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ABSTRACT 

This thesis is concerned with modelling inspection policies of facilities which 

Qraduallv deteriorate in time. The context of inspection policies lends itself readily to 

probabilistic modelling. Indeed, many of the published theoretical models to be found 

in the literature adopt a Markov approach, where states are usually 'operating', 'operating 

but fault present', and 'failed'. However, most of these models fail to discuss the 'fit' of 

the model to data, and virtually no examples of actual applications or case-studies are to 

be found. 

hi a series of recent papers dating from 1984, a robust approach to solve these 

problems has been introduced and developed as the Delay Time Model (DTM). The 

central concept for this model is the delay time, h, of a fault which is the time lapse 

from when a fault could first be noticed until the time when its repair can be delayed no 

longer because of unacceptable consequences. The bottle neck in delay time modelling 

is how to estimate the delay time distribution parameters. Two methods for estimating 

these parameters have been developed. namely the subjective method and the objective 

method. 

Markov models have the advantage of an extensive body of theory. 'fliere are, 
however. difficulties of definition, measurement, and calculation when applying Markov 

models to real-world situations within a maintenance context. Indeed. this problem has 

motivated the current research which ainis to explore the two modelling methodologies 

in cases where comparison is valid, and also to gain an insight as to how robust Markov 

inspection models can be as decision-aids where Markovian properties are not strictly 

satisfied. It Nvill be seen that a class of inspection problems could be solved by a serni- 

Markov model using the delay time concept. In this thesis, a typical senii-i%, Iarkov 

inspection model based upon the delay time concept is presented for a complex 

repairable systein that may fail during the course of its service lifetime and the results 

are compared. Finally, a case study of the senii-Markov inspection model and the delay 

time model is discussed. 
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Chapter 1 

INTRODUCTION 

This thesis is concenied with modelling inspection policies of facilities such as t) 

machines, vehicles. or buildings which gradually deteriorate in time. In general. most I 
items eventually Nvear out and fail. The time of failure, however. is not known in 

advance, and so it is both possible and probable that items will fail when in operation. 

These failures can be quite expensive not only due to repairing or replacing the iteni, but 

also because of the disruption and delay involved to the purpose of the operation of the 

system. Thus such items are often sub ect to a maintenance policy. 

71-he primary ftinction of maintenance is to control the condition of facilities. It 

involves actions to be carried out in order to inspect, repair, replace or modify a 

component or group of components of a system. hi the past, maintenance was regarded 

as a necessary evil and unavoidable activity. This perception of maintenance has 

slowly changed over the past four decades and now maintenance has in manv cases 
become not only an important pail of an organisation, but may also be considered as a 

profit making activity. In an orgyanisation, an objective of a maintenance ftinction mav 
be to maximize the availability of an operating facility in a safe condition. or to 

minimize the cost while ensuring a certain level or percentage of facility availability. 
The fulfilment of this objective, however, would require not only adequate engineering 

and technological skills but also management skills to effectively plan, organise. direct 

and control maintenance activities and resources. 

Some of the problems associated with maintenance include determination of 
inspection ftequencies. The basic purpose behind an inspection is to detenuine the 

state of equipment. Once indicators, such as bearing wear, gauge readings, quality of 

prodLICt. which may be used to describe the state, have been specified. and the 

inspection made to determine the values of these indicators, then some ffirther 



maintenance action may be taken, depending on the state. The point when an 
inspection should take place ought to be influenced by the costs and benefits of the 

inspection, which xill in turn be related to the indicators used to describe the state of the 

equipment and the benefits of the inspection, such as the detection and correction of 

minor defects before major breakdown occurs. 

At an insplection. defects are presumed identified and repaired so that equipment is 

restored to a specified condition, often regarded as new. Between inspections, defects 
I 

may arise and be obvious, in which case appropriate action is taken. Alternatively, a 
defect may lie dormant for a period until it either matures in severity to become obvious, 

or is identified at an inspection. Sometimes, and for equipment such as a computer or 

piece of soffivare, very specific checks are required to determine if equipment is 

workina, whilst at other times equipment can only be checked by destruction. Safety 

and defence equipment are typical examples here. hi such a case, statements as to the 

likely availability of equipment in an operating state is based upon statistical evidence 

derived from trials and samples, and is well documented in the literature on reliability. 

In some of the early work, Barlow and Proschan [1965] devised optimal inspection 

schedules which are subject to two-states, namelv a cyood state and a failed state. 

Though simple in form, the schedules proved less than simple to complite, and a number 

of authors presented approximations to the optimal inspection schedules which were 

easier to calculate (see Munford and Shahapi [ 1972] and Nakagawa and Yassui [ 1979]). 

In recent times. as pointed out in Christer [1984], many of the published theoretical 

models of industrial inspection problems adopt a Markov approach where the states are 

"operating", -operating but fault present", and "faileC. Each state is associated with a 

cost or downtime in the broad sense of the term with transitions between them occurring 

according to probabilistic laws, the occurrence of inspections associated with 

maintenance actions. and repair upon failure. 

ThOLIOI tile models provide ideas for possible niodel-building blocks along with 

some qualitative insight as to how a system might behave if only it would oblige the 
I -- 

model's assumptions. a major interest is in the solution procedures. Much insight has 

been ailined in the task of investigating and solving various tV :: I In . pes of theoretical models, 



but the task of building ail inspection model for an identified plant appears to be 

relatively unexplored. Also. many papers assume that the working condition of the 

system can be expressed as a discrete-tinie Markov chain with a new state, degraded 

states, and a failed state. and that the state transition probabilities can be deten-nined. It 

is. however. difficult in aeneral to define the degraded states for a deteriorating system. 

Even when it is possible to sensibly define the states of the system, it is often more 

difficult to determine the state transition probabilities. We presume that this is the 

reason that so few papers presenting Markov models make any mention of the 'fit' of 

the model to data, on present examples of actual applications or case-studies. 

In a series of recent apers dating from 1984, what has proved to be a robust p 1ý 
approach to solve these problem has been introduced and developed as the delay time 

concept and model. In 1982, Christer exploits the ideas of a "delay time" for a fault, 

which arose originally as a side issue in modelling building maintenance. Fundamental 

to most engineers' experience is the idea that defects do not just appear as failures, but 

are present for a while before becoming sufficiently obvious to be noticed and declared 

as failures. The time lapse from when a defect could first be reasonably expected to be 

identified at an inspection to the consequential failure repair if no corrective action is 

taken has been termed the delay time h of the fault. The bottle neck in delay time 

modelling is how to estimate the delay time distribution parameters. Two main 

methods for estimating these parameters have been developed, namely the subjective 

method and the objective method. 

Nlarkov models have the advantage of an extensive body of theory. There are, 

however, difficulties of definition, measurement. and calculation when applying Markov 

models to real-world situations within a maintenance context. Indeed, this problem has 

motivated the current research which aims to explore the two modelling methodologies 

in cases where comparison is valid. and also to gain an insight as to how robust Markov 
Z 

inspection models can be as decision-aids where Nilarkovian properties are not strictly 

satisfied (or perhaps testable). It will be seen that a class of inspection problems could 

be solved by a senii-Markov model using the delay time concept. If we can define tile 

degraded states of a system as the number of existing defects, we can easily define tile 

working condition of the system as a Markov chain. Also, if we know the probability 



density function of delay time h, and the statistics of the defect arrival process, it is 

seen to be possible to determine from the probability density function of the delay time 

the state transition probabilities of the associated Markov inspection model. 
Developing these ideas. a typical semi-Markov inspection model based upon the delaý 

time concept is presented for a complex repairable system that may fail during the 

course of its service lifetime. This model is contrasted with the delay time model for 

the same problem. 

hi this thesis, we are ultimately concemed with the problem of modelling to inform 

the task of deciding the inspection policy of equipment where the costs or the 

do,. vntimes are taken into account. Setting an inspection policy includes the 

determination of the inspection frequencies for complex equipment. In order to study 

and solve the inspection problem for a complex system, first of all, we review the 

mathematical Markov literature in chapter 2. and develop the delay time model from 

the concept in chapter 33. In chapter 4, for a common inspection scenario, both a 

simple semi-Nlarkov type inspection model based on the delay time concept, and a delaý 

time model for a single component system are developed and presented, and the results 

are compared. Again. for a common inspection problem scenario for a complex multi- 

component system, in chapter 5, a semi-Markov inspection model based upon the 

delay time concept is developed and a comparable delay time model is constructed. 
The results are compared and the potential accurac and error in using Markov models y 
for non-Markovian problems discussed. Finally, in chapter 6, a case study of the 

seiiii-Markox, inspection model and the delay time model is discussed. We believe this 

is the first instance of a semi-Markov inspection model being used to model a real 

problem in maintenance. Conclusions are presented in chapter 7. 

4 



Chapter 2 

LITERATME REVIEW 

2.1 Introduction 

Over the last few decades, numerous papers have appeared in the literature which 
deal with the problem of finding optimal inspection policies for systems which are 

subject to failures. This phenomenon is indicated in various surveys of maintenance 

models by Pierskalla and Voelker [1976]. Sherif and Smith [19SI], Christer [1984], 

Thomas [1986]. Valdez-flores and Feldman [1989], Clio and Parlar [1991], Thomas, 

Gaver and Jacobs [1991], and White [1993)]. The models address various aspects of 
inspection problems in such systems as an industrial production plant, a vehicle fleet, a 
housing estate, or a motor way system. The complexity of the models varies from a 

very simple deterministic model of a single-unit system to a very complex model of a 

stochastically failing multi-unit system. In general. the basic type of decision problem 
involved in an inspection system concentrates on determining the inspection schedules 

which niinimises the cost per unit time or tile downtime per unit time. 

The general inspection model of a facility or a component may be classified into the 

model with two-states and the model with multi-states. Many items or systems can be 

described as being in one of two states, one of which is preferable to the other. This 

preferred state can be described as working. whilst the other might represent some form 

of failure. Some examples of this type are shelf life of goods, health of a human being Zý 0) 
life testing of components, and standby systems. It is convenient to label the working 

state as state 0. and to define the unsatisfactory or failed state as state 1. It is assumed 

that a transition from state I to state 0. i. e. failed to working, cannot occur while the 

system is in service. 



The inspection model with a multi-state capability normally considers an equipment 

that siradually deteriorates in time and whose degree of deterioration can be observed by 

inspections only. except for a failed state that is observed inunediately upon its 

occurrence. Practical examples include production machines subject to stochastic 
breakdowns, inventory systems being depleted, and maintenance of com-munication 

systems with redundancy. An inspection is assumed to reveal the exact working 

condition of the system. Depending on the system's degree of deterioration, an Z 
inspection may be succeeded by a replacement or restoration. The system can be 

observed in one of the working conditions 0,1, ..., n, f which describe increasing 

degrees of deterioration. The state 0 represents a new system, the states 1,2. 

represent the degraded states, and the state f represents a failed state or a severe 

malffinction. It is possible to transfer from any state to a failed state f 

In this chapter, a review of the relevant literature on insPection models will be 

presented. 

2.2 Two-State Inspection Model 

2.2.1. Basic Inspection Model based upon Barlow and Proschan's Assumptions 

A basic inspection model for a complex system was given by Barlow and I 
Proschan [1965]. They considered the simplest possible case of an inspection policy, 

which was characterised by the following assumptions. 

(I) Deterioration of a system is stochastic. 

(2) The working conditions of the systern are classified into states 0 and 1. State 0 

denotes a good state and state I denotes a failed state. 

(3) The condition of the system is known by inspection. 

(4) Ail inspection takes negligible tinle. 

6 



(5) Ail inspection does not deurade the system and the system cannot fail 'while being 

inspected. 

(6) Inspections are perfect in that any failure within the system will be identified. 

(7) Each inspection entails a fixed cost C,. 

(8) The time elapsed between system failure and its discovery at the next inspection 

costs C. per unit of time. 

(9) Repair takes place upon discovery of failure and the system is as good as new after 

repair. 

(10) The failure distribution function F(t) of the system is known. 

Assumptions (1) and (2) state that the systern gradually deteriorate in time. Also, 

assumptions (3)), (4), (5), (6), and (7) are related to the general ideal inspection 

policy. Assumption (8) implies a system failure remain unknown until an inspection. 

This rules out most applications in industry. By assumption (6) and (9), an inspection 

will renew the system. 

Under the above assumptions, they derived the expected cost up to detection of 
failure as 

x 
C [CI (k + 1) + C, t)]dF(t), 

k=O , 
(2.1) 

where xO =0<x, < x, <... are the successive inspection times. Assuming a density 

function At) of the failure time distribution F(t), a necessary condition that a sequence 
x 

Ix, 1, be a minimum cost inspection procedure is that 0 for all k-. Hence using Ak 

equation (2.1). the following equation is obtained for k=1,2,3, .... 

XK-1 -Xý = 
F(Xk)-F(Xk-I ) Cl 

f(Xk) C, 
(2.2) 

When 
. 
1'(x, )=0. x,. ,-x,. = 3o so that no more checks are scheduled. The sequence 

is determined recursively once x, is chosen. Unfortunately, it is difficult tO COMPLIte 



optimal inspection procedures numerically. because the computations are repeated until 

the procedures are determined to the required de-gree by changin. g the first check time. 

To avoid this. Munford and Sliahani [1972] suggested a near optimal inspection 

policy which depended on a single parameter p. They introduce the probability of a 

transition from state 0 to state I during the interval (xi_l ý x, ) given that the systern 

was in state 0 at time x, -, . which is given by 
I 

F(xi) - F(x, 
-, 

) 
=p for i=1,2. -3 (2.3) 

1- F(xi-1) 

where 0<p<1, xO =0 and F(O) 0. The above equation (2.3) may be rewritten as 

F(xi) =p+ (I - p)F(xi-1) (2.4) 

and 

F(xi) =I- (I - 

=1 (2.5) 

where q=I-p. Thus for a given p, xi can be found from Zý 

(2.6) 

To choose an optimal p. let a random variable I denote the number of inspections 

necessary for the detection of state 1. We have 

Pr(I = i) = q'-'p. for i=1,2,3. ..., (2.7) 

so that 

8 



iqý-Ip (2.8) 

If the transition occurs at time t and it is detected by an inspection at time xi. then 

(xi - t) is the time for which the system was left in service in state 1. The mean time 

for which the systern will be left in service in state I is 

(x, - t)f (t)dt 

ze. 

=1q: -'p - E(T). (2.9) 

where 

E(T) (t)dt (2.10) 

So the total expected cost until a failure is detected is given by ZP 

x 
E(C) = C, lp + C, F-'(1 - (I - p))(1 - p)'-'p - E(T)). (2.11) 

The optimal p can be chosen such that E(C) is minimized. This policy was used for 

Weibull failure distribution case in Munford and Shahani [ 197-3 )]. 

Also, Nakagawa and Yassui [1979] considered an inspection policy with periodic 

checking times. If it is assumed that the mean duration of undetected failure is 
I 

approximately half the time between consecutive checking times, the optimum checking 

time p% which minimizes the total expected cost until a failed unit is discovered by 

some clieckin! z. is 

; =-J77:. (2.12) 

9 



where in is the mean of failure times of the unit and r= C, IC, . 

Further, Nakagawa and Yassui [1980] cave an approximate calculation of optimal 

checking procedures which computed successive check times backward. They 

specified the following computing procedure for obtaining the asymptotically optimal 
inspection schedule : 

(1) Choose an appropriate s from among 0<e<C, IC, 
. 

(2) Determine a check time x,, after sufficient time has elapsed to give the required 

de- ee of accuracv. 

(3) Compute x,, 3 -, 
to satisfy 

F(. v, ) F(x,, 
-, 

) C, 
(2.13) 

f(x. ) C, 

(4) Compute 'Vn-I 
ýý' 

'Vn-2 
>, 

- recursively from the equation (2.2). 

(5) Continue until Xk <0 or Xk+I - Xk > Xk * 

Luss [198-33] suggested an inspection policy model for production facilities using a 

dynamic programming algorithm. In addition to maximizing the expected profit per 

cycle, lie examined the problem of maximiýing the expected profit per unit time and the 

ex ected profit per "good" unit time. He described a dynamic proo-Tamming algorith-m p 

that found the inspection policy that maximized the expected profit per cycle. This 

algorithm is then imbedded within a Newton-Raphson type search that finds the optimal 

policies for the other objective ftinctions. 

Also, Assaf and Shanthikumar [1987] discussed an optimal group maintenance 

policy for a set of N machines subject to stochastic failures under continuous and 

periodic inspections which minimized the expected cost per unit time over an infinite 

horizon. 

10 



Dias [ 1990] analysed a new approximation for the inspection period when the failure 

rate is : (a) decreasing ; (b) increasing : (c) first increasing and then decreasing : and, Zý - 
finally, (d) when the failure rate has a 'bathtub' shape. From Nakagawa and Yassui's 

[1979] approximation p*, 

p, = V2rE(T), (2.14) 

where i- = C, ICý,, and E(7) is the expected value of system of lifetime T, he derived 

the new approximation p", 

p 
1+0.234V7 

(2.14) 

where t-'= rIE(T). He confirmed that p" was better than p* for the decreasing, the I 
bathtub-shaped, and, finally, the increasing and then decreasing failure rates. Only for 

the case when the failure rate is increasing, he has obtained worse results. However, 

this is a case in which non-periodic inspections are preferable. 

2.2.2. Modified Inspection Model 

So far, we have cited only the literature xN-hich adopts the assumptions of Barlow 

and Proschan's model. However, they require restrictive assumptions because they 

assume an ideal state. To avoid this, the model with changed lifetime distribution is, 

firstly. presented byAnbar [1976], and Beichelt [1981]. Anbar considered an adaptive 

sequential inspection policy assurning that the lifetime distribution is known to be 

exponential, but with unknown parameter. He sugaested the procedure for estimating 

the expected lifetime. This procedure yields a sequence of estimates which is strongly 

consistent, i. e., converges with probability 1, to the value of the unknown parameter. 
This in turn implies that the sequence of intervals between inspections converges to the 

optimal interval between inspections. Beichelt derived minimax inspection strategies 



for single unit systems on condition that no or only partial information on the lifetime 

distribution of the system is available. 

Luss and Kander [ 1974] discussed inspection policies when the duration of checking 

and repair is non-negligible. Also. the%, assumed that the system continued operation 

during its inspection and could fail , N-hile being checked. The loss ftinctions are I- 
obtained and are solved by both differentiation. which leads to efficient al-orithms for 

EFR(Increasing Failure Rate) distributions, and by dynamic programming, which can be 

used for any failure rate. 

Also, Jardine and Hassounah [1990] demonstrated how the relation between the 

mean arrival rate of breakdowns conditional upon the inspection ftequency of 

equipment could be estimated in practice assuming that inspection times and repair 

times were nesiative exponentially distributed. This work was carried out for a large, 

urban transit authority operating a fleet of approximately 2000 buses undertaking about 
80 million kilometres per year. A model relating total downtime of buses incurred due 

to inspections and repairs per unit time to inspection was developed, and the optimal 
inspection frequency which maximized bus availability was determined. 

Futther, Nakagawa [1984] considered a modified inspection policy with periodic 

check intervals. where the unit after check has the same age as before with probability p 

and is as good as new with probability q. . flie mean time to failure and the expected 

number of checks before failure are derived, forming renewal-type equations. 'flie total 0 
expected cost and the expected cost per unit of time until detection of failure are 

obtained. Optimum inspection policies which minimize the expected costs are given. 

Kaio and Osaki [1986] discussed a typical inspection model taking account of the 

following two imperfect inspection probabilities : 

(a) the system might be regarded as having failed, even if it is normally operating, due to 

imperfect inspection, 

(b) an inspection may not detect a system failure due to imperfect inspection. 

II 



For this model, they obtained the structure of the optimal policy, and discussed the 

optimal policy which minimized the total expected cost up to the detection of system 

failLire. 

Finally, Munford [1990] considered optimal inspection policies in which penaltý 

costs due to the elapsed time between the failure and its detection were proportional to 

the duration of the inspection interval containing the failure. An algoritlim for 

computing the optimal inspection policy is given for a wide class of failure distributions. 

Two-state inspection models have been established by Barlow and Proschan. [1965] 

by assuming the penalty costs due to the elapsed time between the failure and its 

detection. This assumption rules out most industrial applications. Also, the two-state 

inspection models do not relate to the practical industrial situation in which inspection 

leads to repair before failure because the models define the working condition of the 

system as two states, namely a good state and a failed state. So. other authors have 

established multi-state inspection models to be mentioned in the following section. I 

2.3 Multi-State Inspection Model 

2.3.1. Basic Inspection Model 

We have considered the papers which deal with the model to be classified into 

two states 0 and 1. Now we investigate the literature in which the condition of the 

system can be classified into multi-state 0,1. ..., n, n+l, being characterised typically 

by the followiii2 assumptions. 

(1) The system gradUally deteriorates in time. 

13 



(2) The working condition of the system at any time t can be completely characterised 

by classifVing it as in one of the states 0,1.2. ..., n, n+1 where 0 is the good state, 
1.2, ..., n are degraded states and n+ I is the failed state. 

(3) The degree of deterioration can be observed by inspections only, except for a failed 
I 

state that is obsen, ed immediately at its occurrence. 
(4) An inspection takes negligible time. 

(5) An inspection does not degrade the system and the system cannot fail while being 

inspected. 

(6) An inspection reveals the exact working condition of the system. 

(7) Each inspection requires a fixed cost of C,. 

(8) After each repair the system is considered to have working condition 0. 

(9) If the system has working condition i at present, then one time unit later it will have 

working condition j with known probability rij, where rij depends only upon the 

current state i and the next state j. 

Assumptions (1) and (2) relate to the working condition of the system which 

gradually deteriorate in time. Assumption (3) is related to the detection of the working 

condition of the system. This assumption is, particularly, different from the 

assumptions of Barlow and Proschan's in recognizing a failure. This implies that this 

model does not need the introduction of a penalty cost due to the elapsed time between 

the failure and its detection. Similarly with the assumptions of Barlow and Proschan, 

assumptions (4) to (7) are related to the general ideal inspection policy. Assumption 

(8) implies that a repair will renew the system. By assumption (9), it is easy to 

establish a decision criterion model, but it is difficult to apply to a practical industrial 

situation. 

Under the above assumptions, Mine and Kawai [1975] discussed an inspection and 

replacement policy which minimized the expected total long-run average cost using a I 
semi-Markov decision process. 'fliey, firstly, considered the following Markov 

degradation properties. 
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(a) The transition rates from one state to another are independent of time. i. e., are 

constant. 

(b) From state i. a random transition is only possible to state i+1 or n-i-l. 

(c) The transition rate from i to n+1 increases as i increases. 

Under the above Markov degradation properties, they derived the transition probability 
Pij (r) which is the probability that the system was in state j at time t given the system 

was in state i at time 0. This transition probability Pj(t) is based on the transition 

(failure) rate from state i to the failed state j= n+l, a, , and the transition 

(degradation) rate from state i to state j= i+l, A, with known a, and Pi 

respectively. Also. defining Ei as the event that the system was in state i and an 

inspection had just been performed, they showed that EO , E, E, 
' constituted a 

serni-Markov process and that the process had a single imbedded Nlarkov chain which 

was ergodic for every stationary policy. Then, by using the theory of semi-Markov 
decision processes, they found the optimal policy iteration cycle without predetermining 

the inspection time interval. 

Further, Kander [1978] presented inspection policies for deteriorating equipment 

characterised by N quality levels. He assumed that the mechanism of deterioration 

consisted of successive Poisson transitions of the system from the prevailing state to the 

consecutive state and that the Poisson transition parameters were known. Considering 

three feasible inspection models which are pure checking, truncated checking and 

checking followed by monitorin , he developed optimal policies leading to minimal 9 1"D 
loss. while the system's distribution was represented by an (N+I)-state semi-Markov 

process. 

Also., Ohnishi. Kawai and Mine [1986a] treated a continuous time Markovian 

deterioration systern when the operating costs and the replacement costs are dependent 

on its state, and derived an optimal inspection and replacement policy minimizing the 

expected total long-run average cost. The previous literature had generally assumed 

that the system had a constant operating cost and a constant preventive replacement cost 

which was independent of the state of the system. However, the authors introduced the 
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idea that the operating costs and replacement costs increased as the deterioration of the 

systern increased. This increased the eneral applicability of this modelling, and under 90 

these assumptions. they derived an optimal inspection and replacement policy and 

showed that an optimal policy had monotonic properties tinder some reasonable 

conditions. Under the optimal policy, a control limit rule holds for the replacement 

decision. and the optimal time interval between successive inspections becomes shorter 

and shorter as the system. undergoes deterioration. 

2.3.2. A Variation on the Inspection Procedure 

So far Nve assumed that an inspection does not adversely affect the system. We 

may. however. have some system which is impaired by the inspection. The system 

operates throughout a number of periods and is subject to failure in each period. Prior 

to failure the system enters a state in which it is ftinctioning, but in a possibly impaired 

manner. This state can be detected onl by performing an inspection, by assumption y 
(3). Once the system is known to be in the impaired state, appropriate action may be 

taken to prolong its remaining life. However, the act of inspecting the system when it is 

not impaired may itself cause it to become impaired. In this respect inspection may be 

hazardous. A prime example is the inspection of nuclear reactors. Since one of the 

lar2est causes of malfunction in reactors is human error, a ftindamental question is 

whether or not inspections by humans create more problems than they solve. 

In this respect. Bulter [1979] considered a hazardous inspection model which 

maximized the lifetime of the system when inspections had the potential of being, 

harniftil to the system under consideration. He classified a system into one of four 

states '%x-hich are fully functional, undetected partial failure, detected partial failure and 
failed. and then formulated the inspection model as a Markov decision process. Also, 

Chou and Butler [1983] developed an efficient computational procedures for the 

hazardous inspection model. 
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2.3.3. Inspection Model with a Catastrophic Failure Situation 

Some inspection models are considered to have a renewal point after repair. In these 

models. the objective is usually to seek the optimal inspection schedule for a system 

which minunizes the total cost per renewal cycle. In some cases, however, the cost of 

failure is regarded as so great that it cannot be meaningfidly compared to the costs of I- 
inspections and corrective actions. For example, a person develops cancer, or the 

failure of a crucial component of an aeroplane in flight or within a nuclear power plant. 

In this respect, Milioni and Pliska [1988] sought the optimal inspection schedule for 

a system whose deterioration process is a semi-Markov process that progresses toward 

failure when the failure is catastrophic. They actually analysed two versions of this 

catastrophic situation. In the first version of the catastrophic failure situation, they 

addressed the problem of minimizing the expected maintenance costs subject to the 

constraint that the probability of failure be no greater than a specified value. This 

problem is solved using d%mamic programmin- and La-range multipliers. In the second --) In 
version of the catastrophic failure situation, the problem is to minimize the probability 

of failure subject to the constraint that the number of inspections cannot exceed a 

specified number. This version of the problem is formulated and solved using dynamic 

programming. 

2.3.4. Inspection Model with Non-Negligible Inspection Time 

An inspection model with non-negligible inspection time was given by Tijms and 0ý -- 
Van Der Duyn Schouten [1985]. Theýv considered an equipment which became 

increasingly expensive to operate with an increasing degree of deterioration, and the 

follo-ýN-ing details of the problem were considered. Opportunities for inspections occur 

only at discrete points in time t=0,1, ... and an inspection takes a fixed, integral 

number of T time units and costs J units. Once an inspection has revealed the exact 

workin2 condition. there is an option of either doing a revision or leaving the system as 

it is. A subsequent revision in working condition i takes a fixed integral number of 
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time units and involves a cost of R, ý! 0,0 < i:: ý n+1, and the system incurs an 

operating cost of a, for each time unit it spends operating in working condition i, 

0:! ý i:! ý n. The system must always be revised when working condition n+1 is found. 

In the absence of inspections or revisions. the working condition of the system changes 

according to a discrete-time Markov chain with known probability rj. It is assumed 

"-I 
that i- =I ij for all 0:! ý i: ýý n+1, that is. the working condition of the system cannot 

J=j 
improve on its own. A control-limit rule is characterised by integers and 

prescribes the following actions. Revision is done when the working condition ký:, -. O, 

and inspection is done when ; ri time units have passed since the system was last known 

to have working condition i. Also, state space is taken as 

I= {ili = 0, n, n 1) u( (i, nz)li = 0,..., n, in = 

where a state ( i. in ) corresponds to the situation of in time units having passed since 

the last knowledge of the system's working condition i. The possible actions are 
denoted by 

0, leave the system as it is, 

a= I, inspect the system, 
revise the system. 

As to the transitions resulting from takinL, action a in state (i, M), the following 

definitions are -iven. 

C(,, 
m)(a) 

The expected transition costs, which are made up of inspection, revision and 

operating costs. 

'r(j,. ) (a) The expected transition time if action a=I or a=2 is taken, which are 

made Lip of inspection and revision times. 

I: The expected transition time if action a=0 is taken. 

P -t) The probability of a one-step transition from state s to state s' with s. s'r=I. (L 

is 



q, ", "" : The in-step transition probabilities of the Markov chain for in = 1,2, ..., where 

ql( -) is the probability that in time units from now the system will have working 

condition j when the present working condition is i and no inspections and 

revisions are made. 

For the semi-Markov decision model, denoting the relative operating costs v, (R), seS 

associated with rule R and the long-run average costs by g(R), the following set of 1: 1 
linear equations are fonnulated. 

v, (R) = ai - g(R) + (I - (R) -ý qi,,,, Iv,,., (R), for 0: 5 i< zo, (2.16) 

v, (R) = Ri - g(R) Ti + v, (R), for -,, :! ý i:: ý n+1, (2.17) 

n (M) 

1: qjj 
aj - g(R) + )(R)+(I- (R), 

j=i I -q 
(M) I-q(m) v("m+l I-q (m) 
i,? l +I . ý. n+l i, n+l 

for 0:: ý nz < ; ri, 0:: ý i<n, (2.18) 

n 

(R) =J- g(R) T+2: -tý (R), for ; ri :! ý in :! ý Alli, I :ýi<n, (2.19) 
j=i 

auQmented by putting one of the relative operating costs equal to 0, say I -- 

(R) = 0. 

From the above equations, the authors derived the relative operating costs by single-pass 

calculations and presented a special-purpose algorithm to compute the best rule within 

the class of control-limit rules. This algorithm generates a sequence of improving 
I 

control-limit rules and it can be shown by familiar arguments from Markov decision 

theory that the algorithm converges after finitely many iterations. 

However. Wijnmalen and Hontelez [1992] demonstrated that this algorithm, which 

operated on a class of control-limit rules. did not always lead to ail optimal policy even 
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within the class of control-limit rules considered. They pointed out Tijms and Van Der 

Duvn Schouten's algorithm was too restrictive in the sense that it adhered too much to 

the control-limit structure while applying the usual improvement procedure, and thus 

could exclude better control-limit policies. So, if it had not have been restricted to 

control-Iiinit Policies, the usual policy iteration procedure could have been applied 

without difficulty. In this respect they derived their improved algorithm which could 

compute the optimal control-limit rule, provided that long-run average costs were 

minimized. 

2.3.5. Imperfect Inspection Model 

The models treated so far assumed one of the following two extreme assumptions 

which denote a perfect inspection model. 

(a) At any given time, the state of the system may be identified completely by 

inspection. 

(b) The state of the system can be observed only through costly inspections. 

On the other hand, in practical situations, many systems satisfy neither of the above two 

restrictive assumptions, but some intermediate characterisation of system information. 

That is, the decision maker obtains some information about the state of the system at 

each inspection time, but he needs further and costly in depth inspection to identify the 

exact state of the system with certainty. Under this concept, the imperfect inspection 

model was presented by Ohnishi, Kawai and Mine [1986b], Devooght, Dubus and 
Smidts [ 1990] and (5zekici and Pliska [ 1991 ]. 

Oluiishi, Kawai and Mine investigated an optimal inspection and replacement 

problem for a discrete-time Markovian deterioration system. It was assumed that the 

system was monitored incompletely by a certain mechanism which gave the decision 

maker some information about the exact state of the system. It was noted that this 

information involved uncertainty and was stochastically related to the exact state of the 

system. The decision maker must pay an additional inspection cost to identify the exact 
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state of the systern with certainty. They assumed that the state of the system underwent 
deterioration according to a stationary discrete-time Markov chain having a known 

transition probability Pj which denoted the one-step transition probability from state i 

to state j. They then formulated this model as a partially observable Markov decision 

process and showed an optimal inspection and replacement policy had monotonic 

structural properties. However, in this model, it was assumed that the transition 

probability of the deteriorating process of the system and the probabilistic relation 
between the systern and the monitoring mechanism were completely known. This 

assumption does not always hold in real-world situations. 

Devooght. Dubus and Smidts [1990] developed suboptimal inspection policies for 
I 

imperfectly observed realistic systems. They considered that the states of the system 

evolve according to a continuous semi-Markovian model because repair and 

maintenance o erations cannot be realistically described by exponential holding times, p 

and the large number of states is a compelling reason to use supercomponents, which 
have subsystems, whose failure rate is a combination of exponentially failing 

components and. therefore, not Markovian. Also, they assumed that 

(a) a large penalty was attributed to the unreliability of the whole system, I 
(b) states could not be ordered and arbitrary transitions were allowed. 
(c) knowledge of the system state is imperfect either because of human error or because 

sensors give only information on the overall behaviour of subsystems and not of its 

detailed components, 
(d) maintenance and inspection by operators are subject to human error and described by 

matrices which relate intended actions with actual actions, and 

- (e) no stationaiý- policy is sought. 

In their model. the emphasis is put on a production process with safety-related 

subsystems, such as in nuclear reactors, whose non-availability provokes the stopping of 

energy production, and therefore has a high cost associated Xvith non-availability. 
Therefore the safety system is periodically inspected and eventually repaired either at 
fixed periods or when a critical state is entered. Under this concept. they obtained sub- 

optimal inspection policies using a dynamic proarammina alzorithiii based on the use of 
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importance parameters for the components. A Markovian evolution code is combined 

with an optimization code using a value iteration algorithm. Z7 

Also, 6zekici and Pliska developed optimal inspection schedules using a delayed 

I'vlarkov model with false positives and negatives under imperfect inspection. They 

considered a system subject to catastrophic failure which deteriorated according to a 
delayed Markov process and was sub ected to a series of binary tests that might yield j 

false negative and false positive outcomes.. A corrective action was carried out when a 

true positive was observed, thereby reducing the chance of system failure. Costs of 

inspections, false positives, the corrective action and failure are incurred and dynamic 

programming is used to compute the optimal inspection schedule. The importance of 

this model is the fact that it is both computationally tractable and useful for several 

kinds of applications, especially medical screening. 

