8 6.23 -3.59 1.32 4.91 

9 6.01 -3.35 1.33 4.68 

10 5.28 -2.69 1.295 3.99 

11 4.24 -1.91 1.165 3.08 

12 2.96 -1.14 0.91 2.05 

13 2.23 -0.83 0.70 1.53 

14 0.756 -0.28 0.238 0.52 

15 0.02 -0.02 0.0 0.02 



TABLE" (4.4) 

NEW GEOMETRY OF THE WING AEROFOIL SECTION, CAMBER 

LINE, THICKNESS FUNCTION AT 32*. 5 0 OF SWEEP 

YS y 
-=- {O. 976 - 0.1722 XI 

ICS 

c 

STATION 
No. 

UPPER 
SURFACE 

ys 

C 

LOWER 
SURFACE 
%ys 

CAMBER % 
LINE 

(Y U+yL, ) 

2C 

THICKNESS % 
FUNCTION 
(YU - YL) 

1 0.0 -0.0 0.0 0.0 

2 0.8348 -0.7254 0.053 0.783 

3 1.8417 -1.431 0.205 1.6364 

4 3.637 -2.49 0.57 3.06 

5 4.89 -3.14 0.875 4.02 

6 5.27 -3.32 0.975 4.30 

7 5.67 -3.43 1.12 4.55 

8 5.58 -3.22 1.175 4.4 

9 5.35 -2.98 1.18 4.165 

10 4.65 -2.37 1.14 3.51 

11 3.69 -1.66 1.01 2.65 

12 2.55 -0.97 0.79. 1.745 

13 1.910 -0.705 0.607 1.31 

14 0.63 -0.24 0.195 0.44 

15 0.017 -0.017 0.0 0.017 



TABLE (4.5) 

GEOMETRY OF THE WING AEROFOIL SECTION, CAMBER LINE, 

THICKNESS FUNCTION AT 52.50 SWEEP 

ysy 

-=-0.793 *- 0.2414 
cs c 

IC icl 

STATION 
No 

UPPER % 
SURFACE 

-Y U 
C 

LOWER % 
SURFACE 

yL 
(f 

CAMBER % 
LINE 

. 
(Y U+y L) 

2C 

THICKNESS % 
FUNCTION 

. (Y U, - y L) 
2C 

1 0.0 0.0 0.0 0.0 

2 0.68 -0.590 0.045 0.635 

3 1.492 -1.160 0.166 1.326 

4 2.92 -1.998 0.461 2.459 

5 3.87 -2.49 0.69 3.18 

6 4.15 -2.603 0.774 3.38 

7 4.39 -2.65 0.87 3.52 

8 4.25 -2.45 0.9 3.35 

9 4.04 -2.26 0.89 3.15 

10 3.45 -1.76 0.845 2.605 

11 2.69 -1.21 0.74 1.95 

12 1.82 -0.70 0.56 1.26 

13 1.35 -0.505 0.423 0.928. 

14 0.44 -0.17 0.135 0.305 

15 0.012 -0.012 0.0 0.012 



TABLE (4.6) 

2 3 4 

Cose 5, 1 -3 -7 
8 8 8 8 

cot 17 e 2i 
'13 [ 3 

r - 3 7 Al 5 

Sin 6 i 
F9 FL-3 rL5 175 
8 8 8 8 

C t2 
le 13 9 5 1 2364 o 7i -T T II i-5 385 

Cot 0 Sine 13 9 3 1 7 
8 8 8 8 2 

Sin 2e 39 63 55 15 43 
64 64 64 64 16 

2364 
x 

43 49 1637 
385 16 T 385 

1637 
385 
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CHAPTER 

SUPERSONIC INVE. "JIGATION ANALYSIS OF FLOW OVER 

AN ARBITRARY WING CONFIGURATION 
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5.1 INTRODUCTION 

This work involves writing a general program which performs a 

numerical integration to solve the integral equation for a wing 

of any planform. This is done by expressing the downwash as a 

summation of the potential over the area of the wing in the Mach 

forecone for linearised, steady supersonic flow. ' Hence, . once 

the potential has been obtained, the pressure coeffictent 

distribution, and the lift coefficient, pitching moment coeffici. ent 

etc. can be found. In the next chapter a method is used to 

calculate interference due to the body and wing using a modification 

of this wing procedure. 

There are vari. ous computational methods for evaluating the pressure 

coefficient distribution on a wing in supersonic flow. 

1) Richardson's collocation method (ARC R&M 3157) 

2) Integrated Downwash method 

3) Integrated Potential method (ARC R&M 3415) 

The first method has the disadvantage that it does not cater for 

kinks in the leading edge. The second method has the disadvantage 

that you have to calculate the downwash over certain regions 

forward of the leading edge, consequently for certain Mach numbers 

it takes a long time to compute and will require a large storage 

space in the computer. 
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The third method (written'by'D. J. Allen and D. S. Sadler for 

oscillating flow problems) is the'One used in this chapter (but 

evaluated for steady flow only). It uses the equation which 

gives the downwash at any point as an integral which involves the 

potential summed over the Mach fore-cone of the point concerned. 

Forward of the leading e, dge, the potential is zero so that the 

integration only uses values of the potential on the planform 

(except for the wake region) which makes it superior to method 

(2) both as regards speed and the storage space required. 

This is done by constructing a characteristic mesh and determining 

the potential for the most upstream rhombus first. Consecutive 

potentials can be then determined by working down each row of 

characteristics, as each potential is dependent on the potentials 

upstream in its fore-cone. It is necessary to determine each 

potential very accurately, because if one potential has a slight 

error, it produces further errors downstream of that point. 

In this case the mesh was arranged in a way that all the rhombuses 

were coded in R and S direction and corner points of each element 

were numbered. All the details of numerical analysis are 

described in the later sections of this chapter. 

5.2 PRESSURE WAVES IN SUBSONIC-SUPERSONIC FLOW 

In a subsonic flow a small pressure disturbance moving at some 

speed produces a pressure wave that will propogate throughout the 
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region of flow. Applied to an-aerofoil this principle means 

that a pressure wave is advancing ahead of the wing and in 

accordance with the gas laws the streamlines of the'air begin to 

diverge-and position themselves in readiness for the wing. 

Obviously the faster the rate of flow, 'the smaller is the distance 

that the pressure waves can advance ahead of the'wing in a given 

time and the shorter the time available for the air ahead to change 

its direction of flow. See FIG. (5.1), (a, b). 

When the flow is supersonic, small pressure disturbances have 

their areas of influence restricted since they cannot advance ahead 

of the cause of the disturbance. The exact region of influence is 

dependent on the size of the disturbance and the speed of flow. 

A very small disturbance producing correspondi. ng small pressure waves 

travelling at sonic velocity in a supersonic flow of M=2.0 would 

produce the pattern shown in FIG . (5.1) (e). 

If the cause of the disturbance was larger the wave pressure 

amplitude would be larger and the velocity of propagation (a') would 

be correspondingly greater than local sonic speed (a). In this 

case the Mach wave would set itself at a larger angle, and since the 

Mach wave is a pressure wave of finite amplitude then it is a 

surface of sudden pressure discontinuity, in other words a shock 

wave. Therefore the Mach cone angle can be represented as: 

M=R=10, 
cS. 

a Sinp 
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5.3 INTEGRAL EQUATIONS FOR A NUMERICAL MODEL 

5.3.1 EQUATIONS OF FLOW 

Assuming an invicid flow condition, then Euler's equations for 

3-D flow are: 

u Lu +v Lu +w 2-u = -. 
1 . 2R (5.2) 

ax az az p ax 

U av +V Rv +W 2-v 
.1 

LP 
... (5.3) 

ax By az p DY 

u IW +v LW +w 2-w 
= --Lp (S. 4) 

ax ay az Paz 

The continuity equation for a steady 3-D flow is: 

a(up) + B(vp) + B(wp) 
ax ay az 0 (5-5) 

Therefore for an irrotational flow case, we will have; 

au av Dv Dw au Dw (5.6) ý y- i -x l' iii y- ,iiZi -x 

For adiabatic flow we have 

P 2R. - -a 
2- -YP , where 6 is speed of sound. ap P 
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For steady flow equation (5.5) for a 3-D becomes. i 

v ap + 13 
au + +1 al) +p aw 

....... (5.7) ax ay FX P By "w Tz- az 
-L--- __j 

where 

LP 'or *E1 2R or ap 
ax ax Dy ;7 ay 2z -aJ Bz 

Substituting these equations into (S. 7) and simplify it as: 

(For simplicity and less work from this stage only 2-D flow 

analysis has been considered, that the same procedure can be 

applied to 3-D flow). 

Therefore equation (5.7) for a 2-D flow is 

u ap 
+ -L 

2-p 
+p 

;u+ 
PLV =0....... (5.8) 

a2 9x a2 By ax By 

ap where gx- and 
2E 

can be substituted into equation Cr>S) from equations Dy 
(5.2), (5.3). 

Cancelling p this gives 

u2 BU UVý; U UV BV V2; V au av 

a, ix - a--, Ty 7a WX - lay- + WX + ay 

or, collecting like terms, 
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(1 
. 
*U 

2 au , uv Dv. Du .. v2 av - 
- =-) -- ii (_ + -) +(1-)-= 00000.0 (5-9) 

. 
a2 ax ax Dy a2 ay 

For an irrotational case substitute equations (S. 6) into (5.9) 

giving: 

U2 ) 
Du '2uv 'Bu v2 av . 

+0- : --) -=0 2 ;Xa2 ay a2 ay 

Býj 41 42 

Since uv=-- w=, where ý, is velocity potential, x ýy ýz 
equation (5.10) partially becomes: 

2- B2ý1 

_ 
2uv ; 201 2 B2ý1 

(I - 
V2) 0 

a2) -jx a2 axay a _jy 

Finally the energy equation provides the relation between u. v 

and acoustic speed as follows: 

u2+, V2 a2 
2 f. const. 

aýl 2+ 41 
)2 

+22 or ý-x 
) 

ay Y-1 
a= const. 

The local velocity components u and v can be written 

+u 1- 0 

where V and v" are small compared to the ýndisturbed stream 
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velocity, and are temed the'perturbation velocities, ' Thi s may 
be expressed non-dimensionally in the form 

wo 
<< 

U. 

Similarly, 

v- 

<< 
U. 

a wo a av* are small. ax ay2 ay 

By neglecting the square terms which are very small quantities 

and knowing that ýj = ý00 + ý, where ý is perturbation potential, 

the equation (5.11) becomes 

ýa2e 
a2ý ht 

M2) 
a2 

+ (2+(y-1) 
3X2 ay2 1_(1_. y)M2 

U' Co aX2 

Co 

2 v* ; 2ý 
U'T ax 

Therefore for a 3-D flow equation of flow for subsonic condition 

would become; 

. 
32e lýe 

+. 
em0 

+- . 
2L 

ve. aX2 ay 2 äZ2 

or for supersonic case becomes: 
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2 
(Mol - I) -37ý' - -Lý - 

al*o 
r- W aY2 BZ2 

5.3.2 DERIVATION OF BASIC INTEGRAL EQUATION 

0o (5113) 

Following the development of Allen and Sadler, in the unsteady 
flow case the general equation for the pertubation potential may 

be- non-dimensionalised by substituting X jY and LL 
Z= ý-z 

,T where Lisa reference I ength, and 0= (M2_1)i 
LL 

and M=u (M is Mach No. ) 
a 

Therefore the disturbance potential ý satisfies the equation 

a2ý 
+. u 2 -a2ý 

a2.; 
2ý --, D2ý 

+ 2u IL 
.-+-+ -it"7 axat ýX2 aX2 ay2 aZ2 

or M2 
; 2ý 

+2 
M2--ý2ý 

=.. 
D2ý , Z2ý ; 2ý 

....... 'TT2 TX -BT TF+ -ýZT 
aX2 y 

iwt i, 
M2WX 

For harmonic oscillations PUt ý2e and 00 02 e -'Ua giving 

,; 
20 ; 24ý- -. a2, t 

+ Klo =0Ae re K (, 3LM 
-; y-T , rzy 57, ua 

- -; 24ý 
Assuming L(O) =--+2! -0 + 

a2o 

-. K20 
BX2 ay2 aZ2 
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and let*T Aenote a particular solution of the above equation. 

Using the generalised Green's Thebrem, gives the following 

integral relation between the'required solution 0 and T, namely 

1- [TL 
(0) - OL (y dT ds 

It 
TV iý, 

l 

s 

9.. 000 (S. 15) 

The integral on the left is taken over the volume enclosed by the 

surface S excluding, however, any points of si. ngularity which may 

be within the region. The integral on the right is taken over 

the external surface S and the surfaces enclosing the singularities. 

In equation (5.15), the symbol v refers to the CD-normal which has 

direction cosines (-L, m, n), where t, m, n are the direction cosines 

of the inward-drawn normal at any point of the surface. 

Therefore the operator can be given by 

+m+n av ax ay az 
....... (5.16) 

The normal and the co-normal have the same projection on the 

x=0 pl ane. 

Suitable particular solutions for T are Tn+l = (xo-x) f(q) g(e) 

where q2=. K2'1(XO_X)2 _ (y 
0 _y )2 _ (ZO_Z)21 

,6= 
(XO-X)/{(yo_Y)2+(Z 

o-Zf 
J 

where. corresponding to n=0,1 
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Sinq log'{e+(e2_1)il, 
qe 

(x 
0 -X) ,a, 

Sinq 
and T2. -(-)Ilogeý 

e+(e2_1. ) 

q Bq qLej 

2 

Now apply equation (5.15) with 

the above elementary solutions to the 

volume V bounded by the Mach fore 0 

cone of the point P, the plane 
E 

z=o, and the wave front 

generated by the wing leading edges, 

as shown in FIG (5.2) 

It is necessary to exclude from V the volume enclosed by the 

cylinder C of small radius r and with axis through P parallel to 

the x axis. 

