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N ABSTRACT

~The"v£olinxis a highly complex vibrating system: which, quite
gi}hput;the: aid. of science, evolved to a high level of sophistication. -
ggpg,byhi;ﬁ:vgyigsEonsiderably from one sample to another, requires
}QQ§V§QUa;,attention, to be fashioned into the plates of a good violin.
}F;;s*notdthefefore1surprising Fhat mass-produced instruments are of

very poor quality. It is the improvement of these instruments which 1is

thg_pbjective of this thesis.

_ After identifying those features of the response upon which the
v}g%infs quality most depend a model is developed and used to answer
sgvgral questions about violin design. As it .is extremely difficult to
}gglqg? t@e squnqipqst_in the model it is suggested that an additional-
structural elgment, designed tq*mgtch the baqk's impedance, 1is used to
§EE§Oft#the_pogt5: The amount of acoustic radiation from the back ‘is
shpw?ﬁtq;{be sqall 8o that this change does not greatly affect the

L
o

output level.

Finally it is shown that, wusing such a construction, the 1low
f requency. response of the violin may be predicted before assembly..  A.
description of an automated production process 1in which 6 the violin.

plates are cut and tested by micro-processor controlled machinery

concludes the work. .
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Introduction.

Scientific investigations of the violin family are by no means

uncommon today. It seems that nearly every aspect of this subject has
been looked at, and yet every advance shows that it 1s the subtlest
details of its action which are the mark of a good violin. Thus, like
climbing over a series of ridges, the solution of one problem
inevitably brings to view another, more distant one.

In this thesis it is not the smallest details which are
investigated. Some interesting problems are elucidated, such as the
principles which govern the violin’s design, the consequences of the
highly non-linear bowing process, and the parameters which determine
the origin of the wolf-note, but such problems are only incidental to
the purpose of this work. The real goal is to find a way in which to
improve the vast majority of new violins, those mass-produced for
students, in a way which does not add to their market price.

As a first step towards this goal the most obvious characteristics
of good violins are studied. These are evident 1in the f;equency
response curves measured by many other researchers. Then, after
modelling the action of the violin, a method for predicting the

response of a complete violin over part of the frequency range 1s

developed, based on the properties of the component parts. This makes
is possible to adjust the violin’s frequency response before assembly,
while it is still easy to alter the plates. Finally, the possibility
of applying this prediction technique in a mass=poduction siguation is
briefly explored. %

In adopting this approach the 1mportance of the Bt;ady-state

vibrations is perhaps stressed too muche No doubt the transient

response of a violin is also very important, yet the quality of most
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mass-produced instruments 1s so 1low that, ‘even ignoring a large
proportion of the overall problems, the situation can only be improved.

Perhaps‘some day a more detailed analysis of the importance of

transients will be carried‘out, but at this time only the most general

questions should be addressed.

A Brief History of "the Violin.

The ofigins of thé*viélinﬁhéve long been the subject of debate
ambng scﬁolaf;. Iénﬁaa*béeh.variuﬁsiy assumed to have evolved from the
rebec, lute, viol, or crewth, but it seems most likely that viols and
violins developed as two distinct families from these earlier ‘examples
of string instruments [1,2].

While nearly everyoﬁe is familiar with the violin, a viol 1is
rarely seen today. It had a flat back, five, six, but occasionally
more strings, and a very slightly arched belly of very thin waod, in
other respeéts resembling a violin. The advantages which:the violins
enjoyed over the viols proved to be significant enough to lead to the
complete disappearance of all but the bass viol until a recent revival

in medieval and renaisance music.

Many luthiers (this term was formerly applied to lute makersr but

now 1is more universally applied to the makers of any stringed

instruments) have been given the credit for developing the violin.

Duiffopruggar (1514-1570), a Bavarian who became a nationalized

Frenchman, has often been named as the originator of the violine This

1s probably due to the violins made by Vuillaumeﬂwh1Ch were thoughtiby
v
'

many to be copies of instruments by Duiffopruggar. They were in fact

modelled on his viols, some of which exist today [2]. Gaspar da Salo

(154U~-1609), Andrea Amati (cl535-cl6ll), and Maggini of Brescia have
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all been given credit, but while violins attributed to the first two
named still exist, it 1is 1impossible to decide this question
conclusively. What can be said, however, 1is that once created the
violin evolved rapidly, with the names of the Amatis, the Guarnaeris,
and Stradiverius, along with the school of their followers in Cremona,
standing above all of the others. Aesthetics and tone were both valued
by these luthiers, who with their undoubted genius in craftsmanship and
musicianship made violins which are seldom equaled today. Perhaps
their dominance in their field is wunfortunate for us today, Lor many
luthiers began to copy
these great  master’s
violins and originality
and experimentation,
which had so quickly
developed the wviolin,
were discarded. There

were of course

exceptions— the  German

school of violin-
making, led by Jacob
Stainer (1621-1683),
produced instruments of

exceptional beauty 1in

both form and tone= but

these and the old
Figure l.1: Modern copies of violins by Italian wviolins were
Stradavarius (right) and Stainer (left). almost universally

Note the differently shaped f-holes. copied for many years.
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Before begining the
investigation of the
acoustics of the
violin one should
spare a few moments to
look at the two
violins which appear
in figures l.1 and
l.2, a few moments in
which to appreciate
the beauty of a well
made violin. It is
impossible to
appreciate the depth
of the wvarnish, the
careful workmanship,
or the lightness and

responsiveness which

characterize a good

violin, in a

photograph but the graceful

THE VIOLLN PAGE 4
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Figure l.2: The arching of the Stainer copy

(left) is much more abrupt than that of the

Stradavarius copy (right).

arching and the beautifully marked wood

make it easy to appreciate how some collectors who cannot even play are

fascinated by the violin.

sets the price of a violin.

excel in both is the real reason for their demand.

This, and not its acoustic properties, often

That the genuine old Cremonese

oy

violins



CHAPTER 1 THE VIOLIN PAGL >

Building the Violin.

Figure 1.3 illustrates the many pieces which are used to construct

a violin. Most of the internal pieces, the blocks, corners, and rib-

liners, are present to give structural strength to the violin

FRONT PLATE

i \__—_-—-\

F-HO L E A e e e T

BASS-BAR
= #"—'*“Wj_———“

r-HoLE %o .h

\
i END BLOCKS

, " LINING STRIPS
— - .
eoneroroned LT Z

EXnss
A

SOUND-POST

f/fﬁﬂﬂﬂ__—_-ﬁﬁ‘,——HHH_““____‘#,/;

BACK PLATE
EIGURE 1.3a° Exploded view of a violin.

BRIDGE

/‘_)-‘ .*_,( 4
BASS-BAR !

‘____\ SOUND- POST /.___.’ ‘

FIGURE 1.3h. Cross sectional view of a violin.
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sound-box. The

fascinating story.

The luthier begins by constructing a set of ribs

sycamore or maple,
easily bent.

of the pieces

me t hod

which

may be clamped and glued.

THE VIOLLN

of construction of the

PAGE O

box 1s itself a

from strips of

he thins to about 1 mm. so that they may be

The ribs are built with the aid of a mould to

which all

When using an inside mould,

such as that shown in figure 1.4, blocks of spruce are lightly glued to

it and cut to shape.

the violin and remain
from the mould.
Once the strips

have been thinned they
are cut into pieces to
form the six sections,

known as bouts, of the

ribs. Starting with
one of the C-shaped
bouts, the luthier

dips the strip of wood
in water and then very
slowly bends it over a

hot, rounded

bending=iron until the

plece fits snugly
against the mould.
The remaining peices
are then bent in the

same way.

careful not

Next the luthier

These pieces form the corners and end blocks of

firmly glued to the ribs when they are removed

Figure 1.4: A nearly

are held on an

luthier traces their

slab.

rubs the mould

inside

with

complete set of ribs

mould while the

r

outline onto a maple

soap, being very

to coat the blocks, so that the glue will not stick to it.
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A hot, organic glue is used to join the bouts together, with the blocks
giving strength to the glue joints and clamps holding all of the pleces

firmly in place. Some two to ten hours later the glue has hardened,
but changes in its strength may occur over a much longer period.

The mould and ribs are constructed so that the 1latter project
about 1 cm. abovefthe surface of the mould. This is necessary so that
a ‘1ining strip of spruce, about 2 mm. thick, and 7 mm. high, may" be

glued to the inside of the ribs. First, however, the ribs are cut so

that from a height of 32 mm. at the lower block, ~they taper to 30
mm. at the top. This 1imperceptable slope 1is present in the great
Italian violins and luthiers, ever mindful to copy these 1instruments
exactly, perform thls task without exception.

After the lining strips, which are used only to provide a wider
glueing surface for the plates, have been bent and glued fnto’place;
they are reduced to a triangular section. This must be done after they
have been installed for trying to bend a triangular sectioned strip of

wood 18 an impossible task! Little notches in the blocks and corners

secure the linings at their ends.

Carving the two plates is the most important step in making a
violin. Much of the final sound and beauty depends on the luthier’s |
skill in excecuting this task. The plates are often carved with the
same arching so that the only major differences in their appearance are
the wood used, the f-holes in the front, and the small projection at
the top of the back, known as the tongue, which meets the neck. Maple

or sycamore is used for the back and spruce for the front. Each plate

may be made from a single piece of wood, or from two matching pieces.
:
If two pieces are used for a plate then two adjacent, wedge=-shaped

slabs are cut, their thickest edges planed and are then glued together.

In this way the marking in the wood appears nearly symmetric when the

f
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plate is finished. This
also ensures that the

narrowest part of the
grain is at the center.

A tracing of t he
desired plate outline 1s
next made on the slab,

which is then shaped by
saw, knife, and scraper.
Then with the slab
clamped to the working
surface, the arching 1is
begun using a  curved
gouge e Real skill 1is

needed here for carrying

R T Y, S M g away a single large
Figure 1.5: Templates are used by the splinter could spoil the
luthier to check the arching of the plates. work. Once the

lengtlwise arch has been
cul to match a template, the arch between the central bouts is cut and
again matched to a template. After doing the same at the widest

portion of the lower and upper bouts, a small plane is used to remove
the gouge marks and to sink a shallow groove about 3 mm. from the edges
in which the purtling will eventually be cut and set. These two
operations bring important aesthetic and practical benefits. The wide
groove allows the luthier to use a thick, strong edge without flawing

the graceful arching of the thin plate. The purfling, usually
consisting of three strips of wood, is set into a narrow groove and

emphasizes the violin’s shape. More importantly it stops any crack
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from propogating from the plate’s *edée into the vibrating region}
Scrapers and glass—-paper are used to complete the outside surface of
the plate.

"Using a caliper to check the thickness, the plate is next hollowed
out to its final thickness, which for the belly 1s about 3.5 mm. at the
centre and 1.5 mm. at the edgess The back also varies in 1its
thickness, from about 4mm. to 2 mm.

The front plate must finally have the f-holes cut and its bass bar
fitteds Two drill holes and a sharp knife enable the 1luthier to cut
the holes, while £he bass-bar must be shaped so that it must be
slightly bent in order to be glued in place inside 'the " plate. This
done, the belly is placed on the unlined edge of the ribs and a couple
of small holes drilled through it into the blocks. These are located
where the purfling groove will 1later be cut, and serve as locating
points into which small pegs are stuck. The ribs are removed from the
mould, the other set of rib liners glued in place, and then the belly
glued on with the pegs in place to keep the ribs from warping. After

this the back is attached, the purfiing cut, the edges rounded, and the
violin body is complete except for varnish. The fashioning of the neck
1s of little concern here, for although it provides the craftsman with

an opportunity to' demonstrate his skill in carving the beautiful

scroll, it is of no consequence to the violin’s acoustics.

~ Varnishing provides the luthier with another chance to show his

expertise, for a well applied oil-varnish enhances and colours the

wood, besides providing 1t with a protective coating which will
withstand centuries of use. Spirit varnishes are also used because of

5
the ease with which they may be applied, but these lack the beautiful

qualities of the oil varnishes. Despite the claims of countless people

the varnish used by the Italian masters was not the secret of their
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success, for although the varnish does affect the violin, particularly
its damping, the effects are of minor importance when compared with the
f requency response and the.normal modes of the plates [3].

Today many violin-
makers employ tap—tones
to help obtain the best
possible sound f rom

their instruments. When

making the final
adjustments of the plate
thickness they hold a
plate loosely between
thumb and finger, about
4/5 of the way along the
plate length, and rap it
sharply with a knuckle
as demonstrated in

figllre ].I 6- This

excites many modes of

Figure 1.6: Tap tones make it possible vibration and by carving
to compensate for the individuality of as little as U.l mm. of
wooden plates by tuning the lowest reson- wood from a few square
ance to a specific pitch. centimetres of the

plate, they may be
altered perceptably [4]. Many luthiers adjust their plates until the

predominant mode has a pitch of D# for the back, and D for the front

plate. This seems to give good results in most cases.

The use of tap tones is perhaps the most important aspect of

violin making to which scientific method has been applied. It is by no
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means the only one. Most of the 1important work in this field is
utilized in subsequent chapters, but before it is possible to build on

this work to Jluprove mass=produced instruments it 1s necessary to

detemine the factors that make some violins universally admired.
The Best Violins and What Makes Them Different.

One of the first attempts to scientifically explain the esteem of
the old Italian violins was made by F. Saunders [5]. He made frequency
response measurements of  many .fine instruments, both.old and new, 1in
five frequency bands over which the response was averaged. Although
these ranges were 'arbitrarily selected as in table l.l, he‘'found a
correlation between the relative strength of these bands and the
quality of a violin. Saunders was assisted in this work by Jascha
tliefitz and Sascha Jacobson, who judged‘many modern instruments against
old Italian ones in blind listening tests. His conclusions from these
experiments were that two qualities were of prime importance when
evaluating the violin: "first, great power, second, - an even

distribution of strength among all - ranges of frequency, the lowest

octave being of special importance" [5]. Another point which he makes

18 of historic interest:

"Many violins, including two or three of the seven
Strads for which we have curves... show a weakness in the
range 1300 to 1800 or 2000 cps., amounting to a drop of 4 to
8 dB. This appears... to have no important effect on the
reputation of the violins concerned."

Subsequent research has revealed the irony of this statement. |
Other attempts at evaluating the violin by a small number of

frequency bands have been made, notably by Lottermoser and Meyer [6],

who used seven bands, and by Meinel [7], who averaged the f requency

response over spectral fifths. These experiments shared the same
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disadvantage as did Saunders’ tests: the bands were too -coarse, and

important features were lost among other information in a band. This
explains how the weakness which Saunders noted in many r;ood violin’s
response curves falled to correlate with the quality of the violin-
More recent work has shown that thils feature 1s of the highest
importance in determining the sound quality of a vialinl [3,9].

These early researchers did not ignore the question of transient
response. Meinel postulated that as the transient response of the
highest resonances is fast, these should have .as low ,an output as
possible so that the bowed string articulates well [10}. Saunders made
measurements of the logarithmic decrement for varioyus violin modes but

concluded that there is no general correlation between this and sound

A

quality [5]. Recent work has concentrated on the importance of the

frequency response.
{

Yankovskii used third octave bands to record the response of many

A

§1011n3 and tried to correlate somé of the subjectivé terms wﬁicﬂ
violinists use to describe their instruments with the average ﬂre5ponse
in certain bands (8]. In order to maké these testé as méaﬁingful as
possible six judges were required to describe many violins with nine
subjéctive terms. All of the instruments were played twice, in a
different order, and only‘thosefwhich recieved the same subjective term
from everyujudge were used in the experiment. The response of a violin

to which a subjective description had been unanimously appiied was*then

compared to that of the average for the entire group and the

differences related to subjective terms. A list of these appéﬁrs below

in table l. 2e
The most important conclusions about violin frequency reéponse are

those arising from a study by Garlelsson and Jansson in which "Long

time averaged spectra" (LTAS) were used to rate the qualitiés of
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Experimenter Bands Frequency range Remarks

Saunders 3 196~ Arbitrarily selected.

Chosen to correspond to vowel

Lottermoser et al 7 formants of U, 0, A, E, I, the
sibilant S, and the second na-
sal formant.

Meinel 10 194-12K Spectral fifths.
" Yankowskii 17 180- 9K *1/3 Octave bands.
Jansson 24 <180->10K ° The Bark frequency scale.

Table l.1: The frequency bands used by early researchers to

describe the quality of violins.

violins [9].

In this process whole tone scales were played over three octaves
on each violin as 1loudly as possible. The results were averaged 1in

: ) |
twenty-two bands from about 100 Hz. to 9.5 kHz. over a long peg}od of

time. By comparing the LTAS of twenty-two good violins which had been
judged in a violin-making competition they found a very good
correlation between the reponse in seven of these bands aﬁd the rated
quality of the violin. The frequency bands of greatest importgnce
proved to be similar to tﬂose found by their predecessors, but with a

greater accuracy and in a definate order of importance.

The most important characteristics which appeared in thelr tests
were: a high response up to 500 Hz., low response around 1.3 kHz;,
rising quickly to 2 kHz., and then a rapid drop above 4kHz. The
authors point out that the judging of the violins was done by only two

men and may not have been of a representative group of violins, but

¥

their findings are still of great significance.

The goals are now clear and the work may progress. It will

shortly be demonstrated that the bridge is primarally responsible for
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Sub jective term

Soprano

Bright

Noble, soft

Nasal
Tight, thin

Piercing
Treble, shrill

Contralto

THE VIOLIN PAGE

Characteristic frequency response

Bands at 250, 500, 800, and 1250 show strong
response with the 1250 Hz. band dominant.

" The best violins fall in this category.

" High output between 2500 and 4000 Hz.

Body resonance in 500 Hz. band strongest.

Frequencies from 1.2 to 2KHz. cause this 1ir-
ritating tone quality.

e,

Relatively uniform respounse between 500 and

6300 Hz. when averaged over 1/3 octave bands.

Any radiation above 4KHz. may cause this.
Little radiation below 500 Hz.

The lowest band has a relatively high level.

Table 1.2: The subjective terms studied by Yankowskii and the

physical interpretation of these tems.

14

the production of sound at frequencies above about 1.5 kHz., so 1t 1s

the lowest of the frequency ranges just descrbed which.will yield the

greatest results.

As more information about the violin and its

unique

design come to light, understanding will not dull the awe, nor remove

the mystery, which envelope this amazing creation of man’s genius

400 years ago.

hqﬂﬂ%’*

some
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Méasuriﬁg théﬁFrequency Resﬁbnse.

Measuring the frequency response of a violin can be Bﬁ}priéingly
difficult. :Ideally the method employed would be qdick, reproduéaﬁle;J
and reflect the way in which the violin 1is held. The 'pfaﬁlems “of
exéitation,.instrumentation: and mounting a violin for study in an
anechoic chamber will be discused briefly below.

Most experimentefs have used some form of bowed excitation, either

mechanical or by hand. Mechanical bowing, by a swinéinghpendulum'or a
rotaﬁiﬂgwheei, is inherently reproducable but the conétrﬁctidnﬁof such

a device 1is difficult. By contrast, hand bowing requires only a

practiced hand and a good ear to produce surprisingly consistant
resultse It is the behavior of the bowed string and the nearly’
constant limit in bowing force, as first shown by C. V. Raman, which
makes this possible [1]. He showed that, 1if the bow’s épeed aﬁd its
position on the string are held cnnstént, Hexceeding a certain force
bétween the bow and string destroyé*thé oscillating regime.r'Afraﬁcoug,
unpleasanf sound is produced which the musician instinctivelyjévoids-
This limit {is §ery important for, althoughqthé frequency content and
amplitude 6f tﬁé string depend on all of these factors, the bbﬁing”
force is the most difficult for the musician to control. Saunders, who
was one of the first to employ this method to étudy ‘the violin’s
response, demonstrated the remarkable degree to which such results may
be reproduced (2]. Since that time the "equal loudness curges";” as

response measurements made in this way have become known, have been

used in most experiments.

