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Chapter 14

Artificial Intelligence in 
Software Engineering
Current Developments and 

Future Prospects

Farid Meziane
University of Salford, UK

Sunil Vadera
University of Salford, UK

INTRODuCTION

The software engineering crisis was diagnosed 
about a half a century ago. Since then a plethora of 
methods, methodologies, notations, programming 
languages and environments have been developed 
and significant progress has been made. However, 
the nature and complexity of the software being 
developed has also changed and this has nearly an-

nulled this progress. High rates of software failure 
continue to be reported, software is still expensive 
and over budget and it is still difficult to predict the 
delivery date of software (Fox & Spence, 2005). 
Parallel to the development of software engineering, 
there has been visible growth of related disciplines 
such as Artificial Intelligence having an impact on 
software development (Pedrycz & Peters, 1997; 
Rech & Althoff, 2004). As the preceding chapters 
of the book show, there is significant potential in 

ABSTRACT

Artificial	intelligences	techniques	such	as	knowledge	based	systems,	neural	networks,	fuzzy	logic	and	
data	mining	have	been	advocated	by	many	researchers	and	developers	as	the	way	to	improve	many	of	the	
software development activities. As with many other disciplines, software development quality improves 
with the experience, knowledge of the developers, past projects and expertise. Software also evolves as 
it	operates	in	changing	and	volatile	environments.	Hence,	there	is	significant	potential	for	using	AI for 
improving all phases of the software development life cycle. This chapter provides a survey on the use 
of AI for software engineering that covers the main software development phases and AI methods such 
as natural language processing techniques, neural networks, genetic algorithms, fuzzy	logic,	ant	colony	
optimization,	and	planning	methods.
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using AI for supporting and enhancing software 
engineering. The aim of this chapter is to provide 
a survey of existing research on using AI methods 
such as natural language processing techniques, 
neural networks, genetic algorithms, and planning 
methods for the full software development life 
cycle. The chapter is broadly structured in a similar 
way to the parts of the book. There are sections 
on AI in Planning and Project Effort Estimation, 
Requirements Engineering and Software Design 
and Software Testing. Within each section, there 
are subsections surveying the use of particular AI 
techniques. The chapter concludes with a summary 
of the major issues with using AI for enhancing 
software development and future directions of 
research.

uSE Of AI IN PlANNING AND 
PROjECT EffORT ESTIMATION

Good project planning involves many aspects: 
staff need to be assigned to tasks in a way that 
takes account of their experience and ability, the 
dependencies between tasks need to be determined, 
times of tasks need to be estimated in a way that 
meets the project completion date and the project 
plan will inevitably need revision as it progresses. 
AI has been proposed for most phases of planning 
software development projects, including assess-
ing feasibility, estimation of cost and resource 
requirements, risk assessment and scheduling. 
This section provides pointers to some of the 
proposed uses of knowledge based systems, ge-
netic algorithms, neural networks and case based 
reasoning, in project planning and summarizes 
their effectiveness.

Knowledge Based Systems

It seems reasonable to assume that as we gain 
experience with projects, our ability to plan new 
projects improves. There have been several studies 
that adopt this assumption and aim to capture this 

experience in a Knowledge Based System (KBS) 
and attempt to utilise it for planning future software 
development projects. Sathi, Fox & Greenberg 
(1985) argue that a well defined representation 
scheme, with clear semantics for the concepts 
associated with project planning, such as activ-
ity, causation, and time, is essential if attempts to 
utilise KBS for project planning are to succeed. 
Hence, they develop a representation scheme 
and theory based on a frame based language, 
known as SRL (Wright, Fox, & Adam, 1984). 
Their theory includes a language for representing 
project goals, milestones, activities, states, and 
time, and has all the nice properties one expects, 
such as completeness, clarity and preciseness. 
Surprisingly, this neat frame based language and 
the semantic primitives they develop have been 
overlooked by others and appear not to have been 
adopted since their development. Similarly, other 
proposals that aim to utilise a KBS approach for 
project management, such as the use of produc-
tion rules and associative networks (Boardman 
& Marshall, 1990), which seemed promising at 
the time have not been widely adopted. When 
considering whether to adopt a KBS approach, 
the cost of representing the knowledge seems 
high and unless this can be done at a level of 
abstraction that allows reuse, one can imagine 
that it is unattractive to software developers who 
are keen and under pressure to commence their 
projects without delay.

Neural Networks

Neural networks (NNs) have been widely and 
successfully used for problems that require clas-
sification given some predictive input features. 
They therefore seem ideal for situations in software 
engineering where one needs to predict outcomes, 
such as the risks associated with modules in 
software maintenance (Khoshgoftaar & Lanning, 
1995), software risk analysis (Neumann, 2002) 
and for predicting faults using object oriented 
metrics (Thwin & Quah, 2002). The study by 
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Hu, Chen, Rong, Mei & Xie (2006) is typical of 
this line of research. They first identified the key 
features in risk assessment based on past classi-
fications such as those presented by Wallace and 
Keil (2004) and further interviews with project 
managers. They identified a total of 39 risk factors 
which they grouped into 5 risk categories: proj-
ect complexity, cooperation, team work, project 
management, and software engineering. These 
were reduced to 19 linearly independent factors 
using principal component analysis (PCA). Proj-
ects were considered to have succeeded, partially 
failed, or failed. In their experiments, they tried 
both the use of a back propagation algorithm for 
training and use of GAs to learn networks, using 
35 examples for training and 15 examples for 
testing. The accuracy they obtained using back 
propagation was 80% and that with a GA trained 
NN was over 86%, confirming that use of NNs 
for predicting risk is a worthy approach, though 
larger scale studies are needed.

Genetic Algorithms

There have been numerous uses of genetic algo-
rithms for project scheduling in various domains 
(Cheng & Gen, 1994; Hindi, Hongbo, & Fleszar, 
2002; Hooshyar, Tahmani, & Shenasa, 2008; Yujia 
& Chang, 2006; Zhen-Yu, Wei-Yang, & Qian-Lei, 
2008). A survey of their application in manufac-
turing and operations management can be found 
in (Kobbacy, Vadera, & Rasmy, 2007; Meziane, 
Vadera, Kobbacy, & Proudlove, 2000). These typi-
cally formulate project planning as a constraint 
satisfaction problem with an objective that needs 
optimisation and, which is then transformed into 
a form suitable for optimisation with a GA.

