
Artificial Intelligence
Applications for Improved
Software Engineering
Development:
New Prospects

Farid Meziane
University of Salford, UK

Sunil Vadera
University of Salford, UK

Hershey • New York
InformatIon scIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Artificial intelligence applications for improved software engineering development : new prospects / Farid Meziane and Sunil
Vadera, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides an overview of useful techniques in artificial intelligence for future software development
along with critical assessment for further advancement"--Provided by publisher.

 ISBN 978-1-60566-758-4 (hardcover) -- ISBN 978-1-60566-759-1 (ebook) 1. Computer software--Development. 2. Artificial
intelligence. I. Meziane, Farid. II. Vadera, Sunil.
 QA76.76.D47A82 2009
 006.3--dc22
 2009018603

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

278

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

Artificial Intelligence in
Software Engineering
Current Developments and

Future Prospects

Farid Meziane
University of Salford, UK

Sunil Vadera
University of Salford, UK

INTRODuCTION

The software engineering crisis was diagnosed
about a half a century ago. Since then a plethora of
methods, methodologies, notations, programming
languages and environments have been developed
and significant progress has been made. However,
the nature and complexity of the software being
developed has also changed and this has nearly an-

nulled this progress. High rates of software failure
continue to be reported, software is still expensive
and over budget and it is still difficult to predict the
delivery date of software (Fox & Spence, 2005).
Parallel to the development of software engineering,
there has been visible growth of related disciplines
such as Artificial Intelligence having an impact on
software development (Pedrycz & Peters, 1997;
Rech & Althoff, 2004). As the preceding chapters
of the book show, there is significant potential in

ABSTRACT

Artificial	intelligences	techniques	such	as	knowledge	based	systems,	neural	networks,	fuzzy	logic	and	
data	mining	have	been	advocated	by	many	researchers	and	developers	as	the	way	to	improve	many	of	the	
software development activities. As with many other disciplines, software development quality improves
with the experience, knowledge of the developers, past projects and expertise. Software also evolves as
it	operates	in	changing	and	volatile	environments.	Hence,	there	is	significant	potential	for	using	AI for
improving all phases of the software development life cycle. This chapter provides a survey on the use
of AI for software engineering that covers the main software development phases and AI methods such
as natural language processing techniques, neural networks, genetic algorithms, fuzzy	logic,	ant	colony	
optimization,	and	planning	methods.

DOI: 10.4018/978-1-60566-758-4.ch014

279

Artificial Intelligence in Software Engineering

using AI for supporting and enhancing software
engineering. The aim of this chapter is to provide
a survey of existing research on using AI methods
such as natural language processing techniques,
neural networks, genetic algorithms, and planning
methods for the full software development life
cycle. The chapter is broadly structured in a similar
way to the parts of the book. There are sections
on AI in Planning and Project Effort Estimation,
Requirements Engineering and Software Design
and Software Testing. Within each section, there
are subsections surveying the use of particular AI
techniques. The chapter concludes with a summary
of the major issues with using AI for enhancing
software development and future directions of
research.

uSE Of AI IN PlANNING AND
PROjECT EffORT ESTIMATION

Good project planning involves many aspects:
staff need to be assigned to tasks in a way that
takes account of their experience and ability, the
dependencies between tasks need to be determined,
times of tasks need to be estimated in a way that
meets the project completion date and the project
plan will inevitably need revision as it progresses.
AI has been proposed for most phases of planning
software development projects, including assess-
ing feasibility, estimation of cost and resource
requirements, risk assessment and scheduling.
This section provides pointers to some of the
proposed uses of knowledge based systems, ge-
netic algorithms, neural networks and case based
reasoning, in project planning and summarizes
their effectiveness.

Knowledge Based Systems

It seems reasonable to assume that as we gain
experience with projects, our ability to plan new
projects improves. There have been several studies
that adopt this assumption and aim to capture this

experience in a Knowledge Based System (KBS)
and attempt to utilise it for planning future software
development projects. Sathi, Fox & Greenberg
(1985) argue that a well defined representation
scheme, with clear semantics for the concepts
associated with project planning, such as activ-
ity, causation, and time, is essential if attempts to
utilise KBS for project planning are to succeed.
Hence, they develop a representation scheme
and theory based on a frame based language,
known as SRL (Wright, Fox, & Adam, 1984).
Their theory includes a language for representing
project goals, milestones, activities, states, and
time, and has all the nice properties one expects,
such as completeness, clarity and preciseness.
Surprisingly, this neat frame based language and
the semantic primitives they develop have been
overlooked by others and appear not to have been
adopted since their development. Similarly, other
proposals that aim to utilise a KBS approach for
project management, such as the use of produc-
tion rules and associative networks (Boardman
& Marshall, 1990), which seemed promising at
the time have not been widely adopted. When
considering whether to adopt a KBS approach,
the cost of representing the knowledge seems
high and unless this can be done at a level of
abstraction that allows reuse, one can imagine
that it is unattractive to software developers who
are keen and under pressure to commence their
projects without delay.

Neural Networks

Neural networks (NNs) have been widely and
successfully used for problems that require clas-
sification given some predictive input features.
They therefore seem ideal for situations in software
engineering where one needs to predict outcomes,
such as the risks associated with modules in
software maintenance (Khoshgoftaar & Lanning,
1995), software risk analysis (Neumann, 2002)
and for predicting faults using object oriented
metrics (Thwin & Quah, 2002). The study by

280

Artificial Intelligence in Software Engineering

Hu, Chen, Rong, Mei & Xie (2006) is typical of
this line of research. They first identified the key
features in risk assessment based on past classi-
fications such as those presented by Wallace and
Keil (2004) and further interviews with project
managers. They identified a total of 39 risk factors
which they grouped into 5 risk categories: proj-
ect complexity, cooperation, team work, project
management, and software engineering. These
were reduced to 19 linearly independent factors
using principal component analysis (PCA). Proj-
ects were considered to have succeeded, partially
failed, or failed. In their experiments, they tried
both the use of a back propagation algorithm for
training and use of GAs to learn networks, using
35 examples for training and 15 examples for
testing. The accuracy they obtained using back
propagation was 80% and that with a GA trained
NN was over 86%, confirming that use of NNs
for predicting risk is a worthy approach, though
larger scale studies are needed.

Genetic Algorithms

There have been numerous uses of genetic algo-
rithms for project scheduling in various domains
(Cheng & Gen, 1994; Hindi, Hongbo, & Fleszar,
2002; Hooshyar, Tahmani, & Shenasa, 2008; Yujia
& Chang, 2006; Zhen-Yu, Wei-Yang, & Qian-Lei,
2008). A survey of their application in manufac-
turing and operations management can be found
in (Kobbacy, Vadera, & Rasmy, 2007; Meziane,
Vadera, Kobbacy, & Proudlove, 2000). These typi-
cally formulate project planning as a constraint
satisfaction problem with an objective that needs
optimisation and, which is then transformed into
a form suitable for optimisation with a GA.

In the area of software development, Shan,
McKay, Lokan & Essam (2002) utilise Genetic
Programming to evolve functions for estimating
software effort. Two target grammars were adopted
for the functions that allowed use of a range of
mathematical functions (e.g., exp, log, sqrt) as well
as a conditional expressions. The approach was

tested on data consisting of 423 software develop-
ment projects characterised by 32 attributes (e.g.
such as intended market, requirements, level of
user involvement, application type, etc) from the
International Software Benchmarking Standards
Group (www.isbsg.org.au) with roughly 50% used
for training and 50% used for testing. The results
of this study show that the approach performs
better than linear and log regression models. An
interesting finding of the study was that although
the most accurate functions discovered by GP
utilised similar parameters to the traditional
estimates, a key difference was that it adopted
non-linear terms involving team size.

Creating a good assignment of staff to tasks
and producing schedules is critical to the success
of any software development project. Yujia &
Chang (2006) show how it is possible to utilise
GAs to produce optimal schedules and task as-
signments. Their proposal involves a two part
chromosome representation. One part includes
the assignment of individuals to tasks and another
involves representing the topological ordering of
the tasks in a way that ensures that the offspring
generated using the cross-over operator remain
valid schedules. The fitness function is obtained
by utilising a systems dynamics simulation to
estimate expected task duration given a particular
chromosome. The results of their experiments
suggest that this is a promising approach, though
further work on how to utilise GAs in practice
when schedules change is still needed.

