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ABSTRACT 

The, violin, is a highly complex vibrating system, which, quite 

without. the_ aid. of science, evolved to a high level of sophistication. - 

Wood, -which-varies considerably from one sample to another, requires 

individual-attention to be fashioned into the plates of a good violin. 

It-is not_, therefore, surprising that mass-produced instruments are of 

very poor quality. It is, the improvement of these instruments which is 

the. objective of this thesis. 

After identifying those features of the response upon which the 

violin's quality most, depend a model is developed and used to answer 

several questions about violin design. As it"is extremely difficult to 

include the sound post in the model it is suggested that an additional- 

structural element, designed to match the back's impedance, is used to 

support the post.. The amount of. acoustic radiation from the back is 

shown tobe small so that this change does not greatly affect the 

output level. 
_ 

Finally it is shown that, using such a construction, the low 

frequency response of the violin may be predicted before assembly... A. 

description of an automated production process in which, the violin, 

plates are cut and tested by micro-processor controlled machinery 

concludes the work.. 
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Introduction. 

Scientific investigations of the violin family are by no means 

uncommon today. It seems that nearly every aspect of this subject has 

been looked at, and yet every advance shows that it is the subtlest 

details of its action which are the mark of a good violin. Thus, like 

climbing over a series of ridges, the solution of one problem 

inevitably brings to view another, more distant one. 

In this thesis it is not the smallest details which are 

investigated. Some interesting problems are elucidated, such as the 

principles which govern the violin's design, the consequences of the 

highly non-linear bowing process, and the parameters which determine 

the origin of the wolf-note, but such problems are only incidental to 

the purpose of this work. The real goal is to find a way in which to 

improve the vast majority of new violins, those mass-produced for 

students, in a way which does not add to their market price. 

As a first step towards this goal the most obvious characteristics 

of good violins are studied. These are evident in the frequency 

response curves measured by many other researchers. Then, after 

modelling the action of the violin, a method for predicting the 

response of a complete violin over part of the frequency range is 

developed, based on the properties of the component parts. This makes 

is possible to adjust the violin's frequency response before assembly, 

while it is still easy to alter the plates. Finally, the possibility 

of applying this prediction technique in a mass-poduction situation is 

briefly explored. 
F 

In adopting this approach the importance of the steady-state 

vibrations is perhaps stressed too much. No doubt the'transient 

response of a violin is also very important, yet the quality of most 
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mass-produced instruments is so low that, even} ignoring ä large 

proportion of the overall problems, the situation can only be improved. 

Perhaps some day a more detailed analysis of the importance of 

transients will be carried out, but at this time only the most general 

questions should be addressed. 

A' Brief History of the Violin. 

The origins of the violin have long been the subject of debate 

among scholars. It has been variously assumed to have evolved from the 

rebec, lute, viol, or crewth, but it seems most likely that viols and 

violins developed as two distinct families from these earlier 'examples 

of string instruments [1,2]. 

While nearly everyone is familiar with the violin, a viol is 

rarely seen today. It had a flat back, five, six, but occasionally 

more strings, and a very slightly arched belly of very thin wood, in 

other respects resembling a violin. The advantages which-the violins 

enjoyed over the viols proved to be significant enough to lead to the 

complete disappearance of all but the bass viol until a recent revival 

in medieval and renaisance music. 

Many luthiers (this term was formerly applied to lute makers but 

now is more universally applied to the makers of any stringed 

instruments) have been given the credit for developing the violin. 

Duiffopruggar (1514-1570), a Bavarian who became a nationalized 

Frenchman, has often been named as the originator of the violin. This 

is probably due to the violins made by Vuillaume which were thought by 

many to be copies of instruments by Duiffopruggar. They were in fact 

modelled on his viols, some of' which exist today [2]. Gaspar da Salo 

(1540-1609), Andrea Acnati (c1535-c1611), and Maggini of Brescia have 
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all been hivewi credit, but while violins attributed to the first two 

named still exist, it is impossible to decide this question 

conclusively. What cau be said, however, is that once created the 

violin evolved rapidly, with the names of the Amatis, the Guarnaeris, 

and Stradiverius, along with the school of their followers in Cremona, 

standing above all of the others. Aesthetics and tone were both valued 

by these luth. iers, who with their ujnduubted genius in craftsmanship and 

musicianship made violins which are seldom equaled today. Perhaps 

their dominance in their field is uutortuiiate fur us today, or many 

lutIhicrs began to copy 

+gl, ý 
these great master s 

?b Ey 
d 

., i.. _ 'h'71 

, violins aud originality 

r *_ý {. and experimentation, 

Kh J"' ýyjz which had so quickly 

developed the violin, 

u>ývýý ". v 9" 1 
IpS.. 

,4 were discarded. There 

were of course 

exceptions- the Merman 

C(ýk f: ze School of violin 

r; 4ýr, making, led by Jacob 

§ Stainer (1621-1683), 

ý. t. ' produced instruments of 1 

exceptional beauty in 

L'} 

Y both form and tone- but 

these and the old 

Figure 1.1: Modern copies of violins by Italian violins were 

Stradavarius (right) and Stainer (left). alnust universally 

Note the differently shaped t-holes. copied for m an y years. 
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Before begining the ` '`r sGw 

investigation of the J 

acoustics of the 

violin one should Alý 

spire a few moments to 

! `. = rte, ý 
look at t 114" two 

r ifs 
t3 , ý' ' �1 

:+14 

violins which appear 

in f] Gures 1.1 and 

1.2, a few moments in 

which to apprec Late ly 

`"t the beauty of a we li "ý't 1ý ý" VL 
,ý ýýf <t5"ýi, ýýe"h, made violin. It is 

impossible to 41, - 

appreciate t_Iie depth 

of the varnish, the 

careful workmanship, 

or the lightness and Figure 1.2: The arching of the Stainer copy 

responsiveness which (left) is much more abrupt than that of the 

characterize a good Stradavarius copy (right). 

violin, in a 

photograph but the graceful arching and the beautifully marked wood 

make it easy to appreciate liow sonic collectors, who cannot even play are 

fascinated by the violin. This, and not its acoustic properties, often 

sets the price of a violin. That the genuine old Cremonese violins 

excel iii both is the real. reason for their demand. 

ý, 
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Building the Violin. 

Figure 1.3 illustrates the many pieces which are used to construct 

a violin. Most of the internal pieces, the blocks, corners, and rib- 

liners, are present to give structural strength to the violin 

FRONT PLATE 

F-HO LEý%ý 

BASS-BAR 

F-HOLE 

... fl,. rTf. n. 

BRIDGE 

d 

BASS-BAR 

SOUND-POST 

FIGURE 1.3b. Cross sectional view of a violin. 

BACK PLATE 
FIGURE 1.3a" Exploded view of a violin. 
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sound-box. The method of constrict ion of the box is itself a 

fase 1. nating story . 

The luthier begins by constructint; a stet of ribs frum strips of 

sycamore or maple, which he thins to about I mm. so that they may be 

easily hent. The ribs are built with the aid of a mould to which al1 

of the pieces may be clamped and glued. When using an inside mould, 

such as that shown in f i-pure 1.4, blocks of spruce are lightly glued to 

it and cut to shape. These pieces form the corners and end blocks of 

the violin and remain firmly glued to the ribs when they are removed 

from the mould. 

Once the str1p5 

have been thinned they 

are cut into pieces to tf 4' 

form the six sect ions, a rt 

known as bouts, of the 

ribs. Starting with 
{ 

one of the C-shaped 

bouts, the lutlifer 

dips the strip of wood 
s Tý 

"r 

in water and then very 

bends it over a 
Alq"ý 

hot, rounded 

bending-iron until the Pure 1.4_ A nearly complete set of ribs 

piece fits snugly are held on an inside mould while the 

against the mould. luthier traces their outline onto a maple 

The remaining peices slab. 

are then bent in I- lie 

same way. Next the luthier rubs the mould wi th soap, being very 

careful not to coat tiro blocks, so that the glue will. not stick to it. 
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A hot, organic glue is used to join the bouts together, ' with the blocks 

giving strength to the glue joints and clamps holding all of the pieces 

firmly in place. Some two to ten hours later the glue has hardened, ' 

but changes in its strength may occur over a much longer period. 

The mould and ribs are constructed so that the latter project 

about 1 cm. above the surface of the mould. This is necessary so' that 

a'lining strip of spruce, about 2 mm. thick, and 7 mm. high, may- be 

glued to the inside of the ribs. First, however, the ribs are cut so 

that from a height of 32 mm. at the lower block, ' they taper to 30 

mm. at the top. This imperceptable slope is present in the great 

Italian violins and luthiers, ever mindful to copy -these instruments 

exactly, perform this task without exception. 

After the lining strips, which are used only to provide a wider 

glueing surface for the plates, have been bent and 'glued into place, 

they are reduced to a triangular section. This must be done after'they 

have been installed for trying to bend a triangular sectioned strip of 

wood is an impossible task! Little notches in the blocks and corners 

secure the linings at their ends. 

Carving the two plates is the most important step in making a 

violin. Much of the final sound and beauty depends on the luthier's 

skill in excecuting this task. The plates are often carved with the 

same arching so that the only major differences in their appearance are 

the wood used, the f-holes in the front, and the small projection at 

the top of the back, known as the tongue, which meets the'neck. Maple 

or sycamore is used for the back and spruce for the front. Each plate 

may be made from a single piece of wood, or from two matchingn pieces. 

If two pieces are used for a plate then two adjacent, wedge-shaped 

slabs are cut, their thickest edges planed and are then glued together. 

In this way the marking in the wood appears nearly symmetric when the 

i 
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plate is f inislied. This 

also ensures that the 

narrowest dart of the 
iY - 

grain is at Lire center. 

A tracing of the 
`. M °ý4 h 14 

t 

^l dusircd plate outline is 

711 next made on the slat), 

which is then shaped by 
vfýtr"' +ýý 

Y"tsb. 

saw, knife, and scraper. 
W1 

t'lil. 'i1 wi 01 the slab 
r 

I I, 
'^t' l ruilýcI tu tlhe working 

s 

ing t curved 

goug; ce. keil skill is 
r., 

needed here for carrying 
YýR 

away it single large 

F. i ; ure 1.5: Template8 are used by the splinter could spoil the 

luthier to check the arching of the plates. work. Once the 

lengthwise arch has been 

cut to match a template, the arch between the central bouts is cut and 

again matched to a template. After doing the same at the widest 

portion of the lower and upper bouts, a small plane is used to remove 

the gouge marks and to sink a shallow groove about 3 mm. from the edges 

in which the prrrf. l i ng will eventual ly be cut and set. These two 

operations bring important aesthetic and practical benefits. TI [e wide 

groove allows the luthier to use a thick, strong edge without flawing 

the graceful arching of tlie" thin plate. The purfling, usually 

consisting of three strips () k wood, is set into a narrow groove and 

emphasizes the violin's shape. More importantly it stops any crack 
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from propogäting from the plate's 'edge into the vibrating region. 

Scrapers and glass-paper are used to complete the outside surface of 

the plate. 

Using a caliper to check the thickness, the plate is next hollowed 

out to its final thickness, which for the belly is about 3.5 mm. at the 

centre and 1.5 mm. at the edges. The back also varies in its 

thickness, from about 4mm. to 2 mm. 

The front plate must finally have the f-holes cut and its bass bar 

fitted. Two drill holes and a sharp knife enable the luthier to cut 

the holes, while the bass-bar must be shaped so that it must be 

slightly bent in order to be glued in place inside the 'plate. This 

done, the belly is placed on the unlined edge of the ribs and a couple 

of small holes drilled through it into the blocks. These' are located 

where the purfling groove will later be cut, and serve as locating 

points into which small pegs are stuck. The ribs are removed from the 

mould, the other set of rib liners glued in place, and then the belly 

glued on with the pegs in place to keep the ribs' from warping. After 

this the back is attached, the purfling cut, the edges rounded, and the 

violin body is complete except for varnish. The fashioning of the neck 

is of little concern here, for although it provides the craftsman with 

an opportunity to' demonstrate his skill in carving the beautiful 

scroll, it is of no consequence to the violin's acoustics. ' 

Varnishing provides the luthier with another chance to show his 

expertise, for a well applied oil-varnish enhances and colours the 

wood, besides providing it with a protective coating which will 

withstand centuries of use. Spirit varnishes are also used because of 

the ease with which they may be applied, but these lack the beautiful 

qualities of the oil varnishes. Despite the claims of countless people 

the varnish used by the Italian masters was not the secret of their 
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success, for although the varnish does affect the violin, particularly 

its damping, the effects are of minor importance when compared with the 

frequency response and the nunna I modes of the plates [3]. 

IM i9l7w, Today many violin- 

.. makers employ tap-tones 

i4to 
r to help obtain the best 

rar ., p05 5i1)1e sound [ruin 
4 

Ir 

their instruments. When 
fl 'rý t 

making the final 

-A f 
k'. 

ail justmeii ts of the plate 

thickness they hold a 

ýº {Late loosely between 

O thumb and finger, about 
C 1? 

\V 4/5 of the way along the 

iP plate length, and rap it 

sharply wi th a knuckle 

as: demonstrated in 

I 

*, 

e- 

f iglire 1.6. This 

I excites many modes of 

Figure 1.6: Tap tones make it possible vibration and by carving 

to compensate for th& individuality of as little as U. 1 mm. of 

wooden plates by tuning the lowest roson- wood from a few square 

ance to a specific pitch. cent [me t. res Of the 

plate, they may be 

altered perceptibly [4]. Many luthiers adjust their plates until the 

predominant mode has a pitch of U$ for the back, and U for the front 

plate. This seems to give good results in most cases. 

The use of tap tones is perhaps the most important aspect of 

violin making to which scientific n thud has been applied. It is by no 
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means the only one. Most of the important work in this field is 

utilized in subsequent chapters, but before it is possible to build on 

this work to improve mass-produced instruments it is necessary to 

determine the factors that make some violins universally admired. 

The Best Violins and What Makes Them Different. 

One of the first attempts to scientifically explain the esteem of 

the old Italian violins was made by F. Saunders [5]. He made frequency 

response measurements of, many -fine instruments, both. old and. new, in 

five frequency bands over which the response was averaged. Although 

these ranges were arbitrarily selected as in table 1.1, he`found a 

correlation between the relative strength of these bands and the 

quality of a violin. Saunders was assisted in this work by Jascha 

iiiefitz and Sascha Jacobson, who judged many modern instruments against 

old Italian ones in blind listening tests. His conclusions from these 

experiments were that two qualities were of prime importance when 

evaluating the violin: "first, great power, second, - an even 

distribution of strength among all -ranges of frequency, the-lowest 

octave being of special importance" [5]. Another point which he makes 

is of historic interest: 

"Many violins, including _, two or three of the seven 
Strads for which we have curves... show a weakness in the 
range 1300 to 1800 or 2000 cps., amounting to a drop of 4 to 
8 dB. This appears... to have no important effect on the 
reputation of the violins concerned. " 

Subsequent research has revealed the irony of this statement. 

Other attempts at evaluating the violin by a small number of 

frequency bands have been made, notably by Lottermoser and 
Meyer 

[6], 

who used seven bands, and by Meinel [7], who averaged the frequency 

response over spectral fifths. These experiments shared the same 
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disadvantage as did Saunders' tests: the bands were too -coarse, and 

important features were lost among other information in a band. This 

explains how the weakness which Saunders noted in many good violin's 

response curves failed to correlate with the quality of the violin. 

More recent work has shown that this feature is of the highest 

importance in determining the sound quality of a violin! [8,9]. 

These early researchers did not ignore the, question of transient 

response. Meinel postulated that as the transient response of the 

highest resonances is fast, these should have as low an output as 

possible so that the, bowed string articulates well [10]. Saunders made 

measurements of the logarithmic decrement for various violinmüdes but 

concluded that there is no general correlation between this and sound 

quality [5). Recent work has concentrated on the importance of the 

frequency response. 

Yankovskii used third octave bands to record the response of many 

violins and tried to correlate some of the subjective terms which 

violinists use to describe their instruments with the average response 

in certain bands [6]. In order to make these tests as meaningful as 

possible six judges were required to describe many violins with nine 

subjective terms. All of the instruments were played twice, in a 

different order, and only those which recieved the same subjective term 

from every-judge were used in the experiment. The response of a violin 

to which a subjective description had been unanimously applied was then 

compared to that of the average for the entire group and the 

differences related to subjective terms. A list of these appears below 

in table 1.2. 
Sc 

The most important conclusions about violin frequency response are 

those arising from a study by Garielsson and Jansson in which "Long 

time averaged spectra" (LTAS) were used to rate the qualities of 
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Experimenter 

Saunders 

Bands Frequency range Remarks 

5 196- Arbitrarily selected. 

Lottermoser et al 7 

Meinel 10 194-12K 

'Yankowskii 17 180- 9K 

Chosen to correspond to vowel 
formants of U, 0, A, E, I, the 
sibilant S, and the second na- 
sal formant. 

Spectral fifths. 

1/3 Octave bands. 

Jansson 24 <180->IOK The Bark frequency scale. 

Table 1.1: The frequency bands used by early researchers to 

describe the quality of violins. 

violins [9]. 

In this process whole tone scales were played over three octaves 

on each violin as loudly as possible. The results were averaged in 

twenty-two bands from about 100 Hz. to 9.5 kHz. over a long period of 

time. By comparing the LTAS of , 
twenty-two good violins which had been 

judged in a violin-making competition they found a very good 

correlation between the reponse in seven of these bands and the rated 

quality of the violin. The frequency bands of greatest importance 

proved to be similar to those found by their predecessors, but with a 

greater accuracy and in a definate order of importance. 

The most important characteristics which appeared in their tests 

were: a high response up to 500 Hz., low response around 1.3 kHz., 

rising quickly to 2 kHz., and then a rapid drop above 4kHz. The 

authors point out that the judging of the violins was done by only two 

men and may not have been of a representative group of violins, but 

their findings are still of great significance. 

The goals are now clear and the work may progress. It will 

shortly be demonstrated that the bridge is primarally responsible for 



CHAPTER 1 THE VIOLIN PAGE 14 

Subjective term Characteristic frequency response 

Bands at 250,500,800, and 1250 show strong 
Soprano response with the 1250 Hz. band dominant. 

The best violins fall in this category. 

Bright High output between 2500 and 4000 liz. 

Noble, " soft Body resonance in 500 Hz. band strongest. 

Nasal Frequencies from 1.2 to 2KRz. cause this ir- 

ritating tone quality. 

Tight, thin Relatively uniform response between 500 and 
6300 lIz. when averaged over 1/3 octave bands. 

Piercing Any'radiation above 4Ktlz. may cause this. 

Treble, shrill Little radiation below 500 Hz. 

Contralto The lowest band has a relatively high level. 

Table 1.2: The subjective terms studied by Yankowskii and the 

physical interpretation of these terns. 

the production of sound at frequencies above about 1.5 kHz., so it is 

the lowest of the frequency ranges just descrbed which. will yield the 

greatest results. As more information about the violin and its unique 

design come to light, understanding will not dull the awe, nor remove 

the mystery, which envelope this amazing creation of man's genius some 

400 years ago. 

