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, Abstract 

The thesis develops the application of delay time analysis to the area of 

mathematical modelling of planned maintenance and inspection of 
industrial systems. Chapter 1 gives an introduction to the history and 

techniques in use of maintenance modelling and surveys appropriate 
literature in the field. A section is devoted to papers published on delay 

time analysis. Chapter 2 introduces and develops mathematical models for 

modelling the reliability, maintenance and inspection of repairable 

systems. Chapter 3 gives an account of parameter estimation and model 

updating techniques in the light of subjective and observational data sets 

collected over a period of system operation. Chapter 4 addresses a bias 

in the probability distribution function of delay time when the data 

available over an operating survey is censored. Parameter estimation 

methods for this situation are then proposed. Chapter 5 gives an account 

of a simulation study of the delay time models and verifies the theory and 

parameter estimation techniques. Chapter 6 reports on research supported 

by the Science and Engineering Research Council on the application of 
delay 

, 
time analysis to concrete structures. Finally, Chapter 7 collates the 

conclusion drawn on each chapter and recommends areas for further 

research. 
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Chapter 1 

Introduction and Literature Review 

1.1 Introduction 

The demand for effective maintenance modelling and use of operational research (OR) 

to this end is evident in the recorded experiences of World War II, see Waddington 

(1973), OR in World War II: OR against the U-boat. Khintchine (1932) was one of first 

contributors to attempt to mathematically model machine maintenance. Since then, the 

field of planned maintenance for plant and buildings has received considerable interest 

and attention due to the increasing complexity of machinery and building designs, and 

the necessity for such systems to perform their function optimally in terms of cost, 

downtime and reliability. Stochastic modelling and statistical analysis have underpinned 

much of the OR methodology used for attempting to model and predict the 

consequences to and behaviour of equipment when maintenance strategies are applied. 

Informative accounts and reviews of mathematical techniques applied to maintenance 

are given by; Cox (1957), Barlow and Proschan (1965), McCall (1965), Jardine (1973), 

Pierskella and Voelker (1976), Christer (1984), Ascher and Feingold (1984), Barlow 

(1984), Thomas (1986), Valdez-Flores and Feldman (1989), Cho and Parlar (1991), 

Thomas et al (1991), Baker and Christer (1994). 

This chapter proceeds by modelling single component items such as, for example, light 

bulbs, where usually it makes sense to assume that only one type of failure can be 

experienced. Models for reliability, cost and downtime consequences given maintenance 

options are then discussed along with the necessary statistical analysis and estimation 

techniques. Modelling procedures applied to systems of components are then addressed. 
In the fourth section, the concept of delay time analysis applied to maintenance and 
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inspection (the subject of the thesis), introduced by Christer (1973), is reviewed. The 

research undertaken in the thesis is introduced. Finally, an overall discussion concludes 

the chapter. 

1.2 Maintenance Modelling of Single Components 

A component (or part) is a device that can fail in one failure mode when in operation 

and providing its service. Examples include light bulbs, valves and fuses. Failure is the 

state such that the component needs repair or complete replacement. The consequence 

of failure will induce costs due to repair or replacement. A period of downtime will be 

incurred until the component is restored and operating. The downtime required to 

replace the item will either be known prior to replacement/repair or possibly unknown. 

Indeed, penalty costs such as, for example, lost production, due to the component being 

out of service could also be incurred. 

A maintenance strategy or concept is a set of directives (or policies) aimed at optimising 

an objective function, e. g cost or downtime, over a period of time. The set of policies 

considered may be constrained so that certain operating characteristics are achieved, e. g 

a guaranteed reliability performance. One such policy could be simply to restore failed 

components as they arise, that is Failure Based Maintenance (FBM). Another strategy 

could be to replace components after a determined period of operation or at failure, 

whichever comes first, and is an example of a planned preventive maintenance (PPM) 

policy. The period of failure free operation is the decision parameter in the model. In 

some cases, a component may not signal immediate failure to the operator, e. g standby 

devices and the deterioration to a defined failed state in concrete structures. These types 

of components would require an inspection or monitoring type policy. 