An important part of developing an optimal
schedule that meets a target completion date is the
trade-offs that may occur. For example, attempts
at increasing quality can result in increasing cost
and possibly compromising completion time but
perhaps increasing user satisfaction. Increasing
resources on tasks increases the local cost but
may result in early completion, higher quality and
reduction of overall cost. Hooshyar et al., (2008)
propose the use of GAs to optimize schedules to
take account of such trade-offs. They represent
a schedule by a chromosome consisting of the

281

Artificial Intelligence in Software Engineering

activity duration and which is ordered based on
their dependency. In their experiments, they utilise
the standard mutation and two-point cross-over
operators and adopt a fitness function that includes
the cost and duration. The experimentation is
carried out on projects consisting of 10, 20 and
30 activities and conclude that although the well
known algorithm due to Siemens (1971) works
well for small scale problems, GAs may be more
effective for larger scale problems.

Case Based Reasoning

It can be argued that successful project planning
and management is heavily based on experience
with past cases. It is therefore surprising that
there are few studies that propose the use Case
Based Reasoning (CBR) for project planning of
software development. One of the few exceptions
is the study by Heng-Li Yang & Chen-Shu Wang
(2008), who explore the combined use of CBR and
data mining methods for project planning. They
use a structured representation for cases, called
Hierarchical Criteria Architecture (HCA), where
projects are described in terms of the customer
requirements, project resources and keywords
describing the domain. The use of HCA enables
different weights to be adopted when matching
cases, allowing greater flexibility depending on
the preferences of the project manager. Given a
new project, first similar new cases are retrieved.
Then, data mining methods, such as association
rule mining, are used to provide further guidance
in the form of popular patterns that could aid in
project planning. In a trial, based on 43 projects,
Yang & Wang (2008), show how the combined
use of CBR and data mining can generate use-
ful information, such as “the duration of project
implementation was about 26 days and 85% of
projects of projects were completed on time”,
which can be used to provide guidance when
planning a similar project.

REQuIREMENTS ENGINEERING
AND SOfTWARE DESIGN

Requirements engineering is often seen as the
first stage of a software development project. It
is the basis of any development project and this
is not restricted only to software engineering. It
is a broad and multidisciplinary subject (Zave,
1997). Requirements define the needs of many
stakeholders. It is widely acknowledged, that
because of the different backgrounds of these
stakeholders, requirements are first expressed in
natural language within a set of documents. These
documents usually represent “the unresolved
views of a group of individuals and will, in most
cases be fragmentary, inconsistent, contradictory,
seldom be prioritized and often be overstated,
beyond actual needs” (Smith, 1993). The main
activities of this phase are requirements elicitation,
gathering and analysis and their transformation
into a less ambiguous representation. For a detailed
list of activities in requirements see Young (2003,
pp 3-5). Requirements form the basis of software
design. Ideally, all problems encountered during
the requirements phase should be resolved before
design starts. Unfortunately, in practice some of
the problems inherent to requirements are passed
into design, making the late discovery of errors
occurring during this phase the most expensive to
correct. It is therefore not surprising that require-
ments engineering is seen as the most problematic
phase of the software development life cycle.

Problems Associated with
Requirements Engineering

There are many problems that have been identi-
fied during the requirements engineering phase
of the software development process. These can
be summarised as follows:

Requirements are ambiguous: It is widely
acknowledged, that because of the dif-
ferent backgrounds of the stakeholders,

282

Artificial Intelligence in Software Engineering

requirements are first expressed in Natural
Language (NL). NL is inherently ambigu-
ous and contributes to the incompleteness
of requirements as many assumptions are
made on some issues. Detecting ambigui-
ties in NL is an old and major research is-
sue in requirements engineering (Presland,
1986). Research in this area will be further
discussed later in this chapter.

Requirements are incomplete, vague and im-
precise: Requirements are usually incom-
plete, vague and imprecise in nature. It has
been reported that customers do not really
know what they want, or have difficulties in
articulating their requirements (Yang, Xia,
Zhang, Xiao, Li & Li, 2008). It has also
been reported that there is a lack of user
involvement during requirements (Hull,
Jackson & Dick, 2005). In addition, some
of these requirements are vague and can-
not be easily validated. This includes state-
ments related to system security (what is a
secure system?), user interface (what is a
user friendly system?) and reliability (what
is a reliable system). Yen & Liu (1995) de-
fined an imprecise functional requirement
as “a requirement that can be satisfied to a
degree”. Therefore, there is a need to im-
prove the quality of these requirements be-
fore the modelling phase.

Requirements are conflicting: Conflicts in re-
quirements engineering occur when two
different requirements compete for the
same resources or when the satisfaction of
one requirement precludes that of another.
Yen & Liu (1995) stated that “Two require-
ments are conflicting if an increase in the
degree to which one requirement is satis-
fied often decreases the degree to which
another requirement is satisfied”.

Requirements are volatile: User needs evolve
over time. It is not unusual that during
the time it takes to develop a system, user
requirements have already changed. The

causes of these changes may vary from the
increasing understanding of the user about
the capabilities of a computer system to
some unforeseen organisational or envi-
ronmental pressures. If the changes are not
accommodated, the original requirements
set will become incomplete and inconsis-
tent with the new situation or in the worst
case useless (Meziane, 1994).

There are communication problems between
the stakeholders: During the requirements
engineering phase, developers have to talk
to a wide range of stakeholders with dif-
ferent backgrounds, interests, and personal
goals (Zave, 1997). Communication with
and understanding all these stakeholders
is an extremely difficult and challenging
task.

Requirements are difficult to manage: One of
the main problems associated with require-
ments is that of traceability (Hull, Jackson
& Dick, 2005). Traceability is the process
of following a requirement from its elicita-
tion to implementation and verification and
validation. Linking the different phases of
requirements validation is often omitted.
Other management issues related to soft-
ware management are: project manage-
ment, software cost, development time,
resources management and managing the
changing environment.

The main contribution of AI in the requirements
engineering phase are in the following areas:

Disambiguating natural language require-•
ments by developing tools that attempt to
understands the natural language require-
ments and transform them into less ambig-
uous representations.
Developing • knowledge based systems and
ontologies to manage the requirements and
model problem domains.
The use of computational intelligence to •

283

Artificial Intelligence in Software Engineering

solve some of the problems associated
with requirements such as incompleteness
and prioritisation.

In the following sections, we review and
discuss some of the systems developed in these
areas.

Processing Natural
language Requirements

The idea of transforming NL requirements auto-
matically into specifications and design goes as
far back as the early 80s. In his paper, “Program
Design by Informal English Description”, Ab-
bott (1983), drew an analogy between the noun
phrases used in NL descriptions and the data types
used in programming languages. It is true that in
those days requirements and modelling were not
as distinct activities as they are now, but he did
nevertheless associate the noun phrases found in
NL descriptions to data types and concluded that
these data types “divide the word into classes of
object”. Abbott stated that “associating common
nouns with data types, makes the notion of data
types more intuitive”. He has also highlighted
that this is not a straight forward mechanical
approach but requires some tacit knowledge
related to the problem domain. Booch (1986)
further developed this approach when describing
his Object-Oriented analysis and design method.
It was later noted that verb phrases and to some
extent adjectives describe relationships between
these entities, operations and functions (Saeki,
Horai & Enomoto, 1989; Vadera & Meziane, 1994;
Poo & Lee, 1995). Since then and over the last
twenty five years, most research in transforming
NL requirements into various modelling languages
adopted the same approach. Early systems that
attempted to transform NL specifications were
relatively simple as the NL understanding field
was still in its infancy; however most researchers
have taken advantage of recent developments in
NL processing systems to develop more robust

systems. It is not our intension to review all
systems that have been developed to transform
NL requirements into software models, but we
highlight some systems that have attempted to
produce formal specification and OO oriented
models from NL Requirements.

from Nl to formal Specifications

Saeki, Horai & Enomoto (1989) proposed a
framework to translate specifications written in
NL (English) into formal specifications (TELL).
Their framework suggests the extraction of four
tables from the NL requirements that contain verbs,
nouns, actions and action relations. However, they
noticed that simple extraction of nouns and verbs
was not sufficient and deeper semantical analysis is
needed. Indeed, nouns can denote objects but also
their attributes as verbs can denote relationships
and actions. This has been one of the major chal-
lenges since in the automatic transformations of NL
requirements into other specification languages.
Hence, they suggested a human classification of
nouns and verbs. They have identified four classes
for nouns; class noun, value noun, attribute noun,
action noun and 4 verb classes; relational verb,
state verb, action verb and action related verb. In
the action table, for each action verb, its agent and
target object are identified. In the action related
table, messages together with their senders and
receivers have been identified. A class template
is then used to gather the information produced
by the four tables and is suggested to be used for
the development of the formal specifications.
However, their system was not implemented but
set the foundations for future systems.