* 
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Measuring the Frequency Response. 

Measuring the frequency response of a violin can be surprisingly 

difficult. Ideally the method employed would be quick, reproducable,, 

and reflect the way in which the violin is held. The problems of 

excitation,. instrumentation, and mounting a violin for study in an 

anechoic chamber will be discused briefly below. 

Most experimenters have used some form of bowed excitation, either 

mechanical or by hand. Mechanical bowing, by a swinging pendulum or a 

rotating wheel, is inherently reproducaable but the construction of such 

a device is difficult. By contrast, hand bowing requires only a 

practiced hand and a good ear' to produce surprisingly consistant 

results. It is the behavior of the bowed string and the nearly` 

constant limit in bowing force, as first shown by C. V. Raman, which 

makes this possible [1]. He showed that, if the bow's speed and its 

position on the string are held constant, exceeding a certain force 

between the bow and string destroys the oscillating regime. 'A raucous, 

unpleasant sound is produced which the musician instinctively avoids. 

This limit is very important for, although the frequency content and 

amplitude of the string depend on all of these factors, the bowing- 

force is the most difficult for the musician to control. Saunders, who 

was one of the first to employ this method to study the violin's' 

response, demonstrated the remarkable degree to which such results may 

be reproduced [2]. Since that time the "equal loudness curves", " as 

response measurements made in this way have become known, have been 

used in most experiments. I 

Loudness against pitch, rather than the frequency response, is - 

measured when some form of bowed excitation is used to drive the 

violin. This is essentially what one hears when a violin is played for 



CHAPTER 2 EXPERIMENTAL AND THEORETICAL METHODS PAGE 17 

each pitch is a combination of partials, each of which contributes, - to 

the loudness, rather than a pure tone. While such measurements are 

useful in many circumstances, they obscure much, of the frequency 

information making it difficult to isolate the resonant frequency of 

indiviual modes. Also, by its nature, the "equal loudness curve " must 

be plotted at discreet frequency intervals, usually a ., semitone apart. 

This spacing is wide enough so that, even with the provision of. a 

tracking filter to obtain'a true frequency response, details such as 

the split which sometimes occurs in the Helmholtz resonance maybe: 

missed. Although these details are probably of no real significance"in 

the tone quality of a violin they may help one to gain valuable 

insights into the violin's action. 

Mechanical excitation of the violin bridge avoids these problems. 

In most cases the strings have been left in place when measuring the 

frequency response in this way, but throughout this thesis the strings 

have been removed during testing. This eliminates spurious resonances 

which occur when the driving frequency is that of a" string- mode, ..; for 

even when the strings are heavily damped they still affect the 

frequency response curve. The presence of strings and bridge, and an 

assembly for driving them, also obscures a large portion of the belly, 

a problem when making holograms. 

In order to measure the violin's response, force was applied to the 

violin body by an electro-magnetic transducer, B&K type MM0002, which 

drove a small metallic disk with a high magnetic permeability. As its 

mass was only 0.3 gm. the disc had a very minor. effect on the', violin's 

mode shapes: and resonance frequencies. The transducer mount, ýand that 

of the violin itself, had a marked effect, on the. frequency ? 
response 

curve. Other workers have been beset by similar problems which have 

prompted an effort to standardize mounting techniques [3]. Figure 2.1 
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., shows the degree to which 

the results may be 

affected. In obtaining 
(a) 

these response curves the 

10 dB same violin was mounted 

in three different 

. tb) 
manners: suspended on 

threads at the corners; 

resting freely on a foam 

(c) block; and loosely 

clamped in a frame which 

also supported the 
260 637 600 700 800 900 

Frequency in Hz. transducer -mounting. 
Figure21: The effects of violin mounting on With the first two 
the frequency response, (a) when suspended 
on threads at the corners, (b)when resting methods the transducer 
on a foam block, and (c) when lightly 
clamped. was fixed to an 

adjustable cantilever. 

The-measurements'-took place one after the other with no detectable 

change in either the temperature, pressure, or humidity, so that it is 

only the form of mounting which is responsible for the large 

discrepencies which the curves display. 

In two of these response curves the second resonance appears to 

form a double peak which is caused by the interaction of the 

violin-plate and the transducer mounting. As a lengthy cantilever was 

required to support the transducer in the anechoic test chamber it 

proved to be impossible to eliminate 
, 

this doublet. Even with the 

transducer mounted upon a framework in which the violin was clamped, 

great care was needed to prevent its influencing the violin's frequency 

response, as figures 2.2 and 2.3 demonstrate. 
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Figure 2.2: The vi H1 in front plate and the 

mounted transducer for driving; it. 

1.37 467 497 

FREQUENCY in Hz. 

I IGURE 2.3 
. 

TIw req un nrar 
the frunt pinto res, unnn, o and 
the effect that a poorly de- 

r igrxxd trunsducor mount ran 
have on 'he frequency rcw, ponso 
kurve b) 

The clamping of the violin within the framework could also affect 

its response. Clamping alL four corners often introduced a distortion 

of the violin body which drastically altered its resonance frequencies, 

as shown in figure 2.4. Light clamping of only three corners 

eliminated this probi. orn. 

The frame fror rnounting the violin and transducer was used 

throughout this work as it proved to be the simplest method of 

eliminating the interact icon btýtwoen the transducer mounting and the 

violin. It had an addi tiona1 advantage in that the entire assembly 

could be quickly and easily transferred to the holography laboratory 

and used to secure both the violin and transducer to the anti-vibration 

table in this frcciIity. overall this system demonstrated its 
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superiority over the 

standardized methods of 
10 dB. 

testing. 

The remainder of the 

equipment used in 

recording the frequency 

response curves . is shown 

in figure 2.5. All of the 

electronic equipment was 

260 437 497 600 situated outside the 

Frequency in Hz. 

gure . 
4: Clamping the violin can increase anechoiý chamber and Fi 

both the Helmholtz and the plate resonance 
shielded cables -passed frequencies as the lower curve shows. 

through the walls. The 

noise floor was typically -5 to -10 dB SPL throughout the frequency 

range of interest when measured on the Narrow-Band analyzer -(dB 

re. -2x10_ Pa. -are- used- throughout this work). A B&K type 1024 

sine-random generator was used to drive the transducer, whose impedance 

was constant throughout. the frequency range. Either a white noise or 

single frequency- sinusoid could be used as an input with this 

instrument. 

_A single high-sensitivity microphone, I %Y, type 4165, was used,, to 

pick up the 

acoustic output. V-ý--VV 
B&K mm0002 Qý^ ß&K Sine 1 

The signal was Magnetic Random Generator. 
o00 

Transducer. 
B&K 2131 Narrow processed in - 
Band Filter. 

ß& Kze, - 
either a B&K Microphone. Micro phone Frequency Oscillo- 

type 2610 
amplifier. counter. scope. 

measuring amp- Figure 2.5: The equipment used for making frequency 

lifier or a B&K 
response measurements. 
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2131 narrow-band analyzer. - .. -" 

A white noise. input was generally used. to record a.. frequency 

response and the narrow-band analyzer was used for averaging and 

displaying the signal. As the response was usually required from 190 

to 600 Hz. the analyzer was used in the 0 to 1 kHz. mode. Linear 

averaging was used exclusively. The 400 line linear frequency display 

then gave excellent definition. with only, a 2.5 Hz. band-width. On 

those occasions when a wider response was measured, the 0 to 5 

kHz. range was selected. - As this instrument is sensitive to 

frequencies virtually down to D. C., low frequency noise often appears 

in the . response curves, although it was possible to measure the noise 

first, store it in memory, and then subtract it from any subsequent 

meäsürement within the machine. 

The acoustic output of the violin was often measured at less than 

10 dB SPL at certain frequencies and so outside sources of noise could 

noticably affect the response even when the triple set of doors which 

led to the anechoic room were sealed. A long averaging time was 

therefore used to minimize any such effects, 2048 samples over about 

five minutes being common. 

The Hanning window was used exclusively during experiments as it 

minimized the problems associated with digital sampling (the linear 

window should only be used when recording transients). If a small 

number of wavelengths are recorded in the sample then any frequency 

component that does not have a whole number of wavelengths in the 

signal can greatly change the Fourier transform. A Nanning window uses 

a weighting function to minimize. the importance of the begining and 

ending of a sample thereby eliminating this problem. 

Once a response curve had been recorded it was possible to output- 

it to a level recorder or an x-y plotter. 
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Another useful feature of the narrow-band analyzer was its ability 

to stop after a number of samples, and continue averaging again after 

an indefinite interuption. This made it much easier to perform 

sound-power measurements. 

Early in the experimental work the method of measuring the 

response, whether it should be made in an anechoic or reverberant 

chamber, and whether sound-power or a single position frequency 

response should be, used, were the subjects of much debate. Figure 2.6 

shows the multitude of resonances which occur in the reverberent room 

at the University of Salford's Department of Applied Acoustics. 

Although these resonances are so narrow that they do.. not affect third 

octave bands in the frequency range covered by a violin they make it 

impossible to obtain meaningful response curves. 

90 

co 
ti 
c80 
J 
a N 

ýc 
1 1' 

100 200 300 400 500 600 700 800 900 
Frequency in Hz. 

Figure 2. b: The response of the University of Salford's 

reveberant room to a white noise input in 113 octave 
and 2.5 Hz. bands. 

A series of sound-power tests were made to see if they. violin's 

directionality was important at frequencies as low as-' 600 Hz. 

Seventeen microphone positions were used at, a distance of one 
. 
meter 

from the center of the belly, in the hemisphere into which it would 
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radiate if mounted'in a baffle. A frequency response curve Was then 

made using a single microphone position, one meter on the axis normal 

to the center" of the belly. Comparison of the two curves in figure 2.7 

shows that, although directionality greatly influences the readings 

taken at high frequencies, in the range of interest it was not 

necessary to make sound-power measurements. ' Of course, the shape of a 

radiator whose dimensions are less than a quarter wavelength of sound 

in air does not-greatly affect the radiation pattern, but experimental 

confirmation of this was deemed necessary. Single position frequency 

response measurements are used throughout this thesis. 

40 
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Figure 2.7: Sound- power (--) and frequency 

response at a single position ( ). 

Once a frequency response curve had been recorded, the resonant 

frequencies and half-power points were determined using the sinusoidal 

output of the generator and the measuring amplifier, frequenc}4 counter, 

and oscilliscope. The amplifier had a 22.5 Hz. high-pass filter which 

made it possible to-obtain a steady position on the meter. Noise was 

much grtater in these instruments than in the analyzer, typically 10 dB 
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SPL, but as this equipment was only used to measure resonances it 

caused no difficulties. 

Measurements of the resonance frequencies were accurate, to within 

about 0.5 Hz, - the error involved mostly due to the difficulty in 

locating the maximum which has a slope approaching zero at the peak. 

It was, much, more, difficult to obtain the Q-factor accurately for the 

output of the sine-random generator varied as much as one dB while 

trying to locate the 3-dB-down points. Averaging a large number of 

tests produced figures for Q accurate to about 5%. 

Results obtained from the techniques described above were 

generally reproducible, although with no control- over atmospheric 

conditions some variations occasionally occured. The method of, 

mounting the violin made it possible to make an accurate and rapid 

measurement of the frequency response and then to move it to the 

holography laboratory" to study the behavior of individual modes of 

vibration. 

Holography 

Holography has proven to be a useful tool for investigating the 

vibrations of stringed musical instruments. In modelling the violin it 

was found necessary to know precisely the mode shapes and the plate 

velocity distribution, and although the former could be deduced from 

Chladni patterns it was vibration holography that made the latter 

possible. The first investigation using this, method was conducted. by 

Reinicke and Cremer who studied the modes of vibration of violins [4]. 

A similar study by Gabrielson and Jansson established this technique as 

a valuable tool for the acoustician [5]. It is described in some 

detail below. 
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Although the holographic process was envisaged by Gabor as early 

as 1947, it was not successfully employed until after the laser had 

been developed [6]. It was the special properties of a laser beam, a 

coherent, single frequency beam of light, which proved to be the 

breakthrough that made holography possible. 

There are-many types of laser in use, but the most common is the 

helium-neon gas type, which produces a continuous beam with a 

wavelength of 633 nm. An electric discharge starts the beam by 

exciting the electrons of the neon atoms to a higher energy level. 

When these electrons fall to their normal level they release a photon 

with one of the three wavelengths characteristic of neon. Only the 633 

nm. wavelength is in the visible range. The population of excited neon 

atoms is initially very high and many photons are released. When one 

of these photons collides with an excited atom, it too releases a 

photon. Only_ -a small current is necessary to sustain the process once 

lasing has begun, just enough to maintain a large proportion of excited 

electrons in the discharge tube. 

The discharge tube in which this occurs has mirrors at each end 

which are arranged so that light travelling along the axis with a 

wavelength'of 633 nm. will form a standing wave. A small portion of 

this beam, which must necessarily be of uniform phase and non-diverging 

to form the standing wave, is allowed to escape through a partially 

silvered mirror. If, however, the number of photons in the tube is 

allowed to decline below' a -certain level the process cannot sustain 

itself and the lasing action ceases. This limits the light intensity 

of the laser beam to a small fraction of that in the tube, typically 'l 

to 2%. It is the stimulated emission of a photon which occur when an 

atom with a high-level electron is hit by another photon that gives the 

laser its name- Light Amplification by Stimulated Emission Radiation. 
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A hologram is a type of photographic emulsion in' which both the 

amplitude and phase information of light from an object are recorded. 

In ordinary photographs the phase information is lost, but by allowing 

a second beam of light to interfere with the light from the object, a 

series of fringes occur which, when recorded in some form, retain all 

of the information about the object. If these fringes have been 

recorded on a photographic plate one needs only to develop and fix it, 

Object 

Object -'- 
Beam 

Reference 
Beam emulsion 

Prism 

Figure 2.8: Recording a hologram 
with a transparent object. 

Virtual Image 
Real Q'-',, 

Hologram Image 

I ý. 

Figure 2.9: The reconstruction 
process. 

The light distribution upon the 

photographic emulsion from the object (this will be referred to as the 

object beam) may be expressed as 

(2.1) S(r)= S, (? )exp[jwt+ jý(f)) 

where r is the position vector xi + yj and- lies in the plane' of the 

plate, and where S0(i) and exp[jwt + j$(=)J represent the amplitude and 

phase along the surface of an infinitesimally thin emulsion. 

and then to insert'it once more into 

the reference beam to reconstruct the 

original object. It will appear 

behind the plate and retains 

perspective so that the image may be 

viewed in three dimensions from 

different angles. 

The theory which describes both 

the formation and ý reconstruction of 

holograms may be simply, explained 

with reference to figures 2.8 and 

2.9. 

The reference beam, which is, simply a diverged and collimated 
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laser beam =which retains its coherence, may also be represented in the 

general form of equation (2.1). This gives , 

(2.2) R(Fr) = Roexpl jwt+ j(21T1%) cos e-1, 

where the term; exp [ j(211/T)cos ej accounts for the 

produced by the angle 4)-. 

The photographic emulsion will respond to the 

which irradiates it, and so the term [S(r)+R(r)]' 

over a large number of periods. As the number of 

infinity, this gives 

. longer path, length 

intensity of light 

must be integrated 

periods approaches 

(2.3) I(r) = Sö(r1 + Rö+ RS*(r) +RS(), 

where * denotes a coinplex conjugate. 

-Once the'emulsion has been developed fringes will appear, whose 

optical density, and therefore transmission. of light, will. depend upon 

the intensity I(r) with which it was exposed. A properly developed 

film_will then transmit a beam which is directly proportional to the 

intensity distribution produced by the interference of the two beams 

and T(i), the transmitted beam, is 

(2.4) T(? )=AR(S; (I)+ Rö(ý) + RS#(f)+ R*S(F)] 

with A constant, when the processed holographic plate is reinserted 

into the reference beam with the object beam removed. Without the 

interference between the object and reference beam neither of the two 

terms which contain phase information, RS*(i) nor R*S(r), would occur 

and no three-dimensional image would be formed. The term 
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AR'S*("r)m ARöSo()exp[J2a-4(r)] is the original object beam multiplied 

by the constant factor ARöe'Za , but with a negative phase -$ (r), which 

indicates that the image is converging. This forms the real image and 

may be viewed by inserting a card or screen at the focal point. The 

term ARR*S, (r)exp j[2p, + 4D (r) ] again includes the original object 

beam, but this time with the phase +c(r), indicating that the light is 

diverging. The virtual image which this produces may be viewed with 

the eye by looking through the plate, or, it may be focussed and 

photographed, with a camera. 

As the fringes which are produced on- the plate- are ýve ry- close 

together a movement of even a quarter wavelength in any component of 

the laboratory setup may degrade or even destroy the hologram. If, 

however, the object vibrates sinusoidally about a stationary mean, a 

series of dark and bright fringes appear over the image of the object 

during reconstruction, each of which is a line of equal amplitude. A 

vibrating object spends the greatest amount of time at either of its 

two extremities of displacement, as figure 2.10, the probability 

density function for a sinusoid, illustrates. The hologram will 

contain information about all of the infinite positions of the moving 

object, but as the object spends a greater part of its cycle at the 

extreme positions than at any other point, these will form fringes with 

greater contrast on the plate, and 

consequently . 
the two predominant images 

on reconstruction. 

For the moment only these two main 

images, and their interaction upon 

reconstruction, will be considered. If 

the reconstructed images at a point r 

(xi + y3 on a planer object) have 

YAt 

-A 
t 

Figure 2.10: A sinusoid with 
on amplitude A and its pro- 
bability density function. 
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different displacements 

-A and +A which are 

Ä/2cos apart, destruc- 

t ive i nterf Fýrence wi 1 

occur and a dark spot. 

will appear on the 

image. Similarly, a 

dark band will li Ilk 

points on the recon- 

structed image with a 

peak to peak displace- 

ment of 3X /2cos t or 

5X/2cos$, and so-on. In 

between these dark frin- 

ges will be areas where 

constructive interfer- 

ence takes place. These 

produce bright fringes 

connecting points with 

peak to peak displace- 

ments of U, Xcosm, etc. 

This is exactly the 

case in double-exposttre 

holograms, or with a 

square wave displace- 

ment- two distinct im- 

ages are formed which 

interfere to produce a 

n k,, roots of . lo (k) k,, - kr, 
_, 

1 2.4048 2.4048 
2 5.5201 3.1153 
3 8.6537 3.1336 
4 11.79I5 3.1 378 
5 14.9309 3.1394 
6 18.0711 3.1402 
7 21.2116 3.1405 

Table 1: Roots of J0(k) and the 

difference between subsequent roots. 

F 

I 
1 

h 

t t' f`t 
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F 

Figu re 2.1 I: A vi hr; it il)n ho Iog, ram of 

the trout plate' s Lowest no(Ie. 
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hologram with each successive fringe of equal contrast and representing 

a change in peak displacement of X/2cos$ . 