In the area of software development, Shan, 
McKay, Lokan & Essam (2002) utilise Genetic 
Programming to evolve functions for estimating 
software effort. Two target grammars were adopted 
for the functions that allowed use of a range of 
mathematical functions (e.g., exp, log, sqrt) as well 
as a conditional expressions. The approach was 

tested on data consisting of 423 software develop-
ment projects characterised by 32 attributes (e.g. 
such as intended market, requirements, level of 
user involvement, application type, etc) from the 
International Software Benchmarking Standards 
Group (www.isbsg.org.au) with roughly 50% used 
for training and 50% used for testing. The results 
of this study show that the approach performs 
better than linear and log regression models. An 
interesting finding of the study was that although 
the most accurate functions discovered by GP 
utilised similar parameters to the traditional 
estimates, a key difference was that it adopted 
non-linear terms involving team size.

Creating a good assignment of staff to tasks 
and producing schedules is critical to the success 
of any software development project. Yujia & 
Chang (2006) show how it is possible to utilise 
GAs to produce optimal schedules and task as-
signments. Their proposal involves a two part 
chromosome representation. One part includes 
the assignment of individuals to tasks and another 
involves representing the topological ordering of 
the tasks in a way that ensures that the offspring 
generated using the cross-over operator remain 
valid schedules. The fitness function is obtained 
by utilising a systems dynamics simulation to 
estimate expected task duration given a particular 
chromosome. The results of their experiments 
suggest that this is a promising approach, though 
further work on how to utilise GAs in practice 
when schedules change is still needed.

An important part of developing an optimal 
schedule that meets a target completion date is the 
trade-offs that may occur. For example, attempts 
at increasing quality can result in increasing cost 
and possibly compromising completion time but 
perhaps increasing user satisfaction. Increasing 
resources on tasks increases the local cost but 
may result in early completion, higher quality and 
reduction of overall cost. Hooshyar et al., (2008) 
propose the use of GAs to optimize schedules to 
take account of such trade-offs. They represent 
a schedule by a chromosome consisting of the 
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activity duration and which is ordered based on 
their dependency. In their experiments, they utilise 
the standard mutation and two-point cross-over 
operators and adopt a fitness function that includes 
the cost and duration. The experimentation is 
carried out on projects consisting of 10, 20 and 
30 activities and conclude that although the well 
known algorithm due to Siemens (1971) works 
well for small scale problems, GAs may be more 
effective for larger scale problems.

Case Based Reasoning

It can be argued that successful project planning 
and management is heavily based on experience 
with past cases. It is therefore surprising that 
there are few studies that propose the use Case 
Based Reasoning (CBR) for project planning of 
software development. One of the few exceptions 
is the study by Heng-Li Yang & Chen-Shu Wang 
(2008), who explore the combined use of CBR and 
data mining methods for project planning. They 
use a structured representation for cases, called 
Hierarchical Criteria Architecture (HCA), where 
projects are described in terms of the customer 
requirements, project resources and keywords 
describing the domain. The use of HCA enables 
different weights to be adopted when matching 
cases, allowing greater flexibility depending on 
the preferences of the project manager. Given a 
new project, first similar new cases are retrieved. 
Then, data mining methods, such as association 
rule mining, are used to provide further guidance 
in the form of popular patterns that could aid in 
project planning. In a trial, based on 43 projects, 
Yang & Wang (2008), show how the combined 
use of CBR and data mining can generate use-
ful information, such as “the duration of project 
implementation was about 26 days and 85% of 
projects of projects were completed on time”, 
which can be used to provide guidance when 
planning a similar project.

REQuIREMENTS ENGINEERING 
AND SOfTWARE DESIGN

Requirements engineering is often seen as the 
first stage of a software development project. It 
is the basis of any development project and this 
is not restricted only to software engineering. It 
is a broad and multidisciplinary subject (Zave, 
1997). Requirements define the needs of many 
stakeholders. It is widely acknowledged, that 
because of the different backgrounds of these 
stakeholders, requirements are first expressed in 
natural language within a set of documents. These 
documents usually represent “the unresolved 
views of a group of individuals and will, in most 
cases be fragmentary, inconsistent, contradictory, 
seldom be prioritized and often be overstated, 
beyond actual needs” (Smith, 1993). The main 
activities of this phase are requirements elicitation, 
gathering and analysis and their transformation 
into a less ambiguous representation. For a detailed 
list of activities in requirements see Young (2003, 
pp 3-5). Requirements form the basis of software 
design. Ideally, all problems encountered during 
the requirements phase should be resolved before 
design starts. Unfortunately, in practice some of 
the problems inherent to requirements are passed 
into design, making the late discovery of errors 
occurring during this phase the most expensive to 
correct. It is therefore not surprising that require-
ments engineering is seen as the most problematic 
phase of the software development life cycle.

Problems Associated with 
Requirements Engineering

There are many problems that have been identi-
fied during the requirements engineering phase 
of the software development process. These can 
be summarised as follows:

Requirements are ambiguous: It is widely 
acknowledged, that because of the dif-
ferent backgrounds of the stakeholders, 
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requirements are first expressed in Natural 
Language (NL). NL is inherently ambigu-
ous and contributes to the incompleteness 
of requirements as many assumptions are 
made on some issues. Detecting ambigui-
ties in NL is an old and major research is-
sue in requirements engineering (Presland, 
1986). Research in this area will be further 
discussed later in this chapter.

Requirements are incomplete, vague and im-
precise: Requirements are usually incom-
plete, vague and imprecise in nature. It has 
been reported that customers do not really 
know what they want, or have difficulties in 
articulating their requirements (Yang, Xia, 
Zhang, Xiao, Li & Li, 2008). It has also 
been reported that there is a lack of user 
involvement during requirements (Hull, 
Jackson & Dick, 2005). In addition, some 
of these requirements are vague and can-
not be easily validated. This includes state-
ments related to system security (what is a 
secure system?), user interface (what is a 
user friendly system?) and reliability (what 
is a reliable system). Yen & Liu (1995) de-
fined an imprecise functional requirement 
as “a requirement that can be satisfied to a 
degree”. Therefore, there is a need to im-
prove the quality of these requirements be-
fore the modelling phase.