Many components may become defective prior to failure and still remain operable, e. g 

a strip-light would flicker and take more time to switch on in the latter stage of its life. 

These types of components may benefit from an inspection policy whereby a component 

is inspected for the defect and consequently replaced at inspection to prevent failure. 

The time to inspect is the decision parameter. The defective phase would need to be 

included in a maintenance model. Delay time modelling has provided a tool for 
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modelling the consequence of maintenance and inspection for components of this type. 

In recent years, condition monitoring techniques have been developed. A component can 

be continuously or periodically monitored for engineering factors, e. g stress or vibration. 

A decision on replacement/repair can then be made when a particular factor reaches a 

certain threshold. 

1.2.1 Renewal Theory and Reliability 

The classic methodology for modelling the maintenance of single components is the 

application of renewal theory and reliability. Cox (1957) and Barlow and Proschan 

(1965) give excellent accounts of this field of mathematics. The approach is to assume 

that each component has its time to failure, X say, governed by a probability law, that 

is X is distributed with an assumed probability density function (p. d. f), f(x) say. 

When a component is replaced, which may be at failure, it is then assumed that the 

replaced component then operates independently and statistically identical to its 

predecessor, in other words, a renewal point. It is also possible that a component can 

be repaired to an assumed 'as-new' state which is statistically equivalent to a renewal. 

The independence assumption, in this case, would need to be tested. 

The FBM policy for a single component is an example of a renewal process, whereby 

the operating time between each failure is assumed to be independent and identically 

distributed (i. i. d) with p. d. f of time to failure, ix). The reliability, R(x) say, of a 

component is the probability that the component will operate without failure over time 

interval (0, x) measured from when the component was assumed new and placed in 

operation. The reliability function, R(x), is simply given by the probability that the 

failure time exceeds x, that is to say, 

w 
R(x) = 

ff(y)dy 
=1- F(x) 

yax 

where F(x) is the cumulative distribution function (c. d. f) of X. The mean time to failure 

(MTTF), µ= E(X) say, is given by, 
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w 
N=f xf(x) dr 

=o 
_ 

JR(x)dx (1.2) 

The hazard rate, z(x) say, is a function such that in the small interval (x, x+d:: ), z(x)dx, 

is the probability that the component will fail given it has not caused a failure over the 

operating time interval (0, x), since last new, i. e P{X c (x, x+ dx) IX> x}, where X is 

the random time to failure. It follows that z(x) is given by, 

Z(X) - 
fix) 
R(x) 

(1.3) 

The functions f(x) and R(x) can be written uniquely as a function of the hazard rate, z(x), 

see Cox (1957, p. 5). This can be shown by formulating the cumulative hazard function, 

Z(x) say, that is the integral of z(x), given by, 

x 

Z(x) =f) dv = -ln(R(x)) 
(1.4) 

r=o 
R(') 

Hence, R(x) = exp(-Z(x)) and f(x) = z(x)exp(-Z(x)). It can be seen that a component 

with a constant hazard rate, whereby the instantaneous chance of failure does not change 

with operating time, has an exponential distribution of time to failure. 

Typical lifetime distributions commonly selected for components are exponential, 

Weibull, Erlang, gamma and lognormal. Depending on the selected distribution, the 

hazard rate, for example, could be monitonically increasing, whereby the chance of 

failure in the next instance of component operation, given no prior failure, increases as 

the component operates, i. e the component is such that it is wearing out. A decreasing 

hazard applies to components which become increasingly reliable as they operate 

without failure, e. g computer chips. It has been a common assumption that many 

component types have a 'bath-tub' hazard which decreases at first. This to allow for a 

sub-set of components to be possibly defective through manufacture, and having infant 

mortality. Then, the hazard is assumed approximately constant for a certain time 

(sometimes termed main life), and finally increasing (wear out). 