- 2t N e
"

Loudness against pitch, rather than the frequency ?réspénsé,' is

measured when some form of bowed excitation is used to drive fhé

violin. This is essentially what one hears when a violin is played for
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each pitch is a combination of partials, each of which contributes. to
the loudness, rather than a pure tone. While suéh measurements are

useful in many circumstances, they obscure much of the frequency

information making it difficult to isolate the resonant frequency of

indiviual modes. Also, by 1its nature, the ''equal loudness curve =~ must

be plotted at discreet frequency intervals, usually a . semitone apart.
This spacing is wide enough so that, even with the provision of a

tracking filter to obtain a true frequency response, detalls such as

the split which sometimes occurs 1in the Helmholtz resonance may be.

missed. Although these detalls are probably of no real significance.in
the tone quality of a violin they may help one ‘to gain valuable
insights into the violin’s action.

Mechanical excitation of the violin bridge avoids these problems.
In most cases the strings have been left in place wheﬁfmeasuring the
frequency response in this way, bﬁt throughout this thesis the strings
have been removed during festing. This eliminates spurious resonances
which occur when the driving frequency is that of a- string- mode, . for
even when the strings ‘are heavily damped they still affect the
f requency response curve. The presence of strings and bridge, and an
assembly for driving them, also obscures a large portion of the belly,
a problem when making holograms.

In order to measure the violin’s response,force was applied to the
violin body by an electro-magnetic transducer, B&K type MMO002, which
drove a small metallic disk with a high magnetic permeability. .As its
mass was only 0.3 gm. the disc had a very minor effect on the? violin’s

mode shapes. and resonance frequencies. The transducer mount, and that

:

of the violin itself, had a marked.effect on the. frequencyz?response

curve. Other workers .have been beset by similar problems which have

prompted an effort to standardize mounting techniques [3]. Figure 2.1
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. - - . 1. shows the degree to which
the results may be

affected. In obtaining

l "
{a)
i
. : these response curves the
l [ ;
|
| : 1OIdB same violin was mounted
'
in three different
\ {b) l | ! :
1 ' manners: suspended on
! ' "
. ' threads at the corners;
I
' ; resting freely on a foam
|
!
'\ e : block; and loosely
' [
' ; clamped in a frame which
[
|
' also supported the
260 L37 600 700 800 900 -»
-+ Frequency in Hz. transducer .-mounting.
Figure 21: The effects of violin mounting on With  the first two
the frequency response, {a) when suspended
on threads at the corners,(b)when resting methods the  transducer
on a foam block, and (c) when lightly |
clamped. was fixed to an

L. T ’ ad justable ‘cantillever.

The measurements' - took place one after the other with no detectable
change in either the temperature, pressure, or huﬁidity} so that it {is
only the formm of Imounting which is responsible for the large
discrepencies which the curves diépléy. | o

In two of these response curves the second resonance appears _t6
form a dahble peak which 1s caused by ‘the interaction of the
violin-plate and the transducer mounting. As a lengthy cantilever was
require& to support the tfahsducer in the anecholc test éhamber it
proved to be impossible to eliminate this doublet. EQén'iwith the

transducer mounted wupon a framework in which the violin was clamped,

great care was needed to prevent its influencing the violin’s freduency

response, as figures 2.2 and 2.3 demonstrate.
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37 L67 L97
FREQUENCY In Hz.

FIGURE 2.3 . The region neaqr

the front plate resonance and
the effect that a poorly de-

Figure 2.2: The violin front plate and the signed transducer mount can
have on the frequency response
mounted transducer for driving it. (curve b)

— e — d o = -

The clamping of the violin within the framework could also affect
its response. Clamping all four corners of ten introduced a distortion
of the violin body which drastically altered its resonance frequencies,

as shown in figure 2.4. Light clamping of only three corners

eliminated this problem.

The frame for mounting the wviolin and transducer was used
throughout this work as it proved to be the simplest method of
eliminating the interaction between the transducer mwmounting and the
violin. It had an additional advantage in that the entire assembly
could be quickly and easily transferred to the holography lLaboratory
and used to secure both the violin and transducer to the anti-vibration

table in this facility. Overall this system demonstrated its
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superiority over the

| l standardized -‘methods of

! o | 10 dB.
| : ' . testing.

: : The remainder of the
: | : . equipment used in
| : | recording the frequency
: : : response curves .18 shown
: : : in figure 2.5. All of the
i : :a electronic equipment. was
260 L:I,-, 197 600 * situated - outside . the

Frequency in Hz.
Figure 2.4: Clamping the violin can increase
both the Helmholtz and the plate resonance
frequencies as the lower curve shows.

anechoi¢c - chamber . and
shielded cables - passed
through the walls. The
noise floor was typically =5 to =10 dB SPL throughout the frequency
range of interest when measured on the Narrow-Band analyzer -(dB
re.-2x10. Pa.-are- used- - throughout this work). A -B&K tyﬁe 1024
sine-random generator was used to drive the transducer, whose impedance
was constant throughout. the frequency range. Either a white noise or
single frequency sinusoid c¢ould be used as an input with this
instrument.

A single high-sensitivity mlcrophone, B&K type 4165, was used  to

pick up the

achtic OUtPUt. :'v' VvV VVV VVVVVVVVV NV 2;.:* |
S 4 B&KmmQQ02 2 g-'; B&K Sine /
The signal was < [VIOUIN] Magnetic S : ~="g| Random Generator.
: Transducer. < .
processed in < > B&K 2131 Narrow
> = < Band Filter.
either B&K < ' D& X 2
a . > : < .
5 Microphone. 2 Microphone Frequemcy Oscillo-
4 o X~ ': : _ :'i
type 2610 AVAVAVAVAVAVAVA AVAYAVA : Th:l;)ﬂ : %-
- - AL amplifier.  countef.  scope.

measuring amp- Figure 2.5: The equipment used fer making frequency

lifier or a B&K respohse measurements.
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2131 narrow-band analyzer.

A white noise.input was generally .used. to record a. frequency
response and the narrow-band analyzer was wused for . averaging and
displaying the signal. As the response was usually required from 190
to 600 Hz; the analyzer was wused 1in the O to 1 kHz. mode. Linear
averaging was used exclusively. The 400 line linear frequency display
then gave ‘excellent definition. with only a 2.5 Hz. band-width. On

those occasions when a wider response was measured, the 0 to 5

kHz. range was selected.- As this instrument 1is sensitive to
frequencles virtually down to D.Ce., low frequency noise often appears
in the :response curves, although it was possible to measure the noige
f{féﬁ, store it in memory, and then subtract it from any subsequent
measurement within the machine.

The acoustic output of the violin was often measured at less than
10 dB SPL at certain frequencies and so outside sources of noise could
rnoticably affect the response even when the triple set of doors which

led to the anechoic room were sealeds A 1long averaging time was

therefore used to minimize any such effects, 2048 samples over about

five minutes being common.

The Hanning window was used exclusively during experiments as 1t

minimized the problems associated with digital sampling (the linear

window should only be used when recording transienta); If a small
number of wavelengths are recorded 1in the sample then any frequency
component that does not have a whole number of wavelengths 1in the

signal can greatly change the Fouriler transform. A Hanning window uses

4 weighting function to minimize. the importance of the begining and

| :
ending of a sample thereby eliminating this problem. ’.

Once a response curve had been recorded it was possible to output

it to a level recorder or an X~y plotter.
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_Another useful feature of the narrow-band analyzer was its ability

to stop after a number of samples, and continue averaging again after

an indefinite interuption. This made it much easier to perform

sound-power measurements.

Early in the experimental work the method of measuring the

response, whether it should be made in an anecholc or reverberant

chamber, and whether sound-power or a single position frequency
response should be used, were the subjects of much debate. Figure 2.6
shows the multitude of resonances which occur in the reverberent room
at the University of Salford’s Department of Applied Acoustics.

Although these resonances are so narrow that they do.not affect third

octave bands 1in the frequency range covered by a violin they make it

impossible to obtain meaningful response curves.

Q0

\ _w‘

70

100 200 300 400 9S00 600 700 200 900
Frequency in Hz.
Figure 2.6: The response of the Universily of Salford's
reveberant room to a white noise input in.1/3 octave ..
and 2.5 Hz. bands.

A series of sound-power tests were made to see 1if the, violin’s

i
directionality was important at frequencies as low as? 600 Hz,

Seventeen microphone positions were used at a distance of one meter

 from the center of the belly, in the hemisphere into which it would
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radiate if mounted in a baffle. A frequency response curve was then

made using a single microphone position, one meter on the axis normal
to the center of the belly. Comparison of the two curves in figure 2.7

shows that, although directionality greatly influences the readings
taken at high frequencies, in the range of interest it was not

necessary to make sound-power measurements. Of course, the shape of a

radiator whose dimensions are less than a quarter wavelength of sound
in air does not greatly affect the radiation pattern, but .experimental

confirmation of this was deemed necessary. Single position frequency

response measurements are used throughout this thesis.

40

, | 430

-
=
iy,

-~

>
N
O

Sound-power in dBR

| . 2 3
| Frequency in kHz. |
Figure 2.7: Sound-power (——) and frequency

response at a single position (—),

Once a frequency response curve had been recorded, the resonant
&

!

frequencies and half-power points were detemined using the sinusoidal
output of the generator and the measuring amplifier, frequenc%,counter,
and 6scillisc0pe. The amplifier had a 22.5 Hz. high-pass filéér which
made it possible to obtain a steady position on the meter. Noise was

much greater in these instruments than in the analyzer, typically 10 dB
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SPL, but as this equipment was only used to measure resonances 1t

caused no difficulties. .
Measurements of the resonance frequencles were accurate to within

about 0.5 Hz, - the error involved mostly due ¢to the difficulty in

locating the maximum which has a slope approaching zero at the peak.

It was. much more. difficult to obtain the Q-factor accurately for the

output of the sine-random generator varied as much as one dB while

trying to locate the 3-dB-down points. Averaging a large number of
tests produced figures for Q accurate to about 5%.

. Results obtained from the techniques described above . were
generally reproducible, although with no control- - over atmospheric
conditions some variations occasionally occured. The method of
mounting the violin made 1t possible to make an accurate and rapid
measurement of the frequency response and then to. move it to the

holography laboratory - to study the behavior of individual modes of

vibration.
Holography

Holography has proven to .be a useful tool for investigating the
vibrations of stringed musical instruments. In modelling the violin it
was found necessary to know precisely the mode shapes and the plate
velocity distribution, and although the former could be deduced from
Chladni patterns 1t was vibration holography that made the latter

possibles The first investigation using this method was conductedl by

Reinicke and Cremer who studied the modes of vibration of violins [4].

o

A similar study by Gabrielson and Jansson established this teghnique as
a valuable tool for the acoustician [5]. It 1s described in some

detail below. " )
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Although the holographic proce;é was enviéaged by Gabor as early
as 1947, it was not successfully émployed until after the laser had
been developed [6]. 1t was the spééial properties of a laser beam;ﬁ’a
coherent, single frequéncy beam of 1light, which proved to be the
breakthrough that made h&iography possible.

- - There‘are“mahy types of laser in use, but the most common 1is the

heliun-neon gas iyﬁe, which produces a contimious beam with a

wavelength of 633 nm. An electric Adischarge starts the 'béamkfby
exciting the electrons of the neon atoms to a highef eﬁérgy level.
When these electrons fall to their normal level ihey release a phbton
with one of the three wavelengths characteristic of neon. 6nly the 633
nm. wavelength is in the visible range.‘ The population of excited neon
atoms is initially very high and many photons are released. When one
of these phogons collides with an exciEed aﬁom, it too releases a
photon. Only - a small current is necessary io sustain the process once
lasing*has begun, just enough to maintain a lafge proportibn of excited
electrons in the discharge tube.

. The discharge tube in which thisloccuré has mirrors at each end
which are arranged so that 1light travelling along the axls with a
wavelength of 633 nm. will form a standing wave. A small portion of
this beam, which must neéeésarily be of uniform phase'and'nbnrdiverging
to form the standing wave, 1s allowed to escape through a partially
silvered mirror. 1If, however, the number of photons 1in the tube 1s

allowed to decline below a 'certain level the process cannot sustain

itself and the lasing action ceases. This limits the light ‘intensity

of the laser beam to a small fraction of that in the tube, ﬁfpiéally'l
¢

to 2%. It is the stimulated emission of a photoh which occurs when an .

atom with a high-level electron is hit by another photon that glves the

laser its name- Light Amplification by Stimulated Emission Radiation.
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A hologram is a type of photographic emulsion in’ which both the

amplitude and phase information of light from an object are recorded.
In ordinary photographs the phase information is lost, but by allowing

a second beam of light to interfere with the light from the object, a

serles of fringes occur which, when recorded in some form, retain all
of the information about the object. If these fringes have  been

recorded on a photographic plate one needs only to develop and fix 1it,

Object ' and then to insert it once more into

gz;cnf I- the reference beam to reconstruct the
e

. original objects It will appear
Reference ', A

Beam emulsion behind the plate and retains

Prism
Figure 2.8: Recording a hologram
with a transparent object. . viewed in three dimensions from

perspective so that the image may be

different angles.

Virtual Image
O‘\. Real The theory which describes both
~\ _Hologram

Image

i‘!! : the formation and ‘reconstrucfion.of

s ﬁ. ~holograms may be simply. expléined

b Y
™~

with reference to figures 2.8 and

Figure 2.9: The reconstruction | 2.9,
process,

The light distribution upon the
photographic emulsion from the object (this will be referred to as the

object beam) may be expressed as

(2.1) S(f)= S,(Flexpljwt + jp(T)]

where t 1s the position vector xI + yJ] and lies in the plane: of the

X 3 :
plate, and where S,(r) and exp[jwt + j$(L)] represent the amplitude and

phase along the surface of an infinitesimally thin emulsion.

The reference beam, which is' simply a diverged énd collimated
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laser beam :which retains its coherence, may also be represented in the

general form of equation (2.1). This gives

(2:2) R{f)= Ryexpljwt+j(2M/ ) cos &],
where the temm.exp{j(27/MN)cos & ] accounts for the .longer path. length
prodiced by the angle o .

L o

The photographic emulsion will respond to the intensity of 1light

which irradiates it and so the temm [S(T)+R(T)]* must be integrated

over a large .number of periods. As the number of periods approaches

infinity, this gives

(g_.'3) I{(F)=S.(F) + R%+ RS'(T) + R*SI(F),

awr win T

where % denotes a complex conjugates.

"Once the emulsion has been developed fringes will appear,‘ whose
optical density, and therefore transmission.of 1light, will depend upon
the intensity I(r) with which it was exposeds A properly developed

film will then transmit a beam which is directly proportional to the

infensity distribution produced by the interference of the two beams

and T(r), the transmitted beam, is.
(2.4) . T(F)=ARI[SEHT)+ R(F) + RS*(f)+ R*S(F)]

with A constant, when the processed holographic plate is reinserted

into the reference beam with the object beam removed. wiﬁ?out the
¥

Interference between the object and reference beam neither of the two

terms which contain phase information, RS*(E) nor R*S(f), would éccur

and no three-dimensional image would be formed. The term
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AR?S* (%)= AR2S,(f)exp[j2¢-¢(%)] 1is the original object beam multiplied .

by the constant factor AR}&™

, but with a negative phase = ¢ (t) which
indicates that the image 1is converging. This forms the real imagg and
may be vieweﬁ} by 41inserting a card or screen at the focal point. The
term ARR*S,(T)exp j[2a +d(r)] again 1includes the original object
beam, but this time with the phase +$(r), indicating that the light is
diverging.. The virtual image which this produces may be viewed with
the eye by looking through the plate, or 1t may be focussed and
photographed with a camera.

As the fringes which are produced on" the plate are "very 'close -

together a movement of even a quarter wavelength in any component of

the laboratory setup may degrade or even destroy the hologram. If,
however, the object vibrates sinusoidally about a stationary mean, a
series of dark and bright fringes appear over the image of the object
during reconstruction, each of which is a line of equal amplitude. A
vibrating object spends the greatest amount of time at either 6f its
two extremities of displacement, as figure 2.10, the .probability
density function for a sinusoild, 1{illustrates. The hologram will
contain information about all of the infinite positions of the moving
object, but as the object spends a greater part of 1its cycle at the
extreme positions than at any other point, these will form fringes with

greater —contrast on the plate, and

consequently the two predominant images

on reconstruction.
For the moment only these two main
lmages, and their interaction wupon

reconstruction, will be considered. 1€

Fiqure 210: A sinusoid with
an amplitude A and its pro-
bability density function.

the reconstructed images at a point t

(XI'+ yj on a planer object) have
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different displacements

n kny, roots of Jg(k) K™ Kot
-A and +A which are

| 2.4048 2.4048
A/2cos¢ apart, destruc- 2 25201 3.1153

3 8.6537 3.1336
tive interference will 4 117915 3.1378

b 14,9309 3.1394
occur and a dark spot 6 18.0711 3.1402

/ 21.2116 3.1405
will appear on t he
image. Similarly, a Table 1: Roots of Jg (k) and the
dark band will lLink difference between subsequent roots.

points on the recon-
structed image with a
peak to peak displace-
ment of 3A/2cos$d or
5A/2cos¢, and so-on. In
between these dark frin-

ges will be areas where

constructive interfer-
ence takes place. These
produce bright fringes
connecting points with
peak to peak displace-
ments of 0, Acostd, etc.
This is exactly the
case in double-exposure

holograms, or with a

square wave displace-

T s

ment= two distinct im- Figure 2.11: A vibration holegram of

ages are formed which the front plate’s lowest mode.

interfere to produce a
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hologram with each successive fringe of equal contrast and representing
a change in peak displacement of A/2cos ¢ .

The presence of the continuous series of images in the vibration
hologram slightly alters the way in which the fringes appear, and as
the analysis is lengthy, it will not be included herein. - Let 1t
suffice to ~state that 1in vibratlion holography the fringes represent
peak displacements of kn,A/mcos¢ , with ky, the successive roots of the
zero-order Bessel function, J,(k), which appear 1in table 2.1. The
spacing between fringes is very nearly the same as that of a double
exposure hologram with the exception éf the first as the table“CIéafly
showss. Contrast also changes with 1increasing amplitude .and each

successlve fringe appears greyer, as may be seen in figure 2.11. A

limit of about fifteen f£fringes are observable before contrast 1is
reduced beyond perception, and although it is possible to remove this

limit by employing a stroboscopic technique, it was not used 1in this
research. .

While a deterministic vibration may produce holograms,’ a random
vibration of any element in the equipment will degrade it. Therefore
it is necessary to isolate the experimental apparatus from vibrat}nng
which may‘ be transmitted by the surface upon which it rests. In
setting up the holography laboratory which was wused throughout this
research the first 1important step was to provide such vibration

1solation.

Four automobile inner tubes were inflated and a slate bed, made

from an old snooker table, was placed upon these. Its miss of 250

kg. gave excellent vibration isolation, which was further improved when
¢

L

three optical benches, with a combined mass of 130 kg., were placed

upon the table to provide a firm mounting system for the equipment. A

B&K type 8306 accelerometer and the 2131 narrow band analyzer were

4
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used 'to measure L0

Figure 2.12;

The vibration
isolation pro-

the  accelera-

W
B =

tion levels " on

_ vided by the
the - concrete 5 20 . anti-vibration
© table in the
vt c:
floor of the = 10 holography
5 laboratory.
laboratory, and T g -= *
0O
v}
on the table. P
O
To provide suf- E
>
ficient low DC. 10 20 30 40 50

Frequency in Hz.

frequency ener-

gy in the floor, such as would be caused by lorries passing by butside,
several members of: staff leapt about on piles of carpet tiles. The
vibration isolation which was measured appears in figure 2.12.

