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ABsTRAcT 

This thesis is concerned with investigating and understanding the role and 

consequence of different modelling options and parameter estimation options for 

modelling a complex plant. As systems become more complicated and required new 

technologies and methodologies, more sophisticated maintenance models and control 

policies are need to solve the maintenance problems. The initial chapter introduces the 

review of previous work on a single component system and multi-component system. 

Although in recent years there has been a shift in the maintenance literature from 

consideration of single items to systems composed of several components, so far only a 

few papers have tackled the modelling of actual multi-component plant. In the third 

chapter, delay time concept and analysis technique have been presented. Of 

particularly importance are parameter estimation methods, namely the objective method 

and the subjective methods. In the fourth chapter the component PM model and the 

system PM model for downtimes and costs based upon various PM policies are 

discussed. The key options within maintenance modelling are to determine regular 

Minspection periods for the system modelled as a whole, and to determine the periods 

for the plant as a set of separate component models. An extension to the downtime 

model is presented for the case when the downtime due to failures within system is not 

small, and impacts upon the estimate of the number of failures arising over a specified 

time zone. In the following chapter, we address parameter estimation methods using 

simulated data, and assess the ability of estimation techniques to capture the true 

parameter values. Particular attention is paid to the problem arising during the 

parameter estimating process because of the inadequate recording of PM data and 

implied correlation between model parameters. Finally, a case study is presented of 

maintenance modelling of production plant in a local company with view to improving 

current practice. The model developed is based upon the delay time concept where 
because of an absence of PM data, using the results of earlier chapters, the process 

parameters and the delay time distribution were estimated from failure data only using 

xm 



the method of maximum likelihood. The modelling was repeated based upon 

subjective assessments of parameter, and considerable consistency with the objectively 
based case obtained. For the plant study, modelling indicated the current PM 
inspection program was ineffective. A snap-shot approach is then applied to assess 
other ways of reducing the downtime, and the possibility of improving the PM 

inspection practice. This leads to readily adapted improvements. 

xiv 



Chapter 1 

Introduction 

1.1 The Optimisation of Maintenance 

During the last decade the importance of the maintenance function to technical 

systems has been increasingly realised. Until three or four decades ago, maintenance 

was simply regarded as an unavoidable and difficult to control part of production. As 

systems become more complicated, automated and required new technologies and 

methodologies, more sophisticated maintenance models and control policies are 

needed to solve the maintenance problems. This thesis is concerned with 

investigating and understanding the role and consequence of different modelling 

options for modelling a complex plant. 

One of the aims of research in maintenance management is to provide decision- 

making tools for the maintenance manager. Operations Research / Management 

Science techniques are among the tools which can help maintenance decision making. 

They allow subjective decisions to be replaced by objective decisions, taking into 

account accurately formulated objective functions and a complex set of constraints. 

OR / MS techniques have long been used and appreciated in areas like production and 

inventory management (Pintelon and Gelders, 1992). 

Preventive maintenance optimisation models are mathematical models which aim 

to balance quantitatively the costs and benefits of preventive maintenance in order to 

determine optimum policies. The models can deal with many aspects of the 

maintenance process, such as determining the right type of maintenance, the optimum 
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frequency of execution, the best way of planning and scheduling, the best combination 

of maintenance activities across plants, and the optimum design of maintenance 

facilities. Thus in order to fulfil the maintenance objective, the industrial 

organization needs management skills to integrate people, policies, equipment and 

practice. It also needs adequate engineering and technological skills in order to 

provide the best possible preventive maintenance, repair and overhaul for increasingly 

automatic production equipment. 

There are many ways in which maintenance optimisation models can be applied in 

maintenance areas. One of the main problems associated with maintenance is the 

determination of inspection frequencies. Inspection is one of the key functions within 

PM. The basic purpose of an inspection is to reveal the true state or condition of a 

system. As a result of an inspection, a repair or replacement action may be performed 

to prevent further deterioration or failures of the system. Thus the development of 

models for inspection decisions is mainly centred around determining the optimal 

inspection interval which optimises the criteria of interest such as total expected cost 

or downtime per unit time. 

Of the first maintenance models which appeared in the sixties, many dealt with the 

problem of finding optimal inspection policies for systems which are subject to 

failures. In the beginning, the maintenance models were relatively simple in that they 

considered a single component only, McCall (1965), Pierskalla and Voelker (1976), 

Sherif and Smith (1981), and Valdez-flores and Feldman (1989). However, in recent 

years there has been a shift in the reliability and maintenance literature from the 

consideration of single units to modelling systems composed of several units, see 

Thomas (1986) and Cho and Parlar (1991). Some maintenance models are concerned 

with optimal maintenance policies for a system consisting of several units within a 

machine, or many pieces of equipment, which may or may not depend on each other 

in terms of economic or stochastic dependency. Stochastic dependence implies that 

each component's condition probability depends on the other components'. Economic 

dependence means that set-up costs can possibly be saved when several components 

are jointly maintained instead of separately, and vice versa. Since combining such 

2 



forms of dependence makes the models very complicated, most maintenance models 

consider only one of these dependencies. 

In practice, problems arise because there may be many relationships which exist 

between components to be maintained. Modelling these relations directly and non- 

selectively yields large models, which are difficult to analyse as they suffer from the 

curse of dimensionality. Dekker (1995) recommends a decomposition approach for 

this problem. In such an approach one applies simple models for individual 

components and uses the outcomes as input in a comprehensive model. Other 

problems are encountered in the implementation of maintenance policies for 

individual components. It can be profitable to combine maintenance activities, 

thereby saving common preparation work. Therefore, for modelling a complex plant, 

the system modelled as a whole and as a set of component models will be contrasted. 

In maintenance modelling, most of maintenance models assume the availability of 

data. If the maintenance records of failures and recorded findings at maintenance 

interventions, such as inspections, are available and sufficient in quantity and quality, 

the delay time distribution can be estimated by the statistical method, called objective 

method, see Baker and Wang (1992,1993), Christer and Wang (1995), and Christer et 

al (1995). However enough suitable and correct data is not always present. Since in 

delay time modelling it is essential to obtain the estimates of the delay time and initial 

point distribution, to overcome the problem when there is a lack of data, a method for 

estimating delay time parameters called subjective estimation, suggested by Christer 

(1982), has been developed using opinions of experts for estimation of the delay time 

parameters. For obtaining an estimate of delay time f(h), we use a revised parameter 

estimation method (see Wang, 1997) which is based upon the analysis of historic data 

of failures and the delay time concept where the distribution of the delay time was 

estimated from the subjective data obtained from the expert. 

Most production systems have numerous failure types or modes. Therefore, when 

one is optimising all maintenance for a given system, there is a natural tendency to 

consider every failure type or mode. Here we use the data which recorded by 
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machine operator as a failure mode. The distribution of the delay time has been 

estimated from the subjective data for each failure mode. 

1.2 Overview of the Thesis 

In Chapter 2 we review the existing literature on maintenance models relating to 

the developments and applications of modelling. We distinguish between a single 

component maintenance model and a multi-component maintenance model. These 

models deal with the problem of finding optimal inspection policies for systems which 

are subject to failures. Maintenance models for single components can be useful for 

modelling the maintenance of individual components that are part of more complex 

systems. Due partly to improvements in analytic techniques, the work on policies for 

maintenance and replacement of deteriorating components has recently been extended 

to consider systems comprised of several components which are dependent on or 
independent of one another. 

In Chapter 3 the concept and developments of the delay time modelling are 

presented. A technique called delay time analysis has been initially developed for 

modelling inspection policies for industrial inspection maintenance when the 

equipment is regularly inspected. In maintenance modelling the successful use of the 

delay time concept depends upon how well the underlying delay time distribution can 
be estimated from available information sources. One of the key issues in the delay 

time modelling is the estimation of the delay time parameters which are usually the 

rate of occurrence of defects, the distribution of underlying delay time h of a defect, 

and the probability of identifying and removing a defect at PM. Two basic 

approaches to solve the associated estimation problems, namely subjective and 

objective methods, have been presented using the information obtainable from 

maintenance engineers who repair the machine. 
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Chapter 4 describes an investigation of PM modelling which is concern with the 

downtime and cost aspects of various maintenance policies. The component PM 

model and system PM model are presented in the case where downtime due to failure 

is relatively small. The value of the approach is that it looks at the maintenance 

schedule problem in its entirety, with account taken of the specification of equipment, 
inspection plan and the nature of the plant. By developing two models, that is the 

system model and a collection of sub-systems models, the effectiveness of 

maintenance scheduling for a system can be analysed. We revise the downtime 

model to embrace the case when the downtime due to failures of system is not very 

small. This can change the failure process over the PM period (0,7). The actual 

operating time over the calendar time (0,7) of the system is obtained, and the 

downtime models are then extended to be based upon the actual operating time. 

The parameter estimation options with and without PM information are presented 
in Chapter 5. To investigate and verify parameter estimation methods a simulation 

study is undertaken. We test parameter estimation methods in terms of the ability to 

recapture known parameters, and use simulated data to check the consequences of 
different volumes and types of data upon the accuracy of parameter estimates for 

maintenance models. The given maintenance record data includes the failures times, 

or number of failures per day, and the number of defects identified at PM. The 

importance and value of having data on PM activities and inspection results is 

highlighted. 

In Chapter 6 we present two modelling studies of preventive maintenance (PM) 

policy of production plant in a local company with a view to improving current 

practice. An objective data based model is developed based upon the delay time 

concept where, because of an absence of PM data, the process parameters and the 
delay time distribution were estimated from failure data only using the maximum 
likelihood. Particular attention is paid to the problem arising during the parameter 

estimating process because of the inadequate recording of PM data and the implied 

correlation between model parameters. The case of data deficiency explored in the 

study is important because it is a relatively general situation in practice. A subjective 
data based method carried out at the same company and the same plant parallels the 

5 



objective data based study. The two studies of the same problem provide a rare 

opportunity to compare the model formats and parameter values resulting from the 

two approaches and to consider the degree of consistency between the subsequent 
decision consequences of the two methods. The consistency is reassuring. In 

addition, to reduce the further downtime in this case study, a snap-shot type of'surveys 

technique is undertaken and presented. 

We conclude the thesis in Chapter 7 with discussions and final remarks for further 

research. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Opportunities for the application of Operational Research modelling to problems 

of plant maintenance management are numerous. Whenever a management decision 

arises, the potential for OR modelling exists. As systems become more complicated 

and required new technologies and methodologies, more sophisticated maintenance 

models and control policies are needed to solve the maintenance problems. Thus, it 

is worth noting that one expects attention given to the area of maintenance modelling, 

in general, and industrial maintenance modelling in particular, to grow over the next 

decade. 

Over the last few decades, numerous papers have appeared in the literature which 

deal with the problem of finding optimal inspection policies for systems which are 

subject to failures. This phenomenon is indicated in various surveys of maintenance 

models by McCall (1965), Pierskalla and Voelker (1976), Sherif and Smith (1981), 

Sherif (1982), Thomas (1986), KraIj and Petrovic (1988), Valdez-flores and Feldman 

(1989), Cho and Parlar (1991), Thomas atal. (1991) and Scarf (1997). Valdez-Flores 

and Feldman (1989) used a classification scheme that catagorizes single-unit 

maintenance models into four topical categories: inspection models, minimal repair 

models, shock models and other replacement models. 

Although a system may consists of several components, it is sometimes practical to 

consider the system as a single unit that behaves in such a way that individual 
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components do not directly affect the reliability of the system. Another important 

reason to consider single unit systems is because in practice there are many instances 

in which it is difficult to obtain reliability data for smaller components; whereas data 

for the stochastic behaviour of the entire system is available or easier to obtain. Cho 

and Parlar (1991) also used classification scheme used by Barlow and Proschan 

(1965) to some extent as well as by MaCall (1965). They surveyed and categorized 

multi-unit maintenance models into the five topical categories: machine interference I 

repair models, group / block / canibalization / opportunistic maintenance models, 

inventory and maintenance models, other maintenance and replacement models, and 

inspection / maintenance (preparedness maintenance) models. Multi-unit 

maintenance models are concerned with optimal maintenance policies for a system 

consisting of several units of machines or many pieces of equipment, which may or 

may not depend on each other (i. e., economic / stochastic dependency). Stochastic 

dependence means that each component's condition probability depends on the other 

components'. whereas economic dependence implies an opportunity for a group 

replacement of several components provided that a joint replacement of several 

components costs less than separate replacements of the individual components 

(Sethi, 1977). If all units in the system are economically and stochastically 

independent of one another, a maintenance policy for the single unit models may be 

applied to the multi-unit maintenance problems. On the other hand, if any units in the 

system are economically or stochastically dependent upon each other, then an optimal 

decision on the repair or replacement of one unit is not necessarily optimal for the 

whole system. A decision must be made to improve the whole system, rather than 

any subsystem. Thus, in recent years there has been a shift in the reliability and 

maintenance literature from consideration of single units to systems composed of 

several units (Thomas, 1986). 

In this Chapter, single component and multi-component systems maintenance 

models for inspection will be presented. 
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2.2 Single Component Maintenance Models 

2.2.1 Basic Maintenance Model 

Maintenance can be defined as the combination of all technical and associated 

administrative actions intended to retain an item or system in, or restore it to, a state in 

which it can perform its required function (British Standards BS 3811,1984). Most 

plant including machinery, electronic system, components, vehicles, and buildings 

wear out and fail. The time at which equipment fails however is not known in 

advance, and it is likely to fail when in operation. These operating failures can be 

quite expensive not only in repairing or replacing the item, but also because of the 
disruption and delay to the operation of the system. Thus such items are often subject 

to a replacement, maintenance, or inspection policy. Preventive maintenance was 

advocated as a means to reduce failures, unplanned downtime and even operating 

cost. 

Maintenance involves planned and unplanned actions carried out to retain a system 
in or restore it to an acceptable condition. Maintenance models usually assume that 

the condition of the system is completely unknown unless an inspection is performed. 
Every inspection is normally assumed to be perfect in the sense that it reveals the true 

condition of the system without error. In the absence of repairs or replacement 

actions, the system evolves as a stochastic process. Optimal maintenance policies 

aim to minimize the total expected cost or downtime per unit time for the most 

effective use of systems. 

Since the 1965 survey on maintenance by McCall (1965), different authors have 

produced many interesting and significant results for variations of inspection models. 
The different models developed depend on the assumptions made regarding the time 
horizon, the amount of information available, the nature of the cost functions, the 
objective of the models, the system's constraints, etc. However, many inspection 
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models follow the premise of the basic model presented by Barlow and Hunter (1960) 

(see also Barlow et al (1963)). The model assumptions are generally as follows 

(a) the state of the system is known only by inspection. 

(b) inspections do not degrade the system and take negligible time. 

(c) inspections are perfect in that any failure within the system will be identified. 

(d) inspection ceases upon discovery of failure and repair or replacement takes 

place which returns the system to as good as new. 

(e) the system cannot fail while being inspected. 

(f) each inspection cost is c, per unit time. 

(g) the cost of leaving an undetected failure is c2 per unit time. 

(h) the failure time distribution, F(t) of system is known. 

Hence the total cost per inspection cycle is given by 

C(t, x) = c, n+ C2 (Xn - t)9 , (2.1) 

where t is the time to failure, x=( xi, x2,... ) is the sequence of inspection times 

with x, < x2 < x3 .... and n is the inspection which detects the failure occurring at 

time t, that is, x,, -, <t<x.. The optimal inspection policy x* is the one that 

minimizes the expected total costs due to inspection and the cost due to leaving the 

system in the failed state until it is detected, E[C(t, x )], where 

E[C(t, x)] =1S. "'+'[c, (n + 1) + C2 (Xn+I 
- t)f (t)Idt, (2.2) 

n--0 
x» 

and satisfies the recurrence relation 

-X,. = 
F(x�)-F(x. 

-1) c, 
n (2.3) f (x�) c2, 
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where J(. ) and F(-) are the failure time probability and cumulative distribution 

functions, respectively. When J(x,, ) = 0, x. +i - x,. =- so that no more checks are 

scheduled. The sequence is determined recursively once xi is chosen. 

A difficulty with the model is the computation of the optimal inspection procedures 

numerically, because the computations are repeated until the procedures are 

determined to the required degree by iterating upon the first inspection time, xi. 

Munford and Shahani (1972) established a more convenient way than the basic model. 

They suggested that an inspection policy xP which has a meaningful single parameter 

p. To decide inspection policy xP. they define the probability of a transition from 

state 0 to state I during the interval (xi-1, xi) given that the system was in state 0 at 

time xi-1, which is given by 

F(xi) - F(xi-1) 
for i=1,2,3,..., (2.4) 

1- F(x, 
-, 

) ' 

where 0<p<1, xO =0 and F(O) = 0. And also defining an inspection policy X to 

be an xP -policy if for all i, and for a constant p in the interval (0,1): 

F(xi) - F(xi-1) 
P. (2.5) 

1- F(xi-1) 

The above equation (2.5) may be rewritten as: 

F(xi) =p+ (1 - p)F(x, -, 
), (2.6) 

and 

F(xi) =I- (I - p)l 

= (2.7) 
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where q=1-p Thus for a given p, xi can be found from 

xi = F-1 (I - q'). (2.8) 

To choose an optimal p, let a random variable I denote the number of 
inspections necessary for the detection of state 1. We have 

Pr(I = i) =qHp, for i=1,2,3,..., (2.9) 

so that 

E(I)=Pqi-1p= 
p 

(2.10) 

If the transition occurs at time t and it is detected by an inspection at time xi, then 

(xi - t) is the time for which the system was left in service in state 1. The mean 

time for which the system will be left in service in state 1 is 

,r=2: - 
,f' 

(x, - t)f (t)dt 
i=I i-. jr. 

xiq'-' p- E(T), 

where E(T) t Yý(t)dt. 
0 

Clearely, r is a function of p, that is 

T= T(p). 

So the total expected cost until a failure is detected is given by 
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where q=1-p Thus for a given p, xi can be found from 

xi =F -'(1 - q). (2.8) 

To choose an optimal p, let a random variable I denote the number of 
inspections necessary for the detection of state 1. We have 

Pr(I = i) = q'-' p, for i=1,2,3,..., (2.9) 

so that 

E(I)=iiq'-lp= 
1. 

i=l p 
(2.10) 

If the transition occurs at time t and it is detected by an inspection at time xi, then 

(x, - t) is the time for which the system was left in service in state 1. The mean 

time for which the system will be left in service in state I is 

(x, - t)f (t)dt 

=ixiq'-lp-E(T), (2.11) 
i=l 

where E(T) t ýf (t)dt. 
0 

Clearely, r is a function of p, that is 

T= r(p). 

So the total expected cost until a failure is detected is given by 
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E(C) = c, 1P+ C2 Xi p)'-' p- E(T)), (2.13) 

where x, =F -'(1 -(1 - p)). 

The optimal p can be chosen such that E(C) is minimized. In some cost 

comparisons in the particular case of the basic model, Munford and Shahani (1972) 

have indicated that it is reasonable to suppose that xP is nearly optimal. Later, this 

inspection policy was used for the Weibull failure distribution case in Munford and 
Shahani (1973). Their optimal policy shows that if the system has an increasing 

failure rate, the between successive inspection times will decrease. Similarly it can 
be seen that if the failure rate function is decreasing, the inspection intervals form an 
increasing sequence. In another development, Keller (1974) introduced a continuos 
density n(t) of the number of inspections per unit of time. He let F(t) be the 

probability of failure occurring between the initial time 0 and the time t. Then Ftt) 

is the probability of failing per unit time. The interval between tests is n(t)-1, and the 

average loss due to elapsed time T between the occurrence of failure during this 

interval and its detection is n(t)f"(0 L(T)dT. When n is large, this average loss is 
0 

L[112n(t)]+O(n -2). When L is linear, the average loss is L(1/2n) for any value of 

n. Thus if failure occurs at time t its average cost is 

cf n(-r)dr + L[l / 2n(t)]. (2.14) 
0 

Then the expected cost E up to detection of the first failure is given by 

0 
E=f n(, r)dr + L[112n(t)])F(t)dt. 

0 
(cf (2.15) 

0 

Therefore we can find that function n(t) which minimizes E. 
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Nakagawa and Yasui (1979) asymptotically calculated the optimum checking time 

which minizes the expected total cost until detection of a failed unit for periodic 
inspection times. They also suggested an approximate calculation of optimal 

checking procedures which computes successive inspection times backwards in 

Nakagawa and Yasui (1980). This computation was reported to be much easier than 

that of Barlow and Proschan (1965) and approximation can be fairly good for a 
Weibull failure distribution. 

Zuckerman (1980) considered a maintenance model in which the state of the 

system can be detem-fined only by inspection. The decision variables include the 

inspection interval and the scheduling of preventive replacements. The problem is to 

specify a replacement rule which minimizes the long-run average cost per unit time. 

This model assumes that (a) the cost rate per unit time associated with the inspection 

process is a monotonically non-increasing function of the time interval between two 

successive inspections, (b) a failure is discovered only by inspection, (c) upon 
detection of failure, the system is replaced by a new identical one, (d) the costs 
incurred include cost of inspection, operating costs, failure cost and a cost associated 

with planned replacements, (e) inspections and replacements are instantaneous, (f) the 

state of space of damage process is an arbitrary state space and (g) an optimal policy is 

a control limit policy, provided some conditions are satisfied. He notes that the level 

of difficulty in expressing the objective function, r(. ) explicitly depends heavily on 
the structure of the survival function of the system and the distribution function, F(. ) 

of the magnitude of the shocks. 

Luss (1983) generalizes the basic model of Barlow et al (1963). Inspection policy 

models considered are stochastically failing systems in which failures are detected by 

inspection only. He presents a dynamic programming algorithm that maximizes the 

expected profit between two successive repairs. He notes that this model is especially 

suitable if the cost of testing each product is high relative to its value, or if the test 
itself is destructive. 

Kaio and Osaki (1984) have developed keller's method using the smooth density, 

called inspection density, and obtained the more analytically exact nearly optimum 
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inspection policy. In 1987, they also numerically compared the optimum inspection 

policy by Barlow et al (1963,1965) with nearly optimum ones by, Munford and 

Shahani (1972), Nakagawa and Yasui (1980) and Kaio and Osaki (1984), assuming a 

gamma lifetime distribution. From the result comparison, they conclude that there 

are no positive differences among the optimum and nearly optimum inspection 

policies. They also note that the inspection policy is one of the most important 

policies applicable in the practical systems. 

In addition to the computational difficulty of the Barlow et A basic model, and 

despite its simplicity, the model also seems to suffer practical drawbacks. First, it is 

difficult, in practice, to obtain the estimate of c2 which is the penalty cost due to 

leaving the system in a failed state per unit time. In this respect, Munford (1990) 

later treated the value Of C2 as proportional to the duration of the inspection interval 

containing the failure. Second, since the model assumes that a failure at time t can 

only be detected at time x,, where x,, -l < t: 5 x.,, this implies that a failure can only be 

attended at the next inspection time. However, it is usually uncommon, in practice, 

to leave the failed system until the next inspection epoch. 

2.2.2 Modified Inspection Model 

In the maintenance of a system that deteriorates stochastically, there exists the 

problem of determining the sequence of actions, such as replacements, repairs, 

inspections, etc., that in some sense minimizes the total cost of operation. If the state 

of the system is always known, the optimum sequence of actions is often apparent or 

easily calculated. However, it may not be practical or possible to determine the 

system state exactly, that is the observables need not coincide with the states. 

Therefore, in addition to two-state (good and failed states) inspection models such as 
Barlow and Proschan (1965), many inspection models available in the literature adopt 

a Markovian approach where the working condition of a system is represented by 

several degradation states which usually denoted as 0,1, ..., n, n+1, where 0 
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represents the good state, 1, ..., n represent the degraded states, and n+I represent 

the failed state (Derman, 1963). An inspection reveals that the system is in one of the 

several degradation states. In this respect, Eckles (1968) also considers a system 

which is characterized by a discrete-parameter, non-stationary, finite-state Markov 

process. A maintenance policy is defined as a rule for choosing an action at each 

time, based on the information (observables) available at that time. Costs dependent 

on the action selected, the state of the system, and the age, are assigned to each 

possible transition. It is shown that the action that minimizes the discounted value of 

expected immediate and future costs is determined by the system's age and the 

posterior distribution over the states. He presents a technique for the calculation of 

optimum maintenance policies using a dynamic programming method. 

Luss (1976) considers a model in which inspections may reveal, in addition to a 

malfunction, intermediate states of the system that represent varying degrees of 

deterioration. Maintenance policies, dependent on the system's state at inspection 

times, are determined to minimize the expected cost per time unit. The costs incurred 

include costs of inspections, state occupancy costs, costs of preventive repairs, and the 

costs for repairing a failed system either at an inspection event or immediately after 

the occurrence of a malfunction. He uses a Markovian model in which the holding 

times in the various states are exponentially distributed. A similar model is also 

presented by Sengupta (1981). However, he assumes that the replacement cost can be 

an increasing function of the degradation states and allows a delayed replacement 

action. He shows that the policy that minimizes the long-run expected cost per unit 

time calls for inspection and delayed replacement intervals that are decreasing in the 

degradation state. He also shows that the optimal solution is a control limit policy 

when replacements are made at inspection times. 

Abdel-Hameed (1987) determines the optimal inspection policy of a system subject 

to deterioration. The deterioration is assumed to be an increasing pure jump Markov 

process. Examples of pure jump processes are: (1) compound Poisson processes with 

positive jumps, (2) gamma processes, (3) Pure-berth processes and (4) stable 

processes. He finds the optimal inspection period that minimizes the long-run 

expected cost per unit time. 
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Luss and Kander (1974), consider the case when the duration for inspection and 

repair is non-negligible, and the system can fail while being inspected. Costs 

introducted here are the cost of checking and of unknown lost time. Optimal 

inspection policies are calculated for three different objective functions: expected loss 

per cycle, per unit time and per unit of good time. The loss functions are obtained 

and solved by both differentiation, which leads to efficient algorithms for IFR 

(Increasing Failure Rate) distributions, and by dynamic programming, which can be 

used for any failure rate. The optimal policy is again a sequence of checking times 

minimizing the loss per life cycle or alternatively per time unit. 

Variants to the Barlow et A basic model include a model propose by Beichlet 

(1981) which considers a model for proper scheduling of inspection where system 
failures can be detected only by checking. Cases of replacement and no replacement 

of a failed system are analyzed. On condition that no or only partial information on 

the failure time distribution of a system (only the expected system's lifetime is 

assumed to be known) was available, minimax inspection strategies are obtained with 

respect to a cost criterion. 

Inspection is also usually assumed to be perfect. This assumption may not be 

valid in some situations. Anderson and Friedman (1977,1978) present a model 

which involves the imperfect inspection case. They determine the optimal inspection 

times by reducing the stochastic problem to a free boundary problem in analysis, 

which is then solved using iterative procedures. Another aspect to consider is that an 
inspection may also pose a hazard to the system to be checked. Wattanapanorn and 
Shaw (1979) introduced a model in which the ith inspection increases the remaining 
failure rate without changing the forrn of the conditional lifetime distribution. The 
loss function to minimize in their model is given as 

L=E[c, N+C2d], (2.16) 

where N is the number of inspections until the first one after the failure, and d is the 
time between the failure time and the subsequent detection time t,. They also give 
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algorithms for finding optimal inspection times when the conditional distributions are 

exponential or uniform. A similar concept is presented by Butler (1979), and Chou 

and Butler (1983) who studied hazardous inspection models for ageing systems. 

They found optimal policies that minimize the expected lifetime of the system under 

inspection. Their model assumed that each inspection either causes immediate failure 

or else increase the failure rate. The models are an extension to a model by Barlow 

and Hunter (1961) where the objective is to determine a sequence of inspection times 

that will minimize the mean cost of testing plus the mean cost of an undetected failure 

when inspections are perfect. Another aspect to be considered is that if the inspection 

contains some elements of preventive maintenance, it may add some benefit to the 

system to be inspected. Baker (1991) considers this problem and presents a model to 

test the effect of such preventive maintenance. 

2.3 Multi-Component Maintenance Models 

2.3.1 Simple Inspection Models 

The work on policies for maintenance and replacement of deteriorating items 

(components) has recently been extended to consider systems comprised of several 

items (components) which are dependent on one another (Thomas, 1986). When 

defining a component, Redmond (1997) defines a component (item) as a device that 

can essentially fail in one failure mode when in operation. Examples are light bulbs, 

valves and fuses. Clearly, a component for one use may be a system for another 
depending upon the level of disaggrigation involved. A system is a deterministic 

entity comprising an interconnected or interacting collection of discrete components 
(Villemeur, 1992). The word 'deterministic' implies that the considered system can 
be identified, which is obviously necessary. It is noted that this definition indicates 

that the system is made of interacting components: it is assumed that it is not simply 
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the sum of its subsystem or components. Moreover, if the physical nature of a 

subsystem or component is altered as a result of a failure, the system itself is 

modified. Thus, more precisely, a system with a failed component becomes a new 

system that may be entirely different from the previous one. 

Since the general inspection model by Barlow and Proschan (1965), many papers 

have been written about various inspection policies relating to 

maintenance/replacement models for single component systems. Now we investigate 

the literature which considers systems consisting of several components, so called 

multi-components system, which may or may not depend on each other. 

To this end, Butterworth (1972) presents two faults testing models for ak out of 

n system, which have different objectives. The fundamental assumptions are as 

follow : 

(1) a system is composed of n component. 

(2) systems considered are the k-out-of-n type, which works if and only if any k or 

more of its components work n ': :! k. 

(3) inspection is perfect and takes a time ti. 

(4) components can be individually inspected. 

(5) components function or fail independently of each other. 

The model is to find the state of the system with the minimum expected inspection 

time used. He gives the two cases of inspection model. The first model is to 

determine the state of each component if the system has failed, while the second has 

the objective of just determining the state of the system itself. He also separated the 

test procedures into sequential ones, which pre-specify the sequence of tests and non- 

sequential ones, where the results of earlier tests may decide the order of later ones. 
Obviously sequential tests are easier to implement. Butterworth showed that in order 
just to determine the state of the system the optimal policy is a sequential procedure, 
but if one wants to determine the state of all the units that make up the system the 

optimal procedure is non-sequential. 
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Anbar (1976) also considered a multi-component system consisting of N 

independent components which fail exponentially with an unknown parameter. He 

presents an adaptive sequential inspection policy which is asymptotically optimal. 
The components are working in parallel with identical failure distribution. The 

variables of the lifetime of components, Ti, are independent and identically 

distributed according to the exponential distribution with (unknown) parameter 0 

which is given by 

P(Ti :5 t) = F(t) =1- e-a for t>0,0 > 0. (2.17) 

When inspection takes place, all components are inspected and failing components 

are replaced by new ones. He assumed simultaneous inspections for all components 

and negligible inspection/replacement times. A failing component costs co per 

component of idle time. Replacement of a failing component costs cl and 
inspection costs c2 per component. If N(t) is the number of failures which occur 
during that time, the expected cost per unit of time during that period is given by 

IR 
C(t) =Ec0 -Ti)++cN(t)+nC2]1 (2.18) 

t 

+ (-) if (-) >0 where (-) =0 
otherwise. 

Thus 

C(t) =n [coE(t - Ti)' + c, F(t) + C2 t 

where T is a random variable distributed exponentially with parameter 0 and F(t) 
is given by (2.18) 

E(t-T)=f'(t-u)dF(u')=tF(t)- udF(u) 0 
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tF (t) -0 
'ue-odu 

=t 
F(t) fo 

0, 

Therefore 

c(t) =n 
[Co 

(t _f 
(t) 

)+c, F(t) + C2 (2.20) 

Since c(t) -4 - as t -ý 0 and c(t) -ý nco as t -ý -, there exists a value r 

(possibly infinite) for which c(t) is minimized. By differentiating equation (2.20), it 

can be seen that a necessary condition for r to minimize c(t) is that it is the solution 

of the equation 

(1 0-r)e-" =1 
c2 

(CO / 0) - cl 
(2.21) 

The decision problem is to determine an optimal time interval r* between 

successive inspections which minimizes the expected cost per unit time. When the 

value of 0 is unknown, the optimal value, r cannot be computed. Anbar suggested 

an adaptive sequential approach where r is estimated sequentially at the time of each 
inspection. 

Kander (1978) also considered a model for a unit made up of N sub-units. This 

unit is capable of rendering its mission as long as one sub-unit has not failed. He 

assumed that at any given time, one sub-unit only is subject to possible random 
(Poisson) failure. After such failure has taken place, a further sub-unit is moved up, 

and carries out the function of the unit until it fails, too. This is repeated until the 
failure of the last sub-unit. Inspection discloses which particular sub-unit is carrying 

out the unit function. In this model, inspection reveals the number of failed units. 
Another case example is given in which a structure exhibits parallel redundancy. He 

presents an inspection model where stochastic failure is detected by inspections 

carried out intermittently. A multi-level quality system is described by a semi- 
markov process. Kander assumed that the system can move from N, the perfectly 
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good state, only downwards to N-1, N-2.... until it reaches 0, the failed state. No 

ageing takes place during the stay in any state. 

The reliability of a system is often the major criterion in developing models for 

determining the optimum maintenance policies. On the other hand, several cost 
factors have been incorporated to develop the optimum preventive maintenance 

policies. Okurnoto and Elsayed (1983) present an optimum maintenance policy for a 

group of machines subject to stochastic failures where the repair cost and production 
loss due to the breakdown of machines are jointly minimized. They develop the 

simple nomograph to obtain the optimum maintenance schedule and the minimum 

cost per unit time. In a similar point of view, Assaf and Shanthikumar (1987) 

consider a group inspection policy for a set of N machines subjected to stochastic 
failures under continuous and periodic inspections. The times till failure are assumed 

as independent having an exponential distribution. A failed machine can be repaired 

at any time, and a repaired machine is considered as good as new. Costs incurred are 

the repair cost, which is composed of a fixed overhead cost per repair, Co, and a 

repair cost per machine, C1, and a penalty costs associated with production losses for 

n failing machines during a time interval of length h, that is nhC2. It is also 

assumed in the model that the number of failed machines in the system is unknown 

unless an inspection is carried out. Upon an inspection, a decision must be made on 

whether to repair the failed machines or not, based on the number of failed machines 
in the system. 

When multi-component system fail, there are two extra problems which do not 

occur in the single component case (Thomas, 1986). The first problem is the 
detection of units which have failed, that is to determine an inspection sequence to 

check the individual units in the system for faults. Secondly, if more than one unit 
has failed, then one must decide which unit must be repaired first in order to give the 

system the best possible characteristics. 

An improper sequence of inspections performed in a multi-component system, 
could be costly due to unnecessary time and work involved. In this respect, Butler 

and Lieberman (1984) developed' a program to implement the heuristic policy of 
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testing the unit so that those with the highest failure probability conditioned on the 

fact that the system has failed are tested first. They argue that this is a good, if not 

optimal, procedure for detecting the units whose failure was critical. Sallourn and 

Breuer (1984) gave a non-sequential, polynomial time, algorithm for determining the 

state of a system with symmetric units. 