Another imperfect inspection model was presented by Christer and Waller 

[1984a, b, c]. They suggested the optimal inspection policy minimizing the expected 

cost per unit time of the maintaining the plant and the expected downtime per unit time 

using the delay time concept. Unlike previous models, in this case the model was 
developed for and applied to an actual case situation within industry. This model is of a 

very different format to the previous ones and will be presented in detail in the next 

chapter along with numerous variation and developments. 

2.4 Summary of the Literature Review 

We have reviewed numerous models in the literature which deal with the problem of 
finding optimal inspection policies for systems which are subject to failures. Basic 

assumptions for the two-state model were given by Barlow and Proschan [ 1965]. Under 

the basic assumptions, some authors developed methods which could compute Barlow 

and Proschan's model easily and the other authors improved the model and changed the 

basic assumptions. Most of these models present the working condition of the system 

as being in one of two states, operating and failed, the purpose of inspection is to detect 



failure, and the model is based on the time to failure distribution. Importantly, the 

models do not relate to the practical situation in which inspection leads to repair before 

failure. In this respect. the introduction of Markov inspection models is viewed as a 

move towards reality. 

The Markov inspection models are developed by numerous authors. However, most 

of them assume that the working condition of the system can be expressed as a discrete- 

time Markov chain with state, 0,1,2, ..., n, n+l, where the state 0 represents a good 1= 
state, 1,2, .... ii are degraded states and the state n+1 is the failed state, and their 

transition probability is given. In practice, it is , however, difficult to define the 

dearaded states for the deteriorated system and more difficult to qualify the transition 
1) 

probabilities. Assuming the unknown transition probabilities, Devooght, Dubus and 

Smidts [1990] tried to develop the inspection policies for imperfectly observed realistic 

systems, but only managed to obtain sub-optimal inspection policies. 

In the sense of developing a useable model with estimable parameters, the delay time 
I 

concept and model, which is described in the next chapter, represents further 

improvement in the modelling of inspection policies. I 
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Chapter 3 

THE THEORY OF DELAY TEME ANALYSIS 

3.1 Introdnction 

Consider a piece of equipment subject to periodic inspection. At an inspection, 

faults are presumed identified and repaired so that equipment is restored to a specified 

condition, often regarded as new. While the equipment is being operated, faults or 
failures may arise and high costs will be i11CUrred eventually due to failures. Here, a 

systern with a failure or breakdown means a system which cannot be operated, and 

repair is essential, whilst a system with faults or defects means a system which needs 

repair but can still be operated. It is appropriate, therefore, to consider ways to identify 

faults at an earlier time or stage, such as inspection, though these too will incur a cost. 

The objective here is to devise an inspection schedule so as to strike an appropriate cost 

balance between the cost of inspecting and the cost of additional or more serious failures 

which arise through not inspecting. 

To this end, there have been recentlY a considerable number of papers published on 
inspection modelling Litilising and developing the application of a concept which has 

been of research interest for the past 14 years and known as delay time modelling. A 

technique called delay time analysis has been initially developed for modelling 

inspection policies for industrial inspection maintenance when 'the equipment is 

regularly inspected. The idea of the delay time first appeared with the context of 

buildina maintenance addressed by Christer [1982] (there called lapse time) but has 

since been named delay time and extended to indLIStrial equipment. 



This chapter presents a review of the delay time concept, and delay time analysis. 

Several models are reviewed to indicate how delay time analysis has so far been 

employed to model various inspection maintenance problems. 

3.2 Basic Delav Time Models 

In the delay time model presented by Christer and Waller [I 984a], a central concept 
is the delay time h of a fault, which is the time lapse from when a fault could first be 

noticed until the time that its repair can be delayed no longer because of unacceptable 

consequences (see Figure 3.1). 

Time 

0 It zi+h 
Item is new Fault first identifiable Fault leads to breakdown 

Figure 3.1. Delay time concept. 

The important point about the delay time concept is that the failure process is divided 

into two-stages. This enables the theoretical foundation for inspection policies to be 

established. The difficulty in delay time modelling is, however, how to estimate the 

distributions of the delay time h and the initial point it, the instant at which a fault 

may be assumed to first arise since new or reconditioned. Two main. methods for 

estimating these distributions have been developed, namely subjective method and the 

objective method. We will describe these methods in section 3.4. 

If the distributions of delay time and the initial point are known, the failure behaviour 

of equipment can in theory be detennined under any specified maintenance policy. 
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Consider first the simplest possible case of an inspection policy, which may be 

characterised by the following assumptions. 

(a) An inspection takes place every T time units, costs C, units and requires d, time 

units. where cý << T. 

(b) Inspections are perfect in that any fault present within the system will be identified 

and no new fault will arise because of the inspection. 

(c) Faults identified at an inspection will be repaired within the inspection period at an 

average cost of Cý, 

(d) The initial point of a fault at time it after an inspection is independent of the delay 

time h. 

(e) Faults arise at a constant rate of X per unit time. 

(f) Failures are repaired as soon as they arise, incurring on average db units of 

downtime, and cost Cb 
, where C, > Cd and db << T. Here, even though a 

component of the system fails. if the system can still be operated. we do not regard 

that the system is in condition of a 'failure' or 'breakdown'. 

(g) A component of the system is as good as new after repair. 

(h) The probability density function of the delay time, Ah), is knoxvil. 

The assumption di << T in (a) and the assumption (c) may at first seem to be 

contradictory if several defects are identified. However, assumption (c) would seem 

to be reasonable if sufficient maintenance staff were available to perform repairs 

simultaneously. The assumption (e) provides an estimate of the expected number of 

faults arising in the period T, namely K(T). This ignores the downtime due to 

breakdowns, during -Nrhich no faults would arise since the machinery is idle. If this 

downtime is small compared with T, as indicated in the assumption db << T, 

then the error will also be small. Later we consider the modelling changes necessary to 

relax this condition. 

Under these aSSLIIIIptiOIIS, firstly, we determine the form of the function b(T) which 

is the probability that a fault ultimately arises as a breakdown. Suppose that a fault 

arising within the period (0,7) has a delay time in the intei-val (h, h- A) 
. 

The 



probability that the delay time lies in this interval is J(h)dh. This fault will be repaired 

as a breakdown repair if the filUlt arises in period (0. Th) (see Figure 3.2), otherwise as 

an inspection repair. 

hispection Inspection 

h 

III 0 T-h T 
Item is new 

Figure 3.2. Repair process of a fault. 

The probability of a fault arising before T-h, given that a fault will arise in (0,7-), is, 

from assumption (e), (T-h)IT. We have, therefore, that for small A, the probability 

that a fault with delay time in the interval (h, h+dh) arises as a breakdown is 

T-h 
f(h)dlz 

T 

The delay time h lies in the period (0, T) because the fault referred to this delay time 

h will be identified at the inspection time T by the assumption (b) or will arise as a 

breakdown in case of li: ýT. Allowing h to vary from 0 to T and integrating the 

above term over h, we have the probability of a fault arising as a breakdown, b(7), is 

given by 

T-h 
b(T) -f (h)dlz T0- 

1) 

Since a components with no fault may be regarded as 'new' by the assumption (e) and 

all components with fault are identified and renewed after repair by the assumptions 

(b), (c). and (2) at an inspection point. each inspection point will become in effect a 



renewal or re-conclition point. Accordingly, the equation (3). 1) applies to each 

inspection period. 

Using the eqUation (3.1), with average breakdown and inspection repair costs C, 

and C,, respectively. a model of the expected cost per unit time as a ftinction of the 

inspection period T may be obtained directly. The total expected cost of an inspection 

cycle consists of the expected cost due to failures, the expected cost of rectifying faults 

identified at the inspection, and the cost of the inspection itself If the expected number 

of faults and breakdowns arising over (0, T) is K(Y) and B(7) respectively, then 

K(T) = ;. T (3.2) 

and 

B(T) = K(T)b(T) 

;. Tb(T). 0- 'I) 

Therefore, the total expected cost per unit time over a ftill cycle of length T+ di is 

C(T) = 
Total breakdown cost + Total inspection repair cost + Inspection cost 

Full cycle of length 

B(T) C6 + 11 K(n - B(T)I, Cýj +'C, 
T+d. 

; Tf, C, b(T) + Cý (I -b(T))l + C, 
T+d, (3). 4) 

Here. the decision variable T would be selected to minimise C(T). 

Again. if we are primarily interested in operating an inspection policy to reduce 

downtime. then the appropriate downtime model is derived by considering the expected 

downtime associated with failures and the downtime due to an inspection. Under the 

assumptions of the case beina 
I., modelled. there is no additional expected downtime due 
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to repairing faults identified at an inspection. so tile total expected downtime per unit 

time is 

D(T) 
(T) d,, d, 
T+d, 

(3.5) 

The choice of T is made to minimise D(T). In practice, the equation (3.5) may often 
be used due to the difficulty of establishing an agreed cost measure due to factors in the 

industrial plant. It may also be used because it is the appropriate model (see Christer 

and Waller [1984c]) 

Equation (3.1) to (3.5) constitute the basic inspection model. This basic model 

may be modified according to need. I 

3.3 Some Variations on the Basic Model 

3.3.1 A Variation on the Downtime Illodel 

Suppose there are insufficient staff, available to complete all repairs at an 

inspection. Here we investigate the changes to the basic model that Such a condition 

will make. For instance, if assumption (c) in the basic model was invalid and there 

were only enough maintenance staff to complete the task of identifying faults during the 

inspection period di, then ftirther time is required to perform inspection repairs 

subsequent to inspection, with each inspection repair causing additional downtime. 
C. 

The formulation of D(7) would be modified as follows. If d,, is the expected 

downtime due to an inspection repair, then assurning repairs are performed sequentially, 

the total downtime over the ftill cycle is 

)Td, b(T)+d, +ATd, 11 I -b(T)k,. 
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Also, considering d the expected length of the ftill cycle is d) 

T4- d, +;. Td, i III - b(T)j. 

Wre have, therefore, the downtime per unit time over an inspection cycle is 

D(T) 
Tdbb(T) + d: + ATdd fl- b(T)) 

T+d, +;. Tdd(I - b(7)1 

Tldbb(T) + dd(I 
- b(T)II + di 

T+d, +; Tdd(l - b(7)) 
(3.6) 

It is obvious from the equation (3.6) that as expected, dd must be less than d. for 

the inspection to be worthwhile. 

3.3.2 Non-Perfect Inspection Case 

So far, it has been assumed that inspections are perfect in that any fault present 

will be identified. It is, however, unrealistic to expect a perfect inspection every time. 

It is more likely, in most cases, that the probability of a fault being detected at an 

inspection is dependent to some extent on the duration of inspection, di . Such 

dependence would need ftirther investiGation in a particular context. Here we will be 
11: 1 

content to review the simpler model used by Christer and Waller [1984a]. 

We introduce a probability i- that a specific fault will be identified at an inspection, 

and a corresponding probability (1-i-) that it will not. The only change that this will 

produce to the above models will be through the form of b(7), the probability of a fault 
C 

resulting in a breakdown. To find the new form of b(7), consider a fault which first 

arises at time v after an inspection at time point 0 (see Figure 3.3). Clearly, y:! ýT. 
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Fault arises 
Time 

0 JP T 2T 33 T 

Figure 3.3. frispection process of a fault arising at time y. 

If this fault is subsequently identified at an inspection, it could be the inspection at T if 

h>T-y or at 2T if h>2T-y, or failing this, at the inspection at )T if lz>3T-y, and so 

on. We have, therefore, that for the fault arising at point y, 

Prob(fault identified at T) 

Prob(being identified) x Prob(not resulting in a breakdown before T) 

i-R(T - y) (3.7) 

where 

R(x) = 
fy(h)dh. 

Similarly, 

P-S) 

Prob(fault identified at 27") 

Prob(not identified at T but identified at 2 7) 

x Prob(not resulting in a breakdown before 27) 

r(l -)-)R(2T- y) . (3.9) 

In general. the probability that a fault initiated at point j. - will be identified at the 

inspection at nT is 

r(l - r)"R(n T- 17 = I, I .... 



Adding all these probabilities. we obtain the probability I(T), say. that a fault arising at 

time j, will be identified at an inspection as 

r. 

I r(l - i-)-'R(izT - 
n=l 

Since j, can vary uniformly between 0 and T, summing Iff) over all possible j,, the 

probability that a fault arises as a breakdown, b(T), becomes 

b(T) = 1- 
T_(1 

-r) R(nT-v)dy. (3.11) 
'T 

In equation (3.11), for r=0 or 1. b(T) corresponds respectively to the failure 

probability for the conventional failure system, and to the basic inspection model with 

perfect inspection. Also, as inspection interval period T tends to 0 or 00, b(7) must 
intuitively converge to 0 or 1. To confirm this point, rearranging equation (3.11), 

we have that 

00 T 

R(nT-Y)dy. (3.12) 
n=l T 

If the inspection interval period T tends to Q, it follows that 

T JR(izT-y)dj,, (3.13) 
T-W 

n=l 
T, OT 

and 

limh(T) =I Tý 0 Fýo 

=I- (I - 

'I = 

= 



Similarly. if the inspection interval period T tends to co, it follows that 

IIF 
linib(T)= 1-yr(I-r)" lirn-f"R(iff- v)ýv 
T- T-- T 

=I. 1-; ) 

Interestingly, in the steady state situation the only changes in permitting imperfect 

inspection i- #I is that b(7) changes in form, but criteria functions, such as Q7_) and 

D(T) given in equations (3.4) to (3.6), remain the same. The above non-perfect I 
inspection formulation with r#1 was first used in an application of delay time 

analysis modelling; of the planned maintenance for a vehicle fleet by Christer and Waller 

[1984b]. 

3.3.3 A Variation on the Instantaneous Rate of Fault Occurrence 

Another assumption which may require to be relaxed is the constant rate of fault 

occurrence. The effect of this change in the basic perfect inspection model is to modify 

the formulae for bj), so producing consequential changes in the expressions for D(7) 

and C(7). In spite of this change, an inspection renews the system tinder the perfect 1: 1 
inspection by the assumption (c), (f), and (g). Here we assume that the instantane oils 

rate of fault occurrence at time y after an inspection is not constant but is GiVen by C'Cl, ) 

(see Figure 3.4). 
1 

hispection Inspection 

0y )+tty 
Renewal point 

Figure 3.4. A variation on the rate of fault occurrence. 

This being so. the expected number of faults arising in the small interval (I-. y+ýI-) is 

g(Otiv. 
Clearly. the expected number of faults arisin" in tile inter', al (0, T) is 

33 



T 

K(T) 16) 

Assuming perfect inspections, a fault arising in (y, y+dy) xvith a dela time h<T-y will y 

arise as a breakdown. Therefore the expected number of breakdowns resulting from 
I 

defects arising in (y, y+dy) is 

g(y)ýv -ý'f(h)dh=F(T-y)ll(y)dy, (3.17) 

where 

F(x) (h) A 

Accordingly, the expected number of breakdowns during the time period (0,7-) is 

B(T) = 
fF(T 

- y)g(y)dj,. (3.19) 

Since. given perfect inspection, the expected number of inspection repairs arising in 

(0.7) is K(T) - B(T), the expected downtime per unit tinle is given by 

D(T) = 
dbB(T) + d, 

T+ d, 
(3.20) 

The cost model in its simplest form is. assuming inspection repairs are performed clurin. g 

the inspection period d, , 

C(T) 
C5 B(T) +f K(T) - B(T)I, Cýj + C, 

(3.21) 
T+d, 

34 



If inspection repair requires additional tinle to the inspection period of d, per fault, 

thenequations (3.20) and (3.21) are simply modi fled tothe equations 

d, 
B(T) 

0 
B(T) 

d, 
D(T) 

K(T) K(T) 
(3.22) 

T+. d, +dd('- 
B(T) 
K(T) 

and 

QT) = 
C6 B(T) +f K(T) - B(T)) Cd +Ci 

(3). 2 3) 
T+d, +(I- 

B(T) 
K(T) 

Christer and Waller [1984a] give a numerical example for a comparison of the 

results for the three models in terms of the expected proportion of faults arising as 

breakdowns and the expected downtime. In terms of the expected proportion of faults 

arisin2 as breakdowns, it is seen from equation (3.12) that the model for non-perfect 
inspections shows, as would be expected, a higher percentage of breakdowns than the 

basic model. Also, the model for non-constant rate of fault occurrence showed in the 

case considered a lower percentage of breakdowns than the basic model. This result is 

because the delay time distribution and the assurned fault arrival rate has a lower fault 

frequency earlier in the cycle. Again, the expected downtime figures show that the 

models with the lowest and highest occurrences of breakdowns have the lowest and 

highest downtimes respectively, which again is to be expected. I 

3.4 Parameter Estimation of the Delay Time Model 

3.4.1 Subjective Estimation 

A task which is vitally important in adopting a delay time model is the estimation 

of the deliy time and initial point distribution. It is not generally posssible to measure 
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directly the delay time It associated with a fault, or the initial point it. A method 

which proved to be possible is to obtain SUbjective estimates of delay time from the 

repairing engineers. At a repair of a failure. or when a fault is identified at an 

inspection. the following questions may be asked of the repairing engineer. 

(a) How lon2 ago could the fault have fir5t been noticed by an inspector or operator 

(=HLA)? 

(b) If the repair is not carried out now, how much longer could it be delayed before a 

repair was essential (=HML)? 

The delay time for each fault is estimated by h= HLA + HAIL (see Figure 3.5). 

Delay time h 
HLA 4- HIM 

Fault first arised Fault detected by an inspection Breakdown occurred 

Figure 3.5. Estimation by h= HLA + HIM. 

In this way, by observing sufficient faults. the delay time distribution J(h) may be 

obtained. Furthermore. at any point in time T when a fault is being attended to, having 

an estimate of HLA provides at once an estimate of the initial point 11, namely 

it = T- HLA . It is the set of such estimates that enables the distribution of the initial 

points it to be estimated. The method of estimating the distribution parameters of 

delay time h and initial point it in this way is known as the subjective method. Note 

that. in adopting the subjective method to obtain delay time and initial point estimates, 

the definitions of fitilt and failure are important. 

One of the interesting aspects of delay time modelling is that it can use a synthesis of 

subjectively derived data to model a maintenance situation where the variable of interest 

can be the expected number of breakdowns over (0,7)1 B(7), the expected downtime 



per unit time, D(T), or the expected cost per unit time. C(7). If there is a current 

policy of inspecting the system at point To , then one would expect that the 

relationships such as the following to hold, 

B,, B(TO) . (3.24) 

D, ) D(T, ). (3). 2 5) 

Co = C(T. ) ý (3.26) 

where the left hand side is objective data, the currently observed number of failure, 

downtime and cost per unit time, and the right hand side is the output of a model based 

upon a synthesis of subjective assessments. However, the chance of the above 

relationships being satisfied is remote. The problem is simply stated in Figure 3.6. 

B(7) 

B(TO) 

TO 

Figure -35.6. Bias of the estimation. 

This suggests that a revision will be required in the modelling process, which is I 

expected with any process of decision analysis entailing subjective assessments. 

In view of this anticipated problem. a method has been developed by Christer and 
Redmond [1990] to formally revise or update the prior delay time distribution, J(11), 

usina the known B,,, D,,. or Co. This is done by a shear transformation of each 

estimate of delay time ii to fi' 
, such as z= cth + (,, ), where ct and (o are the 

Unknown parameters to be determined such that the above-mentioned relationships hold. 
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Tile arMU'llent for this type of trans formation is the observed tendency for estimators to 

systematically underestimate delay time which, therefore, needs to be extended. In 

aeneral. we would therefore expect ct>1. 

Another problem which can arise from using the subjective method is one due to 

sampling bias. At failures, the delay time estimates obtained are ( iz, J=JHLA I (since 

HML=0. b definition), which, if this is the only source of estimatina data, will y I-: - 
generally produce an underestimate of the pdf of h, say lif , because shorter delay 

times have more chance of leading to a failure. On the other hand, at inspection repairs, 

the delay time estimates obtained are )={HLA+HjVILj, which will produce an 

overestimate of the pdf of h, say hT , because longer delay times have more chance of 

spanning the inspection time point T. Christer and Redmond [1990] recognised this, 

established the existence of bias, and proposed a bias correction method. We examine 

this briefly below. 

Here it will be convenient to define the instantaneous arrival rate g(u), the 

probability density function q(u) and the cumulative distribution function Q(11) of the 

initial point u after an inspection. For the present, we suppose that inspections are 

perfect and inspection points are renewal points. The function q(u) is given by 

q(u) = , (ii)IK(T) for 0: ý ii:: ý T, 

othenvise , 
(3). 2 7) 

where. as before. K(7) is the expected number of faults arising in the interval (0,7). 

First the Cumulative distribution function of delay time hT was considered under 

the assumption of perfect inspection. The probability that a defect will arise in the 

interval (u, it-i-clu) given that it is identified at an inspection is 

P(Initial point c= (it, it + dit)lh >T- it) = 
q(it)(I - F(T - it)) (3.2 3) 

I- b(T) 
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%\-here, as before, F(h) is tile CUrnulative distribution function of h and b(7) is the 

probability of a fault arising as a breakdown. The distribution of this defect which has 

delay time hT with the delay spanning point T is given by 

F(ý) - F(T - it) P(h :! ý : ýýh >T -it)= for 
-:: >T-ii (3.29) T 'z TI- F(T -it) 

The cumulative distribution function for 11T is obtained by integrating the product of 

equations (3.27) and (3.28) over all appropriate values of it (see Figure 3.7). 

hT 

0 it T Failure 
Initial point Inspection 

Fioure 3.7. Cumulative distribution of the delay time hT * 

If _->T, it may freely range over the entire interval (0.7) and still be associated with C 
an h satisAing It, <ý. Otherwise, if ý<T, it must be restricted to (T-4,7) to satisfy T. - 

the condition hT<ý':. Noting this point, we have for the cumulative distribution function 

of 
hT 

2 

q (u) f F(ý) - F(T - u), l A for ýý > T, 
I- b(T) 

P(hT 
Tq F(ý) - F(T -A for :'<T. f, 

I- b(T) 

It is noted that P(hT :! ý ý) -- F(ý), that is, h. is a biased estimate of h. 

(3.30) 
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Secondly. we consider the CLIIIILIlatiVe distribution ftinction for delay time h, . To 

determine P(h, <, ý). it is assurned that inspection is perfect with period T and a fault 

which arises at time u<T leads to a failure at time u+hl ý If ý>T. then h_,. < -' and 

so P(h,. <i' xvo cases arises which are u>T-4 and u<T-ý, see 
_)=I. 

Otherwise, if 4<T, t 

Figure 3.8a, b. 

hf 

0 T-ý it Failure T 

Figure 3.8a. CDF of h, - (zt>T-4). 

T- Failure T 

Fiaure 3.8b. CDF of h, - (u<T-4. 

From the Figure 3.8a, if ii>T-ý, lif must automatically satisfy h.., <ý. Therefore, for 

u> T-ý, we have 

P(h. f 
#f (3.3) 1) 

Again, for ii<T-ý (Figure 3.8b), for the fault to lead to a failure after time hf 

satisfying Iz, -<'ý, we require h,. <T-ii. and the probability of this event is clearly 

F(ý) / F(T - it) for it <T-, ý. Collecting these results together. and integrating over 

all appropriate values of initial point it, Nve find the cumulative distribution ftinction of 
hi. to be 

I 
(F(, ý)Q(T-ý)+ r. 

q(it)F(T-u)duj for < T, P(h b(T) (3.32) 
for T. 
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From the eqUation (3.32), clearly P(h, < ý)- F(Z) and as expected, F7., f(qý-> F(ý) 

-as T -> oc. where FT.,. -(ý) = P(h, < Therefore the estimate of h, h, , becomes 

asymptotically unbiased with T. 

Christer and Redmond [1990] proposed a maximum likelihood refinement for 

correcting the bias in estimates of delay time. Suppose that there are two data sets of 
A 

"" 

estimates which are failure delay time {hj ;j=1,2,..., n) and inspection repair delay 

ý (2) 

time (k So far, the practice in case studies has been to produce a 
A 

(1) 
A (2) 

combined set [{hj + {k 1] of delay time estimates from which to establish F(Y). 

Here, adopting the same approach, a maximum likelihood refinement may be applied to 

compensate for the bias. Let the prior distribution for the delay-time be F(T, ý), where 

ý denotes the distribution parameters. Accepting this distribution, we have, from 

equation (3 : ). 2 9), the distribution of the delay-time of observations spanning an 

inspection epoch T, 

q(it) f F(ý, y) - F(T - u, 7)) A for T, 
FT'i y) =I- 

b(T) (3.3 -33) T q(zt)(F(ý, y) - F(T- it)) 
1- b(T) 

A for < T. 

Again, the distribution of delay time observations made at failure epochs is, using 

equation (3.32), 

I F(ý, y)Q(T - ý) + q(u) F(T - it, y)dltl for < T, 
FT. f (3.34) b(T) 

for T. 

The choice of the parameter ý is made by utilising the maximum likelihood principle in 
A 

(1) 
., ý 

t 2) 

the li0it of the observations fhj ) and (h, 1, that is 
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m. ax: lo,, - A... (h +0-: 
If,., 

ulý 

where f denotes the probability density ftinction of F: 

'"0:: -, 3 f7-,. fo ra 

This optimisation process provides an appropriate fit to the parameter to enable 

F(x, y) to be defined. Of course, some form of updating, adjustment will still be 

needed, possibly associated with an iteration between correcting for bias, process 

(33.3 )4), and model and distribution adjustments to the status quo. The main point of the 

above discussion is that there are methods of estimatina and correctin- a subjectivel, % 
derived delay time distribution and model. 

ConcerninQ subjective estimation of the delay time, Wang, [ 1996] pointed out that the 

current practice for asking people for a point estimate or an interval estimate of point 

measures might not be the best method. He had recognised that the subjective 

probability estimation in general arose both from the fields of psychology and 

operational research or statistics. Then, lie had proposed an alternative approach to 

subjective estimation of the delay time for maintenance modelling. namely, to get panel 

of experts and had estimated from them the probability that the mean delay time of a 

chosen failure type would lie in a specific time interval. This method in subjective 

probability and expert j Lidgement assessment had been advocated both by psychologists 

and statisticians. 

3.4.2 Objective Estimation 

If objective data are available, Baker and Wang [1992,1993] have recently 
introduced a method, now known as the objective method, to estimate the delay time 

distribution fi-om objective data, that is. data from maintenance records of failures and 

fhLIItS fOLInd at inspections or planned maintenance. Essentially the data should include .1 
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history of breakdown (failure) times, and the results of plartned maintenance or inspections 

which may be positive (fault found) or negative (no fault found). 7nie objective method 

titilises the principle of maxinium likelihood of observing a sequence of events. 

Baker and Wang [1992] first consider the simple case of a single component machine, 

which inav be characterised by the following assumptions. 

(1) The time to the initial point of a defect and the subsequent time to failure of the 

component are independent. 

(2) -flie distributions of initial point u and delay time h are modelled as Exponential or 
Weibull. 

(. 3 )) hispections are perfect. 

(4) Repair times are negligible. 

(5) Repairs are taken as replacements, so that the faulty component is restored to as new 

condition. 

Assumption (2) is simply considered by Baker and Wang [1992] for convenience. Also 

the possible events that can contribute to the likelihood are defined as: 

N: Inspection and no defect found (negative inspection), 

Y: Inspection and defect found (positive inspection), 

B: Breakdown (failure), 

E: End of observation period. 

fn addition. the following notation introduced by Baker and Wang [199-2] is useftil. ID 

R: Replacement on a breakdown, B, or positive inspection, Y, 

A': Denotes anv event. 

Based upon the above assumptions and clefinitions, Baker and Wang [1992] establish 

tlie lik-eliliood of obsening a sequence X� X2 X� of events of týIles B. E, 1. and 

N' by Litilising the eNpression, 
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L=P,., xxp "3 
x ... xp (3.31 7) 

where Pv, denotes the probability of an event X, ,P means the probability of 
. V, i. vl 

event X, given that event X, has occurred. and so on. Since, after a replacement R, 

the likelihood does not depend on any event previous to R, the likelihood can be written 

as the product of terms conditional on events RX, X,... starting with the last renewal. 

Further, since inspections are assurned to be perfect, we have 

p=P Xi RXI -N, XIRNý (3.38) 

Under this concept, three key probabilities can be considered for the described system. 

(1) 
'ýYBIR(ln'Odt is the probability of a sequence of negative inspections of which the 

last occurs at time tn from last renewal, and a breakdown at a time between t and 

t-, 'dt from last renewal. P. 
VB/R (tt) isgivenby 

PA'BjR Un 
- 1) ý fý 

q(tt)f (t - u)dzi, (3.39) 

where q(u) is the pdf of initial point u, and J(h) is the pdfof delay time h. 

(2) PYEIR (tn 
10 is the probability of a sequence of negative inspections of which the last 

occurs at time t,, from last renewal, and no breakdown before observation ceases at 

time t from last renewal. This probability is given by 

Q(t) + q(it)(I - F(t - ii))du (3.40) 

where Q(u) is the cdf of initial point it, and F(h) is the cdf of delay time It. 
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is the probability of a sequence of negative inspections of which the last (3) P\, ) ; 

occurs at time t, followed by a positive inspection at time t from last renewal. This 

probability is given by 

P %) R (t,:, 0ý fý 
q(u)(I - F(t - ii))dzt. (3.41) 

Based on the above probability definitions and assumptions, Baker and Wang [1992] 

developed the likelihood ftinction L of observing a sequence of events of (a) breakdowns 

at time t", (i = 1,2,... , 11B )I (b) no failure before observation ceases at time tE i 

and (c) positive inspections at time tk' (k as 

n., 
-- 

n, 
tiB' 

I 
tiB ) F1 p E' y. Y), PVBIR 

NE R 
ti, 

'ýVYIR 
(tk 

9 
tk (3.42) 

j=l k=l 

where t, ' is the time of the latest negative inspection, (or, failing that, the latest renewal) 

such that t, " <t. and similarly for tE and t'* * By maximising the likelihood L in 
J, k ID 

equation (3.42), estimates of parameters of the underlying initial point distribution, q(u), 

and the delay time distribution, J(h), can be obtained. 

A development of and the first application within industry of the objective method for 

estimatin! z delay time parameter is given in Christer et al [1995] in the case of a multi- 

component system. They present a study carried out for a copper products manufacturing, 

company. developing and applying the delay-time modellinor technique to model and thus 

optimise preventive maintenance (PINI) of an industrial press. The data available within 

the plant included the dates and downtimes occurred due to both PM and failures, the 

nature of the occurrence, and the number of faults found at PM. To estimate the 

parameters of the fault arrive process and the delay-tinie distribution, the following 

assumptions -vvere considered appropriate to their study. 

(I) Faults arise according to a lioniouneous Poisson process with rate X. 
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(2) Faults are assurned to arise independently of each other. 

(3) The delay time h of a random fault is independent of its time origin and has pdf J(h) 

and cdf F(h). 

(4) Inspections carried out at PM are assumed to be imperfect in that they can only 

identify a fault present with probability r. Probabilities of detection of a fault at 

successive inspections are independent. 

(5) All identified faults are rectified by repairs or replacements during. - the PM period. 

This does not influence the development of undetected faults. 

(6) Failures are identified immediately, and repairs or replacements are m ade as soon as 

possible. 

Under the above assumptions, the likelihood expression (3.42) need to be revised 
because of the non-perfect inspection. -flie immediate consequence of non-perfect 
inspection is that an inspection cannot be viewed as a renewal point. Consequently, time 

measures are fi-om the 'as new' epoch. 

Ti-I 
Y t t+At 

Figure 3.9. Failure process of a fault arising at time y. 

T, 

If T, is the time epoch of the ith, i =1,2. ..., PM from new, we have the probability 

of a failure in (t, t+-At) resulting from a fault arising at time y (see Figure 3.9), is given 
by 

(I - r)"" (F(t + At -Y) - F(t - 
F(t + At -y) - F(t - y) P(t, t + Atly) 
F(t + At - 
0 

for T, 
-, <Y !ýT, ýi=1,2,...,; 1 

for T,, <Y<t 
for t <y: ýt+At 
for t+ At <Y. (3.4-3)) 
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Tlien. for T,, <t:! ý T,, 
-, , 

the expected number of failures over (t, t-'. -, At), EN-f (t, t +At), 

is 

EN.,, (t. t+ At) =A 
fP(t, t+ Atjy)ýy 

nT 

AZ (I - (F(t + At - y) - F(t - y))dy, 

F(t +At -y)dj,. (3.44) A (F(t + At - y) - F(t - y))dj, +Af 
PI 

Changing the integral variable and rearranging the integral sequence, and after some 

manipulation, Nve have 

.,, 
n 

ENf (t, t + At) =A Z(l 
- r)"' (F(x - Ti-, ) - F(x - Ti))dy 

-At 
+, ý F(x - T,, )d-c. (3.45) 

Also, we have the probability of identiAring the fault at PM time T,,,, resulting from 
.I 

a fault arising at time y, is given by 

-1 < y:! ý Ti, i=1,2,... i-(l - F(T - y)) for T, 

, 11y)= i-(I-F(T,, j-y)) (3.46) P(T for T,, <y<T,, 
0 othenvise. 

T'lien. the expected number of faults found at PM time T,,,,, ENP(T,,,, ), is 

EA'p A IP(Tj jy)ýv 

(1-F(T,,. I-y))dy 

(I - F(T, 1 
(3.47) 
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Ross [ 198-33] presented the following proposition in proposition 2.3.2: 

If an event arrival process follows a Poisson process with ý,, the number of events that 

occur by time t, Al(t), is an independent Poisson random variable having mean given by 

; JP(s)ds, 
where P(s) is the probability that the event occurs independently all else at 

time s. 

Since the fault anival process is assumed to arise according to a Poisson process, as a C 

generalisation of proposition 3.3.2 in Ross [1983], the number of failures in (t, t+At) 

follows a Poisson distribution with mean E. N,, (t, t+ At) and the number of faults found 

at PM follows a Poisson distribution with mean EN,, (T,,., ). Therefore, the 

probability of in failures over (t, t + At), where T,, <t:! ý T,,.,, , 
is given by 

I 

(EN j (r, t+ At))"'e - 
EN, (t, t+Al) 

P(m failures in (t, t+ At)) =-1 (3.48) 

and the probability of n faults found at T,, 
-, 

is 

p(T P(n fatilts at T�_, )= 
(EN �� 

»n 
e- 

EN, (T -, 
) 

. (3.49) 
n! ' 

As previously indicated, the data assumed to be available are the number of failures in 

each working day and the number of faults identified at PM times. To forniulate the 

likelihood ftinction of the observed event. suppose first that Ili faults have been 

observed at the ith PM time -flie PNI interval (Ti-1, T, ) is now divided 

into k nonoverlapping subintervals of equal leng-th At. namely 

(T, 
-, + (j - I)At, Ti-I + jAt), j=1.2. 
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- of failures occurrin in I' over where T, 
-, + kl = T, . Let m,, denote the numbei f 

(T-: - T) - 

Since we have assumed that all faults are independent of each other. it follows that a 

fault resulting in a failure will not have any influence on a fault which is found at PM, i. e. 

the number of failures since the last PM and the number of faults found at PNI are also 

independent. 'l-his being so, the likelihood is simply 

k 

L {P(.; z, faults at T, )II P(mij failures in Ij (3.50) 
j=1 

Tlierefore, once . 
ýh) has been specified, it is possible to obtain maximurn-likelihood 

estimates for any tu"- own parameters. This includes, for example. those inherent in the 

specification of . 
6h) and the rate of occurrence of faults, X, and the probability 1. that a 

fault will be idenfified at PM if it is present. 