A Scientifica Cook helium-neon laser, with a continuous power of

10 mWe and a wavelength of 633 nm. was used to make all of the
holograms which appear in this work, although initially a 0.5 mW. model
ﬁaS*used.

"+ + The laser had a seperate power supply which, due to vibrations
from its fan, was placed off of the table. A shutter was constructed
using parts from an oscilloscope camera, and once again this was floor

mounted to reduce vibrations.

The beam was split using a variable density silver-backed mirror
which was speclally mounted on a stand with an ad justment screw for
moving it across the beam. This made it easy to adjust the relative

s

strengths of the two beams which, when measured at the hologram’s

§urface,’should have a ratio of between 1:1 and 10:1, the teference

!

v

beam being the stronger. One would expect the l:1 ratio to be ideal.

In fact, as the emulsion does not respond logarithmically to 1light at

very low levels as it does at higher levels, a constant intensity needs
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to be -present to prevent complete destructive interference. In
practice a ratio of about 4:1 is ideal [7].

Two mir-

T ~ Eigure 213: The holo- rors, two lenses

M ,
b 0 Abbreviations: laser . (25x and 10x

--"-_-
ﬂ--------.
- m -

(L), mirrors (M), beam
splitter {B], violin(V]), microscope ob-

diverging lens{D),
" holographic plate (H),

— — and shutter (S). simple plate

cozae) 1=

Oscillator  _  Power supply

jectives), and a

holder completed
the  1initial
equipﬁent,rwhich is éhownain fiéure 2.13.

A‘ﬁinhole and an aparatus to mount both 1t and a lens greatly
1mpro}ed the qualiff of;holograms by eliminating spatial noise from the
object~béam. Anéthé}“fmajor imprdéément was made by 1ﬁcorporating a
light meter:;nto ;he plate hélder so that the intensities of the two
beams cd&lqj égsi;y* be measured [8]. Previously a hand-held meger had
been used.JJAﬁpther‘seemingly trivial addition was of great use.: As a
small degree sf;”&evefégpce -1s present 1in the laser beam, 1t is
important. to keephghe path;lepgths of the two beams "within a few
centimeteré of eaéﬁ 6thef. Small loops attached to each component made
it easy to compare the path lengths with a piece of thread.

As already stated, the frame which held the violin and transducer

could be - transferred from the anechoic room to the holography lab and

bolted directly to an optical bench. With this change in environment

it was necessary to allow the violin to adjust to the new ambient

conditionse Once it -had settled down and the Muirheadg Decade

X
*

&
%

Oscillator had been ad justed to drive the violin at resonance, all was

ready for exposing the plate.

Any stray light which could reach the plate would of course
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partially expose it and degrade the hologram. GShades were placed on
the table to shield the plate from stray laser light, and a black=out
curtain was used to form both a canopy over the apparatus and a curtain
for the lab’s windows.

A squeeze-~bulb and electronic stop-watch were used to control the
shutter opening and, after a series of ¢trial exposures with
Agfa—-Gervaert Scientia lUE/5 plates, ten to fifteen seconds was found
to produce a good 1image with a five minute developing time in Kodak

DI63 developer. Fixing in a bath of Kodak Kodafix solution and a final

l" o .
’ of

>

Figure 2.14: The holographic apparatus.

U a— —

rinse in water with a few drops of Agfa Agepon wetting agent completed
the processing. when wusing the 0.5 mW. laser and Kodak 649F plates
exXposure times were around five to ten minutes. At one point an
additional bath was used to bleach the deve loped plates but the
lmprovement in image quality was unnoticable.

Reconstruction of the image was usual ly done by holding the plate

by hand in the object beam with the blackout curtain obscuring the
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violin. Photographing any hologram of 1interest merely required ' a

holder for the plate and an SLR camera to produce the photos which may

be -seen throughout this text.

>

The Green’s Fuction Technique.

:*"The Green’s Function Technique, in which a system is treated as a

series of 6rthogonal functions which together make up a basis, is very
useful in dealing with the vibrations of a violin. By determining a
linear system’s response to a point input it iﬁs possible to find the
output from any form of continuous input simply by iﬁtegration. This

1s exactly what occurs  when the convolution integral, the Fourier

transform, and the impulse response are used to describe 'a system in
the time domain, but there is no reason that the space domain cannot be

similarly treated! ° In the remarks which follow, the possibilies which
this technique present will be applied totvibrating systems and later

used to model the violin..

The convolution of two functions is defined mathematically as
(2.5) g(t)= fHTIh(t-T)dT = (1) e hit),

which defines the output in the time domain of a linear filter in terms

of the input and the impulse response. The impulse response may be
measured or it may be calculated from the system impedance. ;Fhen, in

order to find the function g(t), the convolution theorem is used. This

theorem states that ~ - ! | i

(2.6) ©  Glw) = FlwlH(w) where Hw)=F{h(t)}, etc.
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The convolution integral is reduced to a pfoduct by the use of the
Fourier transform and the output is easlily determined for any 1input

function. An example of this may be helpful: take the single degree

of fréedom system which appears in figure 2.15. The equation of motion

) is m + c§ + kg= £, with the functional

c alt}

Figure 215: A mass-
spring-damped system.

notation dropped. To find the 1impulse

response let f= H6(t) and g= h(t) from

equation (2.5). Multiplying by exp(-jwt) and
integrating over all t yields
H(w)= 1/(k + jwc - wim), the impulse response.

LI

In an example with lumped parameters like this one, only the time

and frequency dependence 1s 1important. But with a continuous system

the problem is more complex. The input will now be a function of both

time and position, £(f,,t), where r 1s the vector representation of

oy

the input point in the system. The output will be in terms of r and
t, ¢(f ,t). To find the system response to a point input at £ , which
is the Green’s function, requires virtually the same steps as before.

The equation of motion of a continuous system is often of the form

(2.7) g A%Q(F,th Bf(R 1) .

By substituting a delta function for f£(r, ,t) the Green’s function 1s

obtained, represented here by g('i'o ,t), which conforms with the symbols

in general use [9]. .
¢

When working with a continuous vibrating system one importént fact
- 4
about g(r, ,t) is already known; it may be separable into functions of

L
.

time and space so that the partial derivatives in equation (2.7) become

ordinary differentials. For a simple system it would then be possible

to relate t,, T , ty» and t , by using the Fourier transform in both
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time and spaces The violin 1is not, however, a simple system, which
makes it much‘mofe difficult to find a closed form solution to equation
(2&7).~_when dealing with complex systems it is much easier to 1ignore
gﬁ;i;iﬁ; Aepé&danéé and only calculate the steady-state response. It
is_then,*of‘coursé, impossible to determine the transients, but in this
instance they are of no concérn.

The us; of ;ﬁe Green’s function 1is, for most applications,

|

similare First the equation of motion 1is written in the form of

d

¥

equation (2.7). Next the terms g(rt) are expanded as a series of
orthogonal functions which together make up a basis. This 1is similar
to a Fourier series: g(EJ)Iexp(jwt)Z:a;¢;(E ) with the terms

™

a; complex. ﬁquation (2.7) may then be written as
2.8 (wI™ya,(F) + A) ad4(f) 197" = BIFIBIF-F,)
P : :

n - .
with the time dependant terms eliminated. .Next let a—%—‘,-;%-d‘?h[?l and

iy

combine terms in equation (2.8) to yield

@29 YW+ Al ) = BIRISIF-F)

Each side of this equation should then be multiplied by

Zﬁhfﬂ and integrated, making full use of the properties of orthogonal
J

functions, namely jd}'d.)l dv=0 if 1#j. This gives
. Y

2100 ) [1jw)™+ A8 la, [§(RIdF = ) BHR,) (7)) !
S

Multiplying this by ¢i(f) and rearranging gives once again thétGreen's

function
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Ailliw)™+ A¥]

(2.11) g(Fth)zzoi¢iQJWt - B z ﬂFo) (F)(p (ro) ,

2/,"
where A; =fv ¢ (r)dv.
It then only remains to impose the boundary conditions to

determine the response of the system to the point source at rgye

Before examples are cited, it will be wuseful to show that any

number of waves with the same spatial frequency may. be combined into a

single wave with complex amplitude and phase. At any time t there may

be an infinite number of waves travelling in one direction:

.I

(2.12) YV (x,t) =Z[Gncos(wt + kX + 0,) + bsin(wt + kx +o)] .

Rewriting this wusing Euler’s equation and factoring out the time

dependent ‘term leaves
(2.13) lz zeth[G e]“‘?"‘d’n) _._b e](kX*Gn)]+é-th[G é'j(k_x+¢ﬂ'_ b e—j“()(i'-eﬁ)]g
: 2 N n n N |
_tn ] | .

By factoring our the exp(jkx) and exp(~jkx) terms, and redefining a as

a= ) a,exp(j$,), this becomes
R4

(2.14) Gej(whkxl + holiwts kx] or acosiwt+kx+¢) ,

with the proper choice of phase ¢ .

- The string in figure 2.16, driven ;

!

by a force at a point one third of its

Figure 216: The umplllitude of
vibration of q strin;g driven
at L/3 with waz15npc/L

length, with a frequency w=l.5tc/l,

makes-a good example. In this case c

1s the wave velocity in the string. The equation of motion for a

string may be written as
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€9 & ‘
(2.15) -?tgz-* TB%': f(x,t)élx-xo) )

with e the mass per unit length and T the tension. The Green’s

function-equation .of motion may then be written directly from equation

(2-12) as i

(2.16) g(x,t)=z /\4:2)::16;1-(3(33’- for unit force, with c2=T/ e
i

Now a set of orthogonal functions which fit the Dboundary
conditions are ¢;=sin(rix/L), which glves Hf;fni/L) and A;=L when
i=0 or L/2 when 1>0. Substituting this series 1into -equation (2.16),
along with the wvalues of. x, and w,, :produces a series of sinusoids
whose amplitudes vary -as mT(i% -2.25)/L. - This  produced the
interesting waveform ™ of figure 2.16,: which shows that there is no
motion from x=0 to L/3, and that from this point to x=L the string
amplitude is that 6f_a sinusoid-with a wave number of 4L/3.

- If the ends of the string had not been fixed, but held -by
impedances Z, - and Z,, then the boundary conditions would have produced
different shape?fuﬁctions ¢;(x)e 'With the origin now at the center of

the string the boundary conditions may be written as

¥ ¥

e ]

(2.17a) L EELI2) _dolL/2 l:&:(—LIZ) =jw¢(-1/2)
Z1 d X 21
and - |
-dolL/2) T _ . _
(2.17b) — Z," jwolL/2) ,

Now let ¢;=sin (qx + im/2), where the in/2 term allows both %ven and

odd symmetry, and substitute this into the boundary conditions to give

(2.18a) _21_qcos(-q|_12 +m12)=i-_\l/_—v-Sin(-QL/2 +Th/2) |
1 )
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and

(2.1éb) - qcos (qL/2 + m/2) -—-sm(qL12+1Tll2) .
2

Z T

These may be combined and rearranged to form

(2.19) . q[-z—z1—zz-2-] "—J— tan(qL12+1'r|l2)

which, when Z, and Z, >>1 is

. qs -1T 1
(2.20) [L 11121*'22)]
| g . W 42
The effect of ‘a compliant termination for the string can easily be
demonstrated. A spring-like termination at‘one end with an impedance
of -jk/w makes q=-int/[L+(T/k)]. In effect the string’s resonance

frequencies are all 1lowered as the denominator in equation (2,16) is

dependent on q « More complicated impedances are easily treated 1in

this manner.

The great advantages of this type of analysis will make it
possible to improve the model of the violin in chapter 5. With driving
forces that are a function of © it is possible to predict the reaction

of a continuous system to any form of periodic excitation. And when it

1s impossible to calculate the mode shapes of an object they may be

determined experimentally for use in the equations of motion.

-n' P w.ﬂ
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The Bowed String.

Many people would consider.the motion of the bowed string to be of
little interest. At first glance it appears merely to be a variation
of the pi‘u;:ked string, the sort of problem encountered in elementary
differential equations. It would appear that the bow draws the string
aslde until static friction 1is overcome, leaving the string free to
vibrafe until‘ii is once agaln captured by the bow. But. what 1f the
bow pressure kwhich ié the tem that string players use to describe:  the
normal force acting between bow and string) is increased without an
increase in bowing speed? It would then take a larger deflection to
overcome friction. - This ~would mean that the period of vibration is
dependent on both bow pressure and speed, a conclusion which cannot be
true! One has only to watch a 'cel}ist as he "leans" on the bow to
produce a sforzando to see that, even over a wide range of bow pressure
and speed, the pitch is unaffectede Clearly some dynamic consi&eration

has been ignored.
Herman Helmholtz was the first to shed light on this problem [1].

He designed an optical instrument to study the motion of a white speck

on a blackened string and from his experiments concluded that the

motion of any point on the bowed string

could be represented by a sawtooth wave, -

dis pkxement

such as that shown in figure 3.1 The

rising and falling portions are related

to the distance between the observation

point and the string’s.end, and to the Figure 3.1: Helmholtzmotion

of a bowed strilt;g. ob -
served at a point xe.
The string flies back dur-

ing the interval ty and is
captured by the bow overt,,

string length. If the string is viewed

as a whole then the wave form may be

represented very well by two str- aight




CHAPTER 3 DYNAMICS OF THE BOWED STRING. PAGE 42

lines with a diécontinﬁii& of slope
which travels around the string .onﬂ.é

parabloic enveloPe; It is this énveloﬁe
which is seen when the string is bowed

(figure 3.2).

The slope discontinuity produées

Hvelocity and acceleration
Figure 3.2: The slope dis- "~ discontimuities which also travel around
continuity pictured above .. . |
describes a parabolic the string. When the string 1is released
urve as it travels
;round the bowed string. from the bow the acceleration
discontimiity travels towards the

bridge, reflects from it with nearly opposite phase, and as 1t passes
the bowing point, initiates stiéking.ﬁh It then contimies along the
string, reflects féom tﬁe nut (the string's.terminatidn éﬁ the énd of
the fingerboard), and initiates élipbiﬁg when it once again readhes thé
bow. The release or éapture by the bow is thenuéreciselyrcdntrélléd by
the time it takes for the wave to travel around the string. Thére ére;
of course, limitations to this model. Second order effects alter the
wave-form siightif, but then so much in music depénds on sdbtletiesnani
cannot be igndred.

It 1s easy to see how a musician can 'coﬂtrol the dynanic lévei
using the ﬁelmhoitz model of string ﬁotfon. The force at ﬁﬁé'bridge

from each string mode is proportional to its amplitude. Aﬁ increase in

bow speed or a cﬁange in position will change the&amplitude by aitefing

the distance the string moves in the time interval between capture and

release. Some other factors of string motion are not, however, 80
L

easily described using the Helmholtz model.

Nearly fifty years later, C. V. Raman began a detailed study of

L

bowed strings ([2]. He used velocity waves to describe the string
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motion and went into far greater detaill than did his predecessor. By
ﬁsing the simple two state friction model (a coefficient of sliding
friction gy acting when there 1s a non-zero velocity between two
objects and a coefficient of static friction 4, when they are not
moving) and assuming equal damping of string modes, he confirmed
Helmholtz’s experimental work and fimmly established the Dbasic
principles of the bowed string.

At this point it will be of interest to look at the Fouriler Series

representation of Helmholtz motion.

(3.1) y(x,t)=A -]r-\-i_sin(nﬂle)sin(wnt), ..

Nal

with w= c1t/L, c=+T/c, € = lineal mass, and T= tension.
From this it is apparent that a}l of the string modes, even those with
a node at the bowing point, have been excited, each with an amplitude
of A/n®. The force acting on the bridge is related to the slope of the
string at that point so that, if the spatial derivative of equation
(3.1) 1is taken, the force spectrum contains all harmoﬁics with
amplitudes proportional to 1/n. It would then appear that the spectrum
of forces acting on the violin body is independant of bowing position.

Prac;ical experience shows that this is not the case as bowing

nearer to the bridge, which requires a 1larger bow pressure, will

produce a sound which the violinist considers to be '"richer", a sound

which has in fact many more high frequency components than would be

produced when bowing at the finger board with a light strokes: Clearly

something has failed to be accounted for in the Helmholtz model of the

st
b,
X

bOWEd String- x |

Arthur Benade suggests that the bowing process is highly

non-linear and this lead scems a good one [3]. He states that
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Helmholtz recognised the existance of hammonics in the string motion at
points well away from the bowing point which should not have been
excited when bowing at a node. Losses with each wave reflection and in

the string, and the non-zero width of

» ftm, = x[t] the bow certainly help to excite these
k

Ty X[t )

.modes, but it is the non-linearity of

k, : , the bowing process which 1s 1in fact
Figure 3.3: Two degree-of- primarily responsible for this
freedom system driven
by a bow with a constant phenomenon.
velocity ».

Bafore considaring the bowed wtring

_; — a slmpler system, such as the one in
- Alé'-¢" ]+ B

& figure 3.3, may be profitably studied
©

p= and will elucidate many of the
K ve p-ki{t)

§ principles of string motion. The mass
.

Figure 3.4: The ideulized in this system is being driven by a bow
friction of a bowed - -

string. Bow velocity »." ||~ -~  Wwith constant speed v and a friction

force Nu(v), whose characteristics are
like those- in figure 3.4. As long as the relative velocity remains

positive or very small, then the friction curve may be 1idealized as

M =05 [exp(=v/10) - exp(~v/100)] +0.2, which fits the data available

on string/bow friction [4]. The equation of motion of such a system

may be written as

‘P
(3.2) Z x(t)= NIAYL(5™-oC)(-17] + NB
25

where ¥ = 1/10 and (X = 1/100, with the expression for expanded into

i
series forme It is possible to again use series expansions io change

the right~hand side of equation (3.2) so that
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—i

3.3 Zx(t)= NJAY k(1)) (3672 ofe*V]} + NB
P=0 ’

If x (t) is thought of as being a single frequency temm, then
powers of x (t) appear on the right hand side of equation (3.3). These
powers introduce new frequencies into the equation éo that‘i(t)*must
equal zero,.a trivial solution. bbviously x (t) must include all of
the . possible frequency combinations which arise. With x (t)

represented as.a Fourier Series,

| | +00 st
r n

(3.4) . x(t}=Z a.e’
Nn=-co |

so that it can take on any periodic form at all, the power series 1in

equation (3.3) can be solved, although it becomes very lengthy. New

frequencies appear .in many different ways. When P=.2,

o

; w(memit
(3.5) X" (t) =Z Zcmane“w(mm
m T

and when P= 3,

(3.6) o "’l’t):zzz ananaFeJ“’(m”l*P)’f
m 7] :P

and so on. Physically this means that the system vibrates not only at

some resonant . frequency, but also at any multiple of that frequency or
at any combination of two or more frequencies. Using equation (3.3) it
is possible to work out the motion of the simple systen, altﬁough the

process is exceedingly tedious. Table 3.1 1lists the ., simplest
i

t

combinations of w and w , the two normmal modes of the system, which

occur with the parameters given 1in the table. The origin of the

frequency components which Helwholtz observed in a string bowed at a

*



CHAPTER 3 DYNAMICS OF THE BOWED STRING. PAGE 46

node should now be obvious: Order of Radial llow it is
Coefficient Frequency obtained

they were due to combination

1 170
tones. 1 460
: 2 290 460-170
By including only terms 2 340 2*%170
2 630 460+170
up to third order in the table 2 920 2%460
3 120 290-170
the number of - possible 460-340
3 510 340+170
f requencies has been - 3*%170
3 750 920-170
considerably reduced, but even . | 290+460
3 800 630+170
so the 1list is lengthy. What 340+460
3 1090 920+170
would happen 1f, rather than a ' 630+460
3 1380 920+460
two degree-of-freedom system a ' 3*%460
contimious one were dealt Table 3.1: The simplest coabination
with? When the system has a tones which arise in the bowed
series of harmonically related " lumped parameter problem.

modes, as a string very nearly

does, it is possible to use the same analysis as that applied to the
simpler system, but such an approach 1s frought with difficulties. By
working in the time 'domain the problem may be more effectively
analyzed, as recent work in this ' field has shown [5,6], but the
frequency domain approach still ylelds some valuable 1information. It
1s quite easy to demonstrafe how bow placement, speed, and pressure

affect the tone quality of a bowed string. To begin, the equation of

motion at the bowing point with second order terms may be written as

qwt_ w M+t -
(3.7) (Eﬁ NAF‘)ZGne = ___%\__ Z;Zo a, e? ’1 ~

v aﬂ“_ﬂw

with Z.,.r the point 1impedance of the nth string mode, which may be

determined using the Green’s function approach, and where the operator

\

rmis defined as l"”u [Tnexp(-]"t?)-omexp(-av)]. If the frequency terms
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are equated, then the normal modes are defined by the series of

equations

(3.8) GT‘]= _NA_PL z ZO”IGPI(Z”—NAF) Y
Z mP

for all values of n, with m*p= n. These -can be solved by first
assuming that all of the coefficients a, are those predicted by the
Helmholtz ﬁodel of string motion, calculating a new set of coefficients
witﬂwéﬁu;tion (3.85, scaling the terms to match the bow velocity, and
iterating this process. Figure 3.5 demonstrates the change in the
coefficients of the second harmonic when the bow forte or velocity are
alterred.