The presence of the continuous series of images in the vibration 

hologram slightly alters the way in which the fringes appear, and as 

the analysis is lengthy, it will not be included herein. Let it 

suffice to state that in vibration holography the fringes represent 

peak displacements of k, X/ncosO 
, with k,, the successive roots of the 

zero-order Bessel function, J0(k), which appear in table 2.1. The 

spacing between fringes is very nearly the same as that of a double 

exposure hologram with the exception of the first as the table clearly 

shows. Contrast also changes with increasing amplitude and each 

successive fringe appears greyer, as may be seen in figure 2.11. A 

limit of about fifteen fringes are observable before contrast is 

reduced beyond perception, and although it is possible to remove this 

limit by employing a stroboscopic technique, it was not used in this 

research. 

While a deterministic vibration may produce holograms, - a random 

vibration of any element in the equipment will degrade it. Therefore 

it is necessary to isolate the experimental apparatus from vibrations 

which may be transmitted by the surface upon which it rests. In 

setting up the holography laboratory which was used throughout this 

research the first important step was to provide such vibration 

isolation. 

Four automobile inner tubes were inflated and a slate bed, made 

from an old snooker table, was placed upon these. Its mass of 25U 

kg. gave excellent vibration isolation, which was further improved when 

three optical benches, with a combined miss of 13U kg., were placed 

upon the table to provide a firm mounting system for the equipment. A 

B&K type 8306 accelerometer and the 2131 narrow band analyzer were 
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used "to measure 

the'' accelera- 

tion levels on 

the concrete 

floor of the 

laboratory, and 

on the table. 

To provide suf- 

ficient low 

40 
Figure 1: 

30 
The vibration 
isolation pro- 

vided by the 
20 

anti-vibration 
table in the 

10 holography 
ö laboratory. 

ö0 --- ---------------- 

c 
0 
ö 
I- 

.n > 
DC. 10 20 30 40 50 

Frequency in Hz. 
trequency ener- 

gy in the floor, such as would be caused by lorries passing by outside, 

several members- of, staff leapt about on piles of carpet tiles. The 

vibration isolation which was measured appears in figure 2.12. 

A Scientifica Cook helium-neon laser, with a continuous power of 

10 mW. and a wavelength of 633 nm. was used to make all of the 

holograms which appear in this work, although initially a 0.5 mW. model 

was used. 

'z - The laser had a seperate power supply which, due to vibrations 

from its fan, ' was placed off of the table. A shutter was constructed 

using parts from an oscilloscope camera, and once again this was floor 

mounted to reduce vibrations. 

The beam was'split using a variable density silver-backed mirror 

which was specially mounted on a stand with an adjustment screw for 

moving it across the beam. This made it easy to adjust the relative 

strengths of the two beams which, when- measured at the hologram's 

surface, -should have a ratio of between 1: 1 and 10: 1, the reference 

beam being the stronger. One would expect the 1: 1 ratio to be ideal. 

In fact, as the emulsion does not respond logarithmically to light at 

very low levels as it does at'higher levels, a constant intensity' needs 
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to be -present to prevent complete destructive interference. In 

practice a ratio of about 4: 1 is ideal [7]. 

Egure 2.13: The holo- 

graphic apparatus. 
Abbreviations: laser 
M. mirrors (M), beam 
splitter (B). violin (V), 
diverging lens(D). 
holographic plate (H), 

and shutter (S). 

equipment, which is shown in figure 2.13. 

Two mi r- 

rors, two lenses 

(25x and IOx 

microscope ob- 

jectives), and a 

simple plate 

holder completed 

the initial 

A pinhole and an aparatus to mount both it and a lens greatly 

improved the quality of-holograms by eliminating spatial noise from the 

object-beam. Another- major improvement was made by incorporating a 

light meter into the plate holder so that the intensities of the two 

beams could easily- be measured [0]. Previously a hand-held meter had 

been used. Another seemingly trivial addition was of great use. As a 

small degree of- devergence is present in the laser beam, it is 

important. to keep the path lengths of the two beams 'within a few 

centimeters of each other. Small loops attached to each component made 

it easy to compare the path lengths with a piece of thread. 

As already stated, the frame which held the violin and transducer 

could be -transferred from the anechoic room to the holography lab and 

bolted directly to an optical bench. With this change in environment 

it was necessary to allow the violin to adjust to the new ambient 

conditions. Once it had settled down and the Huirhead 
, 

Decade 
r 16 Oscillator had been adjusted to drive the violin at resonance, all was 

ready for exposing the-plate. 

Any stray light which could reach the plate, would of, course 

Oscillator Power supply 



CHAPTER 2 EXPERIMENTAL AND T11EORKT1. CAL METHODS Y, A(; f; 33 

partially expose it and degrade the hologram. Shades were placed on 

the table to shield the plate from stray laser light, and a black-out 

curtain was used to form both a canopy over the apparatus and a curtain 

for the lah's windows. 

A squeeze-bulb and electronic stop-watch were used to control the 

shutter opening and, after a series of trial exposures with 

Agfa-Gervaert Scientia 10E7'5 plates, ten to fit teen seconds was found 

to produce a good image with a five minute deve loping time In Kodak 

U163 doveloppr. Fixing in ,ah: ith of Kodak Kudrit iy r, "tut ion And a final, 

Figure L. 14_ The Iß() 1 graph is apparatus. 

rinse in water with a few drops of Agfa AKepun wetting agent completed 

the processing. When using; the 0.5 mW. laser and Kodak 649F plates 

exposure times were around f ive to Lon minuti;. At one point an 

additional kath was used tu bleach the (live loped plates but the 

improvement in image quality was urnot icahle. 

Reconstruction of the image was usual ly clone by holding the plate 

by hand in the object beam with the blackout curtain obscuring the 
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violin. Photographing any hologram of interest merely required, a 

holder for the plate and an SLR camera to produce the photos which may 

be-seen throughout this text. 

The Green's Fuction Technique. 

The Green's Function Technique; in which a system is treated as a 

series of' orthogonal functions which together make up a basis, is very 

useful in dealing with the vibrations of a violin. ' By determining a 

linear system's response to a, point input it is possible to find the 

output from any form=of continuous input simply by integration. This 

is exactly what occurs- when the convolution integral, ''the Fourier 

transform, and the impulse response are used to describe-a' system in 

the time domain, but there is no reason that the space domain cannot be 

similarly treated! - In the remarks which'follow, the possibilies, which 

this technique present will be applied torvibrating systems and later 

used to model the'violin. " , 

The' convolution of two functions is defined mathematically as 

+oo 

(2.5) g(l) f f('C)h(t-T)dT'= f(t) 9 h(t) , 
-470 

which defines the output in the time domain of a linear filter in terms 

of the input and the impulse response. The impulse response may be 

measured or it may be calculated from the system impedance. 
e 
Then, in 

order'to find the function g(t), the convolution theorem is used. - This 

theorem states that 

(2.6) ' G(w) = F(w)H(w) where H(w) =g: [h(t)}, etc. 
r 
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The convolution integral is reduced to a product by the use of the 

Fourier transform and the output is easily determined for any input 

function. An example of this may be helpful: take the single degree 

of freedom system which appears in figure 2.15. The equation of motion 

k 
tdm 

' f(t) 

c g(t) 

Figure 2]5: A mass- 
spring-damped system. 

is mg + cg + kg- f, with the functional 

notation dropped. To find the impulse 

response let fa 6(t) and gs h(t) from 

equation (2.5). Multiplying by exp(-jwt) and 

integrating over all t yields 

H(w)- 1/(k + jwc - wtm), the impulse response. 

In an example with lumped parameters like this one, only the time 

and frequency dependence is important. But with a continuous system 

the problem is more complex. The input will now be a function of both 

time and position, f(ro, t), where "r is the vector representation of 

the input point in the system. The output will be in terms of . 
"r and 

t, g(r , t). To find the system response to a point input at r" , which 

is the Green's function, requires virtually the same steps as before. 

The equation of motion of a continuous system is often of the form 

(2.7) - g(r, t) +A ZO- g(r, t) = Bf(ro, t) 

By substituting a delta function for f("r0 t) the Green's function is 

obtained, represented here by g("ro , t), which conforms with the symbols 

in general use [9]. 

When working with a continuous vibrating system one important fact 

about g(r0 t) is already known; it may be separable into functions of 

time and space so that the partial derivatives in equation (2.7) become 

ordinary differentials. For a simple system it would then be possible 

to relate "ro, r, to, and t, by using the Fourier transform in both 
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time and space. The violin is not, "however, a simple system, which 

makes it much more difficult to find a closed form solution to equation 

(2.7). When dealing with complex systems it is much easier to ignore 

the time dependance and only calculate the steady-state response. It 

is then, of course, impossible to determine the transients, but in this 

instance they are of no concern. 

The use of the Green's function is, for most applications, 

similar. First the equation of motion is written in the form of 

equation (2.7). Next the terms g(rt) are expanded as a series of 

orthogonal functions which together make up a basis. This is similar 

to a Fourier series: g(rt)=exp(jwt) ai $, ("r) with the terms 

a1 complex. Equation (2.7) may then be written as 

(z. sý (jw)mýaý ý(r) 
+A 

a1ö 4 (ý) la r" = Bf(r)5(r- o) 
j 

with the time dependant terms eliminated. Next let ,; and 

combine terms in equation (2.8) to yield 

(2.9) DUjw)m 
+ A6ni ai ýi(r) = Bf(r) 5(r-r 1 

Each side of this equation should then be multiplied by 

and integrated, making full use of the properties of orthogonal 
3 

functions, namely Jýý dv=0 if iij. This gives 

(2.10) - ýE( jw)m+ Aö'; ']aj f ej(r)dr 
= 

yBf (^o) 41(F0) . i 

Multiplying this by di(r) and rearranging gives once again the Green's 

function 
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(2.11) g(ýo, tl= aiýiejwl =B 
f(F. ) ß(F)0( io) 
A [( )Aö ý1i 

where A-1a fv $Z(r)dV. 

It-then only remains to impose the boundary conditions to 

determine the response of the system to the point source atro. 

Before examples are cited, it will be useful to show that any 

number of waves with the same spatial frequency may: be combined into a 

single wave with complex amplitude and phase. At any time t there may 

be an infinite" number of waves travelling in one direction: 

(2.12) Sf (x, t)=Y(acos(wt+kx+4�)+b�sin(wt+kx + -(WI . 

Rewriting this using Euler's equation and factoring out the time 

dependenttterm leaves 

ýj(kx+e, )- b, 6j(kx+$^ (2.13) 27 JWI1 jikx" e) 
+ bnej(kx+ehlJ+ejwtfln 

n 

By factoring our the exp(jkx) and exp(-jkx) terms, and redefining a as 

a- la,, exp(j$�), this becomes 
n 

(2.14) Qel(wt"kx) + bej(wt"kx) or acos(wt+kx+4) r 

with the proper choice of phase $. 

The string in figure 2.16, driven 

by a force at a point one third of its 

length, with a frequency w-1.5rrc/l, 

makes ,a good example. ' In this case c 

f(t) 

Figure 2.16: The amplitude of 
vibration of a stringy driven 
at L/3 with w.: 1.5irc/L 

is the wave velocity in the string. The equation of motion for a 

string may be written as 
r, 
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(2.15) 6g 
t2 + Tý2= f(x. t)b(x-xo) 

at 

with e the mass per unit length and T the tension. The Green's 

f unction equationýof motion-may then be written directly from equation 

(2.12) as 

(2,16) g(x, t)ýý(xl 6A n; EC 
for unit force, with c2=T/ e. 

Now a set- of orthogonal functions which fit the boundary 

conditions are m; =sin(nix/L), which gives öf=(ni/L) and Ai'L when 

i=0 or L/2 when 00. Substituting this series into equation (2.16), 

along with the values of. xo and w0,: produces a series of sinusoids 

whose amplitudes vary as TT2T(i2 -2.25)/L. This produced the 

interesting waveform"` of figure 2.16, " which shows that there is no 

motion from x=0 to L/3, and that from this point to x-L the string 

amplitude is that ofa sinusoid-with a wave number of 4L/3. 

If the ends of the string had not been fixed, but held by 

impedances Zjý and ZZ, then the boundary conditions would have produced 

different shape. functions 4; (x). With the origin now at the center of 

the string the boundary conditions may be written as 

(2.17a) F(-L/2) 
_d -L/2 T_ ý(-L/2) 

=jwO-L/2) Z1 dxZ, 
and -- 

-d4(L/2) T (2.17b) 
dx 

jwO(L/2) 
2 

Now let 4; =sin (qx + iir/2), where the in/2 term allows both &ven 
and 

odd symmetry, and substitute this into the boundary conditions to give 

(2.18a) 1 gcos(-qL/2+h1/2)=LT sin(-qL/2 +ri/2) 
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and 

(2.18b) -Z q cos (qL/2 + TT i/2) =ýT sin(gL/2+lTi /2 ) 
2 

These may be combined and rearranged to form 

(2.19) grzi 2-] =- tan(qL/2+tti/2) Z, Z2 T 

which, when Z, and Zi »>1 is 

-1T 1 
(2.20) 

q rL JT z, +z2) 1 
lW Z1 Z2 J 

The effect of ,a compliant termination for the string can easily be 

demonstrated. A spring-like termination at one end with an impedance 

of -jk/w makes gs-itr/[L+(T/k)]. In effect the string's resonance 

frequencies are all lowered as the denominator in equation (2.16) is 

dependent on q. More complicated impedances are easily treated in 

this manner. 

The great advantages of this type of analysis will make it 

possible to improve the model of the violin in chapter 5. With driving 

forces that are a function of = it is possible to predict the reaction 

of a continuous system to any form of periodic excitation. And when it 

is impossible to calculate the mode shapes of an object they may be 

determined experimentally for use in the equations of motion. 

t 



CHAPTER 2 EXPERIMENTAL AND THEORETICAL METHODS PAGE 40 

[1] C. Raman, "On the mechanical theory of vibrations of bowed 
strings", Indian Assoc. Cult. Bull., vol. 15, pp. 1- (1918). 

[2] F. Saunders, R. Watson, and W. Cunningham, "Improved 
techniques in the study of violins", JASA, vol. 12, pp. 399- 402, 
(1941). 

[31 C. Hutchins, "Instrumentation and methods for violin testing", 
Journal of the Audio Engineering Society, vol. 21, pp. 563- 570, 
(1972). 

[4] W. Reinicke and L. Cremer, "Application of holographic 
interferometry to vibrations of the bodies of string instruments", 
JASA, vol. 48, pp. 988- 992, (1970). 

[5] E. Jansson, N. -E. Malin, and H. Sundin, "Resonances of a 
violin body studied by hologram interferometry and acoustical methods", 
Physica Scripta, vol. 2,. pp. 243- 256, (1970)., 

[6] D. Gabor, "Microscopy by reconstructed wave-fronts", Prodeedings 
of the Royal Society, series A, vol. 197, pp. 454- 487, (1949). 

[7] A. Porter and S. George, "An elementary introduction to 
practical holography", American Journallof Physics, vol. 43, pp. 954- 
959, (1975). 

3 ., 

[81 My thanks to Roger Darlington who constructed this circuit. 

19J. Morse and Ingard, Theoretical Acoustics, McGraw-Hill Books, New 
York, (1968). 

r 

4 



l 

CHAPTER 3 DYNAMICS OF THE BOWED STRING. PAGE 41 

The Bowed String. 

Many people would consider. the motion of the bowed string to be of 

little interest. At first glance it appears merely to be a variation 

of the plucked string, the sort of problem encountered in elementary 

differential equations. It would appear that the bow draws the string 

aside until static friction is overcome, leaving the string free to 

vibrate until it is once again captured by the bow. But, what if the 

bow pressure (which is the term that string players use to describe the 

normal force acting between bow and string) is increased without an 

increase in bowing speed? It would then take a larger deflection to 

overcome friction. ". This -would mean that the period of vibration is 

dependent on both bow pressure and speed, a conclusion which cannot be 

truel One has only to watch a 'cellist as he "leans" on the bow to 

produce a sforzando to see that, even over a wide range of bow pressure 

and speed, the pitch is unaffected. Clearly some dynamic consideration 

has been ignored. 

Herman Helmholtz was the first to shed light on this problem [1]. 

He designed an optical instrument to study the motion of a white speck 

on a blackened string and from his experiments concluded that the 

motion of any point on the bowed string 

could be represented by a sawtooth wave, - 

such as that shown in figure 3.1. The 

rising and falling portions are related 

to the distance between the observation 

point and the string's. end, and to the 

string length. If the string is viewed 

as a whole then the wave form may be 

represented very well by two str- aight 

C4 

time 

os 

t t 

Figure 3.1: Helmholtz motion 
of a bowed striAg, ob - 
served at a point xe. 
The string flies back dur- 
ing the interval if and is 
captured by the bow over tc. 

to 
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Eigute 3.2; The slope dis- 
continuity pictured above 
describes a parabolic 
curve as It travels 
around the bowed string. 

lines with a discontinuity of slope 

which travels around the string on a 

parabloic envelope. It is this envelope 

which is seen when the string is bowed 

(figure 3.2). 

The slope discontinuity produces 

velocity and acceleration 

discontinuities which also travel around 

the string. When the string is released 

from the bow the acceleration 

discontinuity travels towards the 

bridge, reflects from it with nearly opposite phase, and as it passes 

the bowing point, initiates sticking. It then continues along the 

string, reflects from the nut (the string's termination at the end of 

the fingerboard), and initiates slipping when it once again reaches the 

bow. The release or capture by the bow is then precisely controlled by 

the time it takes for the wave to travel around the string. There are, 

of course, limitations to this model. Second order effects alter the 

wave-form slightly, but then so much in music depends on subtleties and 

cannot be ignored. 

It is easy to see how a musician can control the dynamic level 

using the Helmholtz model of string motion. The force at the bridge 

from each string mode is proportional to its amplitude. An increase in 

bow speed or a change in position will change the amplitude by altering 

the distance the string moves in the time interval between capture and 

release. Some other factors of string motion are not, however, so 

easily described using the Helmholtz model. 

Nearly fifty years later, C. V. Raman began a detailed study of 

bowed strings [2]. He used velocity waves to describe the string 
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motion and went into far greater detail than, did his predecessor. By 

using the simple two state friction model (a coefficient of sliding 

friction td acting when there is, a non-zero velocity between two 

objects and a coefficient of static friction yAs when they are not 

moving) and assuming equal damping of string modes, he confirmed 

Helmholtz's experimental work and firmly established the basic 

principles of the bowed string. 

At this point it will be of interest to look at the Fourier Series 

representation of Helmholtz motion. 

(3.1) y(x, t) =AýL r, ýsin(nnx/L)sin(wnt) ,. 
Viol 

with wa cut/L, c- _j-T7-e., E- lineal mass, and T- tension. 

From this it is apparent that all of the string modes, even those with 

a node at the bowing point, have been excited, each with an amplitude 

of A/n2. The force acting on the bridge is related to the slope of the 

string at that point so that, if the spatial derivative of equation 

(3.1) is taken, the force spectrum contains all harmonics with 

amplitudes proportional to 1/n. It would then appear that the spectrum 

of forces acting on the violin body is independant of bowing position.. 