Requirements are conflicting: Conflicts in re-
quirements engineering occur when two 
different requirements compete for the 
same resources or when the satisfaction of 
one requirement precludes that of another. 
Yen & Liu (1995) stated that “Two require-
ments are conflicting if an increase in the 
degree to which one requirement is satis-
fied often decreases the degree to which 
another requirement is satisfied”.

Requirements are volatile: User needs evolve 
over time. It is not unusual that during 
the time it takes to develop a system, user 
requirements have already changed. The 

causes of these changes may vary from the 
increasing understanding of the user about 
the capabilities of a computer system to 
some unforeseen organisational or envi-
ronmental pressures. If the changes are not 
accommodated, the original requirements 
set will become incomplete and inconsis-
tent with the new situation or in the worst 
case useless (Meziane, 1994).

There are communication problems between 
the stakeholders: During the requirements 
engineering phase, developers have to talk 
to a wide range of stakeholders with dif-
ferent backgrounds, interests, and personal 
goals (Zave, 1997). Communication with 
and understanding all these stakeholders 
is an extremely difficult and challenging 
task.

Requirements are difficult to manage: One of 
the main problems associated with require-
ments is that of traceability (Hull, Jackson 
& Dick, 2005). Traceability is the process 
of following a requirement from its elicita-
tion to implementation and verification and 
validation. Linking the different phases of 
requirements validation is often omitted. 
Other management issues related to soft-
ware management are: project manage-
ment, software cost, development time, 
resources management and managing the 
changing environment.

The main contribution of AI in the requirements 
engineering phase are in the following areas:

Disambiguating natural language require-• 
ments by developing tools that attempt to 
understands the natural language require-
ments and transform them into less ambig-
uous representations.
Developing • knowledge based systems and 
ontologies to manage the requirements and 
model problem domains.
The use of computational intelligence to • 
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solve some of the problems associated 
with requirements such as incompleteness 
and prioritisation.

In the following sections, we review and 
discuss some of the systems developed in these 
areas.

Processing Natural 
language Requirements

The idea of transforming NL requirements auto-
matically into specifications and design goes as 
far back as the early 80s. In his paper, “Program 
Design by Informal English Description”, Ab-
bott (1983), drew an analogy between the noun 
phrases used in NL descriptions and the data types 
used in programming languages. It is true that in 
those days requirements and modelling were not 
as distinct activities as they are now, but he did 
nevertheless associate the noun phrases found in 
NL descriptions to data types and concluded that 
these data types “divide the word into classes of 
object”. Abbott stated that “associating common 
nouns with data types, makes the notion of data 
types more intuitive”. He has also highlighted 
that this is not a straight forward mechanical 
approach but requires some tacit knowledge 
related to the problem domain. Booch (1986) 
further developed this approach when describing 
his Object-Oriented analysis and design method. 
It was later noted that verb phrases and to some 
extent adjectives describe relationships between 
these entities, operations and functions (Saeki, 
Horai & Enomoto, 1989; Vadera & Meziane, 1994; 
Poo & Lee, 1995). Since then and over the last 
twenty five years, most research in transforming 
NL requirements into various modelling languages 
adopted the same approach. Early systems that 
attempted to transform NL specifications were 
relatively simple as the NL understanding field 
was still in its infancy; however most researchers 
have taken advantage of recent developments in 
NL processing systems to develop more robust 

systems. It is not our intension to review all 
systems that have been developed to transform 
NL requirements into software models, but we 
highlight some systems that have attempted to 
produce formal specification and OO oriented 
models from NL Requirements.

from Nl to formal Specifications

Saeki, Horai & Enomoto (1989) proposed a 
framework to translate specifications written in 
NL (English) into formal specifications (TELL). 
Their framework suggests the extraction of four 
tables from the NL requirements that contain verbs, 
nouns, actions and action relations. However, they 
noticed that simple extraction of nouns and verbs 
was not sufficient and deeper semantical analysis is 
needed. Indeed, nouns can denote objects but also 
their attributes as verbs can denote relationships 
and actions. This has been one of the major chal-
lenges since in the automatic transformations of NL 
requirements into other specification languages. 
Hence, they suggested a human classification of 
nouns and verbs. They have identified four classes 
for nouns; class noun, value noun, attribute noun, 
action noun and 4 verb classes; relational verb, 
state verb, action verb and action related verb. In 
the action table, for each action verb, its agent and 
target object are identified. In the action related 
table, messages together with their senders and 
receivers have been identified. A class template 
is then used to gather the information produced 
by the four tables and is suggested to be used for 
the development of the formal specifications. 
However, their system was not implemented but 
set the foundations for future systems.

The NL2ACTL system (Fantechi, Gnesi, 
Ristori, Carenini, Vanocchi, & Moreschini, 1994) 
aims to translate NL sentences, written to express 
properties of a reactive system, to statements of an 
action based temporal logic. It takes each sentence, 
parses it, and attempts to complete it by identify-
ing any implicit information that is required to 
produce a well-formed expression in the action 
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based logic called ACTL. First, NL2ACTL shows 
that it is possible to utilise existing NL process-
ing tools to develop grammars that are useful for 
analysing English sentences and for producing 
formal specifications in a given domain. Second, 
NL2ACTL demonstrates that when there is a 
specific application domain and target formal 
specification language in mind, one can develop 
a system that can help to identify incompleteness 
at a detailed level.