2.3.2 Imperfect Maintenance Models 

One important research area in reliability engineering is the study of various 

maintenance policies in order to prevent the occurrence of system failure and improve 

system availability. Proper maintenance techniques have been emphasized in recent 

years due to increased safety and reliability requirements of systems, increased 

complexity, and rising costs of material and labor (Sherif and Smith, 1981). Various 

treatment methods and optimal policies assuming imperfect maintenance are 

discussed and summarized by Pharn and Wang (1996). So far, we have mainly 

reviewed perfect maintenance models. These models include perfect repair or perfect 

maintenance which restores the system operating condition to as good as new. That 

is, upon perfect maintenance, a system has the same lifetime distribution and failure 

rate function as if brand new. In practice, the maintenance of a deteriorating system 

is often imperfect: the system after maintenance will not be as good as new. 

In this respect, Shaked and Shanthikumar (1986) introduce the multivariate 

imperfect repair concept. They consider a system whose components have dependent 

lifetimes and are subject to imperfect repairs respectively until they are replaced. For 

each component the repair is imperfect according to the (p, q) rule, i. e., at failure the 

repair is perfect with probability p and minimal with probability q. Assuming that 

n components of the system start to function at the same time 0, and no more than 

one component can fail at a time, they establish the joint distribution of the times to 

next failure of the functioning components after a minimal repair or perfect repair. 
They also derive the joint density of the resulting lifetimes of the components and 

23 



other probabilistic quantities of interest, from which the distribution of the lifetime of 

the system can be obtained. For a series system Zhao (1994) presents a series system 

availability model in which either minimal repair or perfect repair of all components 

can be modelled. He assumes that the repaired component might not be as good as 

new and its lifetime may follow any distribution which can be different after repair 

from that of the original, and obtains the limiting availability and mean system down 

and up time. In this model of a series system, repair time is not negligible and thus it 

is more practical. 

In maintenance, one can often detect failures in a system by inspection, such as the 

failure of units in a storage. In a perfect inspection model, all failures can be detected 

at the time of inspection. In many practical situations, one can not detect all the 

failures upon inspection. The models treated so far in perfect inspection usually 

assume that (1) the state of the system is identified completely and (2), the state of the 

system can be observed only through costly inspections. Ohnishi, Kawai and Mine 

(1986) on the other hand, consider that the system is monitored incompletely by a 

certain mechanism which gives the decision maker some information about the exact 

state of the system. They describe a system having the following properties. 

(1) The deterioration levels of the system are classified into a finite number of 

states 0,1, ..., N. The state numbers are order to reflect the degree of the 

deterioration. 

(2) The state of the system undergoes deterioration according to a stationary 

discrete-time Markov chain having a known transition law. Pjj denote the I- 

step transition probability from state i to state 
(3) At each time period, the state of the system is monitored incompletely by some 

monitoring mechanism. The outcome of the monitoring is classified into finite 

levels 0,1, ..., M. The probabilistic relation between the state of the system 

and the outcome of the monitoring is prescribed by: 

qj 0 -= Pr J the outcome of the monitoring is level 01 the system is in state i 

where i=0,1, ..., N and 0=0,1, ..., M. 

(4) At any given time period, the decision-maker selects only one of the following 

three actions. 
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ac: the action to continue the system operation with incomplete monitoring, 

a, : the action to operate the system with inspection, 

aR: the action to replace the system by a new one. 

The cost structure considered is as follows. 

Li : the operating cost per period in state i, 

Ci : the replacement cost for the system in state i, 

K (>O) : the inspection cost. 

The objective is to obtain an optimal inspection and replacement policy 

minimizing the expected total discounted cost over an infinite horizon and formulated 

as a partially observable Markov decision process. Under some reasonable 

conditions reflecting the practical meaning of the deterioration, they present an 

optimal inspection and replacement problem to minimize the expected total 

discounted cost over at infinite horizon. In this paper, the model assumed that the 

transition probability of the deteriorating process of the system and the probabilistic 

relation between the system and the monitoring mechanism are completely known. 

However, this assumption does not always hold in real situations. A similar case 

model is presented by Devooght, Dubus and Smidts (1990). They consider complex 

systems regularly inspected to maintain a high availability level which may be 

described by a finite state Markov chain, and include human errors. Inspection and 

repair are imperfect due to incomplete information and / or instrumentation failure. 

They develop a dynamic programming algorithm based on the use of importance 

parameters for components to obtain sub-optimal inspection policies. 

6zekici and Pliska (1991) consider an inspection model where the information is 

imperfect in the sense that both false positives and false negatives are allowed. A 

corrective action is carried out when a true positive is observed, thereby reducing the 

chance of system failure. All costs incurred in this model are that of inspections, 
false positives, the corrective action and failure. They use dynamic programming to 

compute the optimal inspection schedule. They also show the model, which is suited 
for medical screening, is applied to the problems of post-operative periumbilical 
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pruritis and breast cancer. Srivastava and Wu (1993) also examined an imperfect 

inspection model. The standard notation is given by 

0: constant failure rate for each unit 

T: fixed interval between inspections 

P: failure probability between successive inspections: exp f (OT) 

'0 : Pr(detecting a failure at inspection) 

k: inspection times, k=1, ..., N 

n: number of units in the system 

Xk, Yk : number of [detected, undetected] failures at inspection k; that number is 

[observable, unobservable] 

q: binomial probability related to yk 

ZIkq Z2k : number of failures undetected at inspection k that later fail and are 

[detected, undetected] at inspection k+1 

ZA : number of failures undetected at inspection k that are detected at inspection 

k+I 

trinm(ri, r2; PI. P2, n): [n! /(r,!. r2!. (n - r, - r2)! Ip, ri . P2 r2 
-(I-P, - P2 Tli-rl 

trinomial pmf 

They develop the probability model to be assumed as follows: 

(1) The system consists of n components which have ED (independent and 

identically distributed) exponential life distributions with rate 0. 

(2) The system is inspected periodically at times JT, 2T, Inspection duration 

is negligible, p= exp f (OT). 

(3) When a failed component is detected, it is replaced by a new one. 

(4) a. Pr I detecting a failure) = fl, 0<8: 5 1. The number of detected failures at 

the inspection k, Xk, depends on the number of undetected failures, Yk-1, after 

inspection k-l. 

b. Pr(a good component has failed)= 0. 

c. The inspection process is otherwise benign. 
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They note that there is a difficulty with the model since Xk itself is not a Markov 

chain. To overcome this, they consider the 2-dimensional process I (Xk, Yk)), which 

is a Markov chain whose joint distribution depends only on Yk-1. They derive the 

Markov relationship between the random variables, (Xk,,, Yk, I) and Yk. After 

inspection k and replacement; 

9 the number of undetected failures is Yk, 

* the number of operative components is n- Yk. 

At inspection k+ 19 ZA of the undetected (at inspection k) failures are detected; the 

probability mass function, PMf(Z3k) = binM(Z3k; A Yk) which is 

(k Zk 
. 

(I 
- 

i: -z3k YY 
The number of the undetected failures out of Yk remaining 

18 
in the system is Yk - Z3k-- On the other hand, at inspection k+1, some of those 

operative components are failed but not all of them are necessarily detected. For 

given Yk, 

PMf(Zlb Z2kl = trinM(Zlk, Z2k; 
j8pjp, n-Yk) 

By combing the above arguments, we obtain: 

(Xk+lt Yk+]) 
-= 

(Zlk + Z3kq Z2k+yk - Z30, k=1,2,.... 

PMf I Zlkt Z2k )= trinM(Zlk, Z2k; pp, 
jýp, n-Yk), PMf(Z3k) = binm(Z3k*, Ayk), 

(2.22) 

(2.23) 

and, (ZIk, Z20 and ZA are conditionally (given Yk) independent. Therefore, at 

inspection 1, since X0 = n, YO = 09 

pmf(X� Y, 1= trinm(XI, Yl; ßpjp, n) (2.24) 

They are interested in the steady-state behaviour of the system. Since (Xk, Yk) is a 

finite-state Markov chain, its steady-state distribution exists and can be obtained. 

They note that the possibility of imperfect inspection makes the inference about the 
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parameters very difficult. They also show the approximation of the original 

likelihood by combining the complementary variable method with the likelihood 

filtering method when components of life distribution is exponential. 

Surprisingly, perhaps, it is hard to find papers indicating the application of such a 

massive set of inspection models to real-world problems. In the literature on 

maintenance modelling, multi-component system models have been addressed by 

many authors; seethe survey by Thomas (1986) and Cho and Parlar (1991). However 

only a few tackled real problem, and most of these model the problem using the delay 

time concept (see Baker and Christer, 1994). The delay time approach to modelling 

is different in both nature and evident applicability to the majority of the maintenance 

literature discussed above. We will consider here, some cases briefly relating to a 

delay time concept for system model which compose of many components. In the 

papers by Christer (1982), Christer and Waller (1984a, b), Christer (1988), Christer 

and Redmond (1990,1992), Chilcott and Christer (1991), Christer and Desa (1992), 

Christer and Wang (1995), the models assume that the number of component is large 

and that only failed components are repaired or replaced at failures. Defects are 

assumed to arise as a stochastic process with each defect having a delay time period 
before causing a breakdown. Inspections are assumed to be perfect or imperfect in 

that all defects presented at an inspection may or may not be detected. In Chapter 3, 

delay time models are discussed in detail. 
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2.4 Summary of Literature Review 

This Chapter has investigated numerous models in the literature which deal with 

the problem of finding optimal inspection policies for systems which are subject to 

failures. Since the general inspection model by Barlow and Proschan (1965), many 

papers have been written about various inspection policies relating to 

maintenance/replacement models. Most of these models deal with systems that can 

be considered as a single component. Not as many models have considered a multi- 

component system consisting of independent, or dependent components. There is an 

important reason to consider single component systems, namely that in practice there 

are many instances in which it is difficult to obtain reliability data for smaller sub- 

components; although data for the stochastic behaviour of the entire system is 

available or easier to obtain. Maintenance models for single component systems can 

also be useful for modelling the maintenance of individual components that are part of 

more complex systems. 

However, in recent years there has been a shift in the maintenance literature from 

consideration of single items to systems composed of several components. This is 

partly due to improvements in analytic techniques, which allow more complex 

systems to be investigated, but also because of the realisation that the interactions 

between the components in a system are one of the major factors in the system's 

reliability and should be taken into account in any maintenance or replacement policy. 

Although many authors are interested in multi-component systems, so far only a few 

papers have deal with inspection models for multi-component systems, and even 

fewer have been used to model actual plant. Because of its importance in this 

respect, the next Chapter which introduces delay time theory, will be developed in 

sufficient detail to indicate the nature of its contribution to maintenance modelling. 
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Chapter 3 

The Theory of Delay Time 

3.1 Introduction 

A methodology is advanced for modelling the problem of planned preventive 

maintenance, thereby relating plant performance to maintenance activity. There are 

many models of preventive maintenance in the literature, including the Delay-Time 

Model (DTM) along with others cited in previous Chapters. This Chapter focuses on 

a Delay Time Theory, which is a developing concept for maintenance and inspection 

modelling. The concept was first introduced and applied in the context of building 

maintenance by Christer (1982), following the first mention in the appendix to 

Christer (1976). In this Chapter, a review of the concept and developments in delay 

time modeling (DTM) theory is presented. 

3.2 The Origin of Delay Time Concept 

The origin of the delay time concept proposed by Christer (1976) has been 

extensively used in maintenance modelling, since it offers a means of modelling the 

consequences of alternative maintenance and inspection practices of repairable 

machines. With such a model, the best inspection practice can be identified. In its 

simplest form, the delay time of a defect is the time period from when a defect is first 
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observable to when a repair would be essential (breakdown) in the absence of 

corrective action. Applied studies of the delay time concept were initiated by Christer 

& Waller (1984a, b). 

The central concept of this delay time is the delay time h of a defect, which is the 

time lapse from when a defect could first be noticed until the time its repair can be 

delayed no longer because of unacceptable consequences. A repair may, therefore, be 

undertaken any time within this period. This means that a failure does not normally 

occur instantaneously, but is proceeded by a period as a detectable defect for some 

time prior to actual failure. The delay time concept defines a two stage failure 

process in which in the first stage a fault becomes visible, and in the second stage this 

visible fault causes the eventual breakdown (failure) of the machine, see Figure 3.1. 

h 

> 

t=O U u+h Time 
fault failure 

Figure 3.1. The delay time concept 

In the case of a repairable component, a fault first initiates at time u from new 

with probability density function, pdf g(u), and gradually develops into a failure after 

a time period of h with pdf f(h). Once these two distributions are known, it is 

possible to model the reliability, operating cost and availability functions as described 

in the papers of Christer, Wang, Baker and Sharp (1995). In the case of multi- 

component or complex plant, the arrival pattern of defects within the system is 

modelled by an instantaneous arrival rate parameter X(u) at time u. If X(u) is 

constant, the model is a Homogeneous Poisson Process type (HPP), otherwise it is of 

a Non-Homogeneous Poisson Process type (NHPP). 
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The delay time concept itself can readily be understood by engineers. It is this 

concept which governs the consequence of inspection and preventive maintenance. 

The reason is simply that periodic preventive maintenance incorporating inspection 

checks may increase system availability by identifying and replacing or repairing 

faulty components before they cause a breakdown. 

3.3 The Development of Delay Time Model 

Since the first mention of the delay time concept in the appendix to Christer 

(1976), a considerable number of further developments, extension and application of 

basic delay time theory and modelling has been produced. The delay time model 

(DTM) was introduced in Christer (1982) in the context of building maintenance. 

The model was of the Homogenous Poisson process (HPP) type. Subjective and 

objective information were both to be used. 

In 1984 the DTM was applied to problems of complex industrial plant 

maintenance, where defects were assumed to arise at a constant rate. In Christer and 

Waller (1984a) the DTM was extended to cater for imperfect inspection, a HPP of 

defect origination epochs over the interval between inspections, and two cost models 

which maintenance performed simultaneously for all defects or sequentially. In a 

related case study paper Christer and Waller (1984b) the delay time analysis and snap- 

shot modelling were used to derive an optimum-cost maintenance policy at the 

Pedigree Petfoods canning line. Snap-shot modelling was proposed by Christer and 
Whitelaw (1983) to define the nature of a maintenance problem and to provide an 

analysis of defects by classification into machine types where planned maintenance 

could be an effective option. In another case study, Christer and Waller (1984c), 

snap-shot analysis and the DTM were applied to modelling preventive maintenance 
for a vehicle fleet of tractor units operated by Hiram Walker Ltd. This study 
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identified some peculiarities of practice which the model was extended to cope with, 

e. g. some defects were found by drivers, who returned the vehicle for repair at once, 

and the text scheduled maintenance was brought forwarded to coincide with the 

repair. This paper also first mentions the observation that vehicle repair costs for 

consecutive year may be positively correlated. 

The notions of inspection and condition monitoring of specific items of plant are 

very similar in concept, and preliminary studies have been undertaken to investigate 

the applicability of delay time analysis and delay time models to condition monitoring 

problems, be they discrete monitoring processes or continuous monitoring processes. 
In 1987 a perfect-inspection model for a single component as a discrete monitoring 

process appeared, Christer (1987), and component reliability as a function of 

inspection interval was calculated using a recursive formula. The model is then 

expanded to consider the reliability of n components in a parallel system. Similarly 

to condition-based inspection models, Christer (1988) proposed using the delay time 

concept for modelling the task of inspecting major civil-engineering structures. A 

system model is assumed with expected repair costs varying over the delay time 

period. Here further developments of the pooled component data model are 
discussed. 

Christer and Redmond (1990) discuss an unavoidable bias that arises when 

estimating delay time from censored component data. A mechanism for correcting 

this bias when estimating a delay time distribution is proposed, based upon maximum 
likelihood considerations. This model also is considered as a pooled component data 

model for revising subjective estimates of delay time. 

Chilcott and Christer (1991) used DTM to model the maintenance practices for 

coal face machinery within British coal. Here the delay time parameters were also 

estimated based on the subjective method which were then used to model the 

effectiveness of condition-based monitoring in reducing downtime. In Christer 

(1992) the DTM for the component-tracking case was discussed from the viewpoint of 
0-1 condition-monitoring, and the asymptotic cost per unit time of irregular 

inspection policies was derived. This cost was used in Christer and Wang (1992), 
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which considered a 0-1 condition model with regularly spaced inspections for a linear 

pattern of wear characteristic. In this model though not strictly a delay time model, a 

positive correlation between u and h is induced by the chosen linear form of wear 

variability within components. 

Cerone (1991) later shows that evaluation of the reliability at the inspection points 

together with the knowledge of the smoothness and monotonicity of the function over 

an inspection interval simplifies the calculations considerably. He used the reliability 

function formulated in Christer (1987). Pellegrin (1991) derived a graphical 

procedure for finding the optimum interval between inspections using a delay time 

model, which allows the various factors relevant to decision-making to be 

emphasized. 

In all case-related models developed to this point, model parameters have been 

estimated mainly from and based upon subjective data. Baker and Wang (1992) 

show that it is possible to estimate model parameters purely from objective data, 

which is PM data and times of failures. Model parameters are fitted by the method of 

maximum likelihood, and the Akaike Information Criterion(AIC) was first used to 

choose the best parameterisation for the delay time model. In a later paper, several 

extensions to basic model were derived by Baker and Wang (1993), which relax 

model assumptions and are designed to cope with complexities of real-world 

situations. They also show the results of fitting the model to data. 

Christer and Redmond (1992) also considered more formal methods for revising 

delay time models of industrial maintenance practice. They develop the model 

updating techniques when the pdf of delay time has been subjectively derived. The 

scope for updating the prior model through modifying the perceived degree of 

perfectness of inspection is also discussed. 

Christer and Desa (1992) considered the maintenance based availability modelling 

of bus transport in Malaysia. Initial estimates based on carefully collected subjective 
data proved to be insufficiently close enough to the status quo point to require a 

revision of the prior distributions and model in this case. 
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Baker and Christer (1994) discuss the development of delay time analysis as a 

means of modelling engineering aspects of maintenance problems. This review 

outlines the current state of knowledge and research in this area, and future trends in 

modelling application of delay time analysis and research predicted. They note that 

some, but not all, of the necessary steps required to expand the applicability of delay 

time analysis to enable engineering aspects of maintenance to be modelled for a wider 

class of problems are presented. 

In 1995, a practical case study carried out by Christer et al (1995) to model 

maintenance practice of a complex production plant. A key machine in the plant, 

namely an industrial press, is used to illustrate the modelling process and management 

reaction. Here delay time parameters were estimated using the objective data, 

namely, the maintenance record data of failures and defects found at PM. The 

criterion of interest was to minimize total downtime over a PM interval. Using the 

same case study, the subjective method was also used to estimate delay time model 

parameters Christer et al (1998a). They repeated the modelling task adopting a 

subjective delay time parameter estimation technique, Christer and Waller (1984a). 

To compare the model formats and parameter values resulting from the two methods, 

they tested and validated PM modelling of the same industrial press using the 

subjective data based delay time technique. In order to remove the sampling bias 

within the initial subjective estimate of delay time, they used the least square method 

and the concept of minimum mean-square-error (MMSE) estimation to revise model 

parameters. It is noted that both modelling techniques lead to very similar results and 

recommendations. 

In similar case study in Leung and Christer (1995), the model has been explored 
for application to model the reliability of pumping systems for the water supply in 

some 4,000 high rise housing in Hong Kong. The inspections are assumed to be 

perfect and non-detrimental. After inspection, the component is assumed returned to 
the as new condition. 
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In Christer and Wang (1995), the inspection model was constructed utilizing the 

delay time concept applied to a multi-component system subject to both planned 

inspection and opportunity inspection at failure. Defects were assumed to arise 

according to a non-homogeneous Poisson process (NHPP), and inspections assumed 

to be perfect in that all defects presented at an inspection are found. They argued that 

the NHPP is an appropriate model for repairable system analysis because it can 

provide at least a good first-order model to the real-world problems. Based upon the 

established delay time model, data on inspection of infusion pumps collected from a 

local hospital are used to illustrate the modelling, which also obtained sensible 

answers and confirmed the legitimacy of current practice. 

Christer and Lee (1997) extended earlier work applying the delay time concept to 

the modelling the reliability of equipment where it is subject to regular inspection over 

a finite mission period, and thereby the modelling of the operational effectiveness of 

at sea inspections for critical ship equipment. They present a methodology for 

determining the consequence of different inspection options over a mission period. 

Baker et al. (1997) present a delay time model for a complex repairable system in 

which defects arise according to a non-homogeneous Poisson process. In order to 

estimate model parameters, the likelihood function is derived for general failure and 

delay time distributions, and for a NHPP of defect arrival, all under imperfect 

inspection, and a general approach for estimating the optimum inspection interval is 

discussed. Christer et al. (1997) also developed a stochastic model of the behaviour 

of plant under a service maintenance system of the finishing mills roll change 

equipment at Llanwern works of British Steel. To assist in improving plant 

availability, the delay time modelling technique has been used. Particularly, the 

incomplete repairs or rectifications at roll changes have been modelled by introducing 

a probability P, that represents the probability of a complete repair or rectification of 

a failure at a roll change. This is one of the most complex pieces of plant studied to 
date, inspection were not perfect, PM was not fault free, failures were not always 

repaired, and no PM data was recorded. 
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Redmond et al. (1997) developed a delay time based the maintenance modelling of 

deteriorating concrete components. The model extended to a four phase classification 
for a components condition; namely defect free, cracking, spalling and failure. 

Therefore, the delay time was split into phases, namely cracking and spalling, which 

were represented as h, and v, with pdfsj(h) and w(v), respectively. A method to 

estimate parameters with the censored data based on maximum likelihood has been 

proposed. 

Choi (1997) presents a typical semi-Markov inspection model based upon the delay 

time concept for a complex repairable system that may fail during the course of its 

service lifetime. He discusses a case study of the semi-Markov inspection model and 

the delay time model and results are compared for a component and for a complex 

repairable system. He shows that the simulation model and semi-Markov model are 

nearly consistent with the delay time model. In this study, he also notes that the delay 

time model provides a means of modelling the behaviour of the system and predicting 

such useful quantities as a reliability, cost or downtime under various inspection 

policies. 

In Christer, Wang and Choi (1998), a delay time model is developed and applied to 

model and optimise preventive maintenance (PM). This paper reports on a case study 

of a delay time modelling of maintenance applied to a subsystem of a complex 

machine used in commercial vehicle break lining manufacturing. In this study, the 

modelling has been developed to cope with the possible incomplete response at PM, 

which assumes the recognised defects that are attended to are chosen randomly. 
They also discuss the problems discovered concerning parameter estimation given 
inadequate data collected at PMs. 
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3.4 Basic Delay Time Model 

The central concept of delay time has been shown in section 3.2. Again, the basic 

idea rests on an observation that a failure does not usually occur instantaneously, but 

is preceded by a detectable defect for some time prior to actual failure, the delay time. 

Specifically, the delay time h is a property of a defect and defined as the time laps 

from the moment when a defect could first reasonably be noticed until the moment 

when a consequential repair can be delayed no longer because of unacceptable 

consequences. Therefore, delay time is the period between a fault first arising as an 

identifiable defect, to a subsequent failure if unattended. The moment a defect could 

first be identified called the initial point, is denoted by time u, If the distribution of 

delay time (h) is known, and for a component or complex plant the respective 

distribution of initial point (u) or rate of arrival of defects, k(u), are known, the 

failure behaviour of the plant can in theory be determined under any specified 

maintenance policy. 

To introduce delay time modelling, consider a particular item of plant which is 

associated with failures characterized by a delay time h with pdf f(o) and cdf F(e). 

Let a plant inspection be undertaken on a regular basis, with period T, and suppose for 

now that this inspection is perfect in that, if a defect is present at the time of 
inspection, it will be identified. Between inspections, defects can arise at a time u, 

say, and subsequently lead to a failure after time h if h<T-u, and be identified at 

an inspection if h>T-u, see Figure 3.2. 

h>T-u 

Defect identified 

0u Failure T 
Inspcction Inspcction 

Figure 3.2. Delay time process of basic model 
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Suppose, for example, the following assumptions are valid for an inspection 

process; 

(1) An inspection takes place every T time units, costs Ci units and requires di 

time units, where di << T. 

(2) Inspections are perfect in that any defect present within the plant will be 

identified. 

(3) Defects identified at an inspection will be repaired within the inspection period 

at an average cost of C, 

(4) Failures are repaired as soon as they arise, incurring on average df downtime 

and Cf cost, where Cf > C, and df << T. 

(5) The initial time u of a defect is uniformly distributed over (0,7), and is 

independent of h, with defects arise at a rate of k per unit time. 

(6) The probability density function(pdf) of delay time h, f(h), is known. 

The assumption di << T in (1) and the assumption (3) may at first seem to be 

contradictory, but the assumption (3) would seem to be reasonable if sufficient 

maintenance staff were available to perform repairs simultaneously. The assumption 
(5) provides an estimate of expected number of defects arising in the period T, namely 
K(7). This ignores the downtime due to failures, during which no defects would arise 

since the machinery is idle. However, if this downtime is small compared with T, as 
indicated in the assumption (4), df << T, then the error will also be small. 

Under the above assumptions, firstly, we determine the form of function b(T). 

Suppose that a defect arising within the period (0,7) has a delay time in the interval(h, 

h+dh). The probability that the delay time lies in this interval is j(h)dh. The defect 

will be repaired as a breakdown repair if the defect arises in period (0, T-h) (see 

Figure 3.3. ), otherwise as an inspection repair. The probability of a defect arising 
before T-h, given that a defect will arise, is (T-h) / T. 
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Figure 3.3. Inspection process of delay time model 

We have, therefore, that the probability that a defect with delay time in the interval 

(h, h+dh) is repaired as a failure is 

(T- h) / Tf(h) A. 

Then, integrating over all possible delay times, we have that the probability of a defect 

arising as a failure, b(7), when operating an inspection policy over period (0,7); is 

given by 

TT-h b(T) = J-f (h)dh. 
0T 

(3.1) 

Since defect arise at rate of k per unit time, expected number of defects arising over 

(0, Y), K(7) is 

K(7) = U, (3.2) 

and then the expected number of defects arising over (0,7), B(7) is given by 

B(7) = K(7)b(T) = kTb(7). (3.3) 

Once B(7) is determined, the expected downtime per unit time D(Y), and the expected 

cost per unit time C(T), may be obtained. Under the assumptions of the case being 

40 



modelled, if there is no additional expected downtime due to repairing defects 

identified at an inspection, the total expected downtime per unit time is 

D(T) =I [B(T)df +dil. 
T+di 

(3.4) 

Similarly, under the above assumptions, a model of expected cost per unit time as a 

function of the inspection period T may be obtained directly. The total expected 

cost over an inspection cycle consists of cost of attending to failures, the expected cost 

of rectifying defects identified at inspection, and the cost of the inspection itself. 

Then the total expected cost per unit time over a full inspection cycle length T+ di is 

B(T)C +[K(T)-B(T)IC, +Ci 
C(T) =f T+di 

K(T)[(Cf -C, )b(T)+C, ]+Ci 

T+di 
(3.5) 

where the average failure, inspection and inspection repair cost are Cf, Cj and C,, 

respectively. 

Here, the decision variable T of downtime and cost model would be selected to 

minimize D(7) and C(7). Therefore, once the parameters which describe the rate of 

arrival of the initial point u and the delay time distribution j(h) are available, delay 

time based maintenance models such as those in equations (3.4) and (3.5), may be 

formulated. So far, the above basic model of delay time has been shown as 
developed by Christer and Waller (1984a). These equations represent the 
fundamental form in delay time maintenance modelling, and may be modified 

according to need. 
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3.5 Variants to the Basic Delay Time Model 

3.5.1 Non-Homogeneous Defect Arrivals Case 

For the basic delay time model, assumption (5) may be required to be relaxed for a 

complex plant, namely the uniform initiation of defects after an inspection. Christer 

and Waller (1984a) showed that if inspections are perfect and X(U) is the 

instantaneous rate of occurrence of a defect at time u, the number of defects arriving 

in the interval (u, u+ du) is X(u)du. Then the expected number of defects arising 

over (0, T) is given by 

T 

K(T) = J, A(u)du. 
0 

(3.6) 

A defect arising in (u, u+ du) with a delay time h<T-u will arise as a failure. 

Therefore the expected number of failures due to defects arising in (u, u+ du) is 

A(u)du -f 
T-u 

f (h)dh = F(T - u)A(u)du, (3.7) 
0 

where F(x) = 
fx (h)dh. 
Of 

Accordingly, the expected number of failures arising over period (0,7) is 

B(T)= TF(T-u)A(u)du. (3.8) jo 

It is noted that in the special case of HPP when X(u) is constant, the defects are 

uniformly distributed over (0,7), and equation (3.8) reduces to equation (3.1) as 

required. Since the expected number of inspection repairs arising in (0,7) is K(7) - 
B(7), the total expected downtime per unit time is given by 
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D(T) =I [B(T)df +dil (3.9) 
(T + di) 

and the expected cost per unit time over a full inspection cycle of length T+ di is 

C(T) = 
B(T)Cf + [K(T) - B(T)IC, + Ci 

(3.10) 
T+di 

3.5.2 Imperfect Inspection Policy Case 

In real-world situation, one of the most suspect assumptions of the above basic 

model is the requirement for perfect inspections. Inspections may not reveal all 

defects present in a system, especially for large complex systems. The quality of 

inspections depend on inspection practices imposed includes inspection techniques 

used, inspection training and the nature of any supervision. It has been assumed that 

inspection are perfect in that any defect present will be identified in the basic model. 

Therefore, in the case of imperfect inspection, it is necessary to introduce a probability 

r that a specific defect will be identified at an inspection, and a corresponding 

probability (1 -r) that it will not (Christer and Waller, 1984a). Here we assume a 

defect is what an engineer assumes to be a defect. Although there is a problem of 

engineers wrongly assuming a fault, engineering actions and the following modelling 

are based upon these 'faults'. 

Assuming still that the initial point u is uniformly distributed along (0,7), the 

only change this will produce to the above models is through a modified form of b(7), 

the probability of a defect arising as a failure. Under these circumstances, to find the 

new form of b(7), consider a defect which first arises at time u after an inspection at 
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point 0 (see Figure 3.4). If this defect is subsequently identified at an inspection, it 

could be the inspection at T if h>(T- u) or at 2T if h> (2T -u), or failing this , at 

inspection at 3T if h>(3T- u), and so on. 

Time 

0uT 2T 3T (n-I)T nT 

Figure 3.4. Example of inspection process of a defect arising at u 

Therefore, the probability of defect identified at T for the defect arising at point u 

is 

Prob. (defect identified at 7) 

Prob. (being identified at 7) x Prob. (not resulting in afailure before T) 

rR(T - u), (3.11) 

where R(x) = 
fý(h)dh. 

Similarly, 

Prob. (being identified at 27) = Prob. (not being identified at T but identified at 27) 

x Prob. (not resulting in afailure before 2T) 

= r(I -r)R(2T - u). (3.12) 

Generally, the probability that a defect initiated at point u will be identified at the 

inspection at nT is 

r(I - r)"-R(nT - u), n=1,2 
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Therefore, we have that the probability the defect at u will be identified at an 

inspection is given by 

r)"-l R(nT - u). (3.14) 

Summing over all possible u, which is uniformly distributed over T, we have for the 

probability that a defect arises a failure, b(7), 

b(T) =I- 
U=o 

rQ- r)-'R(nT - u)du, 
n=l T 

(3.15) 

where R(-) =I- F(-), and F(-) is the cdf. of delay time. In equation (3.15), for r=0 

or 1, b(7) corresponds respectively to the breakdown maintenance case and to the 

basic inspection model with perfect inspection. This is equivalent to saying that a 

perfect inspection is carried out with probability r, and that with probability 1-r 

the inspection is 'omitted'. In this thesis we assume that r is constant. Other 

models are also possible. For example, if 0: 5 u: 5 t: 5 h, the probability of a defect 

identified at the inspection, r is r(t - u). However, the value of r(t - u) may not be 

easy to estimate in practice. 

In imperfect inspection modelling which is case of r#1, b(7) changes in form, 

but the criteria functions such as D(7) and C(T), given in equations (3.4) and (3.5), 

remain the same. Christer and Waller (1984c) present an application of delay time 

analysis modelling of planned maintenance for a vehicle fleet using this imperfect 

inspection formulation for b(T), with r#1. 
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3.5.3 The Modification of Downtime Model 

Consider now the case where assumption (3) of the above basic model is invalid. 

That is, there are insufficient maintenance staffs available to complete all identical 

repairs at an inspection. It means that additional time is required to perform 

inspection repairs subsequent to inspection, with each inspection repair causing 

additional downtime. Then the equation (3.4) of the basic downtime model, D(7) 

would be modified as follows (Christer and Waller, 1984a). If d,. is the expected 

downtime due to an inspection repair, then the total downtime at an inspection is di + 

kTd,. [ I- b(7)], and the expected length of the full cycle is T+ di + kTd,. [ I- b(7)]. 

Therefore, the total expected downtime over a full inspection cycle length is given by 

D(T) =I JkTdf b(T) + di + kTd, (I - b(T))) 
T+ di + kTd, [I - b(T)l 

I [kT[df b(T) + d, (I - b(T))) + di (3.16) 
T+ di + kTd, R- b(T)l 

3.6 The Parameter Estimation and Revising of the Delay time 

Models 

3.6.1 A Subjective Parameter Estimation Method 

In maintenance modelling, the successful use of the delay time concept depends 

upon how well the underlying delay time distribution can be estimated from available 
information sources. If the maintenance records of failures and recorded findings at 

maintenance interventions such as inspections are available, and sufficient in quantity 
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and quality, the delay time distribution can be estimated objectively by statistical 

method, see Baker and Wang (1992,1993), Christer and Wang (1995), and Christer et 

al. (1995). If however, such a data set does not exist, the alternative is to use expert 

judgment for obtaining the delay time distribution. Christer (1982) developed a 

method for the use of the subjective opinions of experts in estimation of the delay 

time distribution (see also Christer and Waller, 1984b, c). This method was also used 

by Christer and Desa (1992) and Christer, Wang, Baker, and Sharp (1998). 

For obtaining an estimate of delay time f(h), the following questions may be asked 

of maintenance engineers at a failure repair or at an inspection. That is 

(a) How long ago could the defect have first been noticed by an inspection or operator 

(= HLA)? 

(b) If the repair is not carried out now, how much longer could it be delayed before a 

failure repair is essential (= HML)? 

The delay time for each defect is estimated by h= HML + HLA (see Figure 3.5). 

Given a sufficient accumulation of such measures, Ih= HML + HLA), the delay time 

distribution, f(h), may be estimated. 

HLA 1114 HML 
Time 

0 (Defect arrival, u) (Defect identified at PM, 7) (Failure could be occurred) 

Figure 3.5. Estimating delay time parameter for defect at a PM 

At any point in time T when a defect is being attended to, having an estimate of 
HLA provides at once an estimate of initial point u, namely u=T- HLA. It is the 

set of such estimates that enables the distribution of the initial points u to be 

estimated for a component. The method of estimating the distribution parameters of 
delay time h and initial point u in this way is known as the subjective parameter 
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estimation method (or subjective method). It is note that, in adapting the subjective 

method to estimate the delay time, the definition of defect and failure are important. 

Here, defects and failures are taken as what the organization deemed them to be, that 

is, the companies operating definitions and practice is adopted. 