It is immediately apparent that the coefficients a, are influenced
by the impedance Z, which for a string 1s dependant on the bowing
position, and- by speed and pressure through Y and N.: It 1s easy to
see that in a bowed string the amplitude of each hammonic 1s slightly
changed due to the combination tones which arise and, as these depend
on the way the string 1s bowed, the timbre will be alterred.
Increasing N or decreasing V will mean that the. combination tones
become more impoftant, so that “the

player should hear more high frequency

"components, a phenomenon which has

already been seen to occur.

" From the discussion so far one

25
1 1 10 100

Relative value of NI’
Figure 3.5: The way in which

bow pressure and speed alter
the amount of second harmonic

present in the steady-state
vibration. Nz N[§&1V- mé“vl

with ¥=bow velocity, Nzpressure.

“ would expect that with high 'bow speeds

and low pressure the combination tones

3

will exert 1little 1influence on the

vibrating string, which -will exhibit

Helmholtz motion.: As the term N[I'* 1is

4
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increased the string motion will

change significantly, as demonstrated

in figure 3.6, where the frequency

0
©
£
)
ol
V)

content of two notes bowed on a cello

are plotted.

Harmonic
Figure 3.6: Harmonic content of
‘a note bowed near the bridge of N which allow an ordinary solution
(], and near the fingerboard
B, to equations (3.7). This becomes

There are limits to the magnitude

‘clear when second order terms in (3.8)

are ignored to produce equation (3.8a) below.

1:'\1

(3.8a) - LZn=NA['=0

As the NAIM termm 1s the only one which supplies enérgy to the systen,
through its "negative resistance", it must have a greater value than
the losses in Z. Otherwise energy input cannot balance the losses. It
18 then the total negative resistance which controls how the
oscillation builds up.

There is also a maximum value to NA™ above which the solutions

for w in equation (3.8) become purely imaginary and oscillations cannot
OCCUT »

Both of these phenomena occur in the bowed string, although the
mechanism is somewhat different. Raman discussed the "minimum bow
force" (the minimum value of NAT ) in his book [2] and J. Schelleng
summarises work on this area in his excellent paper, "The Boéed String

and the Player" [7]., --

&
b

The maximum bow force is reached when the Helmholtz discontinuity

can no 1onger dislodge the string from the bow’s grasp. When this

occurs a rasping growl ensues. If the flyback portion of the Helmholtz
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wave lasts only x,/L of the cycle with x, the distance between the bow
and the bridge, its velécity must be PL/x, during that interval. The
magnitude of the force discontinuity is then ZNL/x,, with Z.=VTE = ce
the characteristic impedance of a stringe The condition for maximum

bow pressure is then

(3.9) Ny = Z2VLIT (ug=My ) .

The minimum bow force occurs when the discontinuity Jjust has
sufficlient time to return to the bow and release the string before

friction is overcome. At lesser forces the string 1s released before

the discontimiity reaches the bow and another wave 1s sent oute. As
there are now two, or more, discontimiities on the string, the
fundamental jumps to a multiple of the fingered note and the
t ime-keeping function of the Helmhoitz wave 1s restored. Schelleng
derives the value for minimum bow pressure, which is dependenﬁ on the

impedance of the bridge and body [7]

~

- . 3T 2
with r defined as the loss term for the first string mode. This

estimate of N,;, 1s only good to an order of magnitude.
Examples of the frequency content of waveforms which exhibit the

limits of bow parameters, along with the cases when these limits have

been exceeded, are shown in figures (3.7) and (3.8).

The limits on N ,,, and N,,, differ in their. dependancg on bow

:

placement so that the range of pressures and speeds which may be used

increases as the bow is moved away from the bridge. These results are

L

1llustrated in figure (3.8) where the range of pressures, for a given

4
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Figure 3.7: Multiple slip motion of a bowed string,
demonstirated by these response curves. A a

‘cello was bowed progressively -taster to pro-
duce oscillations with (a) odd harmonics attenuated, i
(b} every third harmonic prevailing, and (c) the first
four harmonics attenuated .

bow speed, are plotted against bow position. From this figure it may

be seen that at some point very near the bridge the two lines meet.

With such a high pressure necessary at this point one would obtain a

Figure 3 8:

E, The range of
0 useable bow
. pressure at i
2 a constant L
g speed as @ |
@ function of

01 0.2 0.4 0.8 1.6 position 7],

Relative bow position.
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brilliant sound due to the large amount of combination tones produced.

Only the very best stringhplayers can make use of the very narrow
limits on the bowing process which éermit such ricg and beautiful
tones! Lesser musicians play nearer the fingerboard and so reduce
their ranée of expression, but also avoild the disasterous consequences
of exceed;ng the ‘bowing limits.

The bowing parameters may affect the sound in some other ways too.
Equation (3.8) shows that if the real part of NAT 1is significant then
w will be complex and ﬁhe peak in frequency repo;se will be shifted.
This may easily be observed with strings by bowing heavily and slowly
on the lowest string of a violin or ‘cello. Schumacher abservest that
this effect 1is somewhat counteracted by the importance of high
harmonics under these same conditions, which tend to be a bit’;harp due
to striﬁg stiffness, thuéiéhifting the 1listener’s percéption of the
pitch. le13 discussion of this effect in the time domain i8 extremely

interesting [5,6].

There are many other factors which Influence the vigéations éf the
bowed string. Stiffness must be the most important of theée for 1t
causes the partials of the string to deviate from the natural harﬁonic
;eries, the effeét being 1increasingly 1important as the wavelength
decreases. It 1is the simple relationship between harmmonic resonances
which makes it possible fo? combination tones Lo become so Iimportant.
With an inhammonic series the generated tones fail to reinforce tﬂe

partials and so "brilliance" is lost.

Except in the case of wolf-notes, which will be .discussed shortly,

a very small amount of the string’s energy is transmitted to the body.
| &

To maximize this transfer the impedance match between bridge and string

must be as good as possible. This requires the mass of the string, and

consequently its tension, to be as large as possible. Mass and string
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E/lO" . Density, Inharmonicity /10’0
Material Dynes/cm* gm/cm3 EAOZ
1Silver 7.5 1015 0-68
3 Brass - 9-2 8:6' 1-24
German Silver 10,8 Bed - 1.53
Gut "~ 0639 1.37 2.1
Steel 19.0 7.8 3.1
o Aluminfum 7.0 2.7 9.6

" Table 3.2: ‘Inhamonicity of various material used for strings -[7].

frequency stiffness are then the
String type " perturbation —n.:.
Bx10® /n% parameters to be
Violin E, steel 0.02 28 considered when
Violin D, gut 0.25 13 | |
Violin G, gut 1.3 7 evaluating materials for
" Violin D, wound gut O0.12 16 - ‘
Violin G, wound gut 0.08 19 strings. Several
‘Cello G, wound gut 0.05° 22
Cello C, wound gut 0.13 16 materials commonly used
" Cello C, on steel ' 0.23 " 28 | *
~ Acceptable value 0.06 21 | for strings are listed in
Table 3.3: Inharmonicity of various table 3.2 along with

.

wound and solid strings using Young'sl theighdensity and Young’s

expression for inha;monicity [7]1,[8]. Modulus, upon which the
| stiffness‘depénds. Young
showed that it is the ratio of EﬁdL which in part defines the degree
of inhamonicity. This ratio forms the basis for evaluating solid
strings and also ;ppears in table 3.2. Clearly silver 1s the best
material, aluminium the worst, and gut and steel about equal for solid
strings. Unfortunately silver has a very low tensile strength and so

cannot be used for solid strings.
By wrapping a core with a dense wire the mass increases without

greatly affecting the stiffness. Table 3.3 compares various wound and

S,
salid“strings using Yqung’s expression for string inharmonicity [8],

(3.11) fp/nfo = 14 Bn* * *
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with £, the frequency of the nth harmonic, and B defined for a
particular string as in the table. The value n,,, in table 3.3 is the
n;mber of the partial which falls about halfway between two of the
natural harmonics. Combination tones cannot exert any noticable effect
at such frequencies, and the reinforcement which usually occurs in the
bowed string cannot occur in such a case. The tone for a string like
this is quite dull, as may be heard from a violin gut G-string, whose
response falls off rapidly above the sixth harmmonic.

Torsional vibrations certainly ocecur in a bowed string  too. The
transverse velocity can only match the bow when it has frequency
components as dictated by Helmholtz motion, unless the contact point 1is
allowed to rolle Thus coupling between torsional and transverse modes
allows waveforms modified by combination frequencies to exist while the
sliding velocity remains zero over much of the cycle,

The motion of the bow hairs has an effect on the string siﬁilar to
that of torsional wvibrations. Both of these phenomena have been
treated in the time domain, although their musical effects have not
been evaluated [5,6]. Obviously they will be least important at Noin

for then the transverse waveform is most closely associated with

Helmholtz motion.

The wolf-note.

Torsional vibration of the string makes it possible ﬂfSr it to
exhibit forms of motion which, at times, are vastly diffgrent from
Helmholtz motion and yet still remain in contact with the bow over part

of its cycle. Vibrations such as these, unpleasant in the extreme, are

known as wolf-notes, and although there are many possible forms for
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them to take these all owe their origin to the same phenomenon.

A single string mode and its coupling to the bridge and plate 1is
analogous to ‘the simple lumped parameter system which was used earlier.
If -the impedances are quite similar a doublet will be formed between
the two subsystems with two possible resonant frequencies. When bowed,
both the two-mass system and the single string mode vibrate at both of
these frequencies simultaneously if the impedance match is close. Of

course other frequencies are present in the bowed string too but these

are generally unaffected by the coupling between string and body.

As was demonstrated in - Order
lst 2nd 3rd
equation (3.7), each frequency .
98 4 2
which is excited in a bowed 102 100 94
200 198 96
string forms a harmonic series 300 202 104
298 106
due to the non-linearities of 194
196
the bowing process. If two of 204
206
these frequencies -exist where * 1 294
only a single mode  would Table 3.4: The  highest order
ordinarily be excited, as combination tones below 300 Hz.
happens when a doublet 1s generated by a bowed string with a
formed, then the impedances of wolf-note-at its fundamental.

the harmonics formed by

combination tones are 1low enough for them: to be excited to an
appreciable level. Beats occur between the inhammonically related

frequencies and heterodyne action produces new combination tones which

all add an unpleasant roughness to the tone. As an example take a

string whose lowest three harmonics, starting at 100 Hz., are affected
5

E

by the bridge impedance. The fundamental is then split and the new

series, in column 1 of table 3.4 above, produces combination tones such

as those in the second column. These new frequencies then combine with

A
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the original list to produce additional ones, and so on.

It 1s an easy matter to observe these beats occuring by looking at

the frequency domaln recorded of an

80
instrument playing a wolf-note.
Figure 3.9 shows how °~ these _60
m
additional frequencies appear when a E L0
wolf is 1n' action. §
It 1s difficult. to establish “
under just . what conditions. a wolf 0

| Frequency in Hz.
Figure 3.9: Frequency domaln rep-

will appear in the bowed string.

reseniation of a wolf-note, The

two lowest harmonics in this

| t on a cello g-string have impor-
tant side-bands which cause

(3.12) w=nm(L- jT/WZ ) audible beats.

String resonances occur whenever

with Z the 1mpedance of the violin plate at the bridge. When the
string and the plate are tuned to the same frequency there are:falwaya
three distinct, real roots to this equation. With the two tuned
slightly differently there may be one, two, or three distinct solutions

to (3.12). To determine whether or not a wolf occurs the equation

which defines the resonant frequencies is rewritten

(3.13) w2-w*nmc - w(kL+T) + cnttk = O
L m L mL

Then, defining P= -nne¢/L, Q= =(Lk + t)/Lm, and R= cnnk/Lm, and with

A= L/3 (3Q - P?) and B= L/27 (2p3- 9PQ + 27R), the nature; of the

solutions to equation (3.12) are given by

e L g

one real root if B /4-+-A1/27 >0

three real, unequal roots if B /4 + A /27 <O.
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If the string and plate are tuned to exactly w , then -invariably

the three roots are <0:

(3.14) -low¥48727 +13w2o* 1108 + %’/ 27140, - o4=T/Lm

This does not mean that a wolf-note 1is heard, for as equation

(3.14) approaches zero the roots move more closely together until the
effect disappears. This suggests several remedies for avoiding

wolf-notes in string instruments, all of which are in use.

Increasing the plate impedance will reduce ¢ and "the 1influence

of the wolf considerably. Unfortunately, the response of the plate
will be reduced at all frequencies 1f this action is taken so it does

not appear to be a -useful solution.” The same could be said for

reducing the string tension, for while ¢< is again decreased, such an

action would reduce the force which a vibrating string can apply to the

i:)latE-

Some violin-makers go to extreme lengths to ensure that the

wolf-note occurs at a frequency between two equal-tempered notes, so

that it need never be exciteds This 1s sucessful only 1if the wviolin

(or ‘cello, - in which the wolf is a much more pernicious problem) is

tuned properly, and even then changes in humidity or strings, or even

age can displace the plate resonance enough to bring the wolf-note back

into action. Clearly another solution must be sought.
The performer has recourse to one method for removing f;he wolf.

As the string length helps to determine o< playing the note on another

string will have a remarkable effect. The A-string on a viglin has a

length of about:32 cm. Playing the A(440), which is commonly the wolf

in violins, on the D-string leaves only a string length of 21.3 Cme. ,
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while on the G-string a mere 14 cm. of string vibrates at this
frequency. The lowest of the strings is by far the most susceptable to

the wolf-note, as equation (3.14) suggests. Playing this note on a

higher string will often cause the wolf to disappear but unfortunately
it is often musically or technically essential to use these upper

positions on the G and D-strings.

What would happen if a tuned vibration absorber were attached to
the bridge as is commonly done with ‘cellos? The bridge impedance then
has two resonance peaks, with a vibrating mass that is much larger than
that of the bridge and violin plate alone at these frequencies. If
this vibration absorber has significant damping, the resistive
mis-match between the string and the bridge at the absorber’s resonance
f requency may be great enough to eliminate the wolf-note.

Often a mass is attached to one of the ghort sections of string
between the bridge and the tailpiece, and positioned so that it acts as
just such a vibration absorber. It is an excellent remedy that; may be
applied by the performer without sacrificing the instrument’s response
at other frequencles.

Wolf-notes may occur at other frequencies besides that of the
lowest front plate mode, but this is the most troublesome. A minimum
value for % to avoid this problem ﬁas not been determined for some
work must be done on the perception of wolf-notes before this is
possible. Schelleng has, however, published a guideline for predicting
the onset of wolf-notes which is of considerable value [9].

Although the causes of the wolf-note have been described theré
remains much to learn about this phenomenon. Bowing angle seems to

¢

have an effect on its presence, possibly due to the polarization of

transverse waves on a string and its interaction with the bow. Those

waves polarized at 90° to the bridge motion see a near-infinite
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impedance at the bridge and the single frequency they vibrate at uay
help to set up a stable regime of oscillation. Those waves polarized

with the same direction of motion as the bridge not only may possess a

triple root because of the interaction of string and its temmination,
but they couple with torsional modes at the bow which may supress or

enhance them. Many other types of dolf-notestpexist, which could be’

studied with time domain modellingﬁ of the complete process. Future
work may reveal much more about the mechanics of this complex précesa,

and about the perception of complex tones. The bowed string is

certainly not the éimple sfstem 1t first éppearéd to bel
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The Violin“s Design.

!
}
3
It was shown in the previous chapter that, except for the specilal
i case of the wolf-note, the force acting on the bridge due to the

transverse string motion is dependant on the bowing procedure alone.

It is therefore possible to deal with the remainder of the violin, 1its

bridge and body, in isolation to learn exactly how 1t converts the

energy of the string into acoustic radiation. In this chapter the

1

design of the violin will be examined ‘and the action of several
sﬁbsystems, the air—;avity, the back and front plates, and the bridge,
is studied in detail. All of the parts referred to are illustrated 1in
figure 1.3,

To understand the reasons which ‘underlie the violin’s complex
design one must keep 1in mind the ideal frequency response which was
described in chapter 1 [1]. Briefly, the violin‘s frequency response
should be as large as possible up to 1200 Hz., quite low from this
point to about.2 KHz., once again large up to 4Kiz., and fall off

rapldly at frequencies above this. The gap between 1.2 and 2

KHz. coincides with the second vocal formant responsible for the

irritating nasal sound in m, n, and ng, and 1ts presence in the
-

violin’s tone is described by the musician as contributing to a nasal
sound. Unlike the loudspeaker, where efficieqcy is not of pr ime
:importance and uniform response is obtained by eliminating resonances,
a violin should convert as much as 1is possible of its input into
acoustic energy. This is accomplished by designing the violin to have
a modal behavior. Except at low frequencies, this objective is me;:.
Ifrpure tones were used as an input this would be an
unsatisfactory solution as the output level would vary wildly with

different notes, but the properties of the bowed string and the human

iyl



CHAPTER 4 AN OVERVIEW OF VIOLIN DESIGN. PAGE 60

ear make possible a "quasi-uniform' response.

It’s well known that if some components of a hamonic series are
missing the ear still assigns a pitch to these frequencies very near to
that of the fundamental. This is true even if the fundamental itself
is missing. Since a complete hamonic series is present in the bowed
string the ear will assign the correct pitch even if the fundamental
'1ies between two resonances and very little sound is radiated at this
frequency. The 1loudness of such a note will be that due to the

summation of each hamonic’s output so that even though the fundamental

is unimportant, the
setond or third
hamonic may coincide
with one of the
violin%s resonances
and produce a loud

tone. The importance

250 500 750 1K of this phenomenon is
Frequency in Hz.