The NL2ACTL system (Fantechi, Gnesi,
Ristori, Carenini, Vanocchi, & Moreschini, 1994)
aims to translate NL sentences, written to express
properties of a reactive system, to statements of an
action based temporal logic. It takes each sentence,
parses it, and attempts to complete it by identify-
ing any implicit information that is required to
produce a well-formed expression in the action

284

Artificial Intelligence in Software Engineering

based logic called ACTL. First, NL2ACTL shows
that it is possible to utilise existing NL process-
ing tools to develop grammars that are useful for
analysing English sentences and for producing
formal specifications in a given domain. Second,
NL2ACTL demonstrates that when there is a
specific application domain and target formal
specification language in mind, one can develop
a system that can help to identify incompleteness
at a detailed level.

Vadera & Meziane (1994) developed the
FORSEN system which aims to translate NL
requirements into the Formal specifications
language VDM (Jones, 1990). They used Logic
Grammars (LG) to translate the requirements
into McCord’s logical form language (LFL)
(McCord, 1990). This allowed the detection of
ambiguities in the NL requirements. If a sentence
is ambiguous, the system displays all possible
interpretations and the user is then required to
select the intended meaning. At the end of the
first phase, each sentence has a single associated
meaning represented in the LFL. In the second
phase, an entity relationship model is developed
using nouns and verbs extracted from the LFL.
The developed entity relationship model is then
translated to a VDM data type. The last phase of
the FORSEN system is the generation of VDM
specifications. FORSEN generates specifications
by filling in pre-defined schemas for a common
range of operation specifications such as adding
items, deleting items, and listing items that satisfy
some conditions. FORSEN was different from
previously developed systems as it did not rely
on structures or domain specific requirements.
The input was a free English text representing
the requirements of the system to be developed.
However, it was limited in the range of specifica-
tions it could generate. A good review of systems
that produce formal specifications can be found
in Vadera & Meziane (1997).

from Nl to OO Specification

Juristo, Moreno & López (2000), defined a general
framework for the automatic development of OO
models from NL requirements using linguistics
instruments. Their framework is composed of the
following nine phases: (i) extraction of essential
information; (ii) identification of synonyms and
polysemies; (iii) separation of static and dynamic
information; (iv) static requirements structuring;
(v) dynamic requirements structuring; (vi) ob-
ject model construction; (vii) behaviour model
construction; (viii) object model and behaviour
model integration; (ix) object model and behaviour
model verifications. They argue that these steps
will allow the identifications of all the compo-
nents required by an OO model and will help
in the development and validation of these OO
models. They stressed, that inputs should be in
NL to avoid unnecessary user interaction with the
system, a view earlier supported by Mich (1996).
The system should also use rules and grammars
rather than heuristics to identify entities, attributes
and relations (including specialised relation such
as generalisations). These steps will also allow
the detection of ambiguities in NL requirements,
separate the static model from the dynamic model
and develop the object model and the behaviour
model. As the following reviews show, few of the
systems that have been developed exhibit most
of these components.

Mich (1996) used the Large –scale Object-
based Linguistic Interactor Translator Analyser
(LOLITA) NLP system to develop the NL-OOPS
which aims to produce OO specifications from
NL requirements. In LOLITA knowledge is rep-
resented using conceptual graphs SemNet where
nodes represent concepts and arcs relationships
between concepts. The NL requirements are
analysed and corresponding SemNets produced.
During this phase, ambiguities are either resolved
or flagged to the user. An algorithm is then used
to translate the SemNets into an OO model.

Moreno, Juristo & Van de Riet (2000), de-

285

Artificial Intelligence in Software Engineering

veloped an approach that linked the linguistic
world and the conceptual world through a set of
linguistic patterns. The patterns have been divided
into two categories: static utility language (SUL)
that describes the elements of the problem domain,
hence seen as the static part of the object model
and the dynamic utility language (DUL) that de-
scribes the changes to the elements of the static
model. Each language has been described using
context-free grammars. For example a conceptual
patter would be the definition of a relationship
between two classes by means of a verb. This
allowed this approach to define formal relations
between the linguistic world and conceptual world
via the mathematical world.

Harmain & Gaizauskas (2003) developed the
Class-Model Builder (CM-Builder), a NL based
CASE tools that builds class diagrams specified
in UML from NL requirements documents. CM
Builder is developed using the GATE environ-
ment (Gaizauskas,Cunningham, Wilks,Rodgers
& Humphreys, 1996). CM-Builder takes as an
input a software requirement text in English and
produce as an output an OO model in the CASE
Data Interchange Format (CDIF) file that is used
as an input to a CASE tool that supports UML
(Entreprise Modeler in this case). The output file
contains the identified classes, their attributes and
the relationships among them. The systems used
a parser based on feature-based Phrase Structure
Grammar that relies on unification. The output
from the parser is semantically represented as
a predicate-argument structure. They also make
use of a simple ontology concept to represent
the world knowledge. The strength of GATE as
a specialised language engineering tool allowed a
deep analysis of the NL requirements and allowed.
Further manipulations of the UML are required
using Entreprise modeller to complete the model
produced by CM-Builder.

Knowledge Based Systems

Requirements engineering is knowledge inten-
sive and include activities such as “Knowledge
Elicitation” and “Knowledge Acquisition”. It is
not surprising that knowledge-based software
and requirement engineering received a wide at-
tention since the early 1980. Lubars & Harandi
(1987) stated that “The reuse of experts design
knowledge can play a significant role in improv-
ing the quality and efficiency of the software
development process”.

The READS tool (Smith, 1993) is developed
at the Paramax Systems Corporation, a software
contractor to US and foreign government agen-
cies and directly supports the U. S. Government
system engineering process. READS supports
both the front end activities such as requirement
discovery, analysis and decomposition and re-
quirements traceability, allocation, testing, and
documentation. READS is composed of many
components to achieve its goals. It starts with
the windows document where the requirements
documents are displayed and requirements are
then discovered manually or automatically. It
has been reported that the automatic identifica-
tion of the requirements hits an 80%-90% rate.
The identified requirements are saved in the
project’s database and displayed in the require-
ments inspection window. During this phase, the
requirements are edited, reviewed, allocated and
decomposed; “the goal of decomposition is the
development of a set of designable requirements:
precise, unambiguous, testable statements of a
need or condition that can be directly mapped to
a physical solution” (Smith, 1993). Children are
attached to each requirement denoting the dif-
ferent interpretation if they are ambiguous. The
derived requirements are then aggregated into a
single non ambiguous requirements document.
Requirements are organised into different views
using allocation categories (Smith, 1993).

KBS are used in the design phase by storing
design patterns or design families. Lubars & Ha-

286

Artificial Intelligence in Software Engineering

randi (1987), used a KBS to store design families,
upon the development of the requirements, input
and outputs of the system’s functionality. The Idea
system searches the KB and proposes a design
schema. This becomes then the top design level of
the system. The users need to refine this schema
to fully satisfy the user requirements.

Ontologies

An ontology is an explicit specification of a con-
ceptualisation. Ontologies and techniques used
for the semantic web have been investigated in
the last few years as a way to improve require-
ments engineering. Ontologies enable the sharing
of common information and knowledge within
specific domains. “An ontology can be viewed as
a special kind of semantic network representing
the terminology, concepts, and the relationships
among these concepts related to a particular ap-
plication domain. Semantic web and ontological
techniques provide solutions for representing,
organizing and reasoning over the complex sets of
requirements knowledge and information.” (Yang,
Xia, Zhang, Xiao, Li & Li, 2008). Ontologies are
developed by many organisations to reuse, inte-
grate, merge data and knowledge and to achieve
interoperability and communication among their
software systems. Reuse has been a hot issue in
software design for many years now. It was one
of the main strengths of the OO oriented methods
and programming languages introduced in the
last three decades. Indeed, there are similarities
between the classes in an ontology and classes in
OO (Vongdoiwang & Batanov, 2005). Ontologies
enhance the semantics by providing richer rela-
tionships between the terms of concepts/classes
(Siricharoen, 2008).

In their research, Yang Yang, Xia, Zhang, Xiao,
Li & Li (2008) use semantic web and ontological
techniques to elicit, represent, model, analyze
and reason about knowledge and information
involved in requirements engineering processes.
They argue that the use of semantic representation

could improve some of the activities involved in
the requirements phase such as filling the com-
munication gap between different stakeholders,
effectively support automatic requirements elicita-
tion, detecting incompleteness and inconsistency
in requirements, evaluate the quality of require-
ments, and predict possible requirements changes.
Their system uses three ontologies namely: the
user ontology provides flexible mechanisms to
describe a variety of assumptions about end-users
(or customers), and to infer domain-dependent re-
quirements. It is used to support user requirements
modelling and elicitation. The enterprise ontology
describes business context, structure, rules, goals,
tasks, responsibilities, and resources available, for
requirements analysts to understand and grasp
high-level requirements. The Domain ontology
serves as a shared knowledge background among
different stakeholders. It is used for consistency
and reusability of knowledge accumulated during
the project development. The inference rules in the
contextual ontologies can be used to elicit implicit
requirements, detect incompleteness and incon-
sistency in requirements description. Automated
validation and consistency checking of require-
ments, to some degree, offer an opportunity for
the management of requirement evolution.