The sample hazard function would be formed from the life testing of a set of 
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components. Analysis of the failure behaviour of a component, say through condition 

monitoring or inspection, may reveal that a component becomes defective, giving a 

signal that it is about to fail or has an increasing chance of failure. In this case, the bath- 

tub assumption would not be appropriate as a basis for modelling this effect. An 

inspection would naturally increase or decrease the hazard function of failure, for 

component operation immediately after inspection, depending if a defect is found or not 

found. The defective property of the component would need to be included in a 

maintenance model. Delay time analysis provides a model to take this effect into 

account. 

It is of interest in maintenance modelling to estimate the expected number of 

breakdowns, B(T) say, over an interval (0,7). For the renewal process, B(7), is given 

by the solution to the renewal equation, 

T 

B(T) = F(T) +f B(T - x) f(x) dx 

x0 (1.5) 

_ F'k'(T 
k=1 

where Fk'(x) is the k-fold convolution of F(x), that is the c. d. f of time to the k'th failure. 

We shall also define, here, r(7), as the instantaneous rate of occurrence of failures 

(ROCOF), given by, 

r(T) = B'(7) 
, 
f'(k)(7) 

k=1 

(1.6) 

where Ik'(x) is the p. d. f of time to the k'th failure. The ROCOF and hazard rate has 

caused much confusion in the reliability field, see Ascher and Feingold (1984). The 

ROCOF is an absolute rate of the stochastic process of failures from the origin of the 

process. The hazard rate is relative, in that it is a direct property of the time between 

two failures. A consequence of the renewal process, is that in the limit as time increases, 

1Tm- B(_ 
= tim-r(7) _ (1.7) 

and for large T and finite variance, & say, of time to failure, B(7) = T/µ + ((Y2 - µ2)/2µ2, 
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see Cox (1957, p. 47, p. 55). This implies the process becomes steady state, for example 

the expected number of failures in an interval, (T,, T2) say, selected prior to the process 

starting, would be approximately (T2 - T1)! µ for large values of Ti and T2. The time 

taken' to reach this state will depend on the selected p. d. f of time to failure. 

The functions introduced in this section are some of the characteristics of the behaviour 

of a single component system, and are important in the maintenance modelling and the 

estimation and testing of modelling parameters. However, it has been highlighted that 

properties of defects of a component would also be an important ingredient in 

maintenance modelling, and will prove to be so in the forthcoming chapters on delay 

time analysis. 

1.2.2 Models for Cost 

We, here, introduce two models of cost and refer to literature on other cost model 

structures. Jardine (1973) gives an account of many models for single-component 

systems. The two common types are block and age based replacement. 

Block replacement can apply to a single or group of like components. The policy is to 

replace the component(s) at periodic points in time, T, 2T, 
..., 

NT, say. The decision 

parameter for the model is clearly T. Components which fail over the replacement 

periods are assumed to be replaced at failure with a statistically identical component. Let 

cf be the expected cost of replacing a failed component and c, (< cf) be the expected cost 

of a planned replacement. It is also assumed that a failure and planned replacement is 

carried out with negligible time. For one component, the expected cost over each 

replacement cycle is Cr + cfB(T). Hence, the expected cost per unit time, c(T) say, over 

each cycle is given by, 

G(7) _ 
Cl + `" fB(T) (1.8) 

T 

For a group of, M say, like components the expected cost would simply be multiplied 
by M. Also, a block replacement downtime, for this case, dr say, may need to be 

considered in the denominator of c(7). By differentiating c(T), the optimum solution, if 

it exi ; ts, can be found by solving the equation, 
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cf(r(T) - 
BT)) 

- C, =0 (1.9) 

Using the limiting results of the renewal process in the previous section, failure-based 

maintenance has an expected cost per unit time, c/µ, and the block replaceme, lt strategy 

would have a solution to equation (1.9) with a lower expected cost per unit time 

if cJcf < (62 - p2)/2p, assuming the absence of technological improvement or condition 

monitoring. Dagpunar (1994) tidies up the necessary and sufficient conditions for 

optimality based on the mean residual life property of the failure p. d. f, Ax). A 

disadvantage of the model is that failures may occur just before a planned replacement. 