Figure 41: The frequency response and 1llustrated in figure

maximum- loudness curve below one KH2z2.

from a good quality violin. 4.1 where both the
f requency response
80 and maximum 1loudness
70 curves are plotted.
Below the lowest
= 60
9 resonance frequency
-
.JSO very little sound is
0.
‘”LO radiated although the
250 o500 750 1K i
Frequency in Hz. notes in this region
&gur.'e £.2: The frequency response and sound quite loud when
maximum-loudness curve - — - below 1KHz. '

of a poor quality violin. the violin 1is bowed.
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Curves of this type are obtained by bowing at the maximum bowing force,

a definite limit which has been shown to give reproducable results [3].

The spacing of resonances in this example proved to be ideal. In

figure 4.2 there are similar curves for a violin whose lowest two

resonances are not so favorably spaced. .The maximum loudness curve 1in

this case does not show the same degree of uniformity below 300 Hz. as

did the previous example. The spacing of these lower resonances 1is
indeed critical, as a comparison of figures 4.1 and 4.2 will prove.

This conclusion is not unanticipated for the LTAS tests described 1in

Chapter 1 showed a correlation between the low frequency response and

” MI

violin sound quality [1].

Violin technique 40

also is well adapted

\
to exploit the modal m-ao
response. Vibrato, :;20
besides contributing &J i
to the transient 10 ‘
portion of the 0

hn

, O o o
string's cycle, also el Vs S S 58:;

- ~
ensures that more Eigure 4.3: Vibrato plays an important role in
| violin technique. The bands show how the frequency
resonance peaks are varigtions of a note with vibrato allow the first and

sixth modes to be excited to a much higher level.
included in the

oscillating regime. The frequency variation of high string modes 1is

often large enough. to excite a particular violin mode when a steady

tone would fall between adjacent resonances. This proﬁérty is

demonstrated in figure 4.3. Y

i

.. . Bullding a violin without regard for its structural requirements

d

would result in an instrument which collapsed the first time it was

gtrung ups The design must always remain a compromise between the
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static and dynamic requirements. The master craftsman 1s always

seeking the optimum.

It is immediately obvious that the violin must be essentially a
sounding-board mounted on a load-bearing frame. This 1s the only
construction which can withstand the string tension, about 250 Newtons
on-a modern' instrument, and yet retaln a large surface which is light
enough to be driven into resonance by the motion of the strings.
Another consequence of string tension is the down-bearing force of the
bridge. This force is proportional to the angle of the string between
the bridge and the nute. There are two ways to reduce this downwards
force: reduce the string tension or lower the bridge, and each may
have dire consequences.

The force which a vibrating string may exert on the bridge 1s
pfOportional to its tension and so é compromlise between the driving and
static forces on the plate mustlbe reached.

Lowering the bridge reduces the string’s ability to drive the
violin due to the 1loss of the mechanical advantage which the bridge
enjoys. Filgure 4.4 will help to make this point clear. Below about 3
KHz. the bridge behaves essentially as
a rigid body which pivots about sone
point near to the treble foot [4]. A
high bridge, as shown in the figure, has
;nly a very small component of the

dynamic string force directed through

pivpt '
the pivot point, ensuring that most of R (IR pont .
the energy goes into vibrating the Figure 4.4: Increasing  the
bridge height imprpves its
plate. When the bridge height is mechanical advantage as this
vector representation shows.
reduced a larger component is directed F is 32% greater than F,

in  this example.

through the pivot. A compromise between
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the bridge’s mechanical advantage and the down-bearing force of the

Etrings must be sought.
a It is the arching which allows the violin to withstand such a
great down—bearing force. Viols, with their flat plates, had to have
much smaller string tensions and consequently lacked the power of their
arched cousins. The total eclipse of the viol family (except the
double-bass) by the violins 1indicates the importance of string and
bridge design and the benefits of arched plates. There is, however, a
limit to the amount of arching which can be wused. The resonant
frequencies of many modes are increased by the arch, as may be the
damping. The range of arching which has been used by luthiers is vast,

but the extremes in design have never produced results comparable to

the beautifully shaped plates of the Italian masters.

}Jsable materials E E Je Structure Dy Dy_a S

o *16‘0 *16"’ *10'3 *10 gm/cm

Spruce selected 11.0 .33 44 anisotropic 1.4 4.2 ~.13

by violinmakers sheet

Urea=-forma ldEhYde 10.3 10.3 l.5 ribbed 1 14 8.6 20

" Graphite-Epoxy 2 sheets of

sandwich 40, 3! V«h  composite 1.4 721 12
on a core

maple 5.8 «56 Table 4.1: Materials which

‘sycamore 5.6 «56

poplar 12.7 ¢33 may be considered for violin

white pine 12.0 30 ' -

Alumim.lm 69. 2-7 mﬂking- Dx and DY are the

magnesium 45, l.7

fiberglass 69, 1.9 orthogonal stiffnesses.

One area in which the 1luthier need not compromise 1is 1in. the

selection of a suitable material for the belly. The two main

5—

ffequirements, a low density and extremely high stiffness, are met 1in

only a handfull of materials. Add to this the benefits of having

different wave velocities along perpendicular axes and the most
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suitable natural material must be spruce. ﬂechanical propertieslfor
fsevefél tfbes of wood, and for soﬁe man-made materials whiqhihave ‘have
béenhgééd to make violins, are listed in table 4.1l. ;

| it may not be clear why these traits are desireable 16? m;king
biolin plates. A plate with *low mass will generally vibrate with a

larger amplitude than a more massive one. High stiffness 18 essential

to resist the down-bearing force over a long period of time. It aiso
allows the luthier to use a larger plate. The third point 1s rather

more obscure.

Any bowed iﬁatmment must be designed so that thefsfringa t can- be
reached 6ne at a tim;. It 1is for=£hisﬁieason chakhthe:#op ;f the
bridge:is_dﬁrved. Thisialso meaﬁs thatpthé*bod§ ﬁﬁét”pé ;ﬁﬁhér ﬁarpaﬁ

so that the highest and lowest strings may be bowed=- thus the narrow

walst of the violin. The kit, or dancing master’s fiddle, was narrow

'-j- " o

for iﬁs entire length. One of the reasonshforﬂifslsuddéh digaﬁpeaf&ﬁcé
waskigsklsmail radiating éurface whiéhh‘émitﬁédr;a feeﬁleﬁsouhd.when'
déoﬁﬁéféd to the violin. fl |
An additionl advantage of the narfoﬁ-wﬁiétéd,epldte§ ’i§i the;r*
épility to divide 1ﬁto seperaté vibrating lareas, eaéh with its ;wh
sééi?é of resonances. A noticable increésé’iﬁ ‘the modal density is
'maée possible by the sudden éhange iﬁ wave:impedénée at the top and
ﬁottom of the waist. The vibration holoéré@s qu :figure 4;5rrc1early‘
deﬁoésfrate this point (plate ;rientation andﬁmgde ﬁuﬁbers afé shownfiﬁf
figqfe &;5- £he number 2,1-1ndicates t@atﬂfhefe are two*antiresonancés'
alopglthe.y?olin’s length and one acrossh££).* ﬁut wﬁaﬁ hag t&is to Joﬂ

with the wave velocities 1in wood? It 'all becomes clear when one’
- - 5. -

E

notices that the plate’s second resonance has two anti-nodes across the

plate rather than along it! This surprising result is explained by the

'difference in the stiffness of wood across and along the grain. Since



]

I
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plate is a dispersive medium, the low modulus across the grain in wood

reduces the wave velocity considerably in that direction so that the
[1,2] resonance occurs at a frequency much closer to the [l,1] mode.
Holograms from figure 4.5 show that this is much closer to the [1,1]
mode. These two resonances would normally be about two octaves apart

in a uniform plate with the mean dimensions of a violin. When using

spruce the [1,2] mode can be used to increase the modal density in the
violin’s weak, low frequency range, giving a more uniform response in
the assembled instrument.

. 'Table 4.1 1lists some structures which have different wave

velocities in the x and y directionse The ribbed dssemblies prove to

be more massive than spruce but the composites, when used 1in a
sandwich construction, compare favorably. These composite materials
are a relatively recent engineering advance. By embedding fibers with
a high tensile strength and modulus in an epoxy matrix the material
takes on some of the properties of each. Fiber-glass 18 the most
ﬁigely known example of this. Glass has a high tensile strength but 1is
of course verry brittle. Glass-fiber is extremely flexible, however,
and when imbedded in a matrix of epoxy a light, flexible, yet strong
composite is formed. Graphite and Boron fibers are also used, but
their advantage in terms of stiffness and strength is somewhat offset
by their cost. Both of these materials are usually used with the
fibers running unidirectionaly which gives a material with essentially
the same properties as of the matrix alone when measured across the

"grain". 1In this form it has been used with great success  for

golf-clubs, bicycle frames, turbine blades, even violins [S]If
f

When the stiffness to mass ratio 1is important, as it is in

violins, two 1layers of composite are used to form a sandwich around a

light-weight core. On bending this core is subject to a considerable
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compresive force normal to its -surface yet many light materials are
able to withstand such a force. Cardboard has been successfully used
"as a core for violin plates [5].

In one area graphite—epoxy sandwiches have a distinct advantage
*6ver spruce: the material will not vary greatly from piece to plece as
~do samples of wood. Add to this the potential to adjust the damping
through the selection of core material and it would appear that an
| ideal substitute is avalilable for wood. Yet any ‘conmercial
e#ploitationof this material has so far met with little success. This
{8 not entirely surprising for a violin is usually valued as . much for

its aesthetic qualities, the figuring of the wood and depth of finish,

as for its acoustic attributes.

Once the material for the plate has been selected, it needs to be
fashioned into the size and shape which: will produce the greatest
amount of acoustic energy and yet still resist the force of the
strings. Increasing the plate size may well lower the'[1,1] fesonant
frequency; which 1s a great advantage, and increase the radiating area
too, but these are offset by an increase in bending moment. The plate
thickness must then be increased, which raises the resonant frequency
and increases the vibrating masse ' A viola, which has 1ts [l,l]
resonance much nearer to the bottom of a violin’s ‘range, sounds nothing
like a violin when strung to the same pitch~ its tone color lacks the
higher hamonics and power because of the large plate size.
t+- There i1s .still another way to increase the output of the [1,1]
resonance without sa;rificing a great deal of strengtho. Cdtting the

f-holes, the long slots near the middle bouts, changes the plate’s
£

{
boundary conditions considerably. With the free  edges along the

central vibrating area the volume of air displaced by the vibrating

.plate is - greatly increased. A rectangular plate, clamped on all four
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sides, displaces almost twice as much air when two of these boundaries

are removed, and a violin benefits similarly.
g,

is : Strength is retained by using the sound-post near the treble

~ bridge foot and the bass~bar beneath the bass foot to spread the load.

If the front plate was designed so that its lowest mode was near

dale

the bottom of the violin’s:compass it would be handicapped by a very

high.-mass and its output thereby significantly reduced. Instead, this

= :h: ¥ 1

mode is usually located somewhere about an octave above this at 440

.

Hz., where the second harmonic of these low notes will excite it
strongly. The 1large gap 4in ‘between 220 and 440 Hz. 18 filled in an
entirely different manner.‘
- +~3' When an opening is made into a cavity, such as the f-holes of a
violin or the rose of a guitar or lute, a Helmholtz resonator is fommed
 $?¥£ the enclosed volume of air driven By the motion of the plates.

This is analogous to a base excited, one degree of freedom mechanical
Eystem. The resonance frequency may be adjusted by changing either the
Eavity volume or the hole area. In the violin it is best located

between 220 and 440 Hz., 290 Hz. having been shown to produce the best

A

" results [6].
Already it may be seen that the design of a violin is a compromise
between several conflicting and interacting factors. These are most

iésily sumarized in tabular form (see table 4.2 below).

The greatest violin-makers, Stradavarius, Stalner, the Amatis, and

P

the Guarneris, experimented throughout their 1lives on violins with

greatly varying shapes and sizes. Each developed a characteristic

.. !

style, a unique solution to the infinitely varied possibilities of
S - j

~ J
Y;plin designe Those instruments which have the best combination of

SN

- acoustic and aesthetic values have been copied for well over two and a

half centuries. It is a fitting tribute to their work.
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Action Desireable Consequences Indesireable Consequences
Increase plate -Better able to resist —-Increases vibrating mass
thickness - the bridge force ” -Raises resonance freqs.
'Increase plate -Lower resonance freqs. =Increases vibrating mass
dimensions -Increase radiating area ~Increases bending moment
‘, - 3 . ¥
Raise bridge -Better mech. advantage -Increases down-bearing
e -More bow clearance force of the strings
:Reduceastring -Decreases down-bearing -less force to drive the
‘tension force of the strings violin

| ':Inbrqase the -Better able to resist -Increase damping
arching the bridge force -Raise resonance freqs.
;Cut f-holes -Helmholtz resonance -Weakens plate

-Lower resonance freqs.
-Greater radlating surface

Table 4.2: A summary of the contradictory requirements which deter-

mine tﬁe ﬁesign of the violin, especially of its front plate.

-
e wm W i ey ot “

W

‘ThewBridge ags a Transmission Element.

Whereas the spacing of resonances is critical at low frequencies,
:‘:c “} . ’ o )

above about 1 Kiz. the modal density 1s high enough so that the

violin-maker need only be interested in the trend of the frequency

E . "

response, not the particulars.

As the frequency of excitation increases the plate must divide

£ -f i ’
s £

~ into more vibrating regions, each with smaller and smaller area. This

r "1. o

may easily be seen in figure 4.5. At, say, 800 Hz., where one would

expect the front plate to be divided into four regions across, the lower

S
o
am 28

portion, the wavelength in air is much 1larger than the reglions

&
Fhemselves and a major portion of energy remains in the nbar fileld

BPuttling from one area to another. The radiation efficiency drops

. ﬂfite quickly as the plate divides 1into wmore vibrating reglions. A
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trend towards reduced acoustic output with increasing frequency should

pgégxpected, which may be verified by the frequency response curve of
| 9hr;as‘s”embled violin without strings or bridge, in figure 4.6 below.
;I}l;ejqincreased damping with frequency exhibited by spruce also
‘lc";én!‘:‘rfihjtes to this trend.

The skil=-

0.

led luthier can
make use of
this reduced
output to elim-
inate the {irri-

tating nasal

2000 3500 sound which
Frequency in Hz.
. Figure 4.6: The efficiency of the front plate as a radiator occurs with

drops off rapidly as this frequency response, measured

acoustic out
.- with an artificial sound-post and no back, demonstrates. L put

N around 1200
Hz., but how then 1s it possible to obtain the peak in response from 2
;owﬁ KHzf which the LTAS tests showed were so important 1in a good

violin? It 1is the unique design of

O
-
e

Fh? bridge and its action as a single

8.
cg
flegree. of freedom transmission element | | 00L E,,g
4 ' . o
which gives a significant response év
2 0
over this range. A noble violin needs 012 o
? O »e
- G
c @
?;r}}expertly made bridge to reach 1its 0'03-§§
full ial s
tull potential. ﬁt:
A glance at figure 4.7 shows that 00463
' | 100 1K 1§JK
a_violin bridge consists essentially Frequency in Hz.
Figure 47: The frequency de-
95‘.' a 80lid base with a mass connected pendence of damping in plain

and in varnished spruce (7).~

to it by a narrow section which acts
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as'a stiffness "element. This simple 'system 1s constrained from

:

translational motion and so posseses three degrees of freedom, of which

y W

éwo may be dismissed as lying normal to the plane in which the string
Lo .

forces act. fhose modes which occur because of the contimious nature
" of ‘the bridge are at a much  higher frequency than these 'lumped
parameter” modes.

.- The characteristics of such a-
transmission element are simple and
appear in figure 4.8, With the bridge
*adjusted properly 80 that the
transmission peak is at about 3 KHz. the
violin should display an increased output
in the 1important 2 to 4 KHz. region,
~which may be observed in the frequency

response curve of figure 4.10. < A

relatively broad peak in transmission 1is

desirable 1if output 1is to be enhanced Figure 4.8: The three low-

est bridge modes, which
may be represented by a

The response of the bridge can have single degree-of-freedom
lumped parameter sysiem

throughout this region.

a‘dramatic effect on a violin’s tone

quality. Take, for example, two bridges with their resonances at 3
kHz., but " with greatly different values of mass and stiffness. The
lighter bridge would produce the higher response at 3 kHz., but while
this would make a wviolin sound bright, nasality would inevitably be

1ncreased. Such a tone is favored by soloists as it stands out well

against an orchestral background, but is unsuitable for the subtleties
{
¢

*

of -chamber music. The more massive bridge, with a "darker" sound

caused by a decrease 1in output around 3 klz., would probably be the

choice in such a case. The number of possibilities which this presents

i
i - ]
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explains the great variety of shapes 1n

y=A sinftx/% )sinwt).

which the bridge is found [8].

Thus far it has been assumed that

Yl | the motion of the bridge occurs only in

1ts own plane. In the analysis of string motion it was assumed that
changes of string tension are only of second order and may be ignored

‘hbwever, Arthur Benade, in his excellent book Musical Acoustics,

maintains that these changes i1in tension produce an "indirect force"

which acts on the violin. He states that this force plays an
iﬁportant, perhaps even dominant, role when playing fortissimo passages
[9]. The argument is straightforward. There is in figure 4.9 a string
" vibrating in 1its lowest mode with an amplitude of A. The differential

length 'AS is

wy 0 L
o

(4i1): AS=Axts Ayt = Ax/1+(AylAX)

As?“Ax, Ay -0 this becomes a differential which, wusing the binomial

expansion, is

(4.2) ' dS=1+ (dy/dx)*/2 .

* -
£l
L

On integration this yields

e, T

1

Mg gl

(4.3) S= L+ ATt sin®iwti)
O L

The change in length is related to the tension by Young'f Modulus

*
*

and the component of dynamic force directed downwards is

L S

Ty f(t) = rr*E(AN/ 2L sinle)sin*(wt)
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For.,.a typical violin E-string L=32.5 cm., r=0,014 cm., ©e=6°,

Ef!.HxIO'z , and F(t)-2.5x105 A% sin%(wt). It is interesting. to note

that: this form of excitation occurs at a.frequency of Z2Zw:

A g An «

(4.5) C f{t)=TIr*E (AM/2L)%sin(e)cos(2wt) .
2

Lo e

'Ihig indirect force -may be compared with the second hamonic of the
direct excitation applied by the string as both have the same
frequency. If the Illelnpholtz —approximation for string motion and the
same E-string with a tension of 7.6x10°% Dynes are used, then the
magnitude of .the .second hammonic direct force 1s about 7.3x10° A
Newtons. For all amplitudes likely . to be encountered, (the
approximations break-down with large amplitudes 1in any case), this
direct force is at least an order of magnitude larger than the indirect
force. One should not, however, assume that there 1is no 'musical
importance of this phenomenons .It would be of value for someone to
explore, both mathematically and experimentally, this indirect form of
excitation and to compare 1t with the musical consequences of the

bowing process which, though small, have already been shown to be of

importance.

L4
L S
% k . .*

The Function of the Sound-post and the Back Plate.