Practical experience shows that this is not the case as bowing 

nearer to the bridge, which requires a larger bow pressure, will 

produce a sound which the violinist considers to be "richer", a sound 

which has in fact 
. many more high frequency components than would be 

produced when bowing at the finger board with a light stroke. ' Clearly 

something has failed to be accounted for in the Helmholtz model of the 

bowed string. I 

Arthur Benade suggests that the bowing process is highly 

non-linear and this lead seems a good one [3j. He states that 
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Helmholtz recognised the existance of harmonics in the string motion at 

points well away from the bowing point which should not have been 

excited when bowing at a node. Losses with each wave reflection and in 

tl. e .. f-rýr.. --A ýL... ..,... _.... .... -8-3. t. .. C 

VIm, x, l tt 

k, 

m: zjtt) 

k: 

Figure 3.3: Two degree-of- 
freedom system driven 
by a bow with a constant 
velocity v. 

6S4c a%. a 11.69 aA L4 bLL LIVLL-L. C LV W1ULll VL 

the bow certainly help to excite these 

modes, but it is the non-linearity of 

the bowing process which is in fact 

primarily responsible for this 

phenome non. 

Before considering the bowed string 

a simpler system, such as the one in 

figure 3.3, may be profitably, studied 

and will elucidate many of the 

principles of string 
, 
motion. The mass 

in this system is being driven by a bow 

with constant speed V and a friction 

force NM(v), whose characteristics are' 

like those- in figure 3.4. As long as the relative velocity remains 

positive or very small, then the friction curve may be idealized as 

, U1-0.5 [exp(-v/10) - exp(-v/100)] +0.2, which fits the data available 

on string/bow friction [4]. The equation of motion of such a system 

may be written as 

(3.2) ý, x(tI= NEA löp o2')(-1 )P] NB 
P. O 

where 'S- 1/10 and 04' 1/100, with the-expression for expanded into 

series form. It is possible to again use series expansions to change 

the right-hand side of equation (3.2) so that 
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(3.3) Z1 (t) = N¬Aj(x(t)l? 1äP6-'v CV, O`yl1 + NB 
P-o 

If k (t) is thought of as being a single frequency term, then 

powers of k (t) appear on the right hand side of equation (3.3). These 

powers introduce new frequencies into the equation so that k(t) must 

equal zero,. "a trivial solution. Obviously x (t) must include all of 

the possible frequency combinations which arise. With k (t) 

represented as. a Fourier Series, 

+00 

(3.4) X (t) QrelWrt 

7=-0o 

so that it can take on any periodic form at all, the power series in 

equation (3.3) can be solved, although it becomes very lengthy. New 

frequencies appear, in many different ways. When P--2, 

(3.5) x (t) _Z7am0n2lw(m*n)t 

m ý1 

and when P= 3, 

(3.6) a aflap eJw(m+ý+p)t 
m 71 p 

and so on. Physically this means that the system vibrates not only at 

some resonant frequency, but also at any multiple of that frequency or 

at any combination of two or more frequencies. Using equation (3.3) it 

is possible to work out the motion of the simple system, although the 

process is exceedingly tedious. Table 3.1 lists the simplest 

combinations of w and w, the two normal modes of the system, which 

occur with the parameters given in the table. The origin of the 

frequency components which Helmholtz observed in a string bowed at a 
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node should now be obvious: 

they were due to combination 

tones. 

By including only terms 

up to third order in the table 

the number of - possible 

frequencies has been, 

considerably reduced, but even' ' 

so the list is lengthy. What 

would happen if, rather than a 

two degree-of-freedom system a 

continuous one were dealt 

with? When the system has a 

series of harmonically related 

PAGE 46 

Order of Radial tow it is 
Coefficient Frequency obtained 

1 170 
1 460 
2 290 460-170 
2 340 2*170 
2 630 460+170 
2 920 2*460 
3 120 290-170 

460-34U 
3 510 340+170 

3*170 
3 '750 920-170 

290+460 
3 800 630+170 

340+460 
3 1090 920+170 

630+460 
3 1380 920+460 

3*460 

Table 3.1: The simplest combination 

tones which arise in the bowed 

lumped parameter problem. 

modes, as a string very nearly, 

does, it is possible to use the same analysis as that applied to the 

simpler system, but such an approach is frought with difficulties. By 

working in the time 'domain the problem may be more effectively 

analyzed, as recent work in this field has shown [5,61, but the 

frequency domain approach still yields some valuable information. It 

is quite easy to demonstrate how bow placement, speed, and pressure 

affect the tone quality of a bowed string. To begin, the equation of 

motion at the bowing point with second order terms may be written as 

(3.7) i! i NA(') jaeyWt_ NAf z Q? ICI? l eiw(mrn)t 
2 

with Z71 the point impedance of the nth string mode, which may be 

determined using the Green's function approach, and where the operator 

r1is defined as r1- [f'exp(-Y1)-oe'exp(-c()]. If the frequency terms 
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are equated, then the normal modes are defined by the series of 

equations 

(3.8) a,, = NA(-2' ý ýa,, cp/(F-., -NAr-) ,1 2 lip 

for all values of n, with m±p= n. These can be solved by first 

assuming that all of the coefficients a., are those predicted by the 

Helmholtz model of string motion, calculating a new set of coefficients 

with equation (3.8), scaling the terms to match the bow velocity, and 

iterating this process. Figure 3.5 demonstrates the change in the 

coefficients of the second harmonic when the bow force or velocity are 

alterred. 

It is immediately apparent that the coefficients a., are influenced 

by the impedance Z, which for a string is dependant on the bowing 

position, and, by speed and pressure through V and N. It is easy to 

see that in a bowed string the amplitude of each harmonic is slightly 

changed due to the combination tones-which arise and, as these depend 

on the way the string is bowed, the timbre will be alterred. 

Increasing N or decreasing il will mean that the, combination tones 

3S 

e 
30 

a 
25; 

JL 1l1ß 
Relative value of Nf 

Figure 3.5: The way in which 
bow pressure and speed alter 
the amount of second harmonic 

present in the steady-state 
vibration. Nr=N(Ue'''- oce^'ý1 
with '=bow velocity, N=pressure. 

become more important, so that , the 

player should hear more high frequency 

components, a phenomenon which has 

already been seen to occur. 

From the discussion so 'far one 

would expect that with highý'bow speeds 

and low pressure the combination tones 

will exert little influence on the 

vibrating string, which will exhibit 

Helmholtz motion. As the term Nl is 
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40 
C6 

J 20 
N 

ti, 

01 
5 10 13 
Harmonic 

Figure 3.6: Harmonic content of 
'a note bowed near the bridge 
Q, and near the fingerboard 

increased ' the string motion'' will 

change significantly, as demonstrated 

in figure ' '3.6, where the frequency 

content of two notes bowed on a cello 

are plotted. 

There are limits to the magnitude 

of N which allow an ordinary solution 

to equations (3.7). This becomes 

clear"when second order terms in (3.8) 

are ignored to produce equation (3. Ba) below. 

(3.8a) Z-, - NA[" 0 

As the NAr term is the only one which supplies energy to the system, 

through its "negative resistance", it must have a greater value than 

the losses"in'Z. ' Otherwise energy input cannot balance the losses. It 

is then the total negative resistance which controls how the 

oscillation builds up. 

There is also a maximum value to NAr above which the solutions 

for w in equation (3.8) become purely imaginary and oscillations cannot 

occur. 

Both of these phenomena occur in the bowed string, although the 

mechanism is somewhat 'different. Raman discussed the "minimum bow 

force" (the minimum value of NAI' ) in his book [2] and J. Schelleng 

summarises work on this area in his excellent paper, "The Bowed String 

and the Player" [7]. 
T 

The maximum bow force is reached when the Helmholtz discontinuity 

can no longer dislodge the string frone the bow's grasp. When this 

occurs a rasping growl ensues. If the flyback portion of the Helmholtz 
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wave lasts only xa/L of the cycle with xo the distance between the bow 

and the bridge, its velocity must be V L/x, during that interval. The 

magnitude of the force discontinuity is then ZCV L/xo, with Zo" Es ce 

the characteristic impedance of a string. The condition for maximum 

bow pressure is then 

(3.9) Nmax = ZZcV L1 (/tds -, ud ). 

The minimum bow force occurs when the discontinuity just has 

sufficient time to return to the bow and release the string before 

friction is overcome. At lesser forces the string is released before 

the discontinuity reaches the bow and another wave is sent out. As 

there are now two, or more, discontinuities on the string, the 

fundamental jumps to a multiple of the fingered note and the 

time-keeping function of the Helmholtz wave is restored. Schelleng 

derives the value for minimum bow pressure, which is dependent on the 

impedance of the bridge and body [7] 

(3.10) Nmý� = 
Z_ 1 Lz 12r(, Lts -P-d) xö , 

with r defined as the loss term for the first string mode. This 

estimate of N,; n is, only good to an order of magnitude., 

Examples of the frequency content of waveforms which exhibit the 

limits of bow parameters, along with the cases when these limits have 

been exceeded, are shown in figures (3.7) and (3.8). 

The limits on N max and N,,,;,, differ in their. dependance on bow 

placement so that the range of pressures and speeds which may be used 

increases as the bow is moved away from the bridge. These results are 

illustrated in figure (3.8) where the range of pressures, for a given 
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Figure 3.7: Multiple slip motion of a bowed string. 
demonstrated by these response curves. A 
'cello was bowed progressively faster to pro- 

duce oscillations with (a) odd harmonics attenuated, 
(b) every third harmonic prevailing, and (c) the first 
four harmonics attenuated . 

i 

bow speed, are plotted against bow position. From this figure it may 

be seen that at some point very near the bridge the two lines meet. 

With such a high Pressure necessary at this point one would obtain a 
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brilliant sound due to the large amount of, combination tones produced. 

Only the very best string players can make use of the very narrow 

limits on the bowing process which permit such rich and beautiful 

tones! Lesser musicians play nearer the fingerboard and so reduce 

their range of expression, but also avoid the disasterous consequences 

of exceeding the bowing limits. 

The bowing parameters may affect the sound in some other ways too. 

Equation (3.8) shows, that if the real part of NAt' is significant then 

w will be complex and the peak in frequency reponse will be shifted. 

This may easily be observed with strings by bowing heavily and slowly 

on the lowest string of a violin or 'cello. Schumacher observes that 

this effect is somewhat counteracted by the importance of high 

harmonics under these same conditions, which tend to be a bit sharp due 

to string stiffness, thus shifting the listener's perception of the 

pitch. The discussion of this effect in the time domain is extremely 

interesting [5,61. 

There are many other factors which influence the vibrations of the 

bowed string. Stiffness must be the most important of these for it 

causes the partials of the string to deviate from the natural harmonic 

series, the effect being increasingly important as the wavelength 

decreases. It is the simple relationship between harmonic resonances 

which makes it possible for combination tones to become so important. 

With an inharmonic series the generated tones fail to reinforce the 

partials and so "brilliance" is lost. 

Except in the case of wolf-notes, which will be. discussed shortly, 

a very small amount of the string's energy is transmitted to the body. 

To maximize this transfer the impedance match between bridge and string 

must be as good as possible. This requires the mass of the string, and 

consequently its tension, to be as large as possible. Mass and string 
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E/10" , Density, Inharmonicity /1010 

Material Dynes/cm2- gm/cm3 E/Pz 

Silver 7.5 1U. 5 U* DO 
Brass 9.2 8.6 1.24 
German Silver 10.8 8.4 1.53 
Gut 0.39 1.37 2.1 
Steel 19.0 7.8 3.1 
Aluminium 7.0 -2.7 9.6 

Table 3.2: Inharmonicity "of various material' used for strings " [7]. 

frequency stiffness are then the 
String type perturbation -, n,,,, 

Bx103 /n2- parameters to be 

Violin E, steel 0.02 28 considered when 
Violin D. gut 0.25 13 
Violin G, gut 1.3 7 evaluating materials for 
Violin D, wound gut 0.12 '16 
Violin G, wound gut 0.08 19 strings. Several 

'Cello G, wound gut 0.05 22 
Cello C, wound gut 0.13 16 materials commonly used 
Cello C, ̀  on steel 0.23 28 
Acceptable value 0.06 21 for strings are listed in 

Table 3.3: Inharmonicity of various table 3.2 along with 

wound and solid strings using Young's their density and Young's 

expression for inharmonicity [7], [8]. Modulus, upon which the 

stiffness depends. Young 

showed that it is the ratio of E/p? ' which in part defines the degree 

of inharmonicity. This ratio forms the basis for evaluating solid 

strings and also appears in table 3.2. Clea rly silver is the best 

material, aluminium the worst, and gut and s teel about equal for solid 

strings. Unfortunately silver has a very low tensile strength and so 

cannot be used for solid strings. 

By wrapping a core with a dense wire the mass increases without 

greatly affecting the stiffness. Table 3.3 compares various wound and 

solid strings using Young's expression for st ring inharmonicity [8], 

nfo =1+B n' 
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I 

with f77 the frequency of the nth harmonic, and B defined for a 

particular string as in the table. The value n m; n in table 3.3 is the 

number of the partial which falls about halfway between two of the 

natural harmonics. Combination tones cannot exert any noticable effect 

I at such frequencies, and the reinforcement which usually occurs in the 

bowed string cannot occur in such a case. The tone for a string like 

this is quite dull,, as may be heard from a violin gut G-string, whose 

response falls off rapidly above the sixth harmonic. 

Torsional vibrations certainly occur in a bowed string 'too. The 

transverse velocity can only match the bow when it has frequency 

components as dictated by Helmholtz motion, unless the contact point is 

allowed to roll. Thus coupling between torsional and transverse modes 

allows waveforms modified by combination frequencies to exist while the 

sliding velocity remains zero over much of the cycle. 

The motion of the bow hairs has an effect on the string similar to 

that of torsional vibrations. Both of these phenomena have been 

treated in the time domain, although their musical effects have not 

been evaluated [5,6]. Obviously they will-be least important at N., - 

for then the transverse waveform is most closely associated with 

Helmholtz motion. 

The wolf-note. 

Torsional vibration of the string makes it possible -for it, to 

exhibit forms of motion which, at times, are vastly different from 
11 

Helmholtz motion and yet still. remain in contact with the bowIover part 

of its cycle. Vibrations such as these, unpleasant in the extreme, are 

known as wolf-notes, and although there are many possible forms for 
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them to take these all owe their origin to the same phenomenon. 

A single string mode and its coupling to the bridge and plate is 

analogous to-the simple lumped parameter system which was used earlier. 

If-the impedances are quite similar a doublet will be formed between 

the two subsystems with two possible resonant frequencies. When bowed, 

both the two-mass system and the single string mode vibrate at both of 

these frequencies simultaneously if the impedance match is close. Of 

course other frequencies are present in the bowed string too but these 

are generally unaffected by the coupling between string and body. 

As was demonstrated in 

equation (3.7), each frequency 

which is excited in a bowed 

string forms a harmonic series 

due to the non-linearities of 

the bowing process. If two of 

these frequencies -exist where 

only a single mode would 

ordinarily be excited, as 

happens when a doublet is 

formed, then the impedances of 
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2 
94 
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104 
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294 

the harmonics formed by 

combination tones are low enough for them, to be excited to an 

appreciable level. Beats occur between the inharmonically related 

frequencies and heterodyne action produces new combination tones which 

all add an unpleasant roughness to the tone. As an example take a 

string whose lowest three harmonics, starting at 100 Hz., are affected 

by the bridge impedance. The fundamental is then split and' the new 

series, in column 1 of table 3.4 above, produces combination tones such 

as those in the second column. These new frequencies then combine with 
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the original list to produce additional ones, and so on. 

It is an easy matter to observe these beats occuring by looking at 

the frequency domain recorded of an 

instrument playing a wolf-note. 

Figure 3.9 shows how ' these 

additional frequencies appear when a 

wolf is in action. 

It is difficult. to establish 

under just , what conditions, a wolf 

will appear in the bowed string. 

String resonances occur whenever 

(3.12) w= nii(L- jT/w7 ) 

80 

60 

ah v 
c 40 

a. 
N 

20 

0125 
250 375 

Frequency in Hz. 
Figure 3.9: Frequency domain rep. 
resentation of a wolf-note. The 
two lowest harmonics in this 
f on a 'cello g-string have impor- 
tant side-bands which cause 
audible beats. 

with Z, the impedance of the violin plate at the bridge. When the 

string and the plate are tuned to the same frequency there are always 

three distinct, real roots to this equation. With the two tuned 

slightly differently there may be one, two, or three distinct solutions 

to (3.12). To determine whether or not a wolf occurs the equation 

which defines the resonant frequencies is rewritten 

(3.13) w3 - wlntrc -w kL+ T+ cnirk 0 
L mL mL 

Then, defining P= -nnc/L, Q= -(Lk + t)/Lm, and R= cnnk/Lm, and with 

A- L/3 (3Q - PI) and B= L/27 (2P3- 9PQ + 2711), the nature of the 

solutions to equation (3.12) are given by 

one real root if B /4 +A /27 >0 

three real, unequal roots if B /4 +A /27 <0. 
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If the string and plate are tuned to exactly w, then invariably 

the three roots are <0: 

(3.14) -k wo 48l27 +13wöo<H10ß + oc'l 271 <0,. a=Tl Lm 

This does-not mean that a wolf-note is heard, for as equation 

(3.14) approäches zero the roots move more closely together until the 

effect disappears. This suggests- several remedies for avoiding 

wolf-notes in string instruments, all of which are in use. 

Increasing the plate impedance will reduce pý and the influence 

of the wolf considerably. Unfortunately, the response of the plate 

will be reduced at all frequencies if this action is taken so it does 

not appear to be a -useful solution. ' The same could be said for 

reducing the string tension, for while pc is again decreased, such an 

action would reduce the force which a vibrating string can apply to the 

plate. 

Some violin-makers go to extreme lengths to ensure that the 

wolf-note occurs at a frequency between two equal-tempered notes, so 

that it need never be excited. This is sucessful only if the violin 

(or 'cello, - in which the wolf is a much more pernicious problem) is 

tuned properly, and even then changes in humidity or strings, or even 

age can displace the plate resonance enough to bring the wolf-note back 

into action. Clearly another solution must be sought. 

The performer has recourse to one method for removing the wolf. 

As the string length helps to determine oc, playing the note on another 

string will have a remarkable effect. The A-string on a violin has a 

length of about. -32 cm. Playing the A(440), which is commonly the wolf 

in violins, on the D-string leaves only a string length of 21.3 cm., 
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while on the G-string a mere 14 cm. of string vibrates at this 

frequency. The lowest of the'strings is by far the most susceptable to 

the wolf-note, as equation (3.14) suggests. Playing this note on a 

higher string will often cause the wolf to disappear but unfortunately 

it is often musically or 'technically essential to use these upper 

positions on the G and D-strings. 