717he above section is concerned chiefly with delay time analysis and the estimation of 

the underlying delay time distribution and defect arrival process. Once these are I 
estimated it is poSsible to apply the knowledge to model maintenance problems. This is 

the main objective of the techniques. 

3.5 Application of delay time modelling In 

'17here are many applications developing delay time maintenance modelling. Some of 

them have assumed that the delay time parameters are given. In real-xvorld situation, the 

delay time paramýeters are, however, only estimated from the data which are from 

subjective or objective information. In this section, we are interested specifically in 

applications of estimating delay time parameters. 
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-nie first application of delay time modelling (DTM) Nvas in the context of building 

maintenance in Christer [1982]. In. this pilot application, DTM was applied to assess the 

potential of an inspection maintenance policy as opposed to the existing breakdown 

maintenance policy for a building complex. I'lie model was of the pooled components 

tNpe. (complex or multi-component type). which grouped faults from individual 

components. It was assumed that faults arose in a homogeneous Poisson process (FIPP). 

Subjective and objective infon-nation were both used. 

In 1984, attempts were made to apply DTNI to a different maintenance context, namely, 

an industrial plant. In Christer and Waller [19S4b], DTM along with the snap-shot 

modelling techniques was applied to a study to model downtime consequences of 

maintenance practice of a hi-Ji-speed product canning process within Pedigree Petfoods 

Limited. In this study, the snap-shot modelling, which is a problem recognition technique 
introduced by Christer and NN'hitelaw [198-33] with strong parallels to reliabilities centred 

maintenance. It was applied to find out which component within the canning plant Z 
develop faults most fi-equently, the causes of the faults, and the possible means of 

prevention's of these faults. In this study, the DTNI was used to model the frequency of 

pit stops so that downtime can be reduced. The delay time distribution for the model was 

estimated using, the subjective method, and it was found that initially the data had 

generally been underestimated. Re-estimation was carried out after feedback to the 

assessors and the result was a very encMiragina, and produced modelling which actually 

satisfied the status quo conditions. 

In another case-study in Christer and Waller [1984c], snapshot analysis and the DTM 

were again applied to modelling preventive maintenance for a vehicle fleet of tractor units 

operated by Hiram Walker Ltd. In this case study. the subjective method was again used 

to obtain the estimate of the delay time distribution. The reconu-nended decrease in 

fi-equency of maintenance as a result of the modelling. was adopted by the management. 

In 1988 the pooled component model applicable to the building industry appeared in 

Christer [I 98S]. Here a DTiM was developed in which the probabilitY p(l) of detection 

of a fault at time y fi-om the faUlt origin time it increased from 0 at V=0 to Unity at 

1-11. Repair cost now varied over the delay time as a deterministic function CO,, h). 
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Developments of this study led to a major collaborative research project with the Concrete 

Research Group at QMC London into the inspection and repair modelling of concrete 
bridges and high-rise structures (see Christer and Redmond [ 1993]). 

Later, Chilcott and Christer [ 199 1] used DTM to model the maintenance practices for 

coal face machinery within British coal. Here, they considered the case of a non-periodic 

inspection process where all known defects were remedied during the next maintenance 0 
period. Also, the delay time parameters were estimated based on the subjective method 

which were then used to model the effectiveness of condition-based monitorino, in 
I'D 

reducing downtime. As a result. the financial consequences due to 2% downtime savings 

are very attractive. 

Christer and Redmond [1993] studied the inspection of concrete structure of bridges. 

Here, it is noted that the deterioration of a component goes through a number of definable 

states, namely new to cracking, cracking to spalling, and spalling to failure (essential 

repair). The DTM approach was used, and the delay time was splitted into two phases, 

cracking and spalling. 17he delay time at the cracking and spalag phases were 

represented as h, and v, with pdfs J(h) and iv(v), respectively. 'flie time it is the 

time the component starts to deteriorate from new to cracking, and its pdf is q(zt). It is 

also assumed that only one type of fault can arise within a single component. The delay 

time parameters were estimated based on objective data at inspection, namely the age of 

each component and its condition. 

In 1987, a model utilising, the notion of delay time was used to establish the reliability 

consequences of inspecting a single component on different inspection periods, Christer 
1: 1 - 

[1987]. In the model, the inspections are assumed to be perfect and non-detrimental. 
After the inspection the component is returned to the as new condition. '17he model has 

recently been explored for application to model the reliability of pumping systems for the 

water supply in some 4,000 high rise housing in Hong Kong in Leung and Christer [1995]. 

Also recently, a repeat study was carried out by Christer et al (1995] to model preventive 

maintenance (PM) practices of a cooper products manufacturing in the Northwest of 
England. In this study, as discussed in the previous section 3.4, the DTTVI parameters 

were estimated using objective data. namely, the maintenance record data of failures and 
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faults found at PNI. The criterion of interest was the to minirnise total downtime over a 

PM interval. Using the same case study, the subjective method was also used to estimate 

DTMparaiiietersCluisteretal[1994]. Although the results of the comparison are still to 

be formally reported. it is noted that both modelling techniques lead to verý, similar results 

and recommendations. This consistency is indicative of a welcome robustness of DTIM. 

Desa [1995] con-sidered a bus fleet maintenance study for an inter-city bus company in 

developing country. namely Malaysia. He showed in this study that in a situation where 
data are almost totally lacking, the snap-shot modelling was both practical and valuable for 

problem identification and definition. Also.. he showed that the use of delay time concept 

and modellhisi enables issues related to existinu maintenance policy and practice to be 

evaluated and modelled from a starting position of basically zero data using subiective I 
assessments. That is, in the situation where objective maintenance data are not available, 

subjectively derived data can be reliably used as the basis for modelling. 

3.6 Conclusions 

A substantial number of theoretical O. R. models developed for maintenance decision 

problems have been reported in the literature. On the other hand, the number of reported 

applications and implementations of these maintenance models to real-world problems is, 

though increasing, still few. The likely factors contributing to the lack of application of I 
maintenance models have also been identified and highlighted by many authors (e. g. 
Pintelon and Gelders [1992], Baker and Christer [1994]). 

The delay time concept has, however. provided a useffil means of modelling the 

effect of periodic inspections on the failure rate of repairable machinery. The delay 

time concept defines a two-stage failure process for a component. which consists of a 
defect first becoming visible at time u from new with probability density ftinction, 

q(u), and the visible defect developing into a failure after some delay time h with 

probability density function, j(h). Once these two distributions are known. it is 

possible to model the reliability, operating cost and availability functions. The 
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distribution ftinctions q(u) and J(h) and their parameters are vital to delay time 

modelling. Two basic approaches to solve the associated estimation problems, namely 

subjective and objective methods, have been developed using the information obtainable 

from engineers who repair the machine. Although many variations in maintenance 

practice are possible, the situation where an engineer decides at inspection that a 

component is defective, and replaces it, is very common. Since delay time models can 

be used for decision-making, for example choosing the interval between inspections to 

ininimise cost or downtime, it may be natural to rely on the delay time modelling in 

adapting the maintenance models to real-world situation. 
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Chapter 4 

SEMI-MARKOV AND DELAY TIME MODELS OF MAINTENANCE 

FOR A SINGLE COMPONENT SYSTEM: A COMPARATIVE STUDY 

4.1 Introduction 

In chapter 2, the literature on inspection modelling has been reviewed and in 

chapter 3, delay time modelling has been discussed. It was evident from the literature 

review that inspection models were often formulated as a Markov inspection model. 
The Markov inspection models assume that the working condition of the system can be 

expressed as a discrete-time Markov chain with degraded states and a failed state (see 

Tijms and Van Der Duyn Schouten [1985]). In the literature, the state transition 

probabilities are characteristically assumed to be given. Such an assumption may be 

unrealistic. In practice, it is difficult to define the working condition of a deteriorating 

system in terms of degraded states, and therefore, just as difficult to estimate the state 

transition probabilities. The literature on Markov models is notably silent on such 

matters at the current time. 

These actual problems which have been addressed using Markov models may also be 

formulated and solved using the delay time techniques presented by Christer. The delay 

time concept provides a means of modelling the behaviour of the system, and predicting 

quantities of intereýt such as reliability, downtime or cost, and does so under various 
inspection polices. The delay time model defines a two-stage failure process for a 

component, which consists of a fault first becoming visible by some inspection 

techniques at time u from new, with probability density function q(u), and the visible 
fault developing into a failure after some delay time h with probability density function 

J(h). We have seen that the model parameters for q(u) and J(h) can be estimated from 

both subjective or objective data. 
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In this chapter, we will develop a Markov type inspection model for the simplest 

problem situation for which both Markov and delay time models are valid. The delay 

time and Markov models are then compared for the same problem. 

4.2 System Description 

Consider a repairable single failure mode machine that may become defective or 

suffer breakdown during the course of its service lifetime. Also, assume that the system 

is inspected for a visible fault at a regular periodic interval, and that the inspection 

pattern is re-started after the repair of a failure. For this machine, an inspection policy 

which minimises the expected total long-run average cost or downtime can be derived. 

For modelling purposes, the system considered here is assumed to have the following 

properties. 

(1) A fault can be observed by inspections only, and a failure will be observed or 

repaired inmiediately if it occurs. 

(2) An inspection is undertaken every T time units, and the inspection process restarted 

after a failure repair. 

(3) Inspections are perfect in that any fault present within the machine will be identified 

at inspection, and no new fault injected because of inspection. 

(4) An inspection requires C, cost units and d, time units, d, <<T. 

(5) A fault identified at an inspection will be repaired within the inspection period d, 

and the repair cost per defect is Cd units. 

(6) The component is repaired immediately upon failures and its repair requires C. 

cost units and d. time units. 

(7) The machine is as good as new after a repair. 

The possible operation of this system indicated in Figures 4.1 and 4.2 is 
I 

conveniently classified into two cases. 
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Fault arises 
Fault Operating 
free with a fault 

T. tit ýT. tit ,T. Elf " 
Inspection Inspection Inspection Inspection 

(Fault repair) 

Figure 4.1. Case "I" Inspection cycle. 

Case "I", Figure 4.1, is the case where a renewal point occurs after a fault is repaired 

within an inspection period. 

Fault arises 
Fault Operating 

II free with a fault 

T di T d, ýdb 

Inspection Inspection Inspection Failure 
(Repair) 

Figure 4.2. Case "2" Failure cycle. 

Inspection 

Case **2", Figure 4.2, is the case %%, here a renewal point occurs after a failure is 
Z 

repaired. Note that a renewal point of case "I" or of case "2" may occur after many 
inspections in which no faults are found. 

For this system operating in practice. a variety of data is potentially avaiable. The 

data could include the inspection time point. the inspection result, and the time of 
failure. As an example, such characteristic data is surnmarised in Table 4.1 for T= 10 

units 
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Table 4.1. Characteristic structure of the data of the single component system 
for T=10 units. 

Time point Inspection result or failure Action 
0 Nornially operated No action 
10 No fault detected No action 
20 A fault detected Repair 
27 Failure Repair 
37 A fault detected Repair 
47 No fault detected No action 
54 Failure Repair 

This data indicates fault free operation to T= 10, a defect arisen and being identified at 
T= 20, and a fault then arising and leading to a failure at T= 27. The inspection 

process then restarts. If it is not possible to obtain such data from actual maintenance 

and operating record. assuming a delay time model, it is possible to simulate the process 

and thereby obtain these data. Either way, having the data, it may then be used as an 

exercise or experiment to estimate, or recapture, the underlying delay time parameters 

and in this way model the real-world, or simulated real-world, situation. In section 4.5, 

we will describe the process of simulating data. This is important in validating the Z: ý 

modelling methodology. 

4.3 Serni-Markov Inspection Model 

4.3.1 Introduction to the Semi-Markov Inspection Nlodel 

In the past, various maintenance problems assuming Markovian deterioration of 

s-v-stems have. as already commented. been presented in the literature. Emphasis is 

usually placed upon the modelling of the system, assuming parameters to be known, and 

upon the mathematical derivation of the model or the properties of the model. 
However, only a limited number of Markov papers have discussed the associated 

computational methods for computing maintenance policies. Examples are Tijms 

[19S6] and Tijins and Van Der Duyn Schouten [1985] which dealt with an optimal 
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inspection and replacement problem of a discrete-time Markovian deterioration systern, 

and proposed a computational algorithm by modifying the policy iteration method. 

In this section, xve review Tijms' semi-Nlarkov decision process and apply it to the 

optimal inspection problem of the discrete Markovian deterioration system described in 

the previous section, and use the Tijms and Van Der Duyn Schouten's computational 

algorithm to evaluate the results. 

4.3.2 Semi-Markov Decision Process 

Semi-Markov decision models are concerned with dynamic systems which at 

random points in time may be observed and classified into one of a possible number of 

states. The set of possible states is denoted by L After obsen, ing the state of the 

system, a decision has to be made, and costs are incurred as a consequence of the 

decision made. For each state i(=-I, a set A(i) of possible actions is available. It is 

assumed that the state space I and the action sets A(i), iEI, are finite. The time 

between two consecutive renewal points is measured in discrete time steps At. A semi- 

Markov decision process has to satisfy the following Markovian Properties. 

If at a decision epoch the action a is chosen in state i, the system state at the next 
decision epoch depends only on the pfesent state i and the chosen action a 

regardless of the past history of the system. t) 

(2) The costs incurred until the next decision epoch depend only on the present state 

and the action chosen in that state. Here, cost is taken as the consequence variable 

of interest, which could include downtime as well as direct cost. 

The long-run average cost per unit time or the long-run average downtime per unit 

time is often taken as the optimality criterion in the maintenance decision-making 

process. To establish these criterion functions in the context of a senii-Markov decision 

model. we define the following characteristics. 
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P, (a) : the probability that at the next decision epoch the system will be in state j if 

action a is chosen in the present state i. 

r, (a) : the expected time until the next decision epoch if action a is chosen in the 

present state i. 

C, (a) : the expected cost of the action a if action a is chosen in the present state i. 

D, (a) : the expected downtime of the action a if action a is chosen in the present 

state i. 

It is assumed that -r, (a) >0 for all ir=I and aeA(i), that is two or more events cannot 

occur at the same instant in time. We define a stationary policy R as a rule which 

prescribes the same action Ri (=- A(i) whenever the system is observed in state i at a 

decision epoch. It can be shown that under a stationary policy, because of the finite 

state space, the number of decisions made in a finite time interval is finite with 

probability 1. Also, denoting by X,, the state of the system at the nth decision epoch 

from new, it follows that under a stationary policy R, the embedded stochastic process 
JXJ is a discrete-tinie Markov chain with one-step transition probabilities Pjj(Rj). 

Introducing and defining the random variable Z(t) : the total costs incurred from the 

initial point t=0 to time t, t ýA, and denoting by EI. R the expectation operator 

when the initial state -YO =i and the stationary policy R is used, then the limit of the 

expected cost per unit time, gi (R) , 
is given by zD 

I 
(R) = lim - E. , [Z(t)] for all iEL (4.1) 

[-+ýc t "' 

We can give a stronger interpretation for the average cost function a (R) . If the initial 
I Ot 

state i is recurrent under policy R, then the long-run actual average cost per unit time 
I- 

equals gy, (R) with probability 1. In the case when the Markov chain {XJ 

associated with policy R has no two disjoint closed sets, the Markov chain fX,, ) has 

atiniqtieeqtiilibriiiiiidistribtition 11; rj(R), jc=IJ, and gi(R)=g(R) independentlyof 

the initial state A', = i. 
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Tijms [1986] shows that if the embedded Markov chain fX,, l associated with 

policy R has no two disjoint closed sets, then 

lim 
Z() 

= g(R) with probability 1 (4.2) 
t-+-C t 

for each initial state X. = i, where the constant g(R) is given by 

2: Cj (Rj ) irj (R) 

g(R) = j'21 
Erj(Rj); rj(R) 
jEl 

(4.3) 

Therefore, a stationary policy R. is said to be average cost optimal if gi (R gi (R) 
I 

for all ir=I and all stationary policies R. 

For computing an average optimal cost, a policy-iteration algorithm can be 

developed. The policy-iteration algorithm requires that for each stationary policy the 

embedded Markov chain {XJ has no more than one disjoint closed set. Suppose that 

g(R) is the average cost and vi (R) ý i(=- I, are the relative values of a stationary policy I 
R. If a stationary policy R is constructed such that, for each state iEI, 

Ci (Ri) - -:, (R) ri (Ri) + 1: P (T)v (R):! ý vi (R), (4.4) 
In. li Ii jEl 

then g(R):! ý g(R). 

Under these conditions, following Tijms' serni-Markov decision process [1986], we 

can now formulate the following policy-iteration algoritlini. 

Poliqv-itemtion algorithin 

Step 0 (initialization) : Choose an initial stationary policy R. 
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Step I (value-detei-mination step) : For the current rule R, compute the average costs C 

g(R) and the relative values vi(R), i(=-I, as the unique solution to the linear 

equations 

(R, ) - g(R)r, (R, ) - (R, )i, 
], 

ir=L 

vs = 0, 

where s is an arbitrarily chosen state. 

(4.6) 

Step 2 (policjý-inzprovement step) : For each state iE-=I, determine an action a, yielding 

the minimum in 

min f C, (a) - g(R) r, (a) + Pij (a)vj (R)) (4.7) 
a r. 4 (i) j r- 

The new stationary policy R is obtained by choosing R, = a, for all iEI with 

the convention that Ri is equal to the old action Ri when this action minimizes 

the policy-improvement quantity. 

Step 3 (convei-gence test) : If the new policy R equal the old policy, the al-orithm is 

stopped with policy R. Otherwise, the algorithm cycles back to step I with R 

replaced by R. 

It can be shown that the algorithm converges in a finite number of iterations to an 

average cost optimal policy. Also, as a consequence of the convergence of the 

alcyoritlim, there exist , a* (R) and v, ., ic=I, satisfying 

vi .= min (C. (a) -g. (R) ri (a) + 2: P, (a)ty*), i E=- 1. (4.8) 
a e. 4 (i) 

jEl 

Theconstant g, *(R) is uniquely determined as the minimal average cost per unit time. 

Moreover, each stationary policy whose actions minimize the right side of (4. S) for all 

iEI is average cost optimal. 
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4.3.3 A Serni-Markov Inspection Model 

. sed in the The inspection system mentioned in tile section 4.2 can be analy 

framework of a semi-Markov decision process to find the long term consequences of 
different inspection periods when the distribution of the time to the initial defect is 

negative exponential. For a single component system with discrete-time Markovian 

deterioration, according to the degree of deterioration, the states of the system are 

represented as 0,1 and f, where state 0 represents a normally operated state without 

a defect, state I represents a defective state, and state f represents a failed state. 
These states have been used in the paper of Tijms and Van Der Duyn Schouten' [1985] 

in denoting the working condition of the system. Without any maintenance activities, 

the state of the system at discrete-times t=0, At, 2At.... is assumed to undergo 
deterioration according to a discrete-time Markov chain. Accepting the validity of their 

concept of deterioration and assuming the inspection system as outlined in section 4.2, 

we formulate the simplest possible case of an Markovian inspection policy, which may 
be characterised by the following additional assumptions. 

(S) Opportunities for inspections occur only at equidistant points in time 

t=0, At, 2At .... 
from new or a renewal repair. 

(9) The working condition, or state, of the system cannot improve on its own. 

(10) In absence of inspections and repairs, the working condition of the systern follows a 
discrete-time Markov chain. 

The decision epoclis of this model are the epochs at which opportunities for 

inspections occur when the system is operating, and the epochs at which the exact 

working condition of the system is revealed by either an inspection or the immediate 

detection of a breakdown. We take as the state space 

I= Ifili = 0,1, fl, uf (i, inAt)1i = O, m = 1,2,..., 11) (4.9) 
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where At is an arbitrary small time which defines the mesh over which discrete time 

steps are measured. State i is the working condition 0.1 or f that describe degrees 

of deterioration. Also, the state (i, niAt) stands for the state that mAt time units have 

passed since the last inspection, or failure, where it was revealed that the working 

condition was i and the component has not failed currently, or mAt time units ago 

when in state i. For the current problem, we have i=0 since each inspection or 
failure repair is a renewal point. It is noted that M is an arbitrary upper limit of ni 

which will have no influence to the modelling if a finite solution exists. M serves to 

remind us of the finite nature of the state space. The possible actions a are denoted by 

0, leave the system as it is, 
1, inspect the system, 
2, repair the system. 

To formulate the one-step transition probabilities from state i to sate j if action a 
is taken at state i, P,, (a) , the one-step expected transition times -ri (a), the one-step 

expected costs Ci (a) and the one-step expected downtimes D, (a) , we introduce the 

following deterioration probabilities. For t=At, 2At, 3At,..., i=O and j=O, I, f, 

we define the deterioration probability r., where .U 

i, ' = the probability that t time units from now the -system will have working condition Y 
j when the present working condition is i and no intervening inspections and 

repairs take place. 

Interestingly, the deterioration probability r-t can be easily estimated in terms of the 

delay tirne concept since the latter is a more ftindamental concept. This will be 

discussed in subsection 4.3.4. 

The one-step transition probabilities can now be readily obtained by considering the 

action taken at each present state based upon the deterioration probability i1j. Firstly, at 

state 0, action a=0, which is the appropriate action to take at state 0, is taken. If 
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the action a=0 is taken at state 0, the system will either survive until next decision 

epoch At or fail within the next decision epoch At. So, from the definition of the 

deterioration probability iii, it is obvious that 

A: loý 

PO, (0) =I- 0-f 
0 

for y=f 
for y= (0, At) 

otherwise , 

(4.10) 

where as before, (0, At) represents the state that At time units have passed since the 

last inspection. or failure. Also, if the system survives until the next decision epoch At, 

the expected time incurred at state 0 is only the time to the next decision epoch At. If 

the system fails before the next decision epoch At, assuming that die next decision At 

is very small, we can approximately regard the expected time incurred at state 0 as time 

to the next decision epoch At. Accordingly, we have that 

TO(o) = \t. 

When we take the action a=0 at state 0, since no cost and downtime are incurred, it 

follows that 

co(o) =0 

and 

Do(0) = 0. (4.1 J) 

At state 1. action a=2, which is the only possible action to take at state I 

because a fault found at an inspection has to be repaired, can be taken. If the action 

a=2 is taken at state 1, we have by the assumption (4) and (6) of the section 4.2 

that 
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Plu(2) = 1. (4.14) 

Also. since the fault identified at an inspection is repaired within the inspection period 

and its repair costs per defect is C, units. it is obvious that 

ri (2) = 0, 

C, (2) = 
Cd, (4.16) 

and 

D, (2) = 0. 

At state f action a=2 is the only possible action to take because a failure must be 

immediately repaired. Accepting the action a=2 is taken in state f, we have by 

assumption (6) and (7) of the section 4.2 that 

Pfo(2) = 1. (4.18) 

Also, since a failure repair requires C. cost units and db time units, it is obvious that 

rf (2) = 
db 

, (4.19) 

Cf (2) = 
Cb 

ý (4.20) 

and 

Df (2) = 
db 

. 

At state (0. mAt)ý the actions a=0 and a=1, which are the only possible actions 

to take at state (0. nzAt), can be taken. Since state (0, mAt) represents the situation 
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that no failure has occurred in the time period of nzAt time units starting from state 0, 

all the one-step probabilities transitions from (0, InAt) are conditional upon no 

inspections or repairs being undertaken within inAt time units. This means that there 

must be no failure in the first nzAr time units from state 0. If action a=0 is taken at 

state (0, nzAt) for in = 1,2, ..., tVP 1, there must have been no failure in the 1IIAt time 

units from state 0, and the system will either survive until next decision epoch 

(in+l)At or fail before the next decision epoch (ni+I)At. The probability that there is 

no failure in the inAt from state 0 is I- i-" and the probability that there is a failure Of 

between the present decision epoch mAt and the next decision epoch (m+I)At is 
(M+I)& 

-I. 
mAt. 

I*Of Of By the definition of the deterioration probability, we have that 

(m+1)är 
_1. 

MAI 
of 

1. M. 11 
of 

rýf 

rof 

for y=f 

for y= (0, (in + I)At) 

othenvise . 

(4.22) 

Also, if the system survives until the next decision epoch (m+I)At from the current 

decision epoch mAt, the expected time incurred by taking the action a=0 at state (0, 

mAt) is At time units from the current decision epoch nzAt to the next decision epoch 

(in+I)At. If the system fails before the next decision epoch (in+I)At, assuming that At 

is very small, we can approximately regard the time of failure as (nz+l)At. That is the 

expected time incurred by taking the action a=0 at state (0, mAt) is At time units to 

the next decision epoch (ni+I)At. Accordingly, we have that 

r(0, 
mA1) (0) = At , (4.23) 

When the action a=0 is taken at state (0, mAt), since no cost and downtime are 
incurred, it follows that 
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C(O"niät) (0) =0. (4.24) 

and 

D(O. 
mAt) 

(0) =0. (4.25) 

If action a=I is taken at state (0, nzAt), for in = 1,2, ..., 11, assuming perfect 
inspection the system will be in a situation of either having a fault or having no fault at 

an inspection. Since the probability of finding no fault at an inspection is rý' and the 

probability of finding a fault is by definition of the deterioration probability, 

under the condition that there is no failure until inAt from the state 0, we have that 

1. MAI 
00 

- for 0 
. mAt 
Of 

MAI 

P(O, 
MAI)y (1) ol - for 1 (4.26) 

I. M& Of 

othenvise. 

Also, since an inspection requires d, time units and Ci cost units. it is obvious that 

r(o, mA, ) (1) = di (4.27) 

C(O, 
mAl) 

(1) = ct 1 (4.28) 

and 

Dco, 
lw) 

(1) = cý . (4.29) 

Now, utilising the standard serni-Markov decision model of the previous subsection 
4.3.2 (see the equation (4.5)), we can formulate the cost model as 
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vo = -g, (R)At + Pof (O)vf + Po(o, 
_v, 

(O)v(O, A, ) 1 (4.30) 

VI Cd + VO 1 (4.31) 

vf = Cb - g, (R)db + vo , 
(4.32) 

V(O. 
niAi) ': - -9c 

(R)At + P(O.., 
)f 

(O)vj. + 

for 0< mAt < s, (4.33) 

and 

Ci -g, (R)di +P(O,,,, )O(I)vo +P(O,. w), (I)vl, 

for s :! ý mAt :! ý MAt (4.34) 

where g, (R) is the expected average cost per unit time given policy R, s is the time 

to next inspection when the working condition revealed at present inspection time is 0, 

and v., ,xEI, are the relative costs of the various starting states when policy R is 

used. Using the embedded technique, by a repeated application of the above equations, 

we can get the expected cost per unit time. By putting vo =0 the linear equation can 

determine uniquely the average cost g, (R) .- Once g, (R) and vo have been determined 

we can obtain all the values v., by recursive calculations if they are required. 

In a similar way, we have for the corresponding downtime model that I 

lt'0 -2 -9d(R)At + Pof (0)ivf + Po(O., ) (0)iv«)�), 

W, = Wo I 

wf = d6 - g, l (R)db + iv, 

(4.35) 

(4.36) 

(4.37) 
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-a,; ( R) At +P(O. 
niAI)f 

(0)"'. 
f 

+ P(O. 
mld XO, (,,, -I)AI) 

(0)'V(O, 
(n)-l 1.1t I c, 

for O<mAt <s, (4.38) 

and 

6d(R)dl 
di - 

cr + P(O,,,, 
A, )O(')'VO 

+ P(O,. 
Al)l 

(')'Vl 

for s: 5 mAt :! ý AfAt , (4.39) 

where - (R) is the average downtime per unit time given policy R and 1ý,, xEEI, od 

are the relative downtimes resulting from the various starting states when policy R is 
ZD 

used. Using the same embedded technique, we can obtain the expected average II 
downtime per unit time 9d(R). By putting one of the relative downtimes equal to 

zero, say wo = 0, the linear equation can determine uniquely the averal-ge downtime per 

unit time g,, (R). Once gd(R) and ivo have been determined we can obtain all the 

relative downtimes wx by recursive calculations if required. 

The cost model and the downtime model can be evaluated using the following 

policy-iteration algorithm of the subsection 4.3.2. 

Policjy-iteration algorithin 
Step 0 Choose an initial policy R with the parameter s. 
Step I For the current rule R, compute the average costs g, (R) and the relative 

Costs V,, W or the average downtimes MR) and the relative downtimes 

irt, i(=-L as the unique solution to the linear equations 

Ci (R, ) - g, (R) ri (Rj) + 2] Pij (R, )vj, (5.40) 
jel 

V 0, 

in the cost case. or in the downtime case 
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Di gl (R)-r, (R, ) + (Ri)it,,, iEI, (5.41) 
JEI 

= 

where x is an arbitrarily chosen state. 
Step 2: For each state iE: -I, determine an action a, yielding the minimum in 

min {Cj (a) - g, (R), ri (a) + 1] Pij (a)vj (R)J, 
ae. 4(i) jel 

or 

min 11 Di (a)- gd(R)ri(a) +Z Pij (a)ivj(R)I. 
a EA k ý) 

jEl 

The new stationary policy R is obtained by choosing Ri = ai for all iEI with 

the convention that R, is chosen as being the old action R, when this action 

minimises the policy-improvement quantity. 

Step 3: If the new policy R equal the old policy, the al-orithm is stopped with policy 

R. Otherwise, the algorithm cycles back to step I with R replaced by R. 

'fliis algorithm generates a sequence of improving control-limit rules and it can be 

shown that the algorithm converges after a finite number of iterations to an averacye cost 1.7 In 1ý 
or downtime optimal policy (see Tijms and Van Der Duyn Schouten [1985] and Tijms 

[1986]). Also, as a consequence of the convergence of the algorithm, there exist a 

*(R) and iv*, ir=I, where the constant a: (R) is or gd (R) and v,, ic 

uniquely determined as the minimal average cost per unit time and vi* as the relative 

cost or gd(R) is uniquely determined as the minimal average downtime per unit time 

and ir, * as the relative downtime, when the decision variable s would be selected to 

minimise the average cost per unit time or the average downtime per unit time. 
I= 

70 



4.3.4 Estimating the Deterioration Probability Based upon the Delay Time e5 
Concept 

The above semi-Markov inspection model formulation is dependent upon the 

deterioration probabilities, rij, where i is the working condition 0 and j is the 

working condition 0,1 and f T'llis model assumes that the deterioration probabilities 

are given or readily avaiable. In practice the deterioration probabilities are not given, 
but need to be estimated from the available data. In this subsection we consider the 

estimation of the parameters related to the current finite semi-Markov decision process 

with deterioration probabilities. Such statistical estimating problems are of prime 
importance in mathematical modelling. 

Since the deterioration probability iij is a probability that t time units from now 

the system will have workin condition j when the present working condition is i and 9 1= 
no inspections and repairs are undertaken, it can be easily obtained from the delay time 

concept. Here we are interested in the deterioration probabilities r, ro and rof co 11 

Firstly, we consider the deterioration probability r, ý, that is the probability that t time 

units from now the system will have the working condition 0 when the present working I 
condition is 0 and no inspections and repairs are undertaken. According to the delay 

time concept, this is a case that the system has no initial point it within the period 

[0, J]. In this case, the deterioration probability r0'0 isgivenby 

roo = Pr(it ý: 

=I- 
fq(it)dit, (4.42) 

where, as before, q(zt) is the pdf of the initial point u. As already pointed, q(u) is 

the negative exponential distribution in this case, but we keep a more general notation to 
I 

assist us in subsequent robustness analysis of the model when q(it) is not negative 

exponential. Secondly, the deterioration probability i-01 is the probability that the 
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system has an initial point u within period [0, r] but is still operating normally without 

a failure at time t. In this case, the deterioration probability i-' is given by 01 

1 ro , Pau -h ýý t and 0 :g 11 :5 t) 

fy(u)(I 
- F(t - it))dlt, (4.43) 

where F(h) is the cdf of the delay time h. Lastly, the deterioration probability r,, f is 

the probability of a failure within [0, t]. In this case, the deterioration probability ro'f 

is given by 

ro'f = Pr(u -h 

= 
jq(u)F(t 

- u)du. (4.44) 

L' +t-', + ' =1. Note that as required, 1-')0 0 rof 

The deterioration probabilities are given by the distributions of the initial point it 

and the delay time h. If the distributions of the initial point u and the delay time h 

can be estimated from the collected data, or from subjective techniques, the 

deterioration probabilities can be easily obtained. Various available methods for 

estimating the initial point and the delay time distribution has been discussed in the 

section 3.4 of the chapter 3. 

4.3.5 Satisýving the Markovian Properties required of a Semi-Markov 
. :n 

Inspection Model 

The above model has been formulated as a serni-Markov inspection model and the 

fact that it is such a model has been asSUrned. Here we establish that it is, indeed, a 

semi-Markov niodel and satisfies the necessary condition for a serni-Markov decision 

process agiven as t 1) and (2) in subsection 4.3.2. 
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'17he one-step transition probabilities, Pij (a) , of subsection 4.3.3 have been 

expressed as a ftinction of the deterioration probability, r.. Accordingly, using 

equation (4.44) Nvith t=At, equation (4.10) becomes 

fý(it)F(At 
- ti)dit for f 

PO' (0) 1- 
ý, 
ý(u)F(At 

- it)du for y= (0, At) (4.45) 
0 othenvise 

and using equation (4.44) with t= niAt and t= (in+I)At, equation (4.22) becomes 

illzý I) 
-V "I 

q(u)F((m + I)At - u)dit - 
Jý(u)F(mAt 

- u)du 
&I -- - for yf 

I- Jý(zt)F(mAt 
- u)du 

P(0,17z. 