'y
m,t
“m

= ¥

-«.,. it has already been said that the sound-post serves notf only to

help support the belly against the down-bearing force, buttalgo acts as

.

a.plvot for the bridge. (See figure 4.4) The post is made of spruce

but its properties and even dimensions vary considerably from one to

another. It 4s held in place by a jam fit between the plates which is

i

2t

S AR
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ﬁuite secure (unless the strings are loosened). Its importance as a
resonator may be 1gnored for 1its lowest longitudinal mode occurs at
aéout 20 KHz., but as a direct coupling between the plates {its location
13iof extreme concern. Replacing the post or moving it slightly may
éntirely alter the character of an instrument. Such 1s its importance
that the French refer to it as '"l1'ame'", the soul of the violin.
- Obviously the sound-post will alter the stiffness of the belly and so
- play an important part in determining i1ts resonance f requencies. What,
ideally, is its function and how does it improve the violin’s response?
-+ "+ If not for the sound=-post and bass-bar, the impedance of the plate

at each bridge foot would be similar and the bridge ‘would rock about

its:center of gravity when driven by the string. With the feet moving
equally but in opposite phase excitation of the second plate mode
(figure 4.5) would be very efficient but the first mode would hardly be

| *éxbited at all. With one foot constrained the first mode can be driven

much more effectively. Fixing the treble bridge foot has an advantage
as the leverage 18 increased for the lower strings in the critical low
{

fréguency range. Unfortunately the second mode would be suppressed if

?ne foot remained stationary. If, however, the post presented an
?mPedance to the belly which was very high at the [l,]1] resonance
%r%ddénty, yet matched the plate’s impedance at the [1,2] resonance
ifrequency, both modes' could be efficiently driven by the bridge. This
%}gple view of the sound-post’s function is of course far from ideal,
but it does demonstrate that the impedance which it presents to the

front plate is crucial to the violin’s perfommance. * f*:'

Whatever impedance characteristics the post has arises ffrcm its

¢
contact with the back plate. Thus one would expect that the back is

designed not solely as an efficient radiator but as an impedance device

'ga well., The fact that the back'is made from maple, which is much more

L
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dense than spruce, lends support to this idea. It would be interesting
to measure the proportion of sound radiated from the back plates of
_some‘of the best violins, but such a project is beyond the scope of

this work. Instead, a good factory-made violin of the 1920°s was

tested with some interesting results [10].

In this experiment the violin’s front plate was removed and the
ribs, with the back still in place, were fitted into an outside mould,
such as used by some luthiers for constructing the bouts. Caulking

compound was used to seal any air gaps and then the front was glued

back into place. The mould, with the violin sealed into it, was then
~attached to an 8°x 8” baffle and placed in an anechoic room. Seventeen
microphone positions on each side of the baffle were used to measure
the sound power of the violin, with the sound-post in place. These re=

sults appear 1in

| 30 figure 4.10, and
\ g .
t\ : suggest that the
Ay 20 -

: II\ A e back plate radi-

{ B! o

W\ i \ o
: : v/ 1\ n"lﬂ ,ﬂn\ ’M‘\ 'g ation 18 about 5

)\
'l ¥ v vw VY \ A 0 2 |
, v v AR A\ Ve dB  less than
| | \ v
A/ 3 / that of the
0
1 2 3 front plate,
oo .Frequency In kHz, . ,

Eigure 410 : The sound-power on both sldes of a except at the
- violin mounted in a large baffle. - back’s [1,1]

resonance. Clearly a balance must be struck between the two

L

requirements of the back at low frequencies and this is an area which

could benefit from further study. The radiation of the back }plate in
v !
the test violin was not of great significance and supports the view

that {ts main function is as an ilmpedance device, although in the best

instruments its acoustic contribution may be a noticable one.
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L]

The action of the other internal component, the bass-bar, is less
fﬁlly understood. It 1is generally assumed that its main dynamic role

is in transferring vibrational energy to the upper and lower portions

W ¢

of the belly, but there is still a great deal to be learned about it.
Lo
Is it possible that it provides a smooth change in impedance across the

end of the f-holes? This 1s yet another area to which study should be
appli ed.

et

Modelling the Helmholtz and Front Plate Modes.

e ow oy

~The importance of the sound-post, and the difficulties involved in

‘.m
- & a4y

. modelling the coupling between the two plates, has led researchers to
include it implicitly in their models. John Schelleng made the first
;;gnificant contribution to the understanding of the violin’s action by

treating the [1,1] front plate and Helwmholtz air modes as coupled

!

d
T

resonators {ll]. Electric analogues were used in his work, however,

throughout this thesis a mixture of mechanical and acoustic analogues

%re used.
Schelleng limited the frequency range in his model to below 600

Hz. so that of all 'the belly’s resonances only the lowest one needed
i , .

X

ﬁo be'considered. This mode may be represented as a lumped parameter

Y s

system with appropriate values of equivalent mass, stiffness, and

damping. To determine these values for the front plate Schelleng added
‘a small mass to the region of maximum acceleration and measured the

g

shift Iin the plate’s resonant frequency. (Adding the mass at another

- point with a smaller acceleration would have had a smaller effect on

2
$

the resonant frequency.) From this data and the half-power points it

i1s possible to determine all of the equivalent parameters for the

3

pPlate. As this data was obtained from an assembled violin, the effects

$
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of the sound-post, back plate, radiation impedance, and any coupling to

'tﬁéléaviﬁy's air modes were intrinsic properties.

5
* wr

" The Helmholtz resonator may be treated in the usual way: since

the dimensions of the holes are much less than the wave length of sound

1;?air throughout the frequency range of interest their shape 1is

ﬁﬂimportént and an equivalent piston with the same area may be used to

rrepresent each hole. Radiation impedance accounts for mst of the
reactive loading and 1is usuallj calculated by allowing two end

‘correction terms on each f-hole. The mass found in this manner may be

| lsgﬁed into one component of the model.

tho

It is the change in cavity'volume which takes place as the plate

;ibrates that drives the alr mode. This is analogoug to a base excited

mechanical system, such as that shown in figure 4.11l.

Schelleng’s
LICf' | bKlf _ electrical ana-
5
| “ = logue ‘poduced
Ky © t ,
A f requency res=
;”_Lflt) [ ]
- Wye, 3 ponse curves
<
| similar to the
200 - 300 | 400 500 600
Frequency broken line in
_Eigure 411; A simple model of the violin below 600 Hz.
Subscripts h and f refer to the f-holes and front the figure for

.plate respectively.
each mode’s vel=

écitﬁ. ﬁsing the mechanical analoéﬁe and a digital computer it {is
Eaésible to duplicate his results. The total acoustic output is not,
ﬁowever, simply the sum of these two curves. which must Tfirst be
converted to sound pressure levels. The phése relationship bétween the

: | 3 :
two sources must be considered before it is possible to undegstand the

way in which these modes 1interact. Since the radliators are much

smaller than the wavelength of sound in alr their exact shapes are rot
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. critical., If it was possible to find an equivalent area such that {it
displaces the same amount of air.when it moves with the velocity of the

:fThOIES or the plate at 1its driving point, 1t would be simple to

estimate the SPL. It 1s convenient to make this estimate at a point

along the axis normal to the violin plate at its center.
, For the f-holes it may be assumed that theﬁair moves through them

- as a uniform mass. The volume flow is then the product of the area and
velocity. To determine the volume flow (the product of the equivalent

-area and the velocity) of the front plate one needs information about

the mode shape which 1s readlly available from vibration holograms.

Graphical integration performed initially by hand and later by computer

gave an equivalent area for the test violin of 150 cmv in its (1,1]

mode. Each f-hole had an area of 6.3 cm* « The broken lines in figure

4.11 represent the SPL at one meter on axis calculated for the f-holes

and the plate.

At frequencies well below the llelmholtz resonance the air mass
'displacemgnt will be 1in. phase with 1ts excitation. When the plate
moves inwards to compress the air in the cavity, the air mass will move
outwards. The radiation from these two sources will then be 180° out
of phase so that most of the energy will remain in the near field. Air
will shuttle back and forth between the plate and f-holes with very
;;Ftle radiation taking place. One could also say that the force and

particle velocity are in quadrature so that the work done is very

smalle.

.f-

At frequencies well above the Helmholtz resonance the .air mass

displacement is 180° out of phase with its forcing function, so that

t
.

when the plate moves inwards, compressing the enclosed air, 56 too does

the air mass. Radiation from the two areas is then in phase and the

output will be approximately that of the sum of curves "h" and "p" in
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figure 4.11.

-+ The phase difference between the two  resonators at frequencies
’close to the Helmholtz resonance passes through 90° and the two have
1ittle effect on each other.

There can be no doubt that this form pf coupling 1s of Dbenefit.
L Oﬁtput is gr;atly increased, as 1in the {figure, between the two
résﬁnances, far beyond either one considered in isolation. Below the

alr resonance the radiation is reduced but it is almost impossible to

produce any significant output in this range in any case. otrong

excitation of upper harmonics, especially the second, will produce

" sufficient output at pitches below the Helmholtz resonance frequency.

* hv"Schelleng'B work on this subject was most important as it revealed
50 much " about the violin’s action at 1low frequencies, but in
simplifying it to such a degree many important aspects were ignored.
The mutual radiation impedance of vibrating surfaces as close pogether
as are ' the f~holes and the plate is undoubtably of significance, while
'thefeffect of the cavity air resonances and the coupling to the back
| piate*aré certainly of major importance. To be of real use for
investigating the action of the violin, a model must incorporate at

least the second of these features.

e

Other Air Modes in the Violin Cavity.

~ The unique shape of the belly makes it possible for many more
;esoﬁhnces to occur than those that would be present in a réctangular
plate. It is not surprising that the air cavity too has miny more

modes than simpler enclosures.

, - -1t is not very difficult to imagine what these lowest few modes

should be: {t turns out that the first, third, fifth, and sixth modes

n T
i 0«
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are similar to the [1,0,0], [2,0,0], [3,0,0}, and [2,1,0] rectangular

| -féom”résonances, while the second and fourth are the lowest modes of

;hé upper and lower subsections [12]. The first seven modes appear 1in

figure 4.12 below.

v ! - Ly =
. 'l-lt = !
. Y 4 S .
: ; { 8 8
o i i 2™ a
1 - & r
B
= E ~ ~ 1 1 2 3 L 5 6 7

S00 1030 1190 1290 1610 1800 1910
A Figure 412: The first seven violin alr modes. [11]

E=)min.SPL. =g max. SPL. "] <phase [] -phase

"t Of these modes only the third radiates much sound. The first ‘and
fifth modes have a node at the center of the f-holes while the second
aﬁd;fourth modes have very little energy in the standing wave close to
| t?e f-holes. Saunders reports that body air resonances can be detected
at 1300, 2600, and 3660 Hz., which confirms that most:.of these air
| :iﬁodes?do not radiate directly to the outside environment [13]; This
does-not mean that these modes are unimportant!
It 1s the first of these which is of most interest as it 1lies {in
thg‘;mportant low frequency range and couples very strongly to the
-t}:l]fplate mode. Figure 4.13 will help to show why these modes couple
_ Eélstrongly. Consider each point on the plate to be  a point source,
just-as one would when using the Green’s function approach (see chapter

~E

2)e A point at a pressure node would not

drive the air mode at all, while those at

either end of the plate would drive it with

opposite phase. 1f the 3y velocity

- Pressure

L Figure 413;: The lowest
front plate mode and

the cavity pressure,

distribution across the plate was ‘symmetric

about the midpoint then the air mode would

not be driven at all for the contritution by

-'.ih “r ~ |
L | - r -‘ﬁ'\‘ ‘Jl"‘n. - I
* ¥4y 7 t,
] )
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tﬁe‘upper half of the plate would be opposed to that of the lower half.
Of course this is not thé case: the lower half of the plate drives the
{gif mode much more strongly, as a glance at the figure reveals. It is
possible to define an equivalent piston area which, when vibrating with
the same velocity as the driving point on the front plate, represents
‘the total effective volume velocity which drives this air mode. It may
be found by integrating the product of differential area, plate
amplitude, and pressure magnitude at a point, over the entire surface.
This graphical dintegration gave an effective area of 54cmfor the test
violin’s front plate, and 17 cms for the back. When dealing with
thé violin plates it 1is necessary to use both of the effective areas
which have been described, one for the interaction with the Helmholtz
" mode .and another. for the [1,0,0] air mode.- These will be designated
Smo for the former and'S,, for the latter, with the first subscript

?indicating the plate and the second the air mode with which {t

interacts.

When modelling the interaction with the [1,0,0] air. mode some
éccmnt of the cavity’s shape and the way in which it affects the air
mode must be made. Jansson [12] outlines a method using the
pefturbation technique of Rayliegh [14] to deal with this problem. A
first estimate of the resonant frequency may be made by using the
'maiimum internal dimension. For the test violin the resonant frequency

based on this measurement was 522 Hz. The pertubation equation is

| L
(4.8) Af/f= -1) AScos{2mrx/L) dx :.
L0 S, |

;
:

where S, {s the mean cross-sectional area. Rayliegh developed this

equation for tubes of almost constant cross-section, but Jansson’s work

. has demonstrated that the method gives good results when applied to the

¥

£ L | . ’
- , * 3.1- *u : P T
[ ]

k.
k.:..-,.“"
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-25sinix-771113.5  *2-3sinix-21.211/9

- gax - —g— - -
. “:E! ‘Ez;ﬁgn\wdﬂw \
- cm. )
o / /z/(\\
, -0.72(d7741) \l
!
ﬂ ' [3
Inside length 325 cm:
AU Figure 414: The perturbations used to calculate the

[1,0.0] air mode’s resonance frequency:.

L o
T

"'violin. The perturbations used in finding the effective length of the

test violin  are shown in figure 4.14 and table 4.3. The air resonance

frequency predicted using the perturbation method, 516 Hz., cannot be
compared directly with the experimental value for this is greatly

altered by the compliance of the plates, but using the effective length

improves the accuracy of the model, as will become apparent when the

completed model is evaluated.

H 135 7.7 to 212
-0.72(Exp(x-30) 1] | 30 to 32.5 “

Total change -1.9%

Table 4.3: The change «in the [1,0,0] resonance frequency
due to the cavity shape.

1 LI

';%w*.lt.will also be useful to be able to estimate the losgses of this

mode. - This was no problem with the Helmholtz mode asf}adiation

accounted for the largest portion, but here local -absorption by the

!

walls, thermal losses, etc. may be significant. Jansson calculates

*the themal and viscous losses but finds them to be much smaller than

_.those due to the absorption by the wood [12 and 16]. If the cavity is
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treated as a rectangular room, this absorption should be given by

hl d , - x.‘}
* = & ! .
PN

(4;9) ! P, =1 P’ovw dS
T 2 . 9pc

where P, 1is the power lost to the walls, P* is the pressure, and
cx,, 1s the acoustic absorption coefficient.

»* The absorption coefficient is difficult to measure with small

Baﬁples at 500 Hz. An impedance tube test proved to be impossible.

-
S

Values for OX = 0.04 were obtained from the 1literature [16}. The

losses through the f-~holes' were 'ignored and the resistance was

fqa}cuiated in the form of a Q-value, Q=2NfW/P, with the stored energy W

K1
sog o
[0 ¥

defined by )

th?“)ir _ ”
(4.10) - W=1(1P dv .
o 2

r 24, pC

The Q-value determined in this way may be compared to Jansson’s
‘.éxperimental data for a violin cavity encased in plaster, which gives a
value of 73.  Considering the large range of o¢, 'between different

samples of wood the agreement between the experimental wvalue and the
NS

calculated Q of 54 is satisfactory.

E "1 .
. Y
- f
) - . " %

Most of the information needed to model the violin below 600 Hz.

.+ 3
.vj

is now at hand. The work of John Schelleng will be extended to include

the coupling between the belly, [1,0,0] air mode, and the back plate.
N

Even more important will be the way in which the sound-post is treated,
ir-:‘“ ,

i

for this makes it possible to accurately predict the responsg of the

!

completed violin before it is assembled.
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EThe Model. -

LY

4

.[;ﬂ;Schelleng's model was important for.it was a first step towards
:ﬁﬁderstanding the vibrations of the violin [l]. It elucidated the way
:in¥which the Helmholtz resonance, formed by the £f-~holes and the-
H*:shring-like volume of air in the violin body, and the .lowest front

-plate mode interact and form the two most important vibrational modes.
. There are of course many other factors which were not taken into

~account in his model and which lead to further insights when examined.

llﬁhis .now time to develop .a more accurate model which more closely
~approximates the behavior of real violins.
T ; ‘The Helmholtz mode, which in the notation of. chapter 4 1s the
hc‘._[0,0,0] mode, 1is only one of the countless resonﬁnces whi‘rch occur in
*:fhe~violin_cavity. Every one of these couples with eadhiofj the front
.and back plate modes, and 1in some case with the f-holes as ?ell.
. Including all of these in the model : obviously gets e#freﬁély
;cémplicated, but from what was learned in chapter 1 itrisw;he spacing
”?bfithe (1,0] and [0,0,0] modes which is.. the crlticalhffﬁc;ofﬂﬁét low
#.ffequencies and higher resonances. are of far 1pssér“impoftance-4'For
;fh{s reason the same range as that chosen by.Schelleng, 196.to 600 Hz.,

will be used. There is one additional resonance which always occurs in

.this .range, the [1,0,0] air mode in which the length of . the enclosure
g(qﬁd to a lesser extent its shape- see:chapter 4) dictates the resonant
- .frequency. It is quite easy.to measure the pressure in a violin-shaped

~ {
.cavity with a short probe tube fitted into the walls, and an experiment

,of this nature will show that while the;[l,0,0llmodeﬂis;iqtresonance
¢

the acoustic output of the violin remains rather 1low. . This .may .be

~observed in the .frequency response curve of figure 5.1 where the

contribution to the response by each mode has been indicated. . Just
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like 'a * vibration absorber the air mode draws energy from the plate’s
vibration and causes a doublet to be formed. The acoustical
consequences of this mode will be discussed in some detail later.

- i 1t sometimes happens that the back - plate '[1,1] resonance  falls

into 'this range as well, although ideally it should perhaps not do sos
If the impedance match between the plates through the sound-post 1is

good, this form of direct coupling will have to be included in the

nzﬂo“;i*el_;”vﬂyich will make the problem much more difficult. Fortunately,
: if § *'u: .

even if ‘the imaginary parts of the impedances are equal, the different
L .

éhapes‘and materials of the plates will insure that the real parts are

| &u}lte differents Thus it is that the violin which in figure 5.1 proved

wE,

to possess a back plate resonance at about ™

559 Hz. " did not show any large degree ' of "" loio'ollldldclt}blef _f:’_;

; * ' 121]] 3
.direct coupling. This can be judged in the | o
"\fribrrat:lon holograms which show that no -V [1.0,0] ‘?’,

b ’ gt
motion occured at the sound-post in either 200 400 : : 600

_ Frequency |

plate. One may conclude from '  this that Figure 51:Resonance

| peaks which commonly

only the ailr coupling need be considered appear in the violln's

low frequency range.

‘between front and back plates dverlthis
"frequency range provided that the post’s effect on the mode shapes and
fésonance frequencies 1s known. I | - €

---~+ There 18 another factor which should "be -considered ° before

- beginning to model the violin. Although the ribs will not have a
resonance in the frequency range of interest, they will affect the

ﬁoundary conditions of the piate and lower the stiffness o‘;f the air

volume for the Helmholtz resonator. As with the sound-post, the effect

| E
of the ribs on the plates may be ignored, provided the ' way "in which

- they change the plate’s mode shapes and resonance frequencies are

known. This will prove to be no obstacle. ,Their ~effect on the
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Helmholtz resonance can be calculated by treating them as a spring-like

-

1

boundary.

oay

%, iThe analysis begins by including all of the: elements mentionoed

thus far in an idealized violin, with a right-regular air cavity and

_pistons acting as models for the vibfqiing surfaces. ‘Such a model 1is
shown in figure 5.2. This strange mixture of mechanical and acoustic
cémpdnehts is used as it is a more intuitive approach to the problenm.

The green’s function, =~ equation
(2.16), may be used : to describe the
pressure distribition throughout' the
cavity, but before éhia 1s possible the

kb I— Ch equation of motion for the standing wave

Figure 5.2; Model of a must be developeds This 1s most easily
violin's lowest four modes

‘with the front plate(f), done in one -dimension- and " the results

back (b}, and f-holes(h)
‘treated as lumped para- then extended to three.-

meters.