Kossmann, Wong, Odeh, Gillies, (2008)
developed the OntoREM (Ontology-driven Re-
quirements Engineering Methodology) an ontol-
ogy-based solution to enable knowledge driven
requirements engineering. A metamodel, which
is an ontology is designed taking into account the
different requirements engineering artifacts, ac-
tivities, and interrelationships with other domains
and disciplines. “The intended application of the
OntoREM metamodel ontology is to capture and
manage reference knowledge and concepts in the
domain of requirements engineering, supported by
decision engines that rely on other problem and
solution domain ontologies so as to develop high
quality requirements for the related domains.”
(Kossmann, Wong, Odeh, Gillies, 2008). On-
toREM supports activities such as ‘elicitation’,

287

Artificial Intelligence in Software Engineering

‘analysis and negotiation’, ‘documentation’ and
‘validation’. The system produces requirements
that are complete and consistent.

Ontologies are also used to develop software
Engineering environments. Falbo et al., (2002)
have developed the Ontology-based software
Development Environment (ODE) based on a
software process ontology. Tools for process
definition and project tracking were also built
based on this ontology. ODE’s architectural is
composed of two levels: the application level
concerns application classes, which model the
objects that address some software engineering
activity and the meta-level (or knowledge level)
that defines classes that describe knowledge about
objects in the application base level. The classes
in the meta-level are derived directly from the
ontology.

In order to capture, represent and structure
the domain knowledge about specific model
and platform properties Geihs, et al. (2008) use
ontologies as a machine-readable formal descrip-
tion technique that supports semantic annotations
and reasoning about models and platforms. They
developed a systematic support for the automation
of model transformations based on domain specific
knowledge formally represented by an ontology.
“Entities and concepts defined in the ontology
are referenced in the platform-independent model
(PIM) as well as in a semantic annotation of the
target platforms’ API. This allows an automatic
matching of modelling elements of the PIM to
variables, objects and interfaces of the involved
target platforms” Geihs et al. (2008). The system
ontology links the abstract concepts of the PIM
to the concrete platform-specific model (PSM)
concepts for objects of the real world. The main
benefit of their approach is the reuse of the PIM
as well as the reuse of the transformation. Find-
ing the right classes for an object oriented model
(often the class diagram) is not an easy task. Sir-
icharoen (2008).proposed the use of ontologies
as the inputs of a semi-automatic object model
construction program. He attempted to build semi-

automatic object model by using and comparing
the concepts in the ontology as objects, slot or
properties as attributes, and some properties can
act as functions or operation.

Intelligence Computing for
Requirements Engineering

Pedrycz & Peters (1997) stated that “The emerging
area of Computational Intelligence (CI) provides
a system developer with a unique opportunity
of taking advantage of the currently developed
and highly mature technologies”. They argue
that each of the techniques developed in CI can
play an important role in solving the traditional
problems found in software engineering. In these
sections we review some of the systems devel-
oped using CI techniques to support requirements
engineering.

The SPECIFIER system (Miriyala & Harandi,
1991) can best be viewed as a case based system
that takes as input an informal specification of
an operation where the pre and post-conditions
are given as English sentences. The verbs in the
sentences are used to identify the concepts. The
identified concepts are then used to retrieve associ-
ated structure templates (represented as frames).
These structure templates have slots that define the
expected semantic form of the concepts and have
associated rules that can be used to fill in the slots
by using the informal specification. A set of rules
is used to select specification schemas based on
the identified concepts. The specification schemas
are then filled by using the rules associated with
the slots and the structures of the concepts. Once
filled, the specification schemas produce formal
specifications in a Larch-like language

When dealing with conflicts in requirements,
we often drop one of the requirements or modify it
to avoid the conflict. However, Yen & Liu (1995)
stated that it is desirable “to achieve an effective
trade off among conflicting requirements so that
each conflicting requirement can be satisfied to
some degrees, while the total satisfaction degree

288

Artificial Intelligence in Software Engineering

is maximized”. Hence they suggested that it is
necessary to identify and assess requirements
priorities. In their approach they use imprecise
conflicting requirements to assess requirements
priorities. Users are required to relatively order
requirements and to decide how much important
a requirement is with regards to other conflicting
requirements. They then used fuzzy logic and
possibility theory to develop an approximate
reasoning schema for inferring relative priority
of requirements under uncertainty.

TESTING

Despite the wealth of research in the last two de-
cades, software testing remains an area where, as
cases of reported failures and numerous releases
of software suggest, we cannot claim to have
mastered. Bertolino (2007) presents a useful
framework for summarising the challenges that
we face in addressing the problems of ensur-
ing that systems are fit for purpose, suggesting
further research on: (i) developing a universal
theory of testing, (ii) fully automatic testing, (iii)
design to facilitate testing and (iv) development
of integrated strategies that minimise the cost
of repeated testing. This section presents some
pointers to attempts at using AI techniques to
support particular aspects of the testing process,
which has the potential to contribute towards a
more integrated dream testing environment of the
kind proposed by Bertolino (2007).

Knowledge Based Systems

One of the earliest studies to suggest adoption
of a Knowledge Based System (KBS) for testing
was by Bering and Crawford (1988) who describe
a Prolog based expert system that takes a Cobol
program as input, parses the input to identify
relevant conditions and then aims to generate
test data based on the conditions. DeMasie and
Muratore (1991) demonstrated the value of this

approach by developing an expert system to assist
in the testing of software for the Space Shuttle.
The software testing process for the Space Shuttle
had previously involved running it on a simulated
environment and use of manual checks to identify
errors, which could take more than 40 people over
77 days of testing. Since the criteria for analysing
the performance data were well documented,
a rule base was developed, enabling automatic
identification of potential problems and resulting
in a reduction to around 56 days.

Both the above studies are quite application
specific. In contrast, Samson (1990, 1993) pro-
poses a generic environment, called REQSPERT,
that has, at its heart, a knowledge base that supports
the development of test plans from requirements.
REQSPERT takes a list of requirements as input,
classifies them into particular types of functional
and non-functional requirements, identifies suit-
able test metrics and then proposes a test plan
together with the test tools that could be utilized.
Although the approach proposed by REQSPERT is
interesting, there has been limited adoption of the
model in practice, perhaps because of the invest-
ment of effort required in instantiating the model
for particular applications. Indeed, this might be
the reason why progress on the use of KBS for
testing appears to have stalled in the late 1990’s,
since papers that successfully build further on this
idea are hard to find in the literature.

AI Planning

A more active area of research since the mid-1990s
has been the use of AI planning for testing. von
Mayrhauser, Scheetz, Dahlman & Howe (2000)
point out that a major disadvantage of white box
testing is that we have to wait until the code is
developed before commencing the process of
producing the tests. An alternative to the use of
white-box testing is to model the domain and
produce tests from the model. To be able to gen-
erate tests, the model should be rich enough to
generate a sequence of commands, where each

289

Artificial Intelligence in Software Engineering

command may include parameters. The primary
example of this approach is the Sleuth system
(von Mayrhauser, Walls, & Mraz, 1994a, 1994b),
which aims to do this by defining three layers,
where the top layer aims to define how to sequence
commands, the next layer defines individual
commands and the bottom layer defines how to
instantiate the parameters required by commands.
This idea was explored by applying it to gener-
ate tests for an interface to a system capable of
storing a large number of tape cartridges, known
as StorageTek.

The experiences with Sleuth suggest that
although it can be effective, considerable effort
may be required to develop a model for particular
applications. A research group at Colorado State
University (Howe, von Mayrhauser, & Mraz,
1995) explored an alternative approach in which
they utilize AI planning methods (Ghallab, Nau,
& Traverso, 2004). AI planning methods allow the
specification of operators, where each operator
can be defined by providing a precondition that
must hold in order for the operator to be applicable
and post-conditions that define the valid states
following application of the operator. An AI plan-
ner can take an initial state and a goal and then
generate a plan that consists of the sequence of
operators that transform the initial state to achieve
a given goal. Howe et al. (1995) recognized that
by representing commands as operators, provid-
ing initial states and setting the goal as testing for
correct system behaviour, an AI planner could
generate test cases, consisting of a sequence of
commands (Howe, et al., 1995; Mraz, Howe, von
Mayrhauser, & Li, 1995). To evaluate the idea,
they modeled the interface to StorageTex, that was
used to illustrate Sleuth and conclude that it was
easier to represent the domain using the planner
based approach, that the test cases generated are
provably correct and the different combinations
of initial and goal states can result in a wider and
more novel range of test cases. However, they
acknowledge that test case generation can be
slow, though this might have been because of the

particular planner they employed in their study.
In a follow up study, they develop their ideas
further by showing how it is possible to utilize
UML together with constraints on parameters and
state transition diagrams to model the domain
(Scheetz, von Mayrhauser, & France, 1999; von
Mayrhauser, Scheetz, & Dahlman, 1999). The
class methods of the UML model are mapped to
operators and state transition diagrams together
with propositional constraints provide information
to define the preconditions and effects of opera-
tors. High level test objectives, derived from the
UML models, can then be mapped to an initial
state and goals for the planner which generates
tests based on the objectives (Von Mayrhauser,
France, Scheetz, & Dahlman, 2000).