Over the cylinder C, as r= {(yo_y)2 + (Z 
o-Z) 

2jj 
_ý. 0 

if X= (xo-x), then 

Sin(Kx) log r B, ý Sin (Kx) I 
Kx eDr Ki r 

I. a 
ISin(KR) 

og r 
NýI Sin(Ki) I 

K2 ax Ki e Br a-x Ki r 
-LL 

z � 0- 

FIG (5.2) 
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xn 

Thus in ýthe limit .0 ds -1- -2 Tr 4P 
SinK(x, -x) 

C, xs 
-K(xo-x) 

where x= xs corresponds to-Ahe point of intersection of the axis 

of C with the wave front, with a related result for T2. 

Over the surface of the fore cone from P. T, T2 0 
BV BV 

(since the co normals lie along the fore cone). Over the 

wave front 0=a-0. BV 
Applying equation (5.15) to volumes GBDOE and PADOEB, and substract- 

ing the results using anti-symetry of 0 with z at the wing w and 

continuity of t across the area w, outside the wing area, gives 

xo 
Si'n[K(xo-xD BTI 

dx Ow - dxdy 
K(xo-x) ax 

where sw =I (z=o) 

The corresponding results for T2 is 

7T a Si nEK(xo-xfl H2 
dx dxdy 

K(x X) w ax 
x 

ýXo 
L 0- 1 

Then (Equation ! 5.18) +A2 (equation 5.19), gives ax 
0 
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+V dxdy 
olyolzo w Zz. ax 

w0 

+K2 T2 > dxdy 
ax 

But +. K2. T2 0 COS X o-X)2 _ (y _y)2 _ (Z -Z) 

TX-0 ,E00 L 
5 

XO_X)2 - (yo_y)2 _ (Z 
O-Z) 

91 

Therefore 

32 Cors K(XD_X)2 - (yo-y)2 _ (ZC)-Z 

-=-- -= Ilw -- -9 
X) 2_ (y _)2_ (Z 

dxdy iz 
0 ir 9z 

0w. 
2X 

o- 0y o- z)3 i 

: ...... (5.20) 

Substituting 4ý in terms of ý and using the original coordinates 

gives 

w(x, y) Lt (ý,, n). A. B. dq. dý 
az 

Z=O 
K DZ2 

az 

where A- exp - 
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z 

(, MwR B= Cos 
u 

B2(y_rl)2_ B229 

a= (m, - I)l 

0= velocity potential 

w= circular frequency of harmonic oscillation 

- S' is that part of the plane z=o cut off by the cone R=o 

for which E<x 

M= free-stream Mach number 

Free-stream velocity 

5.4 BASIC INTEGRAL EQUATION FOR STEADY FLOW 

Using the general basic integral equation (5.21), for a case of 

steacý flow with a non-oscillatory assumption (i. e. w= o) would 

become 

W(X, Y) 
L=-I 
az 7r 

Lt pn dC dTl 
Z+o 

Fz 

Substitute X-x-E and -p =y-n into the above equation 
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becomes: 

s2 
W(X, Y) =- dXdii IT 

2 s2p 9 3/2 

But 

W(X, Y) =u 2alx =- xu 

oet. o. o (5.22) 

where z= g(x, y) is the equation of the lifting surface. 

Changing coordinates to X= (p + a) la 
9 11 .2 (P-cy) i, where Z is FF 'R 

the side of a basic rhombus in the characteristic mesh, and writing 

000 = UE where L is a reference length scale, and ý' is a non- 

dimensionalized velocity potential. Therefore the equation (5.22) 

can be simplified as follows: 

a -rr Za dPdcy .... (5.23) 
M. L. 4 (pcr) V' 

where a is the angle of incidence. 

Or equation (S. 23) can be modified (Ref5.2). equations 23,24) by 

using an interpolation functions over each Mach rhombus, becomes: 

CL. Tr. LZE(we, * .. o. oe. (5.24) 
M. L r=o s=o rs r. s 
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Zw w M. L (r. s00,0) r, s r. s 

where 

s 
Wr 

1 
X (i, i). G. (r-u). Gj(s-v U V ' U=O V=0 =O, ill j=01111 I I 

0.0 (5.26) 

(ý'r, 
. are called the parabolic interpolation weights) 

and where 

Gi (T) and p' p-r 
2(p"+r) 

a-s 

p 

OR 90(p") 2 

9j(P") 4p' (p"-I) 

9 (p) 2p' (p"-I) 

e=x- Pis 
-, eiß 

m m 
pt + 

'x u (p+U) Y 

(P-cr) 

(5.27) 

226 

L-- 2t --3. J 
'W 

X0 *Yo 

FIG (S'03) 
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For numerical solution, the wi. ng is divided into rhombic areas 

of side t with edges parallel to the Mach direction. 

Introducing characteristic coordinates* p and a having an origin 

at the pivotal point (x, y) as shown in FIG (5.3) 

Therefore Ia (X "p) =, 
2t2a 

I a(alcr) 

I 

M2 

5.5 SOLUTION OF INTEGRAL EQUATION USING A CHARACTERISTIC MESH 

If we assume only full rhombuses occur in the fore-cone of the 

pivotal point concerned, equation 5.23) becomes: 

r+l s+l 
dpda =EE,. dpda 

4( pa) 
rF2 

r=o S=o 4(PC, 
6)*1 

rs 

(r+l , s+l Consider the contribution to 

the integral of the rhombus 
(r+l, s+i) 

with base point (r, s), (r+l, s 
(r+j, s+j) To make the integration 

n 

(r, s+l) 

possible some assumption (r+j, s) (r, s+j) 
has to be made about the 

\/ 

variation of ý'*(p, cy) over 
\r (r, s) 

/S 

the rhombus. 

FIG (5.4) 
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Thus ý'*(po) can be ýepresented'as: 

(P'*Ocr") Ors +. XID (P"""*) ýr+l. s + Xal (P"a") Or,, 
s+l. 

X21 (P**Cy'*) Or+l, s+l *''-* 
(5* 27) 

where po =p-r, a' =a-s. 

and Xuv (p%a') is an interpolation function such that 

Xuv (p%a') =I at the vertex and equals zero at the other 

vertices of the rhombus. 

U=l 
V=, O ýr+l 

ýor, s 
U=O, V=O 

FIG (5.5) 

U=o 
V=j 

Introduce a system of parabolic interpolation functions gi(p'). 

As shown in equation (5.26) this leads to a system of a parabolic 

interpolation weights, which are used as coefficients for 0`(r, s) 
distribution on the wing. 

From Equations (5.27) it can be shown'the actual parabolic functions 

U=j , V=j 
ý ".. 

L Ic &I 
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can be expressed in the followi. ng ways. 

G 
O(r) 

(P, *-i) (p dp 
(p"+r) 

G (r) 2p(p"-l ý2 
d p* 

(p'*+r) 

G, (r) 72 d 

performing these integrations give the results: 

GO(r) w 
2(r+l)(r+i) 

__ 
4r+3 

+ 
2r2+2r+2/3 

r zt 
ri (r+l )1 

1( 
r+l )i +rý ri+(r+l )i (r+l )3/2 +r 

3/2 

0 
(0) A 

T .0 (5.28) 

G2 -2r(r+l) -2(2r+l)_ _ 
2r'+2r+2/3 

r 
rl(r+l)i{(r+1)1+ýj ri+(r+l)i (r+l) 

3/2 
+r 

3/2 

i (5.29) 

G, r(2r+l ) 4r, +I. + 
2r 2 +2r+2/3.2 r 

rI (r+l ) r+l )I +rij ri+(r+l )I (r+l )3/2 +r 

G1(o) o*O. 0 (5.30) 
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For the case r-o. the integrated forms are singular at the. 

lower limit, and in supersonic aerodynamics the singular parts 

are always. ignored. 

5.6 NUMERICAL SOLUTION OF THE BASIC INTEGRAL EQUATIONS FOR THE 

PIVOTAL 

As an example of the method of solution let us consider*the simple 

planform shown in FIG. (S. 6), which is symmetric about an axis in 

the free-stream direction. We assume that ý' are either symmetric 

or anti-symmetric functions of y, so that the potentials need'only 

be computed on the starboard side of the wing. 

We first find that row of rhombuses on the starboard side of the 

planform which has the lowest 0 coordinate. In this row we start 

with that rhombus on the starboard side of the wing (including the 

centre-line) which has the lowest p coordinate. After computing 

the first ý'we work down this row ýr =const. decreasing p each time. 

At each stage, if the current rhombus is on the planform, we 

compute (r. If it is not on the planform, i. e. if it is forward of 

the leading edge, we jump down the row until a rhombus is 

encountered which is on the planform. This procedure is continued 

until the row is finished. It will be noted that, as shown in the 

diagram FIG. (5.6), when the row is finished the symmetric row on 

the port side of the wing can be filled in. The same procedure is 

now followed for the next downstream row d 'const. and it will be 

seen that the rhombuses'will be dealt with in the order shown on 
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diagram. Proceeding in this way it can be seen*that, at any 

given stage, all the upstream potentials in the fore-cone are 

known and it remains each time to determine the potential or. 

Equation (5.25) will become, 

a7rz (w 
0,0' 0,0 

= ME r, s* 
0 

r, s) 

or 

0,0 w 
mn 
1: Ew -12 

IM-IL - s=l r=l r9s-Or-, S] 
0,0 

5 .7 REGULAR PARABOLIC INTERPOLATION WEIGHTS FOR A LINEAR 

VARIATION OF POTENTIAL 

Assuming that the lines q= constant or p= constant, then ý' 

varies linearly in the other variable. Therefore we must take 

xuv (P'*, (Y') = fu(p, )fV(Cr*) ....... (5.32) 

where fu(p') and fv(cr') are linear interpolation functions (u and 

v take the values 0 or 1). 

and fu(p') -I for p' -u 

-0 for 
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Thus fo(p, ) -I- 

f1(p) =p 

consequently 

Xoo(p,. Or, ) 

XI 0 P` CFP) 

X01(p,, O, ) 

xi I P, * al 

P") 0 al 

(S. 33) 

P")Ct" 

Therefore the requisitive values for p' =i=0,1,1 and 

j=r=O, i, l are: 

TABLE (S. I 

x 
00 

x 10 x0i 
. 

xii 

1 011 01 011 

0 000 01 00 
0 110 01 0 

00 110 000 0 

For example woo Xoo Gi(o) G. (o) 

E10 --L' + (I ) cLO )() +( )( R )( -L m1 )(b 323323343 

00 - 
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Alternatively, from linear interpolation weights'whiCh*will be 

explained'in a later section the same result can be derived: 

woo - E(o). E(o) = -2 x -2 =+4 

Now considering A, B, C, D contributions in turn, then 

[CG 
(r) G, (s) +iG (r) G, (s) (r, s) 01 

+j G0 (r) Gi (s) +IGi (r) Gi(I Sý 

[GO(r) GI(s-l )+I G,, (r) GI (S-1) 

GI (r) Gl(s-1) +IGi (r) G, (s-I (2) 
....... (5.34) 

+ 
[GO(s) 

GI(r-1) +J GO(s) Gi (r-1) +iGi (s) G, (r-1) 

G, (s) G, (r-1 

+[Gl(r-1) G, (s-1) +IG, (r-1) GI (s-1) +IGi (r-1) GI(s-1) 

+IG Q-1) G (s-Ij (4) 

OR w (r, s) - TERM (1) + TERM (2) + TERM (3) + TERM (4) 
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Equation (5.34) represents a numerical solution for calculation 

of weijhts. It is important to make note that along line 

s0-o OR J-r-o OR r: ý . s=o we'need to skip terms (2) + ý4) or 

terms (3) + (4) or (2) + (3) + (4) respectively. 

1W 
However for a small V i. e. aU which applies in this case 

since V=o, it may be sufficiently accurate to allow only a linear 

variation of the 0'. Now as it is shown, this simplifies the 

formulae for the weights considerably. 

w (r, s) 0 E(r) x E(s) 

where 

(5.35) 

E(r) = F, (r) + Fl(r-1) ....... (5.36) 

The contribution to the net coefficient of 0' will be 

c 
r+u, s+v 

for u=o, v=o from rhombus A= Fo(r) Fo(s) 

c 
r+u, s-l+v 

for u=o, v=o from rhombus B=F0 (r) F, (s-1) 

c 
r-l+u. s+v 

for u=1, v=o from rhombus C= FI(r-1) Fo(s) 

cr-l+u. 
s-l+vfor u=1. v=I from rhombus D= FI(r-1) FI(s-1) 

Thus the net coefficient of ý' will be (r, s) 
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E(r) -ý 
[F, (r) F. (s)* + Fjr) F, (s-1) + F, (r-1) Fo(s) + 

F, (r-1) F, (s-I Fo(r) + F, (r-1) 

r+l 
1+r, ýo dp = (I+r) where F0 (r) 

r) 3.11' dp" = 
E-r, 

+-, ), - T'i-I 

r 

P 
r+l )I- -rý ... (S. 37) 

I 

dp'= p-r dp =. r+l )I -r 
2(p'+r) 

3/2 
2p 

3/2 

1( 

r[ -1-T - ..... (5.38) 
(r+l ) Tr IIr 

and hence 

E(r) =i- (r-1) + (r-I ) Ir I-rly 
- -(rl--ll-)TI - 

1-( 
r, -T, Jr F1 

- (5.39 

Also E(o) = -29 E(l) =4 -2 

In evaluating E(r), for r-o or I, the ýule is that any singular 
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terms must be ommitted. 