Wang (1997) recently also proposed a method for obtaining a subjective estimate 

of the delay time distribution. He presents a revised procedure and method for 

obtaining the subjective delay time distribution. An alternative approach is to ask 

experts or maintenance engineers to estimate the required probability that the mean 
delay time of a chosen failure type will lie in a specified time interval. He gives an 

example of questionnaire designed in an appendix. 

3.6.2 Revising the Subjectively Estimated Parameter 

One of the interesting aspects of delay time modelling is that it can use a synthesis 

of subjectively derived data, represented by F(h), to model a maintenance situation 

where the variable of interest can be the expected number of failures over (0,7), B(7), 

the expected downtime per unit time, D(7), or the expected cost per unit time, C(7). 

If there is a current policy of inspecting the system at period To, say, then one would 

expect that the relationships such as the following to hold, 

Do = D(To), (3.17) 

CO = C(TO), (3.18) 

where Do and CO are the currently observed the mean downtime and cost per unit 
time. Alternatively, if under policy To the probability of a defect arising as a failure 
is BO, then one would expect from equation (3.1) or (3.15) that 

Bo = B(To), (3.19) 
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where BO is the current observed the mean number of failures. The left-hand side is 

an observation of practice, and the right-hand side is a function based on an aggregate 

of subjective opinions. However, the chance of any of above relationships being 

satisfied is remote. In common with any process of decision analysis entailing 

subjective assessments, it is to be expected that some revision will need to be made to 

prior distributions or perhaps to the prior model. 

The problem is simply stated in Figure 3.6. 

B(T) 

Bo 

B(To) 

Figure 3.6. Number of failure of prior model and observed 

The prior estimate B(-) has been obtained based upon a prior cumulative 

subjective data led distribution function F(-) and an initial understanding of the 

problem represented via the assumptions. If To and BO denote the current practice, 

the curve T --> B(7) needs to be modified to pass through the status quo point (TO, 

BO). In this anticipated problem, a method has been developed by Christer and 

Redmond (1990) to formally revise or update the prior delay time distribution, f(h), 

using the known Bo, Do and CO (see also Christer and Redmond, 1992). This is 

done by a shear transformation of each estimate of delay time h to h'. such as z= ah 

where cc and 7 are the unknown parameter to be determined such that the 

afore-mentioned relationships hold. The argument for this type of transformation is 
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the tendency for estimators to systematically underestimate delay time which, 

therefore, need to be extended. 

For updating delay time, first it is assumed that the gradient between h' and h is 

positive, i. e., 

a (3.20) 

otherwise large estimate of h would transform to small actual values h' and vice- 

versa. Secondly, h' must be nonnegative, so if ho is the smallest value of h for 

which the prior distribution satisfies F(h) >0 for h> ho, then we require, 

cho +r 22 0, 

where ho ý: 0. Therefore, the parametric form for the distribution function of h' is 

given by, 

F( )' 
a 

(3.22) 

where the prior F(h) is assumed zero for h<0, which implies (3.22) is zero when 

:5 h' :5 aho +, y. (3.23) 

If we let the initial model B(7) be constructed with an estimate Do for 8, and let 

B(T-, a, y) be the updated parametric form for B(7) when replacing F(h) by the 

transformed expression (3.22). Therefore, the option of using the transformation z= 

(xh + 7, in addition to the variable P, is satisfied by the status quo conditions, that is, 

B(TO; a, r) = Bo. (3.24) 
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Christer and Redmond (1990) discuss a problem which can be arise from using the 

subjective method which is due to possible sampling bias. At failures, the delay time 

estimates obtained are (h) = JHLA) (since HML = 0, by definition). An estimation 

of f(h) based only upon failure estimates JHLA) will generally underestimate h. 

On the other hand, the delay time estimates based upon inspection repair data only, 
(h) = (HLA + HML), will produce an estimate of pdf of h which overestimates h. 

It is note that both the two subjective estimates of delay time are intrinsically biased, 

and suggest a maximum-likelihood estimation of the subjective estimates to overcome 

this. 

Suppose that there are two data set of estimates, which are failure delay time 

I^ (1) (^ (2) hj j=1,2,..., n), and inspection repair delay time h, ;k=1,2,..., m). So far, 

the practice has been to produce a combined set ( hj(') i=12; j=I, -, m, of delay 

time estimates from which to establish F(. ). Here let the prior distribution for the 

delay time be F(., ý), where r denotes the distribution parameters. Accepting this 

distribution, we have for the distributions of delay time of observation, spanning an 
inspection epoch T and arising as a failure before T, the expressions (see Christer 

and Redmond, 1990) 

I q(uff(ý, y) - F(T -u, y)l du for ý, a T, 
FT. j (ý, y) 

01- b(T) (3.25) 
T q(u)(F(J, y)-F(T-u, y)) K-4 

1- b(T) 
du for < T, 

and 

JF(ý, y)Q(T-ý)+fT -u, y)dul for <T, FT, f (ý, y) b(T) T_4 q(u)F(T (3.26) 
1 for ýt T. 

The choice of the parameter ) is made by utilizing the maximum likelihood principle 
, 

(1) 
A (2) 

in the light of the observations Jhj ) and [h, that is 
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m 
L fT r4l fT 

'i k 
(2), 

Y) (3.27) 
j=l k=l 

By taking the logarithm, equation (3.27), the ma)qmum log-likelihood, is 

, 
(1) mA (2) 

(3.28) LogL=maxjElogfT, f(hj y)+ElogfT, j(hj y)), 
j=l k=l 

where f denotes the density function of F: 

fT,. (ý, y) = (D / Dý)FT'. (ý, y) (a = i, f ). (3.29) 

This optimization process provides an appropriate fit to the parameter to enable 

F(x, 7) to be defined. Of course, some form of updating adjustment will still be 

needed, possibly associated with an iteration between correcting for bias, process 

(3.26), and model and distribution adjustments to the status quo. The main point of 

the above discussion is that there are methods for estimating and correcting a 

subjectively derived delay time distribution and model. 

3.6.3 The Objective Parameter Estimation Method 

Given a repairable system that breaks down from time to time during its service 

life, and also regularly undergoes inspections, it is desirable to make predictions of the 

optimum period A* between inspections. Hitherto, model parameters have been 

estimated mainly from subjective data. If there are objective data available, Baker 

and Wang (1992,1993) have recently introduced a method, now known as the 

objective estimation method. It is both theoretically and practically possible to 

52 



estimate the delay time distribution from objective data, that is, data from 

maintenance records of failures and defects found at inspections or PM. Essentially, 

the data should include a history of failure times, and the results of PMs or inspections 

which may be positive (defect found) or negative (no defect found). 

In the paper by Baker and Wang (1992,1993), the objective method was initially 

designed for a single component subject to failures and inspections at PM, or a system 

with a few key components. As will be highlighted in the case study later, the objective 

method has been extended for estimating parameters of complex plant. For now we 

comment on the method for component model parameter estimation. It is considered 

that PM is a perfect inspection process with replacement of visibly defective 

components for a single component machine. The possible events that can contribute to 

the likelihood are defined as: 

N: Inspection and no defect found (negative inspection), 

Y: Inspection and defect found (positive inspection), 

B: failure, 

E: End of observation period. 

In addition, the following notation introduced by Baker and Wang (1992) is useful 
(see Figure 3.7). 

S Start of observation period (= R), 

R Replacement on a failure (B, or 1), 

X: Denotes any event. 

tn 

S(R) N 

Figure 3.7. Example of notation used 

B 
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Baker and Wang (1992) establish the likelihood of observing a sequence 

XI9X2I .... X. of events of types B, E, Y, and N by utilizing the expression, 

Xpp L= Px. ***xp X2K 
X 

X3IXIX2 
X 

X. Ixi X. 
-i' 

(3.30) 

wherePx. denotes the probability of an event X1, Px, lx, means the probability of 

event X2 giventhatevent X, hasoccurred, andsoon. Since, after a replacement 

R, the likelihood does not depend on any event previous to R, the likelihood can be 

written as the product of terms conditional on events RXX2- starting with the last 

renewal. Further, since inspections are assumed to be perfect, we have 

PXJRNI 
... N. ý- PXIRN. 

* (3.31) 

Under this concept, three key probabilities can be considered for the described 

system. 

(1) PNBIR(t. 
tt)dt is the probability of a sequence of negative inspections of which the 

last occurs at time t. from last renewal, and a failure at a time between t and t+ dt 

from last renewal. PjNBIR (tn 
10 is given by 

PNBIR (tn 
)0 ý-- 

jt 
g (u)f (t - u)du (3.32) 

where g(u) is the pdf of initial point u, and j(h) is the pdf of delay time h. 

(2) PNEIR (tn 
10 is the probability of a sequence of negative inspections of which the 

last occurs at time t. from last renewal, and no breakdown before observation ceases 

at time t from last renewal. This probability is given by 
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PNEIR(tnft) "--I -G(t)+J'g(u)(I -F(t-u))du, (3.33) 

where G(. ) is the cdf of initial point u, and F(. ) is the cdf of delay time h. 

(3)PNYIR On 
It) is the probability of a sequence of negative inspections of which the last 

occurs at time t. . followed by a positive inspection at time t from last renewal. 

This probability is given by 

PNYlR (tn 
It) 

fg 
(u)(1 - F(t - u))du. (3.34) 

The model key assumptions, which may be characterized as follow; 

(1) The time to the initial point of a defect and the subsequent time to failure of the 

component are independent. 

(2) The distributions of initial point u and delay time h are modelled as Exponential or 
Weibull. 

(3) Inspections are perfect. 
(4) Repair times are negligible. 
(5) Repairs are taken as replacements, so that the faulty component is restored to as 

new condition. 

Based on the above probability definitions and assumptions, Baker and Wang (1992) 

developed the likelihood function L of observing a sequence of events of 

(a) failures at time tB (i = 1,2,..., n. ), 

(b) no failure before observation ceases at time tjE (j = 1,2,..., nE)I 

(c) positive inspections at time ty (k = 1,2,..., ny ), as 

MF ny 

(tB* B (tE* tE Y* y)9 
(3.35) L PNB R of I 

ti )II PNEIR 
ji 

)IIPNYIR(tk 
9tk 

j=l k=l 
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where ti'6* is the time of the latest negative inspection, (or, failing that, the latest 

renewal) such that ti'* < t, and similarly for tjE* and tk - By maximizing the Y 

likelihood L in equation (3.35), estimates of parameters of the underlying initial point 
distribution, q(u), and the delay time distribution, j(h), can be obtained. 

A further development of the objective method for estimating delay time parameter is 

given in Christer, Wang, Baker, and Sharp (1995). This study is the first time the 

objective approach to delay time modelling has been applied in a case study. They 

develop a model which is different from previous delay time models in that it models 

the defect-initiating process as a stochastic process, and it is based upon interval data. 

They present a study carried out for a copper products manufacturing company, 
developing and applying the delay-time modelling technique to model and thus optimize 

preventive maintenance (PM) of an industrial press. The data available within the plant 
included the dates and downtimes occurred due to both PM and failures, the nature of 

the occurrence, and the number of faults found at PM. 

To estimate the parameters of the defect arrival process and the delay-time 

distribution, Christer Wang, Baker, and Sharp (1995) considered the following 

assumptions: 

(1) Defects arise according to a homogeneous Poisson process with rate X. 

(2) Defects are assumed to arise independently of each other. 
(3) The delay time h of a random defect is independent of its time origin and has 

pdf Ah) and cdf F(h). 

(4) Inspections carried out at PM are assumed to be imperfect in that they can only 
identify a defect present with probability r. Probabilities of detection of a 
defect at successive inspections are independent. 

(5) All identified defects are rectified by repairs or replacements during the PM 

period. This does not influence the development of undetected defects. 
(6) Failures are identified immediately, and repairs or replacements are made as 

soon as possible. 
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Further notation is defined as: 

tj : epoch of the ith PM from new, i=1,2,... 

t: failure time from new 
X: rate of occurrence of defects 

h: delay time of a defect with pdfj(h) and cdf F(h) 

r: probability of detecting a defect if it is there. 

Under the above assumptions and notation as defined, we have that the probability of 

a failure in Q, t+At) resulting from a defect arising at time y, is given by 

(I - r)"-"l (F(t + At - y) - F(t - y)) for ti-, < y:! ý- ti 

P(t, t+Atly) = 
F(t + At - y) - F(t - y) for tn <y :5t 
F(t +At - y) for t< y: 5t+At 10 

for t +At< y. (3.36) 

Then, for t. <t :5t. +, . the expected number of failures over (t, t+At), ENf (t, t+ At) , 
is 

0 
ENf (t, t+ At) = Af P(t, t+ Atl y)dy 

(F(t+At-y)-F(t-y))dy 

(F(t + At - y) - F(t - y))dy +A F(t +At - y)dy. (3.37) 
t 

Changing the integral variable and rearranging the integral sequence, and after some 
manipulation, we have 

ENf (t, t+ At) = Af +At (F(x - ti-1) - F(x - t, ))dx 

+A 
: 

F(x - Qdx. (3.38) 
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Also, the mean number of defects found at PM time t,,,, ENP (t.., ), is given by 

n 

ENP Al r)"-"l r F(t,,., - y))dy 

(I - F(t.., - y))dy. (3.39) 

Since the defect arrival process is assumed to arise according to a Poisson process, as a 

generalization of proposition 3.3.2 in Ross (1983), the number of failures in Q, t+At) 

follows a Poisson distribution with mean ENf (t, t +At) and the number of defects 

found at PM follows a Poisson distribution with mean ENP (t,, 
+, 

). Therefore, the 

probability of m failures over (t, t+ At), where tn <"t. +I . 
is given by 

P(m failures in (t, t +At))= 
(ENf (t, t +At))' e -EN, (t; t+At) 

(3.40) 
MI 

and the probability of n defects found at tn, j is 

P(n defects at t,, ) =. (3.41) 
nt 

As previously indicated, the data assumed to be available are the number of failures 

in each working day and the number of defects identified at PM times. To formulate 

the likelihood function of the observed event, suppose first that n, defects have been 

observed at the ith PM time (i= 1,2,..., 0. The PM interval (Ti-1, Tj) is now divided 

into k nonoverlapping subintervals of equal length At, namely 

+ (j - I)At, t+ iAt) 1,2, ..., k, i-I (3.42) 

where ti-I + kAt = ti . 
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Let mij denotes the number of failures occurring in Ij over (tj_j, tj). Since we 

have assumed that all defects are independent of each other, it follows that a defects 

resulting in a failure will not have any influence on a defect which is found at PM, i. e. 

the number of failures since the last PM and the number of faults found at PM are 

also independent. This being so, the likelihood is simply 

Ik 
L=11(P(ni defects at tj)rjP(mjj failures in Ij')). (3.43) 

i=1 j=1 

Therefore, once the form of j(h) has been specified, it is possible to obtain maximum- 

likelihood estimates for any unknown parameters. If there is no PM data available, the 

likelihood function is given by 

Ik 
L= fj fj P(mij failures in Ijý). 

i=1 j=1 
(3.44) 

After modelling parameters estimated via the maximum likelihood process, the 

estimated distributions can be compared to the corresponding sample distributions and 

the appropriate statistical tests-of-fit carried out. If statistical test fail, then the proposed 

models for u and h, for example Weibull distributions, would need to be revised. In 

this case, subjective measures of u and h may help to decide on appropriate models. 
Since the objective method utilizes the observational information, it could be 

demonstrated with a simulated data set featuring the number of defect identified at PM 

and times of failures, or number of failures per working day. The simulated data 

generated subject to a PM policy may be used to test whether the maximum likelihood 

method can recover the known model parameters. It will be discussed in detail in 

Chapter 5. 

59 



3.7 Discussion 

This chapter has presented an overview of the delay time modelling. Over the past 

ten years, delay time modelling has undergone considerable development and is 

increasingly being accepted as an important concept for the practical modelling of 

maintenance of components and systems. 

The key factor in delay time modelling is the estimation of modelling parameters, 

which include the initiation time and delay time. To estimate the parameter, two 

methods, namely subjective method and objective method, have been developed using 

the information obtainable from maintenance engineers or historical maintenance 

records. Both methods are beneficial to model maintenance problems. In the 

particular situation where objective maintenance data are not available, subjectively 
derived data can be reliably used as the basis for modelling. Otherwise, if there is 

only a small sample of objective data, a fusion of both methods would be beneficial 

due to an increased of data information. 

Baker and Wang (1992) and Christer Wang, Baker, and Sharp (1995) have 

developed parameter estimation techniques using objective method for a single 

component system (or a system with only a few key components) and a system with a 
large number of components, respectively. Baker and Wang (1992) note that the 
individual behavior of each component can be modelled separately and a simple 

model constructed. As far as modelling a system is concerned, the restriction to a 

small number of components may not be restrictive, since a component can itself be a 

system. In Chapter 4, a combination of separate component models to form a system 

will be discussed and compared with an alternative multi-component system model. 
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Chapter 4 

Modelling of Preventive Maintenance 

4.1 Introduction 

Single component models and multi-component models of preventive maintenance 
have been discussed in Chapter 2. In chapter 3, we discussed the delay time theory 

of modelling and parameter estimation. In this chapter, we develop further the 
discussion on the system PM models and component PM models. 

Preventive maintenance techniques have been emphasized within industry over the 

past three decades due to complexity of systems, increased quality requirements and 

rising costs of material and labour. The main management issues for maintenance 

are to decide how best to cope operationally, that is to decide what to do and how to 

organize available resources to meet with the demand that exists. For instance, it 

might be advantageous to have an PM policy to group defects in time, and to some 

extent also by type, or to undertake some form of planned maintenance to reduce the 

cost consequences of defects in addition to grouping working activities in time. 
Therefore, a considerable decision aid for management would be a mechanism or 

model for identifying beforehand the envisaged consequences of different options and 

of different periods of operating. 

Generally, maintenance encompasses planned and unplanned actions carried out to 

retain a system in or restore it to an acceptable condition. The aim of modelling 
planned preventive maintenance is to determine the optimal PM frequency or interval, 

that is, to minimize downtime, say, while providing for the most effective use of 
systems in order to secure the desired results in a cost effective way. PM policies 
have been called the most difficult maintenance operations to model (Christer and 
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Waller 1984b). The usual approach to the modelling of planned preventive 

maintenance operations is to build an expression for the profit, cost or availability 

rate. Denoting a policy by the PM interval or frequency, then the cost rate is 

calculated by dividing the total cost over the PM cycle by the cycle length. If one has 

a model of this cost, then the model may be optimized to yield an optimal PM 

interval. 

In this chapter, we present the modelling of various PM policies based on 
downtimes and costs, and consider a practical approach to obtain expressions for the 

downtime of a system. In our modelling based upon the delay time concept, we 
focus on structures, or equipments, which perform specific functions on a continuous 
basis and which consist of one or more components subject to gradual deterioration. 

To evaluate the proper PM policies we consider downtimes and costs for different PM 

policies. Preventive maintenance may be called for in order to avoid high failure 

costs, but too much preventive maintenance is itself costly. Preventive repair may be 

undertaken when the actual condition has become bad enough or when it is profitable 

on economic grounds. Repair here may be assumed to be replacement because we 

consider the result of a repair is equivalent to starting with a new, identical 

component. 

The problem is to determine a stationary repair strategy for the system as a whole, 

so as to minimize average system maintenance cost per unit of time in the long run. 
In doing so we take into account reductions in repair costs if repair of several 

components is coordinated. Another problem presented in this chapter is to allow for 

the actual system operating time for a system when the downtime of failure is not 

very small compared with the PM cycle length. 
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4.2 Nature of Maintenance Practice 

The primary function of maintenance is to control the condition of equipment. 

Some of the problems associated with this include the determination of inspection 

frequencies and level, overhaul and repair practice, replacement times, manpower 

sizes, composition of machines in a workshop, spares provisioning rules and 

scheduling start time for constituent jobs of a maintenance project (Jardine, 1984). 

As indicated these many control actions are open to the maintenance manager. The 

effect of these actions cannot be looked at solely from their effect on the maintenance, 

since actions may seriously affect other units within a system, such as a production 

unit. 

To illustrate the possible interactions of the maintenance function, consider the 

effect of decision to perform repairs only, and not do any preventive maintenance. 

This decision may well reduce the maintenance cost required by the maintenance 

department, but it may also cause considerable production downtime. Thus, 

mathematical models can be used to assist the maintenance manager balance these 

issues. 

This chapter is more concerned with determining inspection intervals (or 

schedules), i. e. the points in time at which the inspection action should take place. 

Since the basic purpose of an inspection is to determine the state of equipment, some 
further maintenance action may be taken after the inspection, depending on the 

observed state. When the inspection should take place ought to be influenced by the 

costs of the inspection and the benefits of the inspection, such as detection and repair 

of minor defects before major breakdown occurs. 

Figure 4.1 illustrates the type of approach taken using a mathematical model to 

determined the optimal frequency for inspecting equipment, that is balancing the 

maintenance cost against reduction in downtime. It is assumed in the figure that the 

objective is to minimize the expected cost per unit time from operating the equipment. 
This cost includes the total cost per unit time of inspection and maintenance, and the 

cost of failures, Figure 4.1. This figure assumes a steady state situation. 
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Total cost of 
inspections 
and repairs 

Cost of 
inspections 

Cost of 
failure repairs 

spection repairs 

Inspection interval, t 

Figure 4.1. Cost curves of preventive maintenance 

In maintenance, one can often detect failures in a system only by inspections, such 

as the failure of units in storage. In a perfect inspection model, all failures can be 

detected at the times of inspection. However, in many practical problems, one can 

not detect all the failures upon inspection. For example, the time allotted for 

inspection might not be enough to detect defects, not to mention the chance of 

misjudgment. This implies an imperfect inspection. 

If actions on different components are combined, the set-up cost may be charged 

only once because of economic dependence. Although our model allows in principle 
for more levels of set-up costs, we shall define only two levels: a system set-up cost 
(e. g. of transport to the plant, administration, and handling), and a "component type" 

set-up cost per type of component (e. g. special equipment or skills required). If the 

repair of components of different types is coordinated, then the system set-up cost is 

reduced. If the repair of a set of components of the same type (which should be more 
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or less identical, so that it is possible to consider one of them as representative) is 

coordinated, then both the set-up cost of a particular component type and the system 

set-up cost could be the same. Failure may involve a damage cost charged once per 
failure. The operating cost of a component functioning in working order may depend 

on its actual condition and may include the cost of having perfect information about 

the condition. We do not consider here any stochastic dependencies between 

components. 

Here we recall the concept of system and note the definition 'A system is a set of 
discrete elements or components which are interconnected to perform one or more 
functions (Villemeur, 1992). Other terms such as device, socket, unit, part, 

subsystem and equipment can be found in the literature with definitions varying 

according to the industrial field they belong to. Therefore, for the sake of clarity, we 

will use the notion of part, component, and system in the thesis. From the definition 

above, a system consists of a set of components, and components are associated with 

parts. The part is an item which is not subject to disassembly. We assume that a 

system which, after failure to perform at least one of its required functions, can be 

restored to performing all of its required functions by some methods. We also 

consider that all components in the system are independent of one another, and an 

opportunity for a group repair of several components may be considered. 

In practical, it is often more difficult to obtain maintenance data for parts than for 

components or a system. Specific parts normally have relatively few failures over a 
data collection period, and it is more complicated to identify the exact cause of 
failures than for lager units. Therefore, in our modelling case we will compare a 

systems model to a component set model. 

This being so, the main management issues relate to deciding how best to cope 
operationally, that is how to organize available resources to meet with the demand 

that exists. For instance, it might be advantageous to have an inspection policy to 

group defects in time and to some extent by type, or to undertake some form of 
planned maintenance to reduce the cost consequences of defects in addition to 
grouping working activities in time. Again, a considerable decision aid for 
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management would be a mechanism or model for identifying beforehand the 

envisaged consequences of different options and different periods of operating. 

4.3 Modelling of Preventive Maintenance 

4.3.1 General System Description for Modelling 

Consider a system with m independently repairable components 1, ..., m. Each 

components is subject to the instantaneous constant rate of defect occurrence Ai, i= 

1, ..., m. and has a delay time distribution fi(h), (see Figure 4.2). It is noted that this 

configuration is termed series independency. It is assumed that if any one component 
fails, the system will not operate. 

Since the individual components for a system may act independently, all 
components have different defect arrival rates and delay time distributions. 

Therefore, each component may give rise to different expected downtimes over a time 

epoch. For the series system, the inspection policy which minimizes the expected 

total average cost or downtime can be derived. 

For modelling purpose, consider the general case of an inspection policy, which may 
be characterized by the following assumptions. 

(1) The condition of the system can be observed by inspections only and a failure 

may be observed immediately at its occurrence. 
(2) The component is repaired immediately upon failure, or at an inspection if a 

defect is identified, and no opportunistic further inspection of other component 
takes place. 

(3) Inspections are perfect in that any defect present within the system will be 
identif ied. 
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(4) All defect identified at component inspection are repaired. 
(5) The component is as good as new after repair. 
(6) Defects are independent of each other and arise during use as a HPP with rate 

of occurrence of defects Aj for component j and A for the overall system of 

M 
components where A A, and m is the total number of components. 

j=1 

(7) The total downtime due to failures is small compared the total operating time, 

and there is minimal error in assuming rates Aj are per unit time and not per 

unit operating time. 

(8) The delay time h of a defect is independent of the time of origin, and all 
defects for component j share a common delay time pdffj(h) and cdf Fj(h). 

For this system, the PM policy which minimizes the expected total downtime and 

cost can be derived. 

---------------------- 

Comp. 1 

Comp. 2 

Comp. 3 

Comp. m 

---------------------- 

System 

--------------------- 

fl(h) I 

f2(h) 1 
11 

f3(h) II 

f. (h) 

---------------------- 

Figure 4.2. The configure of system which has several components 
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4.3.2 Component PM Model 

Let T be the inspection interval, Fj(h) be the cdf. of delay time of the 

component j and d be the average inspection duration for checking the component Pi 

j and repairing if any defects are found. Also, let Cpj denote the average inspection 

cost and Cdj denote the average repair cost per defect of component j at an 

inspection, dr. denotes the average downtime per failure of component j and Cfj 
ji 

denote the average repair costs for a failure of component j. T, dj anddpj are 

assumed to be expressed in the same units. 

Now we have from Christer and Wang (1995) that the expected number of failures 

of componentj over (0,7) is given by 

Ef 
Tl 

N. 6 (T) 
0jF, 

(h)dh, (4.1) 

where A is the rate of occurrence of defects for component j and F (u) is the cdf. of ji 

delay time of component j. Therefore, the expected total downtime of component 

per unit time over an inspection period is 

EDj (T) = 
dpj + df) EN., (T) 

. T+dpj 
(4.2) 

It follows that the total expected downtime per unit time of all components inspected 

on the inspection period T in an uncoordinated fashion, ED, (7), is given by 

m 
ED, (T) EDj (T). (4.3) 

j=l 

If all component inspections were undertaken at the same time, there may be a 

reduction in total downtime. This is considered further later. 
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Similarly, the expected total cost of each component j per unit time over a full 

cycle of length T+ dpj is 

ECj (T) = 
EN, 5 (T) C. 0 + (EN dj (T) - EN 

_fj 
(T» Cdj +C pj 

7 (4.4) 
T+dpj 

where ENfj(7) is the expected number of failures over (0,7) for component j, and 

ENdj(7) is the expected number of defect arising over (0,7) for component j, namely, 

, ý-T. It follows therefore that the total expected cost of per unit time of all 

components inspected in an uncoordinated fashion on the inspection period T, EC, (7) 

is 

m 
EC, (T) ECj (T), 

where m is the total number of components. 

4.3.3 System PM Model 

(4.5) 

In delay time modelling applications, all defects arising in a component may be 

assumed to follow a common delay time distribution. The same delay time 

distribution may be assumed for different components. This is, however, normally 

only an approximation since individual components may act differently and, 

therefore, be represented by a different delay time distribution. However, if we 

assume dj, - - dn. for j#k, then a combined delay time distribution representing all J- 
failure types can be used where the combined delay time distribution is obtained by 

taking the weighted average of the delay time distribution of individual components 

using weight A- 11 
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As discussed in previous chapter in section 3.6.3, parameter values are mainly 
derived from historical data. In many cases the period of observation of a system is 

short relative to the number of failures it experiences, so the effects of either 

synchronous or asynchronous sampling cannot be ignored in a completely rigorous 

analysis (Cox and Lewis, 1966). In practical situations, data which include date and 

times of downtime occurrence due to PM and failures is only available within limited 

time windows. If the downtimes associated with each failure can be provided, we 

can drive the average downtime over the operating time. 

An estimate of the average downtime of all components may be estimated from 

historical data. The total number of failures in the data collection period and the total 

downtime can provide an estimate of the mean downtime due to failure for either each 

component or for the system. If data is not available, it may be estimated 

subjectively. 

Let 

d denotes the average downtime of all components, namely, f 

m d. # x No. offailures of componentj (4.6) fI 

, =, 
Total no. offailures of all components 

where m is the total number of components. 

Since F(h) denotes the combined cdf. of the delay time of all failure types, and 
ENj(T) is the expected number of failures of all components, we have 

ENf (T) r AF(h)dh, 
0 

where Aj 
j=l 

(4.7) 
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Therefore, the expected total downtime of all components per unit time over an 
inspection period, T, is 

d +d T AF(h)dh 
ED, (T) pf0 

T+dp 
(4.8) 

"I 
where d=1: dj x ad, and m is the total number of components, adp is a 

P .' j=1 

reduction factor representing the reduction in time achieved by group inspection. For 

instance, if adp = 1, there is no real reduction, and the model is equivalent to equation 
(4.3). However, if adp = 11m, all components are attended to in parallel in the 

average time for one component. One might expect adp ý 
-- 

I 

[maxd 
j Pj 

To find the cdf F(h) of a system, we recall that the instantaneous rate of 

occurrence of defects and the delay time of component j are Aj and cdf Fj(h), 

respectively from assumptions (6) and (8). For example, if we have a system which 

consists of two components, then the component I has A,, FI(h) and component 2 has 

A2, F2(h). Therefore, for the system A, F(h), we have 

F(h) 
ýF, (h)+A2F2(h) 

I and A=. ý+A2. (4.9) 21+'12 

Similarly, for m components system, the delay time for the system is given by 

Aj Fj (h) 
F(h) -j=l m (4.10) 

I 
j=l 
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M 
For the inspection cost of the system, CP =I CPj X ad, where ad, is as before a 

j=1 

reduction factor reflecting the reduction in cost by grouping. If ad, =I Im, then the 

M 
f C., Im, and failure and the inspection repair cost of the system are C=1: 

j=1 

M Cd =I Cdj /m, respectively. Eitherway, the expected cost per unit time resulting 
j=1 

from maintaining the unit on an inspection system of period T is EC, (7'). Thatis, 

the expected total cost per unit time over PM interval (0,7) for system is 

EC, (T) = 
ENf (T)Cf + (ENd (T) - ENf (T))Cd + Cp 

(4.11) 
T+dp 

where ENXY) is the expected number of failures of system and ENd(7) is the 

expected number of defects arising over (0,7). Since we assume the instantaneous 

rate of defect occurrence within system after inspection is constant, namely A, the 
T 

expected number of defect arising over (0,7) is ENd (T) 
0 

Adu =AT since the 

number of defects arriving in the interval for example (u, u+ du) is Adu. 

4.3.4 Numerical Examples 

* Two components system case 

To simplify the problem, we firstly consider a case where PM is perfect and the 
delay time is exponentially distributed, namely for component j 

Fj (h) =I- e-al 
h9 

(4.12) 
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where 
I is the mean delay time of component j. First, we assume that a system 

aj 

has 2 series components and each component has different defect arrival rate and 
delay time distribution. The mean downtimes for each component per failure are 

assumed known. 

We assume that the data is as shown below. Further, in inspection activities, the 

system components are repaired in parallel, which means inspection and repair are 

undertaken by duplicate repair teams consisting of two parallel capabilities. Now we 

calculate the expected downtime for the component model and system model. 

For component I 

Defect arrival rate (A, ) : 0.4 per unit time. 

Delay time parameter (a) : 0.05 per hour. 

Mean downtime per failure (d ): 0.9 hours. f] 
Mean duration of PM activity (dp, ) : 1.0 hour. 

Inspection cost (Cpj) : 10 units. 
Failure repair cost (Cfj) : 30 units. 
Inspection repair cost (Cdl) :2 units. 

Since we assume that delay time distribution is exponential, the expected number of 

failures for component I over time (0,7) is given by 0.4(1 - e-o*"')dh, see equation 

(4.1). The expected downtime per unit time over PM interval (0,7) for component I 

can be obtained from equation (4.2). 

For component 2 

Defect arrival rate (A2) : 0.5 per unit time. 

Delay time parameter (a2) : 0.02 per hour. 

Mean downtime per failure (dj2): 0.5 hours. 
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Mean duration of PM activity (dp2): 1.0 hour. 

Inspection cost (Cp2) : 10 units. 
Failure repair cost (Cj2) : 30 units. 
Inspection repair cost (Cd2) :2 units. 

Similarly, the expected number of failures and the expected downtime for component 

2 can be obtained from equations (4.1) and (4.2). The total expected downtime for 

two components in system, ED, (7), is the sum of the downtime of component I and 

component 2. That is, 

ED, (T) = ED, (T) + ED2 (T). (4.13) 

This assumes there is no saving in inspecting both components at the same time. 

For total system 

In this system which consists of two components, from assumption (6) we have the 

defect arrival rate of system, A=0.9 per unit time since we assume 
A, + A2 from assumption (6). From equation (4.10), we can obtain the cdf. of 

-0.05h -0.02h the combined delay time distribution, namely, F(h) = 1- 0.444e - 0.556e 

Also, costs are taken as inspection cost, Cp = 15 units, failure and inspection repair 

cost Cf = 30 units and Cd =2 unit, respectively. Here as we mention before, the 

inspection downtime and cost will be reduced by a reduction factor reflecting the 

advantage of grouping. Here we assume that the inspection downtime of the 

grouping reduction factor, adp is 0.5 which dp =I and the inspection cost of the 

grouping reduction factor, ad, is 0.75. Then the expected total downtime for system 

per unit time can be also obtained from the equation (4.8), namely 

ED, (T) = 
dp +df T AF(h)dh 

T+dp 
(4.14) 
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M 
where d=I dpj x adp and m is the total number of components. 

P 
j=1 

Now, Figure 4.3 shows the expected total downtime per hour as a function of PM 

cycle length for each component and system model. For each component model, the 

optimal inspection interval of component I is 12 hours with an expected total 

downtime of 0.159 per hour, and the optimal inspection interval for component 2 is 22 

hours with an expected total downtime of 0.089 per hour. 

1.2 

0.8 

m 0.6 

2 0.4 
ci Qi gl. 

0.2 

0 

- Comp 7 
--4- Comp 2 
--*--sum of component 
-system 

05 10 15 20 25 30 35 

PNI cycle length 

Figure 4.3. Expected total downtime per hour according to PM cycle length 

The total expected downtime per unit time, using equation (4.3) for the two 

components is also shown in Figure 4.3. The expected total downtime for the sum of 

two components on a common inspection period is 0.257 per hour. For the system 

model, equation (4.8), is also shown in Figure 4.3, and the optimal inspection interval 

is 10 hours with an expected total downtime of 0.18 per hour. Since the system 

considered has an assumed partial parallel repair facility modelled via the reduction 
factor, adp, it is obvious that system PM model is more beneficial than each unit PM 

model. If we assume that the inspection reduction factor adp = 1, the optimal 
inspection interval of the system PM model is 14hours with an expected total 
downtime of 0.239 per hour. When the inspection reduction factor adp = 1, the 
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system PM model is less downtime of that of sum of component PM model. Suppose 

for now that PM is carried out individually on each component, and the system 

considered here is a series system consisting of 2 components, then at the time of 

checking the first component, the system has to be shutdown. This implies that 

component 2 is in a non-production state while component I is checked, which 

evidently increases the total downtime. 