Von Mayrhauser et al. (2000) also shows that
the use of AI planning for test generation has the
advantage that one can mutate plans to mimic
potential errors in the use of a system, for example
when a user attempts an incorrect sequence of
commands. This mutation of the plans then leads
to generation of cases that test the error recovery
capabilities of applications.

An important part of testing distributed sys-
tems is to check whether it is possible for it to end
up in insecure or unsafe states. Gupta, Bastani,
Khan & Yen (2004) take advantage of the goal
oriented properties of Means-Ends planning by
defining potential system actions as operators so
that generating tests becomes equivalent to the
goal of finding a plan from the current state to
specified unsafe or near unsafe states.

Memon, Pollack & Soffa (1999) argue that
human generation of test cases for graphical user
interfaces requires enumeration of a large number
of possible sequences of user actions, making the
process inefficient and likely to be incomplete.
Instead, as with the above studies, they propose the
use AI planning methods, since once the possible
actions are specified using operators, a planner
can generate tests since it is capable of finding
a sequence of actions to achieve a goal from an
initial state. There are two interesting aspect of

290

Artificial Intelligence in Software Engineering

their work: (i) they don’t simply specify a single
operator for each possible interface action but use
abstraction to develop higher level operators, mak-
ing the search more efficient, (ii) their approach
automatically includes verification conditions in
the tests that are capable of detecting failure fol-
lowing intermediate actions in a sequence aimed
to achieve some goal. They test the feasibility of
the approach by applying it to generate test cases
for Microsoft Wordpad

Genetic Algorithms

A study by Kobbacy, Vadera and Rasmy (2007) has
shown that the use of Genetic Algorithms (GAs)
for optimization has grown substantially since the
1980s and this growth has continued while the
use of other AI technologies has declined. This
trend is also present in their use in testing, with
numerous studies aiming to take advantage of their
properties in an attempt to generate optimal test
cases (Baresel, Binkley, Harman, & Korel, 2004;
Baudry, Fleurey, Jezequel, & Le Traon, 2002a,
2002b; Briand, Feng, & Labiche, 2002; Briand,
Labiche, & Shousha, 2005; Harman & McMinn,
2007; Liaskos, Roper, & Wood, 2007; Nguyen,
Perini, & Tonella, 2008; Ribeiro, 2008; Tonella,
2004; Wappler & Wegener, 2006) .

For example, Kasik and George (1996) utilize
GAs for generating tests for user interfaces. They
argue that manual testing of interfaces can be
inadequate, pointing out that tests are constructed
by systems engineers who have a fixed view of
how the designed system is meant to be used and
hence generate tests that don’t really capture the
paths that novice users might follow. To overcome
this deficiency, they propose a novel system that
aims to model novice behavior by use of GAs.
The central idea is to represent a sequence of
user actions by a gene. A pool of genes then rep-
resents potential tests. A tester can then define
a fitness function to reflect the extent to which
a particular gene resembles a novice and evolu-
tion then leads to the best tests. They experiment

with a fitness function that gives greater priority
to actions that remain on the same window and
attempt three alternative strategies for generating
tests. First they give little guidance to the GA and
observe that this leads to tests that at “best the
resulting scripts seemed more chimpanzee-like
than novice-like” (Kasik & George, 1996, p250).
Second, they began the tests with a well defined
sequence of actions and then allowed the GA to
complete the sequence of actions. Although the
results were better, they remained unconvinced
about the quality of the tests. Thirdly, they provide
both the start and end parts of a test and let the GA
generate the intermediate actions. Not surprisingly,
this approach, which they term pullback mode,
results in the most appropriate novice like tests.
The most interesting part of their work is that it
shows the potential for modeling different types
of users which could provide a powerful tool for
generating particular types of test suites.

Baudry et al. (2002a, 2002b) present an interest-
ing use of GAs aimed at improving the quality of
an initial set of test cases provided by a tester. The
central idea is based on mutation testing (Untch,
1992) which involves creation of a set of mutant
programs, where each mutant is a version of the
original program but with an introduced varia-
tion. The introduced variation can be an error or
bug or result in behavior that is equivalent to the
original program. The effectiveness of a set of
test cases can then be measured by calculating the
proportion of non-equivalent mutants that can be
revealed by the test cases. The task for a tester,
then, is to develop a set of tests that maximizes
this measure, called a mutation score. Baudry et
al. (2002b) explore the use of GAs by taking the
fitness function to be the mutation score and each
gene to be a test. An initial test set is provided by
a tester and evolution using the standard reproduc-
tion, mutation, and crossover are utilized where
the target application to be tested is a C# parser.
Their experience with this approach is not good,
and they conclude that the “results are not stable”
and that they had to “excessively increase the muta-

291

Artificial Intelligence in Software Engineering

tion rate compared to usual application of genetic
algorithms” (Baudry, et al. 2002a). Given the target
application, the individual genes represent source
code and with hindsight, this outcome may not be
surprising since the crossover operator may not
be particularly suitable on programs. However,
they also observe two inherent limitations of
using the standard evolution cycle (Baudry, et
al., 2002a). First, since GAs focus on the use of
the best individuals for reproduction, the muta-
tion operator can lose valuable information and
the best new genes may not be as good as those
of the previous generation. Second, they point
out that a focus on optimizing individual genes
doesn’t help in minimizing the size of the testing
set, which is an important consideration given the
time it can take to carry out the tests. To overcome
these problems, they propose a model in which
new members of the gene pool are obtained by
bacterial adaptation, where mutation is used to
make gentler improvements to the genes and those
genes with a score above a certain threshold are
retained. Their experiments on the performance of
this revised scheme suggest that it is more stable
and it converges more rapidly.

Several authors propose the use of GAs for
testing OO programs (Briand, et al., 2002; Ribeiro,
2008; Tonella, 2004; Wappler & Schieferdecker,
2007; Wappler & Wegener, 2006). The main aim
of these studies is to construct test cases consist-
ing of a sequence of method calls. Constructing
sensible sequences of method calls requires that
certain pre-conditions, such as the existence of the
target object or parameters required by a method
are satisfied. An obvious GA based approach is
to code methods as identifiers and to attempt to
construct a fitness function. But use of mutation
and crossover are bound to result in inappropri-
ate sequences, so how can these be avoided?
Wappler and Lammermann (2005) demonstrate
that it is possible to devise a fitness function that
penalizes erroneous sequences. However, in a
subsequent paper, Wappler and Wegener (2006)
acknowledge that using a fitness function as the

primary means of avoiding illegal sequences is
not efficient. Instead they propose a novel use of
Genetic Programming (GP), which aims to learn
functions or programs by evolution. The under-
lying representation with most GP systems is a
tree instead of a numeric list. In general, a tree
represents a function, where leaf nodes represent
arguments and non-terminal nodes denote func-
tions. In context of testing, such trees can represent
the dependencies between method calls which
can then be linearised to produce tests. Use of
mutation and crossover on these trees can result
in invalid functions and inappropriate arguments
in the context of testing object oriented programs.
Hence, Wappler and Wegener(2006), suggest the
use of strongly typed GP (Montana, 1995), where
the types of nodes are utilized to ensure that only
trees with appropriate arguments are evolved. This
still leaves the issue of how such trees are obtained
in the first place. The approach they adopt is to
first obtain a method call dependency graph that
has links between class nodes and method nodes.
The links specify the methods that can be used to
create instances of a class and which instances are
needed by a particular method. This graph can then
be traversed to generate trees to provide the initial
population. The required arguments (objects) for
the trees are obtained by a second level process
that first involves generating linear method call
sequences from the trees and then utilizes a GA
to find the instantiations that are the fittest. Once
this is achieved, the trees are optimized by use of
recombination and mutation operators with respect
to goals, such as method coverage.