F, must'also be omitted. 

For r=o, the'tems steming from 

For example W (0,0) ý E(o) x E(o) - -2 x -2 =4 

5.8 THE REGULAR PARABOLIC INTERPOLATION WEIGHTS FOR A VARIATION 

OF POTENTIAL 'ý=a+ by + Cy2 + dx. 

This variation of potential was introducedIn dealing with delta 

wings of low aspect ratio, where it seems desirable to allow the 

potential to have some curvature in, the spanwise direction. 

Now introduce an x, y system which has a different origin and 

scale from the usual one. The x, y coordinates and their relation 

to the points i=0, J, 1; 0, J, I are illustrated in the 

diagram below 

Yý 
'0000 

04 
=0 

j=j 

'-*, i = 
X: 

.- 

(r+I, s+1) 
(x= - Y=o) 

i=l j= 

X=- i 
i. i j=I 

x=O 
Y=o J=V., 

j= 

ýyx 

X=j 
Y=O 

ý'*(r, s) 
. 
ýs 

X=O 

Y=i 
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Now, consider first the contribution of As B, C, *D in turn 

for the weight functions 

Tem I- GO(r) GO(s) +I GI(r) GO(s) 4 G, (r) G, (s) 

+ Gc)(r) G (s) +IGI (r) G i(s) 

+ G, (r) G (S) 

Tem 2=-IG0 (s-1) Gi (r) +IG0 (r) G, (s-1) 

-iG, (r) Gi (s-1) + GO(r) GI(s-1) 

Gi (r) Gl(s-1) 

r, s- 

r 
Y-, j, 

s 

(5.40) 

........ (5.41) 

Tem 3=+iGi (r-1) G0 (s) + G, (r-1) GO(s) -J GO(r-1) Gi (S) 

G, (r-1) Gi (s) -I Gjr-l) G, (s) ........ (5.42) 

Tem 4=IGi (r-1) GO(s-1) +i GO(r-1) GI (S-1) 

Gi Q-1) G, (s-1) +IG, (r-1) G, (s-1) 

G, (r-1) G, (s-1) + G, (r-1) G, (s-1) ........ (5.43) 

To calculate W(r, 
s)-for all the pivotal points, it is important to 

note that if. r=o or s=o or smr--o we need to operate as follows: 

if rzo W(r. 
s)' - Tem (1) + Tem (2) 

if smo W(r, 
s) x Tem (I )+ Tem (3) 

.. ooo. u. (5.44) 

. o. ooo. 9 (5.45) 
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If. sio, rio then W(r, 
s) - Tem. (I) + Tem (2) + Tem (3) 

+ Tem (4) ........ (5.46) 

5.9 IRREGULAR RHOMBUS WEIGHTS 

For treatment of irregular rhombus weights, in general we need 

to look at two typical cases. 

1) subsonic leading edge irregular rhombus weights 

2) supersonic leading edge irregular rhombus weights 

5.9.1 FORMATION OF IRREGULAR WEIGHTS AT SUBSONIC 

LEADING EDGE 

A 

C 

In this case in general - some %. (r, s 

irregular rhombuses will occur 

/BC 

near the subsonic leading edges 
r, SX- I's 

in the integration mesh. 
These irregular rhombuses will be r-l, s-1 

bounded, in general, by three characteristics and the planform 

edge. 

IýIlhrnnif, 117 
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dL. E - ct near a supersonic edge. 

Substituting equation (5.48) in equation (S. 47) and performing 

the requisite integrations, the contribution of the irre§ular---*- 

rhombus whose least point is (r, s) can be written'as 

ý'(p, a) = -roo(r, s) ý**(r, 
s) + "* (r, s) 

ýý(r+l 
s) 

T 01 (r, s) 
ý (r, s+l )+ Tii (r. s) 

4 (r+l s+l ) (5.49) 

where 

xuv(p, *, Cr, *) 
Tuv (r, s) = 

r' s' 
4( pcr) "0" 

dp. da 0.. (5.50) 

and this requisite integration can be solved numerically for 

X 
uv as shown in Appendix (A). 

Ref. (5.1). 

Equations (A. 7) to (A. 30) of 

Considering the way the regular weight is formed up from A, B, C, 

D contributions, we arrive at the following formula for the weight 

at the point (r, s) assuming any one or more of As B, C, D to be 

irregular. 

As we had 

w. ZW-+W+W+w )D 00 ». (5.51) 
For 

'r 4ru, (r, s), (r. s)B (r. s)C (r�s 
g 

Ur 
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where suffixes A, B, C, D represents the relevint rhombus. 

Then, 

W(r, s)irregular =W (r, s)reg. 

-w (r. s )A + T,, (r, s) if A is irregular 

- W(r, 
s), ' + -r,, (r, s-I)if B is irregular 

-. w (r, s)C 
.+ T2o (r-I s) ifCisi rregul ar 

- W(r. 
s )D + T, j (r-l s-I )if D is irregular, 

(5.52) 

From equation (5.52), the pivotal weights of an irregular rhombus 

adjacent to a subsonic leading edge can be found as follows: 

T(o, o) 0 cl(o, 
o) 

Hence for a3 vortex case, its contribution is 

Cl(0,0) ý'0(0,0) + C2(o, 
o) 

00(loo) + C3(o, 
o) 

ý'(iq2) 

and for a2 vortex case 

10 
l(o, o) 0'0(0, o) + C2'(o, 

o) 0'(i, o) 
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where 

Cls C 2' C 31 CC2 are calculated in Appendix (A) of Ref (5.1) 

. 9.2 THE PIVOTAL WEIGHT W (0, o) 
FOR AN IRREGULAR RHOMBUS 

ADJACENT TO A SUPERSONIC LEADING EDGE 

From equation (5.52) putting r--o, s=o we have 

W(0,0) ý Go (0,0) 0c l(o, o) 

or W(o, o) ýc l(o, o) 

or W(o, o) 7, C" 1 (0.0) 

for 3 vortex case 

for 2 vortex case 

for 1 vortex case 

(5.53) 

where coefficients Cl. CI, and CIA are set out in Appendix B of 

Ref (5.1) 

Thus 

L(o, 
o) 

M(o, 
o) + N(o, o 3 vortex -g 

1) 

and from Appendix (B) of Ref (S. 1) equations (B. 1) to (B. 21), the 

following coefficients can be evaluated: 
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CA m+N2 vortex ....... (5.55) 1(0,0) 6* g (0.0) (0,0 

N(o. 
o) I vortex ....... (5-56) 

where (from Appendix (B) of Ref. (5.1)) 

+K) 
Y- Sin-' (2: L (0,0) 

[2g 
(g+K) I+ 3g (-K) I, 'T 

9 
L 

- K(g+K) 
I 

m (0,0) -2 Sin-' -K)i + (g+K) 
9 

-K 
(0,0) ý2 K)l Sin-' ()i+ (g+K) 

0000 (5.57) 

* (5.58) 

(5.59) 

If equations (5.59), (5.58). (5.57) are substituted into equations 

(5.54) to (S.. 56), the following results can be achieved: 

I 
-K 

i 
w 

[lg+K)i 
(2/3g-1/3 K+3) 

J+ 
2(-K)l Sin ( (0,0) 9 

Sin-' ( g+K). 3 vortex ....... 
(S. 60) 

L2,9. I 
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.. I. I 
OR w K)l Sin-'(7! + 

. 
(g+K) vortex 

. 
(o, o) ý 

I(- 

.9) 

g 
OR w2 _K)l Sin-' (, -K + (g+K) I vortex ...... (5.62) (o, o) 9 

1( 

5.10 SOME COMMENTS ON THE TREATMENT OF IRREGULAR RHOMBUSES 

It is important to consider the following points concerning the 

treatment of irregular rhombuses: 

1) For each given value of K (i. e. for a given Mach number and 

for each linked portion of the leading edge), the functions C,, 

C 21 C31 Clil Cil CT should be evaluated before the main computation 

work, in order to save computational time and have a faster process. 

Then a parabola can be fitted over the appropriate range of g by 

the least squares method and we obtain, for instance, for the 

given K. 

C, (r, s, g) = C, (r, s) g2 + C, (r, s) g+C, (r, s) 

Therefore the coefficient can be smoothed for each value of K. 

2) In the formulae for the total irregular weight, it will be seen 

that, if we start with the regular weight, not only we must add to 

it the appropriate irregular A, B, C or D contribution, but we must 

also subtract from it the appropriate regular A, B, C or D contri- 

bution. 
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Therefore, it can be seen that, in effect, the appropriate sub- 

tractions can be carried out by replacing 

C, (r, s) by C, (r, s) - Fo(r) Fo(s) if A is irregular 

c2 (r-l, s) by C2(r-l, s) - F, (r-1) x Fo(s) if C is irregular 

c3 (r-l, s-1) by C3 (r-l, s-1) - Fl(r-1) F, (s-1) if D is irregular 

c4 (r, s-1) by C4 (r, s-1) - F, (r). F, (s-1) if B is irregular 

For a swept wing B is never irregular, so C' (r, s-1) would not exist. 4 
Hence when D is irregular replace 

F, 
, 
(r-1) F, (s-1) F, (r-1) FO(s) 

c3 (r-l, s-1) by C3 (r-l, s-1) -% Due to D Due to C- 

This approach which has been described, is strictly only consistent 

when used*with regular linear interpolation weights. 
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CHAPTER 

NUMERICAL ANALYSIS OF A SUPERSONIC FLOW 

FOR AN ARBITRARY WING-BODY 

USING 'THE CHARACTERISTIC BOX' METHOD 
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6.1 INTRODUCTION 

This chapter describes'the analysis of the numerical work that 

has been* carried'out for calculation of velocity potential 00, 

pressure coefficient Cp, lift and pitching moment coefficients 

CL and CM9 respectively, over an arbitrary wing. In order *to do 

so, the Allen and Sadler method Ref. (5.1) was used by employing a 

characteristic mesh i. e. a rhombus with edges along the direction 

of Mach lines, which from now on will be referred to as the 

"characteristic box" method. To define an arbitrary wing planform, 

it is necessary to proceed as set out in the following sections. 

6.2 MESH DEFINITION 

To define a rhombic mesh in this case, consider an arbitrary point, 

say P(x, y). Then generate a mesh of JxI size parallel to the Mach 

cone from this point within the fore cone. In this case, the 

generated mesh will have (J-1) x (I-1) rhombuses, where J=2,3, ---, n, 

and I=2,3, ---, n. Now, as shown in Sketch (6.1) using symmetry about 

ox for an arbitrary wing planform, point P(x, y) will be selected on 

the ox-axis, and therefore only one half of the wing and generated 

mesh will be considered. But the effects of L. H. S. mesh need to be 

counted for the velocity potential summation calculations. 

Therefore as shown in Sketch (6.2) a modified mesh can be employed 

which can be used for later meshes. In Sketch (6.2) also all the 

central rhombuses which ire laid down on ox-axis are considered 

as full rhombuses. 
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4P(X, y 

2 

X1 

SKETCH (6.1) GENERATED MESH 

0 

Mach cone 

PARALLEL TO THE MACH CONE 

.. Q (1, J) 

Mach cone 

y 

Now, the coordinates of any point say Q(I, J) can be found in the 

new coordinate system with origin 0 as: 

x 

XQ (I. J) = 
P J-1) DX 

+ (1-1 
2 ....... (6-1) 

XQ (i, i) = 
li-fl DY 

- T, ....... (6.2) 

where DX and DY are diagonal length of a rhombus along ox and oy 

axes respectively. 

6.3 DEFINITION OF A WING MODEL GEOMETRY 

.s 

To define an arbitrary wing geometry, first it is advisable to 

0 x SKETCH (6.2) A MODIFIED MESH 
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select a particular planform then it-is necessary to define each 

vertex coordinate in a clockwise or anticlockwise direction round 

the planform. These coordinates can initially be input as input 

data. ---Once all the coordinates are known all the leading edges 

or trailing edge equations can be found in the new coordinate 

system, e. g. as shown in Sketch (6.3). It is important to make a 

note that each line or point can have two different coordinates in 

two different systems, e. g. vertices, 0, A, B, C, D, E 

coordinates can be represented by O(XOqYO), A(X,, Yl) B(X2 Y 2)1 

C(X 31 Y 3)1 C(X3*y3) , D( X4lY4) ,E (X5lY5) in XOY coordinate system or 

O(IoqJo), A(I,, J, ), - B(12'j2)1 C(13'j3) , D( 141J4) , E(15 IJ5) in IJ 

coordinate system respectively. 

y 

E 

x 

SKETCH (6.3) COORDINATE SYSTEM FOR AN ARBITRARY ýING PLANFORM 

All the coordinates of vertices must originally be input in forms of 

(1, J) coordinates, then using equations (6.1) and (6.2), they can be 

converted into (X, Y). coordinates, Equations of the leading edges 
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can be expressed as follows: 

Equations of OA and AB (L. E) will be: 

AO L. E. Y(. I. J) -YA0 (X(I, J) - Xo) . ...... (6.3) 0xA To- 

AB L. E. y("j) - YA BA (X(I, i) -x A) . ...... (6.4) 
xB-xA 

and the equations of CD and ED (T. E) will be: 

CD T. E. Y(I'j) - YD Dc (X(Isi) -x D) 9 (6.5) 
xD-xc 

ED T. E. Y(I, J) -YDED (X(I'J) - XD) (6.6) 
yExc 

Tip Y(i, i) -YBc c XB 7c- 

6.4 DEFINITION OF CELLS 

xc) ...... (6.7) 

In order to define all the cells generated by the mesh, and to 

investigate whether they are within the'planform or not. it is 

necessary to use a set of coding system for each cell independently. 
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To do so, it is important to use a set of pivotal points so as 

to check whether a point Q(I. J) is within the planform, or on 

the boundary, or outside the'planform. See Sketch (6.4) for a 

better view, as shown*the pivotal points for each sections are as 

fol I ows: 

Section I Pivot Point (XOSYO) 

Section 2 11 to (X Pi Iyp? ) 

Section 3 It a (X B? YB? 