Hence, the policy would apply to mainly inexpensive items, such as light-bulbs. 

In age-based replacement, each component is replaced at failure or when attaining age 

T, whichever comes first. Hence, each component's age needs to be monitored for the 

application of this policy. We will assume that each component has failure and 

preventive replacement expected costs, cf, c1 respectively. The replacement cycle will 

end at failure or T. Hence, the expected cost per cycle is cfF(T) + c, R(T). The cycle 

length is clearly random, and its expectation, m(T) say, will be given by, 

TT 

nl(T) =f xf(x)dx + TR(T) = 
5R(x)dx 

. 
(1.10) 

xo x0 

The expected cost per unit time, c(7), over a finite time horizon may be complex 

involving the use of renewal functions. Using renewal theory, the long term expected 

cost per unit time is given by the ratio of the expected cost to the expected cycle length, 

see Cox (1957, p. l 18). Hence, c(7), for one component is given by, 

c1F(T) + crR(T) 

Again, a group, size M, of components would have expected cost per unit time, Mc(7). 

An optimal solution, if it exists, can be found graphically or by differentiating, 

simplifying and solving the equation, 
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T 

(Cf - cT) z(T) 
f R(x) dx - F(T) - Cr =O (1.12) 

x=0 

where z(x) is defined in function (1.3). When considering the L. H. S at T= oo, it can be 

seen that a uniquie solution will exist, if pz, (°°) > c/(cf - cr) and z(x) is strictly increasing 

, since the L. H. S is negative at T= 0 and is monitonically increasing. Dagpunar (1994) 

discusses further the conditions for the existence and uniqueness of an optimum. It is 

must be noted that the optimal age-based or block replacement solution may not be the 

overall optimum maintenance strategy for the component, in that other strategies through 

use of inspections or condition monitoring may provide lower cost per unit time. This 

will be shown in Section 1.4.2 

The following papers give characteristive examples of cost models. Beichelt (1981) 

considers a model where detection of failure can only be made by inspection. An 

increasing cost between failure and inspection is considered and an optimal irregular 

spaced inspection strategy is proposed. This is a similar situation to the modelling of 

concrete structures in Chapter 6. Christer and Keddie (1985) present a replacement 

model applied to filling valves on a canning line. Kaio and Osaki (1989) compare 

inspection policies for a component that can only be detected as failed by inspections. 

Jack (1991) considers the effect of imperfect repairs over finite time horizons. Makis 

and Jardine (1992) consider also a replacement and repair cost model, which takes into 

account the possibility of imperfect repair. Dagpunar (1994) extends the age-based 

replacement cost model by introducing non-zero downtimes for failure and planned 

replacement. Necessary and sufficient conditions are formulated and discussed. An 

example is given in the paper, based on a case study, in Christer and Keddie (1985). A 

recent application study has been published, see Vanneste and Wassenhove (1995). 

1.2.3 Models for Downtime 

Modelling downtime for maintenance strategies can become complex due to 

incorporating the finite time for renewing a component within a stochastic model. 
Barlow and Proschan (1965) and Barlow and Hunter (1960b) model the failure-repair 
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process as an alternating renewal process. We shall consider, again, the block and age- 
based replacement policies as examples. 