What would happen if a tuned vibration absorber were attached to 

the bridge as is commonly done with 'cellos? The bridge impedance then 

has two resonance peaks, with a vibrating mass that is much larger than 

that of the bridge and violin plate alone at these frequencies. If 

this vibration absorber has significant damping, the resistive 

mis-match between the string and the bridge at the absorber's resonance 

frequency may be great enough to eliminate the wolf-note. 

Often a mass is attached to one of the short sections of string 

between the bridge and the tailpiece, and positioned so that it acts as 

just such a vibration absorber. It is an excellent remedy that may be 

applied' by the performer without sacrificing the instrument's response 

at other frequencies. 

Wolf-notes may occur at other frequencies besides that of the 

lowest front plate mode, but this is the most troublesome. A minimum 

value for Cy,., to avoid this problem has not been determined for some 

work must be done on the perception of wolf-notes before this is 

possible. Schelleng has, however, published a guideline for predicting 

the onset of wolf-notes which is of considerable value [9]. 

Although the causes of the wolf-note have been described there 

remains much to learn about this phenomenon. Bowing angle seems to 
[ 

have an effect on its presence, possibly due to the polariiation of 

transverse waves on a string and its interaction with the bow. Those 

waves polarized at 900 to the bridge motion see a near-infinite 
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impedance at the bridge and the single frequency they vibrate at ulay 

help to set up a stable regime of oscillation. Those waves polarized 

with the same direction of motion is the bridge not only may possess a 

triple root because of the interaction of string and its termination, 

but they couple with torsional modes at the bow which may'supress or 

enhance them. Many other types of wolf-notes exist, which could be 

studied with time 'domain modelling of the complete process. Future 

work may reveal much more about the mechanics of this complex process, 

and about the perception of complex" tones. The bowed string is 

certainly not the simple system it first appeared to be! 
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The Violin's Design. 

a 

It was shown in the previous chapter that, except for the special 

case of the wolf-note, the force acting on the bridge due to the 

transverse string motion is dependant on the bowing procedure alone. 

It is therefore possible to deal with the remainder of the violin, its 

bridge and body, in isolation to learn exactly how it converts the 

energy of the string into acoustic radiation. In this chapter the 

design of the violin will be examined and the action of several 

subsystems, the air-cavity, the back and front plates, and the bridge, 

is studied in detail. All of the parts referred to are illustrated in 

f igure 1.3. 

To understand the reasons which underlie the violin's complex 

design one must keep in mind the ideal frequency response which was 

described in chapter 1 [1]. Briefly, the violin's frequency response 

should be as large as possible up to 1200 Hz., quite low from this 

point to about -2 Kitz. , once again large up to 41Qiz. 
, and fall of f 

rapidly at frequencies above this. The gap between 1.2 and 2 

KHz. coincides with the second vocal formant responsible for the 

irritating nasal sound in in, n, and ng, and its presence in the 

violin's tone is described by the musician as contributing to a nasal 

sound. Unlike the loudspeaker, where efficiency is not of prime 

importance and uniform response is obtained by eliminating resonances, 

a violin should convert as much as is possible of its input into 

acoustic energy. This is accomplished by designing the violin to have 

a modal behavior. Except at low frequencies, this objective is met. 

If pure tones were used as an input this would be an 

unsatisfactory solution as the output level would vary wildly with 

different notes, but the properties of the bowed string and the human 
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ear make possible a "quasi-uniform" response. 

It's well known that if some components of a harmonic series are 

missing the ear still assigns a pitch to these frequencies very near to 

that of the fundamental. This is true even if the fundamental itself 

is missing. Since a complete harmonic series is present in the bowed 

string the ear will assign the correct pitch even if the fundamental 

lies between two resonances and very little sound is radiated at this 

frequency. The loudness of such a note will be that due to the 

summation of each harmonic's output so that even though the fundamental 

is unimportant, the 
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Ejgure 4.2: The frequency response and 
maximum- loudness curve --- below 1KHz. 
of a poor quality violin. 

second" or third 

harmonic may coincide 

with one of the 

violin's resonances 

and produce a loud 

tone. The importance 

of this phenomenon is 

illustrated in figure 

4.1 where both the 

frequency response 

and maximum loudness 

curves are plotted. 

Below the lowest 

resonance frequency 

very little sound is 

radiated although the 

notes in this region 

sound quite loud when 

the violin is bowed. 
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Curves of this type are obtained by bowing at the maximum bowing force, 

a, definite limit which has been shown to give reproducable results [3]. 

The spacing of resonances in this example proved to be ideal. In 

figure 4.2 there are similar curves for a violin whose lowest two 

resonances are not so favorably spaced. The maximum loudness curve in 

this case does not show the same degree of uniformity below 300 Hz. as 

did the previous example. The spacing of these lower resonances is 

indeed critical, as a comparison of figures 4.1 and 4.2 will prove. 

This conclusion is not unanticipated for the LTAS tests described in 

Chapter 1 showed a correlation between the low frequency response and 

violin sound quality [1]. 

Violin technique 

also is well adapted 

to exploit the modal 

response. Vibrato, 

besides contributing 

to the transient 

portion of the 

string's cycle, also 

ensures that more 

resonance peaks are 

included in the 

r to QO 

N It 

figure 4.3: Vibrato plays an important role in 
violin technique. The bands show how the frequency 
variations of a note with vibrato allow the first and 
sixth modes to be excited to a much higher level. 

oscillating regime. The frequency variation of high string modes is 

often large enough. to excite a particular violin mode when a steady 

tone would fall between adjacent resonances. This property is 

demonstrated in figure 4.3. 

Building a violin without regard for its structural requirements 

would result in an instrument which collapsed the first time it was 

strung up. The design must always remain a . compromise between the 
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static and dynamic requirements. The master craftsman is always 

seeking the optimum. 

It is immediately obvious that the violin must be essentially a 

sounding-board mounted on a load-bearing frame. This is the only 

construction which can withstand the string tension, about 250 Newtons 

on-a modern' instrument, and yet retain a large surface which is light 

enough to be driven into resonance by the motion of the strings. 

Another consequence of string tension is the down-bearing force of the 

bridge. This force is proportional to the angle of the string between 

the bridge and the nut. There are two ways to reduce this downwards 

force: reduce the string tension or lower the bridge, and each may 

have dire consequences. 

The force which a vibrating string may exert on the bridge is 

proportional to its tension and so a compromise between the driving and 

static forces on the plate must be reached. 

Lowering the bridge reduces the string's ability to drive the 

violin due to the loss of the mechanical advantage which the bridge 

enjoys. Figure 4.4 will help to make this point clear. Below about 3 

KHz. the bridge behaves essentially as 

a rigid body which pivots about some 

point near to the treble foot [4]. A 

high bridge, as shown in the figure, has 

only a very small component of the 

dynamic string force directed through 

the pivot point, ensuring that most of 

the energy goes into vibrating the 

plate. When the bridge height is 

reduced a larger component is directed 

through the pivot. A compromise between 

(1) 

(2) CLO 

F 
II 

Fl. oint IF 

Figure 4.4: Increasing the 
bridge height imprpves its 
mechanical advantage as this 
vector representation shows. 
F is 32% greater than F. 
in this example. 
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the bridge's mechanical advantage and the down-bearing force of the 

strings must be sought. 

It is the arching which allows the violin to withstand such a 

great down-bearing force. Viols, with their flat plates, had to have 

much smaller string tensions and consequently lacked the power of their 

arched cousins. The total eclipse of the viol family (except the 

double-bass) by the violins indicates the importance of' string and 

bridge design and the benefits of arched plates. There is, however, a 

limit to the amount of arching which can be used. The resonant 

frequencies of many modes are increased by the arch, as may be the 

damping. The range of arching which has been used by luthiers is vast, 

but the extremes in design have never produced results comparable to 

the beautifully shaped plates of the Italian masters. 

Usable materials E 
10 

E Structure Dx8 Dy8 
*10 *10 *16 *10 gm/cm 

Spruce selected 11.0 . 33 . 44 anisotropic 1.4 4.2 -. 13 
by violinmakers sheet 

Urea-formaldehyde 10.3 10.3 1.5 ribbed 1.4 5.6 . 20 

Graphite-Epoxy 2 sheets of 
sandwich 40.31 >. 4 composite 1.4 721 . 12 

on a core 

maple 5.8 . 56 Table 4.1: Materials which 
sycamore 5.6 . 56 
poplar 12.7 . 55 may be considered for violin 
white pine 12.0 . 50 
Aluminum 69. 2.7 making. Dx and Dy are the 
magnesium 45. 1.7 
fiberglass 69. 1.9 orthogonal stiffnesses. 

One area in which the luthier need not compromise is in. the 

selection of a suitable material for the belly. The ktwo main 

'requirements, 
a low density and extremely high stiffness, are met in 

only a handfull of materials. Add to this the benefits of having 

different wave velocities along perpendicular axes and the most 
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suitable natural material must be spruce. Mechanical properties for 

several types of wood, and for some man-made materials which, have 'have 

been used to make violins, are listed in table 4.1. 

It may not be clear why these traits are desireable in making 

violin plates. A plate with low mass will generally vibrate with a 

larger amplitude than a more massive one. High stiffness is essential 

to resist the down-bearing force over a long period of time. It also 

allows the luthier to use a larger plate. The third point is rather 

more obscure. 

Any bowed instrument must be designed so that the strings can -, be 

reached one at a time. It is for, this reason that the top of the 

bridge iscurved. This also means that the body must be rather narrow 

so that the highest and lowest strings may be bowed- thus the narrow 

waist of the violin. The kit, or dancing master's fiddle, was narrow 

for its entire length. One of the reasons for its sudden disappearance 

was its 'small radiating surface which emitted -a feeble sound when 

compared to the violin. 

An additionl"advantage of the narrow-waisted , plates. 'is their 

ability to divide into seperate vibrating areas, each with its own 

series of resonances. A noticable increase in the modal density is 

made possible by the sudden change in wave impedance at the top and 

bottom of the waist. The vibration holograms ý of f igure 4.5 clearly' 

demonstrate this point (plate orientation and mode numbers are shown ins 

figure 4.5- the number 2,1-indicates that there are two antiresonances 

along the violin's length and one across it). But what has this to do-- 

with-the wave velocities in wood? , It, -all becomes clear when one' 

notices that the plate's second resonance has two anti-nodes 
across 

the 

plate rather than along it! This surprising result is explained by the 

difference in the stiffness of wood across and along the grain. Since 
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plate is a dispersive medium, the low modulus across the grain in wood 

reduces the wave velocity considerably in that direction so that the 

[1,2] resonance occurs at a frequency much closer to the [1,1] mode. 

Holograms from figure 4.5 show that this is much closer to the [1,1] 

mode. These two resonances would normally be about two octaves apart 

in a uniform plate with the mean dimensions of a violin. When using 

spruce the [1,2] mode can be used to increase the modal density in the 

violin's weak, low frequency range, giving a more uniform response in 

the assembled instrument. 

Table 4.1 lists some structures which have different wave 

velocities in the x and y directions. The ribbed dssemblies prove to 

be more massive than spruce but the composites, when used in a 

sandwich construction, compare favorably. These composite materials 

are a relatively recent engineering advance. By embedding fibers with 

a high tensile strength and modulus in an epoxy matrix the material 

takes on some of the properties of each. Fiber-glass is the most 

widely known example of this. Glass has a high tensile strength but is 

of course verry brittle. Glass-fiber is extremely flexible, however, 

and when imbedded in a matrix of epoxy a light, flexible, yet strong 

composite is formed. Graphite and Boron fibers are also used, but 

their advantage in terms of stiffness and strength is somewhat offset 

by their cost. Both of these materials are usually used with the 

fibers running unidirectionaly which gives a material with essentially 

the same properties as of the matrix alone when measured across the 

"grain". In this form it has been used with great success for 

golf-clubs, bicycle frames, turbine blades, even violins [511i 

When the stiffness to mass ratio is important, as it is in 

violins, two layers of composite are used to form a sandwich around, a 

light-weight core. On bending this core is subject to a considerable 

j. 
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compresive force normal to its surface yet many light materials are 

able to withstand such a force. Cardboard has been successfully used 

as a core for violin plates [5]. 

In one area graphite-epoxy sandwiches have a distinct advantage 

over spruce: ' the material will not vary greatly from piece to piece as 

do samples of wood. Add to this the potential to adjust the damping 

through the selection of core material and it would appear that an 

ideal substitute is available for wood. Yet any 'commercial 

exploitation of this material has so, far met with little success. This 

is not entirely surprising for a violin is usually valued as, much for 

its aesthetic qualities, the figuring of the wood and depth of finish, 

as for its acoustic attributes. 

Once the material for the plate has been selected, it needs to be 

fashioned into the size and shape which will produce the greatest 

amount of acoustic energy and yet still resist the force of the 

strings. Increasing the plate size may well lower the (1,11 resonant 

frequency, which is a great advantage, and increase the radiating area 

too, but these are offset by an increase in bending moment. The plate 

thickness must then be increased, which raises the resonant frequency 

and increases the vibrating mass. A viola, which has its [1,11 

resonance much nearer to the bottom of a violin's range, sounds nothing 

like a violin when-strung-to the same pitch- its tone color lacks the 

higher harmonics and power because of the large plate size. 

R+ There is . still- another way to increase the output of the [1,11 

resonance without sacrificing a great deal of strength. Cutting the 

f-holes, the long slots near the middle bouts, changes the plate's 

boundary conditions considerably. With the free. edges along the 

central vibrating area the volume of air displaced by the vibrating 

plate is greatly increased. A rectangular plate, clamped on all four 
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sides, displaces almost twice as much air when two of these boundaries 

are removed, and a violin benefits similarly. 

`Strength is retained by using the sound-post near the treble 

bridge foot and the bass-bar beneath the bass foot to spread the load. 

If the front plate was designed so that its lowest mode was near 

the bottom of the violin's compass it would be handicapped by a very 

high mass and its output thereby significantly reduced. Instead, this 

mode is usually located somewhere about an octave above this at 440 

Hz. 'i"where the second harmonic of these low notes will excite it 

strongly. The large gap in between 220 and'440 Hz. is filled in an 

entirely different manner. 

When an opening is made into a cavity, such as the f-holes of a 

violin or the rose of a guitar or lute, a Helmholtz resonator is formed 

with the enclosed volume of air driven by the motion of the plates. 

This is analogous to a base excited, one degree of freedom mechanical 

system. The resonance frequency may be adjusted by changing either the 

cavity volume or the hole area. In the violin it is best located 

between 220 and 440 liz., 290 Hz. having been shown to produce the best 

results [6]. 

Already it may be seen that the design of a violin is a compromise 

between several conflicting and interacting factors. These are most 

easily sumarized in tabular form (see table 4.2 below). 
i -n 

The greatest violin-makers, Stradavarius, Stainer, the Amatis, and 

the Guarneris, experimented throughout their lives on violins with 

greatly varying shapes and sizes. Each developed a characteristic 

style, a unique solution to the infinitely varied possibilities of 

violin design. Those instruments which have the best combination of 

acoustic and aesthetic values have been copied for well over two and a 

half centuries. It is a fitting tribute to their work. 
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Action 

Increase plate 
thickness 

Increase plate 
dimensions 

Raise bridge 

Reduce tstring 
: tension 

'Increase the 
arching 

Cut f-holes 

Desireable Consequences 

-Better able to resist 
the bridge force 

-Lower resonance freqs. 

-Increase radiating area 

-Better mech. advantage 
-More bow clearance 

-Decreases down-bearing 
force of the strings 

-Better able to resist 
the bridge force 

Indesireable Consequences 

-Increases vibrating mass 
-Raises resonance freqs. 

-Increases vibrating mass 
-Increases bending moment 

-Increases down-bearing 
force of the strings 

-Less force to drive the 
violin 

-Increase damping 

-Raise resonance freqs. 

-Helttnholtz resonance -Weakens plate 
-Lower resonance f req s. 
-Greater radiating"surface 

Table 4.2: A summary of the contradictory requirements which deter- 

mine the design of the violin, especially of its front plate. 

The Bridge as a Transmission Element. 

Whereas the spacing of resonances is critical at low frequencies, 

above about 1 KHz. the modal density is high enough so that the 

violin-maker need only be interested in the trend of the frequency 

response, not the particulars. 

As the frequency of excitation increases the plate must divide 

into more vibrating regions, each with smaller and smaller area. This 

may easily be seen in figure 4.5. At, say, 800 Hz., where one would 

expect the front plate to be divided into four regions across, the lower 

portion, the wavelength in air is much larger than the regions 

themselves and a major portion of energy remains in the nbar field 

shuttling from one area to another. The radiation efficiency drops 

quite quickly as the plate divides into more vibrating regions. A 
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trend towards reduced acoustic output with increasing frequency should 

be expected, which may be verified by the frequency response curve of 

an_ assembled violin without strings or bridge, in figure 4.6 below. 

The, increased damping with frequency exhibited by spruce also 

contributes to this trend. 

The skil- 

led luthier can 

make use of 

this reduced 

output to olim- 

irate the irri- 

tating nasal 

sound which 

occurs with 

acoustic output 

around 1200 

Hz., but how then is it possible to obtain the peak in response from 2 

to 4 KHz. which the LTAS tests showed were so important in a good 

violin? It is the unique design of 

the bridge and its action as a single 

degree of freedom transmission element 

which gives a significant response 

over this range. A noble violin needs 

an expertly made bridge to reach its 

full potential. 

A glance at figure 4.7 shows that 

a 
, 
violin bridge consists essentially 

of a solid base with a mass connected 
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Figure 47: The frequency de- 

pendence of damping in plain 
and in varnished spruce (71.7 

to it by a narrow section which acts 
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as-'a stiffness -element. This simple -system is constrained from 

translational motion and so posseses three degrees of freedom, of which 

two may be dismissed as lying normal to the plane in which the string 

forces act. Those modes which occur because of the continuous nature 

ofýthe bridge are at a much higher frequency than these "lumped 

parameter" modes. 

The characteristics of such a, 

transmission element are simple and 

appear in figure 4.8. With the bridge 

adjusted properly so that the 

transmission peak is at about 3 KHz. the 

violin should display an increased output 

in"the important 2 to 4 KHz. region, 

which may be observed in the frequency 

response curve of f igure 4.10. A 

relatively broad peak in transmission is 

desirable if output is to be enhanced 

throughout this region. 

The response of the bridge can have 

a -dramatic effect on a violin's tone 

.f Qý 

F=figure 4,8: The three low- 
Pst bridge modes, which 
may be represented by a 
single degree-of-freedom 
lumped parameter system. 

quality. Take, for example, two bridges with their resonances at 3 

kHz., but" with greatly different values of mass and stiffness. The 

lighter bridge would produce the higher response at 3 kHlz., but while 

this would make a violin sound bright, nasality would inevitably be 

increased. Such a tone is favored by soloists as it stands out well 

against an orchestral background, but is unsuitable for the subtleties 

of-chamber music. The more massive bridge, ' with a "darker" sound 

caused by a decrease in output around 3 kHz., would probably be the 

choice in such a case. The number of possibilities which this presents 
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explains the great variety of shapes in 
y=A sintrx/4 )sintwt). 