Section 4a (XDf YO 

(x6yo) Y 

Now considering a cell with its four corner points, say cell A 

with corner points (Ipl,, j POI (lP21JP2)1 (1P3*JP3) and (IP49JP4) 

The angles made by the lines*joining the four vertices of each cell 

x SKETCH (6.4) 
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with point (XOIYO) can be compared with their corresponding 

pivotal-angle. If these four angles are equal or less than the 

corresponding pivotal angle, 
0 

(X 
0 11yo) 

then the cell is within the IlEft. - 
planform. If they are 

greater than or equal to 

their corresponding pivotal 

angle, then the cell is 

located outside the plan- 

form, otherwise the cell is 

located on the boundary of 

planform. 

If in a case the cell is inside 

I Pi sip, ) 
\\ J/\-" 

(IP 2' ip 2) 

(IP 3' JP 3 

(IP 4' ip 4) 

x 

the planform, then it can be SKETCH (6-5) 

coded as '1'. If it is outside the planform, it can be coded as '01. 

And if it is on the boundary it can be coded as 121. All the 

angles are measured with the vertical line of OX in an anticlockwise 

di recti on. 

6.5 NUMERICAL CALCULATION OF VELOCITY POTENTIAL ý' 

As it is explained in Chapter (5), Section (5.6) using equation 

(5.31) the velocity potential can be calculated numerically. 

Care should be taken on the leading edge where there could be a 

formation of irregular rhombuses. Treatments of these irregular 

rhombuses are laid down in Sections (5.9) and (S. 10) of Chapter (5). 

V 
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6.6 NUMERICAL CALCULATION OF Cp 

To calculate the pressure coefficient Cp at each cell it is 

necessary to find out derivatives of velocity potential -as 

fol I ows: 

.= aW*ly) 
x a(ij) 

where J is Jacobian 
x 

SKETCH (6.6) 

ýj 
or 

yj 

where 

ýj xi 
Yl 

z 
Y. 

y(j) =i Sinp 

X(j) =i Cosli 

X(i) =i Cosli 

xi 

Yi 0.0 (6.8) 

or , 
ýY(J) 

= yj .2 Sinji 
Di 

or , 
ax(j) =x Cosli ai j 

or ; x(') =x 
Cosli 

i. Sin-P or yj = -Simi ai 

Therefore equation (6.8) can be simplified as: 



- 186 - 

Oj Yi - ei Yj -4j S. inli - fi Sin. 11 
x Xj Yi - Xi Yj Cosij Sinli - cosli siFp -7rosil 

thus, 

De eý + 0-. 
eý =-=j-1 

x 

ax 2Cosia eu. (6-9) 

where 

aýýand ýj Bý- 
aj Di 

In order to evaluate and 0ý on the wing planform a central 

difference interpolation equation can be used such as:. 

2Z .0 

where k is rhombus side length, and on the boundary leading or 

trailing edges a backward or forward difference interpolation 

equation can be used as: 

Backward Interpolation 
-1 

=£........ (6.11) 
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ForwaHlnttrpolation- 

ý-J+j 
0.0 

i derivatives can similarly be determined using equations (6.10) 

to (6.12). 

6.7 INVESTIGATION OF IRREGULAR RHOMBUSES ON THE 

BOUNDARY LEADING EDGE 

To treat irregular rhombuses it is necessary to investigate 

whether the leading edge which cuts through the boundary rhombuses 

is subsonic or supersonic and also to determine the irregular 

rhombus type. In this case both types of leading edge flow, 

i. e. subsonic and supersonic, were considered separately. 

6.7.1 SUBSONIC LEADING EDGE 

Here there is a subsonic leading edge which cuts through boundary 

rhombuses. There are only two distinct types of irregular 

rhombuses. In Sketch (6.7) the two types of rhombuses are 

shown. 



- 188 - 

3 vertex 

SKETCH (6.7) 

2 vertex 

In Sketch (6.7) rhombus (A), cut by a subsonic leading edge, has 

only 2 vertices. And rhombus (B), also cut by a subsonic leading 

edge, has 3 vertices. In rhombus A the leading edge can have 

two locations as shown. 

6.7.2 SUPERSONIC LEADING EDGE 

For supersonic leading edge, three types of irregular rhombuses 

can be obtained, as shown in Sketch (0.8). Rhombus A has 3 

vertices within the planform boundary, rhombus B has 2 vertices, 

and rhombus C has only I vertex within the planform boundary. 
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As this sketch shows the leading ýdge can have two different 

locations in rhombuses B and C. 

personic 
Supersonic Leading 

*-., L. E. / Edge 

ll-ý 

A/ 1Y < 1-, ýK B 

ll*ý 

3 VERTEX 2 VERTEX 

SKETCH (6-8) 

Once all the three types of irregular rhombuses are distinguished 

i. e. type A, B, or C, then for their treatments, Sections (5.9) 

to (5.10) of Chapter (S) can be applied, for a parabolic or linear 

weight interpolation function. See Appendix (B) of Ref (S. 1). 

6.8 NUMERICAL SOLUTION FOR SMOOTHING DATA USING THE 

LEAST SQUARES METHOD 

Considering a general case using the least squares method in order 

to smoothen a set of data. Representing a polynomial P(x) as a 

general solution for a best curve to be fitted into our data as: 

P(x) -A0+A lx + A2X2 + --- + Am*)ým 0.00.0.. 

rsonk 
L. E. 

To find P(x), the following simultaneous equations for n points 

I VERTEX 
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with (xi, yi), coordinates shoUld be solved. 

n2+.... +ýn xm 
n 

nA+Ax+AzxmE Yj 01 j=l i 2, i=l i i=l i ji 

n 1: +Af Xi2 
0 i=i 

1 

i-i '1 

nmn M+l Ao x+AIE xi i i=l 

n M+l n Am r., xi = I:, xiyi 

nn 
+ A. r. x? " = r. XT yi i=i , 

i-i 1 

Rearranging these equations and rewriting into matrix notation as: 

n 
n 
E xi 

n 
....... ' XT 1 

A 
- i i i i 0 

n fi x 
n2 

xi 
n 

....... E M+l xi A, 
i i=l 

n Z 2 
x 

2 
Xý n S m+2 xi A2 

n m x i 
n 2m 

Yi 

n 
Er Yix i=l i 

n2 Yi Xi 

nm E xiyi 

where n is the no. of points, 

m is the degree of polynomial, 

xi(imlo---n) is x-coordinate from data, 

Yi(i-19 --- n) is y-coordinate from data. 

(6.14) 
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Now, *equation (6-14) can be simplified as: 

B. A -R- *ooo. o. 

where A and R are ýectbrs and B is the matrix on L. H. S. of 

equation (6.14). 

In order to solve the equation for P(x), it is initially necessary 

to find out coefficients AO, A,, --- Am, or on the other hand to 

solve equation (6-15) for unknown vector A. 

Now, to solve equation (6.15) matrix B can be split into two 

tridiagonal matrices as: 

100... 0u 11 *0 u 12 "u Im 
L 21 1ooou 22 -* U2m 

B=L. U 10 

LLIo............. u I ml m2 I. F- Mý 

where elements of matrices L and U can easily be determined from 

equation (6-16). Therefore equation (6. -15) can be simplified 

as: 

r- ----I 
L. 1, U. A ll = 

L--. 7-' e. 99o9o (6.17) 

where U. A can be replaced by a vector say j. then equation (6.17) 
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can be modified as: 

L. f=R 

6.8.1 FORWARD SUBSTITUTION 

00 

Equation (6.18) can be solved for the unknown vector f and all 

the elements evaluated in the following sequence (i. e. for-ward 

substitution). 

From equation (6.18) 1000 

L 21 10 

L 31 L32 10 

Lm, I 

f0 Ro 

fI R1 

f2 R2 

fm RM 

1 
fo - Ro 

fi =R1-L 21 * fo 
.... ve. (6.19) 

f2=R2-L 31 fo -L 32 -f1 

f3 =R3-L 41 f0-L 42 fi -L 43 f2 

fm m Rm - Lm, fo -L m2 
fl -L m3 

f2 
-Lm, m-2 

fm-1 

The set of equations (6.19) must be kept in sequence in order to 

solve numerically for vector f. 
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6.8.2 BACKWARD. SU8STITUTION 

Once vector f eliments have been determined from equations (6.19). 

then using a BacWard Substitution process, vector A can be 

solved as follows! 

We know that U. A=f 

OR uIIu 12 u Im Ao 10 

0u 22 u 2m A1fI 

f 
:2 

................... u Am f 
L M12i Tj 

Thus vector A which is unknown and represents the coefficients of 

the polynomial P(x) can be determined in sequence as follows: 

Am u 
fm 

m 

Am_, = 
fm_j - Am_, * Um_,; 

m 
Um-l, 

m-l 
(6.20) 

fm-2 - Am-l'Um-2; 
m-1 -u m-2, m* 

Am 
AM-2 

u 
m-2, m-2 

io (fO - Am*olm - Am-I*Ulm-l- U12. A, )/Ull 

Once all the coefficients i. e. Am have been determined from equation 
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(6'. 20), then the polynomial eqUation P(x) which can represent 

a better approximation for a set of data, can be solved and the 

new toordinates for (xi, yi), i=l, ---, n, determined. 
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CHAPTER- 

EVALUATION OF AERODYNAMIC CHARACTERISTICS OF 

AN ARBITRARY WING IN A SUPERSONIC FLOW 
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7.1 INTRODUCTION 

In this chapter the procedure is described in which the values 

of velocity potentials which are calculated on the wing planform 

(previously described in Chapters (5) and (6)) are used to 

calculate the aerodynamic characteristics of wing planform at a 

particular Mach number. In order to achieve this, the following 

sections will provide the necessary formulea for this. 

7.2 EVALUATION OF LIFT COEFFICIENT 

Using Bernouilli's equation: 

-32x- + 'W) 

in the form appropriate for unsteady sinusoidally oscillating flow 

of frequency w modifying the above equation by ignoring the complex 

port gives: 

Co ae 
....... (7.1) 

Since ý is an anti- symmetric function of Z we have the lift per 

unit area given by 

k(xl, y) - -2 (P - P�) positive up 00 ... o* (7-2) 
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Now Using equation (7-1) we can write: 

C Lift 'l I (x, y) dxdy L jpu2s pu2s 9--o-e- (7.3) 

where S is the planfom area. Equations (7-1), (7.2) with 

=-±-, give (L is a Reference length) 
UL 

c= LL dxdy Ls lia 
IT .i 

4L +a ' dy 
s 

ýT. E. 

-a 

(7.4) 

where a is the semi-span, and using the fact ý' is zero along the 

leading edge. Now we introduce 

TI 

where C0 is the root chord. 

c SA , dn L5 

ol 

0 T. E 

*o-. (7-5) 

Therefore equation (7.4) becomes 

. o. ese. (7.6) 
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ý. 3 EVALUATION OF PITCHING MOMENT COEFFICIENT 

The pitching-moment coefficient CMp, positive nose up, about 

an axis through the wing vertex is 

C x. k(x, y) dxdy ... *-*- (7.7) MP jpU2SE 

where E is the man chord. Using equations (7-1). J. 2), (7-5) 

equation (7.7), can be modified to give: 

T. E 
cmp ý 

8crLCO ýOAC - CLE * ýi. E dn ....... (7-8) 
SE 

ol L. E L 

7.4 NUMERICAL SOLUTION FOR LIFT AND PITCHING 

MOMENT COEFFICIENTS 

It will be seen that all the spanwise integrations which occur, 
I 

are of the same type, i. e. 
Of 

P(TI) d7j. We begin by discussing a 

method of evaluating this type of integral. It is assumed initially 

that the same mesh used in obtaining the potentials is also used in 

obtaining the relevant integrals. The diagram shows that the 

characteristic mesh can be used to define a set of equally spaced 

spanwise stations. The number of spanwise stations can be odd or 

even, and Simpson's rule is used for the summations of the trailing 

edge potentials. Therefore Simpson's rule can be shown to be: 
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(putting 0(ri) = P(rj) 

. 
T. E 

(n) dn ATI (0) 1 lo(1 + 40'*(2) ir + 20'*(3) 

n is odd ....... (7-9) 

OR 

=1 ATI 
[e*(0) 

+ 2e(2) + 4e "(3) 

4ý'*(n-l )+ O(n )l 

n is even 

Therefore using equations (7-9) or (7.10), the lift coefficient 

can be evaluated. 

Y971 

&9x SKETCH (7.1) DIAGRAM OF MESH SYSTEM 
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Now, similarly usi. ng Simpson's rule once more to evaluate the 

double fntegral of equation (7-8) in the fom: 

A 4- 2P +P+ 2P + --- +P Imp =f I'll.. 
['PJD 

123. n] 

n is odd 

A OR 
3 

ATI 
- . 

[PO 
+ 4P, + 2P2 + 03 + --- + 4pn-I + Pn] 

n is even 

where 
T. E 

pný 0'*(n) dý -ET. E' ýýT. E ....... (7.13) 

L. E 

8. cr. L. C0 
and A=-S. 