In block replacement, assume the expected replacement time of failure, df say, is small 

compared to, T, the planned replacement time, so that the process of failures is 

approximately a renewal process over interval (0,7). If dr is the block replacement time 

then the expected downtime per unit time, d(T) say, is given by, 

d(7) _ 
cl fB(T) + dý 

. T +d, 
(1.13) 

By differentiating d(T), the optimum solution, if it exists, can be found by solving the 

equation, 

d f(r(7)(T + dr) - B(7)) - d, =0. (1.14) 

Using the limiting results of the renewal process in Section 1.2.1, equation (1.14) will 
have a solution if dr(d f- µ)/df < (a2 - µ2)/2µ2. 

For age-based replacement, the restriction on df being small need not be imposed, and 

the expected downtime per unit time over a long term horizon is simply given by cost 

function (1.11) with cf= df, Cr = dr and m(T), the expected cycle length, given by, 

11z(7) =f (x +d f)f(z)dx + (T + dr)R(n . 
(1.15) 

0 

It can be seen that the expected downtime per unit time for failure-based maintenance 
is d/(µ + (if). Dagpunar (1994) gives necessary and sufficient conditions on optimality 
for this policy. 

1.2.4 Estimation of Modelling Parameters 

This section gives an account of techniques used in estimating and testing the modelling 

parameters of the distribution of time to failure, f(x), given uncensored and censored 

observations. 
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Assume N independent components of the same type are placed in operation and each 

one is run to failure, with x; say, being the observed time to failure of the i'th 

component, 1 <_ i5N. The components need not necessarily be placed in operation at 

the same time. It is also assumed, for now, that the set {x, } do not form a series of 

events generated by repairs to a single component. The following sample functions can 

easily be calculated; probability histogram, c. d. f, reliability function, hazard and 

cumulative hazard. This aids in deciding the form of the p. d. f, f(x), of x. Statistics such 

as the sample mean and variance can be calculated and confidence limits can be placed 

on the theoretical values of these parameters. 

We now consider estimation techniques. Two formal methods of estimation are in 

common use, that is maximum likelihood and method of moments. Assume the p. d. f 

family selected has form f(x; 1) where X is the set of parameters to be estimated. The 

likelihood function of the data set {x, } is given by, 

N 

LQ) _ ll f(xý; 2, (1.16) 

which represents a probabilistic measure of observing the given observations. The 

estimated parameters are chosen at the point such that L(j) (or alternatively, Ln(L(2)), 

the log-likelihood) is a maximum. 

For the method of moments estimation, the first M sample moments about x=0 are 

calculated, where M is the number of parameters to be estimated. Then, M simultaneous 

equations are set up by equating each sample moment to the corresponding theoretical 

moment, see Chatfield (1970, p. 121). It follows that the following equations would need 

to be solved, 

fxif(x; x)dx = for for 1 <_ j <_ M (1.17) 
X=0 i-1 

These equations can then be solved, if a solution exists, to obtain a point estimate of I. 

In testing the fit of the model, the sample probability histogram can be compared to the 

estimated histogram and the x` test can be undertaken. Alternatively, the sample and 



estimated c. d: f can be compared and the Kolmogorov-Smirnoff (KS) test can be carried 

out. 

We next discuss the situation of censored observations in the context of block and age- 

based replacement policies. Assume, T is the current replacement practice for either 

policy. Over an operating survey, two sets of data on failures would arise, that is a set 

of size, A say, completely observed times to failure and a set of size, B say, of censored 

times (due to replacement at 7), where it is only known the time of failure exceeds a 

specific value. We shall denote these sets, {. x; }, 1 <_ j <_ A, and {Yk}, 1 
_< 

k <_ B. The 

maximum likelihood estimation can also be applied, and is given by, 

AB 

L( )_ý xýý)T7R(yk; X) (1.18) 

For age-based replacement, all the censored values, yk. will be equal to T, and a test-of- 

fit can be carried out using the conditional c. d. f of x over the interval (0, T), that is 

F(x)/F(T), and comparing it to the sample c. d. f of failure times. Additionally, the sample 

proportion of planned replacements can be compared to the estimated reliability, 

P{x > T} = R(T), and a binomial statistical test carried out. For the block-replacement 

case (or progressively censored samples, in general, where the set {yk} have random 

values), a graphical test-of-fit can be undertaken using the cumulative hazard function, 

see Nelson (1984), and a statistical test-of-fit undertaken by using the Kaplan-Meier 

estimate of the reliability function, see Kalbfleisch and Prentice (1980). 