:: 
&1155Ywhich the bridge is found [8]. 

'Figure 4.9: Vibrating String. Thus far it has been assumed that 

F" the motion of the bridge occurs only in 

its own plane. In the analysis of string motion it was assumed that 

changes of string tension are only of second order and may be ignored 

however, Arthur Benade, in his excellent book Musical Acoustics, 

maintains that these changes in tension produce an "indirect force" 

which acts on the violin. He states that this force plays an 

important, perhaps'even dominant, role when playing fortissimo passages 

[9]. The argument is straightforward. There is in figure 4.9 a string 

vibrating in its lowest mode with an amplitude of A. The differential 

length 'AS is 

}" 

(4.1) AS= ßx2+AyL =A X 1+ftIy/Ex)2 

As, "Ax, Ay- 0 this becomes a differential which, using the binomial 

expansion, is 

(4.2) dS= 1+ (dyldx)2/2 
. 

On integration this yields 

(4.3) S L+ Azf sin(wt) 
4L 

The change in length is related to the tension by Young's Modulus 

and the component of dynamic force directed downwards is 

kW 

(4.4) - f(t) = 1rrLE(ATT/2L)2sin W-)sin2(wt) 

ý .. 
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For.,, a typical violin E-string L-32.5 cm., r=0.014 cm., .. 16° 

E-1.9x1012 , and F(t)-2.5x105 A2 sin z (wt). It is interesting. to note 

that this form of excitation occurs at a , frequency of 2w: 

(4.5) f(t)=TW E (Atr/2L)2'sin(e)cos (2wt) 
2 

This indirect force "may be compared. with the second harmonic Of the 

direct excitation applied. by the string as both have the same 

frequency. If the ttolnlioltz -approximation for string motion and the 

same, E-string with a tension of 7.6x106 Dynes are used, then the 

magnitude of the .. second harmonic direct force is about 7.3x10s A 

Newtons. For all amplitudes likely 
. to be encountered, (the 

approximations break-down with large amplitudes in any case), this 

direct force is at least. an order of, magnitude larger than the indirect 

force. One should not, however, assume that there is no musical 

importance of this phenomenon. It would be of value for someone to 

explore, both mathematically and experimentally, this indirect form of 

excitation and to compare it with the musical consequences of the 

bowing process which, though small, have already been shown to be of 

importance. 

The Function of the Sound-post and the Back Plate. 

tr 

It has already been said that the sound-post serves not; only to 

help support the belly against the down-bearing force, but_also acts as 

a 
'. 

pivot for the bridge. (See figure 
, 
4.4) The post is made-of spruce 

but its properties and even dimensions vary considerably from one, to 

another. It is held in place by a jam fit between the plates which is 

r, ý'' ;ß 
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quite secure (unless the strings are loosened). Its importance as a 

resonator may be ignored for its lowest longitudinal mode occurs at 

about 20 KHz., but as a direct coupling between the plates its location 

is, of extreme concern. Replacing the post or moving it slightly may 

entirely alter the character of an instrument. Such is its importance 

that the French refer to it- as "l'ame", the soul of the violin. 

Obviously the sound-post will alter the stiffness of the belly and so 

play an important part in determining its resonance frequencies. What, 

ideally, is its function and how does it improve the violin's response? 

If not for the sound-post and bass-bar, the impedance of the plate 

at each bridge foot would be similar and the bridge -would rock about 

its center of gravity when driven by the string. With the feet moving 

equally but in opposite phase excitation of the second plate mode 

(figure 4.5) would be very efficient but the first mode would hardly be 

excited at all. With one foot constrained the first mode can be driven 

much more effectively. Fixing the treble bridge foot has an advantage 

as the leverage is increased for the lower strings in the critical low 

frequency range. Unfortunately the second mode would be suppressed if 

t" 
one foot remained stationary. If, however, the post presented an 

impedance to the belly which was very high at the [1,1) resonance 

frequency, yet matched the plate's impedance at the [1,2) resonance 

frequency, both modes could be efficiently driven by the bridge. This 

simple view of the sound-post's function is of course far from ideal, 

but it does demonstrate that the impedance which it presents to the 

front plate is crucial to the violin's performance. 

Whatever impedance, characteristics the post has arises if ran its 

contact with the back plate. -Thus one would expect that the back is 

designed not solely as an efficient radiator but as an impedance device 

as well. The fact that the back, is made from maple, which is much more 
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dense than spruce, lends support to this idea. It would be interesting 

to, measure the proportion of sound radiated from the back plates of 

some' of the best violins, but such a project is beyond the scope of 

this work. Instead, a good factory-made violin of the 1920's was 

tested with some interesting results [10]. 

In this experiment the violin's front plate was removed and the 

ribs, with the back still in place, were fitted into an outside mould, 

such as used by some luthiers for constructing the bouts. Caulking 

compound was used to seal any air gaps and then the front was glued 

back into place. The mould, with the violin sealed into it, was then 

attached to an 8'x 8' baffle and placed in an anechoic room. Seventeen 

microphone positions on' each side of the baffle were used to measure 

the sound power of the violin, with the sound-post in place. These re- 

sults appear in 

30 figure 4.10, and 
cr 
m a suggest that the 

20 back' plate radi- 
t 

it it ation is about 5 
It vvr I 
v V'1 1 10 v dB less than 

that of the 

1230 front plate, 
Frequency In kHz. 

except at the Egure 4.10 : The sound-power on both sides of a 
violin mounted in a large baffle. back's (1,11 

resonance. Clearly a balance must be struck between the two 

requirements of the back at low frequencies and this is an area which 

could benefit from `further study. The radiation of the back 1plate in 

the test violin was not of great significance and supports the view 

that its main function is as an impedance device, although in the best 

instruments its acoustic contribution may be a noticable one. 



I 

CHAPTER 4 AN OVERVIEW OF VIOLIN DESIGN. PAGE 76 

ti 
The action of the other internal component, the bass-bar, is less 

fully understood. It is generally assumed that its main dynamic role 

is in transferring vibrational energy to the upper and lower portions 

of the belly, but there is still a great deal to be learned about it. 

Is it possible that it provides a smooth change in impedance across the 

end of the f-holes? This is yet another area to which study should be 

applied. 

S, "4 

Modelling the Helmholtz and Front Plate Modes. 

The importance of the sound-post, and the difficulties involved in 

modelling the coupling between the two plates, has led researchers to 

include it implicitly in their models. John Schelleng made the first 

significant contribution to the understanding of the violin's action by 
k 

treating the [1,1] front plate and Helmholtz air modes as coupled 

resonators [11]. Electric analogues were used in his work, however, 

throughout this thesis a mixture of mechanical and acoustic analogues 

are used. 

Schelleng limited the frequency range in his model to below 600 

Hz. so that of all 'the belly's resonances only the lowest one needed 

to be, considered. This mode may be represented as a lumped parameter 

system with appropriate values of equivalent mass, stiffness, and 

damping. To determine these values for the front plate Schelleng added 

a small mass to the region of maximum acceleration and measured the 

shift in the plate's resonant frequency. (Adding the mass at another 

point with a smaller acceleration would have had a smaller effect on 

the resonant frequency. ) From this data and the half-powerpoints it 

is possible to determine all of the equivalent parameters for the 

plate. As this data was obtained from an assembled violin, the effects 
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of the sound-post, back plate, radiation impedance, and any coupling to 

the'cavity's air modes were intrinsic properties. 

The Helmholtz resonator may be treated in the usual way: since 

the dimensions of the holes are much less than the wavelength of sound 

in air throughout the frequency range of interest their shape is 

unimportant and an equivalent piston with the same area may be used to 

represent each hole. Radiation impedance accounts for most of the 

reactive loading and is usually calculated by allowing two end 

correction terms on each f-hole. The mass found in this manner may be 

r f° lumped into one component of the model. 

It is the change in cavity volume which takes place as the plate 

vibrates that drives the air mode. This is analogous to a base excited 

mechanical system, such as that shown in figure 4.11. 

Cf Kf 

Mf CL 

K h 

f(t) Mh 

i 

Ch U 

2 00 300 400 500 600 
Frequency 

Figure 41 " A simple model of the violin b elow 600 Hz. 
Subscripts h and f refer to the f-holes and front 

�plate respectively. 

Schelleng's 

electrical ana- 

logue poduced 

frequency res- 

ponse curves 

similar to the 

broken line in 

the figure for 

each mode's vel- 

ocity. Using the mechanical analogue and a digital computer it is 

possible to duplicate his results. The total acoustic output is not, 

however, simply the sum of these two curves, which must first be 

converted to sound pressure levels. The phase relationship between the 

two sources must be considered before it is possible to undefstand the 

way in which these modes interact. Since the radiators are much 

smaller than the wavelength of sound in air their exact shapes are dot 
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critical. If it was possible to find an equivalent area such that it 

displaces the same amount of air when it moves with the velocity of the 

f -holes or the plate at its driving point, it would be simple to 

estimate the SPL. It is convenient to make this estimate at a point 

along the axis normal to the violin plate at its center. 

For the f-holes it may be assumed that the, air moves through them 

as a uniform mass. The volume flow is then the product of the area and 

velocity. To determine the volume flow (the product of the equivalent 

area and the velocity) of the front plate one needs information about 

the. mode shape which is readily available from vibration holograms. 

Graphical integration performed initially by hand and later by computer 

gave an equivalent area for the test violin of 150 cm: ' in its [1,11 

mode. Each f-hole had an area of 6.3 cm? - . The broken lines in figure 

4.11 represent the SPL at one meter on axis calculated for the f-holes 

and the plate. 

At frequencies well below the Helmholtz resonance the air mass 

displacement will be in. phase with its excitation. When the plate 

moves inwards to compress the air, in the cavity, the air mass will move 

outwards. The radiation from these two sources will then be 180° out 

of phase so that most of the energy will remain in the near field. Air 

will shuttle back and forth between the plate and f-holes with very 

little radiation taking place. One could also say that the force and 

particle velocity are in quadrature so that the work done is very 

small. 

At frequencies well above the Helmholtz resonance the air mass 

displacement is 180° out of phase with its forcing function, so that 

when the plate moves inwards, compressing the enclosed air, so too does 

the air mass. Radiation from the two areas is then in phase and the 

output will be approximately that of the sum of curves "h" and "p" in 
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figure 4.11. 

The phase difference between the two resonators at frequencies 

close to the Helmholtz resonance passes through 90° and the two have 

little effect on each other. 

There can be no doubt that this form of coupling is of benefit. 

Output is. greatly increased, as in the figure, between the two 

resonances, far beyond either one considered in isolation. Below the 

air resonance the radiation is reduced but it is almost impossible to 

produce any significant output in this range in any case. Strong 

excitation of upper harmonics, especially the second, will produce 

sufficient output at pitches below the Helmholtz resonance frequency. 

Schelleng's work on'this subject was most important as it revealed 

so much 'about the violin's action at low frequencies, but in 

simplifying it to such a degree many important aspects were ignored. 

The mutual radiation impedance of vibrating surfaces as close together 

as are " the f-holes and the plate is undoubtably of significance, while 

the-effect of the cavity air resonances and the coupling to the back 

plate are certainly of major importance. To be of real use for 

investigating the action of the violin, a model must incorporate at 

least the second of these features. 

Other Air Modes in the Violin Cavity. 

The unique shape of the belly makes it possible for many more 

resonances to occur than those that would be present in a rectangular 

plate. It is not surprising that the air cavity too has any more 

modes than simpler enclosures. 

It is not very difficult to imagine what these lowest few modes 

should be: it turns out that the first, third, fifth, and sixth modes 

w 
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are similar to the [1,0,0], [2,0,0], [3,0,0], and [2,1,0] rectangular 

room' resonances, while the second and fourth are the lowest modes of 

the upper and lower subsections [12]. The first seven modes appear in 

figure 4.12 below. 

- a» 
ýý 

ýp.. 

ýi 
C 

23467 
500 1090 1190 1290 1610 1800 1910 

Egure 4.12: The first seven violin air modes. (111 

Qmin. SPL. Q max. SPL. Q" phase Q- phase 

Of 'these modes only the third radiates much sound. The first and 

fifth modes have a node at the center of the f-holes while the second 

and'fourth modes have very little energy in the `standing wave close to 

the f-holes. Saunders reports that body'air'resonances can be detected 

at'1300, -2600, and 3660 Hz., which confirms that mostýof these air 

, 
modes'do not radiate directly to the outside environment (131. This 

does-not mean that these modes are unimportant! 

It is the first of these which is of most interest as it lies in 

the'important low frequency range and couples very-strongly to the 

[1; 1J=plate mode. Figure 4.13 will help to show why these modes couple 

so'strongly. Consider each point on the plate to be a point source, 

just 'as one would when using the Green's function approach (see chapter 

2). A point at a pressure node would not 

Pressure 
teure 4.13: The lowest 
front plate mode and 
the cavity pressure. 

drive the air mode at all, while those at 

either end of the plate would drive it with 

opposite phase. If the 4 velocity 

distribution across the plate was symmetric 

about the midpoint then the air mode would 

not be driven at all for the contribution by 

17ýý. 
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the upper half of' the plate would be opposed to that of the lower half. 

Of course this is not the case: the lower half of the plate drives the 

air mode much more strongly, as a glance at the figure reveals. It is 

possible to define an equivalent piston area which, when vibrating with 

the same velocity as the driving point on the front plate, represents 

_ the total effective volume velocity which drives this air mode. It may 

be found by integrating the product of differential area, plate 

amplitude, and pressure magnitude at a point, over the entire surface. 

This graphical integration gave an effective area of 54 cr4for the test 

violin's front , plate, and 17 cm? for the back. When dealing with 

the violin plates it is necessary to use both of the effective areas 

which have been described, one for the interaction with the Helmholtz 

mode', and another. for the [1,0,0] air mode. These will be designated 

S., o for the former and' Ste� for the latter, with the first subscript 

indicating the plate and the second the air mode with which it 

interacts. 

When modelling the interaction with the [1,0,0] air" mode some 

account of the cavity's shape and the way in which it affects the air 

mode must be made. Jansson [12] outlines a method using the 

perturbation technique of Rayliegh [14] to deal with this problem. A 

first estimate of the resonant frequency may be made by using the 

maximum internal dimension. For the-test violin the resonant frequency 

based on this measurement was 522 Hz. The pertubation equation is 

L 

(4.8) AM= _1 AS cos(21Tx/L) dx 
L0 So 

where So is the mean cross-sectional area. Rayliegh developed this 

equation for tubes of almost constant cross-section, but Jansson's work 

has, demonstrated that the method gives good results when applied to the 
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-2.5sin(x-7.7)17/13.5 
`2.3sin(x-21.2)tt/9 

-sex 
Mean width 

8cm. 

-0-72(4-304) 

" Inside length 32.5 cm. 
Figure 414: The perturbations used to calculate the 
[1.0.01 air mode's resonance frequency. 
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violin. The perturbations used in finding the effective length of the 

test violin are shown, in figure 4.14 and table 4.3. The air resonance 

frequency predicted. using the perturbation method, 516 Hz., cannot be 

compared directly with the experimental value for this is greatly 

altered by the compliance of the plates, but using the effective length 

improves the accuracy of the model, as will become apparent when the 

completed model is evaluated. 

.. 1 f' 

Perturbation limits Af/f in % 

1 -8Exp(-xl 0 to 5 "2.9 

2 -2.5 Sin (x-77)n 
13.5 7.7 to 21.2 -6.6 

3 +2.3 Sin. (x-21.2)1T 
9 21.2 to 30 -1.2 

4 -0.721Exp(x-30) -11 30 to 32.5 +3.0 

Total change -1.9% 
Table 4,3: The change , In the 11,0,01 resonance frequency 
due to the cavity shape. 

: x. It will also be useful to be able to estimate the losses of this 

mode. - This was no problem with the Helmholtz mode as radiation 

accounted for the largest portion, but here local absorption by the 

walls, thermal losses, etc. may be-significant. Jansson calculates 

the thermal and viscous losses but finds them to be much smaller than 

: those due to the absorption by the wood [12 and 16]. If the cavity is 
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treated as a rectangular room, this absorption should be given by 

(4.9) pw =1 {PZoc, w dS 
2/ 8Pc ý'ý 5 

where. Pr,, is the power lost to the walls, P2' is the pressure, and 

cc 4 is the acoustic absorption coefficient. 

'--'The absorption coefficient is difficult to measure with small 

samples at 500 Hz. An impedance tube test proved to be impossible. 

Values for oG - 0.04 were obtained from the literature (16]. The 

'losses through the f-holes' were ignored and the resistance was 

calculated in the form of a Q-value, Q-21TfW/P, with the stored energy W 

defined by 

(4. '10) .W=11 PZ dV 
2 

ýV 
'- 

The Q-value determined in this way may be compared to Jansson's 

experimental data for a violin cavity encased in, plaster, which gives a 

value of 73., Considering the large range of oe,,, � between different 

samples of wood the agreement between the experimental value and the 

calculated Q of 54 is satisfactory. 

Most of the information needed to model the violin below 600 Hz. 

is now at hand. The work of John Schelleng will be extended to include 

the'coupling between the belly, [1,0,01 air mode, and the back plate. 

Even more important will be the way in which the sound-post is treated, 

for this makes it possible to accurately predict the response of the 

completed violin before it is assembled. 

r 
... 
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The Model., 

Schelleng's model was important for. it was a first step towards 

understanding the vibrations of the violin M. It elucidated the way 

: in which the Helmholtz resonance, formed by the, f-holes and the- 

-spring-like volume of air in the violin body, and the. lowest front 

; plate. mode interact and form the two most important vibrational modes. 

, 
There are of course many other� factors which were not taken into 

account in his model and, which lead to further insights when examined. 

It is now time to develop ,a more accurate model which more closely 

, approximates the behavior of real violins. 

The Helmholtz mode, which in the notation of. chapter 4 is the 

<-. [0,0,0] mode, is only one of the countless resonances which occur in 

the violin. cavity. Every one of these couples with each of,, the front 

; and, back plate modes, and in some case with the f-holes as well. 

Including all of these in the model , obviously gets extremely 

complicated, but from what. was learned in chapter 
.1 

it is the spacing 

of-the [1,0] and [0,0,0] modes which is--, the critical factor at low 

frequencies and higher resonances,. are of far lesser 'importance. For 

this reason the same range as that chosen by, Schelleng,, 196. 
yto 

600 Hz., 

will. be, used. There is one additional resonance which always occurs in 

this range, the [1,0,0] air mode in which the length. of -:,. the enclosure 

; (and to a lesser extent its shape- see chapter 4) dictates the-resonant 

frequency. It is quite easy, to measure the pressure in a violin-shaped 

ýcavity, with a short probe tube fitted into the.. walls, and, an experiment 

of this nature will show that while thej1,0,01, mode_is, in resonance 

the acoustic output of the violin remains rather low. 
, 

This may be 

,. observed in the frequency response curve of figure 
, 

5.1 where the 

contribution., to the response by each mode has been indicated. " Just 
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like 'a l vibration absorber the air mode draws energy from the plate's 

vibration and causes a doublet to be formed. The acoustical 

consequences of this mode will be discussed in some detail later. 