2 .. 00 ... (7.14) 

Similarly (7-13) can be evaluated by using Simpson's Rule, and 
hence IMp. 

7.5 INTERPOLATION OR EXTRAPOLATION OF THE POTENTIALS AT THE 

TRAILING EDGE 

Considering the potentials at the trailing edge. For this case 
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there is no integration, but due to the fact that in general 

the chaýacteristic mesh does not fit exactly on the planform, it 

will be necessary to obtain q. E by'interpolation or extrapolation. 

As shown in the diagram, for instance, ' at spanwite station 3 

interpolation is needed. and if the mesh point was on the planform 

extrapolation would have to be used. 

10 

M-1 
M 

M+l 

Thus, the scherne which was used for linear interpolation of 

potentials at trailing edge is: 

- 
eA) 

4'* + 
K+i 

T. E-V T. Eze; AZ 

and similarly for a linear extrapolation the appropriate formula 

which was used is: 

Of. E- Om + 
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7.6 CALCULATION OF PRESSURE. COEFFICIENT C ON THE WING PLANFORM 
p 

This can be done by finding derivatives for To do this inside 

the planform a central difference equation can be used, and on 

the boundary a first order difference equation can be used, as 

shown below: 

- qç1 )/2t oe 

where A is unit length along the direction of movement 

or on the leading edge Cp is taken to be given by: 

cp = oe.. o.. 

and on the trailing edge Cp is given by 

cp 
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CHAPTER- 

SUPERSONIC WING-BODY INTERFERENCE 
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9.1 INTRODUCTION 

The purpose of this chapter is to present. methods for predicti. ng 

the aerodynamic characteristics of configurations formed by the 

addition of lifting surfaces to a body. The primary focus here 

is on the wing-body calculations which are the wing-only results 

is obtained from Allen and Sadler's method in the previous chapters. 

The method which was set out by Allen and Sadler, only considered 

the wing aerodynamic characteristics'without the effect of the 

body. 
, 

However, the method that has been employed for the inter- 

ference calculations is that outlined by J. Nielsen (Ref. B.. 1). 

As shown in Section 5.6 of (Ref 8.1), the results are summarized 

for a complete wing-body configuration, and also Section (5.7) 

shows applications of these results to non-slender configurations 

and a calculative example illustrating the theoretical methods. 

From Section (5.7) (Ref 8.1), this method for wing-body combinations 

for a non-slender configuration can be used with confidence. 

For this purpose, the aerodynamic characteristics of the wing above, 

which is found by the Allen and Sadler (Ref. 6-1), method, was used 

to calculate lift for a slender body combination. This can be done 

by calculating lift on the wing due to the body, and lift on the 

body due to the wing. And finally the position of the new centre of 

pressure due to presents of body, which is suppose to be 

sufficiently near to the value of centre of pressure location for 

wing alone, can be determined. 
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Before consideration of the application of slender-body theory 

to wing-body interference, it is probably as well to mention that 

wing-body interference problems can in certain instances be 

solved by full linear theory. For rectangular wings and circular 

bodies, for instance, the formal boundary-value problem presented 

by the full linear theory has been solved by Nielsen J. N. 

(Ref. 8 . 2). Also another solution for part of the interference 

field is given by Morikawa (Ref. 'S. 3). 

However, these methods are generally too complex for actual 

engineering use, but they do serve as useful yardsticks for 

evaluating more approximate but simpler engineering methods. 

One such method is the essential subject matter of this chapter. 

A general survey of the subject of wing-body interference has been 

presented by Lawrence and Flax. (Ref. 8.4). 

1 

, 8.2 DETERMINATION OF PRESSURE COEFFICIENT Cp 

Using energy equation in wind coordinates: 

yT1 
2 2] co 

co I Y-1 Go P. 
(8'-1) 

Knowi ng pp =(-O)Y-for an isentropic flow, then substitution into 
co P. 

equation (81.1) gives: 
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Y-1 
y 

yP 00 ýP1 
p= 

9--+- (U2 +. V' +. W2 + 2u U 2) 
Y-1 p. P. 

21111 =) 

Y-1 p. 
6.9 

Therefore simplifyi. ng equation (8 . 2): 

V-1 L--m- 

(-E)y =i- PC* 2y 
(U2 + V2 + W2 +2u 

Y-1 2u u2+v2+. W 2 

1- 
2u U2 

Co Co 

Knowing that 

p- PC» p- PCO 2 
c=-=-=-. --1 (A . 4) 
P ipjj2 y/2M2p ym2 p 

00 Co Co Co Co 
Substituting (8 -3) into (B . 4) and expanding using binomial theorem 

results in: 

2 Y-1 2u U' +ýV'. +. W' Y-1 

co 

M2 +. II 
co 2 U. U. 

2 YM2 . 
2u U2. + V2 + W2 yM4 

: 7g 2(U+ u2 
+78 

g» Co Co 

U 
+0 (M., ' (--L) UM 

2u u2+, V 2+w2 

U. 
+ 

U. 2 
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2u U2 + V2 + W2 M2 2U u2+v2+-. w 2- 
2 

co 
u U2 

+++ 

cc 2 U. 

ot 

a . 2u u 2(M2 
_. I) _ V2 _ W2 u 

cp +1 
U2 +0 . 5) U. 
w U. 

Transferring the wind axes system to body-axes gives: 

Uu+wa 

VV for small incidence 

a at zero bank angle 
w _UCI +w 

Therefore modifying Cp, gives: 

1 cp =- 2( u+ wcx )+ (U + wa) , (M! 

u2 

1) - v' - (-ua + w), 
u 

Co Co 

OV-) 41 

In slender body. theory if cc is 0(t), -L. and 2L are O(t), -y- is 
U. 

O(t'log 
et) 
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Therefore 

Not put 

Cp 2Vw+ small terms 
U. P. P. 

u au + Ut, where u. is due to unit U: 
incidence and ut is due 

to unit thickness 
v av + vt F. i 

aw +w (81.8) 

ýu-. 
ýa 

Substituting equations (8 . 8) into equation (B . 7) gives: 

Cp =-2 {cLu +ut+a2 Wa + It) - (ava + vtf - (aw 
a+w 

02 

=- ccu +a2 watl - a2v2 - cc2w2 -2u2_2 
OL CL at- vt wt - 2av� vt 

- 2. a. w cc wt- 2a. wt ....... (8.9) 

Denote by ( )+ the upper surface and by the low surface 

values. 

Then U+ a MU -9v+v-9w+=w 
aaaaa 

u+zu-9v+ sc V-9 W+ wW tttttt 
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For an axisymmetric body, it can be shown that 

v 
(I 

vt+ Vt + Wt ý 0. 
Hence the loading on the* body due to the wing is: 

(AC )B(W) = (C- -C+ pp P)B(W) 

(AC = 4a u+ P) B (W) a 

On a thin wing w+ = w- w+ = -w -=0 
aatt. 

Hence the loading on the wing due to the body is: 

(a 
p)W(B) ý (C C+)w(B) 

pp 

0 

(ACP)W(B) = 4a u++ 4a v+v+ at 

The complex perturbation potential for flow about an axisymmetric 

body of radius a(x) with a flat wing of semispan s(x) at incidence 

a to a stream of speed U. 
0 

is: 

12 

a+ U. 
[b 

(x) +. da (s +. a ) 0 NX s 

THICKNESS INCIDENCE 



where: 

x 

bo(x) s (x)' ok la 

0, ' 

and where 

s(x) = Tra 
2(X), B2 =. M2 

Go 

Putting the perturbation potential ý= R(w) 

2 
ý=U bo (x) +a 

da log v/y2+i +otR. S+ a2 )- ax- es 

a2 (y + iz + az Y+I z 

+2 
d2a 

) loge 7+ UU 
LbO 

+ (a La U,,. cc. R JA} 
ax dx F7, dx 

L 

where 

+ la ds +La da (y +iZ+ a2 2a da 
(Y+i ý 

AF Ei sWZ- ry-+ -ii ) -rx 

S+ 
Aý)2 

_ 
«y 

+ jZ) +* 
al 

. )1' 

. 

l( 
s (y+UT 

... ('8. l4) 

t U.. xy +iz 
SKETCH (8 . 1) 
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On the body y-a Cos es Z-a Sin 6 

and 

s4al) 
2j 

s 2a. dal 
s 14- 4 

. 
Lbo 

+A 
28 

+, 
da I. Ixs 

s -2aCose 2Cos4 rxS. 
-7 x 

))loge +tx-- 
N 

U= U- 

I 
dx 

(a Tx Tx 
(S4)2 

- (2aCose. ) 

....... (8.15) 

On the wing z=o, therefore equation (S.. 14) will become: 

.2aa2 ds 2a da a ja da db d. a da (.. aý) (1 2 Udj y 

2 
-iT -a-x 

uZU. ý 
ýý + (a - +(g-) )logj +cc s 

l( 
-7 üX: -+ t- x- - (y+ 

dx 777 x 
s. +a 

22a2 

_) - (Y+ZY; -) s 

if y C, s ... 0 

Al so 

v= 
2ý 

=., 
ja Y 

zy dx (y' +. z2) 

a2 
- «Y+i Z) + 7-y)7+-lw-Z» (1 - (y+i Z) 2) 

S+ 
2ý)2+ «Y+iz) +a.. l( s 

7Y+i zi L- -i 

i...... (8 . 17) 
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On the body y-a cos e, z=a sine 

and 

V 
da. Cose _a 

2a Cosa (I -'Cos 2e U. ux- 

s+ (2aCose) 
s 

For the wing z=o, therefore 

! ý) (I _ a) 
a' da 

Q+y- 
y2 

00 
1 

+ -2f ) 2, 
- F( 

L. 

1 

(. 19) 

Therefore the body pressure distribution can be found due to the 

wing by using equations (8 . 10) and ('8.16) in the form: 

(AC )B (w) = 4a ut = 
(I _2ý) 

ds 
+ 

La (I a2 
_ 

2y2) da 
4ot. S4 

a-X s -S--T =a Ux 

+a 
2)2 

4 VFII 
-S 

2 
-'l 

ý 

(B . 20) 

Also by substitution of equation (8 -19) into equation (*8 . 11). the 

pressure distribution can be found on the wing due to the body: 

(AC 
P)W(B) r- 

4c% u++ 4cx v+v+ aat 

"..... (8 . 8) 

I 

if ycs 

6 
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, --a" ds a da , ýa2 2 (I -) -4. .--.. 

[2 
-. 2 -a 

4 Tx -ý! 
ss dx 2 y2) 4 4a. 

.ysy 
+42a4 a2 (1 .+ :js 

(, 
-a4) 

. 
ds 

(AC 4a. s4 
TX 

p W(B) 
+a4 

-S 
2) 

,a 
da 

s'dx 
'. Y 2 
ir 

2. a7 
-, a 

22 

-S 
2 

a4 

, 4ý 

21 

.3 INTEGRATION OF THE LIFT ON WING WHEN THE BODY IS OF 

CONSTANT CROSS SECTION 

da If U=o over the portion corresponding 

to the wing position, then equation 

( B. 21) will become a 

4 

_a, 
ds 

s 4a s a, (Acp)w(B) 
14, a4 (1 ta4 

S4 s2 y4 

(a . 22) 

Therefore lift on one wing LW(B3 (due to the body) is given by: 

Lw(B) c+2_ 

(y +. a 2 
dy ipuz 

(ACP)W(B)*d. x, dy 4a 19 
my 

a XIC, am 

0000e. 
(a . 23) 
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And also the lift on the ý(i, ng alone in the ibsence'of the body 

is giveý by: 

lw. 

Ot (sm C. 1) 2 
rp-. r. m 21r 99.9.. (8-. 24) 

S 
Assuming. X =, using equations (a . 23) and (8 . 24) the following 

result can be obtained: 

The lift ratio� 
L x2-1 2 >, 2+1 2. x 2-1 x 2_j 

Kw = 
'w(B) + 

(=) Sin-1( ->-+T) -2 ,2 EW - 

12 

-T- 

Similarly, the lift ratio K=L B(w) Lc-L 
W(B) 

LN 

BLwLw 

where Lc is total lift of a combined wing and body, 

LN is lift on nose section ahead of wing. 

1, can be found. from the following equation: 

i..... (8.25) 

(9,26) 

Kw 99.9. o (s . 27) 
Bý (1 
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ý. 
Lw' 

'. --*. 
*Lc 

2 42 A4 Now from slender thebrý T-- - 2irci(sm-a) I r- 21Tm. s m 
(I 

+ --ir 
) 

ur p -S 
s 

mm 

and,, LN r- 21r. a. al 99oees ('8.28) 

Finally, from equation (81.26). we can write: 

combined lift Lc= LW(B) + LB(N) +LN9.29) 

For our purpose, using the lift and pitching moment coefficients 

which have been derived by Allen and Sadler method Ref (6-1), 

substitute lift for the wing alone into equation ('8 . 25) and 

derive the lift on the wing due to presence of the body. Finally, 

the lift on the body due to presence of the wing can be calculated 

from equation (8-. 26), and also the total combined lift can be 

detemi ned f rom equati on (8 . 28) and equati on (*8 . 29). 
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CHAPTER' 

RESULTS, COMPARISONS AND DISCUSSIONS 



- 218 - 

9.1 INTRODUCTION 

This chapter is concerned with the results of subsonic and super- 

sonic computations and of the wind tunnel tests, with discussions 

of results and comparisons. These are set out in the following 

sections. 