Now we consider the cost model of this system. Curves of objective functions 

(4.4) and (4.11) are presented in Figure 4.4 for the above data. This figure illustrates 

expected total cost for the two components model and the system model. For 

component 1, the optimal PM interval is 5 hours with an expected total cost of 3.409 

per hour, and for unit 2, the optimal PM interval is 7 hours with an expected total cost 

of 2.944 per hour. For the system model, equation (4.11), the optimal inspection 

interval is 5 hours with an expected total cost of 5.6395 per hour. It is noted that the 

PM cost of system PM model may less than that of sum of component PM model with 

the same value of the grouping reduction factor ad, = 0.75. 

It is useful to determine the sensitivity of the optimal decision policy to the input 

data for various factors such as maintenance downtime, or costs. 

12 

10 

16 
�a 
�a 
�a 
�a 

2 

0 

-component I 
--4--component 2 
--X-sum ofcomponent 
-system 

05 10 15 20 25 

PM cycle length 

Figure 4.4. Expected total cost per unit time 
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Here, we investigate the sensitivity of inspection downtime for the two models, the 

sum of components PM model and system model for inspection time. 

In a system model, since all components in the system are checked in parallel, the 

downtime due to PM is less than or equal to that for a component based PM model. 

To know how much additional PM time is available by grouping and paralleling PM 

activities without changing the total downtime, let the inspection downtime, 

d* = (Zdpj xadp)+O, where adp = 0.5, 
P 

and then 

f (0) = ED, (T; 0) - ED, (T) = 0, (4.15) 

where ED, (T; 0) = 
(dp + 0) + ENf (T)df 

9 T+(d P 
+0) 

and ED, (T) - 
dpi + ENf I (T)df I+ 

dp2+ ENf2(T)df2 
T+dpl T+dp2 

The 0 obtained from equation (4.15) is the additional time gained by doing PM in 

parallel. 

We also use the same data above for two components with equations (4.13) and 
(4.14). From equations (4.13) and (4.14), when the inspection interval is 10 time 

units the system PM model is optimum with an expected total downtime per unit time 

of 0.18 per hour and the sum of component PM model has an expected total downtime 

per unit time is 0.273 per hour at the same inspection interval as 10 hours. Therefore, 

the system PM model already has more benefit as the difference with 0.077 per hour 

than the component PM model for the expected total downtime per unit time. Figure 

4.5 shows the sensitivity analysis for optimal downtime of both models. In this case, 

an additional time (6) gained by doing PM in parallel is 1.4 hours. Therefore we may 
know that how much time can save from PM activities by grouping or paralleling. 
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Figure 4.5. Sensitivity curve to System model when d., =1, dp2 ý1 and d. 
is considered as a1 with the reduction factor adp = 0.5 
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Figure 4.6. Sensitivity curve to System model when dp, = 2, dp2 =3 and d. 
is considered as 2.5 with the reduction factor adp = 0.5 
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Figure 4.6 also shows the result when each component of a system has a different 

inspection time as the component I has 2 hours and the component 2 has 3 hours, and 

the inspection time for a system PM model is considered as 2.5 hours with the 

reduction factor, adp = 0.5 from equations (4.13) and (4.14). 

When the optimal inspection interval for a system PM model is 17 hours, the 

expected total downtime is 0.262 per hour, and the expected total downtime of 

component PM model is 0.393 per hour at the same inspection interval with the 

system PM model. Therefore, we obtain the value of 0 as 4.2 from equation 

(4.15). That is, a system PM model can share the workforce as much as the value of 

0 

9 More complex components system case 

In maintaining a more complex component system, there are usually several policy 

options for decision alternatives available to management for consideration. There is, 

for example, the possibility of reducing downtime or costs for maintenance and 

repairs. However, it will not always be possible or economically sensible, to reduce 

to any extent the level of maintenance demand. Here, we consider the various PM 

policies for a system which consisting of 3 components. Using the above 

components, we add one more component, namely, component 3, to the system. 
Component 3 information and data is assumed as follows: 

For component 3 

Defect arrival rate (A. ) : 0.7 per unit time. 

Delay time parameter (a): 0.01 per hour. 

Mean downtime per failure (d ): 0.35 hours. f3 

Mean duration of PM activity (d 1.0 hour. 
p3 
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Inspection cost (Cp3): 10units. 

Failure repair cost (Cf3) : 30 units. 

Inspection repair cost (Cd3) :2 units. 

First we consider 4 different PM policies of this system with assuming the perfect 

inspection. Here we assume that for inspection reduction factor in combining of 

components will use the longest inspection time of components. And the inspection 

cost of the grouping reduction factor, ad, is assumed as 0.75 and the failure and the 

inspection repair cost of the system are also assumed as ad, = l1m, where m is the 

number of components. The average downtime of all combined components is 

applied as same equation as (4.6). 

9 Case model I: Separate component PM policy model (Com. 1, Com. 2 and 

Com. 3). 

Each component in the system has PM performed independently. Here we 

assume that each component has a different inspection time, dpj, but identical 
inspection cost Cpj. 

* Case model II: Mixed PM policy model (Com. 1 + Com. 2 combined, and Com. 3 

separate). 

Componentl and Component2 are considered as a system PM model and 
Component3 is considered an independent component PM model. Therefor for 

component I and 2 the inspection reduction factor is applied, which is the longest 

inspection time of components, the inspection cost of the grouping reduction factor, 

ad, is applied as 0.75, the failure and the inspection repair cost of the system are 

applied as 0.5. 
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e CasemodeIIII: System PM policy model (Com. I+Com. 2+Com. 3). 

All the components are considered as a system PM model. Therefore, this case 

model is assumed that the downtime of inspection is longest time of components, 

that is the system PM policy has a parallel maintenance facility. 

9 Case model IV: Combined PM policy and failure based model (Com. 1 + Com. 2 

combined, and No PM for Com. 3 ). 

This case model assumes that Componentl and Component2 are considered as a 

system PM model and Component3 has no PM plan, but is subject to breakdown 

maintenance only. 

Now ftom the downtime models and cost models for components, namely 

equations (4.2), (4.4), (4.8) and (4.11), we can obtain the downtime model and cost 

model for each of the above cases. 

Here, for demonstration we let the mean inspection downtimes for each component 
be dpl =I hour, dp2 = 1.2 hours, dp3 = 0.5 hours. We also assume that the 

inspection downtime when grouping PMs is the maximum of the inspected 

component's individual inspection downtime. For the reduction factor of grouping 

cost for inspection we take, ad, = 0.75. 

For Case model I (separate component PM policy model), the expected total 

downtime model and cost mode are given by 

3 

ED, (T) I EDj (T), (4.16) 
j=l 

where EDj (T) = 
dpj + d. 0 EN., (T) 

T+dpj 
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T -a h 

where EN., (T) = f' Aj Fj (h)dh, and Fj (h) =1-e 0 

and 

3 

ECI (T) ECj (T), (4.17) 
j=l 

where ECj (T) - 
EN., (T)C., + (ENdj (T) - EN. 0 (T)Cf) + Cpj 

and ENdj (T) = AjT. 
T+dpj 

For Case model II (Mixed PM policy model), the expected total downtime model 

and cost mode also given by (Since dpi < dp2 ) 

ED,, (T) = ED, (T) + ED3 (T) = 
dp2 + df 

1,2ENf 1.2 (T) 
+ 

dp3 + df 
3ENf 3 (T) 

(4.18) 
T+dp2 T+dp3 

where ENfl. 2(T) = (, ý + A2) FI, 2(h)dh, ENf3(T) =, ý 
0 

F3(h)dh, 

FI, 2(h) 
F, (h) +, 12 F2(h))l 

, F3(h) =I- e-"' and (Al + A2) J 

dj 
df Ix No. of failures of component I+ df 2x No. of failures of component 2 

Total No. of failures of component 1,2 

and 

ECII (T) = EC, (T) + EC3 (T), (4.19) 

where EC, Q 
ENf 1.2 (T)Cf 1.2 + (ENdl, 

2 (T) - ENf 1.2 
(T))Cdl, 

2 + Cpl, 
2 

T+dP2 
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ENdl, 
2 (T) = (, ý + A2)T, where Cfl, 2 = (Cf] +CJ2)/29 Cdl, 2 = (Cdl +Cd2)12, and 

Cpl, 2 ý-- (Cpl + Cp2) x ad, 

and EC3 (T) = 
ENf 3 (T)Cf 3+ 

(ENd3 (T) - ENf 3 (T))Cd3 + Cp3 

T+dp3 

T 

where ENd3 (T) = A3T, ENf 3 (T) = 
A3 

0 
F3 (h)dh 

For Case model III (System PM policy model), the expected total downtime model 

and cost model is given by (Since assumed that dp3 < dpl< dp2 ) 

ED,,, (T) = ED, (T) = 
dp2+ df ENf (T) 

T+dp2 

and 

(4.20) 

ECIII (T) = 
ENf (T) Cf + (ENd (T) - ENf (T)) Cd + Cp 

(4.21) 
T+dp2 

33T 

where ENd(T) = EAjT, ENf (T) A, F(h)dh, 
j=l j=l 

F(h) 
F, (h) + A2F2(h) + A3F3(h))l 

and Cf = (Cf, + Cj2 + Cf3)13, Cd = (Cdj +Cd2 
('ý + ý2 + '12 

)f 

3 

+ Cd3)13, and C, I Cj x a, 
j=l 

For Case model IV (Combined PM policy and failure based model), the expected 

total downtime model and cost mode also given by (Since dp, < dp2 and dp3 = 0) 
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ED, v (T) = 
dp2+ dfl, 

2ENfl, 2(T) 
+ 

df3ENf3(T) 

T+dp2 T 

where 

(4.22) 

df i. 2= 
df Ix No. of failures of component 1+ df 2x No. of failures of component 2 

Total No. of failures of component 1,2 

ENf 3 (T) = 
A3 

0 
F3 (h)dh and 

EC, v (T) 
ENf 1,2 (T)Cf 1,2 + (ENdl, 2 (T) - ENf 1.2 (T))Cdl. 2 

+ Cpl. 
2 

+ 
ENf (T)Cf 3 (4.23), 

T+dP2 T 

where Cfl. 2 ý-- (Cfl +Cj2)12, Cdl, 2 : -- (Cd, +Cd2)12, and Cpl, 2 ` (Cpl + Cp2) x ad, 

Figures 4.7 to 4.14 illustrate the behavior in expected downtimes and costs per unit 

time for various PM policy of the system. 
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Figure 4.7. The expected total downtime for case Model I 

84 



20 

16 

-comp 1 
-comp 2 
-comp 3 

- Total cost of case 1 
40 

12 

4 

0 

I 

10 15 20 25 30 

Inspection Interval 

Figure 4.8. The expected total cost for case Model I 
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Figure 4.10. The expected total cost for case Model 11 
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Figure 4.11. The expected total downtime for case Model III 
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Figure 4.12. The expected total cost for case Model III 
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Figure 4.13. The expected total downtime for case Model IV 
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Figure 4.14. The expected total cost for case Model IV 

30 

From the various PM policies model, we can evaluate the case models in terms of 

downtimes and cost. In Figure 4.15 we can notice that the system PM model III is 

the best for reducing downtime. This is because we have assume that all components 
in the system are checked by parallel workforces, that is the inspection time, dp, of 

the system PM model, namely Case model III, can be reduced by parallel inspections 

and repairs. It is also evident that Case model IV has very little difference in terms of 

the values of downtime with the Case model IV. The reason is that the total 

downtime over the PM interval for the Case model IV is only slightly influenced by 

the total value of downtime, since we considered that inspection time, dp, is the 

maximum individual inspection time of the combined components, which is 

component 2, namely dp2 ̀ 1.2. Also, in figure 4.13 we can seen that the expected 

total downtime of component 3, which is failure based maintenance, is relatively low. 

Therefore, the expected total downtime over the PM period of the Case model IV is 

not much relevant to the Case model 111. 
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Figure 4.16. Expected total cost per unit time for all models 
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By contrast, in Figure 4.16, Case model IV is the best model, which has the lowest 

cost per unit time. In the Case model IV, we only considered the inspection cost of 

the component 1 and 2 since component 3 has breakdown maintenance only, with the 

rate of failure for component 3 the lowest. Therefore the expected total cost per unit 

time for the Case model IV is much smaller than that of the other Case models. 

Again from figure 4.15, we can see that curves of the Case model III and Case model 
IV are very close to the values of the expected total downtime. The Case model IV 

may be considered as Case III with component 3 removed and maintenance as failure 

based. Since component 3 has no PM plan but is subject to breakdown maintenance 

only and the rate of failure is relatively low, the total expected downtime is not much 
difference for the downtime models for cases III and IV, that is equations (4.21) and 
(4.23). 

Table 4.1 presents optimal results of figures of downtime and costs of case models 
based on various PM policies. Under the given maintenance information, we have 

obtained the expected unit downtimes and expected total unit cost of the various 

cases. In this system, the Case model III dominates the other models in terms of 
downtime. 

Models Model I Model II Model III Model IV 

Expected unit downtimes 0.316 0.249 0.20 0.206 

Optimum inspection period 17 13 10 10 

Expected total unit costs 9.619 9.047 8.185 5.91 

Optimum inspection period 7 6 5 4 

Table 4.1. Optimal results for downtimes and costs for all models 

However, although the Case model III has the lowest downtime per unit time, the 
Case model IV has lower expected total cost per unit time. Therefore, if cost data is 

available, it may be more appropriate to compare not only downtimes but also 
maintenance cost. 
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4.4 Extending the Downtime Modelling 

4.4.1 General assumptions 

So far we have discussed in section 4.3 downtime and cost models which depend 

upon various PM policies for a system. In this section we present an extension to the 

downtime model, which deal with exploring the actual operating time and downtime 

when calculating the expected number of failures. 

Previously, the analysis centers around the application of a periodic inspection of a 

system where independent defects may arise which have a delay time h. Here we 

also consider the general case of an inspection policy, which may be characterized by 

the following assumptions. (1) PM is undertaken every T time units, requires dp 

time units and all defects are repaired. We suppose for now that (2) this inspection is 

perfect in that, if a defect is present at the time of inspection, it will be identified. (3) 

Defects are assumed to arise within the system at a constant rate X over any PM 

period, failures during operating time are repaired immediately with downtime df, 

and failure repair time is independent of the defect's delay time. (4) Accumulated 

failure over a PM period T as assumed to impose a small amount of downtime, and 
defects are assumed to only deteriorate and lead to failures whilst the system is 

operating. We assume here that (5) the delay time h of a random defect is 

independent of its time origin and has pdfj(-) and cdf F(. ). In complex plant, the 

notion (% is constant or not) of failure rate has no meaning, as such, only rate of 

occurrence of failure. 

In explaining our development of delay time modelling, we first briefly present the 
inspection models based on above basic assumptions. The model presented here is a 
development of the delay time models put forward by Christer and Waller (1984a) 

and Christer and Redmond (1990). Then we discuss the non-negligible downtime 

model extension in section 4.4.3. 
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4.4.2 Models of Inspection 

* Basic Model 

The basic model is first considered as the simplest possible case of an inspection 

policy which may be characterized by based upon above general assumptions of 

section 4.4.1 (see Christer and Waller,, 1984a). From the above assumption, the 

expected number of defects arising in the PM period T is AT. This ignores the 

downtime due to breakdowns, during which no defects would arise since the 

machinery is idle. However, if this downtime is small compared with T, then the 

error will be small. We will discuss this point in the section 4.4.3. Here we suppose 

that a defect arising within the period (0,7) has a delay time in the interval (h, h+ 

A), the probability of this event being j(h)dh. This defect will be repaired as a 

failure repair if the defect arises in period (0, T- h), otherwise as an inspection repair. 
The probability of the defect arising before (T - h), given that a defect will arise, is 

(T-h) / T. We have, therefore, that the probability that a defect is repaired as a failure 

and has delay time in (h, h+ dh) is (T - h) / Tf (h)dh. 

Summing over all possible h, we have that the probability of a defect resulting in a 
failure, b(7), (see equation (3.1)), is 

T T-h b(T) (h)dh. 
T 

(4.24) 

Therefore, if the average downtime for a failure repair is df, the expected 

downtime per unit time to be incurred operating an inspection policy of period T is 

given by, (see equation (3.4)), 

ED(T) = 
A7b(T)df + dp 

T+dp 
(4.25) 

where A is the arrival rate of defects per unit time and dp denotes the mean duration 

of the PM activity. 
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* Imperfect inspection case model 

In some cases it may be necessary to introduce a probability that a specific defect 

will be identified at an inspection, and a corresponding probability (I - r) that it will 

not. If inspections are imperfect, there is a probability r :ýI that a defect present at 

an inspection will be identified. Here the probability of detecting a defect at 

successive inspections is assumed to be independent and constant. Here equation 

(4.24) for b(7) will need to be modified as below. We have from Christer and 

Waller (1984a) and at section 3.5.2 in Chapter 3 that the probability that a defect 

arises as a failure as opposed to being identified at an inspection, b(7), (see equation 
(3.15)), is 

T-r 
b(T) =I- J' E-(l - r)"-l R(nT - y)dy, 0 n=l T 

where R(. ) =I- F(. ). 

9 Non-homogeneous defect anival rate case 

(4.26) 

In the real situation, the system's reliability after a repair or replacement may 

not be the same as before. And if machine is subject to wear or ageing, the 

instantaneous rate of failure occurrence could vary. If most repairs involve the 

replacement of a very large fraction of a system's constituent parts, the system's 

reliability after a repair is not the same as it was immediately before failure 

occurred. This situation may lead to the non-homogeneous failure arrival rate. 
That is, the rate of occurrence of failure varies with time rather than being a 

constant. The NHPP model for the arrival process of failures of a repairable 

system, endorsed by Ascher and Feingold (1984), incorporates the concept of 
delay time by allowing the ROCOF be a convolution of the defect arrival rate and 
the delay time pdf under the assumption of independence. The inspection point 
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for the case of imperfect inspection with NHPP defect arrivals is not a system 

renewal implying that the defect arrival rate A(t) cannot be considered identical in 

each inspection interval. Ageing can be modelled by assuming non-identical 

defect rates, A(t), over each inspection interval. It is also possible to allow the 

delay time of a defect to be dependent on u and the inspection interval in which 

the defect occurred, see Christer and Wang (1992). The process of failures then 

would not necessarily be an NHPP. 

Assume now that the instantaneous rate of defect occurrence at time u after PM 

is not constant but is given by A(u). Thus, the expected number of defect arising 

in the small interval (u, u+ du) is A(u)du. Therefore, the expected number of 

defects arising in the interval (0,7), (see equation (3.6)), is 

I 
0 

ENd (T) = 
fT A(u)du. 
0 

(4.27) 

A defect arising within the period (0,7) has a delay time in the interval (h, h+ dh), 

with probability f (h)dh. Therefore the expected number of failures resulting from 

defect arising in (u, u+ du) is 

T-u 

ENf(u, u+du)=A(u)duj f(h)dh=A(u)F(T-u)du, (4.28) 

where F(x)=fxf(h)dh. Accordingly, the expected number of failures during the 
0 

time period (0,7), (see equation (3.8)), is 

EN (T) = 
»r A(u)F(T - u)du, (4.29) 

and if we assumed that downtime, failure time and defect delay time are independent. 

Then the expected total downtime over operating cycle, T, is 

EN., (T)d, +dp 
ED(T) = T+dp 

(4.30) 
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4.4.3 Non-Negligible Downtime Model 

In the downtime modelling of the delay time, it has been generally assumed that 

the downtime of a failure, df is very small compared with PM cycle length, T, that 

is, the downtime due to failure has not been deducted from the operating time T when 

estimating the number of failures which will arise in that period. However in some 

case, it is possible that the downtime of a failure repair is not very small (Chilcott and 

Christer, 1991). Figure 4.17 shows the actual failure process with some downtime of 

a failure repair over PM time period (0,7). In this case, we need more assumptions 

for formulating a PM model. Therefore we considered here that (a) defects and 

failures can not arrive during downtimes, and (b), any outstanding delay time of 

defects will be frozen over the downtime period. This implies deterioration only 

occurs in the plant when in use. 

T 
rating hme) 

T 
ndar Time) 

e: initial point offailures 

Figure 4.17. Actual failure process based on failure downtime in system 

For example, in the prototype model of the delay time, if we do not consider the 

downtime for failures, the number of defects arising and the delay time of defects may 
be under or over-estimated respectively since defects would not normally arise during 

machine downtime. Therefore, we consider a modified downtime model allowing for 
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downtime caused by failures from the above sources, over the PM time period, T. 

We define 

T: calendar time of PM cycle for the system. 

IC : actual system operating time over the time (0,7) of the system, i. e., 1(. ). 

ENj(T; df ): the expected number of failure over the time period (0,7). 

ENj(, r) the expected number of failure over the operating time period (0,7). 

ENd(, r) the expected number of defect arising over the operating time period (0, 

Other parameters are as before. If there are Nf failures, over the time (0,7), the 

actual system operating time is (T-Nfdf). Therefore, the effective actual system 

operating time -r over the PM time period (0,7) is 

T=(T-Nfdf). (4.31) 

Thus when the downtime of failure repairs is df * 0, the expected number of failures 

as a function of the actual system operating time, r, is given by 

ENf (r) = E(Nf (, r; df = 0». (4.32) 

That is, if the downtime of failure, df = 0, the calendar time of PM cycle for the 

system, namely, T, and actual system operating time(i5 will be equal. However, if 

the downtime of failures, df : t- 0, the expected number of failures will not be equal. 

We have 

E[Nf (T; df )] = E[Nf (r, df = 0)] 

= E[Nf (r)], 

where r= (T - Nf (, r)df ). 

(4.33) 
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The basic downtime model of equation (4.25) may now be updated to the non- 

negligible downtime case. If the downtime of failure, df, is not zero, the expected 

number of defects arising and the expected number of failures depend upon the 

expected system operating time r. The expected number of defects arising in the 

interval (0, r) is 

ENd (T) = AT' (4.34) 

Also the probability that one of these defects leads to a failure during the operating 

time period (0,1) is 

b(r) = fr(z*-h )f (h)dh, (4.35) 
0 

and the expected numbers of failures arise over (0,1) is 

Nf (r) = (Ar)b(r), (4.36) 

where i is the actual system operating time over the PM period, T. 

Therefore, from equation (4.25), the expected total downtime per unit time for the 

revised downtime model allowing for non-zero downtime is given by the equation 

pair 

ED, (T) = 
Aib(r)df +dp 

(4.37) 
T+dp 

and 

T- Nf (r)df , (4.38) 
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where d is the mean downtime of failure repair, dp is the mean duration of PM 
f 

activity, and b(, r) is given by equation (4.35). It is noted that when the downtime 

due to failures may be ignored, i. e., r= T, we have that equation (4.38) reduces to 

equation (4.30) as expected. For given T, X, df, dp and J(h), equations (4.37) and 

(4.3 8) may be evaluated for ED, ( 7). 

Since Nf (r) 
T-r 

) from equation (4.38), we can readily calculate the value of df 

r which satisfies this equation for given T. If we know X and a, for given -r we 

know NXz) from equation (4.36), and may plot this function and (T - r/ df ) on a 

common graph, seen in Figure 4.18. The solution value of r is r*(T). If df 

increase, actual operating time (r) will be decrease to minimum of T and also as X 

decreases, the actual operating time (r) increases to a maximum of T. 

NX Z) 

r 

e 

Figure 4.18. Relations of the number of failure and actual operating time (i). 
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4.4.4 Numerical Examples 

Numerical examples of the downtime model variant outlined above have been 

evaluated for demonstration purposes. The data used has been chosen arbitrarily as 
being broadly representative of some kinds of situation which may be encountered in 

reality. 

For prototype PM models, we assume that the pdf of delay time is a negative 

exponential distribution, f (h) = ae", with a=0.05 giving an average delay time of 

20 hours and the average defect frequency has been taken as 0.2 defects per hour. 

The mean downtime for a failure df = 0.85 hours and the mean downtime for PM, dp 

= 0.35 hours. 

The objective function for the downtime has the form given below, 

Expected Number of failures in a cycles(O, T) x df + dp 
ED(T) = T+dP 

(4.39) 

* For basic model 

Neglecting the influence of downtime, when the pdf of delay time is 

f(h)=ae'%the probability b(7) that a defect arises as a failure from equation 
(4.24), is 

b(T) = 
rT-h 

ae-"'dh =I+I (e-"T -1). (4.40) 
0T aT 

Therefore, the expected total downtime per unit time, ED(I) is 

kT(I +I (e-'ýr - 1))df + dp 
ED(T) =- aT 

T+dp (4.41) 
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o Imperfect inspection case 

It is shown equation (4.26), that in the case r: 5 1, 

0 
Er -, (, T-y) )Idy 
,, =, T 

r -cmT 

, 
1(1-r) e (e-' 

aT , =, 

r (-e-' I)i ( (I r)"-'e -cmT 

aT n=l 

=I- 
r(l-e-) 

aT(l - (I - r)e-'ýr)' 
(4.42) 

Here, the probability of a defect present during an inspection being detected, r, is 

taken as r=0.3. The expected total downtime per unit time for imperfect inspection 

case model, ED(7) is given by 

kTb(T)df + dp 
ED(T) = T+dp 

(4.43) 

* Non-homogeneous defect arrival rate case 

Since most materials, structures, and devices wear out with time, the class of 

failure distributions for which the failure rate function, r(t), is increasing is one of 

special interest (Barlow and Proschan, 1965). Suppose that an equipment is 

subjected to a constantly increasing stress. Then the instantaneous defect arrival rate 

of this equipment may be increase. It should be noted that when the defect arrival 

rate increases, such as for the normal distribution, this indicates an ageing or wear-out 

effect (Jardine, 1973). Since A(t) represents the expected defect arrival for a 

component over time, we are considering the case when defect arrival frequency at 

time u after perfect inspection is non-homogeneous. The following defect 
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frequency, A(u), has been taken for demonstration purposes from Christer and 

Waller, 1984 ; 

-0.2u A(u) = 0.2 - 0.06e (4.44) 

Then, the expected number of failures arising in (0, T) from equation (4.29), ENf(T) 

is 

T 
-, 0,2y ) 11 _ -0.05(T-y) ENf (T) = 

f' (0.2 - 0.06e (I-e ))dy, 
0 

(4.45) 

and the expected total downtime per unit time, ED(7), in the non-homogeneous defect 

arrival rate case is 

ENf (T)df +dp 
ED(T) = T+dp 

Other cases exist but we are not considering here. 

9 Revised PMmodelfor non-negligible downtime 

(4.46) 

This model also assumes that the expected number of defects arising in the PM 

period T is AT, as in the basic model. We have for the PM interval of length T, 

the number of failures over an actual operating time (0, r) from equation (4.35). 

Therefore, assuming perfect inspection, we have b(r) 

hI b(r) -T ae-"Yh =I+ (e-" - (4.47) 

where r=T- kib(r)df * It follows from equation (4.41) that the expected total 

downtime per unit time for the revised PM model is given by 
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k, r(I +I (e -ar 
-1))df +dp 

ED, (T) = T+dp 
(4.48) 

where r=T- kib(-r)df (4.49) 

In a similar way, b(7) for imperfect PM model case from equation (4.42) is 

0 
b(r) =I_f 

n=l 'r 

r(I (4.50) 
ar(l - (1 - r)e-') 

It also follows from equation (4.43) that the expected total downtime per unit time for 

the revised PM model is given by 

k, rb(r)df + dp 
ED(T) = T+dp 

(4.51) 

For the non-homogeneous defect arrival rate case of revising PM model, we also 

assume that the instantaneous rate of defect occurrence at time u after PM is not 

constant but is given by A(u) and a defect arising within the period (0, r) has a delay 

time in the interval (h, h+ A), with probability f (h)dh. Therefore, the expected 

number of failures arising over actual operating time (0, -r) of non-homogeneous 

defect arrival rate case from equation (4.29), ENýT) is given by 

ENf (r) =r (0.2 - 0.06e-0-2") 11 - (I - e-0-0'(r-y))Idy. (4.52) fo, 

Therefore, the expected total downtime for revising downtime model from equation 
(4.30) is 
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ED(T) = 
ENf (, r)df +dp 

T+dp 
(4.53) 

Now we shall consider consequence to the downtime for the various models in 

terms of calendar time, T, and actual operating time, r The results for the models 

outlined above are shown in Figures 4.19,20 and 2 1. 

0.25 

T 0.19 
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a) 
06 
a) 

E 
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0.01 
I 

PM Intervals, T 

Figure 4.19. Expected downtime for basic model and revised model 

First, we shall look at the basic model. It can be seen from Figure 4.19 that the 

optimal point based on the calendar time, T, is 10 hours and whilst the optimal point 
for the update model which is based on the actual time, r, is 12 hours. That is, the 

expected total downtime for the basic model based on the calendar time, T, is 

slightly high, as would be expected since the model overestimates the number of 
failures. Secondly, we shall look at the imperfect inspection case. 
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Figure 4.20. Expected downtime for imperfect PM case model and revising 
model 

In Figure 4.20 the graphs for ED(7) for the imperfect PM case based on the 

calendar time, T and actual operating time, r It also can be seen that the optimum 

values of ED(7) for the different times between calendar time and actual operating 

time has resulted from updating b(7). The optimal interval of the prototype model, 

which is based on calendar time T, in the case of imperfect inspection is 7 hours and 

the expected total downtime is 0.129 hours. 

Otherwise, the optimal interval for the revised model, in the case of the imperfect 

inspection model based upon actual operating time, -r, is 10 hours and the expected 

total downtime is 0.117 hours. This result shows that there is a greater difference 

between the basic and downtime revised model in the non-perfect inspection case 

compared to the perfect inspection case. This is due to the fact that the model for 

imperfect inspections has a higher frequency of failures than the basic model. 
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Figure 4.21. Expected downtime for non-Homogeneous case model and revised 
. model 

Again, Figure 4.21 shows the expected total downtime of the model for a non- 

homogeneous defect arrival rate over the calendar time and actual operating time. 

This case also shows the optimal interval and the expected total downtime for the 

calendar time based model, namely, 11 hours and 0.063 hours respectively. The 

optimal interval and the expected total downtime for revising model are 12 hours and 

0.061 hours. Also, the model for non- homogeneous defect arrival rate shows that 

the expected downtime is slightly less in the revised downtime formulation case, as 

would be expected. If this model has a high frequency of failures, a grater difference 

would be expected between the two models based upon calendar time and actual 

operating time for a non- homogeneous defect arrival rate. 

Although the percentage savings in total downtime in the cases considered above 

is small, the financial consequences, which depend on cost of such saving and their 

value, may be very attractive. Therefore, revised PM model can be provided the 

accuracy for good decision-making of maintenance activities. 
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4.5 Conclusions 

Delay time analysis has already proved useful in the rudimentary applications 

made so far. Its scope for development has still to be really explored (Christer and 

Redmond, 1990). In the delay time modelling of inspection practice, we used to 

assume that all components are inspected in one inspection schedule. However in 

some cases, there are components that need not be inspected as often than others. For 

instance, one set of components may be inspected as regularly as every day, whilst the 

remaining can be inspected during the optional planned week. First in this Chapter, 

we have presented an approach for formulating a system PM model which allows 

various PM policies, where the system consists of many components with possible 

economic dependence. 

Here, a technique is suggested in which decisions about complex systems are aided 
by inspection options relating how to group the components into sets and when to 

perform the inspection for each set. In modelling the options, component PM models 

and system PM model have been presented. The system model is constructed under 

the assumption that defects have a common delay time distribution. The component 
PM model track on defects and failures individually. In contrast, a system PM model 
is built by combining the all components of a system. So both modelling concepts 

apply to a system which consists of many components with different PM policies. 
Therefore, as a consequence of an optimal inspection policy, a proportion of 

maintenance work is identified and clustered at specific points in time, so giving the 

maintenance organization the opportunity to allocate its resources appropriately and 

rectify the defects in a more efficient manner than would otherwise be the case. 

As expected, the result from modelling spilt and integrated inspection schedules 

may support the expectation of management that by splitting or integrating the 
inspection task, a better quality of inspections could be achieved. This would be 

mainly in terms of a reduced expected number of failures or costs due to failures. 

From these modelling options, best inspection policy also can be identified. 
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In general, if there is some reduction factor in downtime for inspection activities, 

the system PM model may reduces the expected total downtime since the PM is 

carried out at the same time for the whole system, but PMs of components are carried 

out individually. In the situation of PM being individually carried out, the system has 

to be stopped while one of its components is being checked. By combining PM, 

production loss of a system may reduce. On the other hand, to decrease operating 

costs, combining of components is applicable for a system if there exist the 

economical benefit such as the cost reduction for grouping of PM. 

In the section 4.4, we have discussed a revising the PM model to allow for the 

downtime incurred at failures and its impact upon the expected number of failures. A 

revision was undertaken, which updated the downtime model. This model is used to 

predict the effectiveness of maintenance activity using the resultant downtime of the 

system as the relevant measure. Using the revising PM model it is evident that the 

more accurate economic PM interval may obtain. If the downtime of failures is not 

small compared with the PM cycle length, then the expected downtime of failures 

over the PM intervals may be overestimated without allowing for downtime in 

modelling the expected number of failures. This implies that revised downtime 

model would be a more sensitive model with which to determine the actual downtime 

or cost. 
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Chapter 5 

PARAMETER ESTIMATION OPTIONS WITH AND WITHOUT PM 

INFORMATION 

5.1 Introduction 

In this chapter, we present a simulation study undertaken to further investigate and 

verify parameter estimation methods. In reality, some plant managers may keep 

maintenance records which may be used, for example, to calculate production 

efficiency. However, it is rare to find perfect or even good maintenance data in 

practice. In our experience, data is usually incompletely recorded or lost. 

Restrictions upon the availability of data required for modelling is common place. 

Simulation is one of the most widely used techniques in operations research and 

management science, and by all indications its popularity is on the increase (Law and 
Kelton, 1982). We test parameter estimation methods using simulated data to check 

the consequences of different volumes of data upon the accuracy of parameter 

estimates for maintenance models. Simulation programs, written in FORTRAN, have 

been used to simulate data generation assuming the delay time process for specific and 

realistic sets of input parameters and assumptions. Sometimes a simulation language, 

e. g., GPSS, SIMSCRIPT, SLAM, SIMULA, DYNAMO, may have merits above that 

of a general-purpose language like FORTRAN for programming simulation models. 
However, since complicated numerical calculation is not easy in certain simulation 
languages, we use FORTRAN here. 
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Once parameters have been estimated from objective data, they need to be tested 

for amongst other things, the goodness of fit of the consequential PM model relative 

to the true maintenance model. 

This Chapter demonstrates the estimation of DTM model parameters given 

maintenance record data, which includes the failure times, or number of failures per 

day, and the number of defects identified at PM. 