%I)y (0) 
1 q(u)F((in + I)At - u)du 

for y= (0, (in + 1) At) 
-V I- Jý(u)F(mAt 

- u)du 

0 otherwise. (4.46) 

Using equations (4.42), (4.43), and (4.44) with t= mAt, equation (4.26) for the 

probability the component survives inAt time units to be inspected at nzAt with result 

y=0 or y=I (no defect or a defect present) becomes 

Al 

P(O. 
": A. r)y( 

0=ý 

J LV ý(u)F(mAt 
- u)dit 

F(mAt - u))dit 

zt)du 

0 

for y=0 

for y =I (4.47) 

othenvise. 
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The other one-step transition probabilities, P, 0(2)=l and Pfo(2)=1 (see equations 

(4.14) and (4. IS)). Since equations (4.14), (4.18)1 (4.45), (4.46), and (4.47) are 

seen to be dependent only upon the current state i, i (=- 1, the next state j, jGI, and 

the chosen action a, a=0.1,2, we have that the one-step transition probabilities. 

Pij(a), used in the semi-Markov inspection model of subsection 4.3.3 satisfy the 

required condition (1) of Markovian property of subsection 4.3.2. 

Also, the one-step expected costs, Ci (a), and the one-step expected downtimes, 

D, (a), are given by a constant which is dependent only upon the current state i, ieI, 

and the chosen action a, a=0,1,2 (see equations (4.12), (4.13), (4.16), (4.17), 

(4.20), (4.21), (4.24), (4.25), (4.28), and (4.29)). Accordingly, the one-step 

expected costs and the one-step expected downtimes used in the above semi-Markov 
inspection model satisfy condition (2) of Markovian property of subsection 4.3.2. 

Therefore, the semi-Markov inspection model established in subsection 4.3.3 satisfy 

all conditions of Markovian properties of the semi-Markov decision process. 

4.3.6 Some Problems of the Semi-Markov Inspection Model 

The above model is concerned xvith a typical semi-Markov inspection model 

which minirnises the expected total cost per unit time or the expected total downtime 

per unit time. It presents the model formulation and solution computation process for 

the maintenance problem. However, the outstanding general problem is not so much in 

solving the model of the problem, as in structuring the assumptions and validating them. 0 

The model assumes that the workin! z condition of the system can be expressed in 

terms of a new state, a degraded state and a failed state, and further, that these states 

change accordin- to a discrete-time Markov chain. Also, the model presumes that 

transition probabilities, or deterioration probabilities, are given or are calculated. Such 

assumptions need to be established as appropriate in any particular case. In practice, as 

previously indicated, it is difficult to define and measure the workin condition of the 9 
deteriorated system as a degraded state. and difficult to measure directly transition 
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probabilities or deterioration probabilities. In applying the model in real-world 

situations. the immediate problem is to analyse and interpret the collected data. Even 

thOL101 the working condition of the deteriorated system is expressed as one of a set of 
defined states, from data we have to establish a Markovian deterioration property for the 

system and estimate the transition probabilities, or deterioration probabilities. 
However. as evidenced by the lack of actual applications to problems and data of real- 

world situations, it is believed difficult to justify the Markov property assumptions, 

excepting exponentially distributed data, and therefore difficult to determine valid 

transition probability or deterioration probabilities. It is not felt to be reasonable to 

automatically assume always that actual problems satisfy the required Markov 

properties. There are. of course, corresponding problems for the assumption in delay 

time models. However, there are techniques and case experience indicating how they 

may be resolved. 

4.4 Delay Time Model 

4.4.1 Introduction to the Delay Time Model 

Markov models have the advantage of an extensive body of theory. They could, 
however. be improperly applied within a maintenance context. In a series of papers 
dating from 1984, a robust approach to solve these problems has been introduced and I 
developed as the Delay Time Model (DTNI). It has been seen in the cha ter 3 that the p 
DTM is a powerful tool when applied to the modelling of actual industrial maintenance 

problems. 

The inspection system presented in the section 4.2 can also be analysed in the 
framework of a DTM to find the optimal inspection period which minimises the 

expected total cost per unit time or the expected total downtime per unit time. In this 

section, we formulate the optimal inspection problem of the system as a delay time 

model. There are differences in the structure of the model in that the delay time model 
does not require a discrete time zone for analysis, and is assumed here (though not 

necessary) to have a fixed but unknown inspection period T. 



4.4.2 Formulation as a General Delay Time Model 

To formulate the inspection system mentioned in the section 4.2 as a delay time 

model, in adding to the system description of the section 4.2, we adopt the following 

assumptions for a single repairable component: I 

(1) A fault can be observed by inspection only, and a failure will be observed or repaired 

immediately if occurs. 
(2) An inspection is undertaken every T time units, and the inspection process restarted 

after a failure repair. 

(3) Inspections are perfect in that any fault present within the machine will be identified 

at inspection, and no new fault injected because of inspection. 

(4) An inspection requires Ci cost units and d. time units, di <<T. 

(5) A fault identified at an inspection will be repaired within the inspection period d, 

and the repair cost per defect is Cd units. 

(6) The component is repaired immediately upon failures and its repair requires Cb 

cost units and 
db time units. 

(7) The machine is as good as new after a repair. ZD 

Then, as we noted in the section 4.2, there are two types of renewal points, that is, at a 
failure or when a fault is found at an inspection. assuming that a failure repair or fault 

rectification at an inspection may be regarded as renewing the component. Under these 

conditions, first of all, we formulate the Creneral model without the specific specification 

of the initial point distribution or the delay time distribution. After that, a proof is 

given that the model reduces to a simpler form which also represents a semi-Markov 
inspection model. This being so, we are able to usefully compare both models. 

Firstly, we consider the expected renewal cycle cost, E(cycle cost). Noting that 

there is a renewal point after a fault rectification at an inspection, consider a general 

case that negative inspections arise at T, 2T, .... (k--I)T and a positive inspection arises 

at U (see Figure 4.3). 
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Negative inspections Positive inspection 

Time 
01 21 (k-I)T it KI 

't-- Fault arises 

Fi2ure 4.3. A case with a positive inspection at kT. 

In this case, the total costs are k times the inspection costs plus fault repair costs at the 

inspection. The probability of this case arising, that is (k-1) negative inspections 
I Z: 

followed by a positive inspection at U, Pk, 
i , 

is 

Pk., = Pr((k- I)T<it <kT and h> kT-ii) 

,T ýk--I)T 

q(u)(1 - F(kT - u))dit, (4.48) 

and the expected cost is given by 

"T 
(kCi + Cd ) 

fý- 

1) T q(u)(I - F(kT - it))dit, k=1,2,3, (4.49) 

As before, C, and Cd are inspection costs and fault repair costs at an inspection 

respectively, and q(it) and F(h) are the pdf of the initial point it and the cdf of the 

delay time It respectively. Summing over all possible case, we have that the expected 

cost up to a renewal point due to a positive inspection is given by 

T 

(kCi +Cý; I 
q(u)(I - F(kT - u))dit. (4.50) 

Again. in the case of a renewal point initiated by a failure repair, suppose that negative 
inspections arise at T. 2T, ..., (k--I)T and a failure arises before kT (see Figure 4.4). 
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Negative inspections Failure arises 

Time 
UT 2T (k-I)T it zi+h 

't-- Fault arises 

Figure 4.4. A case with a failure before U. 

In this case, since the required costs are (k-1) times the inspection costs plus a failure 

repair cost, and the probability of this case arising, P(k-l), 
f I 

is 

Pr((k- 1)T<zt <kT and h <kT-it) 

fAT 
1) T. q(tt)F(kT - ti)dit, (4.51) 

it follows that the expected cost due to a failure in ((k-I)T, Iff) is given by 

'T 

I) Ci + Cý) 
ýký 

-1) T q(zi)F(kT - it)dzt, k=1,2,3, (4.52) 

, where, as before, C, is the failure repair costs. Summing over all possible values of 

k, the total expected cost to a renewal point caused by a failure repair is given by 

x 'T 
1: ((k - I)C, + Cb) q(u)F(kT - zi)dit. 
k=l 

k-I)r (4.53) 

We have, therefore, that the expected renewal cycle cost, E(cycle cost), is the sum of 

the expected costs resulting from inspection cycles which, from equations (4.50) and I 
(4.53), is given by 

.0 'T 

E(cycle cost) = 2] ((kC,, + Cd ) 
k-I)T q(u)(I - F(kT - u))du 

k=l 

((k - I)Cj + Cb ) 
fkT- 

1) T q(ii)F(kT - u)dul 
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I(kCý. , 
Cd) 

fT 

1) T. q (u)du + (Cb - 
Ci 

- 
Cd) 

'T 

q(u)F(kT-u)du). (4.54) 
A 

fk-I)T 

Letting we have that 

.0T 

E(qvcle cost) =I , 
j(kCj + Cd) ((k-I)T+v)dv 

k=l 

'T 
(C,, 

- 
Ci 

- 
Cd) fq((k 

- I)T + v)F(T - v)dv). (4.55) 

Now, we consider the exPected renewal cycle length, E(cycle length), where 

E(cycle length) =Z E(length of inspection cycle) x Pr(Inspection of the cycle) 
inspection cycle 

E(length of failure cycle) x Pr(failure of the cycle). (4.56) 
failure Cycle 

Similarly to the above, for a positive inspection renewal point, since the required length 

is of the form k times the inspection period plus downtime, and the probability of an 
inspection repair at kT is as given in equation (4.48), the expected length is given by 

X'T 
2: k(T-- d, ) 

ýý-I)T 
q(u)(I - F(kT - it))dti, 

k=l 
(4.57) 

where, as before, cý. is the downtimes for an inspection. To find the expected lendi 

to a renewal point of a failure repair, consider the random variable X, which is the time 

to failure from the last inspection (see Figure 4.5). 

Negative inspections Failure arises 

T ime 
T 2T (k-- I) T it zi+h 

t-- Fault arises 

Figure 4.5. Definition of random variable X. 
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In this case, tile required length is (k-1) times the inspection period plus inspection 

downtime, the expected tirne to failure from the last inspection, E(X)ý and the 

downtime for a failure repair. To formulate the expected time to failure from the last 

inspection, E(X), if the probability density and the cumulative distribution function of 

X are Sk-I(x) and Sk-, (x) respectively, the edf Sk-I (x) is the convolution of the 

distribution of u. and h given it + h: 5 kT and (k - I) T: ý it :5 kT. So we have, 

because of perfect inspections, that the cumulative distribution of X for the interval 

((k-I)T, k7) is given by 

Sk-I (X)=Pr{lt+h:: ý(k-I)T+x and (k-I)T:! ýu:! ý(k-I)T+x 

given it +h< kT and (k - I) T: 5 it < kT) 

Pr{it+h:: ý(k-I)T+x and (k-I)T: ýit<(k-I)T+xj 
Pr(u +h< kT and (k - I)T:! ý it < kTj 

k I)T+x 

k' T q(u)F((k - I)T +x- u)du 
f 'T - fo r 0: v<T. (4.58) 

k-I)T q(zt)F(kT - zt)dit 

Letting zi=(k-I)T+v and applying the equation (4.51), the equation (4.58) becomes 

Sk-1 (X) -ý «k - 1) T+ v) F(x - v)dv 

Also. the pdf of X is given by 

Sk-I W P(k-1), 
f 

((k - 1) T -1, v)f (x - v)dv 

0 

for 0:!: -tx<T. (4.59) 

for 0:! ý x<T (4.60) 
otherwise , 

where. as before, J(h) is the pdf of the delay time h. The expected time to failure 

from the last inspection, E(X) is, therefore, given by 

so 



T 

E(X) = 
f-ys(x)dv 

=1fx 
fq«k 

- 1) T+ v)f (x - v)dvdv. (4.61) 
Pf 

Since the probability of a renewal point initiated by a failure repair is given by equation 

(4.51), we have that the expected length to a renewal point caused by a failure repair is 

given by 

x "T Z 
((k - 1)(T + d, ) + E(X) + db 

1) Tq 
(u)F(kT - zt)dzi, (4.62) 

k=l 

where, as before, db is the downtime for a failure repair. Summing over two cases, 

we have the expected renewal cycle length, E(cycle length), is given by 

00 "T 

E(cycle length) = 2: fk(T + di) 
' q(zi)(I - F(kT - u))dit 

k=l K-I)T 

((k - 1)(T + cý. ) + Eff) + db ) 
fkT- 

1) T q(it)F(kT - zi)dti) 

T 

(k(T + di) 
-I)T 

q(u)du 
k=l 

(E(X) + db-T-di) 
fkT- 

1) T q(zi)F(kT - u)du). (4.63) 

Letting zt=(k-l)T+v, we have that 

co 
E (qycle length) =E Ik (T + di 

T 

((k - 1) T+ v)di, 
k=l 

T 

(E(X) + db- T-d, ) fq((k 
- I)T + v)F(T - v)dv) 

mTT 
=E, (k(T+d, ) ((k-I)T+v)dv+ x' ((k-I)T+v)f(x-i, )dvdy 

k=l 

+(dý -T-d, )f, ý((k-I)T+v)F(T-v)dv). (4.64) 
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Thirdly, for a downtime model, we consider the expected renewal cycle downtime, 

E(cycle downtime). Similarly, for a renewal point of a positive inspection. since the 

downtime is kcý and the robability of this case arising is P., , we have the expected Ip 
downtime is given by 

X 

jkdj q(u)(1-F(kT-zt))du. 
k=l T 

(4.65) 

Also, for a renewal point of a failure repair, since the downtime is (k - 1)di + db and 

the robability of this case arising is P(k-1).., 
', the expected downtime is p0 

'T 

((k - I)di + db) q(zt)F(kT - it)dit. k-I)T 
(4.66) 

Sununing over two cases, we have the expected renewal cycle downtime, E(cy-cle 
I 

downtime), given by 

E(cycle downtime) (kd, q(u)(I - F(kT - it))du 
k=l 

fkT- 

1) T 

((k - I)di + d5) 
fkT- 

1) T q(zt)F(kT - zt)dii) 

= 2], {kdi 
fkT- 

1) T q(zi)dit -- (db- di) 
fkT- 

1) T q(zt)F(kT- zt)dit). (4.67) 
k=l 

Letting u=(k- I)T+v, we have that 

X 

E(cycle downtime) =Z (kdi fq((k 
- I) T+ v)dv 

k=l 

T 

(db -di) ((k-I)T+v)F(T-v)dv). i (4.6S) 

We can, therefore, have that, from the equations (4.55) and (4.64), the steady state 

expected cost per unit time C(7) is 
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C(T) = 
E(cycle cost) 

E(cycle length) (4.69) 

and. from the equations (4.64) and (4.68), the steady state expected downtime per unit 

time D(T) is 

D(T) = 
E(cycle dowitime) 

E(cycle length) 
(4.70) 

From the above equations (4.69) or (4.70), we can determine the optimal inspection 

period T' which minimises the long run expected cost per unit time or the long run 

expected downtime per unit time. 

4.4.3 A Simpler Delay Time Model 

In order to compare the delay time model with the semi-Markov inspection 

model, the general delay time models of the subsection 4.4.2 must be reduced to a 

simpler and more restricted form. For example, the initial time it is now assumed to 

be exponentially distributed with a mean given by I/k to satisfy the Markov property. 0 
If the initial point it has an exponential distribution with a mean given by I/X, Z7 

q(u) = Ae-"' 

and from equations (4.55), (4.64) and (4.68), we have that 

f 'T 
-). (k _1)7. 

T 

, q((k - 1) T+ v)dv =e 
fq(i, )dv 

and 

(4.71) 

(4.72) 
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fr A(k-I)T T 

, 
iq((k - I)T+v)F(T-v)dv = e- 

fq(v)F(T-v)di,. (4.73) 

So, it follows that the equation (4.55) for the expected cycle cost becomes 

-A(k-I)T 
T 

E(qycle cost) {(kCi + Cd)e q(v)dv 
k=l 

(k-I)T 
T 

(C, - Ci - C, )e' 
. 

fq(v)F(T-v)dv) 

T Co 
-A(k-1)T 

T0 
-Ä(k-1)T Ci fq (v) dv2: ke + C, fq(v)dv2: e 

k=I k=I 

T oo 
(cb 

- 
ci 

- 
cd )fq(v)F(T-v)dvEe (4.74) 

k=l 

Also, we have that 

2: e-"(k-1)r = -- (4.75) 
k=I 

i- 

Co M OD 
1 

ke -;. (k-1)T e -). 
(k-1)T )(2: e -). 

(k-1)T) 
-d 

k=I k=I k=I 

- (I 
I 
-). T )21 (4.76) 

and 

fT 
q (v) dv =I-e (4.77) 

Re-arranging the equation (4.74), we finally have that 

rT 

E(, ývcle cost) = 
Ci +Cdfq(v)dv + (C5 - Ci - Cd) fq (v) F(T - v)dv 

. (4.78) 
I-e-lT 
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Also. in the equation (4.64), since 

r 
«k - 1) T+ v)f (x - v) di-dv =e v)di, dv, (4.79) 

_, 
q (V)f (X 

using the equations (4.72), (4.73), (4.75), and (4.76), it follows that the expected 

cycle length equation (4.64) becomes 

Tc 
E(cycle len-th) = (T+d, )fq(v)dvy ke 

k=J 

x fq(v)f(x 
- v)dvd-cý- 

; (k-1)T Y- e- 
k=I 

(db -T-d, ) fq(v)F(T 
- v)dv2: e 

k=I 

T+d: + I. -cfq(v)f(x-v)dvd-c+(db -T-d, )fq(v)F(T-v)dv 

I-e -AT -. (4.80) 

In the same manner, the expected renewal cycle downtime, E(eycle doivnthne), is 

given by 

T 
di + (d6 - d, ) fq(v) F(T - v)dv 

E(cycle downtime) =-I- 
e-). T 

We have, therefore, from the equations (4.78) and (4.80), that the expected cost 

per unit time QY) is given by 

F -T 
Ci + Cý, fq(v)dv + (Cb - Ci - Cd)fý(v)F(T-v)dv 

C(T) =-T-- (4.82) 
T+d: + fx fq(v)f (x - v)dvdy + (d6 -T-d, ) f'q(v)F(T 

- i, )dv 

and, from the equations (4.80) and (4.8 1), the expected downtime per unit time D(7) 

is given by 
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T 
d, +(db-di) (i, )F(T-v)di, 

D(T) TT (4.83) 
T+d, + 

1. 
v 

fq(v)f (x - v)dvdy + (db- T-di ) fq(v) F(T - v)di, 

From the above equations (4.82) and (4.83), we can obtain the optimal inspection 

period T' which minimizes the expected cost per unit time or the expected downtime 

per unit time respectively. In the section 4.5, using the equations (4.82) or (4.83), 

the numerical examples will be given to compare with the semi-Markov inspection 

model. 

4.4.4 Evaluation of the Delay Time Model 

Two basic models of the inspection process have been fornaulated, the delay time 

model and the semi-Markov model. A semi-Markov inspection model provides a 

means of niodellin- the effect of inspections on the failure rate, operating cost and 
downtime of repairable machinery. It is necessary to express the working condition of 

the system as states of a Markov chain, and establish from data or otherwise, the 

Markov property and associated transition probabilities. This means that this model 

can on])- be used in applied situation when the initial point of a fault has a negative 

exponential distribution. The advantages of a semi-Markov model include a well 

established theory, and a mechanism of investigating formally the structure of an 

optimal solution. For example, we have assumed here a constant inspection period, and 

thereby constrained the search space for an optimal policy. This constraint is 

pragmatic. since the solution needs to be workable. A delay time based investigation of 

non-uniforni inspection strategies is possible. However, the semi-Markov theory 

provides a well established (though computationally demanding) means of investigation 

here. 

In contrast to the serni-Markov inspection model, the delay time model has only a 
few restrictions. The distribUtion ftinctions q(ii) and j(h) and their parameters are 

vital to delay tirne modelling. Once these two distributions are known. it is possible to 

model the operating cost and availability ftinctions for any inspection practice of 
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interest. Two methods for estimatinia these two distributions have been developed, 

namely the Subjective method and the objective method, which have been described in 

the chapter 3. Also. this model may have any distribution for it and h regardless of a 
Markov property and Markov transition probability. This generality of the delay time 

model and its basic simplicity are very useftil when attempting to apply it to real-world 

situations. 

4.5 Numerical Examples 

4.5.1 Generating the Data using Simulation 15 t5 

When xN-e are faced with the preventive maintenance problem of an industrial plant, 

the data collection is of prime importance. In attempting to apply models of maintenance 
in a real-world situation, the immediate problem is often not that the model does not fit the 

data, but that there are no data to be fitted. In such data-starved situations, one wishes to 

initiate collection of any available data as quickly as possible. Much thought needs to be 

given to data. that is. its quality, its cost. its acquisition and its use in modelling. It is 

moreover difficult to , et the ideal data for model fitting in real-world situations. In spite 

of this, we need the ideal data to be fitted to the model of section 4.3 and 4.4 if we are to 

compare two models. It is reasonable here to generate the data using computer simulation. 

From the system description for modelling of the section 4.2, we note that there are 

two random variables, that is, the initial point it and the delay time h. In order to carry 

out a simulation of a system having the initial point it and the delay time h we have to 

specify the probability distributions of these random variables. Then, given that these 

random variables follow particular distributions, the simulation proceeds by generating 

values of these random variables from the appropriate distribution. In this section, we 

select the exponential and the WeibUll distributions as the distributions for these randorn 

variables fora numerical example. 
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If the distributions of the initial point it and the delay time It are specified, we address 

the issue of how we can generate random variables with these distributions in order to 

simulate the process. -flie basic ingredient needed for the method of generating random 

variables is a source of independent identically distributed uniform random variables with 
(0,1 ), U(O' I ). For this reason.. it is very important that a statistically reliable U(0,1) 

random-number generator is available. Most computer installations have a convenient 

random-number generator. We therefore use this computer random-number. 

Using this random-number we can generate the random variables of the initial point it 

and the delay time h. If the exponential random variable with the mean 1/k, ý>O, is 

considered for an initial point u or a delay time h, we can derive the following 

algorithm for a exponential random variable X. 

1. Generate U-U(0,1). 

2. Set X logU and return to the main progam. 

If the Weibull distribution with the shape parameter cc>O and the scale parameter P>O is 

selected, the Weibull random variable X is generated by the following algorithm. -tý 

1. Generate U-U(0,1). 

1 
2. Set X=, 8(-IogU), 7 and return to the main program. 

Once the random variables of the initial point it and the delay time h are generated, rD 
the simulation can be built under the system description for modelling of the section 4.2. 

Figure 4.6 illustrates the simulation progress by presenting the flow chart. In Figure 4.6, 

as before, T is a present inspection period, di is a downtime for an inspection and db 

is a downtime for a failure and A" is a pre-specified number of renewal points for a 

simulation run and RP is a present renewal point time. 
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Start 
I 

Choose T, N, 
initialized, db 

RP=O 

Generate it 

k=l 

Yeiý < 
Tý- 

Print RP+k(T+d)-di, 
'Fault free' 

k k+I 

I Generate hI 

ti+h < kT 

Print RP+k(T+di)-d, Print RP+zi+h+(k- I)di, 
'Detected a fault' 'Failure' 

T 
RP = RP+k(T+d, ) RP=RP+zi+h+(k-I)d, +db 

-j 

in > 
y 

Stop 

Figure 4.6. Flow chart for generating failure and inspection data for a single component system. 

Including these downtimes, di and db ý we can obtain the expected downtime per unit 

time D(Y). Also, If the inspection costs Ci, the inspection repair costs per fault Cd 

and the failure repair costs C, are included, we can derive the expected cost per unit time 

C(T). We will discuss the method of getting C(7) and D(T) using the simulation in the 

next subsection. 
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4.5.2 A. Markovian Case of the Fault Arrival Rate 

Numerical example of the cost model outlined in the section 4.3 and 4.4 has 

been evaluated for demonstration purposes. First of all, consider the case that the fault 

arrival rate has a Markovian property. Assuming that the fault arrival rate has been 0 
taken as ý. faults per unit time, it follows that the pdf of the initial point it is given by 

q(it) = Ae-ý". (4.84) 

Firstly, consider the case that the pdf of the delay time h has been chosen as an 

exponential distribution with the mean Uct, (x>O, 

= ae'. (4.85) 

Assuming that the data have been given in the real-world situation or using simulation, C' 17 

X and a have been estimated as X 0.1 and a=0.05. Also, costs are taken by 

Ci =10 units, Cd=2 units and C, 100 units and downtimes for a cost model are 

taken by di = 0.08 time units, d. = 0.1 S time units. 

Then, from the semi-Markov inspection model of the section 4.2, the expected 

average cost per unit time a (R) can be given as a function of the inspection period 0C 1-7 
T. That is, according to the change of the inspection period T, we can obtain the 

expected average cost per unit time o,,, (R). Also, from the equation (4.82) of the 1. 
simpler delay time model of the subsection 4.4.3, the expected cost per unit time C(7-) 

can be obtained. To compare the two models fairly, a simulation model can be used. 

It was shown in the flow chart of the Figure 4.6 of the previous subsection 4.5.1 that 

for a given inspection period T the required data can be generated. Changing slightly 

the flow chart of the Figure 4.6 into the flow chart of the Figure 4.7, we can get the 

expected cost pe'r unit time C(7) or the expected downtime per unit time D(7) 

accordin, 2 to the inspection period T. In the Figure 4.7, TC is the total cost and TD is 

the total downtime. 
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Start 

Choose T, N, 
initialize di, db, C, Cd, Cb 

RP=O, TC=O, TD=O 

Im =1 I 

Generate it 

k=l 

i 
I 

es 

hlo 

Tc = Tc+cj 
TD = TD+d, 

k k+l 
I11 TCýTC+Cb 

TC= TC+Ci+Cd 

TD = TD+db 
TD = TD+d, 

Generate h 

Ye-s 

-zi+h 
< kT? 

__-- 

RP = RP+k(T+di) 

tio 

ni m+1 

RP = RP+zt+h+(k- I)d, +db 

C(7) = TCIRP 
D(7) = TDIRP 

Stop 

Figure 4.7. Flow chart of simulation model for generating the cost and downtime 

for a single component system. 
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The results for these models, in terms of the expected cost, are shown in Figures 4.8, 

4.9, and 4.10. which represent the outcome of different small time intervals At of the 

semi-Markov inspection model. 

3.9 

3.7 

E 3.5 

3.1 

19 

2.7 

From Delay Time Model 

From Simulation 

From Semi-Markov Model 

468 10 12 14 16 18 20 

Inspection Period 

Figure 4.8. The expected cost per unit time according to the inspection period. 

(This is a Markovian case of the fault arrival rate Nvhen At = 1, the delay tinie has an 
exponential distribution. ?, =O. I, a7-0.05, C, =10, Cd =2, Cb = 100, di = 0.08, and 
db = 0.18. ) 

3.9 

3.7 

3.5 

3.3 

3.1 

-). 9 

2.7 

From Delay Time Model 

From Simulation 

From Semi-lvlark-ov Model 

2468 10 12 14 

Inspection Period 

16 Is 20 

Figure 4.9. The expected cost per unit time according to the inspection period. 
(This is a Nfarkovian case of the fault arrival rate when At = 0.5, the delay time has an 
exponential distribution. X=0.1. a--0.05, Ci =10, Cd =2, Cb = 100, d, = 0.08, and 
db = O*IS, l 
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3.5 

5 
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21 7 

2.5 

From Delay Time Model 
From Simulation 
From Semi-Nfarkov Model 

468 10 12 14 16 is 20 

Imspection Period 

Figure 4.10. The expected cost per unit time according to the inspection period. 

(This is a Markovian case of the fault arrival rate when At 0.25, the delay time has an 
exponential distribution, X=0.1, a=0.05, C, =10, Cd =2, Cb = 100, di = 0.08, and 
db = 0.1 S. ) 

From Figure 4.8, there is a little difference between the delay time model curve and the 

semi-Markov model curve. The reason is that the delay time model is continuous and 

the Markov model is discrete. In establishing the semi-Markov inspection model, we 
have approximately calculated the average cost per unit time, g, (R) , or the average 

downtime per unit time, MR), on condition that the time interval At is very small. 

Accordingly, the accuracy of the average cost per unit time, g, (R), or the avera,:,, e 

downtime per unit time, MR), is dependent upon the time interval At. As expected, 

we can demonstrate that as the time interval At decreases the semi-Markov model 

cun-e approaches to the delay time model curve (see Figure 4.8,4.9 and 4.10). Also, 

the Figures show that the simulation curve is consistent with the delay time model curve 

and the senii-Markov model curve. 

Changing the scale of the cost per unit time and removing the simulation curve of 
Figure 4.10, we can compare the senii-Markov model curve with the delay time model 

curve in detail. The result is shown in Fisiure 4.11. 
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3.3 

ýj 

From Delay Time Model 

From Senii-M, 

I 

2.9 

2.7 

Ii 

68 10 12 14 16 is 20 

Inspection Period 

Figure 4.11. The detailed expected cost per unit time according to the inspection period. 
(This is a Nfark-ovian case of the fault arrival rate when At = 0.25, the delay time has an exponential 
distribution, k=0.1, a: --0.05, C, =10, Cd=2, Cb = 100, di = 0.08, and d, = 0.18. ) 

Figure 4.11 shows that the semi-Markov model curve is still consistent with the delay 

time model curve and from the semi-Markov model curve and the delay time model 

curve we can obtain an optimal inspection period point which minimise the cost per unit 

time 

Secondly, assuming that the fault arrival rate has been taken as X faults per unit 

time, consider a case where the pdf of the delay time h has been chosen as a Weibull 

distribution with the shape parameter cc>O and the scale parameter 0>0, 

ag-"h-e (4.86) 

We assume that X, cc and P have been estimated as X=0.1, (x=1.5 and P=I. Also, 

costs are taken by C, =I 0 units, Cd=2 units and Cb = 100 units and downtimes for 

a cost model are taken by di = 0.08 time units, db = 0.18 time units. Then, 

similarly, we can get the expected cost per unit time C(T) according to the inspection 

period T from the semi-Markov inspection model, the delay time model and from the 

simulation. Although this case is non-Nfarkovian assuming Weibull distribution, 

transition probabilities may still be calculated using equations (4.45), (4.46), and 

(4.47) and a **Senii-%i, Iarkov Type" model evaluated. 
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The results of such a process are shown in Figure 4.12,4.13) and 4.14, which 
differ according to the time interval At of the semi-Markov inspection model. 

10 

From Delay Time Model 

From Simulation 

From Semi-Markov Model 

05 10 15 20 

Inspection Period 

Figure 4.12. The expected cost per unit time according to the inspection period. 

(This is a Markovian case of the fault arrival rate when At = 1, the delay time has a Weibull 
distribution. X=0.1, oL--l. 5,0=1, Ci =10. Cd=2, Cb = 100 

1 
di = 0.08, and 

db = 0.18. ) 
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From Delay Time Model 
From Simulation 

From Semi-i'vfarkov Model 

05 10 15 20 

InsPection Period 

Figure 4. U 3. The expected cost per unit time according to the inspection period. 

(This is a Markovian case of the fault arrival rate when At = 0.5, the delay tinie has a Weibull 
distribution. ), =O. I, (x=1.5, P=I, Ci =10. C, j =2. Cb = 100 1 

di = 0.08, and 
d5 = 0.1 S. ) 
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10 

9. i 

9 

8.5 

- From Delay Time Model 

------ From Simulation 

-From Semi-Markov Model 

0 10 15 20 

Inspection Period 

Figure 4.14. The expected cost per unit time according to the inspection period. 
(This is a Markovian case of the fault arrival rate when Ai = 0.1, the delay time has a Weibull 
distribution, X=0.1. cc7-1.5, P=I. Ci =10, 

Cd 
=2, 

Cb = 100 
1 di = 0.08, and 

db = 0.18. ) 

Through Figure 4.12,4.13 and 4.14, we can demonstrate that as the time interval At 

decreases the semi-Markov model curve is getting consistent with the delay time model I 
curve. This means that the delay time formulae and the semi-Markov formulae for the 

same inspection problem lead to the same results as expected. Difference between the 

models is to be formed in the complications of the formulation and the extent of the 

numerical work required, where the delay time formulation is much simpler in this case. 
It is arguable that if transition probabilities for the semi-Markov inspection model had to 
be estimated from actual data via a delay time formulation as here, the semi-Markov 
inspection model would be even more demanding than the delay time model. I 

4.5.3 A Non-Markovian Case of the Fault Arrival Rate 

In the previous subsection, a case when the fault arrival rate has a Markov property 
lias been discussed. As a consequence of the previous subsection, we found that when the 
fault arrival rate has a Markov property the system can be fitted to the semi-Markov 

inspection model and the delay time model. If the fault arrival rate does not have a 

96 



Markov property, the system should not be fitted to the semi-Markov inspection model. 
However, as already stated the delay time model can be fitted to any system regardless of 

the Markov property of the fault arrival rate. To make this point clearly, we now consider 

a case when the fault arrival rate also has a non-Markov property. 

Assuming that the initial point it has a Weibull distribution, i. e., a case when the fault 

arrival rate has a non-Markov property, it follows that the pdf of the initial point it is 

given by 

q(u) = a, 8-'zt'-le 16 (4.87) 

where (x, (x>O, is the shape parameter and P, P>O, is the scale parameter. Also, 

assuming that the delay time h has a Weibull distribution, we have that the pdf of the 

delay time h is given by 

(4. SS) 

and the cdf of the delay time h is given by 

F(h)=I-e (4. S9) 

where y, y>O, is the shape parameter and 6,5>0, is the scale parameter. Applying the 

equations (4.87), (4.88) and (4.89) to equations (4.55) and (4.64), Nve obtain after 

some algebra the expected cost per unit time formulations. Rearranging the equations 

(4.55) and (4.64), we have that 

XTT 

E(cycle cost) = C, Zk q((k - 1) T+ v)di, + CdE ((k-I)T+v)dv 
k=l k=l 

C, 
- 

Cý, )j ((k - 1) T+ v)F(T - v)dv. (4.90) 
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and 

.0T 

E(cycle length) = (T+di)Ekfq((k - I)T+ v)di, 
k=I 

.0T 

+1 f-c fq «k - 1) T+ v)f (x - v)dvd-c 
k=I 

+ (db -T-d, )E fq((k-I)T+v)F(T-v)cA-. (4.91) 
k=l 

.. T 

q((k - 1) T+ v)dv, In the equations (4.90) and (4.91), since the terms, k 

TT fq((k--I)T+i-)dv, fq((k-I)T+v)F(T-v)dv and 
T JX fq ((k - 1) T -I v) f (x - v) dv dx 

decrease as k increase, we can neglect the terms when they are less than the constant 6 

which does not affect the total value. 

Given the data ftom a real-world situation or the data simulated data, we assume that 

the parameters for the distributions of the initial point zi and the delay time h have 

been estimated as cc=2, P=I, y--l. 5 and 5=1.3. Also, costs are taken as C, =10 

units. Cd=2 units and Cb =5 units and downtimes for a cost model are taken by 

di = 0.08 time units, db= 0.18 time units. Then, taking e= 10-4, we can 

numerically get the expected cost per unit time C(7) according to the inspection period 
T from the delay time model, the semi-Markov inspection model and the simulation. 