Newton’s law, when applied to . a

— P

,;_differential particle of air, may be:written as ...7 -

S

L k B L ] ; . . ' 1 o

-ﬁ "l--.l.ﬁ rrrrr o - |'\-;I i %
L

* 2
(5.1) dP. dx 5= de-d—e-
d x XS=p dt= . ’1“

o L
L4 - ’
¢ .

P

E.ﬁ;

-with dP/dx the pressure gradienﬁ, S the cross sectional area, and e the

' particle displacement. From this the equation of motion may be written

. fﬂ"l" " w* be " =
. L) - " " il »> P . ¥,
as . - t RS A R
*L.EL‘.L:*_&"L“* ! . . : - ¢ T <«
- o e " ] L X ¥ _ tl j? - a . X s :
2 2 {
| 5 ﬁz ot d e z d e - - " ‘ "-‘ - =
] ey S—— T c ekl -_— ’ . _ Lty F ii",._ " ii ’ :- fi‘
o d t2 dx?
* ’ﬂ v
g PR +
%

‘and the relationships between displacement, velocity: and preséure ag -

1
i J 1 ¥ ¥ -
=
‘ - ¥ 1 ' v

t?-?)' ‘ u= jwe , P =-jPCU , and %E;: = jwpu., .r -

4




CHAPTER 5 MODELLING THE RESPONSE OF THE VIOLIN. PAGE 88

- -"_‘_
- -t--“l ‘j‘
.-‘

1 )
‘1'*“." "nw n - - - av ™y
b
&

T
;.: L

Extended into three dimensions with the vector notation ?rf xi+ yJ +

¥ *
"r_.i‘_‘l,_,;: "‘:?1 fF

Fik,'the equation-of motion with a point source at ?o is

L] ] =
: i - = r =
T e "ma ]
¥ ] [ E™ - -" -l"'_ - ¥
rs i 4'

1 h

{"'#J*f, A 2 ~ ) -
~ r -w ”~
,(5.4)“‘: kZP(r) + ddF;(z ) - ""'J"""CI"QS( "ro)U(r)dV

PR
L

using ‘the-relationships between displacement, velocity, and pressure in

hd---'_- -~ = s . [ e i k. e il [ o ——— e

a standing wave.

I Lt
wi ja
with A= cz and ~~+B= jw pc. The. green’s function may now be directly

i gl ssaligs @ T
- - % - s d > }‘
[ ]

written from equation (2.12) as. .

=, _"‘l » "" : .-; i = ..l"'

This equation is of the same form as equation (2.8)

= -
ST . oo

T 2 t
-5 gIRRwl s \aezcb (r)g,( r°)u|g3)dv L

t Yuu

F ]
—! T
F
O S ’ v e g - . * ' v _
Sie il PR N R : voa L r “

| In the violin there are, however, no internal sources; -only the plates

} t i E E *~ * =

s m H-‘"

1and f-holes drive, -or are driven. by, the ailr nbdes_ and .these are

)] 1:""
an -y

located on. the cavity boundaries. It i1s therefore possible to perfomm

f: o *
’

; aiaurface integration over each plate and f-hole rather than the volume

integral in the previous equation. This leaves ° }.ayd' ;

5. PIRR, _a Qn(riggﬂ(rgu(r)d
--“;.“Zi’ a ) A (kz KZ N C

Fa
v " ¢ R
T & 2 1oy ‘ld - L - - - My, W F .ﬂ LI | 1 E ™
WA ! 5 - . 1."'?; Fa ""; ‘ » - t' ~ %

. ' '|.'.

The integral )’d)lralu(r‘)ds is the total effective volume velocity

J}Ll" ,.T: g

_;rl'

- of the plates and f-holes. The "equivalent" or "effective piston area"
L * ) ! et L

whicn_was introduced 1in the last chapter is related to this integral,

L,
o~ ¥
t'l-,,. £ & & Mo 'l"'

q {
and may be obtained by dividing it by the velocity of a reference point

‘onﬁthe vibrating surface. This point is one with maximum.gvelocity.

;]
L - q“ i

These Aareas depend on both the air mode 0n and the surface whieh drive

them so 1t will be necessary to adopt some. notation to describe them.

b LI
[ J

Smn 18 the equivalent area of the mth surface, either f, b, or h, which
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drivea‘or i1s driven by the nth air mode, either 0O or 1, ege: Spo=

f“rglu(rg ”UpdS- Using this notation equation (5.6) may be expressed as

f’ I‘_ "
#*- L
i -
k ¢
T

::5;_:,. . An(kz-K% )

L,
2 r:ﬁ-?‘ *”
&urﬂ' L

-

In order to determine K:', and the shape functions én('t"), the

i "w_ L T

JEL VR S Cooh T
', boundary conditions must be imposed on the problem. " As the dimensions

L]
-

T 'll!:th-tl.-

of the violinnate much greater in the X direction (see figure 5.3 for

]
- -y ....
.':r'h.- L

orientation) than 1n either the y or z -directions, the pressure

diétribution below 600 Hze will be

essentially one dimensional. Waves which

4 -
S, gy

travel along the x-axis are affected by the X

impedances which they meet at each end, Z, Fiqure 5.3 Orientation

rp ‘1
W

of axes for discussion
of cavity resonances.

L

r
- gl e #.Hh

1 4

**rtermé? of pressure and particle VElOCitY:'

13-=
b o wm a7

where 5, and SL are the areas normal to the x—axis at x-O and x=l., The

. change “in sign of equations (5.8) 18 due to geometrical considerations.

3

o

If the pressure i1s then written as P= a cos(Kx + ¢ ), in much the
,.*game:ﬁay' as was done in the case of the vibrating string of ‘chapter 2,

th:e‘n‘ equations (5.8) yield | | PR

) P
e o bl B - % :

H (h5-9“a) .- KSin(¢) = %ECos(¢)So oo
“ltana 0
NCRTS I -Ksin(¢)=JlZ"£ cos{KL+$)St

.
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- Rearranging terms gives the equations

-
!‘ !
. j;-F - TP

"~ (5:10a) Ktan($) = jwpSe ! Zo

| K:L*?{:’and
7 (5.10p) Ktan(¢ + KL) = -jwpS, . 1Z, .

" As long as Z, and Z >>l, as they will be in the case of a violin,
- ®-and jwpS,/Z, will be <<l and the nature of the tan function makes it

pbssible to express equation (5.10a) as ¢xjwpSy/Z,Ke Using this

relationship, substituting K=K + nmn/L, and once again noting that Z,

" 21, the expressions for Ky are

(5.11a) K2 ="LVV£[§2* .S_t-.]
L LZo 2o
- and
— (5411b) S 2. 2. w[i .,,_..S...".'..] .
Kn= (nn/L) RS A

-t . N
t !"H-

£
E *

(5.123) K"-— -M[éi + §£-Q +-§f-:-’-0- +-S—E)-]
and -

z
(5.12b) Kz“ (ﬂ/L)z-ﬂJ——-.WPZ[—S—z- + -S—-%!- +-S—-lz-?-|- + §3—'—]

W

where S is the total surface area of the cavity and Zg the average over

this area of the surface impedance of the wood, mostly due to

)}

absorption and the stiffness of the walls.

The bracketed terms in equations (5.12) are small so Fhat the
5

e

shape functions may be approximated as do(r) =1 ~and

9 (£) =cos(mx/L ), with L the effective length as defined in chapter

4o - It’s not possible to ‘ignore “the bracketed terms when K% or Kf

%
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~appear -in the denominator of equation (5.7) as the imaginary part of
this'includes all of the loss tems in Z. The real part of K2 also is
mostly ‘due to the mass reactance of the f-holes and ‘it *is* this -temm

which 'represents the Helmholtz resonance.

- . Although the way in which the plates drive the air modes is now
k*t;own: thé‘ reaction forces, and their effects ~on the plates and

f-holes, still remain to be found. These my be calculated in much the
| s ame méﬁner as were the pressure distributions, using the green’s
J furtl'ction*‘approach.

T *?Tdﬁce again, the first step is to write the equation of motion,

which for a’ plate 1is

| (r) 3 5 F a2 2y,
(5- 13) ph Q-ﬁll,tT %J(Zlm v¢(r) P(t)5(F-T ) s o(r-1,)

whqré E= - Young‘s Modulus, ¥ = Poisson’s Ratio, and P('f)"isfthe‘.pressure
acting on -the plate at a point r . - If equations ‘- (5.12) - are

ciiffei'entiated, the plate velocity may be written in terms of ‘thefin‘put

i

) force and the cavity pressure using the green’s function:’

+- ] i 1
! F - - . . C# R A 1: -~ : 1
! Pin i :-' . W3 i, ' --'i LS * " ‘ = - 1,'.

(5 14) U(l‘) = LZ /\ T'P;(l') I‘fq,(Fo)P(?o)dsi-l-~F¢(F1)]if’ R R

4 T F b -"1J &= 1 - E
TE . ST r' 1

| where u(r) must be obtained for each vibrating surface.

The velocity of surface m could be written as u(f,)= un.Y(r,.),

withv'q’(i.,,) normmalized and the “vector FT. ‘defiﬁﬁiﬁg a,p;iﬁt on this
S 1
- surface. Similarly, the pressure distribution on surface m may- be

expressed as P,,(f,,l)‘l=l Py § o () with n iﬁdicagfné‘the,ahir"médsé;** It is

then possible to rewrite the equivalent area as

L L~ L e A
._‘ - | . . - l ‘_{ - .\‘:' f"h i-r F'-. N f“
. !l_ T 1 11...,‘ :l'|._ . - - -
- 1 . ¥ - -y ] By L

-(5.15) Smn = f 0n(Fn) V(En)dS s
T 3 | | -
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S

fi %

which, due to the nature of orthogonal functions, demonstrates the

property of reciprocity. 'This makes it possible to write equation

(5-15) as
t:
| (5.16) U (T )= A 400.Y R [R.S.3P S +FYI(F)]

phS Alw? -w?)

i T Y

with only the single mode of interest shown for each surface m.

In deriving equation (5.7) K was obtained directly from the
Jtshape functions ¢ . Here 1t 18 ' impossible to do this as the.shape
functions cannot be predicted, due to the complex design of the plates.
Instead the tem (wZ -wi ) may be expressed as
_[ (k/m = w2) + (wE/m)*]1"%, with k, m, and £ , the equivalent values of
- stiffness, mass, and damping of the plate. '

With the equations for -u and P related in the way they are, some

. simultaneous equations must be solved before it is possible to write

' ihe piston velocities u explicitly. The algebra is extremely :tedious
~but may be simplified if one considers the violin’s action.’ Only one
- input force, at the treble bridge foot, need be considerred, and the
equivalent area S,, 1is very nearly zero since the [1,0,0] air mode has
' a node at the center of the f-holes. With these simplifications the

plston velocities 'are [2]: N L

(5.17a) Up = BF [1-B, (S + SEox, ) - 5L5u?"o Bth ho bn)°‘°‘| A
|

(5:17b)  u = B,FIB(S,S,g °+s“sbg|) ﬁ‘.ﬁh(sho o1 Sp P4, )]%IA

and -

(3:17¢)  u, =, FIBelSp, 5,84 * BrPul Sy o ShaSSi1* SpeSi Sty 0 /A
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and where B'n: -jw(keq-w’meq -*jWE)//\-n , 0(“='jW2P,[CS/\n( kz"K:)] ,

and A =1/2 when ne{1b,f} or =1 when nef{0,h} |,

r
b6 © fo bl bo q

BiSvo ~BBIS,S ex % = BB (S, S, ) e, .

hhn O ho 1

(5.18) A=1-ﬁ¢(5§oo<;+ Sf,c:x ) “55 SD‘ +Szc¢ )-F Bfﬁ (S.S -S S )

*
¥

Evaluating the model -

Before utilizing the model it can "be evaluated by predicting the

response of a violin and then.by comparing this with experimental data.
In this way - it 1is possible to-see yhether the eimplifieations which
were nade in'deveIOping the modEI ere valid. However;befofenthis may
be done, the ~parameters fwnich éppe;i in eduotionel(S.l7)rnn3t be
measufed*on the‘testrviolinf:

lf‘one‘nere to meaEUre? the parameters . with the violin fully
assembled, the predicted and n;easured”response would have to be Bimilar
even 1if the'nodelling:was not good, forithe couoling between the plate
and air‘modes;wouldﬁlatgelyfoe accountedﬁfor-: Aumueh,morejeevetej_test
would involveh;teeting’fthe fpletes eeperetely to;ooteinfthe equinalent
mass, stiffness, and damping, and then reassembling the violin to
measure the frequency response. There are, however, some major
problems here: ‘'the glue joints may be vastly different on re-assembly,
and the plates must be tested on the ribs so that the boundary
conditions are similar to those of the assembled instrument.
Additionally, the sound-post cannot be positioned between tne plates
when measuring the parameters in this way, but this should not affect
the validity of the comparison. t

In order to minimize these problems the plates were tested while

mounted one at- a time upon the ribs. The glue joint between the
, ,
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front-plate and the ribs was not broken between measuring the plate
parameters and the frequency response of the assembled violin. (The
importance of the back plate as a radiator is minimal as discussed 1in
chapter 4 so that altering its glue joint had an unnoticable effect.)

The experiment began by glueing the back plate to the ribs, which
were in turn affixed to a rigid wooden frame, open at the center to

prevent any cavity modes from affecting the plate. The test facility

may be seen in figure 5.4.

Figure 5.4: Setting up a test in the anechoic chamber.

Once the parameters had all been measured the ribs were seperated
from the frame and back, and the front plate glued on. After the front

plate had been tested, the heavy frame was removed and the back plate
glued in its place. The complete violin was then tested as described.

The techniques used to measure the plate parameters were much the
same as those described in chapter 4. The equivalent mass for each

plate was found by measuring the shift in frequency which occured when

a small mass was attached to the antinode. Once the resonant frequency
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: 1

S Y- y » - g LI T
and equivalent mass were known, and the loss termm [ had  been

;deté‘f‘mlin'ed from the resonance peék’s '3dB doﬁnﬂboiﬁta;ﬁ the stiffness was

-

* !\‘ b -

égiéulatéd from the expression (keq ~ wzm*;q)““w*g = ‘0, Equivalent

areas were found by integrating 'the product ¢,V,, over the plate
surface, with the nomalized pressure distributions i%'-l and’ ¢, =

:cd’s”('lfx*/L),_ and with the plate displacement V,, determined from

3
:

vibration holograms. = This  tedious
" graphical  integration was performed ' by
computer with a great “sléving‘s hin”:trimei;
although ~ information’ from the hoiog'férmf
st1l]l needed 'to be fﬁir?ipi.lt' inaﬁﬁu*éiliyl with 'a
"digitizeﬂr?by ‘énteﬁrdiirig’ the location of each

. T "*;.hrgf.y ¥, . ¢ .
fringe point by point.s A computer plot = of

W

Figu;'o 5.5: Computer
version of a vibration

. hologram ‘used {o calcy-
late . equivalent areas.

. U LAY AT S A By LT
plate displacement 1is shown in figure 5.5.

" }1;" !

The equivalent areas ‘calculated .in’ this

- . S e ' . i " ro
manner are shown in table 5.1 along with

c LT the other parameters. =~ '
»i s “ n r . . T, fae - _» 7 T ' PR BN
-Parameter Units front ~ back f-holes
e g e ‘ . a SR A N N S P Ty
N Sno cm 150% 150%* 2x6.3
ol Say cmZ 54% , 90 0 ] |
‘ m gm 33 47 " 700246 0 |0
ek gufs 2.2x10 % 4SxI0 K mememe |
g gm/s 2130° 11700 " '~ " "200* . :
.* . Hz 415 15, L mem—— ey
¥ : : T - R N " * w oo B et R -

L

Table 5.1: The parameters which characterize the-violin

a"?_ ,F l,nf'

at low frequencies, with its sound-post removed. , A *

~denotes a calculated value. e ar e e .%

?

‘i’y"’n-.i: & L, - 1 i p { I S .: s 5. . n y
* The parameters which describe the f-holes were all c%lculated.

*

Basing them on measurements from an assembled violin gives results
wrhich*are affected by the plates. Radiation reactance accounted for
) SN L X e, k o S - i a
almost all of the mass loading. This term was 90° out of phase‘with

o

- - L - t
bl =

i L'c 1 . . 1 2 L ' e u

] ] -.|. T L3




. CHAPTER 5 MODELLING THE RESPONSE OF THE VIOLIN. PAGE 96

~ the f-hole velocity so that n6 eﬁefgy was radiated, and represented a
- logsless incompressible flow of air. Both sides of the holes must be

considered when calculating the mass=loading due to this near-field

‘effect. The equation. which 1s applied when a surface has dimensaions

‘which are <<\ in air is m~ pS[1 + 16~/S/m /(3] with S the area of

one hole.

The 1'033 term £ was calculated in much the same way, however, in
‘this case radiation resistance is in phase with the gsurface velocity
and therefore energy is radiated from Lhe surface. On the inside of
the cavity thi; energy.. gozén io drive 1£hélralr mode and is aitcady
included in the equations. of motion. Therefore the radiation lodses on

- only one side of each f~hole need to be considered. f

The remaining parameters were measured directly from the test

violin: the volume and interior surface areas were 1650 cme and 2000
cm? , the length, when modified as described in chapter 4, was 33.2 cm.
t+ .. A simple computer program used the parameters of table 1 and the

equations (5.17) to predict the frequency response at one meter along
the normal from the:center of the front plate.. All: of the features

which one would expect to find, the single lelmholtz resonance, the
doublet of the [1,1]) front plate mode, and the -anti-resonance due to
the energy losses of the [1,0,0] air mode, appear in the calculated
frequency response which i{s plotted.in figure 5.6. When the response
measured on the assembled violin is plotted so that the two curves have
equal areas on the figure, the difference in levels is generally lcss
than three dB and, more . importantly, the .resonant frequegclca are
Predicted to within 'a .few Hz. .Several experiments of trla nature
Produced similar results: the model gives a good.description’'of a real

violin.

This 1s a good point at:which to once again consider the effect of
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Figure 5.6: The theoretical—— and experimental ----
frequency response of the test violin without a sound-

post.

the ribs on the violin’s response. It was assumed earlier that they
need not enter the model as a seperate entity although they would
affeét the results in various ways..  The boundary conditions which they
impose on the front plate are implicitly included in the method used to
measure its impedance. The surface absorption and compliancé as a
cavity boundary were included in the impedance terms of equation (5.7).
The only other important way in which the walls could affect the violin
is as a means of transferring energy between the front and back plates,
but as the -accuracy of the model is already greater than the changes
which can occur in a violin due to humidity, there is nothing to be
gained in trying to improve the model by including this effect.

It is interesting to look at the pressure levels which occur
inside the violin cavity, for they are remarkably high. A half-=inch
microphone with a short probe tube -was inserted into the air éavity‘ at
the denter of one:- f-hole. At this point the [1,0,0] mod?_was at a
minimum so that the response curve which appears in figure 5-; 1s that

of the Helmholtz resonance alone. The model predicts sound pressure

levels of almost 120 dB., a seemingly impossible figure, and yet the
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.experimental results
confirm this. _
These exper-

iments, which were

conducted without a

soundpost 1in posi-

tion, demonstrate 200 . 300 400 500 600
Frequency in dB.
that the model 1{s Fiqure 5.7:. The SPL inside the violin.

Experimental— — — theoretical
useful for pre-

dicting the

~ frequency response. It is equally valid for use with the soundpost
present, although only 1f no motion occurs where the post contact the
plates. Since this is known to be quite often the case, the model can

be used to make some 1interesting observations about the violin,
although a new set of parameters must be measured for the complete

violin beforehand.