5.2 Maintenance Data Generation using Simulation 

A simulation must involve sampling, or generating random variables from one or 

more distributions. These distributions often are specified as a result of fitting some 

appropriate distributional form, e. g., exponential, or Weibull, to observed data. Thus, 

once a distribution has already been specified including the values of the parameters, 

we can generate random variables with this distribution in order to run the simulation 

model. 

Before we begin the process of developing a model, we need to understand the 

structural building blocks from which models are constructed. In our delay time 

modelling, data we needed is inspection and failure information. This data includes 

the number of failures per working day or failure times and the number of defects at 

PM. Therefore we have to define the output variable or variables that are of 
inspections and failures information. Generally, in a basic delay time model, there 

are two random variables, that is the initial point u and the delay time h. In order to 

carry out a simulation of a system having the initial point u and delay time h, we 
have to specify the probability distributions of these random variables. Then, given 

that these random variables follow particular distributions, the simulation proceeds by 

generating values of these random variables from the appropriate distribution. In this 
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pilot study, we select the exponential and the Weibull distributions as the distributions 

for these random variables for a system model. 

Consider that an initial point, namely u, has defect arrival rate of X defects per 

unit time and the delay time h has the exponential distribution with parameter I/a, (x 

> 0, that is f (h) = ae-'ý. Since the inter-arrival time of defects X has an 

exponential distribution with the mean IA, the pdf of the inter-arrival time X is given 

by g(x) = Ae-A. 

There are many techniques for generating random variables, and the particular 

algorithm used must, of course, depend on the distribution from which we wish to 

generate. The basic ingredient needed for methods of generating random variables 

from any distribution or random process is a source of independent identically 

distributed (11D) U(O, 1) random variables. For this reason, it is very important that 

a statistically reliable U(O, 1) random-number generator be available. Most 

computer installations and simulation languages have a convenient random-number 

generator. We also here select the particular algorithm, called the inverse-transform 

method, which is a popular one, for generating random variables. 

F(x) 

x. 

x 
Figure 5.1. Inverse-transform method for continuous random variables 

(Law and Kelton, 1982) 
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Using the inverse transform method, the algorithm for generating a random 

variable X having distribution function F(. ) is as follows (Law and Kelton, 1982): 

(1) Generate U, distributed as U(O, I). 

(2) Set X= F'(U) and return. 

It is note that F'(W will always be defined, since 0: 5 U: 5 I and the range of F is 

[0,1]. Figure 5.1 illustrates the algorithm graphically. 

For the exponential distribution with parameter 11%, the distribution function is 

F(x) =I- 
e-Ax if x ý: 0 

0 otherwise' 

and to find F', we set u= F(x) and solve for x to obtain 

In(1 - u). (5.2) 

Thus, to generate the desired random variable we first generate aU- U(O, 1), and 

then form X In U. It is possible in this case to use U instead of I-U, since 

1-U and U have the same U(O, 1) distribution. This saves a subtraction. 

If we also consider that a random variable X has the Weibull distribution function 

0 
with the scale parameter aý>O) and shape parameter j6(>O), that is f (x) = aft'"C' 

the sample data generation algorithm using the inverse-transform method is ; 

(1) Generate U- U(O, 1). 

(2) Set X= a(- In U) "-8 and return. 
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Once the random variables of initial point u and the delay time h are generated, 

the simulation model can be built to generate synthetic maintenance data 

corresponding to the system description of the basic DTM. For example, suppose the 

following assumptions will initially be assumed to apply for the system to be 

simulated: 

(1) Defects are independent of each other and arise as a homogeneous Poisson 

process (HPP), with rate of occurrence of defects A. 

(2) The delay time h of a defect is independent of the time of origin, and all 

defects share a common delay time pdf J(h) and cdf F(h). 

(3) The condition of the system can be observed by inspections only, and a failure 

will be observed immediately at its occurrence. 

(4) Inspections are perfect in that any defect present within the system will be 

identified at inspection, and no new defect generated because of inspection. 

(5) An inspection is undertaken every T time units and requires dp time units. 

(6) All identified defects at an inspection will be repaired within allocated 
inspection time, dp. 

(7) A failure will be observed immediately at its occurrence. The component is 

repaired immediately upon failures and mean time for a failure repair is df 

time units. 
(8) The component is as good as new after repair. 

By the assumption (1), defects are independent of each other and arise as a HPP 

with the rate A. If X,, n ý: 1, denotes the time between the initial points of (n-l)k 

and nth defects (see Figure 5.2), the sequence (X.,, n ý: 1) is called the sequence of 

inter-arrival times of defects and X,, are ED exponential random variables having 

mean 11A. If the assumption (4) is relaxed to allow an imperfect inspection, such 
inspection practice may be characterized by the following changed assumption (4'): 

(4') Inspcctions are assumcd to bc impcrfcct in that a dcfcct prescnt will bc 

identified with probability r, 0: ý r: ý 1. The probabilities of detecting a defect at 

successive inspections are assumed to be independent and constant. 
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X, X2 X3 X(,.. ]) XI. 

0T.... (k-I)T U 

Figure 5.2. The sequence of inter-arrival times 

By setting a value for the probability of identifying a defect an inspection, r, we 

can generate both a set of data for a perfect inspection (r = 1) policy, and for an 

imperfect inspection policy, r-1. 

In the first case, we consider that there are no records of times of failures during 

the day, but there are records of the number of failures on each day. Therefore, in the 

data generating simulation program, only the number of failures on each day and the 

number of defects identified at PM are recorded. We also consider a second and 

richer case where data are available recording the times of failures and the number of 

defects identified at PM. Figure 5.3 illustrates the simulation and presents the flow 

chart in which the observed events are the number of failure per working day or the 

times of failures and the number of defects identified at PM. 

Case Model Case A Case B 

Data Available 1. Number of failures per 1. Times of failures. 

working day. 2. Number of defect identified 

2. Number of defect at PM 

identified at PM 

Table 5.1. The generated data set by the simulation program 
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B 

BEGIN 
f 

Enter TNr, 
and df 

t 

Set NFSUM = 0, 
NFS = OXTIME =T 

DO 10 1= 1, N 

Set ND = 0, NF = 0, NDT = 0, 
and TIME = ETIME -T*l 

TIME = 0.0 
True 

NFS < 0.0 
Trui 

DO 20 J= 11 NFS 

, -k, - True 
FT(l) < ETIME 

ETIME=ETIME+ df 

J=NFS 

D030 K=J+I, NFS 

FT(K)=, FT(K)+ df 

30 

20 

A--ý 

True 

T 
GenerateRN (r-)::: ] 

TIME = TIME +U 
ETME = TIME 

71 

ETIME > T*l 

GenerateRN(h) 

i- 

FT = TIME +h 

FT > T*l 

Generate RN (0) 

'It, 
RN> r 

True 

I NFS NFS +1 

ND(I) = ND(I) +I 

FT(NFS) = FT 

Continued 
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Q-ýý 
NF=NF+l 

ZI=FT(I, J)-(I-I)*T 

i 

PTP(I, J)=Zl 

True 

DO 50 K=NF+I, NFS 
i 

FT(K-NF)=FT(K) 

C 

STOP 

50 

10 

DO 40 J=I, NFU) 

--J-, FT(J) < ETIME 

ll-ý 
, Setk=], M=O, M=DT 

i- 

k=k 

40 
DO 60 J= 1. NF 

P, m 

NF < Ný True p>I PTP(I, J)>M 
TP(D)<772 

K)=NFI(K)+l 

ow 60 

rue 

Do 60 J= I'NF 

J>TT 
P ij)<M PTP(l 

TP 

4True 

I NFS = NFS - NF I 

PRINT 1, NFFTND, NFSUM 

772>TOII 

7'TI=TTI+TT 
772=777+DT7 

K=K+l 

J=j 

F 
NFSUM=NFSUM+N-F---l 

Figure 5.3. Flow chart for generating the data recording the number of failures 
per working day, or failure time data and the number of defect identified at PM 

In the flowchart of Figure 5.3 the following mnemonic symbols are not yet defined. 

T is a present inspection time period and N is the number of inspection for computer 

running and r is a parameter for inspection quality. df is a downtime for a failure. 

ND and NF are the number of defects and failures arising within a present inspection 

period, respectively. U is an inter-arrival time of defect and h is a delay time. 

FT(J) is the Ah failure time point and ZI is the failure time point within a present 
inspection period. NFSUM represents for total number of failure for whole 
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inspection period. Chosen values of system parameters are consisted with 

observations from a data set for the IMA machine. 

Validation is the process of bringing to an acceptable level the user's confidence 

that any inference about a system derived from the simulation is correct. The 

strongest verification of any simulation model occurs when we demonstrate that the 

model can successfully predict events which have not yet transpired. Even though we 
have succeeded in developing a model that appears to be reasonable and adequately 

reproduces the past performance of the system, question still remains. When 

validating a model we read in the historical data, have these data processed by the 

simulation program, obtain simulation output, compare this simulation output with the 

historical output, and decide whether the model is realistic or not. Once we have 

validated the model we shall use it to predict the response for certain system variants. 

Now we compare the simulation output with historical output. From historical 

data, parameters were estimated by using maximum likelihood estimation. The rate 

of occurrence of defects (ROCOD) is 9.518 and the distribution of delay time is a 

negative exponential, F(h) =1- e-' . 816 
. The probability of a defect being identified 

also was estimated as r=0.07 1, we know that PM is imperfect (see Table 6.4). We 

input these values in the simulation model, and generate a set of data by simulating 

the process. We compare only the number of failures, since available field 

information of historical record is the number of failures. The simulation output is 

run 10 times, with an average number of failures of 2127 and standard deviation, 33. 

Table 5.2 shows comparison of the historical data and simulation output. The mean 

of simulation outputs is nearly close to the historical data. 

Historical data Simulation output 
(Avcragc) 

Number of failures 2133 2127 

Table 5.2 Comparison of historical data and simulation output 
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Therefore we use the mean of 10 simulation results in further study. The similar 

studies have been explored by Christer, et. al. (1995) and Christer, Wang and Choi 

(1998). 

Having generated synthetic data, it is adopted as the data set for parameter 

estimation. The objective here is to re-capture the initial parameter set used to 

simulate the data. To estimate the given parameter from the synthetic failure data, 

use is made of the NAG library of numerical routines available for the personal 

computer. The routines are intended to be called by programs written in FORTRAN, 

and are of considerable use in computing the log-likelihood equations. The NAG 

function minimizer E04JAF was used to minimize minus the log-likelihood. E04JAF 

is an easy-to -use quasi-Newton algorithm for finding a minimum of a function F(xl, 

x2, x, ), subject to fixed upper and lower bounds on the independent variables xi, 

X2, x., using function values only. From the starting point supplied by the user 

there is generated, on the basis of estimates of the gradient and the curvature of F(x), 

a sequence of feasible points which is intended to converge to a local minimum of the 

constrained function. Attempt is made to verify that the final point is a minimum. 
DOIAJF is used here for calculating an approximation to the integral of a function 

F(x) over a finite interval (A, B): 

f 
F(x)dx 

'A 
(5.3) 

where F(x) is defined by the user, either at a set of point (xi, F(xi)), for i=1,2,..., n 

where A=xl <x2< ... < x,, = B, or in the form of a function. To estimate the value 

of an integral, this quadrature rule uses an approximation in the form of a weighted 

sum of integrand values, i. e. 

f 
F(x)dx w, F(x) 

A (5.4) 

The points xi, within the interval [A, B] are known as the abscissae, and the wi are 
known as the weights. 
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For each simulation, we simulated 5 different sample sets of 10,50,100,150, and 

200 PMs with depending of parameters. For each number of PMs, the number of or 

times of failures and the number of defects at PM data are generated by simulation 

model. Here inspection interval used is 30days. In perfect inspection case, we set 

the probability of defect identified at PM, r=1 and imperfect inspection case with r 

<1 are simulated in Figure 5.3. After simulating the data with known parameters, 

we estimate these parameters by using the maximum likelihood method. Then we 

check how well recapture the given parameters in likelihood formulation 

5.3 Parameter Estimation Methods With and Without PM 

Information 

5.3.1 Method A; When the Number of failures in each working day and the 
number of defects identified at PM times are available and not available. 

First, it is assumed for the moment that observations of number and downtime of 

failures, and the number of defects identified at PM are available. We define the 

notation (see Christer et al., 1995) for modeling the likelihood of this data set. 

Let 

X: the constant rate of occurrence of defects within the system. 
h: the delay time of a defect with pdfj(. ) and cdf F(. ). 

r: the probability of detecting a defect at PM, if it is present. 
Tj: time of the ith PM from last inspection, i=1,2, ..., n, 

t: failure time from last inspection. 

At: a time period to be defined. 

ENf Q, t+ At) : the mean number of failures over Q, t+ At). 
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ENp (T, ) : the mean number of defects identified and removed at T,, . 
P(t, t+ At I u) : the probability of a failure in Q, t+ At) resulting from a defect 

arising at time u. 

Accepting the above notation, we now assume t is such that assume T,, 
-, <t<T,, 

for some n. 

Consider the probability of a failure over Q, t+ At) for T,, -, :5t :5T,, resulting 

from a defect arising at time u, u :5t+ At, that is, P(t, t+ At I u). The defect could 

have arisen since the last inspection, T,,, or during one of several earlier inspection 

periods, but have not been detected, see Figure 5.4. 

Ti-I u Ti T. 
-I t+At Tn 

Figure 5.4. The failure process of a defect arising in ( T1.1, Tj) 

Now we have that 

(I [F(t + At - u) - F(t - u)] T, 
-, <u< Ti, ie (1,... n - 1) 

P(t, t+ At I U) 
F(t + At - u) - F(t - u) T, 

-, <u<t (5.5) 
F(t +At - u) t<u<t+ At 
0u>t+ At. 

The expected number of failures over (t, t+ At), for T, -, <t<T,, is , therefore, 

given by 
M-1 I n-i 

T 
ENf (t, t+ At)= (I- r) Af" [F(t+At-u)-F(t-u)]du 

T, 
-l 

[F(t+ At - u)- F(t- u)]du 
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+At 

tF 
(t +At-u )du (5.6) 

Changing the variable of integration, let x=t+ At - u, then - du = dx and when u 

= Tj and u= Ti-1, x=t+ At - Tj and t+ At - Ti-I respectively. Rearranging the 

sequence, after some manipulation we have for the expected number of failures over 

period (t, t +, dt) due to defects arising within (0, t+ At) may be written as, 

n-i 
+At 

ENf(t, t+At)=A + E(I-r) [F(x-Ti-, )-F(x-Ti)]dx+Af F(x-T. 
-, 

)dx. 
t i=l I 

(5.7) 

For the probability of identifying the defect at PM time T,, resulting from a defect 

arising at time u, the probability is given by 

r)"-'r(I - F(T. - u)) T, 
-, < u: 5 Tj i=1,2,..., n-1. 

P(T,, I u) r(I - F(T. - u)) T,, 
-, <u<T. (5.8) 

0 otherwise. 

Therefore, the expected number of defects founded at PM time T,, resulting from 

defects arising at any time period to T,,, ENp (T,, ), is 

1 u)du EN, (T. ) =Af P(T 
0 

(I 
- r) 

" 
rAfT', 

'-, [1-F(T,. -u)]du+rA,. *, [I-F(T,, -u)]du. (5.9) 

Since defects are assumed to arise according to a Poisson process, as a 

generalization of Proposition 2.3.2 in Ross (1983), namely, if an event arrival process 
follows a Poison process with X, the number of events that occur by the time t, N(t), 

is an independent Poisson random variable having mean given by A0 P(s)ds, where 

P(s) is the probability that the event occurs independently all else at time s, the 
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number of failures in Q. t+ At) follows a Poisson process. Therefore, the probability 

of m failures over Q, t+ At), where T, -, <t<T,, is given by 

P( mfailures in Q, t+ At)) = 
[ENf (t, t+At)]'e - ENf (t, t +, &I) 

MI 

where ENf (t, t+ At) is the mean number of failure over Q, t+ At). 

Christer et al (1995) presented the following Lemma 5.1 as a generalisation of the 

above proposition in Ross (1983). 

Lemma 5.1 

If the defect arrival process follows a Poisson process with rate X, the number of 
defects identified at time t if there is an inspection at time t is Poisson distributed 

with a mean given by equation (5.9). 

Also therefore the number of defects identified at PM follows a Poisson 

distribution with means defined by equations (5.9) if the defect arrival process is 

assumed to arise according to a Poisson process. We have that the probability of n 
defects being identified at T, is 

P(n defects identified at T, 
[ENP(T. )I'e - EN, (T. ) 

n! 

where ENp(T,, ) is the mean number of defects identified at T,, (see for proof, Christer 

and Wang, 1995). 1 

In this case, since the observed events are the number of failures in each working 
day and the number of defects identified at PM times, the likelihood function of 
observed events may be formulated in the following way. Suppose data for I PM's 
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has been recorded and that ni defects have been observed at the ith PM time (n = 1,2, 

... I), and the PM interval (T,, -,, T, ) is now divided into k non-overlapping 

subintervals Ij" of equal length At, where At =I day, that is, 

i -, +(j-I)At, T-. +jAt], (j=l,..., k), (5.12) In = [T. 

where T,, -, + kAt = T.. 

It follows from equation (5.7) that the mean number of failures occurring in ij" 

over (T. -I, T,, ) is, see Figure 5.5, 

III 
I-- 

m,, jfailures 

mn defect 
i rntifled 

k-I Tn 

Figure 5.5. The observed number of failures and defects over time (T,,.,, T,, ) 

EN 
+jAt "-I 

f (1')= A (I - r)'-'[F(x - Ti i -1) - 
F(x - Ti)]dx 

+jAt 
2F(x-T,, 

-, 
)dx. 

-I)AI +Q (5.13) 

Now, if mnj denotes the number of failures occurring in Ijn over (T, -,, T, ) and 

m,, denotes the defects identified at PM, T,, we have from equations (5.10) and (5.11) 

that 

P( m,, j failures in Ijn 
[ENf (I i ')Im' e 

-ENf(l; ) 

M 
nj 

1 
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and 

P(m,, defects identified at TO = 
[EN p(T. )Im-e- 

EN , (T. 

(5.15) 
M. I 

Then, the likelihood function for the observation set (mj, m,, ), j=k and 

n=1, ..., I is, given by, 

Ik 
L=11(P(m,, defects identified at T,, )flP(m,, j failures in 1j")). (5.16) 

n=1 j=1 

Substituting from equation (5.14) and (5.15) into equation (5.16), and taking the 

logarithm, we have that 

I 
Log L= 1[m,. log ENP(T,, )-ENP(T,, )-logm.! ] 

n=1 

k 

1: [m., log EN f(I; )- EN f(Ij")-log m,, j! ], (5.17) 
R-I J-1 

where as before, I is the number of PMs. In the case where inspection data are not 

available, information is lost and the log likelihood function (5.17) reduces to 

Ik 
Log L=II [m,, j log EN f(Ij")- EN f(I; )-log m. jll. 

n-I j-1 

See also Christer et al. (1995). Using the above maximum likelihood equations , we 

can estimate the parameters of the process. In the current case of synthetic simulation 

data, using expressions (5.17) and (5.18) we hope to recapture the delay time 

parameters used to generate the data. 
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5.3.2 Method B; When time of each failure and the number of defects 
identified at PM times are available and not available. 

Here the available data consists of the number of defects identified at PM times 

and times of each failure. In this case the likelihood formulation for the observed 

data to estimate parameters has been established ( see Christer, Wang and Choi, 

1998). First we need to define our notation. Let T,, denotes the time of the nth 

PM from new, n=1,2, ... ' 
let t(i-, ), denotes the time of the jth failure occurring in 

(Ti-1, Ti), j=1,2, ... ' ki-It let t(i-I)k, 
-, 

denotes the time of the last failure in 

(T, 
-,, 

T, ), and let At denotes a time interval sufficiently small that only one event at 

most can arise within it, see Figure 5.6. 

T,, 
-, u T,, Ti-I t(i-ixj-1) t(i-l)j t(i-I)kj-j Ti 

Figure 5.6. The failure process of a fault arising in (T,,.,, T. ) 

Consider all observation in (Ti-1, Ti), namely the PM results at T, and failure 

timesin (Ti-1, Ti). The likelihood function is the product of the probabilities of these 

observations arising. For the PM results, we can consider the probability of detecting 

and removing ni defects from the system if they are present, 

P(nj defects identified at T, ) . For failure times in (Ti-1, Ti), we consider the 

probabilities of a failure arising at times t(i-, )j 2j=1,2, ... ' ki-I . and of having no 

further failure between failures. Therefore, the likelihood function L is given by 

LJ P(nj defects identified at Tj) 
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k-I 

- rIP(afailure at time t(i-, )j) - P(nofurther failure between failures)) 
j=1 

and the log likelihood function is given by 

m 
Log LI log P(nj defects identified at T, ) 

ki-I 

+ Y, I ogP(a failure at time t(i-, )j ) +log P(nofailure between failures)), (5.20) 
j=1 

where m is the number of PM 

To compute the above log likelihood function, firstly, we consider the probability 

of a failure in (t, t+At), Ti-I < t:! ý T,, resulting from a defect arising at time u in 

(T,, 
-,, 

T,, ), namely P(t, t+Atju), (seeFigure 5.7). 

Tt t+At R-1 Ti-I T, 

Figure 5.7. The failure process of a defect arising in (T,. 
-,, 

T. ) 

We have, therefore, the probability of a failure in Q, t+At) caused by a defect arising 

at time u in (T. 
-I, 

T,, ) is given by 

(1 - r)'-[F(t + At - u) - F(t - u)] T,, 
_, <u<T,,, n=1,2,.. -, i-I 

P(t, t+ Atlu) 
F(t + At - u) - F(t - u) Ti-I <u<t 

JF(t + At - u) t<u<t+ At 
0u>t+ At. (5.21) 
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From equations (5.21), in a similar ways to that used to establish ENp(T, ) in 

equation (5.8) we can obtain the expected number of defects identified at the ith 

PM, namely ENp(Tj) as 

i-I TT 

, 
(I - r)'-"rj'. * (I - F(Tj - u))du + Ar , (I - F(Tj - u))du (5.22) EN, (T) = Al 

R-I 
]T. -1 

TI 

Because the number of defects identified at PM follows a Poisson distribution with 

means defined by equation (5.22), the probability of ni defects identified at Tj is 

P(nj defects identified at Tj) = 
(ENI, (Ti))"i e- 

EN, (T, ) 

(5.23) 
n,! 

Using equation (5.21), Christer Wang and Choi (1998) presented the following 

Lemma 5.2. 

Lemma 5.2 

If the defect arrival process follows a HPP with the rate of %, we have that the 
failure arrival process follows a NHPP with the rate function given by 

i-I 

< t: g T T v(t)=A(): (I-r)'-'[(F(t-T. -F(t-T. )]+F(t-Ti (5.24) 
n=l 

Given a defect arising at time u, the probability density function of time t to 
failure is given by 

P(U; t) = lim 
P(t, t +At I U) 

I At-40 At (5.25) 
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where, as before, P(t, t+ At I u) is the probability of having a failure over (t, t+ At) 

resulting from a defect arising at time u. Therefore we have that the failure rate 

function is given by 

v(t) 
P(t, t+ Ati u) du. 

0 At 

Also, for T,, -i <u<T, ,n=1,2, ..., i- 1, 

(5.26) 

lim 
P(t, t+ At I U) 

At-*O At 

(I - r)-' I im 
F(t+At-u)-F(t-u) 

. (I - r)'-' f (t - u), (5.27) 
At-W At 

and for Tw <u<t, 

lim P(t, t+ At 1 u) 
At-*O At 

F(t+At-u)-F(t-u) 
lim f (t - u). (5.28) 
At-*O At 

Therefore, equation (5.26) becomes 

V(t) =t lim 
P(t, t+ Atl U) du J0,11 

At -ý 0 At 
i-I TI 

r)'-"E. * f (t - u)du +f (t - u)du) Ti-I 

-F(t-T,, )]+F(t-T, (5.29) 

We now define expression for the probability of specific failure events in (Ti-1, Tj). 

Using Lemma 5.2, we can obtain the probability of a failure arising in time interval 

(t(j-j)j, t(j-j)j + At). For sufficiently small At, we have 
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P(afailure in time (t(i-, )j, t(i-, )j +At))= v(t(i-, )j)At+O(At). (5.30) 

Since the probability of having no failure in (t(i-lxj-, ), t(i-, )j) is given by the Poisson 

property as 

- 
(i-l)j v(t)dt 

P(nofailure in (t(i-lxj-, ) 9 t(i-, )j)) =e 
fi(, 

i-lxj-l) 9 (5.31) 

the total summation of the log Probability(of having no further failure between 

failures within (Ti-1, Tj )) is given by 

logP(nofurtherfailure between failures) = (- (i-t)j v(t)dt) - 
T, 

v(t)dt. 
j=1 

f(i-IXJ-I) JO-Mi-I 

(5.32) 

If we define t(j-j)O = Ti-I 9 without loss of generality, the equation (5.32) becomes 

logP(nofurtherfailure between failures) v(t)dt. (5.33) 

In equation (5.33), log P(no jurtherfailure between failures) is necessary because 

of the complex component nature of the plant, and would not apply if it is single 

component item. If no further failures occurred in (Ti-1, Ti), from equation (5.31), 

the probability of having no further failure in (Ti-1, Ti) isgivenby 

-J. 
T' 

v(t)dt 
P(nofailurein(Tj-jvTj))=e (5.34) 

Dividing the equation (5.30) by At and taking the logs of equations (5.23) and (5.33), 

the log likelihood function becomes 
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m 
Log L=j:, log P(nj defects identified at Tj) 

i=1 

mk P(afailure at time t(i-, )j) +1(210g. + j:, logP(nofurther failure between failures)) 
i=1 j=1 At 

mmk, _j T 

j) -log ni! ) +y 1, (ni log ENP (Ti) - ENP (T , 
[I logv(t(i-, )J) -' v(t)dtl. (5.35) 

i=1 i=1 j=1 
Ti-I 

In particular, for case where inspection data are not available, the contracted log 

likelihood function is given by 

m ki-I T 
Log L log v(t(, -, )j) - 

fT v(t)dt) 
i=I j=I 

(5.36) 

Using the above likelihood equations, we can estimate the parameters of the 

process from actual simulated data. 

5.4 Evaluation of Estimated Parameter 

To evaluate the estimated parameters, the downtime model of delay time, 

developed by Christer et al., has been used here. Given an acceptable model for the 

failure and PM process of the system, a downtime model of maintenance may be 

established. If we assume that the major concern of maintenance activities is to 

reduce the downtime caused by failures and PM activities the conventional downtime 

measure can be the expected downtime per unit time over a long future period. 

Based upon assumptions of the section 5.2, the long term measure of the expected 

downtime per unit time, D(7), is 
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D(T) = 
df ENf (T) + dp 

T 
(5.37) 

where df is the mean downtime per failure when the PM cycle length is T, ENj(7) is 

the expected number of failures over T and dp is the mean duration of the PM 

activity. 

Figure 5.8 shows the envisaged relationships between expected downtime and 

inspection interval. Using the downtime model, we can calculate the mathematically 

optimum inspection period from true parameter values, that is the parameter values 

used to generate the simulated data. 

D(7) 

D(f) 
D(T,, ) 

T., 
Inspection Period 

Asymptotic level 
of breakdown 
maintenance 

Figure 5.8. Expected downtime against Inspection interval 

Thus, if we have estimated parameter values, we can obtain a measure of the decision 

consequences, namely the differences between the 'true' values and the model based 

estimated values. This we call the inspection period error (called Ierr) with respect to 
the downtime model. That is, Ierr is can be written as below 

Ierr = T. 
X100, (5.38) 
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where T,, is the optimum inspection period obtained from true parameter values and 
f is the optimum inspection period obtained estimated parameter values. 

Similarly since we have obtained the optimal inspection interval from the true 

given parameter values, it is possible to compare the difference between the two 

parameter sets of the expected downtime. This measure is called the downtime error, 

(called Derr), which is also given by 

Derr = 
D(T*) - D(T,, ) 

x 100, 
D (T,, ) 

(5.39) 

where D(T *) is the downtime for estimated parameter values leading to f and D(T,, ) 

is the true expected downtime corresponding to the given parameter values leading to 

T0. 

One way to evaluate parameters estimated here is to use statistical decision theory. 

Sometimes it may be difficult to obtain the optimum value for the downtime model, 

depending upon given conditions. In such a case we can use decision theory. 

Consider a situation where, given the data, it is necessary to make an 
inspection/PM decision. Further, assume that the consequences of decisions are 
known and that they can be evaluated numerically. Given the necessary background, 

the problem is to decide on optimum decision rules with reference to some 

performance measure. Some general features will be found in any formulation of a 

decision problem as an 'inference' about a parameter 0. The parameter 0 represents 

perfect information, because when 0 is known any further information is irrelevant. 

In statistical decision theory, it is usual to formulate a loss function L(d, 6), which 

expresses how bad it would be to make decision d if the parameter value was 0. The 

optimal decision is to minimize expected loss. For predictive inference, 0 can be 

replaced by some future observation, and J(6) represents the appropriate predictive 
distribution. 
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First consider the problem of point estimation, where the decision consists of 

asserting a single parameter as an estimate of 0. We therefore identify the decision 

set p as the set of possible values of 0. The ideal estimate is d=0, and it is natural 

to define L(O, 6) =0 for all 0. Then it should also be the case that if 0 is further from 

d, than from d2, according to some appropriate measure of distance, L(dj, 6) ý: L(d2, 

0). Now we suppose that 0 is scalar, and therefore so is d. The quadratic loss 

function L(d, 6) d- 0)2, is also known as the squared-error loss ( see, O'hagan, 

1994, pp5O-52) 

E(L(d, 0)) =d2- 2dE(O) + E(02) = (d - 
E(o))2 + var(O). (5.40) 

This is minimized at d= E(O), which is therefore the optimal estimate. 

For example, in this study, we have four true parameter values in the model. If we 

also have four estimated parameter values, then we can obtain L(d, 6) as the minimize 

expected loss. 

-0 E(L(d, 0» =1 (di i)2 , 
i=I 

(5.41) 

where di is the set of true parameter values and Oi is the corresponding set of 

estimated parameters. Therefore, if we have values of estimated parameter from 

simulated PM data set, we can evaluate the expected loss for the case methods A and 

B from equation (5.40). 

Now we use the evaluation model, which is equations (5.38) and (5.39) for under 

perfect inspection policy for comparing method A and B. And in case of difficulty of 

obtaining the optimum value for the downtime model, the statistical decision model, 

which is the equation (5.40), will be use later for under imperfect inspection policy. 
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5.5 Parameter Estimation Results based upon Simulation Tests 

5.5.1 Under Perfect Inspection 

First we consider assume both inspection and repair are perfect, and choose the 

delay time as exponential, namely F(h) =I- e", where I/cc is the mean delay time. 

The rate of occurrence of defects, X, is assumed constant. To generate a set of PM 

data using simulation, we assume for demonstration purposes that the data have been 

given in the real-world situation or simulation, the estimates of ?, and cc are X=0.9 

and cc = 0.05. Based upon the simulated PM data, the results of the parameter 

estimation process based upon the equations (5.17) and (5.35) for case with inspection 

data, and equations (5.18) and (5.36) for the case without inspection data, are shown 
in Tables 5.2 and 5.3 respectively. Once parameters are estimated, the inspection 

period error and the downtime error are obtained from equations (5.38) and (5.39). 

Here we arbitrarily choose the mean duration of PM activity, dp, to be dp =I hour, 

and the average downtime per failure, df, to be df = 0.28 hours. When the given true 

values are X=0.9 and cc = 0.05, the optimum inspection interval and the expected 

downtime per day can obtain as 16days and is 0.1410 hours per day. Thesevaluesare 

obtained using the equation (5.37). 

As an example of demonstration of the evaluation models, if we assume that 

estimated parameter values are A=0.5 and 12 = 0.06, the optimum inspection interval 

and the expected downtime per day can obtain as 26days and is 0.1494hours using the 

equation (5.37). Therefore, from equations (5.38) and (5.39), the inspection period 

error(leff) and the downtime effor(Derr) are 62.5 % and 5.96 %. 

The estimate inspection period is overestimated by 62.5 % for true optimum 
inspection period. And the downtime error by an estimated inspection period is 5.96 
% from true asymptotic level of breakdown maintenance. Figure 5.9 illustrates the 
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expected downtime against inspection interval when true parameter values are A=0.9 

and a= 0.05, estimated parameter values are A=0.5 and 6=0.06. 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Optimumfor 
True optimum Estimated values 

X )Ký ---------- 

59 13 17 21 25 29 33 37 41 45 49 

Inspection interval (day) 

Figure 5.9. Expected downtime against inspection interval 
(when true parameter values are X=0.9 and cc 0.05 and 

estimated parameter values are A=0.5 and a 0.06. ) 

For given true values, A=0.9 and a=0.05, Table 5.2 shows the parameter 

estimation from simulated data with PM information. This table shows that if 

sufficient PM information is available, the maximum likelihood estimates recover the 

underlying process defect origination, parameter A, and that even when there is a 

small number of PMs in the two methods based on the equations (5.17) and (5.35) the 

delay time parameter (x is determined in this case remarkably accurately. In terms of 

the downtime error (Derr) and inspection period error (lerr), the two methods are, to 

within the accuracy of the calculations, close to the true parameter values. Table 5.3 

also shows that the estimation result is a symmetric because the number of defect 

identified is same and only difference of methods is between the number of failures 

and times of failures within PM from equations (5.17) and (5.35). Therefore, it 

means that the variance of the estimation of samples is very small in case of PM data 

available. In the Table, '0' figure of under Derr and Ierr represents 0% of errors. 
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Table 5.3. Parameter estimation from simulated data with PM information 

Method A Method B 
Estimation given number of Estimation given times of each 

Samp le size failure failure 
PMS Failures Derr(%) krr(%) Ij Derr(%) krr(%) 

10 144 0.993 0.050 0.243 -6.25 0.993 0.050 0.243 -6.25 
50 659 0.927 0.049 0 0 0.927 0.049 0 0 
100 1358 0.936 0.050 0.021 6.25 0.936 0.050 0.021 6.25 
150 2001 0.922 0.050 0 0 0.922 0.050 0 0 
200 2600 0.904 0.050 0 0 0.904 0.050 0 0 

True values 0.9 0.05 0.9 0.05 

*?, is the rate of occurrence of defects, cc is the delay time parameter, Derr is downtime 

error and Ierr is the inspection period error. 

Table 5.4. Parameter estimation from simulated data without PM information 

Method A Method B 
Estimation given number of Estimation given times of each 

Sample size failure failure 
PMs Failures fj Derr(%) krr(%) Derr(%) lerr(%) 
10 144 0.959 0.053 0.243 -6.25 0.981 0.051 0.243 -6.25 
50 659 0.750 0.070 0.021 6.25 0.753 0.070 0.021 6.25 
100 1358 0.856 0.059 0 0 0.860 0.058 0 0 
150 2001 0.902 0.052 0 0 0.901 0.052 0 0 
200 2600 0.870 0.053 0 0 0.869 0.053 0 0 
True values 0.9 0.05 0.9 0.05 
*X is the rate of occurrence of defects, (x is the delay time parameter, Derr is downtime 
error and Ierr is the inspection period error. 