'Me results for these models are shown in Figures 4.15,4.16 and 4.17, which are 

changed according to the time interval At of the semi-Markov inspection model. From 

Figures 4.15.4.16 and 4.17, we can see that even though the time interval At 

decreases the semi-Markov model curve is not consistent with the delay time model curve 

and the simulation curve. On the other hand, the delay time model curve is consistent 

with the simulation curve. 
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Figure 4.15. The expected cost per unit time according to the inspection period. 

(TI-ds is a non-Markovian case of the fault arrival rate when At--I, the delay time has a 
Weibull distribution, a7-2, P=I, y=1.5,5=1.3, C, =10, Cd=2, Cb = 5, d, = 0.08, 

and db = 0*18*) 
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Figure 4.16. The expected cost per Unit time according to the inspection period. 
(This is a non-Markovian case of the fault arrival rate when At--0.5, the delay time has a 
Weibull distribution, oc=2,0=1, y=1.5,8=1.3. C, =10. Cj =2, 

Cb 
= -5. di = 0.08, 

and 
db = 0*18 

*) 

"" .- ." 
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Figure 4.17. The expected cost per unit time according to the inspection period. 

(This is a non-Markovian case of the fault arrival rate when At = 0.1, the delax, time has a 
Weibull distribution, a=2,0=1, y--l. 5,5=1.3, C. =10, Cd=2, Cb = 5, di = 0.08, 

and d. = 0.18. ) 

Also, to compare the semi-Markov model curve with the delay time model curve in 

detail, we change the scale of the cost per unit time and remove the simulation curve of 
Figure 4.17, see Figure 4.18. Figure 4.18 shows that the semi-Markov model curve 
has a notable difference with the delay time model curve as the inspection period T 

increases. Furthermore, from Figure 4.18. we can see that a finite optimal inspection 

period point which minimises the cost per unit time can be identified from the delay time 

model curve, but cannot be decided from the seiiii-Markov model cun"e because as the 

inspection period T increases the cost per unit time of the semi-Markov model curve 
decreases. 'nie reason is that since the initial point it and the delay time h have a 
Weibull distribution which does not have a Markov property the failure process can not 
follow the Markov process required of the semi-Markov model. T'lierefore, when die 

system does not have a Markov property, the system cannot be fitted to the senii-Markov 
inspection model but can be fitted to the delay time model, 
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2 
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From Delav Time Model 

-From Semi-i-vlarkov Model 

468 10 12 14 16 18 20 

Inspection Period 

Figure 4. IS. The detailed expected cost per unit time according to the inspection period. 

(This is a non-I'vlarkovian case of the fault arrival rate when At = 0.1, the delay time has a Weibull 
distribution, (x=2.0=1, y--l. 5,5=1.3, Ci =10, Cd=2. Cb =5, di =0.08, and d. =0.18. ) 

4.6 Comparison and Conclusions 

As expected, the semi-Markov inspection model is consistent with the delay time 

model in situations when the Markov assumption is valid, see Figures 4.8 to 4.10 and 

Figures 4.12 to 4.14 of the numerical examples. Here the key point is that the system 

has a Markov property because the initial point 11 has a negative exponential 

distribution which has a memoryless property. In real-world situations, however, there 

are few cases with data for which the Markov property can be established. Even when 

the data are given, it may be difficult to justify the Markov property and to get its state 

transition probabilities from the data. Either way, if the system has a Markov property, 

it was shown in section 4.3. that the deterioration probability iri can be estimated 

based upon the delay time concept; that is the state transition probabilities follow from 
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delay time parameters. Relying on the delay time concept, the semi-Markov inspection 

model can now be used for the first time in practice, for the single component system. 

In a single component system. as discussed in the numerical examples of the section 

4.5, if the initial point it does not satisfy the Markov property, the system cannot be 

fitted to the seiiii-Markov inspection model. Figures 4.15 to 4.13 illustrate that an Z: ý 
optimal finite inspection period point, which minimises the expected cost per unit time, 

may not be given by the senii-Markov inspection model because as the inspection period 
T increases the expected cost per unit time of the semi-Markov inspection model 
decreases continuously. Also, Figures 4.15 to 4.17 illustrate that the semi-Markov Z. 
inspection model curve is far from the simulation curve and the delay time model curve. 
In contrast to the semi-Markov inspection model, the delay time model can not only 

give the optimal inspection period point in Figures 4.15 to 4.18, but also the delay 
I 

L_ 

time model curve is consistent with the simulation curve in Figures 4.15 to 4.17. We 

have seen that delay time model may be fitted to a large class of inspection / PM 

problems, and that techniques exist for parameter estimation and model validation. In 

the case of a semi-Markov model, the class of problems being addressed requires the 

Markov property to be satisfied. In delay time model terms, this means the time to 

initial point is negative exponential. In the case considered, the Markov model is 

derived tinder the assumption of a delay time based configuration which allows the 

transition probabilities to be evaluated. A process of analytic continuation enables 

values for notional transition probabilities -to be calculated even when the Markov 

assumption is not valid. Figures 4.15 to 4.17 indicate the order of error introduced 

by this 'approximation'. Evidently the Markov model cannot be assumed to be robust to 

the Markov assumptions, and therefore Markov models become poor approximation for 

non-Markov cases. This emphasises the recognised generality of the delay time 

formulation for actual problem solutions. 

Senii-Markov inspection models have provided a useful means of modellinIg the 

effect of inspections on the failure rate of repairable system. They enable the structure 

of optimal solutions to be identified. However. as already stated, in attempting to apply 

such models in a real-world situation, it may prove difficult to justify tile Markov 

property assumptions and to determine the state transition probabilities or the 
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deterioration probability from the data. When the initial point it has a negative 

exponential distribution, the system can be fitted to the semi-Markov inspection model 
by estimating the deterioration probability from the data using the delay time concept. 
In the case that the initial point it is not negative exponentially distributed, the system 

cannot be formally fitted to the semi-Markov inspection model. In contrast to the semi- 
Markov inspection model, the delay time model is free from such constraints. In 

addition, the formulation of the delay time model is seen as being much simpler than 

that of the semi-Markov inspection model, and the delay time model requires less 

computing time than the semi-Markov ins ection model to compute solutions. Ip 
Therefore, the delay time model is more general and practical than the semi-Markov I 
inspection model in applying to real-world situations. 
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Chapter 5 

SEMI-MARKOV AND DELAY TIME MODELS OF MAINTENANCE 

FOR A MULTI-COMPONENT SYSTEM: A COMPARATIVE STUDY 

5.1 Introduction 

In the previous chapter, the serni-Markov inspection model and the delay time model 
for a single component system have been discussed. As a consequence of the previous 

chapter, it was seen that the delay time model was more general than the semi-Markov 
inspection model in terms of application to real-world situations for a single component 

system. There will, however, be few systems with a single component in a real-world 

situation. The system usually consists of many components and is therefore more 

complex. Thus these models need to be extended to represent a multi-component 

system. 

In a multi-component system. the fact is that the scientific management of planned 

preventive maintenance will rely on the modelling of probabilistic parameters which can 

change. If the process of equipment deterioration and degradation were entirely 
deterministic, there would be no need for frequent inspection and condition monitoring 
Changes in parameters that define equipment condition are generally probabilistic. 
This explains why, as Christer [1984] points out, many of the published theoretical 

models adopt a Markov approach, where states are usually 'operating', 'operating but 

fault present'. and 'failed'. Transitions between these states occur according to 

probabilistic laws, with each state being associated with the coincident occurrence of an 
inspection and some associated maintenance actions. 
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A number of such models, as Baker and Christer [1994] point out, have a seemingly 

arbitrary nature in their assumptions and the lack of evident conviction in applicability 

to the real-world. Nlost of them assume that the working condition of the system can be 

expressed as a discrete-time Markov chain with states 0,1,2, ..., Nf, where the state 0 

represents a good state, the states 1,2, ..., N are degraded states and the state f is the 
failed state. Transition probabilities are assumed given. In practice, it is, as already 
indicated. difficult to define the degraded states for the deteriorated system. and also 
difficult to determine their transition probabilities. So in general, papers on Markov 

modellin- in maintenance do not mention the 'fit' of the model to data and no examples 

of actual applications or case-studies are available. This applies to both component 

models and complex system models. The value of these papers is to be found in an 
investigation of problem structure. I 

A robust approach to model and solve industrial maintenance problems has been 

introduced and developed as the Delay Time Model (DTM) in a series of recent papers 
dating from 1984. We will see that a serni-Markov inspection model can be established 
here using the delay time concept. If the degraded states selected to represent the 

condition of the deteriorated system in a semi-Markov inspection model can be 

expressed in terms of the expected number of defects, we can easily define the working 

condition of the system as a Markov chain state. Also, if we know the fault arrival rate 
X and the probability density function (pdj) of the delay time h, it is possible to 

transform the fault arrival rate and the pdf of the delay time h into transition 

probabilities of a senii-Markov inspection model. It must be remembered that there are 

methods for estimating delay time parameters, the objective method and the subjective 

method. 

In this chapter, we consider a repairable complex system with many components that 

may fail or suffer breakdown during the course of its service lifetime. For this system, 

a typical semi-Markov inspection model and a delay time model are presented and the 

results are compared. 
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5.2 Basic System Description for Modelling 

Consider a system for which the number of components is very large. We assume 

that if any one component of the system fails, the system is considered to have failed. 

For this system. an inspection policy which minimises the expected total long-run 

average cost or downtime can be derived. For modelling purposes, consider the general I 
case of an inspection policy, which may be characterised by the following assumptions. 

(1) The condition of the system can be observed by inspections only, and a failure will 
be observed immediately at its occurrence. 

(2) An inspection is undertaken every T time units. 
(3)) Inspections are perfect in that any defect present within the system will be identified 

at inspection, and no new fault generated because of inspection. 

(4) An inspection requires Ci cost units and di time units. 

(5) Defects identified at an inspection will be repaired within the allocated inspection 

time, di, and the mean repair cost per defect is Cd units. 

(6) The component is repaired immediately upon failure and the mean repair cost and 

time for a failure repair are Cb cost units and db time units respectively. 

(7) The component is as good as new after repair. 
(8) Defects are independent of each other and arise as a homogeneous Poisson Process 

(HPP), with rate of occurrence of defects X. 

(9) The delay time h of a defect is independent of the time of origin, and all defects 

share a common delay time pdf J(h) and cdf F(h). 

As a consequence of assumptions (3), (5)ý (7), and (8), an inspection will renew the 

systern because all components with no fault are essentially regarded as new by 

assumption (8) due to the memoryless property and the fact that faults in all 

components are identified and renewed after repair at the inspection time, see 

assumptions (-3 )), (5), and (7). It is noted that assumption (3) will be relaxed to 

allow imperfect inspection according to need in the subsection 5.3.2 and 5.4 1 
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For a system satisfying the above assumptions, we may collect data which includes 

the inspection time point, the inspection result, and the time of any failures. 

Characteristic data is summarised in Table 5.1 as an example, when inspections are 

occurred every T=l 0 time units. 

Table 5.1. Characteristic structure of the data of the multi-component system 
for T=10 units. 

Time point Inspection result or failure Action 
0 Normally operated No action 
10 2 faults detected Repair 
20 5 faults detected Repair 
27 Failure Repair 
30 1 fault detected Repair 
40 No fault detected No action 
44 Failure Repair 

This data indicates that 2 defects arose within the period (0,10) and identified at 
T=10,5 defects arose within the period (10,20) and was identified at T=20,1 defect 

arose within the period (20,27) and lead to a failure at T=27, I defect arose within 

the period (20,30) and was identified at T=30, and so on. If it is not possible to 

obtain such data from actual maintenance and operating records, assuming a delay time 

model, it is possible to simulate the process and thereby obtain these data. Either way, 
having the data, it may then be used to estimate the underlying delay time parameters 

and in this way model the real-world, or simulated real-world, situation. These 

parameter estimating procedures re-gain the parameter. 

this process provides a test of the estimating procedure. 
describe the process of simulating data. 

When the data is simulated, 
hi section 5.5, we will 
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5.3 Serni-Markov Inspection Model 

5.3.1 A Semi-Markov Inspection Nlodel for a Perfect Inspection Policy 

The inspection system described in section 5.2 can, as in the semi-Markov 

inspection model for a multi-component system, be analysed within the framework of a 

semi-Markov decision process to find the long term consequences of different 
Z 

inspection periods. For a multi-component system with discrete-time Markovian 

deterioration, the system can, as in the paper of Tijms and Van Der Duyn Schouten' 

[ 1985], be observed in one of the working conditions 0,1,2, 
..., N, f where N is the 

upper bound of the number of defects, the -vNrorking condition of the system 0 represents 

a normally operated state without a defect. the working conditions of the system 1,2, 

..., N represent defective states, and the working condition of the system f represents a 

failed state. To overcome the difficulty of expressing the degree of system 

deterioration as the defective states 1,2, .... N, we assume that the defective states 1, 

21 ..., 
N in semi-Markov inspection model represent the expected number of defects in 

the system, which may be determined using the delay time concept. Accepting the 

defined states for the working conditions of the system and assuming the inspection as 

outlined in section 5.2, we formulate the possible case of a Markovian inspection 

policy, which may be charaterised by the following additional assumptions; 

(10) In the absence of inspections and repairs, the working condition of the system 
follows a discrete-time Markov chain. 

(11) Opportunities for inspections occur only at equidistant points or epochs in time 

=At, At, 3At. --. 

(12) The working condition of the system cannot improve on its own. 

The decision epochs for this model include the epochs at which opportunities for 

inspections occur when the system is operating. and the epochs at which the exact 

working condition of the system is revealed by an inspection. We take as state space 

los 



I= (iji= 1,2, ---, M , 

where At is an arbitrary small time. Also. state i corresponds to the situation in 

which an inspection identifies i defects within the system, the states (0, InAt) 

corresponds to the situation in which mAt time units have passed since the last 

inspection, and the states (nzAt, j) correspond to the situation in which a breakdown has 

occurred between (nz-I)At and mAt. We assume a sufficiently large integer M is 

chosen to ensure that an inspection must always be made in the state (0, MAt). It is 

noted that the integer M will have no influence on the modelling if a finite solution 

exists. 

The possible actions a are denoted by 

0, leave the system as it is, 

a=1, inspect the system, 
2, repair the component. 

The action a=0 is the only feasible action in the state 0, the action a=2 is the only 
feasible action in the states i with 1:! ýi-<W and in the states (mAt, j), actions a=0 and 

a=I are the feasible actions in the states (0, mAt) except for the state (0, MAt), where 

the only action a=I is feasible. 

As in the previous chapter, we define the one-step transition probabilities Pij (a), 

the one-step expected transition times r, (a), the one-step expected costs C, (a), and 

the one-step expected downtimes D, (a) given by the following. 

P, j (a) : The probability that at the next decision epoch the system will be in state j if 

actions a is chosen in the present state i. 

r, (a) : The expected time until the next decision epoch if action a is chosen in the 

present state i. 

C, (a) : The expected cost caused by the action a if action a is chosen in the present 

state i. 
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D (a) : The expected downtime caused by the action a if action a is chosen in the 

present state 

As described in chapter 3, Ross [ 1983] presented the following proposition: 

If an event arrival process follows a Poisson process with rate X. the number of events 

that occur by time t, N(t), is an independent Poisson random variable having mean 

given by A P(s)ds, where P(s) is the probability that a marking event occurs, 

independently of all else, at time s. 

As a generalisation of the above proposition in Ross [ 1983], Christer and Wang [ 1995] 0 tý 

presented the following Lenuna 5.1. 

Lemma 5.1 

If the defect arrival process follows a HPP with the rate X, the number of defects 

identified (the marking events) at time x by an inspection at time x is Poisson 

distributed with a mean given by 

ENÄ. 'zf, 1(1-F(x-ii»dii, (5.1) 

where, as defined in assumption (9) of section 5.2, F(h) is the cdf of the delay time 

/I. 

Also, noting the Ross' [1983] proposition, Christer and Wang [1995] presented the 

followinc, Lemnia 5.2. 

Lem ma 5.2 

If the defect arrival process follows a HPP with the rate of X. we have the failure 

arrival process follows a non-lionio2eileous Poisson Process (N'H? P) with the rate In 
finiction given b,, - 
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v(x) = 
Pf (x - 11)dii 

= (5.2) 

where, as defined in assumption (9) of section 5.2, J(h) is the pqf of the delay time h. 

Based upon the above Lemmas, the one-step transition probabilities Pj (a), the one- 

step expected transition times z-i (a), the one-step expected costs C, (a), and the one- 

step expected downtimes Di (a) can now be readily obtained by considering the action 

at each present state. 

Firstly, at state 0, the action a=0, which is the only sensible possible action to take 

at state 0, can be taken. If the action a=0 is taken at state 0, the system will either 

survive until the next decision epoch At or fail within the next decision epoch At. The 

probability of a failure arising within the next very small decision epoch At can be 

obtained from Lemma 5.2. Accordingly, for very small At, we have that 

rN v (x) A for j= (At, f) 

POj (0) =I- 
rv(x)dx for j= (0, At) (5.3) 10 

otherwise . 

Also, if the system is survived until the next decision epoch A[. the expected time 

incurred at state 0 is only the time to the next decision epoch At. If the system is 

failed before the next decision epoch At, assuming that the time interval to the next 

decision At is very small, we can approximately regard the expected time incurred at 

state 0 as the time to the next decision epoch At. Accordingly, we have that 

TO (0) = At. (5.4) 

NN'lien the action a=0 is taken at state 0, since no cost and downtime are required, it 

follows that 



c� (0) =0 (5.5) 

and 

DO(O) =0- (5.6) 

At state k. k=1,2, ..., A, the action a=2, is the only possible action to take at 

state k because any fault found at an inspection is repaired by assumption (3) and (5) 

of the section 5.2. If the action a=2 is taken at state k, we have by assumptions (5) 

and (7) that 

P, 0(2) =I for k=1,2, 
..., N. (5.7) 

Also, since the fault identified at an inspection is repaired within the inspection period 

and its repair costs per defect is Cd units, it is obvious that 

zý,. (2) =0 for k-=1,2, ..., N, (5.8) 

Cý. (2) = kCd for k=1,2, ..., N, (5.9) 

and 

Dý (2) =0 for k=1,2, --., N. 

At state (0. nzAt)j in = 1,2, ..., M, the action a=0 and a=1, which are the only 

possible actions to take at state (0, mAt), can be taken. If the action a=0 is taken at 

state (0, in-Ar) with m=1,2, ..., M-1. the system will either survive until the next 

decision epoch (in + I)At or fail within the next decision epoch (III-I)At having 

survived to the present decision epoch mAt. Since the probability that there is a failure 
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between the present decision epoch nz-At and the next decision epoch (m+I)At for very 

small At is v(x)d-c fromtheLemma 5.2, wehavethat 
. -V 

V(X)d-c for j= ((nz + 1)At, f) 
'n+')"I 

P(0,171_v), (0) v(x)dv for j= (0, (in + I)At) 

0 otherwise 

Also, if the system is survived until the next decision epoch (nz+l)At from the current 

decision epoch inAt, the expected time incurred by taking the action a=0 at state (0, 

mAt) is At time units from the current decision epoch mAt to the next decision epoch 

(ni+I)At. Although the system is failed before the next decision epoch (in+l)At, 

assuming that At is very small, we can approximately regard the expected time incurred 

by taking the action a=0 at state (0, inAt) as At time units to the next decision epoch 

(m+I)At. Accordingly, it is obvious that 

At . (5.12) 

When the action a=0 is taken at state (0, mAt), since no cost and downtime are 

required, it follows that 

(0) =0 (0, mät) 

and 

D(O�, j(0) = 0. 

If action a=1 is taken at state (0, mAt) with nz= 1,2, ... ' M, assuming the perfect 

inspection of the system, the inspection will result in a situation of finding j, j=0,1,2, 

N, faults at an inspection. Since the number of defects identified at an inspection 
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has a Poisson distribution by the Lemma 5.1 and the assumption (8) of the section 

5.2, we have that 

e-E-%', I(m-Al) 
(ENd ("'LW)j 

for j=0,1,2,.. -, N 
j(1)=j1 (5.15) 

10 othenvise 
1. 

Also, since an inspection requires di time units and Ci cost units, it is obvious that 

rto, m-lv) 
(1) = (ýo 1 (5.16) 

CtO.., 
n-V) 

(1) = Cý, 
- 

and 

D, 
O. mAt )(1 

)= d,.. 

At state (mAt, fi, ?n=1,2, ..., NI, the action a=2 is the only possible action to 

take because a failure is immediately repaired. If the action a=2 is taken at state (InAt, 

J), we have by assumptions (1), (6) and (7) that 

(2) =I for in = 1,2, ..., M. 
Al 

(5.19) 

Also, since a failure requires C, cost units and db time units, it is obvious that 

rt,,. f) (2) = cý for in = 1,2, ---, M, (5.20) 

(2) = Cý; for (5.21) 

and 
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P f) (2) = db for nz=1,2, ---, M. (5.22) 

As in the single component case model, it still needs to be established that the above 

multi- component system model, in fact. satisfies the Markovian property requirements. 

We have that since equations (5.3), (5.7), (5.11), (5.15). and (5.19) are dependent 

only upon the current state i, i c=- I, the next state j, jEI, and the chosen action a, I 
a =0,1,22, the one-step transition probabilities, Pj(a), satisfy condition (1) of the 

semi-Markov decision process of subsection 4.3.2. Also, since the one-step expected 

costs. C, ja), and the one-step expected downtimes, Di(a), are dependent only upon 

the current state i, ieI, and the chosen action a, a=0,1,2 (see equations (5.5), 

(5.6). (5.9), (5.10), (5.13), (5.14), (5.17), (5.18), (5.2 1), and (5.22)), the one-step 

expected costs and the one-step expected downtimes satisfy condition (2) of subsection 

4.3.2 for a semi-Markov decision process. Accordingly, the above inspection system 

can be analysed within the framework of a semi-Markov decision process. 

NVe have specified the basic elements of the semi-Markov decision model. Fix now 

a control-limit rule R with parameter value s, which is the time to next inspection 

when the workine condition revealed at present time is 0. We first form the cost model 

usin,, this control-limit rule R. Utilisin- the standard senii-Markox- decision model of 

the subsection 4.3 ). 2 (see the equation (4.5)) and the above specifications, we can have 

that 

v= -g, ( R)At + PO(O, A, ) (0) v(o,. v) +P (5.23) 0 0(ýV, f ) (0) V(W, f )9 

ly 

k : -- kCd-, P, 0(2)vo for k=1,2, ---, N, (5.24) 

v, (R)At + P(O'niAtx(nz+I)L%I.. 
f)(O)V((m+I)Al. f) +p 

(0. -: -V) 
CT. 

- (O. "l-Vxo, (m-DA: ) 
(O)V(O, 

(m+I)AI) 

for O<mAt <s. (5.25) 

C. - gc (R)di + P(O,,,, 
Lv)o 

(I)vo + P(O,., V)l (I)VI +' - . +P(O. ",. V"- Mv, 

for s: 5 mAt :! ý . 11-\t , (5.26) 
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and 

v(, nAt.. j Cý - g, (R)d6 +P (2)v 
(m-V.. fXO, (ni- J-V) (0, (M- 

d, 
) At) 

_I: At 

for in = 1,2,. - -, M, (5.27) 

where g. (R) is the average cost per unit time criven policy R and v,, ,x (=- I, are the 

relative costs resulting from the various starting states when policy R is used. Using 

the embedded technique, by a repeated application of the above equations, we can 

obtain the average cost per unit time g, (R). By putting one of the relative costs equal I 
tozero, say v., =O, the linear equation can determine uniquely the average cost per unit I 
time g, (R). Once g, (R) and vo have been determined we can obtain all the 

relative costs v, by recursive calculations if required. 

In a similar way, we have for the downtime model that 

'VO ad(R)At + Po(o, w) (O)w(o, ý, ) + Pok_v, f) (O)iv(, 5,, f), (5.28) 

'Vk = Tý., )(2)ivo for k=1,2, ---, N, (5.29) 

IV , (R)At + (0)11, (kllýI)Arj) 
+ P(O, 

mAlxo. (RI-I)At)(O)ii, (O. (m+I)AI) 

for 0< mAt < S, (5.30) 

di -gd(R)d, + P(O.,,,, )o (I)ivc, + . I)AI 
(I)wN 

for s:! ý mAt:! ý MAt, (5.31) 

and 

d5- 9d (R), ý5 +P (2)w 
)(Opll- -V) 

for in = 1,2. ---, M, (5.32) 
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where - (R) is the average downtime er unit time iven policy R and w 6dp9 
XEI, 

are the relative downtimes resulting from the various startina states when policy R is 

used. Using the same embedded technique used above, we can obtain the expected 

average downtime per unit time gd(R). By putting one of the relative downtimes 

equal to zero, say wo = 0, the linear equation can determine uniquely the average 

downtime per unit time gd(R). Once g,, (R) and wo have been determined we can 

obtain all the relative downtimes iv., by recursive calculations if required. 

These models can be evaluated using the following policy- iteration al-orithm. of the 

subsection 4.3.2. 

Policy-iteration algorithm 
Step 0 Choose an initial policy R with the parameter s. 

Step I For the current rule R, compute the average costs g, (R) and the relative 

costs v,, iEI, or the average downtimes gd(R) and the relative downtimes 
In 

iv,, i(=-I, as the unique solution to the linear equations 

vi = Ci (R, ) - g, (R) -rj (R, ) +Zý,, (Ri)v, i r= 1, (5.33) 
jai 

IY x= 

in the cost case, or in the downtime case 

Dt(Ri) - gd(R) ri (Ri) + 2: ý, j (Rj)ivj, iEI, (5.34) 
jEl 

ii, x= 

where x is an arbitrarily chosen state. 

Step 2: For each state ic-I, deterrnine an action a. yielding the minimum in 
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min IC, (a) -a (R)ri (a) + (a)v, (R)j, 
a EAM 

') c 

or 

min f D, (a) (R) r, (a) + 
arAU) JEJ 

The new stationary policy R is obtained by choosing Ri = ai for all iEI with 

the convention that R, is chosen as being, the old action R, when this action 

minimises the policy-improvement quantity. 

Step 3: If the new policy R equal the old policy, the algorithm is stopped with policy 

R. Othenvise, the algorithm cycles back to step I with R replaced by R. 

This algorithm generates a sequence of improving control-limit rules and it can be 

shown that the algorithm converges after a finite number of iterations to an average cost 

or downtime optimal policy (see Tijms and Van Der Duyn Schouten [1985] and Tijms 

[19S6]). Also, as a consequence of the convergence of the algorithm, there exist a 

g: (R) and v, , iE=-I, or gd(R) and wi , ieI, where the constant g: (R) is 

uniquely determined as the minimal average costs per unit time and v, * as the relative 

costs or gd(R) is uniquely determined as the minimal average downtimes per unit 

time and ivi . as the relative downtimes, when the decision variable s would be 

selected to minimise the average cost per unit time or the average downtime per unit 

time. 

5.3.2 A Semi-, Nlarkov Inspection Model for an Imperfect Inspection Policy 

In the previous subsection 5.3.1, we have assurned that inspections are perfect in 

that any fault present will be identified. However, in most cases, it is more reasonable 

to assume that inspections are imperfect. So, in the section 5.2, the assumption (3) 
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will be relaxed to allow an imperfect inspection policy, which may be characterised by 

the following changed assumption (Y). 

Inspections are assumed to be imperfect in that a fault present will be identified 

with probability r, 0-<j-:! ýI. Probabilities of detecting a fault at successive 
inspections are assumed to be independent and constant. 

If inspections are imperfect, as in the above assumption (Y), we can not directly 

establish the semi-Markov inspection model based upon Lemma 5.1 and 5.2 because 

the failures arriving in the present inspection period may be affected by the faults arising 
in past inspection periods. To establish the semi-Markov inspection model for an 
imperfect inspection policy, we need to change Lemma 5.1 and 5.2. 

With an imperfect inspection policy, consider the probability of a failure arriving in -=2 

(r. t+ At) of the period (T, 
- I, 

Tj ) resulting from a fault arising at time y in the period 

(T,, 
-,, 

T,, ), namely P(t, t+Atly), (seeFigure -5.1). 

Tt t+At n-I Y T" Ti-I Ti 

Figure 5.1. 'flie failure process of a fault arising in (T,, 
-1 , 

T,, 

Since the probability that a fault is identified during the inspection time is r, the 

probability that a fault arising in (T, 
_,, 

T) with sufficiently long delay time will not be 

identified before the interval (T, 
-, , 

Tj ) is given by 

for n=1,2, ..., i-I. (5.3 5) 
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Accordingly. the probability of a failure in (t, t+ At) resulting from a fault arising at 

time y in (T,. 
-: ý T,, ) is given by 

c,, (F(t + At - y) - F(t - y)) for T,, 
-, <y<T. 1,2, - -, i-I 

P(t, t 
F(t + At - y) - F(t -Y) for T, 

-, <y<r 
F(t + At -y) for t <. i, <t-- -ýr 
0 othenvise. (5.36) 

From equation (5.36), we can obtain the expected number of faults identified at 

time t if there is an inspection at time t, namely ENd W given b-, 

i-I 

ENd(t)=A2], C,, r (1-F(t-y))ýv+Arl (1-F(t-y))qi-. (5.37) 
n=l 

Using equation (5.37), Christer et al [199-5] presented the following Leninia 5.3. 

Lemma 5.3 

If the fault arrival process follows a HPP with the rate of X. the number of faults 

identified at time t if there is an inspection at time t is Poisson distributed with a mean 

given by equation (5.37). 

Also, using equation (5.36), we can derive the Lemma 5.4 instead of Lemma 5.2. 

-flie Lemma 5.4 is of value to us later. 

Lemma 5.4 

If the fault arrival process follows a HPP with the rate of X, Nve have that the failure 

arrival process follows a NHPP with the rate function Liven by m 

V(t) lim 
P(t, t+ Atly) 

dy 
I., -0 At 

;., I c (F(t -T (5.38) F(t - 7ý)) + F(t - T, 
-, 

)I. 
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Proof 

To prove the lemma 5.4. we recall the definition of a Poisson process in Ross 

1983]. Let N,. (t) ,tý! 0, be the number of failures which occur during (0, t) and 

v(t), t ý: 0, be the rate of occurrence of failures for the process. Then, to satisfy the 

definition of a nonhomogeneous Poisson process. we require that the process Nf (t) 

satisfies 

(1) Nf (0) = 0, 

(2) Nf (t) has independent increments, 

(3) P(Nf (t + dt) - Nf (t) = 1) = v(t)dt + o(dt), 

(4) P(Nf (t + dt) - Nf (t) ý: 2) = o(dt), 

where for small dt, o(dt) is defined as a functiongiven by 

lim o(dt) 
= 0. 

di-o dt 
(5.39) 

Condition (1), which simply states that the counting of events begins at time t=0, and 

condition (2) can usually be directly verified from our knowledge of the process, or is 

otherwise assumed. We will now deduce that conditions (3) and (4) are valid for the 

current failure process with a regular inspection period. Should a failure arise in (t, 

t+dt) before a regular inspection, we must have that a defect arises in some interval (y, 

i+d y) with a delay time h E=- (t -y- dj,, t-j, + dr) (see Figure 5.2)). 

Tn-l 

vTt t+dt y+dy n 
TI-I Ti 

Figure 5.2. The failure process of a fault arising in (y, y+dj, ) of (T,, 
-,, 

T,, ) . 
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Since the defect arrival process follows a HPP with the rate of k. the probability 

that a defect arise in interval Cy, is given by 
I 

P(Nd (J'+dl') 
- 

Nd (Y) )dl'+ 0(ýV) (5.40) 

where JVd(y) denotes the number of defects in (0, y). Also, if p(Y; t) denotes the 

probability density for a defect at time j-, the probability this leads to a failure at time t 

equals the probability of having a delay time he (t -y- dy, t-y+ dt) , that is 

P(h e (t -Y - dy, t-y+ dt)) = p(j,; t)dt . (5.41) 

From equations (5.40) and (5.4 1), integrating overall possible y, we have 

P(Nf (t + dt) - N_f (t) = 1) = 
1), 

p(j,; t)ývdt + o(dt). (5.42) 

If we define that the rate function is given by 

V(t) = 
No,; tmi. , (5.43) 

the equation (5.422) becomes 

P(Nf (t + dt) - Nf (t) = 1) = v(t)dt + o(dt). (5.44) 

The equation (5.44) clearly satisfies the condition (3) for a NEPP. 

For the condition (4), note that the probability of being over I failure, 

P(A",. (t + dt) - N, (t) :ý 2), is given by 

P(Nf (t + tit) - Ný, - (t) > 2) 
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=I- P(. \'.,. (t + dt) - N. f (t) = 1) - P(Nf (t + dt) - Nf (t) = 0) . (5.45) 

Here, the probability of having no failures in (t, t+dt), P(Nf (t + dt) - Alf (t) = 0), is 

the summation of the probability of having no defects in (0, t) and the probability that a 
defect arise in some interval (y, y+dy) with a delay time ho (t -y- ýy, t-y+ dt) 

Since the probability of no defects in (0, t) is 

P(no defects in (O, t)) =1- 
jAdy (5.46) 

and the probability that a defect arise in some interval (y, y+dj? ) with a delay time 

ho (t -y- ýyj -Y + dt) is 

P(l defect in (y, y+dy))P(ho(t-y-dy, t-y+dt) 

= P(Nd(y + dy) - Nd(Y) = 1){l - P(h e (t -y - dy, t -y + dt)) 

= (; Wy + o(dy))(1 - p(y; t)dt), (5.47) 

integrating the equation (5.47) over all possible y, the probability of having no 
failures in (t, t+dt) is 

P(Nf (t + dr) - Nf (t) = 0) =1- 
1), ýv + f(1 

- p(j,; t)dt)Ady + o(dt) 

=1- v(t)dt + o(dt). (5.48) 

Accordingly, considering the equation (5.44) for the probability of having I failure in 

(t. t+dt), P(Nf (t + dt) - Nf (t) = 1), the probability of more than I failure, 

P(Nf (t + dt) - N, - (t) ý: 2), is given by 

P(N_I. (t + dt) - Nf (t) ý! 2) = o(dt). (5.49) 

The equation (5.49) satisfies the condition (4) which establish the NHPP for failure 

arrivals. 
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Given a defect arising at time y, the probability density function of time t to failure 

is given by 

P(Y; 0= lim 
P(t, 

-t-- 
Atly) 

Al-+O At 
(5.50) 

where, as before, P(t, t -. Atly) is the probability of having a failure over (t, t+At) 

resulting from a fault arising at time y. We have that the failure rate function is given 
by 

V(t) 
IA lim 

P(t, t -:. - Atý y) dy. (5.5 1) 
&-+0 'A t 

Also, for T,, 
-, <y<T, n=1,2, ..., i- 1, 

P(t, t + Atly) F(t + At - y) - F(t - y) lim = cil ilm 
W-0 At W-0 At 

= Cnf (t - Y) 1 (5.52) 

and for T, 
-, <y<t, 

lim 
P(t, t+ Atly) 

= lim 
F(t + At - y) - F(t - y) 

W-W At -V-*O At 

= f(t-Y) 
- (5.53) 

Therefore, equation (5.5 1) becomes 

i-I T 

v(t) = AE c,, f (t - y)dy +A v)dy rf 
(t 

n=l -1 

1-1 

T,, 
-, 

) - F(t - T,, )) + F(t - T, 
-, 

)',. (5.54) 
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The proof of Lemma 5.4 is complete. 