Vadera & Meziane (1994) developed the 
FORSEN system which aims to translate NL 
requirements into the Formal specifications 
language VDM (Jones, 1990). They used Logic 
Grammars (LG) to translate the requirements 
into McCord’s logical form language (LFL) 
(McCord, 1990). This allowed the detection of 
ambiguities in the NL requirements. If a sentence 
is ambiguous, the system displays all possible 
interpretations and the user is then required to 
select the intended meaning. At the end of the 
first phase, each sentence has a single associated 
meaning represented in the LFL. In the second 
phase, an entity relationship model is developed 
using nouns and verbs extracted from the LFL. 
The developed entity relationship model is then 
translated to a VDM data type. The last phase of 
the FORSEN system is the generation of VDM 
specifications. FORSEN generates specifications 
by filling in pre-defined schemas for a common 
range of operation specifications such as adding 
items, deleting items, and listing items that satisfy 
some conditions. FORSEN was different from 
previously developed systems as it did not rely 
on structures or domain specific requirements. 
The input was a free English text representing 
the requirements of the system to be developed. 
However, it was limited in the range of specifica-
tions it could generate. A good review of systems 
that produce formal specifications can be found 
in Vadera & Meziane (1997).

from Nl to OO Specification

Juristo, Moreno & López (2000), defined a general 
framework for the automatic development of OO 
models from NL requirements using linguistics 
instruments. Their framework is composed of the 
following nine phases: (i) extraction of essential 
information; (ii) identification of synonyms and 
polysemies; (iii) separation of static and dynamic 
information; (iv) static requirements structuring; 
(v) dynamic requirements structuring; (vi) ob-
ject model construction; (vii) behaviour model 
construction; (viii) object model and behaviour 
model integration; (ix) object model and behaviour 
model verifications. They argue that these steps 
will allow the identifications of all the compo-
nents required by an OO model and will help 
in the development and validation of these OO 
models. They stressed, that inputs should be in 
NL to avoid unnecessary user interaction with the 
system, a view earlier supported by Mich (1996). 
The system should also use rules and grammars 
rather than heuristics to identify entities, attributes 
and relations (including specialised relation such 
as generalisations). These steps will also allow 
the detection of ambiguities in NL requirements, 
separate the static model from the dynamic model 
and develop the object model and the behaviour 
model. As the following reviews show, few of the 
systems that have been developed exhibit most 
of these components.

Mich (1996) used the Large –scale Object-
based Linguistic Interactor Translator Analyser 
(LOLITA) NLP system to develop the NL-OOPS 
which aims to produce OO specifications from 
NL requirements. In LOLITA knowledge is rep-
resented using conceptual graphs SemNet where 
nodes represent concepts and arcs relationships 
between concepts. The NL requirements are 
analysed and corresponding SemNets produced. 
During this phase, ambiguities are either resolved 
or flagged to the user. An algorithm is then used 
to translate the SemNets into an OO model.

Moreno, Juristo & Van de Riet (2000), de-
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veloped an approach that linked the linguistic 
world and the conceptual world through a set of 
linguistic patterns. The patterns have been divided 
into two categories: static utility language (SUL) 
that describes the elements of the problem domain, 
hence seen as the static part of the object model 
and the dynamic utility language (DUL) that de-
scribes the changes to the elements of the static 
model. Each language has been described using 
context-free grammars. For example a conceptual 
patter would be the definition of a relationship 
between two classes by means of a verb. This 
allowed this approach to define formal relations 
between the linguistic world and conceptual world 
via the mathematical world.

Harmain & Gaizauskas (2003) developed the 
Class-Model Builder (CM-Builder), a NL based 
CASE tools that builds class diagrams specified 
in UML from NL requirements documents. CM 
Builder is developed using the GATE environ-
ment (Gaizauskas,Cunningham, Wilks,Rodgers 
& Humphreys, 1996). CM-Builder takes as an 
input a software requirement text in English and 
produce as an output an OO model in the CASE 
Data Interchange Format (CDIF) file that is used 
as an input to a CASE tool that supports UML 
(Entreprise Modeler in this case). The output file 
contains the identified classes, their attributes and 
the relationships among them. The systems used 
a parser based on feature-based Phrase Structure 
Grammar that relies on unification. The output 
from the parser is semantically represented as 
a predicate-argument structure. They also make 
use of a simple ontology concept to represent 
the world knowledge. The strength of GATE as 
a specialised language engineering tool allowed a 
deep analysis of the NL requirements and allowed. 
Further manipulations of the UML are required 
using Entreprise modeller to complete the model 
produced by CM-Builder.

Knowledge Based Systems

Requirements engineering is knowledge inten-
sive and include activities such as “Knowledge 
Elicitation” and “Knowledge Acquisition”. It is 
not surprising that knowledge-based software 
and requirement engineering received a wide at-
tention since the early 1980. Lubars & Harandi 
(1987) stated that “The reuse of experts design 
knowledge can play a significant role in improv-
ing the quality and efficiency of the software 
development process”.

The READS tool (Smith, 1993) is developed 
at the Paramax Systems Corporation, a software 
contractor to US and foreign government agen-
cies and directly supports the U. S. Government 
system engineering process. READS supports 
both the front end activities such as requirement 
discovery, analysis and decomposition and re-
quirements traceability, allocation, testing, and 
documentation. READS is composed of many 
components to achieve its goals. It starts with 
the windows document where the requirements 
documents are displayed and requirements are 
then discovered manually or automatically. It 
has been reported that the automatic identifica-
tion of the requirements hits an 80%-90% rate. 
The identified requirements are saved in the 
project’s database and displayed in the require-
ments inspection window. During this phase, the 
requirements are edited, reviewed, allocated and 
decomposed; “the goal of decomposition is the 
development of a set of designable requirements: 
precise, unambiguous, testable statements of a 
need or condition that can be directly mapped to 
a physical solution” (Smith, 1993). Children are 
attached to each requirement denoting the dif-
ferent interpretation if they are ambiguous. The 
derived requirements are then aggregated into a 
single non ambiguous requirements document. 
Requirements are organised into different views 
using allocation categories (Smith, 1993).

KBS are used in the design phase by storing 
design patterns or design families. Lubars & Ha-
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randi (1987), used a KBS to store design families, 
upon the development of the requirements, input 
and outputs of the system’s functionality. The Idea 
system searches the KB and proposes a design 
schema. This becomes then the top design level of 
the system. The users need to refine this schema 
to fully satisfy the user requirements.