Table 5.4 also shows that estimates in the case when PM information is not 

available. This case also recovers the underlying process of failures and defects in 

the given example, but only when the data set is sufficiently large. The two case 

methods with time of failures and day of failures are not very difference to each other 

for estimated parameter values and also downtime error and inspection period error. 

Now we compare the two methods when the delay time has the Weibull 

CA# distribution F(h)=I-e- " where a is the scale parameter and P is the shape 

parameter. As before, we generate a data set using simulation and adopt the 

simulated data as observed data. The rate of occurrence of defects (ROCOD) is 
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assumed constant, A=0.5, and the distribution of delay time is Weibull, 

F(h) =I- e-"fl, with scale parameter, cc = 0.15 and shape parameter P taking values 

0.6,0.9,1.1,1.5 and 2.0. Thus mean values of the delay time distributions are 

approximately 35.53,8.661,5.414,3.198 and 2.288 respectively, corresponding to 

ranged 0.6 to 2.0 of shape parameter, fi. 

For comparison, if shape parameter, 8=1, and the scale parameter, a=0.15, the 

mean values of this Weibull delay time distribution is 6.667. Then using the 

equations (5.17) and (5.35), and (5.18) and (5.36) we obtain the estimated parameter 

values in the cases when the PM information is available, and the PM information is 

unavailable. This results in methods A and B from the simulation data set. 
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Figure 5.10. Expected downtime against inspection interval when parameter 
values are X=0.5, a=0.15 and P ranges over 0.6.0.9,1.1 and 2.0 

(Perfect inspection case, r= 1) 

Tables 5.5. and 5.6 show the estimation result. Figure 5.10 also shows the 

optimum inspection interval for given true values as P varies between 0.6,0.9,1.1,1.5 
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and 2.0. For parameter values are A=0.5 a=0.15 and fl = 0.6 the optimum 

inspection interval is 22 days and downtime per day is 0.2086 hours. If 8 is 0.9,1.1, 

1.5 and 2.0, optimum inspection intervals are 15 13,11 and 9 days respectively. 
Further the correspondingly optimum expected downtimes are 0.2112,0.2107,0.2077 

and 0.2037. 

Table 5.5. Parameter estimation from simulated data with Weibull distribution 
when cc = 0.15 and, 8 ranges over 0.6 - 2.0. (with PM information in perfect 

inspection case) 

Method A Method B 
Estimation given number offailure Estimation given times of each 

Sam ple size failure 
PM Failures Derr krr Derr krr 

S M M M M 
10 131 0.553 0.199 0.592 0.011 4.5 0.553 0.189 0.639 0.181 -13.6 
50 580 0.522 0.151 0.603 0.011 4.5 0.522 0.149 0.622 0.068 -9.1 
100 1153 0.519 0.142 0.693 0.068 -9.1 0.519 0.140 0.707 0.365 -18.2 
150 1732 0.522 0.140 0.695 0.365 -18.2 0.522 0.139 0.706 0.365 -18.2 
200 2269 0.516 0.140 0.668 0.181 -13.6 0.516 0.139 0.674 0.181 -13.6 
True values 0.5 0.15 0.6 0.5 0.15 0.6 
10 139 0.553 0.206 0.848 0.013 6.7 0.553 0.199 0.910 0 0 
50 610 0.522 0.155 0.861 0 0 0.522 0.154 0.875 0 0 
100 1212 0.519 0.147 0.984 0.113 -6.7 0.519 0.146 0.998 0.113 -6.7 150 1825 0.522 0.145 1.011 0.399 -13.3 0.522 0.145 1.020 0.926 -20.0 200 2391 0.515 0.145 0.975 0.113 -6.7 0.516 0.145 0.978 0.113 -6.7 True values 0.5 0.15 0.9 0.5 0.15 0.9 
10 140 
50 622 
100 1236 
150 1854 
200 2435 
True values 

0.553 
0.522 
0.519 
0.522 
0.515 
0.5 

0.190 
0.155 
0.148 
0.146 
0.146 
0.15 

1.117 
1.025 
1.181 
1.211 
1.169 
1.1 

0.134 
0 

0.134 
0.134 
0.134 

-7.7 
0 

-7.7 
-7.7 
-7.7 

0.553 
0.522 
0.519 
0.522 
0.515 
0.5 

0.193 
0.155 
0.148 
0.146 
0.146 
0.15 

1.065 
1.031 
1.180 
1.218 
1.173 
1.1 

0 
0 

0.134 
0.134 
0.134 

0 
0 

-7.7 
-7.7 
-7.7 

10 142 0.553 0.192 1.302 0 0 0.553 0.189 1.392 0.051 -9.1 
50 631 0.522 0.154 1.317 0 0 0.522 0.154 1.324 0 0 
100 1260 0.519 0.150 1.520 0.051 -9.1 0.519 0.150 1.521 0.051 -9.1 
150 1884 0.522 0.147 1.611 0.051 -9.1 0.522 0.147 1.620 0.051 -9.1 
200 2474 0.516 0.147 1.565 0.051 -9.1 0.516 0.147 1.560 0.051 -9.1 
True values 0.5 0.15 1.5 0.5 0.15 1.5 
10 142 0.553 0.180 1.864 0.608 -11.1 0.553 0.181 1.754 0 0 
50 634 0.522 0.152 1.714 0 0 0.522 0.153 1.720 0 0 
100 1262 0.519 0.148 1.902 0 0 0.519 0.148 1.921 0 0 
150 1880 0.522 0.145 2.090 0 0 0.522 0.145 2.092 0 0 
200 2464 0.516 0.144 1.980 0 0 0.516 0.144 2.005 0 0 
True values 0.5 0.15 2.0 0.5 0.15 2.0 
X is the rate of occurrence of defects, (x and P are the scale and the shape parameters of 
delay time distribution, Deff is downtime error and Ieff is the inspection period error. 
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Table 5.6. Parameter estimation from simulated data with Weibull distribution 

when (x = 0.15 and, 8 ranges over = 0.6 - 2.0. (without PM information in perfect 
inspection case) 

Method A Method B 
Estimation given number offailure Estimation given times of each 

Samp le size failure 
PMS Failur Derr Ierr Derr Ierr 

es (%) M M M 
10 131 5.432 9.9e-5 0.372 0.644 31.8 6.120 9.9e-5 0.391 1.027 -27.3 
50 580 4.617 9.9e-5 0.365 0.365 -18.2 2.351 0.001 0.390 0.365 -18.2 
100 1153 0.684 0.059 0.555 0.638 -22.7 0.627 0.078 0.598 0.638 -22.7 
150 1732 0.558 0.113 0.646 0.365 -18.2 0.541 0.125 0.678 0.365 -18.2 
200 2269 0.583 0.094 0.592 0.365 -18.2 0.562 0.106 0.617 0.365 -18.2 
True values 0.5 0.15 0.6 0.5 0.15 0.6 

10 139 10.91 9.9e-5 0.473 0.113 -6.7 12.26 9.9e-5 0.491 0.113 -6.7 
50 610 0.772 0.052 0.629 0 0 0.698 0.068 0.674 0 0 
100 1212 0.594 0.102 0.836 0.113 -6.7 0.584 0.106 0.862 0.113 -6.7 
150 1825 0.559 0.121 0.917 0.399 -13.3 0.553 0.124 0.936 0.399 -13.3 
200 2391 0.558 0.117 0.874 0.113 -6.7 0.554 0.119 0.884 0.113 -6.7 
True values 0.5 0.15 0.9 0.5 0.15 0.9 

10 140 0.800 0.069 0.753 0.134 -7.7 0.884 0.054 0.699 0 0 
50 622 0.627 0.095 0.828 0 0 0.611 0.101 0.851 0 0 
100 1236 0.570 0.116 1.033 0.134 -7.7 0.569 0.116 1.035 0.134 -7.7 
150 1854 0.542 0.132 1.134 0.134 -7.7 0.541 0.133 1.145 0.134 -7.7 
200 2435 0.540 0.129 1.082 0.134 -7.7 0.539 0.129 1.089 0.134 -7.7 
True values 0.5 0.15 1.1 0.5 0.15 1.1 

10 142 0.651 0.118 1.023 2.249 -27.3 0.631 0.127 1.121 0 0 
50 631 0.551 0.133 1.194 0.051 -9.1 0.552 0.131 1.196 0 0 
100 1260 0.554 0.126 1.360 0.677 -18.2 0.555 0.125 1.362 0 0 
150 1884 0.535 0.138 1.531 0.067 -18.2 0.535 0.138 1.541 0.051 -9.1 
200 2474 0.528 0.137 1.491 0.067 -18.2 0.528 0.137 1.485 0.051 -9.1 
True values 0.5 0.15 1.5 0.5 0.15 1.5 

10 142 0.590 0.150 1.771 0.608 -11.1 0.592 0.149 1.663 0 0 
50 634 0.535 0.142 1.620 0.291 11.1 0.535 0.142 1.632 0.291 11.1 
100 1262 0.544 0.131 1.749 0 0 0.543 0.132 1.771 0 0 
150 1880 0.528 0.141 2.043 0 0 0.528 0.141 2.047 0 0 
200 2464 0.520 0.141 1.951 0 0 0.519 0.142 1.981 0 0 
True values 0.5 0.15 2.0 0.5 0.15 2.0 

X is the rate of occurrence of defects, a and P are the scale and the shape parameters of 
delay time distribution, Derr is downtime error and Ierr is the inspection period error. 

Table 5.5 shows that the maximum likelihood estimates recovers the parameters 

well in both methods A and B, the underlying process of failures and the defects 

origination process for the particular case. From the downtime model, the optimal 
inspection interval is 22 days and the expected downtime is 0.2086 hours for the given 

true values, A=0.5 a=0.15 and fl = 0.6. Table 5.5 also shows that downtime error 
(Derr) and inspection period error (Ierr) are less than about 0.4 % and 20 %. In case 

of 8=0.9, the maximum likelihood estimates also recover well the underlying process 
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of failures and defects origination in both methods A and B. The optimum inspection 

interval is 15 days and expected downtime per day is 0.2112 hours. Downtime error 

and inspection period error are less than 0.4 % and 20 There is no evident 

difference between the two methods. 

For 8=1.1 - 2.0, the maximum likelihood estimates also more recovers well the 

underlying process of failure and defect arrival as the set of inspection data and the 

number of inspections increase, and downtime error and inspection period error are 

less than 0.13 % and 9.1 %. In the case of 8=1.1 and 1.5, downtime error (Derr) 

and inspection error (Ierr) are the same error even the value of estimates is not 

identical. The reason is that optimal value is not very much sensitive to the model 

parameter and there is not a lot of difference of between estimates model parameters 

Table 5.6 depicts the case of PM information is not available shows that the 

estimation results of maximum likelihood for variable values of shape parameter j8 
0.6-2.0. 

From Table 5.6, we can see irrespective of the form of failure record that as the 

number of inspection increase the estimation of parameters based upon equations 

(5.17) and (5.35) is more accurate only in case of 8=2.0. And downtime error and 

inspection interval error also are not much different for methods A and B in case of P 

< 1.1. However, in case of 8=1.5 and 2.0, we can see that Method B is slightly 

more accurate to Method A. Figure 5.11 shows the regenerated number of failures 

for the method A and B against given true number of failures when number of PMs 

are 100, A=0.5, ce = 0.15 and the value of P is varied as 0.6 to 2.0 of a Weibull. It 

also shows that there are no relevant differences for method A and B. 

In conclusion here, under the perfect inspection policy, for two case methods A and 
B, that is, method A assumes PM data and the number of failures per working day, 

and method B assumes PM data and times of failures available, the maximum 
likelihood estimates recover the underlying process failure and defect origination for 

both cases. Even without PM information, with a Weibull distribution of delay time, 
for the shape parameter 8 =2.0, as the number of inspections increase the estimation 
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process can recover the underlying process. There is also no relevant different 

between the estimation results from methods A and B for exponential and Welbull 

distribution of delay time. Therefore, comparing method A and B, under perfect 

inspection policy we appear safe in assuming that the likelihood formulation doesn't 

introduce a serious bias in parameter estimation accuracy for different formats of 

failure data, and ifPM information is available or unavailable. 
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Figure 5.11. Comparison of Method A and Method 13 against the true number 
of failures when number of PMs are 100 and delay time is a Weibull distribution. 

(Perfect inspection case, r= 1) 
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So far, we assumed that the rate of occurrence of defects (ROCOD) is a constant, 

X. Much of the recent work on modelling and analysis of repairable system is based 

on the assumption of a special type of NHPP known as a Weibull process (Bain and 

Engelhardt, 1991). The name Weibull process derives primarily from the 

resemblance of the intensity function of the process to the hazard function of a 

Weibull distribution, X 22u 

In the following case is assumed that the rate of occurrence of defects (ROCOD) at 

time u is A(u), namely A(u) = ýAu 
22-1 

, and the distribution of delay time has a 

&4"6 Weibull, F(h) =I- e- where ct is the scale parameter and 8 is the shape 

parameter. As before, to generate a set of maintenance data using simulation, we first 

assume that A, = 0.5, A2 = 0.6, a=0.5 and 8=0.6. Values of A2 are P are then 

increased to 0.9,1.1 and 2.0. 

For given Weibull delay time distribution, the mean values are 4.777,2.273,1.812, 

1.433, and 1.253 when the scale parameter is 0.5 and shape parameter are 0.6,0.9,1.1, 

1.5 and 2.0. For equations (5.17) and (5.35) we can replace A into A(u) with no 

loss of generality. Then the parameter estimation results based upon the new 

equations of (5.17) and (5.35), for different values of the A2 and P and various 

number of inspections are given by Table 5.7. Table 5.7, in cases of A2 = 0.6 and 2.0 

and, O = 0.6 and 2.0, show that the maximum likelihood estimate does not in all cases 

recover the underlying process of failure and defects origination based upon the new 

equations (5.17) and (5.35) in spite of large number of inspections. In case of A2 = 

0.9 and 1.1 and P=0.9 and 1.1, as the number of inspections increase the maximum 

likelihood estimates recover the underlying process of failure and defect origination 

based upon equations (5.17) and (5.35). For all these cases, since the rate of 

occurrence of defects (ROCOD) at time u, A(u), is changing, it is more difficult to 

estimate the parameter than the constant rate of occurrence of defects. As the delay 

time parameter is Weibull, becomes more difficult to estimate parameters. 

However, even when the maximum likelihood estimate does recover the 

underlying process, we see that the downtime error and inspection interval error can 
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not be obtain from the downtime model in some cases since it has no optimal 

inspection interval from the estimated parameters. When we have a true given 

values, A, = 0.5, A2 = 0.6, a=0.5 and fi = 0.6, and Ai = 0.5, A2 = 0.9, ct = 0.5 and P= 

0.9 the optimal inspection interval for df = 1.0 and dp = 0.5 is not effectively infinite, 

that is do not inspect. In the case of A2 = 1.1 and 2.0,1.1 and 2.0, the best 

inspection intervals are 11 and 2 days, respectively. 

Table 5.7. Parameter estimation from simulated data with Weibull 
distribution when X, and oc = 0.51 X2 and P ranges over 0.6 - 2.0 of case with PM 

information 

Method A Method B 
Estimation given number offailure per day Estimation given times of eachfailure 

Sample size 
PM Failur Derr Ierr 12 Derr Ierr 

s es M M MM 

10 96 0.126 1.292 0.466 0.809 - - 0.781 0.824 0.238 1.496 
50 493 0.129 1.274 1.581 0.179 - - 0.481 0.955 0.467 0.637 
100 968 0.203 1.160 0.994 0.412 - 0.441 0.969 0.431 0.683 
150 1451 0.272 1.082 0.685 0.537 - 0.424 0.975 0.451 0.698 
200 1988 0.281 1.075 0.853 0.473 - - 0.355 1.002 0.553 0.612 
True values 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 
10 142 0.253 1.197 0.613 0.832 - - 0.632 0.953 0.411 2.014 
30 429 0.367 1.088 0.424 1.568 - - 0.605 0.971 0.423 2.224 
50 684 0.351 1.090 0.388 1.534 - - 0.657 0.955 0.380 1.595 
100 1383 0.426 1.038 0.435 1.437 - - 0.574 0.979 0.451 1.173 
150 2099 0.449 1.028 0.462 1.262 - - 0.523 0.994 0.473 1.114 
200 2722 0.463 1.018 0.485 1.090 - - 0.549 0.987 0.483 1.049 
True values 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 
10 162 0.440 1.074 0.840 0.720 3.402 145.5 0.528 0.016 0.725 0.735 
50 762 0.469 1.042 0.727 0.689 7.041 209.9 0.634 0.975 0.597 0.782 
100 1510 0.488 1.028 0.618 0.850 11.19 509.1 0.606 0.982 0.547 0.938 
150 2268 0.531 1.004 0.530 0.971 - - 0.575 0.991 0.519 0.995 
200 3001 0.543 0.995 0.537 1.007 - 0.602 0.984 0.545 0.989 
True values 0.5 1.1 0.5 1.1 0.5 1.1 0.5 1.1 
10 171 0.399 1.114 0.633 1.118 130.5 466.7 0.563 1.013 0.495 1.054 502.8 3367 
50 805 0.402 1.095 0.513 1.448 145.1 633.3 0.658 0.977 0.466 1.841 - 
100 1594 0.477 1.043 0.452 1.569 246.3 1100 0.626 0.986 0.466 1.700 - 
150 2414 0.472 1.049 0.485 1.622 235.9 1033 0.592 0.995 0.494 1.707 
200 3183 0.499 1.030 0.471 1.512 324.9 1667 0.618 0.988 0.492 1.603 - 
True values 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 
10 172 0.609 1.121 0.621 1.502 330.0 166.7 0.562 1.014 0.547 1.915 7749 5900 
50 818 0.495 1.039 0.512 1.738 2000 2000 0.637 0.984 0.507 2.421 
100 1626 0.499 1.036 0.511 1.628 2839 2200 0.616 0.990 0.515 1.864 
150 2451 0.501 1.036 0.521 1.580 2905 2250 0.590 0.997 0.528 1.551 
200 3229 0.489 1.039 0.508 1.581 2706 2100 0.623 0.989 0.515 1.614 
True values 0.5 2.0 0.5 2.0 0.5 2.0 0.5 2.0 

X, and X2 are parameters of rate of occurrence of defects, cc and 8 are scale and shape 
parameters of a Weibull distribution of delay time. Derr is downtime error and Ierr is 
the inspection period error. "-" means there is no optimal value. 
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However, in both cases, Table5-7 also shows that downtime error and inspection 

interval error are very large for inethod A. In this case, as the rate of occurrence of 

defects is changing, not surprisingly perhaps, it is more difficult to estimate 

parameters than in the constant parameter case. 

Figure 5.12 shows the regenerated number of failures for methods A and B against 

the true number of failures when A/ and a are 0.5, A? and # are varied a,, 0.6 to 

0.9 /, 5 20 

Lanyla I&&, ta 
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Figure 5.12. Comparison of methods A and B against the true number of 
failures when number of PMs are 100 and delay time is a Weibull distribution. 

(Perfect inspection case, r=I) 

5.5.2 Under Imperfect Inspection 

Now, assuming that inspection is not perfect. If maintenance data were available, 

the objective method would be Lised to estimate the probability of identifying a defect 
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upon inspection, r. For methods A and B, we now compare these assuming r#1. 

Lets assume again that the rate of occurrence of defects (ROCOD) is a constant, X= 

0.5, and that the distribution of delay time is exponential, F(h) =I- e-' , where cc = 

0.15. Inspection quality, that is the probability of a defect being properly identified, r, 

is considered as 0.1,0.3,0.6 and 0.9. Again we generate a set of the maintenance 

data using simulation. Then from the simulated data set, the delay time parameters 

are estimated via the process based upon the equations (5.17), (5.18), (5.35) and 

(5.36), and the results are given in Tables 5.8 and 5.9. 

Table 5.8. Parameter estimation from simulated data with exponential delay 
time distribution and with PM information, and r=0.1 - 0.9 

Method A Method B 
Estimation given number offailure per Estimation given times of each failure 

Sample size day 
PMs Failures et Derr Ierr i (i Derr krr 

(%) M M (%) 
10 161 0.550 0.238 0.127 0.262 133.3 0.550 0.232 0.122 0.351 183.3 
50 704 0.480 0.198 0.120 0.351 183.3 0.480 0.192 0.115 0.525 300.0 
100 1434 0.488 0.188 0.110 - - 0.488 0.181 0.105 - - 
150 2211 0.503 0.189 0.123 0.001 16.7 0.503 0.186 0.120 0.001 16.7 
200 2949 0.501 0.205 0.119 0.351 183.3 0.501 0.203 0.118 0.351 183.3 

True values 0.5 0.15 0.1 0.5 0.15 0.1 
10 155 0.548 0.324 0.742 0 0 0.691 0.109 0.725 0 0 
50 682 0.480 0.166 0.256 0 0 0.493 0.151 0.205 0.908 50.0 
100 1392 0.490 0.158 0.253 0 0 0.496 0.149 0.151 0 0 
150 2166 0.507 0.144 0.221 0 0 0.510 0.147 0.160 0 0 
200 2865 0.504 0.171 0.272 0 0 0.504 0.172 0.273 0 0 

True values 0.5 0.15 0.3 0.5 0.15 0.3 
10 150 0.551 0.254 0.873 1.323 -33.3 0.551 0.244 0.833 1.323 -33.3 
50 638 0.480 0.148 0.515 0 0 0.480 0.146 0.508 0 0 
100 1304 0.491 0.145 0.505 0 0 0.491 0.143 0.498 0 0 
150 2001 0.501 0.161 0.554 0 0 0.501 0.159 0.548 0 0 
200 2639 0.497 0.172 0.609 0 0 0.497 0.169 0.598 0 0 

Tru e values 0.5 0.15 0.6 0.5 0.15 0.6 
10 143 cannot find optimal - - 0.550 0.204 1.000 0 0 
50 601 0.481 0.148 0.768 0 0 0.481 0.151 0.781 0 0 
100 1213 0.491 0.150 0.817 0 0 0.491 0.149 0.811 0 0 
150 1864 0.501 0.155 0.835 0 0 0.501 0.153 0.826 0 0 
200 2459 0.498 0.160 0.875 0 0 0.498 0.157 0.861 0 0 

Tru e values 0.5 0.15 0.9 0.5 0.15 0.9 
X is the rate of occurrence of defects, (x is the scale parameter of delay time distribution 
and r is the probability of a defect being recognized at inspection. Derr is downtime error 
and Ierr is the inspection period error. "-" means there is no optimal value. 
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Table 5.8 shows that for methods A and B with PM information, the maximum 

likelihood estimates recover quite well the underlying process of failure and defect 

origination based upon equations (5.17) and (5.35). When r=0.1, the downtime 

error and inspection interval error have maximum errors for method A of about 0.35 

% and 183 % and about 0.5 % and 300 % for method B. However, as the probability 

of a defect being identified, r, increase downtime error and inspection interval error 

reduce and the model converges to the true optimum value. This is to be expected 

since information on r is contained within inspection data, and if r is small, very 

little information on r will be available from failure data. This will change as r 

increases. 

Table 5.9. Parameter estimation from simulated data with exponential delay 
time distribution in case of no PM information when r=0.1 - 0.9 

Method A Method B 
Estimation given number offailure per Estimation given times of eachfailure 

Sample size day 
PMS Failures Derr krr Derr Ierr 

M M M M 
10 161 0.688 0.114 0.746 1.034 -50 0.691 0.109 0.725 1.034 -50 
50 704 0.495 0.152 0.219 3.533 -66.7 0.493 0.151 0.205 1.034 -50 
100 1434 0.496 0.151 0.160 1.034 -50 0.496 0.149 0.151 1.034 -50 
150 2211 0.511 0.148 0.165 1.034 -50 0.510 0.147 0.160 1.034 -50 
200 2949 0.514 0.138 0.179 3.553 -66.7 0.514 0.138 0.176 3.553 -66.7 

True values 0.5 0.15 0.1 0.5 0.15 0.1 
10 155 0.697 0.111 0.875 0.908 50.0 0.698 0.110 0.869 0.908 50.0 
50 682 0.498 0.128 0.326 0 0 0.498 0.126 0.316 0 0 
100 1392 0.503 0.125 0.287 0 0 0.503 0.123 0.283 0 0 
150 2166 0.520 0.114 0.252 0 0 0.520 0.115 0.253 0 0 
200 2865 0.528 0.110 0.314 0 0 0.528 0.111 0.315 0 0 

True values 0.5 0.15 0.3 0.5 0.15 0.3 
10 150 0.717 0.096 0.913 0 0 0.721 0.093 0.899 0 0 
50 638 0.513 0.107 0.555 0 0 0.515 0.105 0.550 0 0 
100 1304 0.521 0.103 0.524 0 0 0.523 0.101 0.520 0 0 
150 2001 0.532 0.113 0.562 0 0 0.533 0.110 0.559 0 0 
200 2639 0.528 0.120 0.609 0 0 0.530 0.117 0.604 0 0 

True values 0.5 0.15 0.6 0.5 0.15 0.6 
10 143 0.777 0.078 1.000 0 0 0.771 0.079 1.000 0 0 
50 601 0.531 0.102 0.773 0 0 0.528 0.105 0.781 0 0 
100 1213 0.539 0.104 0.806 0 0 0.540 0.103 0.802 0 0 
150 1864 0.545 0.110 0.819 0 0 0.547 0.108 0.815 0 0 
200 2459 0.540 0.116 0.819 0 0 0.542 0.113 0.809 0 0 

Tru e values 0.5 0.15 0.9 0.5 0.15 0.9 
?, is the rate of occurrence of defects, (x is the scale parameter of delay time distribution 
and r is the probability of a defect being recognized at inspection. Derr is downtime error 
and Ierr is the inspection period error. 
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Table 5.9 also shows estimated parameter for methods A and B without PM 

information, that is failure information only. The maximum likelihood process used 

to recover estimate% of the underlying process of failure and defect origination was 

based upon equations (5.18) and (5.36). 
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It is noted that as the probability of a defect being identified, r, increase, the 

estimation of parameters is more accurate. If r is over 0.3, parameter estimated is 

accurate in spite of a low number of inspections for both methods A and B. For 

downtime error and inspection interval error, when r=0.1 maximum errors of 

method A and B both are about 3.55 % and -66.7 %. However as the probability of a 
defect identified, r, increases the downtime error and inspection interval error reduce 

and parameter converge to the true optimum value. This is also expected that if r is 

small, very little information on r will be available from failure data since 
information on r is contained within inspection data. 

Figure 5.13 shows the regenerated number of failures for methods A and B against 

the true number of failures when A=0.5 and a= 0.15 and r is varied as 0.1 to 0.9 

and the number of PNIs are 100. We can see that there are no evident differences for 

methods A and B. 

Next, it is also assume that under an imperfect inspection policy, the rate of 

occurrence of defects (ROCOD) is a constant, A=0.6 and delay time distribution is a 
Wcibull, with scale parameter a=0.03 and shape parameter 6=1.5, where mean 
value and variance of h is 935 and 40.3, and the probability of defect identified, r, is 
between 0.1 and 0.9. 

Using simulation, we simulate a set of maintenance data based upon the above 

assumptions. Tables 5.10 and 5.11 show the result of parameter estimation process 
based on the simulated maintenance data using estimation equations (5.17), (5.18), 

(5.35) and (5.36). Here we used the statistical decision theory to minimize the 

expected loss due to estimated parameters, where the expected loss, L(dO), is 

obtained from equation (5.40), where d is the true parameter value and 0 is 

corresponding Of estimated parameter value. Therefore, the ideal estimate is d=0, 

and it is natural to dcrinc L(0,0) =0 for all 0 The function provides a measure of 
the extent to which estimated parameter values different from their given true value. 
Results arc also given inTablcs 5.10 and 5.11. Forcase methods A and B, in case of 
with PNI information, Table 5.10 shows that the maximum likelihood estimate can 
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recover quite well the underlying process of failure and defect origination based upon 

equations (5.17) and (5.35) regardless of the probability of a defect being identified at 
PM and the existence of PNI data. 

Table 5.10. Parameter estimation from simulated data with Weibull delay time 
distribution In case of with PM information when r=0.1 - 0.9 

Method A Method B 
Estimation given number offailure per Estimation given times of each failure 

Sample size dav 
PUS Failures 

'6 
Ud, 0) Ud, 0) 

10 160 0.660 0.029 1.442 0.105 0.007 0.660 0.029 1.431 0.104 0.008 
50 818 0.629 0.028 1.416 0.113 0.008 0.630 0.028 1.405 0.112 0.01 
100 1665 0.625 0.033 1.623 0.120 0.016 0.625 0.033 1-597 0.119 0.01 
150 2435 0.608 0.031 1.560 0.111 0.004 0.608 0.031 1.536 0.111 0.001 
200 3194 0.599 0.031 1.584 0.115 0.007 0.599 0.031 1.564 0.114 0.004 

True values 0.6 0.03 1.5 0.1 0.6 0.03 1.5 0.1 
10 122 0.600 0.032 1.463 0.301 0.001 0,600 0.031 1.418 0.297 0.007 
50 659 0.626 0.030 1.538 0.312 0.002 0.626 0.029 1.504 0.309 0.0008 
100 1350 0.629 0.024 1.137 0.245 0.136 0.629 0.023 1.126 0.243 0.144 
150 1992 0.612 0.025 1.148 0.250 0.127 0.612 0.026 1.456 0.440 0.022 
200 2570 0.599 0.025 1.150 0.264 0.124 0.599 0.025 1.143 0.263 0.129 

True values 0.6 0.03 1.5 0.3 0.6 0.03 1.5 0.3 
10 102 0.600 0.032 1.578 0.466 0.007 0.600 0.032 1.560 0.467 0.005 
50 529 0.627 0.025 IA50 0.426 0.009 0.627 0.025 1.454 0.427 0.008 
100 1089 0.633 0.027 1.400 0.460 0.013 0.633 0.027 1.409 0.459 0.011 
150 1602 0.619 0.026 1.425 0.441 0.009 0.619 0.026 1.456 0.440 0.006 
200 2059 0.604 '19 OM 1.883 0.479 0.147 0.604 0.029 1.883 0.478 0.147 

True values 0.6 0.03 1.5 0.5 0.6 0.03 1.5 0.5 
10 71 0.625 0.022 1.202 0.634 0.094 0.625 0.021 1.188 0.630 0.103 
50 391 0.620 0.030 1.949 0.694 0.202 0.620 0.030 1.892 0.684 0.154 
100 787 0.607 0.031 1.520 0.713 0.0006 0.607 0.031 1.527 0.712 0.0009 
150 1178 0.597 0.029 1 A33 0.690 0.005 0.597 0.029 1.440 0.689 0.004 
200 1551 0.600 0.030 1.578 0.698 0.006 0.600 0.030 1.576 0.697 0.006 

True values 0.6 0.03 1.5 0.7 0.6 0.03 1.5 0.7 
10 70 0.634 0.035 1.849 0.845 0.126 0.634 0.035 1.823 0.844 0.109 
50 313 0.632 0.031 1.806 0.847 0.097 0.632 0.031 1.804 0.845 0.096 
100 624 0.636 0.030 1.496 0.891 0.001 0.636 0.030 1.516 0.888 0.002 
150 910 0.620 0.030 1.483 0.890 0.0008 0.620 0.030 1.493 0.888 0.0006 
200 1186 0.617 0.030 1.601 0.886 0.011 0.617 0.030 1.602 0.886 0.011 

True values 0.6 0.03 1.5 0.9 0.6 0.03 1.5 0.9 
X is the rate of occurrence of defects, ct is the scale parameter and P is the shape 
parameter of delay time distribution and r is the probability of a defect being identified. 
Ud. 0) is the expected loss. 
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Table 5.11. Parameter estimation from simulated data with Weibull delay time 
distribution in case of without PM information when r=0.1 - 0.9 

Method A Method B 
Estimation given number offailure per Estimation given times of each failure 

Sample size day 
PmS Failures ii Ud, 0) Ud, 0) 

10 160 0.893 0.021 1.328 0.268 0.144 0.889 0.021 1.313 0.264 0.145 
50 818 0.579 0.031 1.343 0.041 0.029 0.578 0.031 1.331 0.039 0.033 
100 1665 0.670 0.028 1.446 0.160 0.01 0.669 0.028 1.443 0.158 0.011 
150 2435 0.605 0.031 1.475 0.105 0.007 0.604 0.031 1.448 0.103 0.003 
200 3194 0.590 0.032 1.538 0.106 0.002 0.591 0.032 1.514 0.104 0.0003 

True values 0.6 0.03 1.5 0.1 0.6 0.03 1.5 0.1 
10 122 0.686 0.008 0.590 0.025 0.912 0.691 0.008 0.586 0.025 0.920 
50 659 1.091 0.007 0.836 0.295 0.683 1.119 0.007 0.821 0.295 0.731 
100 1350 0.863 0.009 0.781 0.233 0.591 0.856 0.009 0.776 0.231 0.595 
150 1992 0.829 0.010 0.785 0.246 0.567 0.825 0.010 0.782 0.245 0.57 
200 2570 0.726 0.014 0.853 0.259 0.436 0.717 0.014 0.860 0.257 0.425 

True values 0.6 0.03 1.5 0.3 0.6 0.03 1.5 0.3 
10 102 2.781 0.001 0.729 0.252 5.014 54.94 9.9e-5 0.693 0.261 300.52 
50 529 1.893 0.004 0.918 0.406 2.025 1.901 0.004 0.924 0.408 2.034 
100 1089 13.57 0.001 0.914 0.472 168.61 12.96 9.9e-5 0.925 0.471 153.02 
150 1602 5.685 0.001 0.890 0.455 26.23 8.886 0.001 0.900 0.454 69.02 
200 2059 4.175 0.002 1.012 0.479 13.02 3.341 0.003 1.038 0.494 7.727 

True values 0.6 0.03 1.5 0.5 0.6 0.03 1.5 0.5 
10 71 3.905 0.001 0.812 0.537 11.424 16.32 9.9e-5 0.781 0.524 247.54 
50 391 0.439 0.046 2.444 0.637 0.921 0.419 0.049 2.485 0.629 1.008 
100 787 12.26 0.001 1.157 0.729 273.45 17.68 0.001 1.164 0.727 292.63 
150, 1178 12.26 0.001 1.069 0.708 130.09 6.106 0.002 1.086 0.705 30.43 
200 1551 6.385 0.002 1.182 0.716 33.57 2.188 0.007 1.238 0.711 2.694 

True values 0.6 0.03 1.5 0.7 0.6 0.03 1.5 0.7 
10 70 0.409 0.056 2.415 0.792 0.886 0.400 0.057 2.468 0.785 0.991 
50 313 0.344 0.058 3.485 0.762 4.026 0.343 0.058 3.542 0.758 4.257 
100 624 0.443 0.041 1.796 0.872 0.113 0.429 0.048 1.858 0.867 0.159 
150 910 0.564 0.033 1.537 0.886 0.003 0.497 0.039 1.641 0.878 0.035 
200 1186 0.543 0.031 1.677 0.882 0.035 0.503 0.038 1.734 0.878 0.065 

True values 0.6 0.03 1.5 0.9 0.6 0.03 1.5 0.9 
X is the rate of occurrence of defects, (x is the scale parameter and P is the shape 
parameter of delay time distribution and r is the probability of a defect being identified. 
L(d, 0) is the expected loss. 