In solving a maintenance problem, our interest is in the reduction of the expected 
downtime per unit time over the long future period. Once the inspection process and 

plant has been operated for a long time period. it is expected that the behaviour will 

become steady state, and any initial influence of the newness at time t=0 is lost. This 

being so, with the current assumption, we can regard an inspection as a regeneration 

point of the system. That is, subsequent inspection cycles become statistically identical 

over time. 

If, after a long period of operation, an arbitrary time from an inspection Tj 
-1 

is x 

(see Figure 5.3), steady state condition can be assumed and the equation (5.36) will be 

changed slightly. 

T11-1 T, T-1 + At 

Figure 5.3. The failure process from an inspection T-, . 

Since t=T, -, +x from Figure 5.3, using the equation (5.36), the probability of a 

failure in (x, x+ Ax) from an inspection T, 
-, resulting from a fault arising at time y 

in (T,, 
-,, 

T,, ) is given by 

P(X, x+A. Yk .) 

c,, (F(T, 
-, +x+ Ax - y) - F(T, 

_, +x -y)) for T,, 
-, <y<T.. -n=1,2, ---, i-I 

F(Ti-I +x+ Ax - y) - F(Ti-I +x- for T, 
-, <y<T-, +x 

,x+ 
&Y 

-1 +X< I -, +X+&- F(Ti-I -, - Y) fo r Ti -<Tx 
0 otherwise. (5.55) 
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From equation (5.55). the expected number of faults identified at time x from an 
inspection (which is a regeneration point if there is an inspection at time x), namely 

EN, (x), can be obtained by letting i -> or- in equation (5.37). This gives 

c,, (I - F(Tj + (I - F(Ti-i +x- YNYI - (5.56) ENd W "M 21 
-, 

+x-i i 

n=l I. -; 

Using equation (5.56) and Lenu-na 5.3, we can state the following Lemma 5.5. 

Lemma 5.5 

If the fault arrival process follows a HPP with the rate X, the number of faults 

identified at time x from an inspection (which is a regeneration point) if there is an I 
inspection at time x is Poisson distributed with a mean given by equation (5.56). 

1 

Also, from Lenuna 5.4, the failure arrival rate ftinction at time x from an 

inspection which is a regeneration point, namely p(v), can be obtained by letting i -> co 
in equation (5.38). Using equation (5.55). this gives 

i-I 

, o(x) = lim A {Z c,, (F(T, 
-, +x-T,, -, 

) - F(Ti-I +x-T, )) + F(x)). (5.57) 
i-+m 

n=l 

Using eqUation (5.57) and Lemma 5.4, we can state the following Lemma 5.6. 

Lemma 5.6 

If the fault arrival process follows a HPP with the rate of X, we have that the failure 

arrival process follows a NHPP with the rate function given by equation (5.57). 

By using Lemma 5.5 and 5.6 instead of Lemma 5.1 and 5.2 respectively, we 

can embed the serni-Markov inspection model for an imperfect inspection policy in the 

serni-Markov inspection model of the subsection 5.3.1. When computing the 

equations (5.56) and (5.57), since we are interested in a regular inspection policy, we 

have to note that 

126 



nT, (5.58) 

where T is the regular inspection period tinder the Current policy R of the policy 
iteration algorithm of the subsection 5.3.1. For a special delay time distribution F(y), 

for example an exponential distribution, the expectation and failure of equations (5.56) 

and (5.57) can be obtained easily. Otherwise, we have to obtain the approximate 

value of equations (5.56) and (5.57) numerically. We will discuss this point in the 

subsection 5.5.33. 

5.3.3 Evaluation of the Serni-Markov Inspection Model 

In the previous chapter, the semi-Markov inspection model for a single 

component system was discussed. As a consequence of chapter 4, it was seen that 

when the distribution of the initial point it had a Markov property, the single 

component system could be modelled by a semi-Markov inspection model. However, 

in a real-world situation, there will be few systems with a single component. The 

system usually consists of many components and is therefore more complex. Thus, in 

contrast to the semi-Markov inspection model for a single component system, the semi- 
Markov inspection model for a multi-component system has the benefit of being 

relevant to the real-world situation. It is seen that if the fault arrival rate, regardless of 

the delay time distribution, satisfies the Markov property, then the multi-component 

system can also be modelled by a senii-niarkov inspection model. 

However, the senii-Markov inspection model for the multi-component system may 

still have some problems in being applied to a real-world situation. There may be 

difficulties in expressing the working condition of the system as degraded states, and 
ftirther difficulties in estimating the state transition probabilities for an industrial 

situation. It is shown in the previous subsections 5.3.1 and 53.2 that such 
difficulties maN, be solved using the delay time concept by expressing the degraded 

states of the system as the expected number of defects. State transition probabilities 
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may then be calculated using the distribution of the delay time h and defect arrival rate 
L To succeed here, the delay time parameters with the known case histories have 

established that they can be estimated from real-world data or subjective techniques as 
described in the chapter 3, and later in the chapter 6. Either way, the multi- 

component system can be fitted to the semi-Markov inspection model utilsing the delay 
Z 

time concept. 

Nevertheless, the semi-Markov inspection model for the multi-component system 

may still have problems in terms of its validity in a specific case. In the subsection 
51 3.1, the model assumes that faults arise as a HPP with the rate of occurrence of faults 

as the constant X under the perfect inspection policy. Also, from the Lemnia 5.1 and 

5.1), the semi-Markov inspection model has been established based upon this 

assumption. From the Lemma 5.1, if the system has an imperfect inspection policy, it 

is obvious that the number of defects identified at an inspection will be changed. 

Again, if the system is subject to an imperfect inspection policy, the failure arrival 

process may not follow a NEPP with the rate ftinction v(x) in equation (5.2), because 

failures arrivina in a current inspection period may be affected by faults arising in past 

inspection periods. Accordingly, it may be unrealistic to apply the semi-Markov tý I 

inspection model of the subsection 5.3.1 to the system with the imperfect inspection 

policy. It may be more reasonable in most cases to assume an imperfect inspection 

policy when modelling industrial situations. 

To solve these problems, the semi-Nlarkov inspection model for an imperfect 

inspection policy is presented in the subsection 5.3.2 under the assumption that the 

systern will be in steady state in the long term future period. The semi-Markov 

inspection model for an imperfect inspection policy is established on the basis of 

Lemma 5.5 and 5.6 which are based upon the delay time concept where the fault 

arrival process follows a HPP. Also, the parameters in the model can be estimated 
from the delay time concept. 
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5.4 Delay Time Model 

5.4.1 Formulation as a Basic Delay Time Model 

The inspection system mentioned in the section 5.2 can also be analysed in the 

framework of a delay time model to find the optimal inspection period which minimises 

the expected total cost per unit time or the expected total downtime per unit time. 

Indeed. this is necessary if the two modelling methodoloGies are to be compared as 
intended. To formulate the inspection system mentioned in the section 5.2 as basic 

delay time model, additional to the description of the section 5.2, we need the 

following assumptions. 

(1) An inspection takes place every T time units and requires Ci cost units and d, 

time units. 

(2) Inspections are perfect in that any defect present within the system will be identified 

at inspection, and no new fault inputted because of inspection. 

(3) Defects identified at an inspection will be repaired within the allocated inspection 

time, d,, and the mean repair cost per defect is Cd units. 

(4) A failure will be observed immediately at its occurrence. The component is 

repaired immediately upon failures and the mean repair cost and time for a failure 

repair are Cb cost units and 
db time units respectively. 

(5) 'nie component is as good as new after repairs. 

(6) Defects are independent of each other and arise as a homogeneous Poisson Process 

(HPP), with rate of occurrence of defects X. 

(7) The delay time h of a defect is independent of the time of origin, and all defects 
I 

share a common delay time pdf J(h) and cdf F(h). 

Then, as we noted in the section 5.2, an inspection will renew the system. 

To introduce the delay time modelling of this system, it is convenient to import the 

basic delay time model of the chapter 3. Since the instantaneous rate of defect 
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occurrence within the system after an inspection is ý,, the number of defects arriving in 

the inten, al (it, u+dzi) is Mi. Clearly, the expected number of defects arising over (0, 

T) is (seethe equation (3.2)) 

A-(T) = 
f1dit 

= AT. (5.59) 

A defect arising in (u, u+du) with a delay time h<T-u will arise as a breakdown (see 

Figure 5.4). 

0U u+du zt+h T 
Inspection Failure Inspection 

Figure 5.4. Failure process of a defect arising in (it, u+du). 

We have. therefore. that the expected number of breakdowns arising over period (0,7) 

is (seethe equation (3.3)) 

T 

B(7) = 
JAF(T 

- u)du. (5.60) 

A model of the expected cost per unit time as a function of the inspection period T 

may be obtained directly. The expected total cost of an inspection cycle consists of the 

expected cost of attending to failures, the expected cost of rectifying defects identified at I 
inspection, and the cost of the inspection itself. Since the expected number of defects 

and breakdowns arising over (0,7) is known, namely N(7) and B(7), assuming that 
12 -- 

the downtime of a failure, d, , is very small. the expected total cost per unit time over a 

ftill cycle of length T+d, is (see the equation (3.4)) 

C(T) =I (B(T)Cb+ (N(T) - B(T))Cd+ (5.61) 
T+d, 
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Here, the decision variable T would be selected to minimise the expected total cost per 

unit time C(7). 

Similarly, for the downtime model, since the expected total downtime of an 
inspection cycle consists of the expected downtime of attending to failures and the 

downtime of the inspection itself, assuming that the downtime of a failure, d,, is very 

small, the expected total downtime per unit time over a full cycle of length T+d, is 

(seethe equation (3.5)) 

D(T) =I (B(T)db + di). 
T+di 

(5.62) 

Here, the decision variable T would be selected to minimise the expected total 

downtime per unit time D(7). 

5.4.2 A Delay Time Model for an Imperfect Inspection Policy 

So far, it has been assumed, as in the section 5.2, that inspections are perfect in that 

any fault present will be identified. However, in most cases, it is more likely that 

inspections are imperfect. Based upon the assumptions of the section 5.2, suppose, as 

before in subsection 5.3.2, that there is a probability r :51 that any fault present at an 

inspection will be identified at the inspection. It has been shown that , under these 

circumstances, the probability of a fault leading to a failure, b(7), becomes (see equation 

(3.11)) 

b(T)= I- E-(I-r)"-'R(nT-y)dy, 

11=1 
T 

(5.63) 

where R(h) = I-F(h). Then, since the probability of a defect arising as a breakdown is 

changed, modifying equations (5.61) and (5.62), we have that the expected total cost per 

unit time is given by 
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C(T) = 
N(T), Ib(T)Cb+ (I - b(T))Cd) + C, 

(5.64) 
T+d, 

and the expected total downtime per tulit time is given by 

D(T) 
N(T)b(T)db +d, (5.65) 

T+d, 

Here, the decision variable T would be selected to minimises the expected total cost per 

unit time C(7) or the expected total downtime per unit time D(7). 

5.4.3 Evaluation of the Delay Time Model 

In the previous section, it is shown that the system mentioned hi the section 5.2 can 

be fitted to the semi-Markov inspection model for a multi-component system based upon 

the delay time concept. The delay time concept provides a means denoting the working 

condition of the system as the degraded states of the semi-markov inspection model, and 

obtaining the state transition probability from data in an industrial applications by first 

estimating the paranieters of the delay time distribution. Using the delay time concept in 

this way. the semi-INIarkov inspection model is potentially useftil in application to a real- 

world situation. Here we can see the modelling value of the delay time concept. 

In applying the semi-Markov inspection model to an actual situation, the key point is 

that the fault arrival process has a HPP with the rate X. If the fault arrival process follows 

a N_HPP. we cannot apply the semi-Markov inspection model to the real-world situation. 

However. in this case. the delay time model can still be used as discussed in the chapter 3. 

Accordingly, the delay time model is again more robust than the semi-Markov inspection 

model in applying to the real-world situation. The delay time model may be fitted 

regardless of the HPP " NHPP status of the fault arrival process. 
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5.5 Numerical Examples 

5.5.1 Generatino, the Data usin- Simulation eý 6 

As discussed in chapter 4, when we are faced with the industrial preventive 

maintenance problem, the data collection is of prime importance. In attempting to apply 

models of maintenance to an actual industrial plant, the immediate problem is usually that 

there are no data to be fitted. Either way, we require data to fit to the models of section 
5.3 and 5.4 in order to compare both models. Comparing, the two models with each 

other is only part of the research process here, since both models also ideally need to be 

compared with the time value, which is unknown. This is a reason for generating the data 

using computer simulation and a known delay time model. 'Me generated data can then II 

be used to model the process. 

By the assumption (8) of the section 5.2, defects are independent of each other and 

arise as a HPP with the rate X. If X,, 1 nýýI, denotes the time between the (n-I)st and 

nth defect from the last inspection point (see Figure 5.5), the sequence { X,, , ný: II is 

called the sequence of inter-arrival times and X,, are independent identically distributed 

exponential random variables having mean :M 

[1983]). 

I/k (see the proposition 2.2.1 of Ross' 

X1 X, X3 

0T Inspection Inspection 

X(n-1) X,, 

(k-I)T U 
Inspection Inspection 

Figure 5.5. The sequence of inter-arrival times. 

Nothi- this inter-arrival time pattern, the system description for modelling of section 
5.2, and assumption (Y) which is changed in assumption (3) of section 5.2, we can 

generate a set of synthetic data for an imperfect inspection policy corresponding to this I 
situation using simulation. By setting the probability of identiA-ing a fault at an 
inspection r=1. we can generate a set of data for a perfect inspection policy. Figure 5.6 
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illustrate the simulation progress by presenting the flow chart which is for the 

characteristic structure of the data shown in the Table 5.1. 

Start 

Choose T, N, Initialize r, db, NFS'--O, SX=O 

Do 10 m=1 A' 

NLý=O, N-F-=O 

Generate X 
SX=SX+X 

Cc SX<l I -P 

AIFS--Oi 

Do 15 iý-I, AIFS 

0<171 

F- 15 FTP(i)=TP(i)-(ni-l)*T 

yes 

NFS--NFS-NF 

Print m, NF, FTP, ND' 

Do 16 i=NF+I, NFS 

TP(i-NF)=TP(i) 

16 

10 stop 
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Generate h 

1 FT=SX+h I 

Generate madom number : RN 

Yes 
r? 
rjo 

NL)=ND+l 

1 NFS--NFS+l I 

TP(NFS)=FT 
Sort TP according to size 

BSX=SX 
Generate X 
SX=&V+X 

IVFS'--O? 

Do 13 i--I, NFS 

Tj i)>SA-. > 

SX=SX+db 

Ye- s 

YS 
iý-NFP 

Do 13 i=i+I, NFS 

TPU)=TP(i)+db 

13 
Yes 

-- -- ---- -11- T9 _. - _ SX<ln 

J0 ý 

Figure 5.6. Flow chart for generating the data for a multi-component system. 
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In Figure 5.6, the following notation has been used. I- 

T: A present inspection period. 

N: The number of inspection for computer running. 

ND : The number of defects arising within a present inspection period. 

NF: The number of failures arising within a present inspection period. 

X: An inter-arrival time of defect. 

SX: The present summation of inter-arrival times. 

h: A delay time 

TP(j) : The jth failure time point. 

FTP(j) : The jth failure time point within a present inspection period. 

5.5.2 A Perfect Inspection Case 

A numerical example of the cost model outlined in the section 5.3 and 5.4 is 

evaluated for demonstration purposes. From the semi-Markov inspection model of 

section 5.3 and the delay time model of the section 5.4, the expected cost per unit 

time can be determined as a function of the inspection period T, or the decision rule 

R= s*. This means that we can obtain the optimal inspection period T* which 

minimises the expected cost per unit time. Since, however, we wish to know which is 

the most accurate of the models, and the extent of any difference between them. we 

compare the two models with a simulation model. It was shown in the flow chart of 
Figure 5.6 of the previous subsection -5.5.1 that the required data could be obtained 
for any inspection period T. A minor change to the flow chart of Figure 5.6 

transforming it into the flow chart of Figure 5.7 will provide the expected cost per unit 

time C(7) according to the inspection period T. In Figure 5.7, adding the notations 

of Figure 5.6, TC denotes the total expected cost. In this subsection, we can get the 

expected cost per unit time by setting r=I in Figure 5.7. 
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Figure 5.7. Flow chart for computing the expected cost per unit time. 
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To compare the semi-Markov model with the delay time model, firstlv, consider the 

case where the fault arrival rate has been taken as X faults per unit time. the delay time 

h has an exponential distribution with the mean UP, P>O, and the downtime of the 
failure can be neglect, d, = 0. Since the inter-arrival time X has an exponential 

distribution with the mean I /X, the pdf of the inter-arrival time X is given by 

q(x) = Ae-ý`. (5.66) 

Also, we have that the pdf of delay time h is given by 

(h) = 8e -fl' (5.67) 

and the cdf of the delay time h is given by 

F(h) =I- e-"'. (5.68) 

Assuming that the data have been given in the real-world situation, or generated 

using simulation, the estimates of X. and P have been estimated as X 0.3 and P= 

0.1. Also, costs are taken as C, =10 units, Cd =5 units, and C, 15 units, and 

downtimes for a cost model are taken as di = 0.4 time units. In the semi-Markov 

inspection model for the perfect inspection case of subsection 5.3.1, we have assumed 

that N is the upper bound of the expected number of defects and the time interval At is 

very small. For a numerical example of this subsection, we assume that N= 30 and 

the time interval At = 1. Under these circumstances, the result for the semi-Markov 
inspection model for a perfect inspection policy of subsection 5.3.1 , namely equations 
(5.23) to (5.28) and equation (5.61) for the basic delay time model for expected cost, 
is shown in Figure -5.8. 

Figure 5.8 sho,. %-s that the semi-Markov model curve is consistent with the delay 

time model curve and the simulation curve and an optimal inspection period point 

which minimises the cost per unit time can be obtained from these three curves. This is 
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as expected because of the Markovian nature of the modelling assumption and services 

as a check of our numerical procedures. Accordingly, the above mentioned system can 
be modelled with both a semi-Markov inspection model or a delay time model. 

4.4 

4.1 

3.8 

u 3.5 

3.2 

From Delay Time Model 

------ From Simulation 

-From Semi-Markov Model 

05 10 15 20 25 30 35 40 
Inspection Period 

Figure 5.8. The expected cost per unit time according to the inspection period. 

(This is for a perfect inspection policy Nvhen the delay time has an exponential distribution, 
At--I, X=0.3,0=0.1, Ci =10, Cd = 5, Cb = 15, di = 0.4, and d, = 0. ) 

Secondly, tinder the same conditions as in the above case, consider a case when the 

downtime of the failure cannot be neglected, db # 0. If we assume that db = 0.05, 

the result for the semi-Markov inspection model for a perfect inspection policy of the 

subsection 5.3.1 and the equation (5.6 1) of the basic delay time model can be shown 
in Figure 5.9. 

1 

Figure 5.9 shows that there is little difference between the semi-Markov model 

curve and the delay time model curve, although a difference does now exist. Further, 
I 

the simulation model curve may be more consistent with the semi-Markov model curve 

than the delay time model curve. The reason is that the equation (5.61) of the basic 

delay time model neglects the downtime of a failure. This can be readily corrected if Z7 
required (see Chilcott and Christer [1991)). However, in getting the optimal inspection 

period point which minimises the expected cost per unit time, we can obtain the optimal 
inspection period from the semi-Markov model and from the delay time model, and in 
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this case the optimal inspection period from the delay time model is the same as that 
from the semi-Markox- model (see Table 5.2). 

4.4 

4.1 

3.8 

3.5 

3.2 

-From Delay Time Model 

------ From Simulation 

-From Semi-Markov Model 

05 10 15 20 25 30 3) 5 

Inspection Period 

40 

Figure 5.9. The expected cost per unit time according to the inspection period. I 
(TWs is for a perfect inspection policy when the delay time has an exponential distribution, 
A, t--I, X=0.3. P=0.1, Ci =10, Cd = 5, C,, = 15, di = 0.4, and d,, = 0.05. ) 

Table 5.2. Expected cost per unit time for Figure 5.9. 

hispection 
Period 

Delay time 
model 

Simulation 
model 

Semi-Markov 
model 

Remarks 

7 3.567 3.588 3.553 
8 3.510 3.483 3.494 
9 3.478 3.454 3.461 
10 3.465 3.486 3.447 
11 3.464 3.462 3.444 Optimal 
12 3.471 3.436 3.450 
13 3.483 3.414 3.461 
14 3.500 3.419 3.476 
15 3.519 3.477 3.494 
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To confirm this point clearly, if we increase the downtime of a failure into d. = 0.2, 

the result is as shown in Figure 5.10. 

4.4 

4.1 

3.8 

3.5 

3.2 

-From Delay Time Nlodel 

------ From Simulation 

-From Semi-Markov Model 

05 10 15 20 25 30 35 40 

Inspection Period 

Figure 
-5.10. 

The expected cost per unit time according to the inspection period. 

(This is for a perfect inspection policy when the delay time has an exponential distribution, 
At--I, X=0.3, P=0.1, Ci =10, Cd = 5, Cb = 15, di = 0.4, and db = 0.2. ) 

Fi ure 5.10 shows that there is the bigger difference between the semi-Markov model 9 

curve and the delay time model curve than Figure 5.9. Also, the simulation model 

output is more consistent with the semi-Markov model than the delay time model. 
However, from both models, the optimal inspection which minimises the expected cost 

per unit time can be obtained, and the inspection period choice resulting from the delay 

time model is the same inspection period resulting from the semi-Markov model line 

(see Table 5.33). 
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Table 5.3. Expected cost per unit time for Figure 5.10. 

Inspection 
Period 

Delay time 
model 

Simulation 
model 

Semi-Markov 
model 

Remarks 

7 3.567 3.515 3.511 
8 3.510 3.461 3.448 
9 3.478 3.416 3.412 
10 3.465 3.430 3.393 
11 3.464 3,400 3.387 Optimal 
12 3.471 3.3 3) 5 3.388 
13 3.483 3.356 3.396 
14 3.500 3.376 3.408 
15 3.519 3.392 3.423 

Thirdly, under the same conditions of the above second case, consider the case that 

the delay time h has a Weibull distribution with the shape parameter cf>O and the 

scale parameter P>O. We have that the pdfof the delay time h is given by 

(h) = a, 6-'h-'e (5.69) 

and the cdf of the delay time h is given by 

h 

F(h)=I-e 16 (5.70) 

Assuming that the data have been given in the real-world situation or using simulation, 

(x and P have been estimated as (x = 0.9 and P=9.0. If we assume that db = 0.05, 

the result for the semi-Markov inspection model for a perfect inspection policy of the 

subsection 5.3.1 and the equation (5.61) of the basic delay time model can be shown 
in Figure 5.11. 

ID 
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4.4 
From Delay Time Model 

------ From Simulation 

-From Semi-Markov Model 4.1 

3.8 

3.5 

3.2 -L 
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Inspection Period 
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Figure 5.11. The expected cost per unit time according to the inspection period. 
(This is for a perfect inspection policy when the delay time has a Weibull distribution, At--I, 
). =0.3, cc=0.9,0=9, C =10, Cd= 5, Cý = 15, di = OA, and 

db = o. m. ) 

Fi! zure 5.11 shows that there is still a little difference between the semi-Markov model 

curve and the delay time model curve, and that the simulation model may be more 

consistent with the semi-Markov model curve than the delay time model curve. The 

two models would not move closer together if At were to decrease from At = 1. The 

simulation output confirm this. However, in determining the optimal inspection period, 

the delay time model and the semi-Markov model do, to the precision of the measure 

scale, again indicate the same decision (see Table 5.4). Zý 

Table 5.4. Expected cost per unit time for Figure 5.11. 

Inspection 
Period 

Delay time 
model 

Simulation 
model 

Semi-Markov 
model 

Remarks 

9 3.606 3.568 3.586 
10 1.591 3.588 3.570 
11 3. _5 87 3.585 3.565 Optimal 
12 1 3. i9l 1 3-543 3.567 
1n .3 601 _ 3 530 1. - 3.576 
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5.5.3 An Imperfect Inspection Case 

In the previous subsection, we have discussed the case when the fault arrival rate 

obeyed a HPP and inspections were perfect. The discussion of the previous subsection 

confirmed that, regardless of the distribution of the delay time h, when the fault arrival 

process is a HPP, for the perfect inspection case, the system can be represented by both a 

semi-Markov inspection model and a delay time model. In this subsection, we consider 

an imperfect inspection case in order to check that the system can be fitted to the semi- 
Markov inspection model and the delay time model. As before, if we take the simulation 

model to compare fairly the semi-Markov inspection model and the delay time model, we 

can use the flow chart of Figure 5.7 for the simulation progress. 

Firstly, consider a case where the delay time has an exponential distribution of equation 
(5.68). In this case, for a delay time for an imperfect inspection policy of the subsection 
5.4.2, the probability of a fault leading to a failure, b(Z), of the equation (5.63) becomes 

))dy 

n=, 
T 

r(I - e-gr) 

)6T(I - (I - r)e 
(5.71) 

Applying the equation (5.64) of the delay time model for an imperfect inspection policy 

based upon the equation (5.71), we get the expected cost per unit time C(7) according to 

the inspection period T. Also, for a semi-Markov inspection model for an imperfect 

inspection policy of subsection 5.3.2, the number of faults identified at time x from an 

inspection, ENAX) I oftheequation (5.56) becomes 

i-I 

ENd (x) = liniAr[j: (I e '(T, -[+-'-Y)))dy 
1-4 n=l 

+ -(1- 
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Ar 
(, 
(I - r)(I - e#T)e-l" (5.72) 

effr 

and the failure arrival rate ftmction at time x from an inspection, p(. Y), of the equation 
(5-57) becomes 

-AT 
, 
O(X) = lim AI -n ((l _ee+ 

n=l 

r)(I - el")e-l" 
+ I-r-e flT (5.73) 

Applying the semi-Markov inspection model for an imperfect inspection policy of the 

subsection 5.3.2 based upon the equations (5.72) and (5.73), we can get the expected 

cost per unit time g(7) according to the inspection period T. 
I 

Given the data from the real-world situation or using simulation, we assume that the 

parameters for the distributions of the inter-arrival time X and the delay time h have 

been estimated as X=0.3 and P=0.1 respectively and the probability of identifying a 

fault at an inspection has been estimated as r=0.7. Also, as before. costs are taken by 

Cj =I 0 units, Cd= 5 units, and Cb = 15 units and downtimes for a cost model are 

taken by di = 0.4 time units and db = 0.05 time units. Also, for the numerical example 

of this subsection, Nve assume that' ýV 30 'and the time interval At =I in the semi- 
Markov inspection model for an imperfect inspection model of the subsection 5.3.2. 

Under these circumstances, the result for the semi-Markov inspection model for an 
imperfect inspection policy of the subsection 5.3.2, the delay time model of the equation 
(5.64), and the simulation model is shown in Figure 5.12. 

Figure 5.12 shows that the semi-Mark-ov inspection model is consistent with the delay Zý 
time model and the simulation curve and an optimal inspection period point which 

mininiises the cost per unit time can be obtained from these three curves. Accordingly, 

the mentioned system for an imperfect inspection policy can be fitted to the semi-Markov 

model or the delay time rnodel. The difference between the presented simulation model 

and the analytic models of Figure 5.12 is due to the rather large average failure repair 
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time d6 = 0.05 of the simulation. Had db been reduced, the deviation of the 

simulation model to the analytic models would here been much reduced for the smaller 

time periods. 

6 

5.5 

5 

4.5 

4 

3 

-From Delay Time Model 

------ From Simulation 

From Semi-Markov Inspection Model 

3.5 

05 10 15 20 25 30 35 40 

InsPection Period 

Figure 5.12. ne expected cost per unit time according to the inspection period. 1. 
(This is for an imperfect inspection policy when the delay time has an exponential distribution, 
A, t--I, X=0.3.0=0.1,1--0.7, Ci = 10, Cd = 5, Ct, = 15, di = 0.4, and d. = 0.05. ) 

Secondly, consider a case that the delay time has a Weibull distribution of the equation 

(5.70). In this case, for a delay time for an imperfect inspection policy of the subsection 

5.4.2. the probability of a fault leading to a failure, b(7-), of the equation (5.63) becomes 

))dy 

dy. 
n=l T 

(5.74) 

Here the equation (5.74) can be obtained numerically using the computer. Applying the 

equation (5.64) of the delay time model for an imperfect inspection policy based upon the 
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equation (5.74. ), we can get the expected cost per unit time QY) according to the 

inspection period T. Also, for a semi-Markov inspection model for an imperfect 

inspection policy of the subsection 5.3.2, the number of faults identified at time x from 

an inspection, ENd(X) of the equation (5.56) becomes 

i-i T -( 
T- [+x-y ). 

EN, (x) = lim Aj-[2: (1 - r)'-" (1 - (1 -e» dy 
Z ->X n=I 

))dy] 
,-I 

i-n 
T -( T +x -( f. 

e dy+ E' e dy (5.75) 
n=l _I, -1 

and the failure arrival rate fimction at time x from an inspection, p(. Y), of the equation 
(5.57) becomes 

i-I T_i+x-T_I)a T I+x-T x 
A {Z (I 

_ . )i-n ((I 
-( 

18 
-( rýi ýý an )l - (-), 

, P(X) = lim -e )-(I-e + (I -e iýx 
n=l 

i-I T I+X-T T-, +x-T-, ). 
i-n 

=). IimZ(I-r) (e e6+ A(l -e6 (5.76) 
n=1 

The equations (5.75) and (5.76) can also be obtained from the numerical method. 
Applying the semi-Markov inspection model for an imperfect inspection policy of the 

subsection 5.3.2 based upon the equations (5.75) and (5.76), we can get the expected 

cost per unit time g(7) according to the inspection period T. 

Given the data from the real-world situation or using simulated data, we assume that 

the parameters for the distributions of the inter-anival time X and the delay time h have 

been estimated as X=0.3, cc = 2.0, and P= 10 respectively and the probability of 

identifying a fault at an inspection has been estimated as i- = 0.7. Also. as before. costs 

are taken as C. =I 0 units, Cd =5 units, and Cb = 15 units and downtimes for a cost 

model are taken as di = 0.4 time units and db = 0.05 time units. Under these 

circumstances. the result for the semi-Markov inspection model for an imperfect 
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inspection policy of the subsection 5.3.2, the delay time model of the equation (5.64), 

and the simulation model is shoNNm in Fizure 5.13. 
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From Semi-Markov Inspection Model 
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Figure 5.03. The expected cost per unit time according to the inspection period. 

(This is for an imperfect inspection policy when the delay time has a Weibull distribution, At--I, 
X=0.3, cc--2.0, P= 10, t--O. 7. Ci = 10, "Cd 

= 5, C1, = 15, di = 0.4, and d. = 0.05. ) 

Figure 5.13 shows that die semi-Mark-ov inspection model is consistent with the delay 

time model and the simulation curve and an optimal inspection period which minimises 

the cost per unit time can be obtained from these three curves. Accordingly, an imperfect 

inspection policy for the given multi-component system can be modelled by either the I 
semi-Markov model or the delay time model. 

5.6 Comparison and Conclusions 

The single component system can only be fitted to the semi-Markov inspection 

model in the case that the initial point u has a Markov property. As well as the semi- 
Markov inspection model for a single component system, if the fault arriving process 
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follows a HPP for a complex system, the semi-Markov inspection model for a multi- 

component system can be applied to the system regardless of the distribution of the 
delay time h, as discussed in the subsection 5.5.2. We note that the models here rely 

on the delay time concept. The delay time concept provides a means of not only 
denoting the working condition of the system as the degraded states of the semi-Markov 
inspection model, but also of obtaining the state transition probabilities from data by 

first estimating the fault arrival rate and the parameters of the delay time distribution. 

The semi-Markov inspection model based upon the delay time concept can, in this way, 
become useftil in modelling real-world situations. The importance of the delay time 

concept is evident. 

When we establish the semi-Markov inspection model, we have to note Lemmas -5.1 
to 5.6 which are based upon the delay time concept. Then, after some complicated 

manipulation, we have the semi-Markov inspection model of the section 5.3 which is 

fitted to the multi-component system with a perfect inspection policy or an imperfect 

inspection policy. The equations of the semi-Markov inspection model, as shown in 

the section 5.3, are complicated. Therefore, when compared to the delay time model, 
it takes a larger time to compute the solution of the semi-Markov inspection model 

using the personal computer. This time depends upon the upper bound of the number 

of defects N and the arbitrary small time period At. In the numerical examples of the 

section 5.5, we assumed that the upper bound of the number of defects is N= 30 and 

the arbitrary small time period is At = 1. However, since, in the real-world situation, 

the multi-component system may consist of many components and need the arbitrary 

smaller time. there may be the more difficulties in computing the semi-Markov 
inspection model using the personal computer. Also, in applying, the semi-Markov 
inspection model to the real-world situation, the key point is that the fault arrival 

process follows a HPP which satisAl the Lemmas 5.1 to 5.6. If the fault arrival 

process follows a NHPP, we cannot apply the semi-Markov inspection model to the 

real-world situation because Lemma 5.1 to 5.6 are not satisfied and the model is not 

robust to these requirements. It is noted that there is a greater applicability of semi- 

Markov models to complex system maintenance than to component maintenance. This 

is due to a fundamental difference between the consequences of a breakdown in the two 
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cases. For a component, a breakdown represents a system renewal here, whereas for a 

system, the defect is repaired, and the system continues to age as before. 

In real-world applications, the delay time model is consistent with the semi-Markov 
inspection model as discussed in the section 5.5. However, in contrast to the semi- 
Markov inspection model, the delay time model consists of the simpler equations as 

shown in the section 5.4. Therefore, it does not require a long time compared to the 

semi-Markov inspection model to compute the equations of the delay time model using 

a personal computer. Also, the delay time model provides a means of modelling the 

behaviour of the system and predicting such useful quantities as reliability or cost under 

various inspection policies. If the fault arrival rate, regardless of a FIPP or a NHPP, and 

the parameters of the pdf of the delay time h, J(h), regardless of any distributions, are 

estimated from the data of the real-world situation through either the subjective or 

objective estimation method, we can easily establish the delay time model which can be 

used to find the optimal inspection policies minimising the expected total cost per unit 

time or the expected total downtime per unit time. As confirmed in the nurne rical 

example of the section 5.5, it was seen that the simulation model curve and semi- 

Markov model are nearly consistent with the delay time model curve. This means that 

the delay time model can be practically applied to the multi-component system. 