Ontologies

An ontology is an explicit specification of a con-
ceptualisation. Ontologies and techniques used 
for the semantic web have been investigated in 
the last few years as a way to improve require-
ments engineering. Ontologies enable the sharing 
of common information and knowledge within 
specific domains. “An ontology can be viewed as 
a special kind of semantic network representing 
the terminology, concepts, and the relationships 
among these concepts related to a particular ap-
plication domain. Semantic web and ontological 
techniques provide solutions for representing, 
organizing and reasoning over the complex sets of 
requirements knowledge and information.” (Yang, 
Xia, Zhang, Xiao, Li & Li, 2008). Ontologies are 
developed by many organisations to reuse, inte-
grate, merge data and knowledge and to achieve 
interoperability and communication among their 
software systems. Reuse has been a hot issue in 
software design for many years now. It was one 
of the main strengths of the OO oriented methods 
and programming languages introduced in the 
last three decades. Indeed, there are similarities 
between the classes in an ontology and classes in 
OO (Vongdoiwang & Batanov, 2005). Ontologies 
enhance the semantics by providing richer rela-
tionships between the terms of concepts/classes 
(Siricharoen, 2008).

In their research, Yang Yang, Xia, Zhang, Xiao, 
Li & Li (2008) use semantic web and ontological 
techniques to elicit, represent, model, analyze 
and reason about knowledge and information 
involved in requirements engineering processes. 
They argue that the use of semantic representation 

could improve some of the activities involved in 
the requirements phase such as filling the com-
munication gap between different stakeholders, 
effectively support automatic requirements elicita-
tion, detecting incompleteness and inconsistency 
in requirements, evaluate the quality of require-
ments, and predict possible requirements changes. 
Their system uses three ontologies namely: the 
user ontology provides flexible mechanisms to 
describe a variety of assumptions about end-users 
(or customers), and to infer domain-dependent re-
quirements. It is used to support user requirements 
modelling and elicitation. The enterprise ontology 
describes business context, structure, rules, goals, 
tasks, responsibilities, and resources available, for 
requirements analysts to understand and grasp 
high-level requirements. The Domain ontology 
serves as a shared knowledge background among 
different stakeholders. It is used for consistency 
and reusability of knowledge accumulated during 
the project development. The inference rules in the 
contextual ontologies can be used to elicit implicit 
requirements, detect incompleteness and incon-
sistency in requirements description. Automated 
validation and consistency checking of require-
ments, to some degree, offer an opportunity for 
the management of requirement evolution.

Kossmann, Wong, Odeh, Gillies, (2008) 
developed the OntoREM (Ontology-driven Re-
quirements Engineering Methodology) an ontol-
ogy-based solution to enable knowledge driven 
requirements engineering. A metamodel, which 
is an ontology is designed taking into account the 
different requirements engineering artifacts, ac-
tivities, and interrelationships with other domains 
and disciplines. “The intended application of the 
OntoREM metamodel ontology is to capture and 
manage reference knowledge and concepts in the 
domain of requirements engineering, supported by 
decision engines that rely on other problem and 
solution domain ontologies so as to develop high 
quality requirements for the related domains.” 
(Kossmann, Wong, Odeh, Gillies, 2008). On-
toREM supports activities such as ‘elicitation’, 
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‘analysis and negotiation’, ‘documentation’ and 
‘validation’. The system produces requirements 
that are complete and consistent.

Ontologies are also used to develop software 
Engineering environments. Falbo et al., (2002) 
have developed the Ontology-based software 
Development Environment (ODE) based on a 
software process ontology. Tools for process 
definition and project tracking were also built 
based on this ontology. ODE’s architectural is 
composed of two levels: the application level 
concerns application classes, which model the 
objects that address some software engineering 
activity and the meta-level (or knowledge level) 
that defines classes that describe knowledge about 
objects in the application base level. The classes 
in the meta-level are derived directly from the 
ontology.

In order to capture, represent and structure 
the domain knowledge about specific model 
and platform properties Geihs, et al. (2008) use 
ontologies as a machine-readable formal descrip-
tion technique that supports semantic annotations 
and reasoning about models and platforms. They 
developed a systematic support for the automation 
of model transformations based on domain specific 
knowledge formally represented by an ontology. 
“Entities and concepts defined in the ontology 
are referenced in the platform-independent model 
(PIM) as well as in a semantic annotation of the 
target platforms’ API. This allows an automatic 
matching of modelling elements of the PIM to 
variables, objects and interfaces of the involved 
target platforms” Geihs et al. (2008). The system 
ontology links the abstract concepts of the PIM 
to the concrete platform-specific model (PSM) 
concepts for objects of the real world. The main 
benefit of their approach is the reuse of the PIM 
as well as the reuse of the transformation. Find-
ing the right classes for an object oriented model 
(often the class diagram) is not an easy task. Sir-
icharoen (2008).proposed the use of ontologies 
as the inputs of a semi-automatic object model 
construction program. He attempted to build semi-

automatic object model by using and comparing 
the concepts in the ontology as objects, slot or 
properties as attributes, and some properties can 
act as functions or operation.

Intelligence Computing for 
Requirements Engineering

Pedrycz & Peters (1997) stated that “The emerging 
area of Computational Intelligence (CI) provides 
a system developer with a unique opportunity 
of taking advantage of the currently developed 
and highly mature technologies”. They argue 
that each of the techniques developed in CI can 
play an important role in solving the traditional 
problems found in software engineering. In these 
sections we review some of the systems devel-
oped using CI techniques to support requirements 
engineering.

The SPECIFIER system (Miriyala & Harandi, 
1991) can best be viewed as a case based system 
that takes as input an informal specification of 
an operation where the pre and post-conditions 
are given as English sentences. The verbs in the 
sentences are used to identify the concepts. The 
identified concepts are then used to retrieve associ-
ated structure templates (represented as frames). 
These structure templates have slots that define the 
expected semantic form of the concepts and have 
associated rules that can be used to fill in the slots 
by using the informal specification. A set of rules 
is used to select specification schemas based on 
the identified concepts. The specification schemas 
are then filled by using the rules associated with 
the slots and the structures of the concepts. Once 
filled, the specification schemas produce formal 
specifications in a Larch-like language

When dealing with conflicts in requirements, 
we often drop one of the requirements or modify it 
to avoid the conflict. However, Yen & Liu (1995) 
stated that it is desirable “to achieve an effective 
trade off among conflicting requirements so that 
each conflicting requirement can be satisfied to 
some degrees, while the total satisfaction degree 
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is maximized”. Hence they suggested that it is 
necessary to identify and assess requirements 
priorities. In their approach they use imprecise 
conflicting requirements to assess requirements 
priorities. Users are required to relatively order 
requirements and to decide how much important 
a requirement is with regards to other conflicting 
requirements. They then used fuzzy logic and 
possibility theory to develop an approximate 
reasoning schema for inferring relative priority 
of requirements under uncertainty.