Table 5.11, in case of r=0.1 and r=0.9, shows that as the number of PMs increase, 

the maximum likelihood estimates recover the underlying process of failure and defect 

origination based upon failure data only using equations (5.18) and (5.36), for case 

methods A and B. In the case of r=0.3,0.5 and r=0.7, Table 5.11 shows that the 

maximum likelihood estimates do not recover the underlying process of failure and 
defect origination based upon equations (5.18) and (5.36) in spite of the number of 
PMs, for case methods A and B in case of without PM information. 



From Table 5.11, we can see that when the probability of a defect being identified 

is, r=0.1 and 0.9, the estimation of parameters is more accurate than when r=0.3, 
0.5 and 0.7. In this case, if we have very low or high probability of defect 

identification at PM, like r=0.1 or 0.9, without PM information we can estimate the 

parameters well if the number of PM cycles is over 50. In this case of no PM 

information, when the probability of a defect being identified at PM is 0.1, the 

estimation of parameters relies mainly on failure information even if PM data were 

available. This is because relatively few defect will be identified at PM and only a 

minor modification to the likelihood function arise between the with and without PM 

cases. However, if the probability of defect being identified at PM is sufficiently 
high, such as 0.9, the PM point can be regarded as renewal point so that in the case of 

, relatively long PM intervals, failure data is again capable providing, most of the 

information needed in the parameter estimation process. In the middle ground case of 

r=0.3 - 0.7, it is more difficult to estimate the parameters without PM information. 

As a result of Table 5.11, we see that if the quality of inspection is relatively very 
low or high, we can estimate the parameters accurately, but it is more difficult to 

estimate in the range of r=0.3 - 0.7. From Table 5.11 we can also see that there is 

no consistent pattern in the range of r=0.3 - 0.7, comparing method A and B. 

Figure 5.14 shows the regenerated number of failures of methods A and B against the 

true number of failures based on given true values when A=0.6, a= 0.03, j6 = 1.5, 

the probability of a defect being identified, r, is varied between 0.1 to 0.9, and the 

number of PMs is 100. In contrast to the exponential distribution of delay time for 

estimating parameters, see Tables 5.8 and 5.9, maximum likelihood estimates recover 

the parameters well in the with PM data case, but the estimates are more unstable for 

no PM data. 
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Figure 5.14. Comparison of methods A and B against the true number of' 
failures when number of PMs are 100 and delay time distribution is a Weibull. 
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and 0.9. From the simulated set of data, with r fixed at its estimated values, the 

results of the parameter estimation process based upon the equations (5.17), (5.18), 

(5.35) and (5.36) are given in Tables 5.12 and 5.13. 

Table 5.12. Parameter estimation from simulated data with Weibull delay time 
distribution, PM information, and probability r fixed 

Method A Method B 
Estimation given number of Estimation given times of each 

Sample size failure per day failure 
PmS Failure L(d, 0) L(d, 0) 

s 
10 160 0.662 0.028 1.421 0.010 0.662 0.028 1.412 0.012 
50 818 0.631 0.025 1.342 0.026 0.631 0.025 1.335 0.028 
100 1665 0.626 0.028 1.468 0.002 0.626 0.028 1.457 0.003 
150 2435 0.608 0.028 1.472 0.001 0.608 0.028 1.459 0.002 
200 3194 0.599 0.027 1.462 0.001 0.599 0.027 1.452 0.002 
r is f ixed as a] 0.6 0.03 1.5 0.6 0.03 1.5 

10 122 0.600 0.032 1.456 0.002 0.600 0.032 1.429 0.005 
50 659 0.626 0.028 1.457 0.003 0.626 0.028 1.443 0.004 
100 1350 0.628 0.029 1.237 0.070 0.628 0.029 1.223 0.078 
150 1992 0.611 0.030 1.114 0.149 0.611 0.030 1.092 0.167 
200 2570 0.598 0.029 1.110 0.152 0.598 0.029 1.104 0.157 
r isfi xed as a3 0.6 0.03 1.5 0.6 0.03 1.5 

10 102 0.597 0.034 1.636 0.019 0.597 0.034 1.613 0.013 
50 529 0.625 0.030 1.668 0.029 0.625 0.030 1.668 0.029 
100 1089 0.633 0.030 1.271 0.054 0.633 0.030 1.291 0.045 
150 1602 0.619 0.030 1.143 0.128 0.619 0.030 1.199 0.091 
200 2059 0.603 0.032 2.348 0.719 0.603 0.032 2.368 0.753 
r isfi xed as 0.5 0.6 0.03 1.5 0.6 0.03 1.5 

10 71 0.619 0.025 1.242 0.067 0.619 0.025 1.238 0.069 
50 391 0.620 0.031 1.961 0.213 0.620 0.031 1.899 0.16 
100 787 0.607 0.030 1.572 0.005 0.607 0.030 1.571 0.005 
150 1178 0.597 0.030 1.387 0.013 0.597 0.030 1.392 0.012 
200 1551 0.600 0.030 1.570 0.005 0.600 0.030 1.563 0.004 
r is f ixed as a7 0.6 0.03 1.5 0.6 0.03 1.5 

10 70 0.631 0.036 1.593 0.010 0.631 0.036 1.541 0.003 
50 313 0.631 0.031 1.468 0.002 0.631 0.031 1.459 0.003 
100 624 0.636 0.030 1.454 0.003 0.636 0.030 1.458 0.003 
150 910 0.620 0.030 1.433 0.005 0.620 0.030 1.431 0.005 
200 1186 0.617 0.030 1.523 0.0008 0.617 0.030 1.523 0.0008 
r is fixed as 0.9 0.6 0.03 1.5 0.6 0.03 1.5 
X is the rate of occurrence of defects, a is the scale parameter and 0 is the shape 
parameter of Weibull delay time distribution. L(d, 0) is the expected loss. 



Table 5.12 shows that for case methods A and B, maximum likelihood estimates 

recover quite well the underlying process of failure and defect origination based upon 

equations (5.17) and (5.35) regardless of the probability of defect identified and a set 

of PM data. From Table 5.12, there is no evident difference between estimate 

parameters for methods A and B. 

Table 5.13. Parameter estimation from simulated data with Weibull delay time 
distribution, no PM information, and probability r fixed 

Method A Method B 
Estimation given number of Estimation given times of each 

Sample size failure per day 
- 

failure 
PMS Failures i Ii L(d, 0) i 6 Ud, 0) 
10 160 0.680 0.025 1.256 0.066 0.681 0.025 1.246 0.071 
50 818 0.618 0.029 1.362 0.019 0.618 0.029 1.350 0.023 
100 1665 0.623 0.029 1.427 0.006 0.623 0.029 1.410 0.009 
150 2435 0.601 0.031 1.471 0.0008 0.602 0.031 1.466 0.001 
200 3194 0.588 0.032 1.533 0.001 0.589 0.032 1.511 0.0002 
r isfixed as 0.1 0.6 0.03 1.5 0.6 0.03 1.5 
10 122 15.96 9.9e-5 0.699 228.3 70.683 9.9e-6 0.687 4912 
50 659 1.134 0.007 0.832 0.732 1.175 0.006 0.816 0.799 
100 1350 5.618 0.0002 0.607 25.98 5.041 0.004 0.606 23.85 
150 1992 1.000 0.008 0.732 0.75 2.223 0.001 0.606 3.434 
200 2570 1.174 0.005 0.669 1.021 1.084 0.006 0.692 0.888 
r isfixed as 0.3 0.6 0.03 1.5 0.6 0.03 1.5 
10 102 91.29 9.9e-5 1.008 8225 90.400 9.9e-5 1.006 8064 
50 529 33.76 1.8e-4 0.932 1000 24.620 0.003 0.944 577.27 
100 1089 20.255 2.0e-4 0.909 386.7 19.417 0.003 0.922 354.41 
150 1602 11.423 0.012 0.950 117.44 14.893 0.003 0.865 204.69 
200 2059 6.021 0.001 0.955 29.64 6.661 0.001 1.004 36.98 
r isfixed as 0.5 0.6 0.03 1.5 0.6 0.03 1.5 
10 71 45.66 9.9e-5 0.877 2031 0.329 0.077 2.498 1.072 
50 391 224.65 0.0002 1.290 50200 30.911 0.001 1.288 918.80 
100 787 7.861 0.002 1.222 52.8 9.842 0.002 1.218 85.50 
150 1178 9.784 0.001 1.094 84.51 13.04 0.001 1.092 155.02 
200 1551 0.902 0.002 1.322 0.124 0.838 0.023 1.450 0.022 
r is fixed as 0.7 0.6 0.03 1.5 0.6 0.03 1.5 
10 70 72.80 4.7e-4 1.213 5231 91.70 0.0003 1.154 8299 
50 313 8.990 0.002 1.173 70.5 18.12 0.001 1.158 306.99 
100 624 0.597 0.033 1.470 0.001 0.590 0.033 1.480 0.0005 
150 910 0.760 0.024 1.367 0.043 0.708 0.026 1.384 0.025 
200 1186 0.836 0.022 1.432 0.06 0.756 0.024 1.456 0.026 
r isfixed as a9 0.6 0.03 1.5 0.6 0.03 1.5 

X is the rate of occurrence of defects, (x and P are scale and shape parameters of Weibull 
delay time distribution. UdO) is the expected loss. 



Table 5.13 shows that in case of r=0.1 and 0.9, maximum likelihood estimates 

recover the underlying process of failure and defect origination based upon equations 

(5.18) and (5.36) as the number of PMs increase for case methods A and B. 

However, in case of r=0.3,0.5 and 0.7, estimations are not recovered well, unlike 

the case with PM data, see Table 5.12. 
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It also mean that if the quality of inspection is very low or high, the maximum 

likelihood estimates recovers the underlying process in the case when the rate of 

occurrence of defect is high and the delay time is short. Figure 5.15 shows the 

regenerated number of failures based upon the analysis of methods A and B against 

the true number of failures based on given values when A=0.6, a=0.03, P=1.5, 

the probability of defect identified, r varies between 0.1 and 0.9, and the number of 

PMS is 100. 

5.6 Discussion of Estimation Options and Conclusions 

To compare the different case methods which depend upon maintenance 

information, we generated a set of PM data using the simulation method and then 

estimated parameters from the simulated data. One method, called method A, 

maintenance data is assumed available including inspection data and the number of 

failures per working day only. The second method, called method B, assumes 

maintenance data is available including PM inspection data and the times of failures. 

Both methods A and B may or may not have PM data. Clearly, the data of method A 

is included within that of method B. 

For case methods A and B, we may expect that method B is dominant as far as 

accuracy of parameter estimation is concerned. However, in the case of an 

exponential delay time distribution, both methods produce nearly identical results, 

under perfect inspection policy even without PM information. In this case, since two 

methods have a constant rate of occurrence of defect and delay time is exponentially 
distributed, there is no useful difference in the comparison of downtime error and 
inspection period error for methods A and B. If the defect arrival rate is a constant 



and the distribution of delay time is exponential, we can use both methods with no 

fear of bias in parameter estimation due to different levels of information available. 

When we assumed that delay time distribution is a Weibull and a perfect inspection 

policy, maximum likelihood estimates also recover well the underlying process of 

failure and defect origination of both methods A and B. Even though in the case of 

no PM information being available, just failure data, maximum likelihood estimates 

can recover parameters as the number of PMs increase. When we assumed that the 

rate of occurrence of defects at time u is k(u), namely A(U) = ý22U'12-1' and the 

Oh. 8 
distribution of delay time is a Weibull, F(h) =I- e- , maximum likelihood 

estimates do not recover well the underlying process of failures and defects 

origination for methods A or B, even under perfect inspection. It is evidently more 

difficult to find optimal value as the rate of occurrence of defects change and the delay 

time distribution is a Weibull. From Table 5.6, we can see that if A2 and the shape 

parameter of the Weibull distribution is close to 1, as in the case of an exponential 

distribution, maximum likelihood estimates recover the underlying process of 

methods A and B. However, in this case it is also difficult to find the downtime and 

inspection period error from the parameters estimated because the variation of 

parameters estimated is too large. In the downtime model, the optimum is more 

sensitive to the parameters estimated. 

In this PM modelling, PM data is important for most practical cases. When r< 
0.9, the estimation process is complicated because of a correlation between estimates 

of r and A. If PM data is not available, it is best to obtain a subjective estimation of 

either r or A and than proceed to use the maximum likelihood estimation (MLE) to 

obtain the remaining estimates. A similar case study for lack of PM data was carried 

out by Christer, Wang and Choi (1998) to model preventive maintenance (PM) 

practices of a complex machine used in commercial vehicle break lining 

manufacturing. And in this point of view, a case study of modelling option of 

practical maintenance plant for Tea Bag production machine will be present in 

Chapter 6 (see also Christer, Lee and Wang 1997). 
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For computing time using a Pentium-PC, as the number of parameters to estimate 

and the number of inspections increase, it requires more time to estimate parameters 

using the NAG library. Comparing with method A and B of computing time for 

estimating the parameters, method A required more time to calculate the equations 

(5.17) or (5.18) than method B (equations 5.35 or 5.36) since method A has more 

integration routines. For example, in the case that the number of parameters to 

estimate is 3, the computing process for method B using the NAG library took 

approximately Ihour using a Pentium-PC, but method A took more than twice this. 

Therefore, when we have better data giving a more exact time of failure, we may use 

method B, and save time. 

Under imperfect inspection policy, two methods give very similar results for with 

PM data. In contrast to method B, method A requires more computer running time 

because method A has a more integrated routine within the maximum likelihood 

function. However in the case that the only data available is the number of failures 

per working day, and PM data, we choose and may used method A to estimate the 

parameter from the observed data. Also if information is available giving exact times 

of failures and PM data, we would choose method B with no evident loss due to bias. 



Chapter 6 

A Case Study of Modelling Plant Maintenance for a Tea Bag 
Production Machine 

6.1 Introduction 

This Chapter describes a modelling study of preventive maintenance (PM) of 

production plant in a local company with a view to improving current practice. At 

the time of the study, a planned maintenance (PM) system was operated consisting of 

regular inspections with corrective actions as required. Of interest to management 

was whether or not the existing PM practice contributed to reducing downtime, and 

whether or not a more appropriate PM schedule was possible. To establish the 

relationship between PM and operating measures such as downtime, the delay time 

concept has been used. 

In delay time modelling, one of the important tasks is the estimation of the delay 

time parameters which are usually the rate of occurrence of defects, the distribution of 

the underlying delay time h of a defect, and the probability of identifying and 

removing a defect at PM. Two basic methods have been developed, namely, 

objective data methods where there is a sufficient valid data, and the subjective 

assessment method where objective data is scarce or even non-existent. Applied 

studies using the delay time concept within industrial situations have been reported in 

which the model parameters are estimated from the synthesis of subjective opinions of 

maintenance engineers, Christer & Waller (1984a, b), Chilcott & Christer (1991), and 
Desa (1995). A recent development in delay time modelling has established that 

these parameters can also be adequately estimated using objective data obtained from 
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maintenance records of failures and records of defects found at PM, Baker & Wang 

(1992,1993). For complex machinery with many components, some modelling has 

been carried out for actual plant using the delay time concept with objective 

estimation of parameters, Christer et A (1995), Christer and Wang (1995). They 

developed a model utilising both failure and PM data for parameter estimation. 

Here we report on the two studies of the same problem of modelling preventive 

maintenance. We have two objectives. One objective is to compare the model 
formats and parameter values resulting from the two parameter estimation methods, 

and the another objective is to consider the degree of consistency between the 

subsequent decision consequence of the two methods. Therefore we present first the 

study of an objective data based modelling of the tea-bag plant. This study attempts 

to use the objective estimation technique, but with failure data only as opposed to 

failure and PM data as in previously published cases. The model developed is based 

upon the delay time concept where because of an absence of PM data, the process 

parameters and the delay time distribution are estimated from failure data only using 

the method of maximum likelihood (see Chrster, Lee and Wang, 1997). Particular 

attention is paid to the problem arising during the parameter estimating process 
because of the inadequate recording of PM data and the implied correlation between 

model parameters. The case of data deficiency explored in the study is important 

because it is a relatively general situation in practice. An inspection model is finally 

proposed to identify the best inspection policy based upon the estimated model 

parameters and the delay time distribution. Next, the subjective data method is 

applied to the same problem, where the initial subjective estimates are obtained via a 

questionnaire survey. On the basis of the data analysis and delay time modelling, PM 

policy and procedures were proposed to increase the effectiveness and efficiency of 
PM. The two studies of the same problem provide a unique opportunity to compare 
the models formats and parameter values resulting from the two approaches, and to 

consider the degree of consistency between the subsequent decision consequence of 
the two methods. 
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6.2 The Production Plant and Maintenance Practice 

The Tea pack production plant consists of four main production lines, called P I, 

NI, N2 and N3. The PI line consists of the following three primary machines, tile 

IMA machine, the Marden Edwards and the Europack. NI, N2 and N3 Production 

lines also have similar types of machines. The first stage ofthe production process is 

the IMA machine which forms a continuous tea bag strip. Flere tea bao PZII)Cl- IIIIIS Oil 

a continuous belt with tea dropping onto the paper, and the strip cut and scaled into 

separate tea bags by the Marden Edwards machine. These bavs are shrink packed 

into boxes and wrapped by Europack machine. Finally, products are moved by a 

conveyor system to the storage depot. A flow chart of the production process 01' tile 

PII me is shown in Figure 6.1. 

IMA 

T,, tock 

Figure 6.1. A flowchart of the production process of a tea production line 

The company has two different planned preventive maintenance schedules, the fir. st 

operates every 5/6 week and lasts 8 hours, and the second, called the extended 

maintenance plan, is for the IMA machine only and runs every 3 month with 16 JJOLirs 

downtime. This additional attention is because the IMA machine is it more 

complicated high-speed machine. The PM plan of the production line is shown i Lý In 
Table 6.1 and includes routme maintenance and inspection. However, no record Is 
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kept of PM activity other than the date; information such as the number of defects 

identified and repaired is currently not recorded. This is not an uncommon 

observation, but imposes a problem in model parameter estimation, which will be 

discussed later. 

Lines Machine PM period PM downtime 

IMA 5/6 weekly 8 hours 

Pi 3 monthly 16 hours 

ME 5/6 weekly 8 hours 

Europack 5/6 weekly 8 hours 

Table 6.1. The PM plans of the PI production line 

6.3 The Maintenance Data 

Two sources of data are available from company records. One is a spreadsheet file 

which includes the downtime information per shift for each failure mode. This data 

set is available from 20th November 1995 to 30th October 1996. The other is a 

breakdown maintenance log which records the major breakdowns. This information 

is, however, included in the spread sheet data set. 

All stoppages per shift are recorded by the production line operator for the spread 

sheet file. This data includes the planned downtime, the routine production 

stoppages, and unexpected stoppages. This data is used to calculate the company's 

production efficiency. The plant operates 24 hours a day (three shifts), 5 days per 

week, with sometimes an extra 12 hours of production on Saturday or Sunday. 

In this study, we focus on the key machines in the PI line as a pilot study, since the 

other lines have the similar structure. 
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6.4 Data Analysis 

The failure data from the spreadsheet is available over an 11 month period. It 

consists of the failure mode, downtime periods during each hour of each shift, the date 

and the plant operator's name. Figures 6.2 and 6.3 below show the major failure areas 

of PI line. The detailed data can be found in Table 6.2. 
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Figure 6.2. Failure frequency of P1 line 
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Figure 6.3. Downtimes of P1 line 
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Component , Failure Modes Number of 
Failure 

Downtimes 
(Min) 

Average 
(Min) 

IMA Bad stacking 505 13513 26.76 
(2251) Cartons jam/former/over-load 411 3410 8.30 

Running on one paper reel 372 936 2.52 
Alignment problem 220 2368 10.76 
Starting up 219 1562 7.13 
Paper extraction 208 2033 9.77 
Pad/cutter cleaning 82 1678 20.46 
Filling gum 79 290 3.67 
Vacuum 51 1089 21.35 
T-plate broken 18 600 33.33 
Stacking light 18 176 9.78 
7entre knife 17 671 39.47 
rea in seams 17 160 9.41 
7arton light 11 135 12.27 
Zutter change 7 1835 262.14 
Fension roller 6 72 12.00 
Pusher plate broken 5 120 24.00 
Loli-pop stick bent 4 18 4.50 
Break on reel too tight 1 130 130.00 

PITps(31) Heater/light problem 31 1372 44.26 
Packaging Lids not inter-locking 227 1335 5.88 
(654) Paper reel snapping/not splicing 220 2535 11.52 

Paperjamming 98 973 9.93 
Poor cartons 96 966 10.06 
Waiting for materials 13 480 36.92 

Tea Tea feed/blockage/no tea 60 2741 45.68 
(83) Move tea 14 168 12.00 

Check magnets 9 59 6.56 
Weights(39) Re-calibrate check-weigher 39 424 10.87 
HE Boxes sticking together 224 1339 5.98 
(283) Cellophane alignment 23 442 19.22 

Lift/elevator jams 21 192 9.14 
Missing wraps 9 136 15.11 
ME stopping mid-cycle 6 110 18.33 

Europack Jamming 49 760 15.51 
(69) Not sealing/bad wraps 20 1124 56.20 
Stork(9) Conveyor 9 53 14.78 
Other Waiting for engineer 35 2453 70.09 
(243) No operator 19 1220 64.21 

Side plates 13 350 26.92 
oa en y 32 8.00 
thers 168 5160 30.71 

SUM 3662 55300 15.10 
(Data: 20/11/95 -30/10/96) 

Table 6.2. The number and downtime of failures of P1 line 
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The available data within the plant record include dates and numbers of each 
downtime occurrence due to both PM and failures. Each failure also incurs 

production downtimes. The plant operates 24 hours a day (three shifts), 5 days per 

week, with sometimes an extra 12 hours of production on Saturday or Sunday. 

The PMs are performed on three primary machines of a tea production line, namely 
IMA machine, the Marden Edwards and the Europack. PM work for these machines 

carried out every 5/6week and lasts 8 hours. For the IMA machine, additional PM is 

performed every 3 months with 16 hours downtime. The PM includes routine 

maintenance which involves adjustments or repairs if the defects found can be 

rectified within the PM downtime, and inspection of machinery. However, there is 

no record of PM activity undertaken available. 

The maintenance data of company includes the downtime information per shift for 

each failure mode. The failure mode of a component is defined as the effect by which 

a failure is observed. The failure modes are the effects of failure causes on the 

component function. Table 6.2 shows the number of failures, downtimes and average 
downtime for each failure mode. The high numbers of failures in the IMA machine 
due to Bad stacking, Cartons jam/former/over-load and Running on one paper reel are 

associated with this machine being a complicated high-speed machine. 

It can be seen from Figures 6.2 and 6.3 that the IMA plant causes the main 

problem. The total number of failures for the IMA over the data collection period is 

2251, with mean downtime per failure of 0.228 hours. Thus we observe the IMA 

machine accounts for 61.5 % of total breakdowns and 55.6 % of the total downtime 

for the production line. In the remainder of this paper, we concern ourselves with 
only the IMA machine of the PI line since most failures occurred on this machine. 
An alternative study based upon a study of failure mechanism is also possible. This 

would be part of engineering process to design out defects, also known as reliability 
growth. It is related directly to the notion and purpose of snap-shot modelling 
Christer and Whitelaw, 1983). It is also discussed in section 6.7. 
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Figures 6.4 and 6.5 show the average number of failures and downtime since the 

beginning of the data collection period of the IMA machine, see also Table 6.3 for 

details. The number of completed PM cycles is 10 over the data collection period. 
Table 6.3 is presented for the IMA data and Figures 6.6 and 6.7 are based from Table 

6.3. 
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Figure 6.4. Trend analysis for IMA failure data since the start of PM 
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Figure 6.5. Trend analysis for IMA downtime data since the start of PM 
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A t- test accepts the hypothesis that the failure occurrence rate per week is constant 

from the data of Figure 6.4. The same is true for the data of Figure 6.5. These 

findings are important since a constant defect affival rate can be assumed in the 

subsequent modelling process. 

Days 
since the 
last PM 

Total 
number of 

failures 

Sample 
size 

Average 
number 
of failure 

Average 
downtimes 

(Hours) 

Days 
sincethe 
last PM 

Total no. 
of 

failures 

Sample 
size 

Average 
no. of 
failure 

Average 
downtimes 

(Hours) 
1 84 8.40 3.02 19 73 7 10.43 0.97 
2 95 10 9.50 2.83 20 63 6 10.50 1.79 
3 112 10 11.20 2.45 21 92 6 15.33 2.06 
4 101 10 10.10 2.37 22 64 5 12.80 2.06 
5 72 10 7.2 1.90 23 14 3 4.67 1.09 
6 130 10 13.0 2.29 24 28 3 9.33 3.86 
7 80 10 8.00 1.46 25 7 2 3.50 1.07 
8 115 10 11.50 1.65 26 17 2 8.50 1.00 
9 115 10 11.50 1.75 27 13 2 6.50 1.63 
10 104 10 10.40 1.59 28 13 2 6.50 1.75 
11 74 10 7.40 2.31 29 4 2 2.00 2.50 
12 119 10 11.90 1.97 30 8 2 4.00 6.25 
13 80 10 8.00 2.00 31 14 2 7.00 7.83 
14 79 10 7.90 3.23 32 11 2 5.50 0.63 
15 87 10 8.70 2.53 33 2 1 2.00 0.42 
16 ill 9 12.33 1.84 34 7 1 7.00 6.42 
17 69 8 8.63 1.84 35 11 1 11.00 2.67 
18 60 8 7.50 1.85 36 5 1 5.00 0.83 

Table 6.3. The average number and downtimes of failures since the last PM 

We wish to investigate whether or not the 5/6 weekly PM has any effects in 

reducing failures. Given effective PM, it is expected that the number of failures per 

day would have an increasing trend following the last PM. An indication of the 

effectiveness of PM for the IMA machine is shown in Figures 6.6 and 6.7. It can be 

seen that the number of failures of the IMA machine increases slightly, but the 

average downtimes decrease since the last PM. It would, however, not be correct to 

imply from these figures that the PM performed for the IMA might be effective in 

reducing the number of failures, but not in reducing the downtime due to failures. An 

evident trend line is exaggerated by scale, and the trend in Figures 6.6 and 6.7 are 

actually very weak, which suggests that PM might be imperfect in that some defects 

present are not recognised and cause subsequent failures. A mest also accepts the 
hypothesis that the average number of failures per day and average downtimes per day 
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since the last PM of the IMA machine are both constant and, as in the case of Figures 

6.4 and 6.5, the trend lines of Figures 6.6 and 6.7 may be assumed to have zero slope. 
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Figure 6.6. The effectiveness of PM for the IMA (Number of failure) 
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6.5 The Objective Parameter Estimation 

6.5.1 General model assumptions 

The first objective of this study is to build a statistical model describing the 

operating process under which the data was recorded, which is used to estimate the 

parameters of the delay time model, e. g. the fault arrival process and the delay time 

distribution. Having a delay time model for the process by which defects and failures 

arise, a maintenance model for decision-making may be constructed. Based upon the 

data analysis and previous experience, the following assumptions are proposed for the 

estimation model. 

(a) Defects arise as a homogeneous Poisson process (HPP), and the instantaneous 

rate of occurrence of defects (ROCOD), at time u, is X. In general, as a complex 

machine ages, a nonhomogeneous Poisson process (NHPP) is believed to be a 

good approximation to the fault-arrival process for a complex machine. 
However, in a simpler context, Barlow & Proschan (1965) proved that, for a 
complex machine with negligible repair times, the failure process does indeed in 

the limit follow a homogeneous Poisson process (HPP). This is supported by 

Figures 6.4 and 6.5. The concept of ROCOD is assumed in chapter 4. 

(b) Defects are assumed to arise independently of each other. 
(c) The delay time of a failure is independent of its origin and has pdf. J(h) and cdf. 

F(h). Assumption (b) and (c) are common in delay time modelling since they 

greatly simplify the modelling work and have been validated by real-world 

observations. 
(d) Inspections carried out at PM are assumed to be imperfect in that a defect 

present can only be identified with a probability r. Also, the probability of 
detection of a defect is independent of the number of times it may have been 

previously inspected and not detected. Assumption (d) recognises that 
inspection work during PM might be imperfect. The simpler assumption of 
perfect inspection is likely inconsistent with the observation of a more or less 

constant failure rate after PM. 
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(e) All identified faults are rectified by repairs or replacements during the time of 
the PM. 

(f) Failures are identified immediately, and repairs or replacements are made as soon 

as possible. Assumptions (e) and (f) embody the maintenance practice currently 

adopted. 

6.5.2 Likelihood formulation 

It is assumed for the moment that observations of the number and downtime of 
failures, and of the number of defects identified and removed at PM are available. 
We define the notation for modelling the likelihood of this data. 

Let 

?,: the rate of occurrence of defects within the system. 
h: the delay time of a fault with pdfj(*) and cdf F(41). 

r: the probability of detecting a defect at PM, if it is present. 

tj : time of the ith PM ftom new, i=1,2, ..., n, 

t: failure time from new. 

At :A time period to be defined. 

ENýt, I+At) : the mean number of failures over Q, t+At). 

ENP(tn) : the mean number of defects identified and removed at tn. 
P(t, I+At i u) : the probability of a failure in Q, t+At) resulting from a defect 

arising at time u. 
In the above notion, we assume t,,., < t: 5 t,,. 

Consider the probability of a failure over Q, t+At) resulting from a defect arising at 
time u, u: 5 t+ At, that is, P(t, t+At i u). The defect could have arisen since the last 
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inspection, t, or during several inspection periods before, but not have been detected, 

see Figure 6.8. 

ti-I ti tn-I t t+At tn 

Figure 6.8. The failure process of a defect arising in (ti. 1, tj ) 

We have, Christer and Wang (1995), that 

(I - r)"-'[F(t + At - u) - F(t - u)] 

P(t, t+ At I U)ý 
F(t + At - u) - F(t - u) 
Rt + At - u) 
0 

<u< ti; i (=- I 1,... n -II 
<u<t 

t <u < t+At 
u> t+ At. 

The mean number of failures over (t, t+At), for t,, -, < t: 5 t.,, is, therefore, given by 

R ENf (t, t+ At) (I - r)"-A [F(t + At - u) - F(t - u)]du 

+Af [F(t+At-u)-F(t-u)ldu 
,. -I 

+Af +At F(t + At - u)du. (6.2) 

Changing the variable of integration and rearranging the sequence, after some 

manipulation we have for the expected number of failures over period (t, t+ At), (see 

equation (3.38)), 
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ENf (t, t+ At) 
-1) - 

F(x - ti)ldx + Af F(x - t. 

(6.3) 

In a similar way, it is seen that the expected number of failures found at PM time 

t,,, ENp(t,, ), (see equation (3.39)), is 

"-I t 
ENP(t. )=E(I-r)"-'rAf' [1-F(t,, -u)ldu +rAf"' [1-F(t,, -u)]du, (6.4) 

see also Christer and Wang (1995). Since defects are assumed to arise according to a 
Poisson process, as a generalization of Proposition 3.3.2 in Ross (1983), the number 

of failures in (ý t+At) also follows a Poisson process, Christer and Wang (1995). 

Therefore, the probability of m failures over Q, t+ At), where t,, -, <t :5t,, is given 
by, (see equation (3.40)), 

P(m failures in Q, t +At)) = 
[ENf (t, t+At)]'e -ENI (t, t+&) 

(6.5) 
M! 

It can be shown, Christer and Wang (1985), that the number of defects identified 

and removed at PM also follows a Poisson distribution, and we have, see also 

equation (3.41), 

P(n defects identified and removed at tn 
[ENP(t,, )I'e 

(6.6) 
n! 

If the observed events are the number of failures in each working day and the 

number of defects identified at PM times, the likelihood function of the observed 
events may be formulated in the following way. Suppose that ni defects have been 

observed at the ith PM time (n = 1,2, ... ' 0, and the PM interval (t,, 
_,, t, 

) is now 
divided into k non-overlapping subintervals of equal length At, as I day, namely, 
(see equation (3.42)), 
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P=[t +(j-l)At, t,, +jAtl, (j=l,..., k), (6.7) i &- 

where t, -, + kAt = t,. 

It follows from equation (6.3) that the mean number of failures occurring in Ij" 

over ( t,, -,, t,, 
), is, (see also equation (5.13)), 

R-1 

ENf (Ij") r) [F(x - ti-1) - F(x - ti)]dx 

t I+jAt (6.8) 

Now, let m,, j denote the number of failures occurring in I, " over (t,, -,, 
t,, ) and m,. 

denote the defects identified and removed at t, we have from equations (6.5) and 
(6.6) that, (see equations (5.14) and (5.15)), 

R m,, jfailures in Ij' 
[ENf (Ii I )l m" e (6.9) 

mmi! 

and 

P( m, defects identified and removed at t. 
[ENP (t. )]'- e-FN, '(I') 

(6.10) 
M.! 

The likelihood function for these observations is, therefore, 

Ik 
L= rl (P(m. defects identified and removed at QI-I P(m,, j failures in Ij")). (6.11) 

R=1 j=1 

Substituting from equations (6.9) and (6.10) into equation (6.11), and taking the 
logarithm, we have that, (see equation (5.17)), 
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log L= 1[m. log ENP(t,, )-ENP(t,, )- log m,,! ] 
R=1 

Ik 
+ 1: 

,I 
[m,, j log ENf (I; ) - ENf (I; ) - log m,, j! ], (6.12) 

R=I j=1 

where 1 is the number of PMs. In the case where PM data are not exists, the log 

likelihood function (6.12) reduces to, (see equation (5-18)), 

Ik 
LogL=y (6.13) [m,, j log ENf (P) - ENf (P) - log m,, j! ] 

R=I j=1 

6.5.3 Results of the Model Fit 

In this study, we seek to fit to a model to the data from the IMA plant. Possible 

models for J(. ) could be exponential or mixed delta-exponential, or Weibull or a 

mixed delta-Weibull distribution. In this study, we consider 4 models for the delay 

time distribution, that is (1) exponential, (2) mixed delta-exponential, (3) Weibull, (4) 

mixed delta-Weibull. The reason to choose a mixed delta distribution is the 

possibility that some defects may have a zero delay time, whilst other defects have a 

stochastic delay time. This situation may be modelled by the mixed delay time 

distribution with a pdf given by (I-P)f(h) + P4h), where J(h) is the pdf of the non 

identically zero delay time h, 6(h) is the Dirac delta function, and P is the 

proportion of defects that have zero delay time. 

However, we have a problem when fitting the likelihood formulation to the data. 

Since PM data is not available, the likelihood function does not converge for 3 out of 
4 of the targeted distributions, namely, the exponential, the mixed delta-exponential 

and the Weibull. The reason for this is the strong correlation between model 

parameters when PM data is not available, particularly between r and the rest of 
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parameters. The problem may be solved by fixing r at an appropriate level and 

maximising the likelihood function in terms of the other parameters. This shifts the 

problem to deciding the value of r, which is usually done using a subjective survey 

technique. Here, we adopt the one value of r that was obtainable from the 

likelihood function in the one case that it converged, namely, r= 0.071. Thisseemed 

very low to the authors, but we accept it for now and return to it later. 