It sometimes happens that the back- plate, -'El, 11 resonance- falls 

into this range as well, although ideally it should perhaps not do so. 

If-the impedance match between the plates through the sound-post is 

good, 'this form of direct coupling will have to be included in the 

model,. "which will make the problem much more difficult. Fortunately, 

even' if 'the imaginary parts of the impedances are equal, the different 

shapes'and materials of the plates will insure that the real parts are 

quite different. Thus it is that the violin'which in figure 5.1 proved 

I, u possess a DacK ptaLe resonance aL ao .i"" 

550 Hz'* did not show any large degree of 

direct coupling. This can be judged, in the 

vibration holograms which show that no 

motion occured at the sound-post in 'either 

plate. One may conclude from- this 'that 

only the air coupling need be considered 

between front and back plates over this 

Frequency 
Figure 5.1: Resonance 

peaks which commonly 
appear in the vlolln's 
tow frequency range. 

frequency range provided that the post's effect on the mode shapes and 

resonance frequencies is known. ý'' 

-There is another factor which should 'be considered ` before 

beginning to model the violin. Although the ribs will not have a 

resonance in the frequency range of interest, they will affect the 

boundary conditions of the plate and lower the stiffness of the-air 

volume for the Helmholtz resonator. As with the sound-post, t'he effect 

of the ribs on the plates may be ignored, '-provided the` way in which 

they change the plate's mode shapes and resonance frequencies are 

known. This will prove to be no obstacle. jTheir -effect on the 
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Helmholtz resonance can be calculated by treating them as a spring-like 

boundary. ' 

The analysis begins by including all of thel elements mentioned 

thus far in an idealized violin, with a right-regular air cavity and 

pistons acting as models for the vibrating surfaces. Such a model is 

shown in figure 5.2. This strange mixture of mechanical and acoustic 

components is used as it is a more intuitive approach to the problem. 

The green's function, equation 
kf cf Ch (2.16), may be used to describe the 

mf mh 

pressure distribýition throughout the 
Air Cavity 

cavity, but before this is possible the 
Imb 

° rt> kb cb equation of motion for the standing wave 

Figure 5.2: Model of a must be developed. This is most easily 
violin's lowest four modes 
with the front plate (f) 

. done in one - dimension and " `the results 
backtb), and f-holes(h) 
treated as lumped pars- then extended to three. 
meters. 

Newton's law, when applied to a 

differential particle of air, may bewritten as 

(5.1) dP dxS=pSdxd2 i 
dx dt 

.. F ,t 
with dP/dx the pressure gradient, S the cross sectional area, and e the 

particle displacement. From this the'equation: of motion may be written 

as 

()d Ze 
_ cz d2 e s: 2 0 d tz dx2 .,. 

and the-relationships between displacement, velocity: and pressure as 

(5.3) u= jwe ,P jfcu , and dX 
=, jwpu. 
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Extended into three dimensions with the vector notation xt+ y3, + 

zk, the equation-of motion with a point source at r. is 

(s. 4) OP(Fr) +d 
P2r) jwps(ý-ra)ulr)dV 

dr c 

usingrthe=relationships. between. displacement, velocity, and pressure in 

a standirigfw-ave. --This equation is, of the same form as equation (2.8) 

with, A--c2 and----B= jw=Pc. The- green's function may now be directly 
f .. 

written from equation (2.12) as, - . 

(5.5) g(r, r�w) - -J CS -K-) 

In-: the violin there are, however, no internal sources; . only the plates 

and-. f-holes drive, -. or are driven. by, the air modes and -these are 

located on- the- cavity -boundaries. , It is therefore possible to perform 

a: surface integration over each plate and f-hole rather than the volume 

integral in the previous-equation., This leaves ;".:..; i 

(5.6) P(r, row) -'w 10 ýýfrlfýý, fýo)u(? )d5 
CS A (k2-K; ) 

The -integral-. (F. ) u("r)dS is the total effective volume velocity 

of the plates and f-holes. The "equivalent" or "effective, piston area" 

which was introduced in the last chapter is related to this integral, 

and may be obtained by dividing it by the velocity of a reference point 

on the vibrating surface. This point is one with maximum lvelocity. 

These areas depend on both the air mode 4 and the surface which drive 

them so it will be necessary to adopt some. notation to describe theca. 

S, Mn is the equivalent area of the mth surface, either f, b, or h, which 
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d rives; or is driven by the nth air mode, either 0 or 1, eg.: S; 0 
f? 1u(? c)IuFdS. Using this notation equation (5.6) may be expressed as 

(5: 7),. -: P(r) '_ -ý 
ýýºir) f uFSF� + ubSbr + uhShn I 

cS .4n (kZ Kz1 

In order to determine K 2. and the shape functions the 

boundary conditions mist be imposed on the problem. As'the`dimensions 

of the violin are much greater in the x'direction (see figure 5.3 for 

orientation) than in either the 'y' or z 'directions, the pressure 

distribution below . 600 Hz will be 

essentially one dimensional. Waves 

travel along the x-axis are affected by 

which 

the 

impedances which they meet at each end, Zo N-01- 
Eure 3' Orientation 
of axes for discussion 

and Zt: J If these impedances are written in 
of cavity resonances. 

terms, of pressure and particle velocity, 

making use of the-relationships in equations (5.3), then 

dP(0)- . wp P (0) So (5.8b) dP(L) jwPP(L)SL 
dx Zo dx ZL 

where: So- and SL are the areas normal to the x-axis at x-O and x'L. The 

change An sign of equations (5.8) is due to geometrical considerations. 

If the pressure is then written as P- a cos(Kx ++), in much the 

same way" as was done in the case of the vibrating string"of; chapter 2, ' 

then equations (5.8) yield 

(5.9a). Ksin(4)= . cos(4)So 
and 

(5.9b) -Ksin(o)=JWPcosfKL+flSL ZL 

r 

zx 
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Rearranging terms gives the equations 

(5: 1oä) K tan (0) = jwpSo / Zo 
and 

(5.10b) Ktan(ý + KL) _ -jWPSL/ZL 

" As long as ZO and ZL »1, as they will be in the case of a violin, 

$ and jwpS, /Zv will be «1 and the nature of the tan function makes it 

possible to express equation (5.10a) as $kjwpS0/ZOK. Using this 

relationship, substituting K-K + n11/L, and once again noting that ZL 

»1, the expressions for K., are 

(s. la) Kö jwp so + SL 
L Zo ZL 

and 

(5: 11bß Kn = (ntt/L)Z- 
So 

+ 
LL 

L 

[Zo 

ZL 

Extending these results to three dimensions yields 

(5.12a) Ký= 1 wvp 52 
+§+ 

Sb Sho 

V 
Izs 

Zc zbbh 
and 

(5.12b) Ký = MIL )2 _ 
/02 SZ 

+ 
Sri 

+ 
Sbl 

+ 
Ski 

V 
[Z, 

Zf Zb Zh] 

where S is the total surface area of the cavity and ZS the average over 

this area of the surface impedance of the wood, mostly due to 

absorption and the stiffness of the'walls. 

The bracketed terms in equations (5.12) are small so that the 

shape functions may be approximated as $(r) =1 and 
41(r) =cos(ffx/L ), with L the effective length as defined in chapter 

4. 'It's not possible to 'ignore the bracketed terms when Kö or K1 
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appear -in the denominator of equation (5.7) as the imaginary part of 

this includes all of the loss terms in Z. The'real' part "of `Kö "'also is 

mostly'due" to the mass reactance of 'the 'f-holes and it 'is` this' -term 

which 'represents the Helmholtz resonance. 

Although the way in which the plates drive the air modes is now 

known, the reaction forces, and their effects on the plates and 

f-holes, still remain to be found. These may be calculated in much the 

same manner as were the pressure distributions, using the green's 

f unction approach. 

,.,,,, Once again, the first step is to write the equation of nation, 

which fora plate is 

5*`13)ph 
z+ 4rP(ý)Ü(r-), 5 + _E_5(_'0) 

at 120-v 1 ds 

where E-- Young's Modulus, l) - Poisson's Ratio, and P(r)'is. the : pressure 

acting on the plate at a point r If' equations, '` ' (5.12) are 

differentiated, the plate velocity may be written in terms 'of 'the input 

force and the cavity pressure using the green's function: 

(5.14) u(r) =L 
(rý ( (ýo)P(ro)dS: +. FOFO) :: ' Ph AA (`oýWZG 

where u(r) must'be obtained for each vibrating surface. 

The velocity of surface m could be written as u(r,,, )" u. W(r,, ), 

with W(=�ý) normalized and the 'vector r. defining a point on this 

surface. Similarly, the pressure distribution on surface m may. be 

expressed as P,, ("r�)= P, h $ (rm), with n indicating'theair'mode. ° It is 

then pössible to rewrite the equivalent area as 

(5.15) Smt1 ýýýý, 
n)VRm)dS 
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which, due to the nature of orthogonal functions, demonstrates the 

property of reciprocity. This makes it possible to write equation 

(5.15) as 

(5.16) um(Fm)= JwV (P S +P S +F 'iii ] 
PhS A(wm -w2) Mo YMO MI mj 

. with only the single mode of interest shown for each surface in. 

In deriving equation (5.7) K2 was obtained directly from the 

shape functions Here it isý, impossible'to do this as the shape 

functions cannot be predicted, due to the complex design of the plates. 

Instead the term (wn -wt ) may be expressed as 

(k/m - w2) + (wg/m)2 ]'/2, with k, m, and E, the equivalent values of 

stiffness, mass, and damping of the plate. 

With the equations foru and P related in the way they are, some 

simultaneous equations must be solved before it is possible to write 

the piston'velocities u explicitly. The algebra is extremely tedious 

but may be simplified if one considers the violin's action. Only one. 

input force, at the treble bridge foot, " need be considerred, and the 

equivalent area Shi is very nearly zero since the [1,0,01 air mode has 

a node at the center of the"f-holes. With these simplifications the 

piston velocities'are [2]: ' 

(5.17a) uF =ßcFE1-ßb(Sbo0 o+ Sb1cxl I- 18 , gta +- ßbh(SkSbt)i0( l JVA 

(5.17b) u= ßbFfßftSý, 
OSb . 

+SrISb lj'prf º, 
(ShoSfISaý«a1) J{/A 

and 

(5.17c) Uh =ßhF[ßý, (Sp. Shýo) + ßPPbýSbOShoS1'ISbI 4 Sý SýSbd0O o(I1/A 

I 
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and where ß,, --JW(keq-W2meq 4 jWE)/A, oon=-jw2p/ICSA (k2 K', )) ; 

and "A., =1/2 when nE[1, b, f] or =1 when ne{O, h) 

A 1-ßc (s ö°(o { Ss, oc, ) - (Sbo + S2ol) + ßfßb ls Sbý Sb sei 000 
1 (5.18) 

)Z«o« 2« (s s)« 0(, - 
ýblh C shs 

ýý i hsdo o 
ýýti 

ho Cl 

Evaluating the model 

Before utilizing' the nadel it cän; be evaluated by, predicting the 

response of a violin and then by.. comparing this"with experimental data. 

In this way it is possible to see whether the simplifications which 

were made in developing the mofdel are valid. However, before this may 

be done, the parameters which appear in, equations (5.17) must be 

measured on the test violin. 

If one were to measure, the parameters with the violin fully 

assembled, the. predicted and measured response would have to be similar 

even if the"modelling was not good, for. the coupling between the plate 

and air modes would largely be accounted for., A much. more severe test 

would involve testing'-'the plates seperately to obtain the equivalent 

mass, stiffness, "and damping, and then reassembling the violin to 

measure the frequency response. There are, however, some major 

problems here: the glue joints'may be vastly different on re-assembly, 

and the plates must be tested on the ribs so that the boundary 

conditions are similar to those of the assembled instrument. 

Additionally, the sound-post cannot be positioned between the plates 

when measuring the parameters in this way, but this should not affect 

the validity of the comparison. 

In order to minimize these problems the plates were tested while 

mounted one at a time upon the ribs. The glue joint between the 
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front-plate and the ribs was not broken between measuring the plate 

parameters and the frequency response of the assembled violin. (The 

importance of the back plate as a radiator is minimal as discussed in 

chapter 4 so that altering its glue joint had an unnoticable effect. ) 

The experiment began by glueing the back plate to the ribs, which 

were in turn affixed to a rigid wooden frame, open at the center to 

prevent any cavity modes from affecting the plate. The test facility 

may be seen in figure 5.4. 

Flure 5.4: Setting up a test in the anechoic chamber. 

Once the parameters had all been measured the ribs were seperated 

from the frame and back, and the front plate glued on. After the front 

plate had been tested, the heavy frame was removed and the back plate 

glued in its place. The complete violin was then tested as described. 

The techniques used to measure the plate parameters were much the 

same as those described in chapter 4. The equivalent mass for each 

plate was found by measuring the shift in frequency which occured when 

a small mass was attached to the antinode. Once the resonant frequency 
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and equivalent mass were known, and the loss term had ` been 

determined from the resonance peak's ý3dB down 'poiäts; the stiffness was 

calculated from the expression (k, - w2me9)1. +w' - 0. Equivalent 

areas were found by integrating the product m, 
1Wm over the plate 

surface, with the normalized pressure distributions ` $o ý1 and, - to 

cos(nx"/L), and with the plate displacement determined from 

vibration holograms. " This tedious 

graphical integration was performed 'by 

computer'with a great savings in -time, 

although ' information ' from the ' hologram 

still needed `to' be 'input' manually' with 

digitizer by `entering the location of each 

fringe point by point: ' A"computer plot " of 
Figure 5.5: " Computer 'I., r, -4jý'-.. ,--, % 
version of a vibration plate displacement is shown in figure '5.5. 

hologram used to The equivalent- areas calculated . 
in this late, equivalent areas. . 

manner are shown in table 5.1 along' with 

the other parameters. "' " 

,- 

. Parameter Units front back "" f=holes' 

5�o cm? _ 150* 150*'" 2x6.3 

, 
Sn1 cmZ 54* 

, 
50* 0 

° m gm 33 47 0024*.. 
k gm/s 2.2x10 * 4.5x10 * ------ 

gm/s 2130 11700 200* 
f Hz 415 515, " _ ------ 1 , 

Table 5.1: The parameters which characterize the violin , 

at low freq uencies, with its sound-post removed. A 

denotes ac alculated value. 

,"., ý 

. .ý 

,: 

': 4 r 

ý, d 

The parameters which describe the f-holes were 'all' cAlculated. 

Basing them on measurements from anassembled`violin gives results 

which are affected by-the plates. Radiation reactance accounted for 

almost all of the mass loading. This term' was `90° out-of'' ut of phase with 
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the f-hole velocity so that no energy was radiated, and represented a 

lossless incompressible flow of air. Both sides of the holes must be 

considered when calculating the mass-loading due to this near-field 

effect. The equation which is applied when a surface has dimensions 

which are «X in air is mrod' aS[1 + 16 S/nR /(31T) ] with S the area of 

one hole. 

The loss term E was calculated in much the same way, however, in 

this case radiation resistance is in phase with the surface velocity 

and therefore energy is radiated from the surface. On the inside of 

the cavity this energy,. goes� to drive -the,, air mode and is already 

included in the equations, of motion. Therefore the radiation losses on 

only one side of each f-hole need to be considered. 

The remaining parameters were measured directly from the test 

violin: the volume and interior surface areas were 1650 cm! and 2000 

cm1 , the length, when modified as described in chapter 4, was 33.2 cm. 

A simple computer program used the parameters of table 1 and the 

equations (5.17) to predict the frequency response at one meter along 

the normal from the center of the front plate. All of the features 

which one would expect to find, the single Helmholtz resonance, the 

doublet of the [1,1] front plate mode, and the , anti-resonance due to 

the' energy losses of the [1,0,0] air mode, appear in the calculated 

" frequency response which is plotted. in figure 5.6. When the response 

measured on the assembled violin is plotted so that the two curves have 

equal areas on the figure, the difference in levels is generally loss 

than three dB and, more importantly, the -resonant 
frequencies are 

predicted to within °a -few Hz. ý Seve ral - experiments of t is nature 

produced similar results: the model gives a good. description`of a real 

violin. 

This is a good point at: which to once again consider the effect of 
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the ribs on the violin's response. It was assumed earlier that they 

need not enter the model as a seperate entity although they would 

J_ _--1-. _ ..... TL... L........ i.,,. s ....... i1 tinny wh4i-h that/ 
aiieCL Lne resuiLS lA VSr1VUb W 7ö. `11%' LPV%&" Utz &J 

impose on the front plate are implicitly included in the method used to 

measure its impedance. The surface absorption and compliance as a 

cavity-boundary were included in the impedance terms of equation (5.7). 

The only other important way in which the walls could affect the violin 

is as a means of transferring energy between the front and back plates, 

but as the accuracy of the model is already greater than the changes 

which can occur in a violin due to humidity, there is nothing to be 

gained in trying to improve the model by including this effect. 

it is interesting to look at the pressure levels which occur 

inside the violin cavity, for they are remarkably high. A half-inch 

microphone with a short probe tube-was inserted into the air cavity, at 

the denter of one= f-hole. At this point the [1,0,0] mo dq was at a 

minimum so that the response curve which appears in figure 5.7 is that 

of the Helmholtz resonance alone. The model predicts sound pressure 

levels of almost 120 dB., a seemingly impössible figure, and yet the 

40 

m30 
;f\ 

V1\/'\ 
//1\ 

j- 
0.20 %_ \I 

V 

10 

200 300 400 500 
Frequency in Hz... 

Ej re 5.6 " The theoretical- and experimental ---- 
frequency response of the test violin without a sound- 

post. 
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. experimental results 

conf irn this. 
_ 120 

^A 

These exper- cm `ý 1 
V 110 

.0/ invents, -which were 
J/ 

conducted without a 100 

soundpost in posi- 

ytion, 
demonstrate 

90 
200 300 400 500 600, 

Frequency in dB. 
that the model is Figure 5.7: The SPL inside the violin. 

Experimental- -- theoretical 
useful for pre- 

dicting the 

, 
frequency response. It is equally valid for use with the soundpost 

present, although only if no motion occurs where the post contact the 

plates. Since this is known to be quite often the case, the model can 

be used to make some interesting observations about the violin, 

although a new set of parameters must be measured for the complete 

violin beforehand. 

The effective area for each plate may be measured in the same 'way 

as before, although their values will be considerably different due to 

the influence of the sound-post. The coupling of modes prevents one 

from calculating the stiffness as before, since the resonant frequency 

of each plate is affected by the air modes when the violin is 

assembled. By estimating the stiffness and damping, and then using 

these values in the computer program, it is possible to find the 

correct values by a process of trial and error. 

Once these parameters are known it is possible to vary any one of 

them and then to observe its effect on the whole violin's response in ä 
a 

way_ which would be impossible by modifying and testing%n actual 

instrument. Of course, this method of predicting the response is of no 

use to the luthier who wants to know how his individual plates will 
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behave when he finally glues them together, but this problem will be 

left for the next chapter. 