TESTING

Despite the wealth of research in the last two de-
cades, software testing remains an area where, as 
cases of reported failures and numerous releases 
of software suggest, we cannot claim to have 
mastered. Bertolino (2007) presents a useful 
framework for summarising the challenges that 
we face in addressing the problems of ensur-
ing that systems are fit for purpose, suggesting 
further research on: (i) developing a universal 
theory of testing, (ii) fully automatic testing, (iii) 
design to facilitate testing and (iv) development 
of integrated strategies that minimise the cost 
of repeated testing. This section presents some 
pointers to attempts at using AI techniques to 
support particular aspects of the testing process, 
which has the potential to contribute towards a 
more integrated dream testing environment of the 
kind proposed by Bertolino (2007).

Knowledge Based Systems

One of the earliest studies to suggest adoption 
of a Knowledge Based System (KBS) for testing 
was by Bering and Crawford (1988) who describe 
a Prolog based expert system that takes a Cobol 
program as input, parses the input to identify 
relevant conditions and then aims to generate 
test data based on the conditions. DeMasie and 
Muratore (1991) demonstrated the value of this 

approach by developing an expert system to assist 
in the testing of software for the Space Shuttle. 
The software testing process for the Space Shuttle 
had previously involved running it on a simulated 
environment and use of manual checks to identify 
errors, which could take more than 40 people over 
77 days of testing. Since the criteria for analysing 
the performance data were well documented, 
a rule base was developed, enabling automatic 
identification of potential problems and resulting 
in a reduction to around 56 days.

Both the above studies are quite application 
specific. In contrast, Samson (1990, 1993) pro-
poses a generic environment, called REQSPERT, 
that has, at its heart, a knowledge base that supports 
the development of test plans from requirements. 
REQSPERT takes a list of requirements as input, 
classifies them into particular types of functional 
and non-functional requirements, identifies suit-
able test metrics and then proposes a test plan 
together with the test tools that could be utilized. 
Although the approach proposed by REQSPERT is 
interesting, there has been limited adoption of the 
model in practice, perhaps because of the invest-
ment of effort required in instantiating the model 
for particular applications. Indeed, this might be 
the reason why progress on the use of KBS for 
testing appears to have stalled in the late 1990’s, 
since papers that successfully build further on this 
idea are hard to find in the literature.

AI Planning

A more active area of research since the mid-1990s 
has been the use of AI planning for testing. von 
Mayrhauser, Scheetz, Dahlman & Howe (2000) 
point out that a major disadvantage of white box 
testing is that we have to wait until the code is 
developed before commencing the process of 
producing the tests. An alternative to the use of 
white-box testing is to model the domain and 
produce tests from the model. To be able to gen-
erate tests, the model should be rich enough to 
generate a sequence of commands, where each 
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command may include parameters. The primary 
example of this approach is the Sleuth system 
(von Mayrhauser, Walls, & Mraz, 1994a, 1994b), 
which aims to do this by defining three layers, 
where the top layer aims to define how to sequence 
commands, the next layer defines individual 
commands and the bottom layer defines how to 
instantiate the parameters required by commands. 
This idea was explored by applying it to gener-
ate tests for an interface to a system capable of 
storing a large number of tape cartridges, known 
as StorageTek.

The experiences with Sleuth suggest that 
although it can be effective, considerable effort 
may be required to develop a model for particular 
applications. A research group at Colorado State 
University (Howe, von Mayrhauser, & Mraz, 
1995) explored an alternative approach in which 
they utilize AI planning methods (Ghallab, Nau, 
& Traverso, 2004). AI planning methods allow the 
specification of operators, where each operator 
can be defined by providing a precondition that 
must hold in order for the operator to be applicable 
and post-conditions that define the valid states 
following application of the operator. An AI plan-
ner can take an initial state and a goal and then 
generate a plan that consists of the sequence of 
operators that transform the initial state to achieve 
a given goal. Howe et al. (1995) recognized that 
by representing commands as operators, provid-
ing initial states and setting the goal as testing for 
correct system behaviour, an AI planner could 
generate test cases, consisting of a sequence of 
commands (Howe, et al., 1995; Mraz, Howe, von 
Mayrhauser, & Li, 1995). To evaluate the idea, 
they modeled the interface to StorageTex, that was 
used to illustrate Sleuth and conclude that it was 
easier to represent the domain using the planner 
based approach, that the test cases generated are 
provably correct and the different combinations 
of initial and goal states can result in a wider and 
more novel range of test cases. However, they 
acknowledge that test case generation can be 
slow, though this might have been because of the 

particular planner they employed in their study. 
In a follow up study, they develop their ideas 
further by showing how it is possible to utilize 
UML together with constraints on parameters and 
state transition diagrams to model the domain 
(Scheetz, von Mayrhauser, & France, 1999; von 
Mayrhauser, Scheetz, & Dahlman, 1999). The 
class methods of the UML model are mapped to 
operators and state transition diagrams together 
with propositional constraints provide information 
to define the preconditions and effects of opera-
tors. High level test objectives, derived from the 
UML models, can then be mapped to an initial 
state and goals for the planner which generates 
tests based on the objectives (Von Mayrhauser, 
France, Scheetz, & Dahlman, 2000).

Von Mayrhauser et al. (2000) also shows that 
the use of AI planning for test generation has the 
advantage that one can mutate plans to mimic 
potential errors in the use of a system, for example 
when a user attempts an incorrect sequence of 
commands. This mutation of the plans then leads 
to generation of cases that test the error recovery 
capabilities of applications.