In conclusion. since the delay time model is free from constraints on the fault arrival 

process, and does not require as much time as the semi-Markov inspection model in 

computing the solution of the delay time model using personal computer, the delay time 

model may be more general than the semi-Markov inspection model in applying to the 

real-world situation. 
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Chapter 6 

A CASE STUDY OF SEMI-MARKOV AND DELAY TIME MODEL 

6.1 Introduction 

This chapter reports on a case stud), of the semi-Markov and delay time models of 

maintenance applied to a subsystem of a complex machine used within a vehicle brake 

lining manufacturers, namely a Preformer in a production machine. One of the 

objectives and motivations behind this case study is to build a model for both 

identifying and quantifying ways of iniproving the overall efficiency of the scheme of 

preventive maintenance (PM) for the Preformer. The other objective in this study is to 

develop and check the applicability of the semi-Markov and delay time models of 

maintenance of the previous chapter, with particular focus on the estimation of values of 

parameters of the models, the compatibility of the results, and the general applications 

of the modellinc, methods. 

One of the key issues in the semi-Markov and delay time models of maintenance 
based upon the delay time concept is the estimation of parameters which is usually the 

rate of occurrence of faults, the distribution of the underlying delay time h of a fault, 

and the probability of identiffing and removing a defect at inspection. The method 
initially developed for this purpose is called the subjective method, because estimates 

are obtained from the synthesis of numerous subjective opinions of engineers collected 

at maintenance intervention. It has been observed that applied studies of the delay time 

concept were initiated by Christer & Waller [1984a, b], Chilcott & Christer [1991], and 
Desa [1995] within industrial situations. In all these studies, the probability density 

function of the delay time was established through subjective estimates derived in well 

structured situations. 
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A recent development in delay time modelling has established that these parameters 

can also be estimated using objective data which are from maintenance records of 

failures and any faults found at PM. _17his estimating method has been termed the 

objective method. In the papers by Baker & Wang [1992,1993], the objective method 

was initially designed for a single component subject to failures and inspections at PM, 

or a system with a few key components. For complex machinery with many 

components, some modelling has been carried out for actual plant using the delay time 

concept in the paper by Christer et al. [1995]. They developed a model which was 
based upon the stochastic process of the fault-initiating process and the interval data. 

Here we develop a model which is different from previous delay time models. This 

model deals with a case where historic data exists recording failure time points and PM 

times, but they are no record of the result of a PM. So, we '%vill use the objective 

method for the failure data and the subjective method for the inspection data in order to 

estimate the parameters. Then, PM models are developed to reduce the expected total 

downtime using both the semi-Markov and the delay time models of maintenance. As 

this is a case-related study, numerical examples are given throughout to demonstrate the 

modelling ideas. 
I 

6.2 The Production Plant and Maintenance Practice 

The formal name of the company collaborating in the research study is "Brakelinings 

Limited" which produce truck brake linings in the Northwest of England. The company 

has the production machine comprising of a set of subsystems, which are Preformer, Lift 

table 1, Lift table 2, Dies, Die and Trans, Hot and Press, Conveyor, and others. The 

production machine is key plant in the factory, which is operated 24 hours a day (3 

shifts) for 5.5 days a week excluding public holidays and maintenance downtimes. 
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At the time of the study, in order to reduce downtime, a system called total 

productive maintenance (TPM) has been implemented. TPM was introduced in Japan 

more than ten years ago and has since found wide acceptance. TPM is implemented by 

all employees, and is based on the principle that equipment improvement must involve 

everyone in the organisation, from line operators to top management. The key 
Z 

innovation in TPM is that operators perform basic maintenance on their own equipment. 
They maintain their machines in good running order and develop the ability to detect 

potential problems befora they generate breakdowns. Therefore, we can regard the 

TPM as a kind of preventive maintenance (PM). In the company, TPM very much 

takes the form of a PM activity, it requires about 6 hours, and is performed 

approximately once per three weeks. We have, however, no record of the performance 

or the results of the TPM. It is evident that the TPM as currently operated is some what 

short of the ideal of Nakajima [1989]. 

The company's objective is to reduce the downtime caused jointly by failures and 

TPM activities, and thereby increase the availability of the machine. The company 

supposed that the operators and maintenance engineers will find and rectify faults on the 

machine at TPM within the TPM downtime, but experience shows that there are still 
failures occurring immediately after TPM. The relevant questions of concern are 

(1) whether TPM can identify most faults present and reduce the number of failures 

caused by those faults, and 

(2) whether the current TPM period is the right choice, particularly, the three-week TPM 

cycle for the Preformer subsystem. 

To establish the relationship between the downtime measure and TPM activities 

using the delay time concept, the first task is to estimate parameters. These are the rate 

of occurrence of faults, the underlying delay time distribution, and the probability of 

identifying and removing a fault. It is then possible build a model to describe the 

interplay of the failure, downtime, and TPM process. 
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6.3 Data Analysis 

6.3.1 The Available Data 

The available data over a recent 13 month period include dates and times of 
downtime occurrences due to both TPM and failures, along with a brief description of 
its nature. Production records provide the downtimes associated with each failure. 

The data normally relate to a 24 hour operating day (three shifts), 5.5 operating days 

per week, but the company sometimes has 6 operating days per week. 

The production machine is divided to three sections for TPM, each of which include 

three subsystems. Accordin-c-, to the recorded data, the TPMs are performed 

approximately every three weeks, but TPM periods are sometimes 4,5, or 6 weeks. 
In an initial investigation of the effectiveness of the TPM practice, we use as a measure 

of Plant performance the average number of breakdowns per day or week since TPM for 

the subsystem. 

Also, since full observation of defects identified and rectified at TPM are not 

recorded, we need to estimate the probability of identifying and removing the defect 
I 

during a TPM activity using the subjective method. Such estimates are obtained from 
I 

knowledgeable engineering staff by asking the following questions; 

(a) Suppose 100 defects are present at TPM. How many of them could be identified at 

the TPM and before they led to a failure? 

(b) Suppose 100 defects are identified at TPM. How many of thern would be rectified 

at or immediately after the TPM? 

From the above questions, the probability of identifying and removing the defect 

during the TPM, q. can be given by the following equation. 
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Figure 6.2. The Preformer breakdown number per operating hour measured weekly. 

According to Figure 6.2, the failure occurrence rate per week for the Preformer 

seems to be constant through with a element of variability. A Nest supports the 

hypothesis that the perforniance is constant. To check the validity of this point, we can 
fit the graph to the regression line which is shown in Figure 6.2. Therefore. we 

conclude that the failure occurrence rate per week may be assumed constant. 

6.3.4 The Effectiveness of TPM for the Preformer 

The number of completed TPM cYcles is 13 for the data collection period. 
Given effective TPA I, it is expected that the number of failures would increase with each - 
working day from the TPM. To explore this relationship, Table 6.1 is presented for 

the Preformer data and FiRure 6.3 is based upon Table 6.1. 
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Table 6.1. The average number of failures since TPM. tý 

Davs Total 
since No. of 
TPM Failures 

Sample 

Size 

Average 
No. of 

Failures 

Days 
since 
TPM 

Total 
No. of 

Failures 

Sample 
I 

Size 

Avera2e 
NI. 0. of 

Failures 
1 0.154 27 8 -3 2.667 
2 14 1.077 28 10 

_33333 3 7 B 0.538 29 4 1.3 3) 
4 9 1 0.692 30 8 2.667 
5 16 1.000 31 0 3 0 
6 11 12 0.917 32 4 3 J. 33 33 
7 14 10 1.400 33 4 3 1.3 3 33 
8 9 8 1.125 34 1 3 0.3 33) 
9 11 7 1.571 35 0 0 
10 11 7 1.571 36 2 0.667 
I1 7 0.429 37 5 1.667 
12 5 6 0.833 38 1 0.333 
1n 10 6 1.667 39 2 3 0.667 
14 2 6 0.333 40 2 0.667 
15 12 6 2.000 41 3 1.000 
16 11 6 1.833 42 2 1.000 
17 11 6 1.833 43 1 0.500 
18 6 6 1.000 44 4 2 2.000 
19 10 6 1.667 45 2 1) 1.000 
20 3 6 0.500 46 1 2 0.500 
21 4 5 0.800 47 2 2 1.000 
22 7 5 1.400 48 2 1.000 
2 3) 7 4 1.750 49 6 1) 3.000 
24 8 4 2.000 50 4 2 2.000 
25 - 

3 67 0.6 51 7 ? 3.500 
2 6 7 3 2.33 -3) 

3 52 4 2 2.000 

In Table 6.1. since we cannot place reliance on the average number of failures after 21 

days since TPM, because of the small number of TPMs, Figure 6.3 for the average 

number of failures per day is produced by the average number of failures until 20 days 

since TRIM. 
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Fiaure 6.3. The effectiveness of TPM for the Prefornier. tý 

Figure 6.3 shows that the number of breakdowns of the Preformer slightly increase 

accordin- to each working day since TPM. This may imply that the performed TPM 

for the Preformer might be effective in reducing, the number of failures. 
Itp 

6.3.5 The Number of Defects Identified and Rectified during TPM 

As a result of asking the production manager in the company, we have an 

estimate of the number of defects identified at TPM from the question (a), and the 

number of defects rectified during TPM from the question (b). Since the number of 
defects identified at TPM is given as 45 and the number of defects rectified during 

TPM is given as 30, which seemed low to us, from the equation (6.1), the probability 

of identiAin- and removing the defect during TPM, q, is estimated b-, 

45 30 
-x15. 100 100 

(6.2) 
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6.3.6 The Mean Downtimes due to Failures and TPM activities 

The collected data indicated 317 failures, with a total downtimes of 289.8 

hours, that is a mean downtime per failure of 0.914 hours. The variance of downtime 

per failure repair is 2.154. 

The total number of TPMs over the data collecting period is 13, with recorded total 

downtimes caused by TPM of 67.7 hours. Since 3 subsystems, including Preformer, 

are inspected for each TPM, assuming that the three subsystems take equal time to 

TPM, the mean duration of the TPM activity incorporating the Preformer, di, is given 

by 

67.7 
di =-=1.73 (hours). (6.3) 

13 x3 

6.4 Assumptions for Modelling 

-flie first objective of the statistical modelling in this study is to estimate the 

parameters of the fault arriving process, the delay time distribution, and the probability 

of identifying and removing a fault at TPNI. This will permit OR models of 

consequence variables such as downtime to be established based upon the estimated 

parameters. Observations of the data and previous experience suggest the following 

initial assumptions describe the operating practice over the period of data collection. 

(a) Faults arise as a homogeneous Poison Process (HPP), and the instantaneous rate of 

occurrence of defects (ROCOD) is denoted by X. 

(b) Faults are independent of each other. 
(c) The delay time h of a random fault is independent of its time of origin and has pdf 

fi. ) and CDF F(. ). 

(d) Inspections carried out at TPM are assumed to be imperfect in that a fault present 

will be identified with probability i-, 0: ýi-:! ýI. Probabilities of detection of a fault at 
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successive inspections are assumed to be independent and constant. An inspection 

requires di time units. 

(e) Not all faults identified at TPM are assumed to be fixed because of limited time and 

resource allocated. Unattended faults may cause failures later. We assume that a 

fault identified at TPM is fixed during the TPM period with probability s, 0:! ýS:! ýI. 

This does not influence the development of undetected faults. We assume that the 

choice of defect to rectify is arbitrary. 
(f) Failures are identified immediately, and repairs or replacements are made as soon as 

possible. The mean downtime per failure is db . 

In general, one would expect a nonhomogeneous Poisson process (NBPP) to be a 

good approximation to the fault arrival process. As plant ages, we would expect a BPP 

of arrival rate to be appropriate. This is because the probability of a fault arriving in a 

small time interval will be hardly changed by the pattern of previous fault arrivals, since 

those failed or defective components which are repaired or replaced are a negligible 
fraction of the total plant. This independence of intensity on past failure epochs 

cliaracterizesaHPP. Barlow and Proschan [1965] proved that, for a complex machine 

with negligible repair times, the failure process does indeed in the limit follow a HPP. 

Furthermore, in this study, since the failure occurrence rate per week has an random 

pattern (see Figure 6.2), the fault arrival process may reasonably be assumed to follow a 

HPP. This is the reason underlying assumption (a). 
I 

When the system is so complex that it is difficult to track individual components, it is 

simplest when modelling to pool faults from all components. In this case J(h) is the 

delay time pdf for any fault, that is assumption (b). Assumption (c) is common in 

delay time modelling, since it both greatly simplifies the modelling work and has been 

validated by real-world observation. Assumption (d) is due to the fact that the 

inspection work carried out on the Prefornier during TPM period can be imperfect in 

that it has been observed that failures occur immediately after TPM, and furthermore, 

the number and the downtime of breakdowns are roughly the same for each working 
day. Assumption (e) is based upon observation and has been confirmed by the 

production manager. Assumptions (d) and (e) give Lis the probability of identifying and 
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removing a fault, namely q= i-s. Assumption (f) embodies the maintenance practice 

cuiTently adopted. 

6.5 Parameter Estimation 

6.5.1 Likelihood Formulation 

To forra the likelihood function using the failure data including the accurate I 
failure time, consider Figure 6.4. 

At 

Ti-I t(i-1)(j-1) t(i-l)i t(i-I)k, 
-, 

Ti 

Figure 6.4. The failure process of a fault arising in (T,, 
-1, 

T,, ) 

In Figure 6.4, T,, is the epoch of the nth TPM from new, n=1.2, ..., t(i-, )j is the 

epoch of the jth failure occurring in (T, 
-,, 

T 
,), 

j=1,2, ..., ki-I I 
t(i-I)k, 

-, 
is the time 

of the last failure in (Ti-Iji), and At is a small time interval in which only one event 

at most can arise. 

If we can consider all observations in (T, 
-, ý T, ), these may be the TPM results at T, 

and failure epochs in (Ti-1, Ti). The likelihood function is the product of the 

probabilities of these observations arising. For the TPM results, we can consider the 

probability of detecting and removing x, faults from the system if they are present 

there, P(x, faults detected and removed at For failure epochs in (T, 
-,, 

T, we 
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can consider the probabilities of a failure arising at times t(, -, ), 1j=1.2, ..., 
ki-I 9 and 

of having no failure between failures. 'flierefore, the likelihood function L is given by 

L IP(xi faults detected and removed at Ti) 

k, 
-, fl P(a failure at time t(, -, ), 

) - P(no failure between failures)) (6.4) 
J=1 

and the log likelihood function 1 is given by 

{IogP(xi faults detected and removed at T, ) 

logP(a failure at time t(i -I)j) +log P(no failure between failures)), (6.5) 
J=1 

where in is the number of inspections. In equation (6.5), the terni, log-P(no failure 

between failures), is necessary because of the complex component nature of the plant, 

and would not apply if it is single component item. This formulation assumes the I 
necessary objective data is available from both inspection and failure interactive. 

In the above log likelihood ftinction, if the objective inspection data are not available, I 
we have to use the failure data only. In this case, the log likelihood function measure is 

I 
6ven by 

Mk -1 E fElogP(a failure at time t(i-, )j) +log P(no failure between failures)). (6.6) 
1=1 ., =I 

To compute the above log likelihood ftinction, firstly, we consider the probability of 

a failure over (t, t+At) resulting from a fault arising at time v, narnely P(t, I + Atly) , 

(see Figure 6.5). 
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T'-I y T. TI-I t t+At T, 

Fi-ure 6.5. The failure process of a fault arising in (T,, 
-,, 

Considering the probability q that a fault is identified and removed during the TPM 

period, as before q= rs, the probability that a fault arising in (T, 
-,, 

T with 

sufficientIv long delay time will not be identified before the interval (T, 
-,, 

T, ), i>n, is 

given by (see the equation (5.35)) 
Z 

c,, = (I -q 
)i-n for n=1,2, ..., i- 1. (6.7) 

Then, the probability of a failure in (t, t+At) from a fault arising at time j, in (T, 
-,, 

T, 

is given by (see the equation (5.36)) 
1 

c,, (F(t+At-y)-F(t-y)) for T,, 
-, <y<T, n=1,2, ---, i-I 

P(t, t + Atly) 
F(t + At - y) - F(t - y) for Ti-I <y<t 
F(t + At - y) for t<y<t+At 
0 otherwise. (6.8) 

From equations (6.8), we can obtain the expected number of faults found and 

removed at the ith TPM, namely ENP (Ti), given by (see the equation (5.37)) 

i-I TT 

EN;, (Ti) =Ac,, q (I - F(Tj - y))dj, + Aq (I - F(Tj - (6.9) 

Since faults are assumed to arise according to a HPP, the number of faults detected and 

removed at TPM follows a Poisson distribution from Lemma 5.3. Because the number 
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of faults detected and removed at TPM follows a Poisson distribution with means 
defined by equation (6.9), the probability of x, faults detected and removed at T, is 

P(xi faults dectected and removed at Ti) = 
(ENP (Ti )) -, e- 

EN,, (T 

(6.10) 
Xi! 

To find the probabilities for failure epochs in (Ti-1, T, ), it is of value to us to note 

lemma 5.4. Using the lemma 5.4, we can obtain the probability of a failure arising at 

time t(, -, )j . 
For very small At, 

P(a failure at time t(i-, )j) = v(t(, -, )j)At, (6.11) 

where, as before, the failure arrival rate function, v(t), is given by (see the equation 
(5.38)) 

: -I 

v(t)= 2 c,, (F(t- T,, 
-, 

)- F(t- T,, )) + F(t - T, 
-, 

)). (6.12) 

Since the probability of having no failure in (t(i-, )(j t -1), (i-, )j) 
is given by 

(, -I)j 
V(t)dt 

P(no failure in (t(i-lxj-, ), t(, -I)j)) =e (6.13) 

the total sumniation of the log probability of having no failure between failures becomes 
1.7 ID 

k"(, 
-, )I 

K 
logP(no failure between failures) = I( -f v(t)dt) - 

f(" v(t)dt 
j=1 (, -IXI-0 -M, -j 

without loss of generality, the equation (6.14) becomes 
-1)0 =T If we define i: 1-1) In 

logP(no fai lure between failures) v(t)dt. (6.15) 

165 



. -,, 
T, ). from equation (6.13). the probability of If failures Nvere not occurred in (T 

I 

-,, 
T, ) isgivenby havin2 no failtire in (Ti zn 

P(no failure in (T, (6.16) 

Accordingly, by taking the log of equation (6.16), we can see that equation (6.15) is 

satisfied. 

Dividing the product of the equations (6.10), (6.11), and (6.15) by At and taking 

a log, the log likelihood function becomes 

mm 

lo! z P(ni faults at Tj + log P(p, faults rectified at T, I= loaL 21 

m k. 
-, P(a failure at time t(i-, )j) +IfIlog + 1: logP(no failure between failures)) 

i=1 j=1 At I 

m k, 
-t T 

JE logv(t(i 
, 
(xi log EY. (Ti) - ENP (Ti) - log x,! ) + 1] v(t)dt). (6.17) 

i=I J=I 

Also, for the case where objective inspection data are not available, information is lost 

and the log likelihood function is given by - 

ni 

1=I, v(t)dt). j) 
i=l j=l 

(6.18) 

Using the above likelihood equations, we can estimate the parameters of the process. 

6.5.2 Simulation Test 

Since Nve know that q=0.135, the number of TPMs is 13, and the sample size 

for the Prefornier is about 300, we can check the validity of the likelihood formulation 
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given by the equations (6.17) and (6.18) using a simulation test. Firstly, we crenerate 

a set of data by simulating the process represented by the set of assumptions in section 

6.4 with the known parameters using Figure 5.6. If these parameters can be recovered C -- 
by the maximum likelihood method based upon the equations (6.17) and (6.18), we 

will have confirmed the lo- likelihood formulation and use it. 

FORTRAN is chosen as a suitable language for simulating, mainly because of the 

excellent NAG library of numerical routines available for the Pentium-PC. The NAG 

function minimizer E04JAF was used to minimise minus the log likelihood. 

To simplify the problem, we firstly consider a case that the delay time is 

exponentially distributed, 

F(h) =I- e-, 4", (6.19) 

where P is the arrival rate. Firstly, we assume that the probability of identifying and 

removing a fault, namely q=0.135, is given by the subjective method. Also, to t) 
crenerate a set of data using a simulation, we assume that X=0.05 and 0.02. g In 
Next. we can generate a set of data using Figure 5.9. From the simulated set of data, C 
the result of the parameter estimation process based upon the equations (6.17) and 
(6.1 S) is given by Table 6.2. 

Table 6.2. Estimation result for an exponential distribution 

when the probability q is fixed as 0.135. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x P ?, P 
13 259 0.052 0.014 0.051 0.023 
ýO 

_62' 
3 0.054 0.015 0.0 53 0.020 

60 1215 0.052 0.018 _ 0.051 0.024 
too 2039 0.052 0.020 0.052 0.021 
150 3006 0.051 0.022 0.050 0.023 

X is the rate of occurrence of faults and P is the scale parameter of the exponential 
distribution. 
Trite values are X=O. Oi and 0.02. 
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Table 6.2 shows that the maximum likelihood estimates recover quite well the 

underlying process of failure and fault origination based upon equations (6.17) and =1 

(6.18). 

If the probability of identifying and removing a fault q is not given by the subjective 

method, we have to estimate the probability of identifying and removing a fault q by 

the objective method. After simulating a set of data, the estimation results based upon 

the equations (6.17) and (6.18) for the probability of identifying and removing a fault 

q, for X and P, as function of the number of inspections are given by Table 6.3 to 

6.7. 

Table 6.3. Estimation result for an exponential distribution when q=0.135. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x P q P q 
13 259 0.052 0.031 0.400 0.053 0.025 0.500 
30 6 233 0.053) 0.028 0.305 0.055 0.020 0.398 
60 1215 0.052 0.044 0.363 0.052 0.040 0.374 
100 2039 0.052 0.026 0.178 0.052 0.036 0.16' 3 r 150 1 3006 rO. 051 1 0.021 1 0.129 1 0.050 0.069 0.151-1 

*True values are X=0.05 and 0=0.02. 

Table 6.3 shows that if a set of inspection data is available, the maximum likelihood 

estimates recover the underlying process of failure and fault origination parameters 
based upon equation (6.17) in the case of the large number of inspections. Also, Table t) I 

6.3 shows that if inspection data is not available, the maximum likelihood estimates do 

not recover the underlying process of failure and fault origination based upon equation 
(6.18) in spite of the large number of inspections. This is to be expected since 
information on q is contained within inspection data, and if q is small, very little 

information on q will be available from failure data. This will change as q increases. 
I 
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Table 6.4. Estimation result for an exponential distribution when q=0.3. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x q x q 
255 0.052 0.024 0.488 0.052 0.022 0.527 

30 61 33 0.052 0.025 0.425 0.055 0.019 0.479 
60 1197 0.052 0.035 0.484 0.052 0.037 0.482 
100 2006 0.052 0.021 0.273 0.051 0.029 0.266 
150 2949 1 0.051 0.016 0.224 0.050 0.017 0.270 

*True values are X=0.05 and P=0.02. 

Table 6.4, in case of q=0.3 ), shows that if the number of inspections is large, the 

maximum likelihood estimates recover the underlying process of failure and fault 

ori6nation based upon equations (6.17) and (6.18) regardless of a set of inspection 

data. 

Table 6.5. Estimation result for an exponential distribution when q=0.5. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x P q x P q 
13 250 0.052 0.020 0.514 0.052 0.020 0.539 
30 598 0.053 0.020 0.545 0.055 0.016 0.573 
60 1157 0.051 0.021 0.559 0.051 0.024 0.557 
100 F 1946 0.052 0.016 0.431 0.051 0.019 0.496 
150 2855 0.051 0.015 0.488 0.050 0.023 0.495 

* True values are X=0.05 and P=0.02. 

Table 6.6. Estimation result for an exponential distribution when q=0.7. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x P q x Eý- q 
13 247 0*052 0.020 0.607 0.052 0.020 0.603 
30 589 0.053 0.020 0.681 0.055 0.017 0.690 
60 11333 0.052 0.020 0.691 0.051 0.022 0.691 
100 1897 0.052 0.017 0.675 0.051 0.019 

- 
0.677 + 

150 278-33 rO. 051 0.016 0.662 0.050 0.02 0 0.672 
* True values are ?, =0.05 and P=0.02. 
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Table 6.7. Estimation result for an exponential distribution when q=0.9. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x PIq 2, PI q 
13 2 

-3) 
8 0.052 O. Ols O. S55 0.052 MIS 0.857 

30 576 0.053 0.020 O. S34 0.055 0.016 0.836 
60 1165 0.052 0.021 0.898 0.052 0.021 0.899 
100 1844 0.052 O. Ols 0.824 0.052 0.020 0.828 
150 2 70 5 0: 051 0.018 0.830 0.0507 0.021 1 0.825 

*True values are X=0.05 and P=0.02. 

Table 6.5,6.6, and 6.7, in case of q>0.5, show that the maximum likelihood 

estimates recover the underlying process of failure and fault origination based upon 

equations (6.17) and (6.18) regardless of a set of inspection data and the number of 
inspections. 

" to 6.7, we can see that as the probability of identifying and From Table 6. ) 

removingafault q increases, the estimation of parameters based upon equations (6.17) 

and (6.18) is more accurate. If q is over 0.5, the estimation of parameters based 

upon equations (6.17) and (6.18) is accurate in spite of a low number of inspections. 

If the probability of identifying and removing a fault q is small, we need more 
information about inspections in order to estimate the parameters accurately. Referring 

to Table 6.3 and 6.4, in case of q=0.135 and q=0.3, show, if the number of 

inspections is less than 100, we carmot estimate the parameters with any confidence. 

In comparison with the case of Table 6.3 ), where the number of parameters to estimate 
is 2, if the number of parameters to estimate is 3, we need more information about 

inspections. 

In conclusion here, when the inspection parameter q is known, we can estimate the 

parameters accurately in spite of a small number of inspections. However, when the 

inspection parameter q also needs to be estimated, we need more information about 

inspections in order to obtain the accurate parameter estimations. 

Next, assuming that the delay time has a Weibull distribution. 
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F(h) =I-e", (6.20) 

where cc is the shape parameter and 0 is the scale parameter. the process is again 

simulated. Firstly, we assume that the probability of identifying and removing a fault q 

is given by the subjective method. Also, to generate a set of data using a simulation, we Z7 It) 
assume that X=0.05, (x = 1.5, and 0.02 and the probability of identifying and 

removing a fault q is fixed. We then generate a set of data using Figure 5.6. From 4ý Zý zlý : _ý 
the simulated set of data, the results of the parameter estimation process based upon the 

equations (6.17) and (6.18), various values of the probability of identifying and 

removing a fault q and the number of inspections are given by Table 6.8 to 6.12. 

Table 6.8. Estimation result for a Weibull distribution 

" 5. when the probability q is fixed as 0.13 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x I (x IP xI (x IP 
13 261 Cannot find optimal values Cannot find optimal values 
30 609 Cannot nd optimal values Cannot nd optimal values 
60 1237 0.053 6.179 0.017 0.053 6.018 0.017 
100 2064 0.053 5.880 0.017 0.053 5.912 0.017 
150 3058 0.052 5.444 0.018 1 0.052 5.661 0.017 

X is the rate of occurrence of faults and (x is the shape parameter of the Weibull 
distribution and is the scale parameter of the Weibull distribution. 

True values are X 0.05, c4 = 1.5 and P=0.02. 

Table 6.9. Estimation result for a Weibull distribution 

when the probability q is fixed as 0.33. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections I cc IP xI (x IP 

13 257 Cannot ild optimal values Cannot find optimal values 
30 596 0.052 5.542 =0.017 Cannot find optimal values 
60 1214 0.053 5.715 0.017 Cannot nd optimal values 
100 2026 0.053 4.566 0.017 0.052 5.154 0.016 
150 3007 0.052 3.028 0.019 0.052 4.531 1 0.017 

*-True values are X=0.05, ct=l. -5 and P=0.02. 



Table 6.8 and 6.9, in case of q=0.1335 and q=0.3, show that apart from the 

parameter ).. the maximum likelihood estimates do not recover the underlying process 

of failure and fault oriaination based upon equation (6.17) and (6.18) in spite of the 

lar-e number of inspections. 

Table 6.10. Estimation result for a Weibull distribution 

when the probability q is fixed as 0.5. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

- 

Estimation of case without 
inspection data 

inspections cc 
ý x cc P 

13 253 0.051 57.90 0.021 0.052 52.95 0.021 
30 5S5 0.052 5.083 0.018 0.053 4.804 0.016 
60 1193) 0.053 2.475 0.018 0.054 2.277 0.014 
100 198S 09053 2.672 0.019 0.053 2.472 0.016 
150 2945 0.052 1 2.191 1 0.020 0.052 2.231 0.018 

*True values are ý. =0.05, cc=1.5 and P=0.02. 

Table 6.11. Estimation result for a Weibull distribution 

when the probability q is fixed as 0.7. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x (X P x (X I P 
13 253 0.051 25.81 0.022 0.053 34.40 0.021 
30 576 0.052 3.185 0.020 0.053 2.819 0.016 
60 1167 0.053 2.073 0.019 0.054 1.841 0.015 
100 194' 3 0.053 2.376 0.019 0.053 2.190 0.018 
150 2868 0.052 2.147 0.020 0.052 2.116 0.019 

*True values are ý. =0.05, cc=1.5 and 0=0.02. 

Table 6.10 and 6.11, in case of q=0.7 and q=0.9, show that if the number of 

in§pections is large. the maximum likelihood estimates recover the underlying of failure 

and fault origination based upon equations (6.17) and (6.18) regardless of a set of 

inspection data. 
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Table 6.12. Estimation result for a Weibull distribution 

when the probability q is fixed as 0.9. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x (X 21 Ct 
13 249 0.051 1.647 0.024 0.054 8.088 0.018 
30 564 0.052 2.357 0.019 0.054 2.154 0.016 
60 1144 0.053 1.837 0.019 0.055 1.616 0.016 
100 1904 0.053 2.110 0.020 0.054 1.903 0.018 
150 2811 0.052 , 1.924 0.020 

, 
0.052 1 1.857 0.019 

*True values are X=0.05, cc=1.5 and P=0.02. 

Table 6.12 shows that if a set of inspection data is available, the maximum likelihood 

estimates recover the underlying process of failure and fault origination based upon 

equation (6.17) regardless of the number of inspections. Also, Table 6.12 shows that 

if a set of inspection data is not available, the maximum likelihood estimates recover the 

underlying process of failure and fault origination based upon equation (6.18) only in 

the case of the large number of inspections. t: 

From Table 6.8 to 6.12, we can see that as before, as the probability of identifying 

and removing a fault q increases, the estimation of parameters based upon equations 

(6.17) and (6.18) is more accurate. However, the above tables show that althoudi 

is over 0.5. we can estimate the parameters accurately in the cases where the number of 

inspections is over 60. If the probability of identifying and removing a fault q is 

small, it may be difficult to estimate the parameters accurately. In case of q=0.1 33 5 

and q=0.3, if the number of inspections is less than 150, we cannot estimate the 

parameters accurately. When the probability q is small, we may need more 
information about inspections. However, to obtain more information about inspections, 

,, ve have to increase the number of inspections. Also, it requires more times to estimate 

the parameters using the NAG library. In comparison with the case of the exponential 

distribution. the Weibull distribution case requires more information on inspections. 
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Secondly. consider the case where the probability of identifying and removing a fault 

q is not known. If the probability of identifying and removing a fault q cannot be 

estimated b%- the subjective method, we have to estimate the probability of identifying 

and removing a fault q by the objective method. After simulating a set of data, the 

estimation results based upon the equations (6.17) and (6.18), for different values of 
the probability of identifying and removing a fault q and various number of inspections 

are given by Table 6.13 to 6.17. 

Table 6.1-33. Estimation result for a Weibull distribution when q=0.135. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections X I (X IP Iq X (X IP Iq 
1 161 _ Cannot find optimal values Cannot find optimal values 
30 609 Cannot find optimal values Cannot find optimal values 
60 12 33 7 Cannot find optimal values Cannot find ptimal values 
100 2064 

. 
Cannot find optimal values 0.053 . 019 0.017 0.245 

150 
'3058 

1 0.052 1 5.426 1 0.018 1 0.1 61 0.052 5.340 0.017 0.188 
X is the rate of occurrence of faults and cc is the shape parameter of the Weibull 
distribution and is the scale parameter of the Weibull distribution. 

True values are 0.05, (x = 1.5 and 0=0.02. 

Table 6.14 Estimation result for a Weibull distribution when q=0.3. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x I C4 I q x I Ct IP 
13 257 Ca ot find optimal values Cannot find optimal values 
30 596 0.052 5.547 0.017 0.300 Cannot find ptimal values 
60 1214 0.053 6.026 0.016 0.283 0.054 -2.667 0.013 0.378 
100 2026 0.053 4.420 0.018 0.305 0.054 2.649 0.016 0.3-79 
150 3007 0.052 4.598 0.017 0.260 0.052 4.699 0.016 0.293 

* True values are ?. =0.05, cc = 1.5 and P=0.02. 

Table 6.133 and 6.14, in case of q=0.135 and q=0.3, show that the maximum 
likelillood estimates do not recover the underlying process of failure and fault 
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origination based Upon equation (6.17) and (6.18) in spite of the larcre number of 

inspections. 

Table 6.15. Estimation result for a Weibull ýistribution when q=0.5. 
Number 

of 
Sample 

size 
Estimation of case with 

inspection data 
Estimation of case without 

inspection data 
inspections xI (X IPIq x (x IP 

13 253 Ca ot find optimal values Cannot find optimal values 
30 585 0.052 5.180 0.017 0.455 Cann t find optimal values 
60 1193 0.053 5.770 - 0.016 0.406 0.054 2.293 0.01-4 0.498 
100 1988 0.05' 3 2.854 0.019 0.487 2.002 0.016 0.547 
150 2945 1 0.052 2.296 0.020 0.490 0.052 2.027 0.019 0.519 

* True values are X=0.05, cc = 1.5 and P=0.02. 

Table 6.16. Estimation result for a Weibull distribution when q=0.7. 