Ribeiro (2008) also adopt a similar approach
in their eCrash tool, utilizing strongly typed GP
and a dependency graph to generate the trees.
However, a significant refinement of their work
in comparison to Wappler and Wegener (2006)
is that they reduce the search space by removing
methods, known as pure methods, that don’t have
external side effects. A trial of this pruning process
on the Stack class in JDK 1.4.2 resulted in about a
two-thirds reduction in the number of generations

292

Artificial Intelligence in Software Engineering

required to achieve full coverage.
Briand et al. (2002) explore the use of GAs for

determining an optimal order for integrating and
testing classes. A significant problem when deter-
mining a suitable order occurs because class de-
pendency cycles have to be broken resulting in the
need to utilize stubs. The complexity of the stubs
needed varies, depending on the level of coupling
that exists between classes, hence different order-
ings require different levels of effort for creation
of the stubs. Briand et al. (2002) take advantage of
previous work on scheduling, for example in the
use of GAs for the traveling salesman problem,
and utilize a permutation encoding of the classes
together with a fitness function that measures the
extent of coupling between the classes. The fitness
measure is defined so as to reduce the number of
attributes, the methods that would need handling
if a dependency is cut, and the number of stubs
created. In addition, they disallow inheritance and
composition dependencies from being cut since
they lead to expensive stubs. They experiment with
this approach on an ATM case study utilizing the
Evolver GA system (Palisade, 1998), compare the
results with those obtained using a graph-based
approach and conclude that the use of GAs can
provide a better approach to producing orderings
of class integration and testing.

CONCluSION

The survey conducted in this chapter has high-
lighted some trends in the use of AI techniques
in the software development process. In software
project planning, the use of GAs is by far the
most popular proposal. Their ability to easily
represent schedules and the flexibility they offer
for representing different objectives make them
very appropriate for adoption in practice. Neural
networks have also been adopted for risk assess-
ment, but as the first chapter of the book describes,
the use of Bayesian networks is more transparent
and is likely to be more appealing in practice since

project managers, more than most types of users,
need to feel they are in control. Likewise, the
use of case based reasoning, as proposed by the
work of Heng-Li Yang & Chen-Shu Wang (2008)
seems to be an attractive approach because it of-
fers transparency and continuous improvement
as experience is gained.

In the requirements and design phase, there is
a lot of emphasis on identifying errors occurring
in the early stages of software development before
moving to design. The use of NLP techniques to
understand user requirements and attempt to de-
rive high level software models automatically is
still and will remain (Chen, Thalheim and Wong,
1999), a hot research topic although there are
some issues that are related to these approaches
such as the use of ad hoc case studies and dif-
ficulties in comparing the developed systems
(Harmain and Gaizauskas, 2003). In addition,
having a system that can produce full design by
automatically analysing NL requirements is not
possible as design is a creative activity requiring
skills and reasoning that are hard to include in a
computer system. KBS have been used to better
manage requirements, the requirements process
and decisions taken during the design process.
In the last few years there has been a lot of inter-
est in the use of ontologies for requirements and
design. The development of domain ontologies
is making it possible to encapsulate knowledge
and rules governing a specific domain in one
single resource. Ontologies encompass both the
strengths of NLP based systems and KBS in that
they allow a better understanding of the problem
domain, the detection of ambiguities and incom-
pleteness, and are able to store tacit knowledge,
design decisions, and propose metamodels for
specific domains.

A number of authors have attempted to utilise
GAs and AI planning methods for generating
test cases. The current attempts suggest that use
of GAs can run into difficulties with generating
appropriate valid test cases and a fully automated
approach using GAs seems problematic. Hence, a

293

Artificial Intelligence in Software Engineering

more promising approach is to use strongly typed
genetic programming which is capable of reducing
the number of ill-defined test sequences. Use of
GAs for generating the order of integration of OO
classes seems to be more promising with initial
trials suggesting it is better than traditional graph
based methods. The use of AI planning methods
offers an alternative to use of GAs and GP that
can offer greater control. The effort required in
defining the operators for different applications
can be significant, though some progress has been
made in defining a framework that could develop
into a usable approach in the future.

The survey suggest that there is now good
progress in the use of AI techniques in SE but
larger scale evaluation studies are needed and
further research is required to understand the ef-
fectiveness of different approaches. Furthermore,
the development of new areas such as intelligent
agents and their use in distributed computing,
context aware and secure applications will require
closer links between SE and AI in the future.

REfERENCES

Abbott, R. J. (1983). Program design by informal
English descriptions. CACM, 26(11), 882–894.

Baresel, A., Binkley, D., Harman, M., & Korel,
B. (2004). Evolutionary testing in the presence of
loop-assigned flags: a testability transformation
approach. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and
Analysis (pp. 108-118). Boston: ACM Press.

Baudry, B., Fleurey, F., Jezequel, J.-M., & Le
Traon, Y. (2002a). Automatic test case optimiza-
tion using a bacteriological adaptation model:
application to. NET components. In Proceedings
of the Seventeenth IEEE International Confer-
ence on Automated Software Engineering (pp.
253-256), Edinburgh, UK. Washington DC: IEEE
Computer Society.

Baudry, B., Fleurey, F., Jezequel, J. M., & Le Traon,
Y. (2002b). Genes and Bacteria for Automatic
Test Cases Optimization in the. Net Environment.
In Proceedings of the Thirteenth International
Symposium	 on	 Software	 Reliability	 Engineer-
ing	(ISSRE’02) (pp. 195- 206), Annapolis, MD.
Washington DC: IEEE Computer Society.

Bering, C. A., & Crawford, M. W. (1988). Using
an expert system to test a logistics information
system. In Proceedings of the IEEE National
Aerospace and Electronics Conference (pp.
1363-1368), Dayton, OH. Washington DC: IEEE
Computer Society.

Bertolino, A. (2007). Software Testing Research:
Achievements, Challenges, Dreams. In Proceed-
ings of the IEEE International Conference on
Software Engineering (pp. 85-103), Minneapolis,
MN. Washington DC: IEEE Computer Society.

Boardman, J. T., & Marshall, G. (1990). A knowl-
edge-based architecture for project planning and
control. In Proceedings of the UK Conference on
IT (pp. 125-132), Southampton, UK. Washington
DC: IEEE Computer Society.

Booch, G. (1986). Object-Oriented Development.
IEEE Transactions on Software Engineering,
12(2), 211–221.

Briand, L. C., Feng, J., & Labiche, Y. (2002).
Using genetic algorithms and coupling measures
to devise optimal integration test orders. In Pro-
ceedings of the Fourteenth International Confer-
ence on Software Engineering and Knowledge
Engineering (pp. 43-50), Ischia, Italy. New York:
ACM Press.

Briand, L. C., Labiche, Y., & Shousha, M. (2005).
Stress testing real-time systems with genetic
algorithms. In Proceedings of the Conference on
Genetic and Evolutionary Computation (pp. 1021-
1028). Washington DC. New York: ACM Press.

294

Artificial Intelligence in Software Engineering

Chen, P. P., Thalheim, B., & Wong, L. Y. (1999).
Future Directions of Conceptual Modeling. In
Chen P. P., Akoka J, Kangassalo H, & Thalheim
B. (Eds), Selected Papers From the Symposium
on Conceptual Modeling, Current Issues and
Future Directions. (pp. 287-301), (LNCS vol.
1565). London: Springer-Verlag.

Cheng, R., & Gen, M. (1994). Evolution program
for resource constrained project scheduling prob-
lem. In	Proceedings	of	the	Proceedings	of	the	1st	
First IEEE Conference on Evolutionary Computa-
tion (pp. 736-741), Orlando, FL, USA.

DeMasie, M. P., & Muratore, J. F. (1991). Artificial
intelligence and expert systems in-flight software
testing. In Proceedings of the Tenth IEEE Con-
ference on Digital Avionics Systems Conference
(pp. 416-419), Los Angeles, CA. Washington DC:
IEEE Computer Society.

Falbo, R. A., Guizzardi, G., Natali, A. C., Bertollo,
G., Ruy, F. F., & Mian, P. G. (2002), Towards
semantic software engineering environments.
Proceedings	of	the	14th international Conference
on Software Engineering and Knowledge Engi-
neering SEKE ‘02, vol. 27 (pp. 477-478), Ischia,
Italy. New York: ACM.

Fantechi, A., Gnesi, S., Ristori, G., Carenini,
M., Vanocchi, M., & Moreschini, P. (1994). As-
sisting requirement formalization by means of
natural language translation. Formal Methods
in System Design, 4(3), 243–263. doi:10.1007/
BF01384048

Fox, T. L., & Spence, J. W. (2005). The effect
of decision style on the use of a project manage-
ment tool: An empirical laboratory study. The
Data Base for Advances in Information Systems,
32(2), 28–42.