9.2 SUBSONIC RESULTS 

E xtensive numerical computation work using the Quadvort method 

was carried out for three specified wing geometries corresponding 

to sweep angles of 12.50,32.5 0, and 52.5 0 over the range of 

incidence 20 to 20 0 with 20 intervals. But in this chapter only 

some of the incidence angle results and graphs are presented for 

each swept wing. The rest of these results are kept in a file 

for reference. See Figs (9 . 3), (9.4), and (9 . 5) forthe three 

specified swýpt wing geometries. 

9.3 SUBSONIC RESULTS AND COMPARISONS 

The combination of wing and body vortex-ring distributions is a 

logical step forward. The mutual interference effects as well as 

the individual characteristics of the components are now 

simultaneously by applying the boundary condition at control points 

on the combined surfaces. For a comparison of the Quadvort method 

with other methods, a test case of an infinite cylinder having 2: 1 

elliptical section was considered. The Quadvort method as 
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prýogrammed can accomodate arrangements whiýh have a plane of 

symmetry. Considering one half of the cylinder, the semi-ellipse 

section is represented'by 6 vortex. ýrings. Closed'vortex ring 

elements cover the fuselage over a length of 4 wing chords, and 

fore aýd aft of this the fuselage is represented by constant 

strength semi-infinite line vortices, Fig (9 . 1). The basic 

fuselage was considered with three different wings as shown in Fig 

('9.1). Case WB I has an unswept wing, case WB2 has a 450 swept 

wing, and case WB3 has a cranked wi. ng 450 sweep on the inboard 

panel and zero sweep on the outboard panel (from 0.6 semi-span). 

In each case the wing has constant chord, an aspect ratio of 5 

and is centrally mounted, alsothe body width is 0.2 of the span and the 

wing and body are set at 50 incidence. The resulting spanwise load 

distributions and centre of pressure locus are presented in Figs. 

(9 . 2) and compared with results from a Brough Composite Computer 

programme (AIOA) based on Kuchemann (9ý. I) (basic wing), Weber, 

Kirby and Kettle (9 . 2) (wing-fuselage), and Brebner (9 . 3) (wing 

cranks). 

WB I results (Fig (9 . 2a) )for spanVise loading (CL: C/E ) show exce I lent agree - 

ment over the inboard part of the wing but Quadvort results show a 

much earlier fall in load towards the tip and also a lower value of 

lift carried by the fuselage. As a result Quadvort overall CL is 

lower than that from the A10A programme (0.353 compared with 0.369) 

The centre of pressure locus due to Quadvort shows a forward shift 

at the fuselage side and also at the tip. At mid-semispan the 

Quadvort curve coincides with the constant value from the AIOA 
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program. Fig (, 9.2b) shows*the'ýesOts for Case WB2. The 

Quadvort spanwise loading curve in this case shows an increase 

over that of the A30A prpgram on the middle.. semi-span but still 

shows a lower fuselage lift. The overall CL values are thus 

almost the same (0.297 and 0.296 for Quadvort and AIOA program 

respectively). The centre of pressure locus due to Quadvort 

gives a slight rearward shift at the body side compared with the 

wing alone result. This rearward shift is considerably smaller 

than that from the A10A programme. Outboard of mid-semispan the 

Quadvort curve shows a much earlier forward shift than that of the 

AlOA program. 

The cranked wing results (Case WB 3) are shown in Fig (9 . 2c) 

Agreement between the two methods for the loading curve is good 

near the body side, but Quadvort shows a more gradual effect on 

the kink and a much earlier fall in loading towards the tip. 

Again Quadvort shows a small lift over the fuselage. The overall 
EL from Quadvort and the A10A program are 0.315 and 0.334 

respectively. Fig (9 . 2c) shows a smaller rearward shift in centre 

of pressure locus at the body side from Quadvort than is given by 

the AIOA program but the curves rapidly converge to good agreement 

up to the kink. Outboard of the kink the curves diverge, the AIOA 

curve moving rearwards a constant value and the Quadvort curve 

moving first rearward and then forward to converge, in fact, towards 

the unswept wing curve (WBI) near the tip. 
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(9.4) Discussion of forces and moments from the Quadvortex method. 

Some forces and moments distributions along the wing span are shown 

in Figs (9.6) to (9.11) for 0". 12.5", 32.5", and 52.5 0 sweep wing. 

(geometries shown in Figs (9.3) to (9.5) ). Figs (9.6) show the load 

distributions (local lift x local chord/overal lift x mean chord) 

( 
EL, E along the wing span which show that generally load increases as 

the wing sweep angle increases. Figs (9.7) represent the spanwise lift 

distributions (CLI04) for different incidence and sweep angle. These 

clearly indicate the rise in lift curve slope due to reduction in angle 

ofsweep. Spanwise lift CL distributions show a fall near the tip for 

different sweep angles in Figs (9.8). 

Figs (9.9) show the overall lift coefficient ELfor the wing and body 

combinations for variable sweep wings. The trend of these curves for 

EL shows a significient and expected reduction with sweep angle. From 

these results it can be seen that as the angle of incidence oC increases 

the aerodynamic coefficients of the wing-body combinations gernerally 

tend to increase with lift approximately proportional tocc. Drag 

coefficients were determined, but not presented here shown to be 

proportional to OC2. Above a certain value of incidence these relations 

can not be found in practice due to flow separation of the wing and 

body surfaces. The separation pattern changes with the wing separation 

moving further towards the leading edge as the angle of incidence increases 

and effects of viscous flow consequently play a major rule on the wing 

-body aerodynamic forces. In some sweep cases theseeffects were seen 

experimentally for angle of incidence beyond 80 shown on the photos 

4,10,14,20, and 24 which iddicate a 3-D classical spiral separation 

on the wing surface. 
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Nevertheless, these effects are neglected in the subsonic programme 

which simply treats the flow as an attached flow for any angle of incidence, 

and this produces some inaccuracies in the computational results at higher 

values of or, 

Figs (9.10) show. the overall lift coefficient against angle of incidence 

for the wing CLW,, body CUB) and total wing and body CUWj. B)for the 

geometries shown in Figs (9.3) to (9.5) for the four wing sweep angles 

as mentioned. From these comparisons it can be seen thatC L(WA as 

values of 1.59,1.52,1.33 and 1.07 at 200incidence for the selected 

sweep angle ranges respectively. Wing lift coefficient CLmSimilarly has 

values of 1.23,1.15,0.94,0.67 and for the body lift values of 0.36, 

0.38,0.394,0.395 are noted forCL(B), 

Pitching momentCm istributions are shown along the wing span for the 

selected sweep ranges, in Figs (9.11). These graph show that pitching 

moment coefficient decreases negatively as sweep angle increases. 
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9.5 Comparisons and'Validations for the*Quadvortex'Method 

A rectangular planform wing was tested for various- aspect ratios 

by dividing the span and -the chord into a number of elements. For 

this purpose, starting from very low aspect ratio wings (i. e. 

AR = 0.2), to rather high aspect ratio wings (i. e. AR = 5). those 

tested gave quite stable and consistent results, showing that the 

Quadvortex method is consistent within itself. Figs (9 . 12) to 

( 9.17) shows some of these results. 

Rectangular planform wings with aspect ratios of 4 and 0.5 were 

also tested and results were compared with Kuchemann and Multhopp 

from Reference (1) in Ref. (9 . 5), showing a very good agreement 

between Quadvortex results and Multhopp in both cases. In the case 

of the wing with aspect ratio AR =4 (in Fig 9 . 18(a)), it can be 

deduced that the overall CL/a from Quadvortex is 3.598 and from 

Multhopp is 3.56 which are close enough. In the other case with 

aspect ratio AR = D. 5, results shown in Fig 9 . 18(a)), the Quad- 

vortex method gives a value of 0.778 for overall lift coefficient 

CL/a, and by Multhopp's method the corresponding figure is 0.770 

for overall lift coefficient CL /a. Also the trend of these 

distributions are very close to each other and encouraging since ten 

spanwise stations were used in Quadvortex method. 

Results for a constant chord swept back wing of 450 sweep angle with 

aspect ratio of 5 and 10 were compared with calculated results from 

-Ref (, 9'. 6) by Multhopp, Falkner and others. Fig ( ý. 19(a))shows the 

spanwise loading comparisons and Fig (9 . 19(b))giWs sparrwise 
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distributions of lift CL/(x' These graphs 4mnstrate an 

encouraging agreement between Quadvortex results and Multhopp 

calculated results. Fig (9,. 20) shows chordwise centre of 

-pressure locations along the-span for a rectangular wing plan- 

form with aspect ratio of 4 for various numbers ef elements tlong 

the wing chord and span. From these graphs-it can be seen that 

both the compatibility and the consistency-of-the Quadvortex 

results are quite encouraging. Fig ( 9.21)show the comparisons 

of Quadvortex results of spanwise distributions of lift CL/a 

and centre of pressure locus, with experimental results by 

Kuchemann of Ref (9'. 5). The spanwise distributions of lift 

CL /a in Fig (9 . 21 (a)) shows slightly higher values in CL/3 up 

to mid-span for the experimental results, slightly lower values 

for n between 0.5 and 0.8 and, the variation for greater values 

of 71 up to the wing tip, for the experimental and Quadvortex 

results. Fig (9 . 21 (b)) shows a good agreement of centre of 

pressure locus for experimental values by Kuchemann in Ref (9.. 5) 

ýwith Quadvortex, results. Although, there -is -a slightly inore 

shift back near the wing root given by the experimental results, 

and slightly more forward shift given by the Quadvortex results 

near the wing tip. 



- 225- 

(9.6) Comparisons of Alp for experimental and computed results. 

Two different wing-body geometries (12.5"and 52.5 0 sweep wings) were selected 

for comparisons of, &Cpresults. The trend of Up distributions are shown for 

seven spanwise stations for the wing sweep of 12.50in Fig (9.22). These 

show a good agreement in experimental distributions Up from the wind 

tunnel tests with the computed results form Quadvortex alongthe wing chord. 

Nevertheless, these graphs show thatACpnear the wing tip from the experimental 

results has lower values, but this can be explained due to closeness of the 

wing tip to the wind tunnel wall. This effect which could be due to incorrect 

modelling of the tip can be studied from the flow visualization photographs 

(no. 14,20), which indicate that at this inc, ýence angle o6=120 there is 

a three-dimensional classical spiral separatins on the wing surface. There 

is also an image reflection of the ti p vortex from the wind tunnel wall 

which could have some effect on the experimental readings. However, the 

tunnel effects were calculated to be small enough to be neglected. 

Careful study of Figs (9.23), for the wing at 52.5 sweep and le incidence 

produces the following comparions: distributions for column 1,2 and 3 

(i. e. 11 = 0.3175,12= 0.378, and7i: 0.502 respectively) from computed 

results are the same as the wind tunnel experiments, While there is only 

a shightly higher value inAlp from experiments near the leading edge. 

Columns 4 and 5 for '4ý0.6258,15=0.7497, which are in the vicinity of mid- 

span, give larger&Cpvalues than the computed results. Column 6 (le: 0.8735) 

gives a good agreement in, &Cpdistribution between experimental and computed 

results. Finally column 7 (17=0.9368) at the wing tip gives a, zlower 

value inACp distributions than the computed results due to tip effects (some 

incorrect modelling perhaps). 
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Flow visualization photographs show that there is a strong slender 

wing vortex flow, and the extra lift near mid-chord (column 4 and 5 

corresponds to expected extra lift under the core of the vortex. 

There is considerable spanwise flow at the tip and this indicates a loss 

of lift in these regions. The effects of the interference of wing and 

body as preedicted by the computer programme are to a large degree con- 

firmed by the good agreement with experimental results for columns 1,2 

and 3 in each case. For these inboard regions flow visualization showns 

that the flow at the surface is more nearly streamwise and attached. 

In order to improve the computational results in a case where the elements 

are very large in chord length and narrow in span, the number of elements 

can be increased so that a better accuacy may be achieved in the final 

results and vortex strength calculation for the wing. There is evidence 

that the vortex representation used in the computer programme near the 

tip is not sufficiently accurate to predict local values of Cp in these 
am I regions. It should be rembered that the -*4 element inset at the tip is 
1% 

employed to give best agreement of total vortex drag of the wing, and 

has not been optimised for best ACp prediction. A more detailed represent- 

ation with a closer mesh at the tip (particularly near the leading edge) 

could give better agreement with exact ideal flow theory. However, the 

complicated rolling up of tip vortices and viscous effects at the tip might 

require even more sophisticated treatment. These points mentioned are ill- 

ustrated in the following sketch. 
CLOSER TIP MESH 

Id 

VISCOUS FLOW 

1 11 114 ELEMENT INSET 
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9.7 ComDarisons of SuDersonic Results, 

Figs (9 . 24) and (9.27) show a good comparison between our 

supersonic results using the Allen and Sadler method of solution 

for the potential flow theory, and experimental 

results. In this case a rectangular wing was considered with an 

aspect ratio of AR = 1.1 for a range of Mach numbers. The 

theoretical method used was exact conical -flow theory and in each 

case the corresponding results of this method have been produced 

and are compared as shown on the graphs. Experimental results 

were obtained from the wind tunnel tests carried out by Tarbuck 

(final year project, University of Salford, Department of 

Aeronautical Engineering Science, 1980). These graphs show 

encouraging comparisons of our computed results with the theoretical 

and the experimental ones. Also it can be seen that the computed 

results (by use of Allen and Sadler) show greater accuracy as the 

Mach number increases from 1.7 to 2.4. The spanwise distributions 

-of pressure coefficient on a rectangular wing are shown across the 

full span for different angles of incidence in these graphs. 