An important part of testing distributed sys-
tems is to check whether it is possible for it to end 
up in insecure or unsafe states. Gupta, Bastani, 
Khan & Yen (2004) take advantage of the goal 
oriented properties of Means-Ends planning by 
defining potential system actions as operators so 
that generating tests becomes equivalent to the 
goal of finding a plan from the current state to 
specified unsafe or near unsafe states.

Memon, Pollack & Soffa (1999) argue that 
human generation of test cases for graphical user 
interfaces requires enumeration of a large number 
of possible sequences of user actions, making the 
process inefficient and likely to be incomplete. 
Instead, as with the above studies, they propose the 
use AI planning methods, since once the possible 
actions are specified using operators, a planner 
can generate tests since it is capable of finding 
a sequence of actions to achieve a goal from an 
initial state. There are two interesting aspect of 
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their work: (i) they don’t simply specify a single 
operator for each possible interface action but use 
abstraction to develop higher level operators, mak-
ing the search more efficient, (ii) their approach 
automatically includes verification conditions in 
the tests that are capable of detecting failure fol-
lowing intermediate actions in a sequence aimed 
to achieve some goal. They test the feasibility of 
the approach by applying it to generate test cases 
for Microsoft Wordpad

Genetic Algorithms

A study by Kobbacy, Vadera and Rasmy (2007) has 
shown that the use of Genetic Algorithms (GAs) 
for optimization has grown substantially since the 
1980s and this growth has continued while the 
use of other AI technologies has declined. This 
trend is also present in their use in testing, with 
numerous studies aiming to take advantage of their 
properties in an attempt to generate optimal test 
cases (Baresel, Binkley, Harman, & Korel, 2004; 
Baudry, Fleurey, Jezequel, & Le Traon, 2002a, 
2002b; Briand, Feng, & Labiche, 2002; Briand, 
Labiche, & Shousha, 2005; Harman & McMinn, 
2007; Liaskos, Roper, & Wood, 2007; Nguyen, 
Perini, & Tonella, 2008; Ribeiro, 2008; Tonella, 
2004; Wappler & Wegener, 2006) .

For example, Kasik and George (1996) utilize 
GAs for generating tests for user interfaces. They 
argue that manual testing of interfaces can be 
inadequate, pointing out that tests are constructed 
by systems engineers who have a fixed view of 
how the designed system is meant to be used and 
hence generate tests that don’t really capture the 
paths that novice users might follow. To overcome 
this deficiency, they propose a novel system that 
aims to model novice behavior by use of GAs. 
The central idea is to represent a sequence of 
user actions by a gene. A pool of genes then rep-
resents potential tests. A tester can then define 
a fitness function to reflect the extent to which 
a particular gene resembles a novice and evolu-
tion then leads to the best tests. They experiment 

with a fitness function that gives greater priority 
to actions that remain on the same window and 
attempt three alternative strategies for generating 
tests. First they give little guidance to the GA and 
observe that this leads to tests that at “best the 
resulting scripts seemed more chimpanzee-like 
than novice-like” (Kasik & George, 1996, p250). 
Second, they began the tests with a well defined 
sequence of actions and then allowed the GA to 
complete the sequence of actions. Although the 
results were better, they remained unconvinced 
about the quality of the tests. Thirdly, they provide 
both the start and end parts of a test and let the GA 
generate the intermediate actions. Not surprisingly, 
this approach, which they term pullback mode, 
results in the most appropriate novice like tests. 
The most interesting part of their work is that it 
shows the potential for modeling different types 
of users which could provide a powerful tool for 
generating particular types of test suites.

Baudry et al. (2002a, 2002b) present an interest-
ing use of GAs aimed at improving the quality of 
an initial set of test cases provided by a tester. The 
central idea is based on mutation testing (Untch, 
1992) which involves creation of a set of mutant 
programs, where each mutant is a version of the 
original program but with an introduced varia-
tion. The introduced variation can be an error or 
bug or result in behavior that is equivalent to the 
original program. The effectiveness of a set of 
test cases can then be measured by calculating the 
proportion of non-equivalent mutants that can be 
revealed by the test cases. The task for a tester, 
then, is to develop a set of tests that maximizes 
this measure, called a mutation score. Baudry et 
al. (2002b) explore the use of GAs by taking the 
fitness function to be the mutation score and each 
gene to be a test. An initial test set is provided by 
a tester and evolution using the standard reproduc-
tion, mutation, and crossover are utilized where 
the target application to be tested is a C# parser. 
Their experience with this approach is not good, 
and they conclude that the “results are not stable” 
and that they had to “excessively increase the muta-
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tion rate compared to usual application of genetic 
algorithms” (Baudry, et al. 2002a). Given the target 
application, the individual genes represent source 
code and with hindsight, this outcome may not be 
surprising since the crossover operator may not 
be particularly suitable on programs. However, 
they also observe two inherent limitations of 
using the standard evolution cycle (Baudry, et 
al., 2002a). First, since GAs focus on the use of 
the best individuals for reproduction, the muta-
tion operator can lose valuable information and 
the best new genes may not be as good as those 
of the previous generation. Second, they point 
out that a focus on optimizing individual genes 
doesn’t help in minimizing the size of the testing 
set, which is an important consideration given the 
time it can take to carry out the tests. To overcome 
these problems, they propose a model in which 
new members of the gene pool are obtained by 
bacterial adaptation, where mutation is used to 
make gentler improvements to the genes and those 
genes with a score above a certain threshold are 
retained. Their experiments on the performance of 
this revised scheme suggest that it is more stable 
and it converges more rapidly.