Gaizauskas, R., Cunningham, H., Wilks, Y.,
Rodgers, P., & Humphreys, K. (1996). GATE: an
environment to support research and development
in natural language engineering. In Proceedings
of	the	8th IEEE International Conference on Tools
with Artificial Intelligence. (pp.58-66). Washing-
ton DC: IEEE Computer Society.

Geihs, K., Baer, P., Reichle, R., & Wollenhaupt,
J. (2008). Ontology-Based Automatic Model
Transformations. In Proceedings	of	the	6th IEEE
International Conference on Software Engineering
and Formal Methods (pp.387-391), Cape Town,
South Africa. Washington DC: IEEE Computer
Society.

Ghallab, M., Nau, D., & Traverso, P. (2004).
Automated Planning: Theory and Practice. San
Francisco: Morgan Kaufmann.

Gupta, M., Bastani, F., Khan, L., & Yen, I.-L.
(2004). Automated test data generation using
MEA-graph planning. In Proceedings of the Six-
teenth IEEE Conference on Tools with Artificial
Intelligence (pp. 174-182). Washington, DC: IEEE
Computer Society.

Harmain, H. M., & Gaizauskas, R. (2003).
CM-Builder: A natural language-based CASE
tool for object-oriented analysis. Automated
Software Engineering Journal, 10(2), 157–181.
doi:10.1023/A:1022916028950

Harman, M., & McMinn, P. (2007). A theoretical
& empirical analysis of evolutionary testing and
hill climbing for structural test data generation.
In Proceedings of the International Symposium
on Software Testing and Analysis (pp. 73-83).
London: ACM.

Hindi, K. S., Hongbo, Y., & Fleszar, K. (2002). An
evolutionary algorithm for resource-constrained
project scheduling. IEEE Transactions on Evolu-
tionary Computation, 6(5), 512–518. doi:10.1109/
TEVC.2002.804914

295

Artificial Intelligence in Software Engineering

Hooshyar, B., Tahmani, A., & Shenasa, M. (2008).
A Genetic Algorithm to Time-Cost Trade off in
project scheduling. In Proceedings of the IEEE
World Congress on Computational Intelligence
(pp. 3081-3086), Hong Kong. Washington DC:
IEEE Computer Society.

Howe, A. E., von Mayrhauser, A., & Mraz, R.
T. (1995). Test sequences as plans: an experi-
ment in using an AI planner to generate system
tests. In Proceedings of the Tenth Conference on
Knowledge-Based	 Software	 Engineering (pp.
184-191), Boston, MA. Washington DC: IEEE
Computer Society.

Hu, Y., Chen, J., Rong, Z., Mei, L., & Xie, K.
(2006). A Neural Networks Approach for Software
Risk Analysis. In Proceedings of the Sixth IEEE
International Conference on Data Mining Work-
shops (pp. 722-725), Hong Kong. Washington
DC: IEEE Computer Society.

Hull, E., Jackson, K., & Dick, J. (2005). Require-
ments Engineering. Berlin: Springer.

Jones, C. B. (1990). Systematic Software Devel-
opment Using VDM. Upper Saddle River, NJ:
Prentice Hall International.

Juristo, N., Moreno, A. M., & López, M. (2000).
How to use linguistics instruments for Object-
Oriented Analysis. IEEE Software, (May/June):
80–89.

Kasik, D. J., & George, H. G. (1996). Towards Au-
tomatic Generation of Novice User Test Scripts. In
Proceedings of the Conference on Human Factors
in Computing Systems (pp. 244-251), Vancouver,
Canada. New York: ACM Press.

Khoshgoftaar, T. M., & Lanning, D. L. (1995). A
Neural Network Approach for Early Detection of
Program Modules Having High Risk in the Main-
tenance Phase. Journal of Systems and Software,
29, 85–91. doi:10.1016/0164-1212(94)00130-F

Kobbacy, K. A., Vadera, S., & Rasmy, M. H.
(2007). AI and OR in management of operations:
history and trends. The Journal of the Operational
Research	 Society, 58, 10–28. doi:10.1057/pal-
grave.jors.2602132

Kossmann, M., Wong, R., Odeh, M., & Gillies,
A. (2008). Ontology-driven Requirements En-
gineering: Building the OntoREM Meta Model.
Proceedings of the 3rd International Conference
on Information and Communication Technologies:
From	Theory	to	Applications,	ICTTA	2008, (pp.
1-6), Damascus, Syria. Washington DC: IEEE
Computer Society.

Liaskos, K., Roper, M., & Wood, M. (2007). In-
vestigating data-flow coverage of classes using
evolutionary algorithms. In Proceedings of the
Ninth Annual Conference on Genetic and Evolu-
tionary Computation (pp. 1140-1140), London,
England. New York: ACM Press.

Lubars, M. D., & Harandi, M. T. (1987). Knowl-
edge-based software design using design schemas.
In Proceedings of the 9th international Conference
on Software Engineering, (pp. 253-262), Los
Alamitos, CA. Washington DC: IEEE Computer
Society Press.

McCord, M. (1990). Natural language process-
ing in Prolog. In A. Walker (ed.), A logical ap-
proach to expert systems and natural language
processing Knowledge systems and Prolog, (pp.
391–402). Reading, MA: Addison-Wesley Pub-
lishing Company.

Memon, A. M., Pollack, M. E., & Soffa, M. L.
(1999). Using a Goal Driven Approach to Gen-
erate Test Cases for GUIs. In Proceedings of the
Twenty-first	International	Conference	on	Software	
Engineering (pp. 257-266), Los Angeles, CA.
New York: ACM Press.

Meziane, F. (1994). From English to Formal
Specifications. PhD Thesis, University of Sal-
ford, UK.

296

Artificial Intelligence in Software Engineering

Meziane, F., Vadera, S., Kobbacy, K., & Proudlove,
N. (2000). Intelligent Systems in Manufacturing:
Current Developments and Future Prospects. The
International Journal of Manufacturing Technol-
ogy Management, 11(4), 218–238.

Mich, L. (1996). NL-OOPS: from natural lan-
guage to object, oriented requirements using the
natural language processing system LOLITA.
Natural Language Engineering, 2(2), 161–187.
doi:10.1017/S1351324996001337

Miriyala, K., & Harandi, M. T. (1991). Auto-
matic derivation of formal software specifications
from informal descriptions. IEEE Transactions
on Software Engineering, 17(10), 1126–1142.
doi:10.1109/32.99198

Montana, D. J. (1995). Strongly Typed Genetic
Programming. Evolutionary Computation, 3(2),
199–230. doi:10.1162/evco.1995.3.2.199

Moreno, C. A., Juristo, N., & Van de Riet, R. P.
(2000). Formal justification in object-oriented
modelling: A linguistic approach. Data & Knowl-
edge Engineering, 33, 25–47. doi:10.1016/S0169-
023X(99)00046-4

Mraz, R. T., Howe, A. E., von Mayrhauser, A.,
& Li, L. (1995). System testing with an AI plan-
ner. In Proceedings of the Sixth International
Symposium	on	Software	Reliability	Engineering
(pp. 96-105), Toulouse, France. Washington DC:
IEEE Computer Society.

Neumann, D. (2002). An Enhanced Neural Net-
work Technique for Software Risk Analysis. IEEE
Transactions on Software Engineering, 28(9),
904–912. doi:10.1109/TSE.2002.1033229

Nguyen, C. D., Perini, A., & Tonella, P. (2008).
eCAT: a tool for automating test cases generation
and execution in testing multi-agent systems. In
Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent
Systems (pp. 1669-1670), Estoril, Portugal. New
York: ACM Press.

Palisade. (1998). Evolver, The Genetic Algorithm
Super Solver, http://www.palisade.com/evolver/.
Newfield, NY: Palisade Corporation

Pedrycz, W., & Peters, J. F. (1997). Computational
intelligence in software engineering. Canadian
Conference on Electrical and Computer Engi-
neering, (pp. 253-256), St. Johns, Nfld., Canada.
Washington DC: IEEE Press.

Poo, D. C. C., & Lee, S. Y. (1995). Domain ob-
ject identification through events and functions.
Information and Software Technology, 37(11),
609–621. doi:10.1016/0950-5849(95)98298-T

Presland, S. G. (1986). The analysis of natural
language requirements documents. PhD Thesis,
University of Liverpool, UK.

Rech, J. & Althoff, K.D., (2004). Artificial Intel-
ligence and Software Engineering – Status and
Future Trends. Special Issue on Artificial Intel-
ligence and Software Engineering, KI (3), 5-11.

Ribeiro, J. C. B. (2008). Search-based test case
generation for object-oriented java software using
strongly-typed genetic programming. In Proceed-
ings of the GECCO Conference Companion on
Genetic and Evolutionary Computation (pp. 1819-
1822), Atlanta, GA. New York: ACM Press.