Finally, these comparisons indicate that the computational results 

(using the Allen and Sadler method) are quite acceptably accurate, 

and can be used for supersonic prediction of pressure coefficients 

over a general wing planform, over a large range of Mach numbers. 

Two different planfom wings are considered for the supersonic 

computer tests . Figs (9 . 27) show these planforms. Wing (1) is 

tested at 20 incidence, with Mach number It - 1.8 and a transonic 
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leading edge. -Wing (2) has been tested for 20 incidence and 

Mach number M-1.414 with a subsonic and supersonic leading 

edge. The pressure distributions were plotted in chordwise 

direction on both the wing planforms. Figs (9 . 29) to (9 . 33) 

show these distributions on the Wings (1) and (2) for a supersonic 

flow. These graphs show the pressure distribution Cp at some 

positions along the wing span. As these distributions of Cp show, 

for points approaching the tip, there is a sharper decrement in 

pressure coefficient Cp near the wing trailing edge and this effect 

increases near the tip. This can be explained, by considering the 

propogation of tip shock waves along the wing planfom (Figs .9 . 31). 

Figs (9.. 32) and (9 . 33) show the pressure distributions along the 

Uing (2) chord at root, mid-span, and the tip respectively. These 

graphs show a sudden drop in pressure coefficient Cp near the 

trailing edge, which is due to interference of the subsonic leading 

edge shock wave and the supersonic leading edge sbock wave, and the 

interference and wave drag induced at the tip. 
I 

Figs (9 . 34) show the aerodynamic characteristics of Wing (2) and 

the interference effects of the body on the wing and vice-versa. 

From these graphs the centre of pressure locus can be seen for the 

wing alone, wing and body, wing with body and nose. 

There is also a shift back in centre of pressure locus due to 

presence of body and nose. Figs (9 . 34) show the lift coefficients 

for the wing alone, wing plus body, and wing plus body and nose. 
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-These graphs show the total effective. lift on the wing and body 

for the wing-body-nose, i. e. C* as shown on the graphs. LFT 

-The graph of lift curve shows these distributions for different 

-incidence angles noting-behave linearly. It can also be seen 

that there is an increase in total lift coefficient CýFT due to 

the presence of nose by about 13% and due to the presence of body 

by about 12%. 

From these graphs the total pitching moment coefficient for the 

combination of wing-body-nose for different incidence angle. 

This has a linear variation with incidence angle. 
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9.8 "Oil Flow Visualization 

From the photographs of vil flow for the wing surface, the 
I 

-flow patterns seem to originate from a laminar -separation near 

the rounded leading edge; it can be suppressed or at least 

delayed at model Reynolds number (i. e. Re = 0.82 x 106 swept 

case, and Re = (1.64 x 10 6 
unswept case) by a device for 

tripping the boundary layer. Flov separation from the surface 

of a swept wing, forward of the trailing edge, is-well known to 

be a critical factor in the performance and controllability of 

the wing. At low speeds, separation is responsible for stall 

and wing tip drop. Separation takes many forms and all are to 

some degree subject to scale effect. The position of separation 

will vary with Reynolds number for both turbulent and , laminar , 

boundary I ayers . If a separated shear layer is not 

aIreadyt urb ui ent, it usuall y becomes t ur buI ent 

rapidly . 

For weak interactions . the reattachment process may vary 

only slowly with Reynolds number. But once strong interactions 

with the external flow are admitted, very large variations with 

Reynolds number beco. me possible, i. e. small increases of Reynolds 

amber-can produce large regions of separated flow over a swept 

wing. In this case for all the swept wings for several of 

incidence cases, oil flow patterns were observed. Photos (1) to 

(6) shows the flow pattems (i. e. without any transition band or 
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wire on) for 00 to 200 incidence at 00 sweep wing. From these 

flow patterns it was observed that the flow structure started 

Aisintegrating after 80 incidence and stall starts appearing 

, on the wing. This can-be seen clearly on. Photos (5) and (6). 

A tripping device was used to the boundary layer to simulate 

a higher Reynolds number (i. e. attached turbulent flow) shown 

in Photos. (7) to (10). This device effects only the first 

leading edge pressure readings due to the interference of the 

tripping device (which is close to the leading edge pressure 

holes) . Stall effect are shown in some de tails in Figs (9-35 to (9 - 45 

chordwise pressure distributions on the several spanwise positions 

for the variable sweep vings. These graphs show that beyond 80 

incidence trailing edge separation occurs and stall starts. 

This phenomena occurs for 12.5 0,32.50 and 52.5 0 sweep. But 

for 32.5 0 sweep a track of vortex separation can be seen on the 

wing surface at 80 incidence, which starts 

spreading and widening on the wing surface as incidence angle 

Increases (i. e. a= 120) and stall occurs at higher angles of 

-incidence (see Photos 23 to 26). For 52.5 0 sweep stall occurs 

at lower incidences (i. e. about a= 60) and the behaviour shown 

by the flow patterns is typical of slender wing flows, where the 

-flow patterns are shown on the Photos (30) to (35). The change 

-from attached flow to a conical separated vortex flow is that 

, -usually found on low aspect ratio wings at moderate incidences. 

, Tor each case the tripping device was used but only some small 

changes in pressure readings were noticable which were mainly due 

to closeness of the leading edge pressure holes to the tripping 
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device. In some other cases this device caused a slight delay in 

commencement of conical vortex flow, a secondary separation, or a trailing 

edge separation. Some of the patterns are shown with the tripping device 

on the wing surface on photos (7) to (10), (17) to (20), and (27) to (29). 

The flow patterns on the glove surface and fuselage body during the 

operation had almost the same behaviour irrespective of wing sweep. 

Pressure distribution graphs are shown for different spanwise positions 

for the wing at different angles of sweep with the tripping device 

on and off for a range of incidence angles. Some of the static pressure 

distributions are shown on the upper wing surface in Figs (9.35) to (9.45) 

for variable sweep and variable incidence. Also in Fig (9.46) shows 

the stall curve for this case. 

Finally, in Figs (9.48) the effect of tripping device is shown on the 

overall lift coefficients for the experimental tests. These results 

are compared with the theoreýtical ones from the Quadvortex method. 

Good agreement is evident between the experimental and theoretical 

results. The tripping device has cuased some rise in the overall lift 

coefficients. Flow was turbulent detached on the wing surface and 

presence of this device changed the flow to turbulent attached, and 

boundary layer started thickening owing to viscous flow effect and 

made the final rise in the overall lift coefficient, see Figs (9.35) 

to (9.38) and (9.41) to (9.43). Nevertheless, different types of tripping 

devices (different width and different roughness ) were experimentally 

and visually tested and the roughest tripping device were used for this 

purpose. 
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However, the effect of tripping device as shown on the static pressure 

(suction) readings in Figs (9.35) to (9.45) is not so significiant, 

while it has some effects on the model overall lift coefficient 

readings especially at about 100incidence for lower sweep angle (P= cr"12.9) 

and at about 80incidence for higher sweep angle (p =32S6 52.5"). 

The effect of viscous flow is shown by Kuchemann in Fig (9.65) for 

several types of flow. 
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9.. 9 Overall Experimental Forces"andADments 

from the graph of lift C L'v cx, Fig (9 . 47) for variable sweep 

, wing it can be deduced that the gradient of these distributions, 

i. e. dC L /da, ' gradually declines from 0" to 52-50 sweep wing. This agrees 

dCL 
with the lifting line theory which predicts is 

proportional to the cosine of the sweep angle. Also, the 

linearity of the lift coefficient v. a curves are limited to a 

certain angle of incidence. These graphs show the effect of 

the tripping device which simulates a high Reynolds number state . 
In some cases, due to changes in flow separation and reattachment 

on the wing surface, there is more lift with the tripping device 

present than when tripping device is removed from the model 

surface. One of the distinguishing features of the oil flow 

visualizations is that the flow patterns stayed nearly the same 

on the aircraft. body with and without tripping devices for all 

angles of sweep. Therefore the slope of the lift coefficient 

distributions shown in Fig (9 . 47) can be explained by 

considering the combined flow of the wing (which stalls) and the 

body (which does not), the interaction between the two leading 

to the decrease in 
dCL 

at about 80 for wings-up to 32.50 sweep. 

But for a higher angle of sweep (i. e. 52.5 0) it tan be seen that 
dCL 

there is a reduction in Tm-- . which this is true and compatible 

with the cosine of sweep angle theory, and the more gradual change 

in lift curve slope indicates that the wing and body are more 

closely linked aerodynamically. 
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Figs, (9.50) show distributions of lift coefficient CLagainst angle 

of incidence from the computed results for Cýsweep wing-body combination 

(shown in Fig 9.3). These results indicate lift distributions for 

the wing in presence of body CL(WB), body in presence of wing CL(BW)l 

and wing + Body C L(WBtBW). Another set of results are calculated for 

lift on the wing alone C 
LM , body alone CL (B) and their total CL(W+B), 

in order to estimate the total mutual interference (positive in this case) 

between CL (W+B) and CL (WB+BW). These tests were also carried out to 

indicate the effect of V-notch on the wing-body overall lift coefficient. 

These graphs Figs (9.50) show that there is a favourable interference 

for the wing-body combinations. The amount of interference in terms 

of percentage lift for the wing in presence of body is about 27% And 

for the body is 39% at 20* incidence. Therefore the total interference 

for O*sweep wing with V-notch is calculated to be about 30% and for 00 

sweep without V-notch is about 26% as can be found from Figs (9.50). 

Similarly, interference for 12S sweep wing with V-notch is 30% and 

for the sweep wing with no V-notch is 29% as can be found in Figs (9.51). 

Interference for 32.5*sweep wing is about 23% of the overall lift 

coefficient and for 52.50sweep wing is about 19% as seen in Figs (9.52). 

In subsonic flow, the total favourable interference derived to be vary- 

ing between 19% to 30% for the highest and the lowest wing sweep 

combinations. 

The interference in supersonic flows was calculated from Figs (9.28) 

to be about 25% for the wing W2-- body combination. These interference 

comparisons can give valuable informations towards aerodynamic design of 

a wing - body combination. However, from the theoretical interference 
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calculations useful evidence of wing - body contributions-can be 

obtained which on their own rights can be a positive contribution 

to knowlege in this area. 
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9.10 Comparisons of Experimental ind Theoretical Results 

-Comparisons were made between our experimental Cp distributions 

vith Some experimental and theoretical results from a report 

produced by British. Aerospace Warton Division (Ref 9.. 7). 

Graphs (9 . 53) to (9,. 63) show the chordwise comparisons of 

Cp for several spanwise locations. From the graphs it can be 

deduced that there is a quite close agreement in the Cp 

distributions in most cases, whichAs encouraging, although at 

certain spanwise locations and angles of incidence and sweep 

there are significant differences in the Cp distributions. 

Graphs (9 . 58) and (9 . 59) give a good indication of the 

closeness in the Cp results in comparison with the B. Ae's 

results (experimental and theoretical). 

In this comparison a theoretical sheared wing with 230 sweep 

angle is used by B. Ae for comparison with their experimental 

results for a swept wing -imodel -of 270, while in our case the 

angle of sweep used is 32.50 (or 3CP at the L. E. ) 

Graphs (9 . 64) and (9 . 65), represent the B. Ae lift distributions 

of CL for the section lift on the wing, and also show our experimental 

results. These graphs show a good comparison between spanwise 

lift distributions at location n-0.333 to our results with 

the corresponding B. Ae results at Tj = 0.332. In this case the 

effect of viscous flow can be seen in the experimental results with the 

non-viscous flow from theoretical subsonic results lQuadvortex ) as 

they are indicated in Figs (9- 49) . This effect is more significiant 
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beyond B" incidence for the overall lift coefficients of 

the wing -body combinations . These comparisons give encouraging 

-evidences of the good degree of accuracy which we achieve in 

4pur experimental and theoretical (i. e. Quadvortex) 

investigations. However, some of the differences in Cp 

distributions can be explained between experimental and 

theoretical results as follows. Fig (9 . 65) which is taken 

from Ref (9 . 6) illustrates how non-zero thickness and viscosity 

-effects influence the chordwise loading. First we can begin 

with the loading of the thin wing in inviscid flow at an 

incidence which is equal to the given geometric incidence, 

curve (a); the effect of the streamwise vortices on the wake 

is then to reduce the incidence by the amount of ai, which this 

leads to curve (b); curve (c) is obtained by taking the thick- 

ness of the aerofoil section (t/c which in this case taken as 

0.12 Ref 11.6) intoaccount; and finally. the effect of 

viscosity is calculated by measuring values of the displacement 

--thickness of the, boundary layer as shown on curve (d). 

This final result shows that the effects of aerofoil thickness 

. and viscosity are quite distinct and cannot be neglected as is 

sometimes supposed. 

Viscous f low effect also can be noticed near the trailing edge 

owing to thickening of boundary layer on the wing surface f or the 

wing - body c ombinations , see Figs ( 9.53 ) to (9 - 63 )- 
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CHAPTER 10 

CONCLUDING REMARKS AND SUGGESTIONS 

FOR FURTHER WORK 
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10.1 Concluding Remarks 

The work presented ties in the broad f ietd of incompressible 

subsonic and supersonic wing-body interference applied to swing 

wing aircraft. Within this field, several important observations 

have been made regarding low speed wind tunnel tests and also 

subsonic and supersonic computational methods and the accuracies 

achieved It is noted that : 

(1) In low speed testing, limits for angle of inpidence at various 

angles of sweep for fully attached flow on the model have been 

established by surface flow visualization. 

The effects of various boundary layer transition devices on 

these limits has been investigated. 

(2) A method for deducing section lift from only four chordwTse 

pressure measurements is put forward and found to be acceptably 

accurate. 