Several authors propose the use of GAs for 
testing OO programs (Briand, et al., 2002; Ribeiro, 
2008; Tonella, 2004; Wappler & Schieferdecker, 
2007; Wappler & Wegener, 2006). The main aim 
of these studies is to construct test cases consist-
ing of a sequence of method calls. Constructing 
sensible sequences of method calls requires that 
certain pre-conditions, such as the existence of the 
target object or parameters required by a method 
are satisfied. An obvious GA based approach is 
to code methods as identifiers and to attempt to 
construct a fitness function. But use of mutation 
and crossover are bound to result in inappropri-
ate sequences, so how can these be avoided? 
Wappler and Lammermann (2005) demonstrate 
that it is possible to devise a fitness function that 
penalizes erroneous sequences. However, in a 
subsequent paper, Wappler and Wegener (2006) 
acknowledge that using a fitness function as the 

primary means of avoiding illegal sequences is 
not efficient. Instead they propose a novel use of 
Genetic Programming (GP), which aims to learn 
functions or programs by evolution. The under-
lying representation with most GP systems is a 
tree instead of a numeric list. In general, a tree 
represents a function, where leaf nodes represent 
arguments and non-terminal nodes denote func-
tions. In context of testing, such trees can represent 
the dependencies between method calls which 
can then be linearised to produce tests. Use of 
mutation and crossover on these trees can result 
in invalid functions and inappropriate arguments 
in the context of testing object oriented programs. 
Hence, Wappler and Wegener(2006), suggest the 
use of strongly typed GP (Montana, 1995), where 
the types of nodes are utilized to ensure that only 
trees with appropriate arguments are evolved. This 
still leaves the issue of how such trees are obtained 
in the first place. The approach they adopt is to 
first obtain a method call dependency graph that 
has links between class nodes and method nodes. 
The links specify the methods that can be used to 
create instances of a class and which instances are 
needed by a particular method. This graph can then 
be traversed to generate trees to provide the initial 
population. The required arguments (objects) for 
the trees are obtained by a second level process 
that first involves generating linear method call 
sequences from the trees and then utilizes a GA 
to find the instantiations that are the fittest. Once 
this is achieved, the trees are optimized by use of 
recombination and mutation operators with respect 
to goals, such as method coverage.

Ribeiro (2008) also adopt a similar approach 
in their eCrash tool, utilizing strongly typed GP 
and a dependency graph to generate the trees. 
However, a significant refinement of their work 
in comparison to Wappler and Wegener (2006) 
is that they reduce the search space by removing 
methods, known as pure methods, that don’t have 
external side effects. A trial of this pruning process 
on the Stack class in JDK 1.4.2 resulted in about a 
two-thirds reduction in the number of generations 
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required to achieve full coverage.
Briand et al. (2002) explore the use of GAs for 

determining an optimal order for integrating and 
testing classes. A significant problem when deter-
mining a suitable order occurs because class de-
pendency cycles have to be broken resulting in the 
need to utilize stubs. The complexity of the stubs 
needed varies, depending on the level of coupling 
that exists between classes, hence different order-
ings require different levels of effort for creation 
of the stubs. Briand et al. (2002) take advantage of 
previous work on scheduling, for example in the 
use of GAs for the traveling salesman problem, 
and utilize a permutation encoding of the classes 
together with a fitness function that measures the 
extent of coupling between the classes. The fitness 
measure is defined so as to reduce the number of 
attributes, the methods that would need handling 
if a dependency is cut, and the number of stubs 
created. In addition, they disallow inheritance and 
composition dependencies from being cut since 
they lead to expensive stubs. They experiment with 
this approach on an ATM case study utilizing the 
Evolver GA system (Palisade, 1998), compare the 
results with those obtained using a graph-based 
approach and conclude that the use of GAs can 
provide a better approach to producing orderings 
of class integration and testing.

CONCluSION

The survey conducted in this chapter has high-
lighted some trends in the use of AI techniques 
in the software development process. In software 
project planning, the use of GAs is by far the 
most popular proposal. Their ability to easily 
represent schedules and the flexibility they offer 
for representing different objectives make them 
very appropriate for adoption in practice. Neural 
networks have also been adopted for risk assess-
ment, but as the first chapter of the book describes, 
the use of Bayesian networks is more transparent 
and is likely to be more appealing in practice since 

project managers, more than most types of users, 
need to feel they are in control. Likewise, the 
use of case based reasoning, as proposed by the 
work of Heng-Li Yang & Chen-Shu Wang (2008) 
seems to be an attractive approach because it of-
fers transparency and continuous improvement 
as experience is gained.

In the requirements and design phase, there is 
a lot of emphasis on identifying errors occurring 
in the early stages of software development before 
moving to design. The use of NLP techniques to 
understand user requirements and attempt to de-
rive high level software models automatically is 
still and will remain (Chen, Thalheim and Wong, 
1999), a hot research topic although there are 
some issues that are related to these approaches 
such as the use of ad hoc case studies and dif-
ficulties in comparing the developed systems 
(Harmain and Gaizauskas, 2003). In addition, 
having a system that can produce full design by 
automatically analysing NL requirements is not 
possible as design is a creative activity requiring 
skills and reasoning that are hard to include in a 
computer system. KBS have been used to better 
manage requirements, the requirements process 
and decisions taken during the design process. 
In the last few years there has been a lot of inter-
est in the use of ontologies for requirements and 
design. The development of domain ontologies 
is making it possible to encapsulate knowledge 
and rules governing a specific domain in one 
single resource. Ontologies encompass both the 
strengths of NLP based systems and KBS in that 
they allow a better understanding of the problem 
domain, the detection of ambiguities and incom-
pleteness, and are able to store tacit knowledge, 
design decisions, and propose metamodels for 
specific domains.

A number of authors have attempted to utilise 
GAs and AI planning methods for generating 
test cases. The current attempts suggest that use 
of GAs can run into difficulties with generating 
appropriate valid test cases and a fully automated 
approach using GAs seems problematic. Hence, a 
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more promising approach is to use strongly typed 
genetic programming which is capable of reducing 
the number of ill-defined test sequences. Use of 
GAs for generating the order of integration of OO 
classes seems to be more promising with initial 
trials suggesting it is better than traditional graph 
based methods. The use of AI planning methods 
offers an alternative to use of GAs and GP that 
can offer greater control. The effort required in 
defining the operators for different applications 
can be significant, though some progress has been 
made in defining a framework that could develop 
into a usable approach in the future.

The survey suggest that there is now good 
progress in the use of AI techniques in SE but 
larger scale evaluation studies are needed and 
further research is required to understand the ef-
fectiveness of different approaches. Furthermore, 
the development of new areas such as intelligent 
agents and their use in distributed computing, 
context aware and secure applications will require 
closer links between SE and AI in the future.
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