Saeki, M., Horai, H., & Enomoto, H. (1989). Soft-
ware development process from natural language
specification. In Proceedings	of	the	11th	interna-
tional Conference on Software Engineering. (pp.
64-73), Pittsburgh, PA. New York: ACM Press.

Samson, D. (1990). REQSPERT: automated test
planning from requirements. In Proceedings of the
First International Systems Integration Confer-
ence (pp. 702-708), Morristown, NJ. Piscataway,
NJ: IEEE Press.

297

Artificial Intelligence in Software Engineering

Samson, D. (1993). Knowledge-based test plan-
ning: Framework for a knowledge-based system
to prepare a system test plan from system require-
ments. Journal of Systems and Software, 20(2),
115–124. doi:10.1016/0164-1212(93)90003-G

Sathi, A., Fox, M. S., & Greenberg, M. (1985).
Representation of Activity Knowledge for Proj-
ect Management. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-7(5),
531–552. doi:10.1109/TPAMI.1985.4767701

Scheetz, M., von Mayrhauser, A., & France, R.
(1999). Generating test cases from an OO model
with an AI planning system. In Proceedings of
the Tenth International Symposium on Software
Reliability	Engineering (pp. 250-259), Boca Ra-
ton, Florida. Washington DC: IEEE Computer
Society.

Shan, Y., McKay, R. I., Lokan, C. J., & Essam, D.
L. (2002). Software project effort estimation using
genetic programming. In Proceedings of the IEEE
International Conference on Communications,
Circuits and Systems (pp. 1108-1112), Arizona.
Washington DC: IEEE Computer Society.

Siemens, N. (1971). A Simple CPM Time-Cost
Tradeoff Algorithm. Management Science, 17(6),
354–363. doi:10.1287/mnsc.17.6.B354

Siricharoen, W. V. (2008). Merging Ontologies for
Object Oriented Software Engineering. Interna-
tional Conference on Networked Computing and
Advanced Information Management, (Volume 2,
pp. 525 – 530).

Smith, T. J. (1993). READS: a requirements
engineering tool. Proceedings of IEEE Interna-
tional	Symposium	on	Requirements	Engineering,
(pp. 94–97), San Diego. Washington DC: IEEE
Computer Society.

Thwin, M. M. T., & Quah, T.-S. (2002). Appli-
cation of neural network for predicting software
development faults using object-oriented design
metrics. In Proceedings of the Ninth International
Conference on Neural Information Processing (pp.
2312-2316), Singapore. Washington DC: IEEE
Computer Society.

Tonella, P. (2004). Evolutionary testing of
classes. In Proceedings of the ACM SIGSOFT
International Symposium on Software testing
and Analysis (pp. 119-128), Boston, MA. New
York: ACM Press.

Untch, R. H. (1992). Mutation-based software
testing using program schemata. In Proceedings
of	the	Thirtieth	ACM	South	Regional	Conference
(pp. 285-291), Raleigh, North Carolina. New
York: ACM Press.

Vadera, S., & Meziane, F. (1994). From English
to Formal Specifications. The Computer Journal,
37(9), 753–763. doi:10.1093/comjnl/37.9.753

Vadera, S., & Meziane, F. (1997). Tools for
Producing Formal Specifications: A view of
Current Architecture and Future Directions.
Annals of Software Engineering, 3, 273–290.
doi:10.1023/A:1018950324254

van Lamsweerde, R. Darimont, & Massonet P.
(1995). Goal-directed elaboration of requirements
for a meeting scheduler: Problems and lessons
learnt. In Proceedings of the 2nd IEEE Interna-
tional	Symposium	on	Requirements	Engineering.
(pp. 194-203), York, UK. Washington DC: IEEE
Computer Society.

von Mayrhauser, A., France, R., Scheetz, M., &
Dahlman, E. (2000). Generating test-cases from an
object-oriented model with an artifical-intelligence
planning system. IEEE	Transactions	on	Reliabil-
ity, 49(1), 26–36. doi:10.1109/24.855534

298

Artificial Intelligence in Software Engineering

von Mayrhauser, A., Scheetz, M., & Dahlman,
E. (1999). Generating goal-oriented test cases.
In Proceedings	of	 the	Twenty-Third	Annual	In-
ternational Conference on Computer Software
and Applications (pp. 110-115), Phoenix, AZ.
Washington DC: IEEE Computer Society.

von Mayrhauser, A., Scheetz, M., Dahlman,
E., & Howe, A. E. (2000). Planner based error
recovery testing. In Proceedings of the Eleventh
International	Symposium	on	Software	Reliability	
Engineering (pp. 186-195), San Jose, CA. Wash-
ington DC: IEEE Computer Society.

von Mayrhauser, A., Walls, J., & Mraz, R. T.
(1994a). Sleuth: A Domain Based Testing Tool. In
Proceedings of the International Test Conference
(pp. 840-849). Washington, DC: IEEE Computer
Society.

von Mayrhauser, A., Walls, J., & Mraz, R. T.
(1994b, November). Testing Applications Using
Domain Based Testing and Sleuth. In Proceedings
of the Fifth International Symposium on Software
Reliability	Engineering (pp. 206-215), Monterey,
CA. Washington DC: IEEE Computer Society.

Vongdoiwang, W., & Batanov, D. N. (2005).
Similarities and Differences between Ontologies
and Object Model. In Proceedings of The 3th
International Conference on Computing, Com-
munications and Control Technologies: CCCT
2005, Austin, TX.

Wallace, L., & Keil, M. (2004). Software
project risks and their effect on outcomes.
Communications of the ACM, 47(4), 68–73.
doi:10.1145/975817.975819

Wappler, S., & Lammermann, F. (2005). Using
evolutionary algorithms for the unit testing of
object-oriented software. In Proceedings of the
Conference on Genetic and Evolutionary Com-
putation (pp. 1053-1060), Washington DC. New
York: ACM Press.

Wappler, S., & Schieferdecker, I. (2007). Improv-
ing evolutionary class testing in the presence of
non-public methods. In Proceedings	of	the	Twenty-
second IEEE/ACM International Conference on
Automated Software Engineering (pp. 381-384),
Atlanta, Georgia. New York: ACM Press.

Wappler, S., & Wegener, J. (2006). Evolutionary
unit testing of object-oriented software using
strongly-typed genetic programming. In Proceed-
ings of the Eighth Annual Conference on Genetic
and Evolutionary Computation (pp. 1925-1932),
Seattle, WA. New York: ACM Press.

Wright, J. M., Fox, M. S., & Adam, D. (1984).
SRL/2	User	Manual: Robotic Institute, Carnegie-
Mellon University, Pittsburgh, PA.

Yang, H.-L., & Wang, C.-S. (2009). Recom-
mender system for software project planning one
application of revised CBR algorithm. Expert
Systems with Applications, 36(5), 8938–8945.
doi:doi:10.1016/j.eswa.2008.11.050

Yang, Y., Xia, F., Zhang, W., Xiao, X., Li, Y., &
Li, X. (2008). Towards Semantic Requirement
Engineering. IEEE International Workshop on
Semantic Computing and Systems (pp. 67-71).
Washington, DC: IEEE Computer Society.

Yen, J., & Liu, F. X. (1995). A Formal Approach
to the Analysis of Priorities of Imprecise Con-
flicting Requirements. In Proceedings of the 7th
international Conference on Tools with Artificial
intelligence. Washington DC: IEEE Computer
Society.

Young, R. R. (2003). The requirements Engineer-
ing	 Handbook. Norwood, MA: Artech House
Inc.

299

Artificial Intelligence in Software Engineering

Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S.,
Lapouchnian, A., & do Prado Leite, J. C. S. (2005).
Reverse engineering goal models from legacy
code. In Proceedings of the 2nd IEEE Interna-
tional	Symposium	on	Requirements	Engineering,
(pp. 363-372), York, UK. Washington DC: IEEE
Computer Society.

Yujia, G., & Chang, C. (2006). Capability-based
Project Scheduling with Genetic Algorithms. In
Proceedings of the International Conference on
Intelligent	Agents,	Web	Technologies	and	Inter-
net Commerce (pp. 161-161), Sydney, Australia.
Washington DC: IEEE Computer Society.

Zave, P. (1997). Classification of Research
Efforts in Requirements Engineering.
ACM Computing Surveys, 29(4), 315–321.
doi:10.1145/267580.267581

Zhen-Yu, Z., Wei-Yang, Y., & Qian-Lei, L. (2008).
Applications of Fuzzy Critical Chain Method in
Project Scheduling. In Proceedings of the Fourth
International Conference on Natural Computa-
tion (pp. 473-477), Jinan, China. Washington DC:
IEEE Computer Society.