The procedures outlined above, will be applied to delay time analysis, in the appropriate 

modified forms, for simulated data in Chapter 5, and on the analysis of inspection 

records of concrete components in Chapter 6. 

When considering repairs to a single component, and {x; } is the set of inter-arrival times 

of failures, then a trend could be seen by plotting cumulative failures versus operating 

time. An increasing gradient would show deterioration whilst a decreas; ng gradient 

would show component improvement. In these cases, the component may not always be 

repaired to 'as-new', and the times {x; } may not be independent and identically 

distributed, see Ascher and Feingold (1984). A renewal process is then not appropriate 

and the estimation techniques above would not apply. The next section on systems 
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presents one model which can cope with this effect. 

1.3 Maintenance Modelling of Systems 

The aim of this section is to expand the modelling of a single component to modelling 

the maintenance of a multi-component system or group of systems. Effectively, a system 

is a collection of components. Ascher and Feingold (1984) give an extensive account on 

models and estimation techniques for the maintenance of repairable systems. 

1.3.1 Stochastic Processes 

The mathematical approach to modelling system reliability has been through the 

application of stochastic processes. We shall consider, here,. a system whereby 

components are assumed to be in series and independent. A breakdown is then caused 

by the failure of any one component. 

For an n-component series system, let R; (x) say, be the reliability function of the i'th 

component. The reliability function, R(x), of the system from new is then given by, 

n 

R(x) = ll R, (x) (1.19) 
i1 

The p. d. f of time to first breakdown, f, (x) say, is then given by, f, (x) = -R'(x). 
For the case when a system needs complete replacement after breakdown, or must be 

repaired to an assumed statistically 'as-new' condition, then the system can be treated, 

here, as a single component with time to each failure, f(x) = f, (x). 

We shall now consider the case when a breakdown is rectified by only replacing or 

repairing the failed component. The time to next breakdown would not necessarily be 

distributed with p. d. f fi(x). The process of breakdown arrivals in the absence of any 
PPM will be a superimposed renewal process (SRP), see Khintchine (1960). The SRP 

for a general situation would be complex, especially for large n and many non-identical 
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components. We shall consider, here, approximating the SRP by a non-homogeneous 

Poisson process (NHPP). Barlow and Hunter (1960a) first introduced the NHPP for 

systems which are minimally repaired at breakdown. Ascher and Feingold (19K4) 

recommend the use of the NHPP especially for complex systems when ii is large. Under 

certain conditions, the SRP has been shown to asymptotically tend to the NHPP when 

n is large, limiting to a HPP as time increases, Khintchine (1960). The breakdown 

arrival process of a delay time model for a repairable system, Christer and Waller 

(1984a), has both these properties, and is discussed in detail in Chapter 2. The NHPP 

model may be also applied to the case of a single component when a repair does not 

return the component to as-new due to ageing, for example. The NHPP requires the 

ROCOF, r(t), to be estimated. The number of breakdowns in the interval (0, T) is 

Poisson distributed with mean value B(7) given by, 

T 

B(7) = 
fr(t)dt (1.20) 
t=0 

The number of breakdowns in any interval, (T1, T2) say, is also Poisson distributed. The 

reliability function, from new, R(x), is then given by, 

R(x) = exp(-B(x)) . 
(1.21) 

Hence, the time to first failure has p. d. f, f, (x) = r(x)R(x). 