(3) The extension of the incompressible Quadvortex computation 

method to compressible flow has been achieved, and their results 
were found , to behave in theright trent as the incompressible ones. 

(4) Comparison of Quadvortex predictions with experimental results 

both from this present work and with work at British Aerospace 

show that the Quadvortex method gives good accuracy for subsonic 

fl ow. 

-(S) An investigation of the number of panels needed for the Quad- 

vortex method to achieve acceptable accuracy for rectangular 
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and 45 0 sweep wings has been carried out. Comparisons 

are made with published theoretical results due to Kuchemann 

and Multhopp. 

(6) The use of the Allen and Sadler method for supersonic wing 

computation and comparisons with conical flow theory and 

experiments has been investigated. Final Iy incorporation the Allen and Sadler 

method into the Nielsen method for computation of wing/body 

interference in supersonic flow has been completed 

In low speed wind-tunnel testing extreme care was taken to ensure 

that controllable errors were minimized and since good repeatability 

was experienced, it may therefore be implied that the presentresults 

obtained from experimental wind tunnel tests provide valuable 

information on the object of this research. However, there are 

some errors due to the wind tunnel interference and blockage which 

are not avoidable. Examination of the wind tunnel tests and the 

aerodynamic characteristics derived for the model suggests that 

vortices, generated on the body-wing junction, are quite large near 

the junction but become smalleraway from the junction 
. 

This effect can be 

seen in their corresponding photos(ltoMin chapter 9. The results 

indicate that increasing the angle of sweep on the wing, gives a 

gradual decending trend in theoveralt lift coefficient . Wing -body interference 

calculations are noted to be favourable. The wing sweep had an 

influence on these interference effects , such that as sweep angle 

increases the interference become smaller . 

The work concerning wing-body interference effec-ts for subsonic flow 
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give a good basis for the investigation of other configurations, 

and consequently allow the possibility of producing a better aero- 

-dynamic design. The subsonic theoretical investigations covered 

a broad field of study which provides some insights and 

understanding of the basic principles and problems involved in 

interference effects. In the subsonic flow investigations, it is 

assumed that the flow is steady, that viscous regions are 

approximated by (or enclosed within) vortex sheets, external to 

which potential flow exists. Also the position and shape of free 

-vortex sheets are specified at the outset. 

In the supersonic investigations of wing-body interference, the 

Allen and Sadler results (by use of a rhombic mesh) are used for a 

final calculation of wing-body interference by incorporation into 

the Nielsen method. The corresponding comparisons of these results 

with conical flow theory and experimental evidence show a very good 

and encouraging agreement in distributions of Cp for a rectangular wing. 

Free stream Mach number has an influence on computational errors such that as 

M rises the errors become smaller. For example at M=1-7errors of 5 17owe're found, 

but at M=2-4 these errors fall tol-50/o This error canbemadea lot smallerby decreasing 

the rhombus side length, so that the velocity potential is 

determined at enough points chordwise and spanwise to define the 

variations of t. he potentials with reasonable accuracy, bearing in 

mind that the potential is assumed to vary linearly along Mach cone 

directions in deriving the weights. It must be noted that as the 

rhombus side length decreases, the time taken by the main programme 

to compute the potentials increases rapidly with the number of 
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rhombuses on the planform. For example, if the mesh size is 

halved, there will te four times as many rhombuses on the plan- 

form, and each of these rhombuses has four times as many rhombuses 

in its forecone. Hence, it would be expected that the computation 

time would increase by a factor of sixteen. Cumulative err-ors 

tend to gain large values away from the leading edge 

because if any potentials are slightly in error, this error starts 

propogating downstream producing a larger err-or, since each 

potential is determined by the upstream potentials. Other errors 

that can creep in the numerical- calculation are in the Cp 

calculations, where finite difference equations are used for 

determination of this coefficient. However, the Allen and Sadler 

procedure in its simplified form can be used effectively to predict 

the pressure distribution over a wing planform in supersonic flow 

by using these results for the final calculations for interference 

of wing-body within the reliable extension of the slender body 

method of J. Nielsen. Using irregular rhombuses can cause an 

inaccuracy in the final results at lower Mach number. 
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10.2 Suggestions for Further Work 

(1) 'The Quadvortex method can be developed-to. deal with span- 

--vise, and chordwise thickness distributions on the wing. 

It would also be possible to incorporate a boundary layer 

. calculations method to determine displacement thickness and 

to predict separation of the flow. The modified thickness 

distribution-could be used-for a recalculation of pressures 

using Quadvortex. 

(2) The subsonic flow method can be developed and modified so 

that the resultsare more compatible with experimental tests 

in order to solve for the surface pressure distributions when 

there are discrete vortices in the flow (as may arise in the 

wing-body junction or from wing strakes at moderate angles of 

-attack). The Quadvortex method should be able to predict 

the velocity distributions on each panel due to the vortex 

-flow interference and-then, using boundary layer theory to 

in conjunction with surface velocity distribution , find 

separation locations theoretically. Consequently, the 

final results for forces and moments could be nearer to 

-experimental tests at these higher incidences. 

(3) The supersonic program (which owing to limitations in time 

-was only tested for a few specific geometries) can be 

4eveloped to deal with more general wing planforms, and a 

-faster and more accurate method of solving the irregular 
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rhombuses developed, using mom accurate finite difference 

, equations for the edge regions. Also this can be 

developed by introducing more mutines into the programme 

for -variable sweep wing geometries with chordwise and 

spanvise thickness, and camber distributions for variable 

incidence and Mach numbers. Thus the method can be used 

at the design stage to optimise aircraft geometry to meet 

specific requirements. 

Boundary layer calculations can be introduced for -fhe viscous 

supersonic f low , although this may produce changes less 

significient than those in subsonic flows . 
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APPENDIX (A) 

CONVERSION OF EXPERIMENTAL READINGS TO 

WIND AXES 
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A-1 CONVERSION AND CALIBRATION FACTORS FOR THE 

EXPERIMENTAL READINGS 

Force and moment readings from the experimental tests were 

converted to wind axes. For this purpose , the procedure was as 

foltows : 

Initial readings were corrected by taking the wind off from the 

wind on readings , then th6se readings were converted to wind axes 

as shown in Table ( A. 1) . 

12) Readings from step (1) were corrected by the equipment calibration 

factors . Hence 
, coefficients of forces and moments were derived 

for the wind tunn6 'model as follows - 

FORCE COEFFlCIENT = 
FORCE 

and 
1/2. p. V2. S 

MOMENT COEFFICIENT= MOMENT 
1/ -p- V2. s. t 2 

where P is the air density, V is air speed, S is effective lift area. 

is mean chord, and also 12 ý T-V-S =Betz (mm H20)xKlxgx S 

where g=9-81 m/sec2 p and K1 is the wind tunnel calibration factor 

(from chapter 2). 

Table (A. 1) gives some details of conversion for the experimental 

readings as well as equipment calibration 'factors. 
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TABLE (A. 1) CONVERSION TABLE 

EXPERIMENTAL 
READINGS 

SIDE FORCE 

L IFT 

DRAG 

PITCHING MOMENT 

YAWING MOMENT 

ROLLING MOMENT 

CONVERTED 
READINGS 

L IFT 

SIDE FORCE 

D RAG 

YAWING MOMENT 

PITCHING MOMENT 

ROLLING MOMENT 

CALIBRATION FACTOR FOR THE SIX COMPONENTS 
MASS BALANCE MECHANISM ARE :b 

L IFT 
ý 1000 VL N 

DRAG = 100 VE) N 
SIDE FORCE 2 1000 VS N 

PITCHING MOMENT = 100 Vp N-m 
ROLLING = 10 VR N-m 
YAWING 210 (V, (, 0-024V60-5B8. VS+ 0.72BqS] N-m 

Therefore the coefficient for pitching moment becomes% 

cc0- 00588 L APPROX 
m Mi -- 

c 
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A PPENDIX B 

COMPRESSIBILITY EFFECT IN SUBSONIC FLOW 
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B. 1 EFFECT OF COMPRESSIBILITY ON AERODYNAMIC FORCES 

B. 1.1 LIFT COEFFICIENT CLC 

Deriving an integrated form of lift equation on an aerofoil in a 
compressible flow : 

2 
. 

SSaC 
C 2f *U pc*dx. dy or 

SfA[pt. 
dx. dy 

so 2 F. 
Z. 

(i - 
ýD I 

...... *. *. (B. 1) 

where dx= ýI 
-Ml, ý . dý 

writing R. H. S of equation (B. 1) in terms of the incompressible 

form variations: 

2 
LU 

ff, 
&Cp. 

j. 
dS-dy . ........... C (i - M2 )2P 00 (B. 2) 

00 

Equation (B. 2) can be simplified to give the following relationship 
for the lift force for a compressible condition: 

Lc =ýj M2L .. 0* 6.0. (B. 3) 

From equation (B. 3) the lift coefficient can be derived for a comp- 
ressible condition as follows: 

Knowing that the lift coefficient is CL 
Lc( I if H 

TE C 112*P*U, 2o - 

where S is wing area, and 

si 
s X-Y 2mT., -- 
c 

y 

0 incompressible compressible 
SKETCH (B. 1) 

(B. 4) 

y 
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Substituting equation . (B, 4 ) into eqbation (B-3 ) and modifying 

it will'give: 

CL 
C* 

CL 

B DRAG COEFFICIENT CD 

0**. *. * sel) 

From first principles, the drag equation in an integrated form 

for an aerofoil in compressible flow is: 

Drag =DP Lý 
f fAcp 

c 
dy. dz C2 

Substituting equation (3-13) into equation (B . 6') gives 

I 
ýp 

_ý2 w co 
Dc p JJ' ACpi. dy. dz 

0 -M 
,2) 

Di 
or D = c 1 - M, 

00 

........ (B . 7) 

Now substituting equation (E3.4) into equation (B .,, 7. ) and putting 

the drag force in coefficient form gives: 

I -Si Di 
CDC 

M2 
IOU2 S 

C2 OD 
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B. 1.3 

CDC 3/2 CDi 

SIDE FORCE COEFFICIENTS CF 

.09.600. 

The total side force acting on a wing can be deduced by integrating 

the distribution of side force over the wing surface. Thus, 

Total side force F=1P. ACp 
c 

dx. dz ........ * (B. 9) for compressible flow cT 
tff 

Substituting equation (3-13) into equation (B - 9) will give: 

M2 

F 
113 

U2 r ̀0 
co 

f fACpi 
. dZ. dz 

2 

MD, 
/T 

......... (B. lo) 

Now substi tuti ng equati on (B .4)i nto equati on (B. 1 0) and modi fyi ng 

the side force into the coefficient of side force gives: 

CFC 
jM2) 

1/2 
0-1 MD 

112 * CFj 

co 
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Hence 
. 

CF CFj 
C (I _, M2 

00) 

2 EFFECT OF COMPRESSIBILITY ON AERODYNAMIC MOMENTS 

B. 2.1 PITCHING MOMENT COEFFICIENT CMP 

........ (B. i) 

Again from first principles$ the total pitching moment acting 

on the wing can be expressed as: 

Pitching moment MPC i0 U=2f 
fACpc. 

x. dx. dy ........ (B. 12) 
for compressible 2 
flow. 

Substituting equation 
(3-13) into equation 1/2 (B-12) gives: 

MpC =1p U2'(1-M! ) ACpi. E. dC. dy 
2" (1_M2) 

00 1 

or MP = 
10 

U2. ACpi. E. dE. dy 
c2 00 

Thus MPC = MP i .... v.. * 

Now, substituting equation (B . 4) into equation (B. 13) and 

expressing the pitching moment in coefficient form gives: 

UP CMP c c sc 



- 

Hence 
. 

CMPC 
I M7 

CMP 

w 

B-2.2 ROLLING MOMENT COEFFICIENT CMR 

. o. o9.. 14) 

The total rolling moment acting on the aircraft can be deduced by 

integrating the total forces on the surfaces in a compressible 

flow in the'fom: 

12 
Rolling Moment MR 

c -. ýp U.. ACPC. y. dy. dx 

Equation (B-15) can be simplified by substitution of equation (3-13) 

to give: 

7 M2 

MRC -P 
2 

ACpi. y. dy. dC 

Therefore 

MR 
c= -1 - 1/2 . MR 

0-M! ) ý 
0.. 0 

(B -16) 

Now, substituting equation (B -4) into equation (B-16) and 

introducing the coefficient of moment gives: 

CMR CMR 
ci (I M! ) 
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Hence 

CMR 
ca-1 3/2 -- 

CMRi 

0-M! ) " 

B . 2.3 YAWING MOMENT COEFFICIENT CMY 

0 9.. 

Using the similar method for deriving the total yawing moment 

acting on wing for compressible flow: 

Yawing moment MYC = 
10 U2 

ffACpc. 
y. dy. dz 

2 co 

Substituting equation (3-13) into equation (B. 18) gives: 

121 
wc = ip 

M2) 
ACPi. y. dy. dz 

co 

MY 
C. 

(B. 19) 

Now equation (B. 1 9) can be modified by substituting equation 

and converting it to coefficient form: 

CW - 
11 ci I Cpi. y. dy. dz 

cS cc U2 c 0) 
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III &Cp 
c Y. dy. dz 

CMY C. 
= -. 2/2 /2 

1 

(I _ M2) (1 N2). (I _ M2)-l U02 
Go co 0 co 7p 

CMY 
c=I. 

CMY i. ....... (B. 2 0) 
0)2 

All the necessary corrections for compressibility have been 

inserted into the subsonic program, according to the results 

derived in this Apppndix - 