The effective area for each plate may be measured in the same way
as befofe, although their values will be considerably different due to
the influence of the sound-posts. The coupling of modes prevents one
from calculating the stiffness as before, since the resonant frequency
of each plate is affected by ‘the air modes when the violin 1is

assembled. By estimating the stiffness and damping, and then using
these values in the computer program, it 1s possible to find the
correct values by a procéss of trial and error.
Once these parameters are known it is possible to vary aéy one of
them and then to observe its effect on the whole violin’s res?onse in a
¥

way which would be impossible by modifying and testing%an.actual

Instrument. Of course, this method of predicting the response is of no

use to the luthier who wants to know how his individual plates will

|
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behave when he finally glues them together, but this problem will be

left for the next chapter.

investigating Violin Design.

In chapter 4 many aspects of violin design were discussed without
the ability to quantify the results from any change. It 18 now
ﬁossible to do exactly this, using the equations (5.17).

Perhaps the most obvious requirement is for light, flexible plates
rather thanlmassiveﬁrigid éneg, but the degree to which this 1s
fimportant is rather surprising. In figure (5.8) are shown the response

curves of a violin whose [1,1] plafé resonance has been held constant

SPL. in ¢BR.

300 400 500
Frequency in Hz.
Figure 5.8: The test violin {--<]) und the
Increased output brought about by a 200/o
decrease in equivalent mass and stiffness {—).

while the effective mass and stiffness have been decreased roughly 20%.

An improvement of 2 to 3 dB occurs between the main two resonances - and

above the doublet. Twenty per cent of the effective mass may !{seem like
¥

a large amount but this is only a small percentage of the téfal plate .

mass. The temptation to remove more wood from the plate must be

strong, but even a 3 dB increase in output is of little wuse 1f the

4
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century German - Helmholtz and plate resonances should occur at 290

. and 435 Hz. to provide the most uniform response .
violin and the
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other a copy of a Stradivarius. These large German violins have a
reputation for having a powerful G-string, which 1s not at all

surprising considering the differences shown in figure (5.9).

Another basic feature of violin design which should be put to the
test is the spacing of the lowest two resonances. It is the loudness
curves whi‘ch are of primary interest in this case and the curves which
appear 1in figure (5.10) were produced by 1including the second
harmonic’s contribution to the loudness, calculated for Helmholtz
string motion. -

The cavity volume and plate stiffness were altered to changé ‘the
spacing between the resonances and -after trying many combinations the
best response was obtained with the peaks at about 290 and 440 Hz. as
suggested in the 1literature [3]. . If the other resonance peaks were
considered as well as these lowest two the optimum spacing could be
slightly different, but the figures suggested should prove to be a good
gulde. '

Including the [1,0,0] mode in the model brings about a- remarkable

change in the frequency response, as figure (5.11) demonstrates. A

40
N
t\
\
30 | ,’ \
o S\
o ) \
e 20 / \
. /d \
- & \\
a A
10 ,,
0 )
250 300 400 500 600 | ¢

Frequency in Hz.

Figure 5.11: The change in response brought about
by the lowest dir resonance




CHAPTER 5 MODELLING THE RESPONSE OF THE VIOLIN. PAGE 102

doublet is -formed between the air mode and the plate, with a pronounced

minimum at-the [1,0,0] resonant frequency. Its function as a vibration

absorber can be'a great disadvantage if the equivalentarea Sy 18 too
large. The response curve of a violin with Sg = 54 cm* shows an
improvement where : the double peaks occur, but the response at both 470
and: 235 HZf would be quite poor. The change in mode shape which the
sound~post brings:-about 1s responsible for reducing the equivalent area
from-54.to 19 ¢m” .in the test violin, and this latter curve shows that
the response’is much more powerful and even with such a value. Ideally
the anti-resonance would produce an output level similar to the minimum
between the main peaks, with the doublet well spaced'and an improvement
of ‘a couple of  decibels throughout the 1low frequency range. In
f requency response tests of instruments which are held 1in particular
regard this- of ten appears to be the case, although none of the factors
which .have been:discussed are alone enough to produce a good violin
[4])4

It is not only the area S; which affects the doublet, for the
cavity length and -the damping present in the sound=box are equally im-

L ol I

portant, as de-

40 F; monstrated in
A

4 A figures  (5.12)

30 .
\\__, "{"{ and (5.13)- The

. \
lightly damped
20

curve 1in the
10 first Eof these

figures would be
'i
produced by a

250 300 400 500 600
L Frequency in Hz.
Figure 512: The effect of damping on the front
plute and the [1,0,0] mode when introduced into
the air cavity. e———eox=0.04, o o =014,
----- cxz= 0.34.
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violin whose in-
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Figure 5.13;: Changing the c¢avity length by
t 1Q °0 greatlly alters the response of the

test violin, (~~-) +10 %0 , —} =10 %b.

L0

L)
-

10

300 400 500 00
Frequency in Hz.

Figure 514: Scaling of instruments of the violin
family. These instruments are not in proportion
to the violin, as ideally they would be.

Conventional and theoretical sizes are shown
below. ‘

Relative frequency |
16 113 213 1

Relative body length

_(.{‘
BASS CELLO VIOLIN
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is then necessary but too: much, as -the. figure  shows, 1s counter
productive..

The cavity- length controls the [1,0,0] resonant frequency and
consequently the relative strengths of the two peaks that form the
doublet, although the front plate’s impedance is of equal importance in
this case. Peaks of almost equal strength were produced in the test

violin with a cavity 1length of 32.5 cm. The differences between the

curves in figure (5.13) are small, but perhaps they are enough to

explain why the 1length of a full-size violin seldom varies from one
instrument to another.

While tﬁe plate sizes of violins are very similar, the same cannot
be said about other members of the string family, the viola 1in
particular. Ideally these instruments would be constructed exactly
like an enlarged violin, but their size would make them more difficult
to playe. Figure (5.14) demonstrates how a ‘cello would be nearly the
size of a typical bass if properly scaled. With these 1instruments
désigned 80 differéﬁtly tﬁ;n the violin it is noﬁ ;urprising that mény

sorts of compromises are reached and a standard design does not existe.

One modern luthier, Carleen Hutchins,- has tried to remedy this
situation by producing a new family of stringed instruments which are
more accurately scaled [5]. Whether these instruments will gain
acceptance is in doubt for most composers have been aware of the
weaknesses of violas and ‘cellos and exploited their unique tone
colors.

4

It - has been suggested that direct radiation of sound from ‘the
cavity modes could improve the response of a violin [6). This
2

possibility is explored at low frequencies in figure (5.15). It would

appear that by opening a hole near one end of the violin, (the upper

left or lower right corners would be well suited for this) - and

3
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increasing the cavity wvolume to -compensate for the shift in the
Iﬁ fHelmholtz mode that this would produce, the response is not ‘degraded.
| - Experiments with such a construction would be of great interest and
qicquld well yleld significant improvements at higher frequencies. If,

: ﬁ&éever; this  increases the radiation over the important range from

Py

I

v

"

“a
£ %)

- welcome one, -

200 to 2000 Hz., the addition of this extra radiator would not be a
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Figure 515: Adding a hole to radiate sound from
the {1,0.0) air mode —— changes the response of an
ordinary violin-«-,

S -

In this chapter the violin has been successfully modelled at low
ffequencies and. the ensuing equations used to explore somé points about
‘> ,violin design. The function of the sound-post must be included in the

_ﬁaael, and although it was accounted for by measuring plate parameters

 §;th the sound-post 1in place, this method cannot be wused when

- predicting the response of a complete violin from its component parts.

There are three methods available for doing this. The first .of these
~would be to calculate the effect of the point impedance wiich the
4

_sound-post provides to the front plate, a technique which would be well

.suited to the green’s function approach. A finite element analysis

;wppld also be of use, but the computer time necessary for this would be
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prohibitive for those who could benefit from such an approach. The

third, and most intriguing, possibility is explored in chapter 6.

[l] - J. . Schelleng,.."The violin as a circuit', JASA, vol. 35, pp.
326~ 338, (1963)-

[2] E. thnson, "Air coupling between violin plateé", Proceedings of
the Institute of Acoustics, (1979). .

[3] C. Hutchins, "The physics of violins", Scientific American, vol.
138, PPe /3~ 86’ (1962)-

[4] F. Saunders, "The mechanical action of instruments of theiviolin
family", JASA, vol. .. 17, pp. 169~ 186, (1946).

[5] C. Hutchins, "Founding a family of fiddles", Pﬁysiﬁé Today, vol.
20, PPe 23~ (1967)1

[6] A. Gabrielsson et. al., "Resonances of a violin body studied by

hologram interferometry and acoustical methods", Physica Scripta, . vol.
2, ppe 243~ 256, (1970).
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Manufacturing Techniques.

1

For the vast majority of violinists, the sound of a Stradiverius
{s so remotely related to that produced by their own violin that it
sounds ‘like an altogether different type of instrument. Many children
begin learning to play with an inexpensive, mass=-produced violin, which

is only to be expected, but these are of discouraging quality. How

many give up a ‘lifetime of musical enjoyment simply because their first

explorations are unpleasant and physically painful? When viewed ‘this

way, the industry has much to answer for.

' Most manufacturing processes are similar. It is the individual
attention which the luthier pays to his product, as well as his careful
selection of wood, which makes these violins so much better than mass

produced instruments. These are cut, either by machine or by hand, to

specified dimensions so that, while they may appear to be well-made,
and may in fact be copies of a fine old violin, perfect in every

d;tail, no attention has been pald to their dynamic characteristics.
It would be unreasonable to expeét this to be otherwise for a great
deal of skill, tréining, and time are required to employ tap~tones and
ad just the plates accordingly.

Of cour;;; some mass=produced violins can be very good= by chance
the plates may have the correct spacing of resonances. But, on the
whole, factory made instruments are poor as the time and expense of
adjusting each one which reduires‘attention makes them uncompetitive 1n
a market where price is usually of primary importance. What is needed
18 an automated method for predicting the response of an %ssembled

violin before it 1s 'put together so that any ad justments maﬁ be made

quickly and cheaply.

' The model which was developed in chapter 5 was meant to meet this
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need . but a major obstacle remains to be surmounted. In order to
1#&1ude the effects of the direct coupling between back and front
glates it 1is necessary to measure the parameters which describe the
plates with the violin assembled and the sound-post in position. This
Jis:of no use in production applications. It 1s possible to predict the
new mode shapes and the frequency response of the violin by treating

the post as a point impedance and resorting once again to the green’s
function approach, but a further posibility presents itself which has

-gsome additional advantages.

<. In chapter 4 the back plate was revealed as an impedance device

;with_relatively little radiation when compared to the front. It should

Itﬁeq'be possible to remove the direct coupling of the sound=-post by
“inserting an internal element to perform the same function, an element
which could remain 1in position while the violin belly is tested and

édquted. A cross—-plece, such as illustrated in figure 6.1, serves

Figure 6.1: Cross sectional view of a violin with
a cross piece to support the sound-post.

~admirably in this capacity for it is easily made and may itself be
easlly ad justed to have the best possible impedance ;haracteriifica-

Ideally the "cross-bar", as it shall be called, should be made

from a material which is both 1light and has a high modulus of

g;asticity. only a small section need be used to obtain thei_gynamic
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characia;i§¥zésfwﬁlcﬁwf;r;Hé&&;ﬁ?.:?wfﬁié1ﬁisriﬁp;ftéﬁ£?éa’feflections
from the cross-bar could reduce the effectiveness of the [1,0,0] air
cavity mode. Additionally, a material with a coefficient of thermal
expansion similar to that of the plates would minimize stresses which
could cause cracks under extremes in weather conditions.

1f a uniférm beam is8 to be used for this purpose, it 18 easy to
show that spruce is again a good choice of material. The bar must have
its lowest resonance at about 700 Hz. where its impedance should match
that of the front plate, as was demonstrated 1in chapter 4. This
determines the dimensions of the cross=bar. 'A mitch between the
resistive part of the front plate and cross- bariimpedances may be
eaéili obtained by adding a layer of some lossy material to a surface
of the latter.

" A beam designed to match the front plate at its second resonance

will not of course have an infinite impedance at 440 Hz. as ideally it
would. Some cdmprdmise must be sought between the two oppo;iﬂg
requiremnents and experimental work with many different ‘cross-bara
perfo;med before an optimum is chosen. Such work is beyond the scope
of this text, but the feasibility of such a design 1s demonstrated
clearly.

A reasonably good factory made violin was fitted with just such a
cross-plece and this prototype 1is pictured in figure 6.2. A curved

spruce beam, with dimensions of 0.3 x 1.0 cme was attached to the

violin ribs, a shortened sound-post wedged between it and the front

) .
plate, and the impedance was measured in the usual way. After: all of

the front "plate parameters had been measured the back was glu%d on and
the frequency response, which appears in figure 6.3, was measured.

This frequency response curve is certainly encouraging. Although

the spacing of the resonance peaks at low frequencies is not ideal,
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Figure 6.2: The prototype violin with its cross—~bar in position.

these could easily be adjusted. The modal density is quite high at
f requencies above 1 KHz. so that, with a properly designed bridge, the
sort of response curve which was valued so highly in chapter 1 could be

obtained.

Once again
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the belief that
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by using the crossbar to replace the traditional sound-post it is
possible to predict the response of the completed violin from 1its
componentse

With the removal of the sound-post an intriguing possibility
presents 1tseif; The back plate need no longer be made massive and
rigid but could be made of spruce, 1like the belly. Alr coupling

between the 'blates would then drive the back, perhaps to appreciable
levels. This possibility was investigated using the model and the

f requency responses compared in figure 6.4. Unfortunately only a small

difference is noticed between the different curves, and although the

effect may be

noticeable, it Figure 6.4

The theoret-
ical frequency
response of
violins with

MAPle w== == —

would probably
not be impor-

tant enough to

and spruce
overcome ‘the backs,
. the latter
resistance to without a
sound-post.

such a changes 220 300 400 500 600

Frequency in Hz.
Aesthetics ' are

fimportant to the violinist, whether novice or virtuoso, and a well

finished maple back is beautiful to behold!

Whether a violin constructed with a cross—bar could compete with
violins carefully made in the traditional way is doubtful. The effect
of back-plate radiation, while small, might ©be noticable when
instruments of both designs are compared. There can be no &uestion,

however, that using this new design for mass-produced violins would be

2*

4
of great benefit as the beam obscures only a small portion of the plate

when viewed from the back and it 1is easy to make any necessary

ad justments to the frequency response with it still in places To make
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Figure 65: The steps involved in manufacturing a violin.
The entire process may be computer controlled. It 1s the

ability to predict the frequency response of an assem-
bled violin which gives such a system an advantage

over traditional forms of violin manufacture.

use of this great advantage at a low cost it is necessary to use some

advanced production techniques and equipment.

+ High labour costs and the versatility of micro-processors have
combined to make fully automated production centers a reality.
Machines need no longer be assigned a single, unchanging function as
part of an assembly line; the same milling machine can cut violin
plates to size, shape the blocks, make adjustments to the plate
thickness, and cut the purfling groove when so directed by a
microprocessor. Even the different cutting tools for these operations
can be selected automatically.

The steps necessary to build a violin are shown diagramatically

below in figure 6.5, but it should be emphasized that the route which

the pieces follow through a production center is not fixed. It depends
on the availability of machines when a certain operation 1s necessary
and. upon the instructions of the computer. The process is therefore as

versatile and efficient as 1its programmer. The entire production
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process 1s described very briefly below, with the details of all but
the last portion, with which this work has been intimately involved,
left to the production engineers.

Raw materials, spruce and maple for the plates and for the cross-
bar, can all be cut and shaped by a milling machine whose cutter 1is
controlledrbyb*éomputer. Not only violins, - but other  stringed

instruments too, -or smaller models such as 3/4 size violins, may have
their componenté cut on the same machine if properly programmed. As
components are finished they are sent to storage areas until needed for
assembly or for testing.

The bouts must initially be thinned by sanding. When .these have
reached the required thinness, they are sent to be formed into ribs,
along with blocks, corners, and the cross=bar. Vacuum forming
processes are frequently used for such applications- heat and moisture
are necessary if the wood is to be easily bent, which means that the
ribs must be allowed to return to the proper moisture content before
béing glued to the plates. The micro—- processor can-select a set of
ribs from the holding area with the proper moisture content and join 1t
to a front plate, finally adding the sound- post to complete the fifst
ma jor portion of the assembly process.

In the next portion of the process the modelling 18 wused to
calculate the frequency response and then to evaluate the violin.
First it is necessary to measure the parameters which characterize the
front plate. The impedance may be quite easily measured using a device
such as that designed by 1lan Firth [l]. Computer controlgover the
positioning, the excitation frequency, and the interpretation %of data

from the analog "impedance head'" makes it possible for this to be done

automatically. It is also possible for the computer to measure the

equivalent areas Sg, and Sy, using a ‘'"raster scan' holographic
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technique over the ﬁiafe when it is driven at its resonant frequency.

The most time consuming part of the experimental work required to

determine the plate parameters involves measuring the equivalent areas.
To do this ‘a vibration hologram must be made, reconstructed,
photographed, and the amplitude function integrated either by hand or
by a computer, in which case the photograph must somehow be intepretted
by 1it. In a commercial application such a lengthy process would be
uneconomical, but once again computer control of the entire operation
makes this possible. Rather than recording the intensity produced by
the interference of two beams on 'a photographic emulsion, as is done in
conventional ﬁolography, a small photocell, which also responds to
intensity, can be positioned at programmed points to measure the
vibration amplitude. It is possible to use a small, solid-state laser
to il1luminate a very small area, and the laser and photocell could be
combined into a single unit, interfaced to the computer. It would even
be possible to use the same machinery to index, or raster-scan, the
1éser/photoce11 and to position the impedance head. The computer can
then determine the vibration amplitude at any point directly and with
no need for sensitive, large lasers.‘

Once all of this information is available to the computer the
frequency response for the complete violin may be predicted, perhaps
including many more modes than were used in this research to extend the
frequency range, and this response curve evaluated. If changes are
necessary the information about the amplitude distribution for each
plate mode makes it possible to calculate small changes 1in tﬁe"plate

thickness which will improve the response. It is of course po%sible to

c g
move the resonant frequencies of any two modes by different amounts,

even in opposite directions, providing the alterations are carefully

chosen.
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Once the predicted response of the violin is acceptable it goes on
to its final assembly where the back is glued on, it is varnished, and
a bridge, perhaps cut and tested on the same equipment which produced
the violin, attached. The automated assembly processes which are only

just begining to be applied in a few leading industries could

revolutionize the production of violins.

A violin-maker would no doubt scoff at many of the ideas presented
in this work. While he might applaud the intention to raise the
quality level of most factory-made instruments, the analysis o£ the
violin’s construction, its modelling by computer, testing, and finally
the suggestion of a change 1in design would be dismissed as useless.
How can one argue with three-hundred years of experience, the
collective genius of Stradivarius, Stainer, the Amatis, Guarneris, and
countless otherss And yet there is so little of their work 1in the

factory made violin, whose body may be a perfect copy of a master’s
work but which lacks their spirit, which sought to reconcile the
beauties of form and sound. Perhaps through this thesis, or more
likely another’s work whose object is the same, even the lowly, common
mass—-produced violin can be made to sing with a richness they lack
today.

The violin-maker need not fear for his craft, for although a

machine may make a violin with a lovely sound, it is the musician who

makes the music, and the luthier, with his individuality, that creates

\

a thing of beauty. But the machine may give us more people to enjoy a

lifetime of music, more people to appreciate the genius of man’s

%:

creativity.
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[1] I. Firth, "Small mechanical impedance head for use with musical
instruments', Acustica, vol. 35, pp. 348- 349, (1976).