It can be seen that the hazard rate, for first breakdown, hl(x) say, equals r(x) for the 

NHPP, and this property causes further confusion in the reliability field, see Ascher and 

Feingold (1984). It can be shown that given a breakdown at time x, then the hazard 

function for the second breakdown, h2(x I x, ) say, equals r(x + x1), where x is measured 

from time x,. Hence, breakdown repairs do not reduce or increase the chance of 

subsequent breakdowns. Due to this effect, the model has been termed 'minimal-repair' 

or 'bad-as-old'. Also, it must be noted that the p. d. f of inter-arrival time to each 

breakdown is dependent on the last breakdown time. 

As for single components, the components of a system could become defective prior to 

one component causing a breakdown. Therefore, an inspection could reveal the defective 

components within a system and a maintenance decision to repair the components could 
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be applied. Hence, the number of breakdowns would be reduced through this process. 

Delay time modelling for systems of this type takes into account the defective phase that 

components of a system would enter over their life. 

Other models for systems have included branching processes and Markov processes. For 

branching processes, component dependency is modelled in that it is assumed that a 

component that fails may then cause the failure of other components. For Markov 

processes, a system is perceived to enter a set of defective states prior to failure, with 

each time within each state having the restriction of being exponentially distributed. A 

recent development has been in the introduction of a reduction factor, in that after 

breakdown repair, the hazard function for the time to next breakdown is set to a level 

between new and the time of the breakdown, see Kijima et al (1988). 

We next consider cost and downtime models assuming a system is to be modelled by 

an NHPP. 

1.3.2 Models for Cost 

In this section, cost models are discussed for a complex system, assuming a NHPP 

model for the process of breakdown arrivals. Barlow and Hunter (1960a) consider a 

form of block replacement model whereby at time T the system is completely replaced, 

and breakdowns are minimally repaired over the replacement period. Assuming 

instantaneous breakdown repairs, the expected cost per unit time model has identical 

form in function (1.8) but with B(T) being the expected number of breakdowns assuming 

an NHPP model. The model could also be applied to a system whereby at time T the 

system is overhauled, repairing defective components, so that it is assumed to return to 

a statistically 'as-new' system. However, the cost of overhaul would be dependent on 

the number of defects within the system at time T, and thus needs to be modelled. 

Chapter 2 presents a delay time model which takes this effect into account for a 

complex repairable system and is based on the paper, Christer and Waller (1984a). 

Other maintenance options exist, for a complex system. For example, one could replace 

after N breakdowns where N is another decision option in the model, or a form of age- 
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based model whereby replacement occurs after the system operates without failure for 

time T. Evidently, the model chosen would be dependent of the failure characteristics 

of the system, cost levels of repair and feasibility of applying the maintenance strategy. 

Practically all age-based and block replacement strategies assume the assymptotic cost 

function as an objective function to optimize. Some attention has been given to 

modelling an equivalent finite time horizon cost, for example, Christer (1978,1987b), 

Christer and Jack (1991) and Jack (1991). 

Christer and Scarf (1994) consider a replacement model for medical equipment. The 

system is assumed to breakdown in accordance with a NHPP. Two decision variables 

are considered, K and L. K is the number of years to replace old equipment and L is 

period of use for new equipment prior to replacement. A cost model is formulated taking 

into account discounting factors, over the time period K+L. There is scope to extend 

the model through use of inspections. Scarf and Bouamra (1995) apply a similar model 

to a set of inhomogeneous bus fleets and consider the effect of a penalty factor for 

delaying replacements. Kobbacy et al (1995) assume the corrective repair process of 

system is modelled by a delayed renewal process after each preventive maintenance 

activity. Sensitivity analysis for the change in optimum cost policy is carried out for 

varying modelling parameter values. 

1.3.3 Modelling Downtime 

As for single components downtime models can become complex. The two maintenance 

strategies given in Section 1.2.3 could be applied to the system given identical 

assumptions, except we replace the renewal assumption by the NHPP assumption. 