Investigating Violin Design. 

In chapter 4 many aspects of violin design were discussed without 

the ability to quantify the results from any change. It is now 

possible to do exactly this, using the equations (5.17). 

Perhaps the most obvious requirement is for light, flexible plates 

rather than massive rigid ones, but the degree to which this is 

important is rather surprising. In figure (5.8) are 'shown the response 

curves of a violin whose (1,1] plate resonance has been held constant 

40 

m30 

20 ßn . 

10 

300 400 500 
' Frequency in Hz. 

figure 5.5: The test violin (---) und the 
Increased output brought about by a 200/o 
decrease in equivalent mass and stiffness(-). 

while the effective mass and stiffness have been decreased roughly 20%. 

An improvement of 2 to 3 dB occurs between the main two resonances -and 

above the doublet. Twenty per cent of the effective mass may sen like 

a large amount but this is only a small percentage of the total plate 

mass. The temptation, to remove more wood fron the plate must be 

strong, but even a3 dB increase in output is of little use if the 
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--I _1I - .1 1_I 
violin coilapsesa 

Another me- 

thod for in- 

creasing the out- 

put involves the 

Helmholtz made. 

Increasing the 

f-hole area will 

increase their 

radiation. It 

also raises the 

roonnnnnn fr - r.. vv.. a. ""ý.... aac 

quency so that the volume must be increased to counter this. Figure 

(5.10) shows" how a change of roughly 40% produces perhaps a2 dB 

difference in the region between the two main resonances, and a4 dB 

difference at the Helmholtz peak. Again, this may seem to be an 

enormous change 

in the violin 

design - but 
iy^ 

large differ- /l 

I 
ences may be 

:/f 
\\ % rý \ 

observed be- 
vý 

...... 

tween the two \- 

violins in fig- 

ures (1.1) and 
200 300 400 500 

(1.2), the one Frequency in Hz. I 
Figure 510: An estimate of the bowed loudness of 

a nineteenth violins with different spacing of the two lowest 
resonances. The solid line demonstrates that the 

century German Helmholtz and plate resonances should occur at 290 

violin and the 
and 435 Hz. to provide the most uniform response 
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other a copy of a Stradivarius. These large German violins have a 

reputation for having a powerful G-string, which is not at all 

surprising considering the differences shown in figure (5.9). 

Another basic feature of violin design which should be put to the 

test is the spacing of the'lowest two resonances. It is the loudness 

. '. curves which are of primary interest in this case and the curves which 

appear in' figure (5.10) were produced by including the second 

harmonic's contribution to the loudness, calculated for Helmholtz 

string motion. - 

The cavity volume and plate stiffness we re'altered to change the 

spacing between the resonances and-after trying many combinations the 

best response was obtained with the peaks at about 290 and 440 Hz. as 

suggested in the literature [3]. , If the other resonance peaks were 

considered as well as these lowest two the optimum spacing could be 

slightly different, but the figures suggested should prove to be a good 

guide. 

Including the [1,0,0] mode in the model brings about a" remarkable 

change in the frequency response, as figure (5.11) demonstrates. A 

40 

A 
/ 

30 

v 

c 20 

10 

250 30 
LL 
0 400 500 600 

Frequency in Hz. 
Figure 5.11: The change in response brought about 
by the-lowest air resonance . 

T 
ý' 
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doublet is"formed between the air mode and the plate, with a pronounced 

minimum at-the [1,0,0] resonant frequency. Its function as a vibration 

absorber-can be- a great disadvantage if the equivalentarea Sfj is too 

large. The response curve of a violin with Sri - 54 cmL shows an 

improvement where--the double peaks occur, but the response at both 470 

and'235 Hz. would-be quite poor. The change in mode shape which the 

sound-post-brings,, -about , is responsible for reducing the equivalent area 

from-54, to 19 cut`- -4n the-test violin, and this latter curve shows that 

the- response --is much more powerful and even with such a value. Ideally 

the anti-resonance would produce an output level similar to the minimum 

between the main peaks, with the doublet well spaced'and an improvement 

bf -a couple' of. ' decibels throughout the low frequency range. In 

frequency response tests of instruments which are held in particular 

regard -this -. often appears to 'be the case, although none of the factors 

which have been discussed are alone enough to produce a good violin 

[4]. 

' It is . not only the area Sri which affects the doublet, for the 

cavity length and the damping present in the sound-box are equally im- 

250 300 400 500 60( 
Frequency in Hz. 

Figure 5.12: The effect of damping on the front 

plate and the (1,0,01 mode when introduced into 
the air cavity. 0x=0.04 . ............... cx=0.14, 
---- cx=0.34. 

portant, as de- 

monstrated in 

figures (5.12) 

and (5.13). The 

lightly damped 

curve in the 

first of these 

f igure$ would be 

produced by a 

violin whose in- 

terior had been 
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varnished. Al- 

though . such a 

violin would be 

much less sus- 

ceptable to the 

vagaries of the 

weather, it would 

certainly have a 

poor response in 

the region of the 

[1,0,0] reson- 

ance. Increasing 

the damping pre- 

sent reduces the 

depth of the 

antiresonance but 

also reduces the 

Helmholtz peak. 

In addition it 

moves the double 

peaks of the 

plate resonance 

closer together 

with a reduction 

in the response 

between the plate 

and Helmholtz re- 

sonances. Some 

amount of damping 

Ejgure 5.13: Changing the cavity length by 
s 1Q °/o greatly alters the response of the 
test violin. (---) "10 °/o , (-) -10 °b . 

40 

ca 30 

J 
CL 
V) 20 

10 

n ºi º I 
ý rý 

ý ý . i º \ 1 º ý ý r 
II 
11 
11 
V 

J NO 400 500 600 
Frequency in Hz 

. 



CHAPTER 5 MODELLING THE RESPONSE OF THE VIOLIN. PAGE 104 

is then necessary-but too much, as -the. figure shows, is 'counter 

productive. 

The cavity, length controls the [1,0,01 resonant frequency and 

consequently the relative strengths of the two peaks that form the 

doublet, although the front plate's impedance is of equal importance in 

this case. Peaks of almost equal strength were produced in the test 

violin with a cavity length of 32.5 cm. The differences between the 

curves in figure (5.13) are small, but perhaps they are enough to 

explain why the length of a full-size violin seldom varies from one 

instrument to another. 

While the plate sizes of violins are very similar, the same cannot 

be said about other members of the string family, the viola in 

particular. Ideally these instruments would be constructed exactly 

like an enlarged violin, but their size would make them more difficult 

to play. Figure (5.14) demonstrates how a 'cello would be nearly the 

size of a typical bass if properly scaled. With these instruments 

designed so differently than the violin it is not surprising that many 

sorts of compromises are reached and a standard design does not exist. 

One modern luthier, Carleen Hutchins,, has tried to remedy this 

situation by producing a new family of stringed instruments which are 

more accurately scaled [5]. Whether these instruments will gain 

acceptance is in doubt for most composers have been aware of the 

weaknesses of violas and 'cellos and exploited their unique tone 

colors. 

It-has been suggested that direct radiation of sound from -the 

cavity modes could improve the response of a violin [6). This 

possibility is explored at low frequencies in figure (5.15). It would 

appear that by opening a hole near one end of the violin, (the upper 

left"or'lower ; right corners would be well suited for this) and 
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increasing the cavity volume to compensate for the shift in the 

Helmholtz mode that this would produce, the response is not degraded. 

-Experiments with such a construction would be of great interest and 

could well yield significant improvements at higher frequencies. If, 

however; this increases the radiation over the important range from 

1200 to 2000 Hz., the addition of this extra radiator would not be a 

welcome one. 

ý1 

ý ý'r 

'. :ý ýr 
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Figure 5.15: Adding a hole to radiate sound from 
the 11.0.01 air mode - changes the response of an 
ordinary violin---. 

In this chapter the violin has been successfully modelled at low 

frequencies and. the ensuing equations used to explore some points about 

', violin design. The function of the sound-post must be included in the 

_model, and although it was accounted for by measuring plate parameters 

with the sound-post in place, this method cannot be used when 

predicting the response of a complete violin from its component parts. 

There are three methods available for doing this. The first 'of these 

would be to calculate the effect of the point impedance w1ich the 
Y 

sound-post provides to the front plate, a technique which would be well 

suited to the green's function approach. A finite element analysis 

would also be of use, but the computer time necessary for this would be 
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prohibitive for those who could benefit from such an approach. The 

third, and most intriguing, possibility is explored in chapter 6. 

[1] 
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2, pp. 243- 256, (1970). 
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Manufacturing Techniques. 

For the vast majority of violinists, the sound of a Stradiverius 

is so remotely related to that produced by their own violin that it 

sounds-like an altogether different type of instrument. Many children 

begin learning to play with an inexpensive, mass-produced violin, which 

is only to be expected, but these are of discouraging quality. How 

many give up a, lifetime of musical enjoyment simply because their first 

explorations are unpleasant and physically painful? When viewed this 

way, the industry has much to answer for. 

Most manufacturing processes are similar. It is the individual 

attention which the luthier pays to his product, as well as his careful 

selection of wood, which makes these violins so much better than mass 

produced instruments. These are'cut, either by machine or by hand, to 

specified dimensions so that, while they may appear to be well-made, 

and may in fact be copies of a fine old violin, perfect in every 

detail, no attention has been paid to their dynamic characteristics. 

It would be unreasonable to expect this to be otherwise for a great 

deal of skill, training, and time are required to employ tap-tones and 

adjust the plates accordingly. 

Of course, some mass-produced violins can be very good- by chance 

the plates may have the correct� spacing of resonances. But, on the 

whole, factory made instruments are poor as the time and expense of 

adjusting each one which requires'attention makes them uncompetitive in 

a market where price is usually of, primary importance. What is needed 

is an-automated method for predicting the response of an assembled 
t 

violin before it is put together so that any adjustments may be made 

quickly and cheaply. 

The model which was developed in chapter 5 was meant to meet this 
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need-but a major obstacle remains to be surmounted. In order to 

include the effects of the direct coupling between back and front 

plates it is necessary to measure the parameters which describe the 

plates with the violin assembled and the sound-post in position. This 

is-of no use in production applications. It is possible to predict the 

new mode shapes and the frequency response of the violin by treating 

the post as a point impedance and resorting once again to the green's 

function approach, but a further posibility presents itself which has 

some additional advantages. 

,,: . 
In chapter 4 the back plate was revealed as an impedance device 

with relatively little radiation when compared to the'front. It should 

then be possible to remove the direct coupling of the sound-post by 

"inserting an internal element to perform the same function, an element 

which could remain in position while the violin belly is tested and 

adjusted. A cross-piece, such as illustrated in figure 6.1, serves 

admirably in this capacity for it is easily made and may itself be 

easily adjusted to have the best possible impedance characters tics. 

Ideally the "cross-bar", as it shall be called, should be made 

from a material which is both light and has a high modulus of 

elasticity. only a small, section need be used to obtain the, dynamic 
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characteristics which are sought. This isimportant as reflections 

from the cross-bar could reduce the effectiveness of the [1,0,0] air 

cavity mode. Additionally, a material with a coefficient of thermal 

expansion similar to that of the plates would minimize stresses which 

could cause cracks under extremes in weather conditions. 

If a uniform beam is to be used for this purpose, it is easy to 

show that spruce is again a good choice of material. The bar must have 

its lowest resonance at about 700 Hz. where its impedance should match 

that of the front plate, as was demonstrated in chapter 4. This 

determines the dimensions of the cross-bar. A match between the 

resistive part of the front plate and cross- bar impedances may be 

easily obtained by adding a layer of some lossy material to a surface 

of the latter. 

A beam designed to match the front plate at its second resonance 

will not of course have an infinite impedance at 440 liz. as ideally it 

would. Some compromise must be sought between the two opposing 

requiremnents and experimental work with many different cross-bars 

performed before an optimum is chosen. Such work is beyond the scope 

of this text, but the feasibility of such a design is demonstrated 

clearly. 

A reasonably good factory made violin was fitted with just such a 

cross-piece and this prototype is pictured in figure 6.2. A curved 

spruce beam, with dimensions of 0.3 x 1.0 cm. was attached to the 

violin ribs, a shortened sound-post wedged between it and the front 

plate, and the impedance was measured in the usual way. After` all of 

the front -plate parameters had been measured the back was gluld on and 

the frequency response, which appears in figure 6.3, was measured. 

This frequency response curve is certainly encouraging. Although 

the spacing of the resonance peaks at low frequencies is not ideal, 
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Figure 6.2: The prototype violin with its cross-bar in position. 

these could easily be adjusted. The modal density is quite high at 

frequencies above 1 KHz. so that, with a properly designed bridge, the 

sort of response curve which was valued so highly in chapter 1 could be 

obtained. 

Once again 
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by using the crossbar to replace the traditional sound-post it is 

possible to predict the response of the completed violin from its 

components. 

With the removal of the sound-post an intriguing possibility 

presents itself. The back plate need no longer be made massive and 

rigid but'coüld be made of spruce, like the belly. Air coupling 

between the plates would then drive the back, perhaps to appreciable 

levels. This possibility was investigated using the model and the 

frequency responses compared in figure 6.4. Unfortunately only a small 

difference is noticed between the different curves, and although the 

effect may be 

noticeable, it 

would probably 

not be 'impor- 

tant enough to 

overcome 'the, 

resistance to 

such a change. 
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important to the violinist, whether novice or virtuoso, and a well 

finished maple back is beautiful to behold! 

Whether a violin constructed with a cross-bar could compete with 

violins carefully made in the traditional way is doubtful. The effect 

of back-plate radiation, while small,, might be noticable when 

instruments of both designs are compared. There can be no question, 

however, that using this new design for mass-produced violins Oould be 

of great benefit as the beam obscures only a small portion of the plate 

when viewed from the- back and it is easy to make any necessary 

adjustments"to the frequency response with it still in place. To make 
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Figure 6.5: The steps involved in manufacturing a violin. 

The entire process may be computer controlled. It is the 

ability to predict the frequency response of an assem- 
bled violin which gives such a system an advantage 

over traditional forms of violin manufacture. 

use of this great advantage at a low cost it is necessary to use some 

advanced production techniques and equipment. 

High labour costs and the versatility of micro-processors have 

combined to make fully automated production centers a reality. 

Machines need no longer be assigned a single, unchanging function as 

part of an assembly line; the same milling machine can cut violin 

plates to size, shape the blocks, make adjustments to the plate 

thickness, and cut the purfling groove when so directed by a 

microprocessor. Even the different cutting tools for these operations 

can be selected automatically. 

The steps necessary to build a violin are shown diagramatically 

below in figure 6.5, but it should be emphasized that the route which 

the pieces follow through a production center is not fixed. It depends 

} 
on the availability of machines when a certain operation is necessary 

and. upon the instructions of the computer. The process is therefore as 

versatile and efficient as its programmer. The entire production 
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process is described very briefly below, with the details of all but 

the last portion, with which this work has been intimately involved, 

left to the production engineers. 

Raw materials, spruce and maple for the plates and for the cross- 

bar, can all be cut and shaped by a milling machine whose cutter is 

controlled-by� computer. Not only violins, , but other stringed 

instruments too,.,: or smaller models such as 3/4 size violins, may have 

their components cut on the same machine if properly programmed. As 

components are finished they are sent to storage areas until needed for 

assembly-or for testing. 

The bouts must initially be thinned by sanding. When these have 

reached the required thinness, they are sent to be formed into ribs, 

along with blocks, corners, and the cross-bar. Vacuum forming 

processes are frequently used for such applications- heat and moisture 

are necessary if the wood is to be easily bent, which means that the 

ribs must be allowed to return to the proper moisture content before 

being glued to the plates. The micro- processor can select 'a set of 

ribs from the holding area with the proper moisture content and join it 

to a front plate, finally adding the sound- post to complete the first 

major portion of the assembly process. 

In the next portion of the process the modelling is used to 

calculate the frequency response and then to evaluate the violin. 

First it is necessary to measure the parameters which characterize the 

front plate. The impedance may be quite easily measured using a device 

such as that designed by Ian Firth [1]. Computer control over the 

positioning, the excitation frequency, and the interpretation of data 

from the analog "impedance head" makes it possible for this to done 

automatically. It is also possible for the computer to measure the 

equivalent areas Sr, and Sr, using a "raster scan" holographic 
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technique over the plate when it is driven at its resonant frequency. 

The most time consuming part of the experimental work required to 

determine the plate parameters involves measuring the equivalent areas. 

To do this 'a vibration hologram must be made, reconstructed, 

photographed, ' and the amplitude function integrated either by hand or 

by a computer, in which case the photograph must somehow be intepretted 

by it. In a commercial application such a lengthy process would be 

uneconomical, but'once again computer control of the entire operation 

makes this possible. Rather than recording the intensity produced by 

the interference of two beams on*a photographic emulsion, as is done in 

conventional holography, a small photocell, which also responds to 

intensity, can be positioned at programmed points to measure the 

vibration amplitude. It is possible to use a small, solid-state laser 

to illuminate a very small area, and the laser and photocell could be 

combined into a single unit, interfaced to the computer. It would even 

be possible to use the same machinery to index, or raster-scan, the 

laser/photocell and to position the impedance head. The computer can 

then determine the vibration amplitude at any point directly and with 

no need for sensitive, large lasers. 

Once all of this information is available to the computer the 

frequency response for the complete violin may be predicted, perhaps 

including many more modes than were used in this research to extend the 

frequency range, and this response curve evaluated. If changes are 

necessary the information about the amplitude distribution for each 

plate mode makes it possible to calculate small changes in' the 'plate 

thickness which will improve the response. It is of course pogsible to 

move the resonant frequencies of any two modes by different amounts, 

even in opposite directions, providing the alterations are carefully 

chosen. 
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once the predicted response of the violin is acceptable it goes on 

to its final assembly where the back is glued on, it is varnished, and 

a bridge, perhaps cut and tested on the same equipment which produced 

the violin, attached. The automated assembly processes which are only 

just begining to be applied in a few leading industries could 

revolutionize the production of violins. 

A violin-maker would no doubt scoff at many of the ideas presented 

in this work. While he might applaud the intention to raise the 

quality level of most factory-made instruments, the analysis of the 

violin's construction, its modelling by computer, testing, and finally. 

the suggestion of a change in design would be dismissed as useless. 

How can one argue with three-hundred years of experience, the 

collective genius of Stradivarius, Stainer, the Amatis, Guarneris, and 

countless others. And yet there is so little of their work in the 

factory made violin, whose body may be a perfect copy of a master's 

work but which lacks their spirit, which sought to reconcile the 

beauties of form and sound. Perhaps through this thesis, or more 

likely another's work whose object is the same, even the lowly, common 

mass-produced violin can be made to sing with a richness they lack 

today. 

The violin-maker need not fear for his craft, for although a 

machine may make a violin with a lovely sound, it is the musician who 

makes the music, and the luthier, with his individuality, that creates 
i 

a thing of beauty. But the machine may give us more people to'enjoy a 

lifetime of music, more people to appreciate the genius of man's 

creativity. 
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