Number 
of 

Sample 
size 

Estimation of case with 
inspection data 

Estimation of case without 
inspection data 

inspections x (X IPIq x o: IP 
13 253 Cannot find ptimalvalues Cann t find optimal alues 
30 576 0.052 3.949 0.019 0.636 0.053 2.800 0.016 0.702 
60 1167 0.053 2.336 0.018 0.664 0.054 1.712 0.015 0.726 
100 1943 0.053 2.023 0.021 0.773 0.054 1.689 0.019 0.801 
150 2868 0.052 1.721 0.022 0.798 0.052 1.590 0.021 0.811 

* True values are X=0.05, (x = 1.5 and P=0.02. 

Table 6.17. Estimation result for a Weibull distribution when q=0.9. 

Number 
of 

Sample 
size 

Estimation of case Nvith 
inspection data 

Estimation of case without 
inspection data 

inspections x I (X IPIq 2, 1 (X IP Tq 

13 249 _ Can ot find optimalvalues Cannot find ptimal alues 
30 564 0.052 3.926 ' 0.018 0.781 0.053 2.913 0.016 0.826 
60 1144 0.053 2.475 0.018 0.808 0.054 1.922 0.015 0.847 
100 1904 0.053 2.220 0.019 0.879 0.054 1.938 0.018 0.894 
150 2811 0.052 1.924 0.020 0.900 0.052 1.827 0.019 0.906 

* True values are X=0.05, cc = 1.5 and P=0.02. 
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Table 6.15,6.16, and 6.17, in case of q=0.5. q=0.7, and q=0.9, show that if the 

number of inspections is large. the maximum likelihood estimates recover the 

underlying failure and fault origination based upon equations (6.17) and (6.18) 

regardless of a set of inspection data. 

From Table 6.13 to 6.17. we can see that as before, as the probability of 
identifying and removing a fault q increases, the estimation of parameters is more 

accurate. However, Table 6.15 shows that in the case of q=0.5, we can estimate the 

parameters reasonably well if the number of ins ections is over 150. In case of q=0.7 p 

and q=0.9, we can estimate the parameters well if the number of inspections is over 60. 

If the probability of identifying and removing a fault q is small, we need more 

information about inspections in order to estimate the parameters accurately. In the 

case where the probability of identifying and removing a fault q is very small, for Z) 11. D 

example q=0.135 and q=0.3, we cannot estimate the parameters accurately. In 

comparison with the case where the number of parameters to be estimate is 3, this case 

need more infon-nation about inspections. When q is small, it seems appropriate to 

obtain a subjective estimation of q, and then estimate the other parameters conditional 

on this estimate. It is possible, of course, that the value of q can be increased through 

engineering and manpower management means including better supervision and control. 

In conclusion, when the number of parameters to estimate is 2, we can estimate the 

parameters accurately in spite of a small number of inspections. If the number of 

parameters to estimate increases, we need more information about inspections. I'llis 

requires more time to estimate parameters using the NAG library. For example, in the 

case that the number of parameters to estimate is 3, the computing process using the 

NAG library took approximately I hour using a Pentium-PC. Also, as expected, the 

required volume of information about inspections is dependent upon the distribution of 

the delay time. When the delay time has a NVeibull distribution, if the probability of 
identifying and removing a fault q is large, the maximum likelihood estimates recover 

the underlying process of fault origination and failure based upon equations (6.17) and 

(6.18), otherwise it does not. With the actual data set, since the probability of 
identifying and removing a fault during the TPN-L estimated as q=0.135, is very small 
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and the number of TPNIs is 1 33, we are unable to use the Weibull distribution as a 

candidate distribution. 

6.5.3 Selectino, the Distribution of the Model 0 

Before fitting a model to the real data.. the functional form of the delay time 

distribution must be specified. The best choice of the distribution from a family of 

plausible distributions for h is made, using the criterion of minimum Akaike C 
Information (AIC) which is a method of evaluating the goodness of fit of a model. AIC 

is derived under the assum tion that the true distribution can be described by the given P 

model when its parameters are suitably adjusted. 

In maximum log likelihood estimation, the goodness of parameters of a specific 

model can be measured by the expected log likelihood, namely, the larger the expected C7 -- 
log likelihood, the better the parameters values. The log likelihood can be regarded as 

an estimator of the expected log likelihood. We now introduce the mean expected log 

likelihood as a measure for the goodness of fit of a model. This quantity is defined as Z. 17 
the mean, Nvith respect to the data x, of the expected log likelihood of the maximum 
likelihood model. The larger the mean expected log likelihood, the better the fit of the 

model. At first sight. it would seem that the mean expected loo, likelihood can be 

estimated by the maximum log likelihood. - The maximum log likelihood, however, is 

shown to be a biased estimator of the mean expected log likelihood (see Sakamoto et al 
[1986]). The maximum log likelihood has a general tendency to overestimate the true 

value of the mean expected log likelihood. This tendency is more prominent for 

models with a larger number of free parameters. This means that if we choose the 

model with the largest maximum log likelihood, a model with an unnecessarily large 

number of free parameters is likely to be chosen. 

By a close examination of the relationship between the bias and the number of free 

parameters of a model, Nve will find that 
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(maximum log likelihood of a model) - (number of free parameters of the model) 

is an asymptotically unbiased estimator of the mean expected loo, likelihood (see 

Sakarnoto et al [1986]). Taking historical reasons into account, this is presented as 

minus twice of this value 

AIC = -2x(maximum log likelihood of the model) 

+2x(number of free parameters of the model) (6.21) 

is proposed as the criterion for model selection in Sakamoto et al [1986]. A model 

which minimises the AIC (minimum AIC estimate) is considered to be the most 

appropriate model. Equation (6.2 1) implies that when there are several models whose 

values of maximum likelihood are about the same level, we should choose the one with 

the smallest number of free parameters. 

6.5.4 Results of the Model Fit 

We now consider the Preformer data. Since the probability of identifying and 

removin- .. a fault during the TPM is very small, possible candidates for F(h) are (1) 

exponential and (2) mixed delta-exponential distribution. There may be some faults 

that have zero delay time, which can be modelled with a mixed delay time distribution 

with pdf given by (I - P)f (h) + A5(h) 
, where J(h) is the pdf of delay time h, 5(h) 

is the Dirac delta function, and P is the proportion of faults that have zero delay time. 

Assuming the above choice of delay time distribution, the fitted values of parameters 

are shown in Table 6.18. From Table 6.1 S, it can be seen that there is not much 
difference in AIC values between model choice of delay time distribution. This means 

that the delay time models are not very sensitive to the data. Mixed delta-exponential 

distribution is selected as having the lowest AIC value. 
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Table 6.1 S. Fitted values of parameters from the Preformer data. 

Models Exponential distribution Mixed delta-exponential distribution 

ROCOD (A) 0.117 0.167 

Scale parameter 0.00047 0.000226 

p 0.0533 
Maximum log likelihood -1220.92 -1213.09 

AIC 2445.84 2432.18 
*Notes : ROCOD is the rate of occurrence of faults. 

6.5.5 Test for Goodness of Fit 

The chi-squared test statistic is 

(ni 
(6.22) 

where the range of data is divided into K suitable classes, n, is the number of the 1ý 
events in the ith class, and hi is the expected number of events in the ith class 

calculated from the fitted model. 

If we group the failure times in our data into classes, then there Nvill, however, be two 

difficulties in the calculation of the expected failures in each class: (a) each failure 

epoch may have a different number of previous TPMs, and (b) the data set show that 

TPM intervals are not equally spaced. To overcome these two difficulties, let At 

denote the length of the class interval of the histogram of failure times and let 

ENf(T,,..., Ti-,, I, ') denote the expected number of failures over the interval 

(T-1 + (j - I)At, Ti-I + jAt), 

cyiveiltliattlieprex! iotisTPMliistoi-yis Tlien, wehave 

(6.23) 
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EiV (T,,..., Ti f 
-,, 

I') =Ac,, (F(x - T, 
-, 

) - F(x - T,, ))dv i, 
-,, (_ i)At 

n=1 

ZF (x - Ti-1)d-c, (6.24) 

where, as before, X, is the instantaneous rate of occurrence of defects (ROCOD) and C,, 

is the probability that a fault arising in (T,, Y delay time will -1, 
T 
,, 
) with sufficientIN Ion 

not be identified before the interval (Ti-I , Tj ). 

Given that the expected number of failures over 
I'. 

within (T, 
-,, 

T, ) isavailable, 

the next task is to group the expected number of failures over I,, (n = 1, ..., 0, where 

I is the number of TPMs, in different TPM intervals together. To do this, we introduce 
1: 1 

a step function (0) to give effect to the mechanism of different TPM intervals. It 

follows that the expected number of failures over 

I uin 
(6.25) 

n=l 

is 2iven by 
In 

I 
EN. ý (Ij) 

Z ENf (T,,..., T,, 
-,, 

lj')O,, 
-,, J, 

(6.26) 
n=l 

where 

1 if T�-, + jAt: 5 T', ' 
1 -I, j ' 

10 

otlienvise. 
(6.27) 

If N. 
I. (1j) denotes the observed number of failures in the jth class. using the equation 

(6.22). the chi-sqUared test statistic in our case is simply 
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(N, (I EN. (1; 

ENf (I. ) 

and the number of degrees of freedom is I+K-v, with v, namely the number of 

model parameters. 

Using the equation (6.2S) on the Preformer data with the model parameters of Table 

6.18, the model predictions and actual data for the number of failures of the Preformer 

are shown in Figure 6.6. 
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Figure 6.6. Histogram of failures for Preformer. 

Figure 6.6 shows that the model fit seems to be adequate. To check the validity of this 

point, we can compare the chi-squared test statistics with the critical value of the chi- 

squared distribution table. Since the number of degrees of freedom is 

df= 1 -i- K -v = 20ý 

the critical value of the chi-squared distribution is given by 

3 1.4 

(6.29) 

(6.30) 
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with the significance level of cc = 0.05. Since the chi-squared test statistics is given by 

X2 =26.072) , we can conclude that the model fit is acceptable at the significance level 

of ct = 0.05. 

6.6 Downtime 
-Model 

6.6.1 Delay Time Model 

Given an acceptable model for the failure and TPM process of the Preformer, a 
TPM model of maintenance practice of the machine may now be established. We 

model downtime, since the major concern of the company is to reduce the downtime 

caused by failures and TPM activities. The conventional downtime measure is the 

expected downtime per unit time over a long future period. The key issue in the model 
is the expected number of failures over different TPM cycles. 

Since we have a5sumed that faults arise according to an HPP, the expected number of 
failures over (t, t+-V) can be given by 

EYf (t, t+ AT) P(t, t+ AtljVj, - 

7. 

=AIC, (F(t + At - y) - F(t - y))dy 

(F(t + At - y) - F(t - y))ctv +Af F(t + At - y)4v, (6-3 1) 

where, as before, P(t, t -; - Atlj, ) is the probability of a failure in (t, t+At) from a fault 

arising at time Y ill (T,, 
-, , 

T,, ) (see Figure 6.5 and equation (6.8)) and 

EN, -(t, t+At) denotes the expected number of failures over (t, t+At). Changing the 

integral variable and rearranaina the integral sequence. after some manipulation we have 
1 -1 1-7 
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,v 1-1 
E. Vjtj +At)= A C, (F(x - T,, 

-, 
) - F(x - T,, ))d. v +A I F(x - T, 

-I)dv. 
(6.332) 

n=l 

Also. since the delay time follows a mixed delta-exponential distribution, the expected 

number of failures over a TPM cycle when in a steady state under various TPM cycles 
T can be obtained by setting t= Ti-I )t+ At = Ti-I +T= Ti, and letting i->00 in the 

equation (6.32), and summing the resultant geometric series of equation (6.32) with 

respect to n. This gives 

ENf (7) = [);, (e-flT-2+eflT) 
I-q 

](I - P) + A(T +I (e-IT- 1)(I - P)), (6.33-33) 
, 6(elý'r -1+ q) 18 

where T is the TPM cycle length and ENf (7) denotes the expected number of 

failures over T. In equation (6.33), for q=1, EjVf (7) is corresponding to the 

inspection model with a perfect inspection policy and is given by 
I 

ENf (T) = A(T+ 
I 

(e-IT- 1)(I - P)). 
P 

(6.34) 

Equation (6.34) can be obtained by letting q=1, t= Ti-I , and t+ At = T, 
-, +T= Tj 

in the equation (6.32) as expected. 

Since d, denotes the mean downtime per failure when the TPM cycle leng-th is T 

and di denotes the mean duration of the TPM activity, it follows that the long term t; 
measure of the expected downtime per unit time, ED(T), is 

ED(7ý = 
d6 ENf (7ý + d, 

T 
(6.35) 

Since d, = 0.914, using the fitted model parameters of Table 6.18, we can obtain the 

resultin2 model output shown in Figure 6.7. 
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Figure 6.7. Expected downtime per unit operating time and TPM cycle length. : -7 

From Figure 6.7. it can be seen that, under the current TPM policy, d, = 1.73, the 

model suggests that the optimal TPM cycle length is 100 hours and the expected I- 
downtime per hour is 0.045 hours. Since the production times per week are about 
120 hours, the optimal TPM interval is about 0.83 weeks, but the practical solution 

with virtually no extra downtime is once a week, and the expected downtime per week 
is 5.4 hours. Since the company has performed the TPM every 3 weeks, Figure 6.7 

shows that the expected downtime per week is 7.8 hours. Accordingly, if the company 

takes the TPM once per week instead of every 3 weeks, the company can reduce the 

expected downtime of 2.4 hours per week. Also, if the downtime due to TPM is 

changed to I or 3) hours, the mathematical optimal TPM interval becomes 0.62 or 
1.2 weeks respectively. 

Questions (a) and (b) of the subjective data survey indicated that the number of 
defects identified at a TPIVI is about 45 and the number of defects rectified durinc, a 
TPM is about 30 given that 100 defects are present, which as commented, seemed 

very low. If the number of defects identified at a TPM increased to 60 and the number 

of defects rectified during TPM increase to 60 and 80 tinder the current TPM policy, 
d, = 1.73 ), the probability of identifying and removing a fault during a TPNI is q=0.36 
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and q=0.48 respectively. A graph indicating the consequences to the downtime 

model of this change is presented by Figure 6.8. 

0.2 
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-q = 0.48 

............................ m .............. . r. ---- ... ................. . 

0 100 200 300 400 500 

TPM Cycle Length (Operating Hours) 

Figure 6.8. Expected downtime per unit time according to TPM cycle length 

from the delay time model when the probability q changes. 

FiGure 6.8 produces Table 6.19. 

Table 6.19. The optimal TPM interval and the expected downtime per week 
from the delay time model when the probability q changes. 

Probability Optimal TPIVI interval Expected downtime (hours) 
q in hour in week per hour per week 

0.135 100 0.83 0.045 5.40 
0.3 6 165 1.38 0.0-30 3.48 

r- 0.48 1 195 1.63 1 0.026 3.12 
* The current policy is q=0.135. 
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From Table 6.19. we can see that as the probability q increases, the optimal TPM 

interval increases and the expected downtime per hour reduces. This is as expected 

since with q increasing, more defects and therefore potential failure, and being 

removed from the svstem. It is noted that the modelling here gives the management 

quantitative insight into the value of improved training and tooling to increase the q 

measure. 

6.6.2 Serni-Markov Inspection Model 

In the chapter 5, the semi-Markov inspection model has been discussed. As a 

consequence of the discussion, we found that the semi-Markov inspection model 

utilising the delay time concept for parameter estimation can be applied for a multi- 

component system. However, in applying the semi-markov inspection model to a 

multi-component system of the real-world situation, the key point is that the fault 

arriving process must follow a HPP which satisfy the Lemma 5.1 to 5.6. Also, in the 

case of imperfect inspection, as discussed in the subsection 5.3.2, we can approach the 

modelling by assuming that the system failure process is in a steady state between 

inspections and that the defect detecting process at inspection has operated for a long Zý ID 
period. Since Nve assume that the fault arriving process follows a HPP by the 

assumption (a) of the section 6.4. and our interest is in the reduction of the downtime 

due to failures and the TPMs over the long term future, we may adopt the semi-Markov 
inspection model of the subsection 5.3.2 in this case study. 

Since the delay time has a mixed delta-exponential distribution, using the equation 

(5.56), the number of defects identified at time x if there is an inspection at time x, 

namely ENd WI is given by 

-ß(x-T) 

EA', ' (x) zq (- (1 + 
qe 

eý" 
(6.36) 

and, using the equation (5.57), the rate ftinction of the failure arrival process, namely 

p(x), is given by Z7 
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(I - P)qe -i3(x-T) 

P(X) = 4(l - I-q-e 'OT 
(6.37) 

Based upon the equations (6.36) and (6.37), we can apply the serni-Markov inspection 

model of the section 5.3 to the Preformer system. 

In section -5.33. the state space was given by 

I= {iji = 0.1,2, .. "�N} u {(0, mAt), (, nAt, J)Iin = 1,2, """, M}, 

where state i corresponds to the situation in which an inspection identifies i defects 

within the system. the states (0, inAt) corresponds to the situation in which wAt time 

units have passed since the last inspection, and the states (nzAt, j) correspond to the 

situation in which a breakdown has occurred between (nz-I)At and nlAt. Also, At is 

an arbitrary small time, N is the number of components of the system. and "VI is a 

sufficiently large integer. For numerical solution, we set the upper bound of the 

number of defects is N= 30, the arbitrary small time is At = 4, and the sufficiently 
large integer is 

. 11 = 125 in this subsection. The possible actions a were denoted by 

0, leave the system as it is, 

a=1, inspect the system, 
I repair the component. 

Based upon the above state space and possible action, the downtime model was given by 

cr - (R)At + PO(0, 
&) +P 

_v. f) (O)iv 1110 2-- -- (6.38) 

for k=1,2,. --, N, (6.39) 0 

-_cj(R)At + 

for 0< nzAt < s, (6.40) 
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"": di -9d(R)dj + P(O.. 
A, )O(I)lvo +P(O.. &)I(I)Ivl+.. -+P(O. "-.,. ý. (I)iv, v 

for s:! ý mAt :! ý VlAt, (6.41) 

and 

db 
-gd(R)db+ P. d, (2)iv A 

for in = 1,2, ---, M, (6.42) 

where MR) is the average downtime per unit time given policy R with parameter tn 

value s, w., xc: I, are the relative downtimes resulting from the various starting states 

when policy R with parameter value s is used, and Pij (a) is the probability that at 

the next decision epoch the system will be in state j if actions a is chosen in the 

present state i. 

Using equations (6.36) and (6.37), we can obtain the one-step transition 

probabilities Pij (a). Firstly, if the action a=0 is taken at state 0, the system will 

either survive until the next decision epoch At or fail within the next decision epoch 

At. In equation (6.38), for very small At, the one-step transition probabilities 

Poj(O), for j= (0, At), (At, f), are given by (see equation (5.3)) 

rV 
p(x)d-c for j= (At, f) 

Poj (0) =I- 
rp(x)d-c for j= (0, At) (6.43) 

0 othenvise . 

In equation (63 )9), since the action a=2 is taken at state k, k=1.21. ..., N, we have 

that (see equation (5.7)) 

Pco(2) =I for k=1,2, ..., N. (6.44) 
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In equation (6.40), since the action a=0 is taken at state (0, inAt) with in = 1,2, ..., 
AM, the system will either survive until the next decision epoch (111+1)At or fail within 

the next decision epoch (in+I)At having survived to the present decision epoch nzAt. 

Accordingly, for very small At, the one-step transition probabilities fo r C, 
PýO. 

mAf)j 

j= (Ojin + l)At), ((nz + I)At, f) , are given by (see equation (5.11)) 

P(X)dv for j= «111 + 1)At, f) 

P(0, 
MAI)j 

(0) =1-: 
Igt 

p (x) d-c 
. 

for j= (0, (in + 1)At) (6.45) 
0 othenvise 

In equation (6.4 1), if action a=1 is taken at state (0, mAt) with nz= 1,2, ..., M, the 

inspection will result in a situation of finding j, j=0,1,2, ..., N, faults at an 
inspection. Since the number of defects identified at an inspection has a Poisson 

distribution by the Lemma 5.3, we have that (see equation (5.15)) 

- F-%',, (ni-%t) (EN,, (nzAt)) i 
for j=0,1,2, ---, N Pto. 

M-V)j(1) =, j! (6.46) 
0 othenvise 

Lastly, in equation (6.42), since the action a=2 is taken at state (mAt, j), m=1,2, 

..., M, we have that (see equation (5.19)) 

p d, (2) =I for in = 1,2, 
(1?: At, f XO, (M--)At) At 

(6.47) 

Usinc, the embedded technique, we can obtain the expected average downtime per 

unit time 9d(R) from equations (6.338) to (6.42). By putting one of the relative 

downtimes equal to zero, say it-,, = 0, the linear equation can deterrnine uniquely the 

average downtime per unit time 
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UsinQ the fitted model parameters of the Table 6.18 and the above mentioned 

downtime model, the resulting model output of downtime as a ftinction of TPM period tý 
is shown in Figure 6.9. 
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Figure 6.9. Expected downtime per unit time according to TPNI cycle length 

from the serni-Markov inspection model with step size At = 4. 

From Figure 6.9, it can be seen that. under the current TPM policy, d, = 1.73, the 

model suggests that the optimal TPM cycle length is 100 hours and the expected 
downtime per hour is 0.04-3) hours. Since the production times per week are about 
120 hours. the optimal TPM interval is about 0.83 weeks and the expected downtime 

per week is 5.16 hours. Since the company has performed the TPM every 3 weeks, 
Figure 6.8 shows that the expected downtime per week is 7.32 hours. Accordingly, if 

the company takes the TPM once per week instead of every 3 weeks. the company can 

reduce the expected downtime of 2.16 hours per week. Also, if the downtime due to 

TPNI is about I and 3 hours, the optimal TPM interval should be 0.63 and 1.2 

weeks respectively. These results of the semi-Markov inspection model are as 

expected, very similar to the results of the delay time model. 
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Also, as with the delay time model. if the number of defects identified at TPM 

increase to 60 and the number of defects rectified during TPM increase to 60 and 80 

under the current TPM policy, d, = 1.73, the probability of identifying and removing a 

fault during a TPM is q=0.36 and q=0.48 respectively. A graph for this change is 

presented by Figure 6.10. 
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Figure 6.10. Expected downtime per unit time according to TPM cycle length 

from the semi-Markov model when the probability q changes. 

FiCrure 6.10 produces Table 6.20. 

Table 6.20. The optimal TPM interval and the expected downtime per week 
from the semi-Markov model when the probability q changes. 

Probability Optimal TPM inten-al Expected downtime (hours) 
q in hour in week per hour per week 

0.135 100 0.83 0.043 5.16 
0.36 164 1.3 7 0.029 3.48 
0.48 196 1.63 0.026 3.12 

* The current policy is q=0.135. 
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From Table 6.20. we can see that as the probability q increases. the optimal TPM 

interval increases and the expected downtime per hour reduces. This is as expected 

since with q increasing, more defects and therefore potential failure, and being 

removed from the system. These results of the semi-Markov inspection model are very 

similar to the results of the delay time model. 

6.7 Comparison and Conclusions 

To compare the semi-Markov inspection model with the delay time model in 

detail, we can take the curve of the current TPM policyý di = 1.73, from Figure 6.7 of 

the delay time model and the curve of the current TPM policy, di = 1.733, from Figure 

6.9 of the semi-. Nlarkov inspection model respectively. From both models, Figure 

6.11 is presented. 
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Figure 6.11. Expected downtime per unit time according to TPNI cycle length 

for the comparison. 
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Figure 6.11 shows that the semi-Markov inspection model curve is consistent with the 

delay time model curve. From both these models, an optimal TPM period point which 

minimises the expected downtime per unit time can be obtained. 

From the perspective of the output from both models, we can now address the two 

questions outlined in the introduction, namely (1) whether TPM can identify most faults 

present and thereby reduce the number of failures caused by those faults, and (2) 

whether the current TPM period is the right choice, particularly the current three-week 

TPM cycle. Clearly. as shown in Fi ure 6.3), TPM is effective for the Preformer 9 
because it can reduce the total downtime due to failures. However, since the downtime 

caused by TPM of the Preformer is currently about 1.73 hours, for the current TPM 

policy, the optimal TPM cycle length is about weekly. Should the downtime due to 

TPM of the Preformer increases to 3 hours, the optimal TPM cycle length is still less 

than 2 weeks. This indicates that the current TPM policy for the Preformer, which is 

about three weeks, is not appropriate. Accordingly, we suggest that if it is possible, the 

company need to reduce the TPM cycle length of the Preformer to weekly. If the 

company undertakes TPM of the Preformer about weekly, the company can reduce the 

expected downtime by 2.4 hours per week, from 7.8 hours per week to 5.4 hours per 

week according to the delay time model and 2.16 hours per week from 7.32 hours per 

week to 5.16 hours per week based upon the semi-Markov inspection model. 

Also, if the probability of identifying and removing a fault during TPM q increases 

by improving the engineering ability in identifý, ing and rectifying faults durin TPM, 
1ý 9 

perhaps through training, the expected downtime can furthermore be reduced. As 

shown in Table 6.19 and 6.20, if the probability of identifying and removing a fault 

during TPM q increases from 0.135 to 0.336. the company can reduce the expected 
downtime of 4.3 32 hours per week from 7.8 hours per week to 3.48 hours per week in 

the delay time model and 3.84 hours per week from 7.32 hours per week to 3.48 

hours in the semi-Markov inspection model respectively for current TPM policy of 

every 3 weeks. Also, if the probability of identifying and removing a fault during 

TPM q increases from 0.135 to 0.48, the company can reduce the expected 

downtime by 4.6S hours per week, from 7.8 to 3.12 hours per week based upon the 

delay time model and by an expected 4.2 hours per week, from 7.32 to 3.12 hours 
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per week according to the semi-Markov inspection model, all assuming the current TPM 

policy of having every 3 weeks. 

In this case study, we propose an OR and statistical approach to model TPM practice 

for a Preformer in Brakelining Ltd. Modelling is based upon the delay time concept. 
A statistical model based upon failure and TPM data has been established to give the 

estimated values for model parameters, and a TPM model has been derived to find the 

optimal TPM cycle length in terms of minimising the total expected downtime caused 
by failures and TPMs from the delay time model and the semi-Markov inspection 

model. It has proved to be successful in that it recovered the underlying delay time 
distribution using conventional maximum likelihood method, and the consequential 
downtime model reflected the current and previous operating downtime level 

adequately. 

The problems encountered in practical modelling, in establishing the estimation 

procedure for parameters and in validating the modelling, have been highlighted. The 

recommendations to the company were based upon the modelling reported here. There 

is an attempt being made to move to weekly TPM's and to monitor results. Other 

recommendations arise from the discovery of data that were not available, namely TPM 

data on condition found and faults rectified. The need to collect such information if the 

maintenance process is to be managed cost effectively has been outlined, and how the 
data will or may be used indicated. As in other applied studies, this modelling exercise 

will, we hope, initiate a cultural change in the maintenance management process within 
the company and see a move to greater qualification and, therefore, control. 
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Chapter 7 

CONCLUSION 

In this thesis, we have considered the inspection policy of facilities which gradually Z: ' 
deteriorate in time and eventually fail. The inspection policy is some activity carried 

out at intervals, with the intention of reducina or eliminatino, the number of failures 0 11: 1 
occurring, or of reducing the consequences of failure in terms of downtime or operating 

cost. It has been seen in the literature review of the chapter 2 that there are a great 

many models addressing the problem of finding the optimal inspection policy. Some 

authors developed the two-state models in which the working condition of the system 

was expressed as one of two states, operating or failed, based upon the time to failure. 

Since the two-state models may not allow for an inspection, which leads to repair before 

a possible failure of the system. most of the ublished theoretical models for finding the p ID 
optima I inspection policy adopt a multi-state Markov approach where the states are 

operating, operating but fault present, and failed. Generally speaking, most such 

models have assumed that the working condition of the system can be expressed as a 
discrete-time Markov chain with a new state, degraded states, and a failed state, and the 

transition probabilities are assumed to be given. In practice, it is, however, difficult to 

define the decyraded states for the deteriorated system, and more difficult to determine 

the state transition probabilities. So, most authors do not mention the fit of their model 

to data, and present no examples of actual applications or case studies utilising their 

model. 

In contrast to the Markov models, the delay time concept has, however, provided a 

useful means of modelling the effect of periodic inspections on the failure rate of 

repairable machinery. The delay time concept regards the failure process as basically a 

two-stage process, but three if one includes failure. First, a defect can be first identified Zý 

at time u if an inspection is carried out at that time. If the defect is not identified, the 

faulty component subsequently fails after ftirther interval h which is called the delay 
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time of the defect. As seen in chapter 3 3, the delay time concept has been increasingly 

used in inspection modelling. Also, it has been noted that the introduction of the delay 

time concept in inspection modelling has provided a powerful tool in modelling and 

validating the relationship between inspection actions and the consequences of these 

actions. Obviously, the successful use of the delay time concept in maintenance 

modelling depends upon how well the underlying delay time distribution can be 

estimated from available information sources. Two methods for estimating the 

parameters of the delay time modelling. namely the subjective method and the objective 

method, have been presented. With such a method, numerous applied studies of the 

delay time concept have been developed since the first was published in 1984. Since 

delay time models can be used for decision-making, for example choosing the interval 

between inspections to minimise cost or downtime, it may be natural to rely on the delay 

time modellinEz in adapting the maintenance models to real-world situation. 

To overcome the restrictions of the Markov models, we have used the delay time 

concept in the chapter 4 and 5. By defining the degraded states of the Markov chain 

as the number of defects within the context of the delay time concept, we can readily 
define the working condition of the system as a Markov chain. Also, by using the 

parameters of the delay time model which can be estimated by the subjective method or 

the objective method, the state transition probabilities of the Markov model can be 

calculated. Under these conditions, a typical semi-Markov inspection model based 

upon the delay time concept for a component and for a complex repairable system that 

may fail during the course of its service lifetime has been established. 

Firstly, for a single component system, we have shown that the semi-Markov 
inspection model is consistent with the delay time model in the system with a Markov 

property of the initial point u. In real-world situation, however, it is expected that there 

are relatively few cases satisfying the Markov property and inadequate data fit the 

model. Although data may be available in application studies, it may be difficult to 

confirm the Nlarkov property and to determine the state transition probabilities from 

them. Either way. if the system has a Markov property, by utilising the deterioration 

probability r, ' which, as we have sho,, vii, can be estimated based upon the delay time 
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concept, the state transition probabilities can be calculated. Relying on the delay time 

concept. the semi-Markov inspection model can now be used for the first time in 

practice for the single component system. If the initial point u does not satisfý, the 

Markov property. the semi-Markov inspection model can become a very poor 

approximation to the actual inspection process. In contrast to the semi-Markov 
inspection model.. the delay time model can not only give the optimal inspection period 

point, but also the delay tirrie model is consistent with the simulation procedure. We 

can, therefore, see that the delay time model can be fitted to any system regardless of a 
Markov property. 

As well as the semi-Markov inspection model for a single component system, the 

semi-Markov inspection model for a multi-component system can be applied to the 

system regardless of the Markov property of the delay time h. We need to note that 

these models rely on the delay time concept in order to determine parameters. The 

delay time concept provides a means of not only denoting the working condition of the CI 
system as the degraded states of the semi-i'vlarkov inspection model, but also of 

obtaininc, the state transition probability from data of the real-world situation throu ZI 
estimating the fault arrival rate and the parameters of the delay time distribution. The 

semi-Markov inspection model based upon the delay time concept is, perhaps for the 

first time, available to useftilly apply to real-world situations. Here we can see the 

importance of the delay time concept. In practice, having delay time parameters, a 
delay time would, of course, usually be preferred to a semi-Markov model. 

When we establish the semi-Markov inspection model for a multi-component 

system, we have to note Lemmas 5.1 to 5.6 which are based upon the delay time 

concept. Then, after some complicated manipulation, we can formulate the semi- 
Markov inspection model of the section 5.3 which is fitted to the inulti-component 

system with a perfect inspection policy or an imperfect inspection policy. Since the 

equations of the senii-Markov inspection model are complicated, it takes a relatively 
long time to compute the equations of the senii-Markov inspection model. Also, in 

applying the semi-i%, Iarkov inspection model to the real-world situation. the key point is 

that the fault arrival process follows a HPP which satisfy the Lemmas 5.1 to 5.6. If 
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the fault arrival process follows a NHPP, we carmot apply the serni-Markov inspection 

model to the real-world situation because Lemma 5.1 to 5.6 are not satisfied. 

In applying to a real-world situation. the delay time model is consistent with the 

semi-Markov inspection model as discussed in the chapter 5. However, in contrast to 

the semi-Markov inspection model, the delay time model consists of the simpler 

equations. Thereby, it does not require a long computing time compared to the semi- tD 

Markov inspection model for computing the equations of the delay time model. Also, 

the delay time model provides a means of modelling the behaviour of the system and 

predicting such useful quantities as reliability, cost or downtime under various 
inspection policies. If the fault arrival rate regardless of a HPP or a NHPP and the 

parameters of the pdf of the delay time h, J(h), regardless of any distributions, are 

estimated from the data of the real-world situation using the subjective or objective 

estimation method, we can easily establish the delay time model which can find the 

optimal inspection policies minimising the expected total cost per unit time or the 

expected total downtime per unit time. As confirmed in the numerical example of the 

chapter 5, it was shown that the simulation model and semi-Markov model are nearly 

consistent with the delay time model. This means that the delay time model and semi- 
Markov model can both apply practically to the multi-component system. 

Also, it was seen in the case study of the chapter 6 that the serni-Markov inspection 

model is consistent with the delay time model. From both the models, an optimal TPM 

period which minimises the expected downtime per unit time were obtained which were 

consistent. This is the first known case of a Markov inspection model being built for an Zý 
actual application. In this case study, we proposed an OR and statistical approach to 

model TPM practice on the Preformer machine operated within Brakelining Ltd, and I 

based upon the delay time concept. A statistical model based upon failure and TPM 

data can be established to give the estimated values for model Parameters, and a TPM 

model can be derived to find the optimal TPM cycle length in terms of minimising the 

total expected downtime caused by failures and TPMs from the delay time model and 

the semi-Markov inspection model. It has proved to be successful in that it recovered 

the underlying delay time distribution using conventional maximum likelihood method, 
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and the consequential downtime model reflected the current and previous operating 
downtime level adequately. 

In conclusion. since not only is the delay time model free from the requirement of a 

HPP fault arrival process, but it also requires much less time than the semi-Markov 
inspection model for computing the equations, the delay time model is considered to be 

more general and practicable than the semi-Mark-ov inspection model in applying to 

real-world situations. Furthermore, the delay time concept has an evident contribution 
in rending semi-Markov inspection models more applicable. When establishing a 
Markov model for a component inspection problem or a complex system, it is clearly 

very important to establish the validity of the Markov assumption and appropriate 

measures of the parameters. 
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