In maximum log likelihood estimation, the goodness of fit of values of parameters 

of a specific model may be measured by the expected log likelihood, namely, the 

larger the expected log likelihood, the better is the fit of model of parameters. The 

log likelihood is usually regarded as an estimator of expected log likelihood. The 

parameters set that maximizes the likelihood is not necessarily the best fit to the data, 

since the more parameters one has, the lager the likelihood function can become. 

Because of this, the choice of the distribution from a family of plausible distributions 

for h is made using the criterion of minimum Akaike Information Criterion (AIC), 

Baker and Wang (1992). AIC is derived under the assumption that the true 

distribution can be described by the given model when its parameters are suitably 

adjusted. A model which minimises the AIC is considered to be the most appropriate 

model. 

AIC =- 2x( maximum log likelihood of the model) 
2x( number offree parameters of the model) 

Although the value of the AIC may be the lowest of the options considered, if the 

chi-squared test for a goodness of fit is not acceptable at some significance level, the 

chosen model may be invalid. For this reason we also need to consider the chi- 

squared goodness of fit test, which is given by 

--2 (ni ni) Z2 (6.14) 

where the range of data is divided into k suitable classes, ni is the number of the 

events in the ith class, and fi, is the expected number of events in the ith class 
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calculated from the fitted model. If NýIj) denotes the observed number of failures in 

thejth class, using equation (6.14), the chi-squared test statistic in our case is simply 

(Nf (Ij) - ENf (Ij))2 

ENf (Ij) 
(6.15) 

and the number of degrees of freedom is k-v, where v is the number of model 

parameters. 

Given r=0.07 1, Table 6.4 shows the fitted values of parameters, their AIC values 

and the results of chi-squared test statistic. From Table 6.4, exponential distribution 

is selected as having the lowest AIC and X2 statistic. From Table 6.4, we see for the 

chosen exponential distribution that the mean delay time is 0.55 day and the arrival 

rate of defects is 9.5 per day. 

Table 6.4. Models and fitted values of parameters based upon IMA machine 
data 

Models Exponential Mixed delta- Weibull Mixed delta- 
Distribution Exponential Distribution Weibull 

A 

ROCOD (A) 9.518 9.745 9.535 9.853 

Scale (a) 1.816 1.816 6.981 1.223 

Shape 1.482 15.326 
A 

P 0.023 0.032 

r 0.071 0.071 0.071 0.071 

Maximum 
Log likelihood -1118.138 -1118.138 -1119.995 -1116.282* 

11 2.135* 3.790 2.226 5.098 
AIC 1 2240.276* 2242.276 2245.990 2242.564 

Notes :P is the proportion of identically zero delay times, ROCOD is the rate of occurrence of 
defects, r is the probability a defect is identified and rectified at PM, '*'denote the optimal choice 
for the criterion. 

Using equation (6.15) with the model parameters from the exponential distribution of 
Table 6.4, we compare the observation data of the number of failures of the IMA with 
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the model predictions, see Figure 6.9. To check the validity of this fit, we compare 

the chi-squared test statistic with the critical value of the chi-squared distribution 

X2 Z(2 2 table. Since the critical value, ( 0.05.3)) is 7.815, we can conclude with X 

2.135 that the model fit is acceptable. 
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Figure 6.9. Histogram of failures for INIA 

6.5.4 The PAI model and Results 

Based on an acceptable model for the failure and PM process of the IMA, a PM 

model of the maintenance practice of the machine can be established. We model the 

downtime since the major concern of the company is to reduce the downtime caused 
by failures and PM activities. The conventional downtime measure is the expected 
downtime per unit time over a long period. The key issue in the model is the 

expected number of failures over different PM cycles, which is given in equation (6.1) 
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If df denotes the mean downtime per failure and dp denotes the mean duration of 

PM activity, it follows that the long term measure of the expected downtime per unit 

time, ED (7), is 

ED(T) = 
df ENf (T) + dp 

. 
(6.16) 

T 

Using the fitted model parameters of Table 6.4, we obtain the result of the model 

output shown in Figure 6.10. 
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Figure 6.10. Expected downtime against PM cycle length 

It should be noted that not all 8 hours PM time is dedicated to the inspection of the 

IMA plant, which may only occupy a small portion of the total PM time. For this 

reason, we set dp = 1,4 and 8 hours in Figure 6.10, which also indicates the observed 
downtime level of current practice. This is very close for the various cases. It can be 

seen from Figure 6.10 that there is no indication of any inspection element of periodic 
PM being beneficial to the IMA concerned if the PM inspection downtimes are 1,4 or 
8 hours. This suggests strongly that the current PM policy for IMA may not be 
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appropriate and an alternatively way needs to be found to reduce downtime due to 

failures. 

Discussion with engineers revealed that one of the reasons that PM is not as good 

as expected is the lack of proper inspection at PM, which is reflected by the low value 

of r. If the inspection element of PM is enhanced, or the efficiency of inspection is 

increased to r=0.85, say, an optimal PM cycle length may exists when dp = lhour, 

see Figure 6.11, but with very modest returns over a breakdown system. Figure6.11 

shows that if r=0.85, the optimal PM cycle length is 3.3 days with the expected total 

downtime of 2.166 hours per day and for r=0.9, the optimal PM interval is 2.3 days 

with the expected total downtime of 2.144 hours per day. 
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Figure 6.11. Expected downtime when r is 0.85,0.9 and 1.0 

If we assume PM inspection is perfect, namely r=1, the optimal PM cycle length is 

1.8 days and the expected total downtime per day is 2.087 hours. It is noted that as 
the quality of PM inspection level is increase, the expected total downtime per day 

may decrease. However, the point here is that since the delay time has a small mean 

value, 0.5 days, the inspection quality measure, r, is not a sensitive parameter in the 
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downtime model. To reduce downtime further may require a snap-shot type of 

surveys, Christer and Whitelaw (1983), to identify the nature of causes of fault, and 

whether or not engineer solutions such as re-design, or maintenance solutions such as 

an improved and deeper inspection, can reduce downtime. A snapshot approach can 

assist with and inform all of these developments. This type of survey is discussed in 

the subsequent section 6.7. 

6.6 The Subjective Parameter Estimation 

6.6.1 The parameter estimation of delay time from subjective data 

So far, the objective method for parameter estimation has been used. In the 

current case, although there have been plant inspections, there is no record of 

maintenance activities and defects found at PM. Therefore, the subjective method in 

delay time estimation might be appropriate. The subjective method using subjective 

opinions of experts in the estimation of delay time parameters has been developed by 

Christer and Waller (1984a, b). The approach used is based upon the analysis of 
historic data of failures and the delay time concept where the distribution of the delay 

time was estimated from the subjective data obtained from the expert. Wang (1997) 

proposed a revised method for obtaining the subjective delay time estimate. Wang 

attempts to measure directly the distribution of delay time, as opposed to using a 
process of synthesis of numerous individual estimates. Here we use the survey 
methodology which used in Wang (1997). The maintenance engineer performs 
regularly the preventive maintenance for the three major components, namely IMA, 
ME and Europack. At the time of study, the IMA component only was selected for 
detailed study in this case study. 
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Figure 6.12. Failure statistic of IMA at P1 Line 

One of maintenance engineers responsible for the plant was chosen as our expert to 

provide subjective estimates. With the help of the chosen expert to augment existing 
data, delay time estimates and estimates of failure types were obtained, see Figure 

6.12 and Figure 6.13. 
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Figure 6.13. Histogram of the delay time distributions of failure types 
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It is noted that 9 of the failure types shown in Figure 6.12 are in the category of the 

zero delay time and, as suggested by the expert can not be identified at any inspection. 

They are, therefore, are not shown in Figure 6.13. 

However, as the delay time estimates were obtained on the basis of component 

units, it is necessary to combine these to obtain the delay time distribution for all 
failures of machine. For a combined delay time distribution, 

Let 

N denote the number of dominant failure types. 

dij denote the subjectively estimated number of delay times in ith interval 

specified for failure type j, i=1, ..., m and j=1, ..., N( see Table 6.5). 

wj denote the weighted values of failure type i. 

If the estimate of the number of the delay times over each interval in the required 
histogram of the delay time distribution is available, it follows that the combined 

estimate of the number of the delay times in the ith interval for all failure types 

within the system is given by 

N 

(6.17) ndi= wjdj 
j=1 

where w, 
Number of failures for failure type j 

Total number of failure 

Therefore, a combined delay time distribution of all failure types is obtained by using 
the equation (6.17), see Figure 6.13. 
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Table 6.5. The subjectively estimated number of delay times 

Failure types Number of 
failures 

Weighted 
values (w) 

0 
week 

0-1 
week 

1-4 
week 

4-8 
week 

Over 8 
week 

Bad Stacking 505 0.383 70 20 10 0 0 
Carton j am/former 411 0.312 0 60 25 13 2 
Alignment problem 220 0.167 80 5 15 0 0 
Filling gum 79 0.060 75 15 10 0 0 
Vacuum 51 0.039 80 10 10 0 0 
Tea in seams 17 0.013 0 15 70 15 0 
Center knife 17 0.013 10 80 10 0 0 
Cutter 7 0.005 20 80 0 0 0 
Tension rollers 6 0.005 20 70 10 0 0 
Pusher plate broken 5 1 0.004 1 90 15 15 0 0 
Total 1318 1 1.000 1 1 1 1 

For a fitted distribution of the delay time of failures given the data in Figure 6.12, a 

chi-squared test method has been used to achieve the best fit. The chi-squared test 

statistic used here, (see also equation (6.14)), is 

.2 (nj -nj) 

j=l nj 
(6.18) 

where N is the total number of classes in the histogram in Figure 6.14, nj is the 

estimated number of the delay times in the jth classes of the histogram in Figure 6.13 

or 6.14, and Aj is the calculated number of the delay times in the jth classes from the 

fitted delay time distribution. 

Minimising equation (6.18) in terms of unknown parameters in fitted delay time 

distribution will give the estimated values of these parameters. From the Figure 6.14 

it is obvious that the chosen delay time distribution should be a mixed distribution 

with parameter P representing the probability of the delay time concentrating at zero 

and (I - P)G(h) denoting the remaining part of the continuous delay time 

distribution where h denotes the random variables of the delay time. 
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Figure 6.14. Histogram of the delay time distributions of all failure types 

The parameter values of the delay time distribution and associated values of 

equation (6.18) are shown in Table 6.6. From the shape of the histogram in Figure 

6.14, G(h) is chosen to be exponential since exponential distribution has a better Chi- 

squared result. Thus the complete distribution for the delay time is as follows: 

G(h) =I- (I - P)e-', 

where a denotes the scale parameter of the exponential distribution and P is the 

proportion of failures with the zero delay time. In the case of failure data only, the 

estimated parameter of G(h) is obtained by minimising equation (6.18) namely 
0.0954. Figure 6.14 also indicates the number of the delay times in each class of the 
histogram calculated from the fitted delay time distribution. Both theoretically and 

visually the fit is acceptable with X2=3.9209. 

In order to complete parameter estimates of the delay time model, it is necessary to 
determine the rate of occurrence of defects (ROCOD), and establish the probability r 
of detecting a defect at a PM. If the process is in a steady state, the ROCOD can be 

estimated by A=NIt, where N is the total number of failures and defects collected 
by a survey methodology which used in Wang (1997) and t is the time length of the 

survey. In this case A= 2251/ 239 = 9.418 per day. The probability of detecting a 
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defect at a PM can also be obtained by asking the maintenance engineers to estimate a 
A 

mean figure. In discussion with the engineer in the company, r=0.02 was 

considered an appropriate figure. Table 6.6 shows the estimated parameter values, 

which completes the determination of parameters of the delay time model from 

subjective data. 

rp 
9.418 0.0954 0.02 0.484 

Table 6.6. Values of estimated parameters 

6.6.2 The PM model and results 

We also use the equation (6.16) for PM modelling in the subjective assessment 

case. To establish the relationship between the PM interval and total downtime, we 

assume that defects arise from a homogeneous Poisson process, with an imperfect 

inspection at PM. Again, df denotes the mean downtime per failure and dp denotes 

the mean duration of PM activity, it follows that the long-term measure of the 

expected total downtime per unit time, ED (7), (see equation (6.20), is 

ED(T) = 
df ENf (T) + dp 

T 
(6.20) 

where ENj(7) denotes the expected number of failures over T. It is known that if 

the initial defect origination process is a Poisson process, the failure process caused by 

these defects also follows a Poisson process (Christer et al. (1995) and Ross (1983)). 

Therefore now, let tj denote the time of the ith PM from now, we have T= tj - ti., 
for i=1,2, ... , n. We assume that the system is in a steady state since it has gone 
through n PMs where n >> 1. Supposing a defect arise in (ti-1, ti) and cause a failure 
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in (t,, -,, t,, ) for n>i, we must have that it has a delay time t,, -, - tj <h<t. - ti-I and 

that it is not identified at the jth PM for j=i, i+I,... ' n-1. Then, the expected 

number of failures in (t,, -,, t, ) 
from a defect in (ti-1, ti) is given by 

u)du. (6.2 1) ENf Q. u) - F(t,, 
-, - u))du + F(tn - 

Also, since the delay time follows a mixed delta-exponential distribution, equation 

(6.19), the expected number of failures over a PM cycle can be obtained as follow. 

Letting n --> - in equation (6.21), we may sum the resultant geometric series of 

equation (6.21) over n. In this case, the expected number of failures over (t, -I, t') 
is 

given by, 

&r (e - 1)(P - 1) 
ENf (T) 

d(eff -I+P) 
+ AT. (6.22) 

With the fitted delay time distribution obtained in the subsection section 6.6.1 and 

the average downtime per failure, df = 0.228 hours from Table 6.2, here we now 

assume that the average downtime per PM, dp, is (based on the Table 6.1), 8 hours. 

Figure 6.15 shows the result from the downtime per unit time equation (6.20). 

From Figure 6.15, we note the result is consistent with the objective parameter 

estimation method, namely that the subjective parameter estimation method also 

shows that there is no indication of any period for the current PM system which would 

be beneficial to the plants concerned if the PM requires 8 hours. This argument is 

important since it shows that inspection is not invariably appropriate to all machines. 
In fact, we would expect this finding in our case since almost half of the total failure 

types have no delay time, and the remainder has a relatively short delay time, see 
Figure 6.14. This would indicate that the current inspection programme is unlikely to 
be useful to the IMA. 
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Figure 6.15. Expected downtime against PM cycle length 

However, the true conclusion depends very much upon the downtimes associated 

with failures and PM, the parameter values of A and the delay time distribution. 

Figure 6.15 also shows that the expected downtime per unit time when the downtime 

due to PM is dp = 1,4 and 8 hours, and indicates the observed downtime level of 

current practice. In respect to the current PM practice, this result which is Figure 

6.15 giving the expected downtime against PM cycle length is very close to the results 

obtained from objective method, Figure 6.10, and the same conclusions follow. As 

before, in this case if the inspection element of PM is enhanced, or the efficiency of 

inspection is increased to r=0.85, say, an optimal PM cycle length may exists even 

when dp = 8hours. Figure 6.16 shows that when dp = Ihour and if r=0.85, the 

optimal PM cycle length is 5 days with the expected total downtime of 1.5214 hours 

per day and for r=0.9, the optimal PM interval is also 5 days with the expected total 

downtime of 1.5017 hours per day. Again, if we assume PM inspection is perfect, 

namely r=1, the optimal PM cycle length is 5 days and the expected total downtime 

per day is 1.4661 hours. It is noted that for increasing quality of inspection, the 

expected total downtime per day can decrease. As already mentioned in the 

subsection 6.5.4, we need to find an alternative way of inspection which occupies 
little production downtime, but which is powerful enough to detect more defect if they 
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exists. Although the current PM inspection is ineffective, an alternative inspection 

practice might be effective, and one-off design modification might significantly 
influence the parameter X. This possibility needs to be considered. 
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Figure 6.16. Expected downtime against PM cycle when r=0.85,0.9 and 1.0 

6.7 The Snap-shot Survey and Analysis 

In previous sections, using the objective and subjective parameter estimation 

methods, values of parameters have been estimated, and the results of PM models 
have been shown. As a consequence of the PM model, it was seen that the current 
PM policy is not an effective choice. Therefore we need to find an alternative way 
for reducing production downtime. In this study, we use the snap-shop survey 
technique to diagnosis the problem. 

In general, to determine the causes of the problem, the analysis of the problem's 
causes can be at structural or functional level (Wagner, 1993). What caused a 
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machine to jam in operation, for instance, may be explained at structural level as 'the 

operator was not alert with the warning light on the panel instrument. However, at 
functional level where a more detail understanding of the system's behaviour is 

required, there may be a causal explanation, namely not enough oil in the lubrication 

system due to an oil leak. Consequently, depending on the level of causal analysis, 
different solution strategies may be generated. 

In delay time modelling, a snap-shot approach has first used by Christer and 

Whitelaw (1983), to identify the nature of causes of fault, and whether or not engineer 

solutions such as re-design, or maintenance solutions such as an improved and deeper 

inspection, can reduce downtime. Desa (1995) also used a snap-shot modelling 

technique to assist the process of recognizing the nature of the actual maintenance 

problems of a bus company. 

A similar approach, which is called 'critical analysis technique', is described by 

Corder (1976). Applying this technique, analyses are carried out based on plant 

history records to determine the plants or areas within the plants, which are critical in 

terms of fault or failure rate, maintenance labour, maintenance costs and or downtime. 

The results from such analysis define the actual problem and lead to engineering 

actions such as to review the inspection schedule, the quality of work, or perhaps to 

design-out defect through plant design changes. 

Brombacher et. al. (1996) discuss the Maturity Index on Reliability (MIR) which 

reflects the capability of an organization on managing reliability. The MIR level of 

an organization is analyzed by analyzing the relevant reliability information flows in 

an orgatization. The MIR concept uses four MIR levels, which are quantification, 
identification, cause and improvement, to describe the (increasing) learning capability 
to not only detect reliability problems but also to resolve these problems for current 

and future products. In this paper, they present that existing, component based, 

analysis techniques show a very low correlation with the actual reliability as observed 
during the lifecycle of this product. They also note that MIR technique can analyse 
the deployment of reliability information in, for the lifecycle of the product relevant, 
business processes. 

188 



Christer and Whitelaw (1983) suggested the data or information need to be 

collected over a certain period of time via a specifically designed survey form. That 

is, (a) causes of fault: This could be attributed to operator error, poor maintenance, 

wear and ageing, etc. Data of this type could be used to establish the nature of the 

source of the problem within the plant; (b) consequences of fault: Data of this type 

may included the time lost or the downtime due to waiting for repair crews or 

collecting spares, and the repair itself, and also the cost incurred. This data could be 

used in identifying the factors that constitute the downtime and the cost; and (c) 

means of prevention: It may be possible to identify the viable means or procedures for 

preventing or delaying the fault or failure from recurring. Such procedures could be 

some form of preventive maintenance or replacement, redesigning or operator 

training. 

From the results of the previous sections 6.5 and 6.6 we know that there is a 

potential scope for improvement of the regular PMs. Since the current PM practice is 

not appropriate for the IMA machine, it is necessary to find an alternative way for 

reducing production downtime. As a supplement to the previous modelling analysis, 

we seek the opinions of the engineers who run the plant as to what the causes of 
failures are and their influence upon the downtime model through its parameter 

values. It is of interest to know the consequences to the downtime model if some of 

the model parameters are changed. 

On the basis of the failure mode analysis conducted in section 6.5, we ask a 

maintenance engineer his opinion on engineering and maintenance features of specific 

types of failure within IMA machines. We have four basic questions on each of the 
failure types in Figure 6.12. The questions are (a) failure category, for example, 

whether they are mechanical or electrical failure, (b) causes of failures, (c) nature of 
rectification of failures, and (d) means of prevention of failures. 
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In order to investigate the failures and downtime influence upon the production 
loss of IMA machine, the results from the survey are presented in graphical forms as 
Figures 6.17 to 6.20 for IMA machine. 
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Figure 6.17. Failure category for IMA machine 
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Figure 6.18. Causes of failures and downtimes for IMA machine 
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Based on the subjective assessments, Figure 6.17 shows an analysis of failures 

classified as mechanical or electrical in nature. The dark areas correspond to the 

analysis of number of failures and the light areas represent to the analysis of downtime 

for IMA machine. From Figure 6.17, we can see that about 60 % of failures or 
downtimes are mechanical, while electrical problems only account for less than 10%. 

Also from Figure 6.18, it can be seen from the subjective assessments that 

dirt/foreign bodies the top cause of failures and occupy a lot of downtimes. If the 

objective is to reduce the number of failures, then the indications are that some form 

of mechanical preventive maintenance cleaning for dirty area and setting components 

should be considered a first measure. Although, in this case study we pay particular 

attention to reducing failure downtimes, it is virtually the same as reducing the 

number of failures. 

Of the causes of failure listed in Figure 6.18, some causes, for example 

dirty/foreign body and setting incorrect, could have been observed prior to failure. 

Wearing/ageing for this machine, periodic preventive replacement of component may 

provide the potential for removing about 20 % of the total downtime for IMA. These 

major causes which are wear/ageing, setting incorrect and dirty/foreign body may 

consider as a non-homogeneous Poisson process for the defect arrival. And the 
defect arrival mechanism for each of the three/four most frequently occurring failure 

is unlikely to be HPP. However, the superposition of all these failure processes 

within a repairable complex plant may well be modelled be a HPP arrival rate. 

Figure 6.19 shows that 33 % of total failure present are not fully fixed, that is 67 % 

of total failures are fully fixed, which implies imperfect repair exist. Figure 6.20 

illustrates the potential means for the prevention of failures. It shows that 'some form 

of PM' and 'material' have the greatest potential to prevent downtime, namely, over 
50 %. If some form of PM and material quality can be improved, the rate of fault 

arrival will be reduced significantly. 

191 



60 

45 

30 

is 

0 

Figure 6.19. Nature of the rectification of faflures for IMA machine 

Means of prevension 

can't be prevented 

Other items 

improve repair 

preventive replacement 

modify operatorpract 

improve inspection 

re-designing 

Material 

PU of someform 

r-l 
Downtimes 
M 

Number offastures 

05 10 15 20 25 30 
M 
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Here we consider the resulting downtime per day if, where possible, failures are 

removed by some form of PM and by improving material quality, which would result 
in the order of a 53% reduction in fault arrival rate as indicated in Figure 6.20. 
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By adjusting model parameters appropriately, the consequence of such some form 

of PM and improving material quality is readily calculated and is shown in Figure 

6.21. Here the original model represents as before shown as Figure 6.15 when dp = 
8hour. The gain from these actions is obvious, but how to achieve it may not be 

straightforward. And it is noted that these exploratory investigations and resulting 

quantitative estimates become possible because of the existence of a maintenance 

model for IMA machine. Such a model is essential if improvements and 
developments in plant management and performance are themselves to be managed on 

a rational cost benefit basis. 
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6.8 Discussion and Conclusions 

The study reported here is a pilot study for the plant which needs further 

refinement and extension to include all the components. However, it shows the 
importance of OR modelling in aid of maintenance decision making. The problem 

addressed here has generality since incomplete data, particularly lack of PM data, is a 

common problem in industry. 

In this study the objective method and the subjective method of parameter 

estimation are used. First of all, based upon the estimated delay time distribution 

from objective data, a PM model has been established to give the recommended PM 

interval if it is applicable. It is reassuring to note how good the model fit is to current 

practice. This is a standard check to be expected of any modelling exercise. 
However, the model shows that the inspection element of PM does not contribute to 

the plant concerned, since the total downtime cause by failures and PM is higher than 

that to be expected from a breakdown only maintenance policy. Two of the reasons 
for this may be attributable to the fact that the mean delay time is small (about 1/2 

day), and the fact that the manual PM occupies a relatively long production downtime. 

However, the model also shows that if the PM can identify the defects with little 

downtime, a finite optimal PM policy may exist. In particular, the model shows that 

the current probability value of a defect being identified at PM is 7 %, which is rather 
low, and clearly suggests that the current inspection may not be useful for the IMA 

machine. 

Secondly, based upon the estimated delay time distribution from subjective data, a 
PM model has also been established to give the recommended PM interval if it is 

applicable. In this case, the results of the PM model are consistent with these of the 
objective estimation method, see Figures 6.10 and 6.14. Consequently, current PM 

practice for IMA machine in this plant is not effective. Therefore, it could be that the 
wrong types of elements are being inspected, or perhaps the wrong type of inspection 

technique is being applied. Since the mean delay time is short and most failures are 
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recurrent ones, designing out weak points in troublesome components units might also 
be an appropriate option. Eitherway, engineering attention is required and the snap- 

shot model suggested by Christer and Whitelaw (1983) can be considered to highlight 

the true nature of problems to be addressed, and to inform and aid engineering choice. 
Suffice it to say, with the current maintenance practice, the indications are that the 

plant is being over maintained. 

Thus, in this respect, we have the snap-shot survey from the company. From the 

snap-shot survey, it is estimated that more than 60 % of the downtime is preventable 
by attention to 'some form of PM', 'material' and 'redesign'. Returning to the plant 

after the survey to discuss progress revealed that the company had replaced the 

material, which is tea pack paper, to high quality paper. An engineer mentions that 

available production time was much increased. The other options proposed here 

would need to be costed to complete a cost-benefit analysis. This quality change will 

reduce the value of X in the downtime model and lead to a reduced downtime 

measure. It will not change the conclusion that maintenance inspection is ineffective. 

PM inspection will only become justified for this plant if 

(a) A revised inspection technique gives a larger delay time for a sufficient sub- 

group of defects, or 
(b) The time required for PM decreases substantially or 
(c) The quality of inspection increases substantially, along with elements of (a) 

and (b). 

In an attempt to assess the practicability of the snap-shot approach for analyzing 

maintenance problems within the plant, it was evident that the technique can be a 
useful tool for problems recognition and basic discussion. The immediate impact 
from the problem recognition activity was that, by identifying the location, nature, and 
the causes of faults, some pragmatic solutions were immediately and naturally 
generated by the company staff themselves and implemented. 
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Chapter 7 

Conclusion 

This Chapter presents a summary of the works and results accomplished. The aim 

of this thesis is investigating, understanding and extending the role and consequence 

of different modelling options and parameter estimation options for modelling a 

complex plant. Maintenance optimization models provide a quantitative balancing of 

costs and benefits of alternative maintenance policies. The first maintenance 

optimization models appeared in the sixties. Since that time several papers have been 

published in that field. 

Chapter 2 has reviewed the literature on a single-component and multi-component 

system maintenance models. Numerous models in the literature deal with the 

problem of finding optimal inspection policies for systems. Most of these models 

consider systems with a single component. Not as many models only have 

considered a multi-component system consisting of independent or dependent 

components. Valdez-Flores and Feldman (1989) surveyed preventive maintenance 

models where an optimal policy for a single-component system, or a system that can 
be modeled as a single entity, is being determined. They note that although a system 

may consist of several components, it is sometimes practical to consider the system as 

a single unit that behaves in such a way that individual components do not directly 

affect the reliability of the system. Therefore, in multi-component system, if all 

components in the system are economically and stochastically independent of one 

another, a maintenance policy for the single component models may be applied to the 

multi-component maintenance problem. On the other hand , if any component in the 

system are economically or stochastically dependent upon each other, then an optimal 
decision on the repair or replacement of one component is not necessarily optimal for 

the whole system (see Cho and Parlar, 1986). In this case a decision must be made to 
improve the whole system, rather than any subsystem. 
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To model the maintenance of multi-component system, it is necessary to develop 

or extend modelling. In practice many dependencies, both economic and stochastic, 

may exist between components of a system. The improved modelling techniques are 

required for looking at such system in a systematic way, using specific models for 

modelling the maintenance of individual components, and combining the output of 

such modelling in order to schedule the maintenance of the system itself. 

With the models discussed above, much work has been carried out in relation to 

inspection maintenance using the delay time concept, and the models have found 

application. The challenge is how to make simple OR models available and 

accessible to practitioners (Scarf, 1997). The delay time theory has been reviewed in 

Chapter 3. This Chapter has presented a basic account of the method, and its 

historical evolution in which a modified basic preventive maintenance model has been 

successfully used in many case studies since 1982. Work to date since the genesis of 

the delay time model is of two kinds. The first is model developments to include 

factors that seem likely to be important in practice, such as imperfection of inspection, 

irregular timing of inspections and stochastically timed inspections. The other kind is 

that of fitting DTMs to data in case studies, with emphasis on parameter estimation, 

model validation, and post-modelling verification (Baker, 1996). 

The delay time concept defines a two stage stochastic process where the first stage 
is the initiating phase of a defect, and the second is the stage where the defect leads to 

a failure. The time lapse from when a defect can be first identified at an inspection to 

the time that the defect causes a failure is called the delay time. Clearly from the 

definition of the delay time, it is a random variable which, in most cases, would not be 

directly measurable. Therefore, the successful use of the delay time concept in 

maintenance modelling depends upon how well the underlying delay time distribution 

can be estimated from available information sources. We have seen in Chapter 3 the 

previous work on the DTM, and its present status, summarised. It should be noted 
that the delay time concept in maintenance modelling has provided a powerful tool in 

modelling and validating the relationship between maintenance actions, such as 
preventive maintenance or inspections, and the consequence of these actions. 
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In Chapter 4, first we have been concerned with investigating and understanding 

the role and consequence of different modelling options which are based upon delay 

time concept for modelling a complex plant. The key options are regular 
PM/inspections for the system modelled as a whole, and as a set of separate 

component models. In the latter case, the option of a mix of different component 
Minspection schedule has been considered. By using two models, that is the 

system model and a collection of sub-system models, the effectiveness of 

maintenance scheduling for a system has been analysed. So both model concepts 

may apply to a system which consists of many components and has various PM 

policies. Therefore, as a consequence of an optimal inspection policy, a proportion 

of maintenance work is identified and clustered at specific points in time, so giving 

the maintenance organization the opportunity to allocate its resources appropriately 

and rectify the defects in a more efficient manner than would otherwise be the case. 
This is reflected in efficiency adjustments to parameters. 

As expected, the result from modelling split and integrated inspection schedules 

may support the expectation of management that by splitting or integrating the 
inspection task, a better quality of inspections could be achieved. This would be 

mainly in terms of a reduced expected number of failures or costs due to failures. 

From these modelling, the best inspection policy for the system can also be identified. 

Second, we have revised the downtime model to embrace the case when the 
downtime due to failures of system is not very small. In previous models, the 
tendency has been to ignore the downtime due to failures when calculating the 

expected number of failures over a period. Having a non-negligible downtime can 

change the failure process over the PM period (0,7). The actual operating time over 
the calandar time (0,7) of system is obtained, and assuming the plant can only 
deteriorate and fail when in use, the downtime models extended and based upon the 
actual operating time. 

This model is used to predict the effectiveness of maintenance activity using the 
resultant downtime of the system as the relevant measure. Using the revising PM 

model it is evident that the more accurate economic PM interval may obtain for 

assuming that defect would not arise when the machine is idle. This implies that 
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revised downtime model would be appropriate for the practical use in realistic models 

for determining downtime (or cost)-based maintenance policies. 

Parameter estimation and model validation arc often neglected in theoretical 

developments. The parameter estimation options with and without PM information 

has been presented in Chapter 5. As seen in Chapter 3, there are two methods for 

estimating the parameters of the delay time modelling, namely the subjective method 

and the objective method. If there are objective data available, the objective 

estimation method is both theoretically and practically possible to estimate the delay 

time distribution from objective data, that is, data from maintenance records of 

failures and defects found at inspections or PM (Baker and Wang, 1992,1993). 

The likelihood maximization method is useful because it produces efficient 

estimators of the model parameters, and the method can cope with missing data 

(Baker and Christer, 1994). Sometimes, to fon-nulate a model which could be 

adequate, the likelihood function can be used as a means of deriving parameters for a 

DTM for complex plant. Given a likelihood function for a DTM, one can obtain 

maximum likelihood estimates, 0 of model parameters, 0. 

Two case methods considered have been presented which reflect experience in 

data availability. The main difference is data recording the number of failures per 
day, method A, and data recording the time of failures, method B. Parameter 

estimation experiments have been undertaken to test estimation methods in terms of 
their ability to recapture known parameters. Simulated data has been used to check 

the consequences of different volumes and types of data upon the accuracy of 

parameter estimates for maintenance models. The given maintenance record data 

includes the failures times, or number of failures per day, and the number of defects 

identified at PM. The important practical cases of with PM data and no PM data 

recorded, have also been studied within the investigation. 

In the case of an exponential delay time distribution, both methods produce nearly 
identical results under perfect inspection policy even without PM information. When 

we assumed that delay time distribution is a Weibull under perfect inspection, the 

199 



maximum likelihood estimates also recover well the underlying process of failure and 

defect origination of both methods. Even though in the case of no PM information 

being available, just failure data, maximum likelihood estimates can recover 

parameters as the number of PMs increase. However, when we assumed that the rate 

of occurrence of defects at time u is k(u), namely A(u) = /ýA2 W12-1, and the 

distribution of delay time is a Weibull, F(h)=l-e-'O, maximum likelihood 

estimates do not recover well the underlying process of failures and defects 

origination of methods even under perfect inspection. It is evidently more difficult to 

find optimal value as the rate of occurrence of defects change and delay time 

distribution is a Weibull. Under imperfect inspection policy, two methods give a 

very similar results for with PM data. In contrast to method B, method A is require 

more computer running time because method A has a more integrated routine of the 

maximum likelihood function. However in the case that the only data available is the 

number of failures per working day, and PM data, we may use method A to estimate 

the parameter from the observed data. Also, if information is available giving exact 

times of failures and PM data, we choose method B. 

The existence of PM data is important for most practical cases. When r<0.9, the 

estimation process is complicated because of a correlation between estimates of r 

and A. If PM data is not available, it is best to obtain a subjective estimation of 

either r or A and than proceed to use the maximum likelihood estimation (MLE) to 

obtain the remaining estimates. 

In Chapter 6 we have presented two modelling studies of preventive maintenance 

(PM) policy of production plant in a local company with a view to improving current 

practice. An objective data based model is developed based upon the delay time 

concept where because of an absence of PM data, the process parameters and the 
delay time distribution were estimated from failure data only using maximum 
likelihood. Confidence to do this is gained from the numerical investigation of 
Chapter 5. 

Particular attention is paid to the problems arising during the parameter estimating 

process because of the in adequate recording of PM data and the implied correlation 
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between model parameters. The case of data deficiency explored in the study is 

important because it is a relatively generation situation in practice. A subjective data 
based method is also carried out at the same company, which parallels the objective 
data based study. The two studies of the same problem provide a rare opportunity to 

compare the model formats and parameter values resulting ftom the two approaches 

and to consider the degree of consistency between the subsequent decision 

consequences of the two methods. They both indicate current over-maintenance. In 

addition, to reduce downtime further in this case study, a snap-shot type of survey 

technique has also been presented. From the two modelling studies of the plant, it 

has been realized that there is a potential scope for improvement of the regular PMs. 

As we expected, there are possible means to reduce downtime, and it has been shown 

that some form of PM and changing the material used can potentially reduce 
downtime by over 50%. Therefore, it has been noted that if some form of PM and 

the material can be improved, the rate of fault arrival may be reduced. Finally, this 

study demonstrates the practicability of this approach for analyzing maintenance 

problems within plant, and can be very useful tool for problems recognition, basic 

discussion, and modelling. 
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