Morumora (1970) considers a policy whereby a system is minimally repaired for 

operating time T and replaced at first breakdown after operating time exceeds T. A use- 

based delay time model is addressed in Chapter 2. Dagpunar and Jack (1993) consider 

a policy whereby a system is minimally repaired over an elapsed time T (operating + 

cumulative repair) and replaced at first breakdown after T. Christer and Waller (1984b) 

present a case study of a canning line. An approximate model for downtime is proposed 

whereby breakdowns are rectified over a period T and an inspection is carried to repair 
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defects at T so as to return the system to a statistically 'as-new' condition. The appendix 

to the thesis outlines a delay time model to take into account the effect of stochastic 

downtime. 

1.3.4 Estimation of Modelling Parameters 

The section details the maximum likelihood estimation technique for the NHPP 

assumption of breakdown arrivals. Assume a breakdown arrival process has been 

observed over an interval of time (0, T) whereby breakdowns are minimally repaired and 

the system is assumed new at time 0. Let B be the number of breakdowns observed at 

the ordered times, { t; } say, where t; < T, for 1Si <_ B. Cox and Hinkley (1974) derive 

the likelihood as, 

B 

L(ý) = exp(-B(T; X))jjr(t,; X) 
r=1 

where a, is the set of modelling parameters to be estimated and r(t; 1) and B(T; 1) are 

the respective parameterised models for the ROCOF, for t>0, and the expected number 

of breakdowns for time (0, T). 

In testing the fit of the model, the sample cumulative failures vs. operating time could 

be plotted against B(x) for 0Sx <_ T. For a numerical test, it is observed that a random 

breakdown time over time interval (0,7) has the c. d. f, B(x)IB(7), given in Ross (1983). 

Therefore, the empirical distribution of breakdown times over (0, T) could be compared 

to the estimated c. d. f and the K-S test carried out. An additional test for the NHPP 

model could also be carried out on the number of breakdowns occurring over a set of 

intervals (0,7). The sample distribution can then be compared to the Poisson distribution 

of mean B(T). 

1.4 Delay Time Inspection Modelling 

The mathematical modelling of maintenance using the technique of delay time analysis 

was introduced by Professor A. H. Christer and first mentioned in the appendix to the 

paper, Christer (1973). Since then, a series of papers have been written successfully 
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developing the concept and applying the model to many areas of industrial maintenance. 
The model arose from the observation that a component can become defective and enter 

a phase prior to causing a failure such that it can be detected by an inspection and be 

repaired. Evidently a component's life without any maintenance intervention, see Fig. 1.1, 

can be defined as three states namely : 

(1) When it is not defective (or not noticeably defective by current inspection 

procedures). 

(2) When it is defective, and can be inspected and repaired. 

(3) When it causes a failure and needs immediate repair or replacement. 

The delay time, h say, is the interval of time spent in state 2, i. e from the instant when 

the component becomes defective to its necessary repair or replacement. The initiation 

time, u say, is the interval of time spent in state 1, to when a defect becomes first 

detectable by inspection. 

Initiation Time, u Delay Time, h 

01 uI tI=u+h Up time 

New Defect First Breakdown 
Component Detectable 

Fig. I. I. The initiation time and delay time of a component. 

The judgement that a component is defective would be made by the maintenance 

engineer. A component which is replaced whilst in the defective phase would reduce 

cost and downtime compared to failure replacement. However, a compromise must be 
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sought based on cost/downtime levels of repair and planned inspection activity. It is 

evident that there is an extended scope for modelling options using the concept of delay 

time. 

1.4.1 Review of Papers 

Christer (1982) introduces the delay time model in the context of building maintenance. 

Here, a cost based system model, assuming perfect inspections, is formulated with 

expected repair costs assumed to be varying over the delay time period. A method is 

suggested to estimate the repair cost function by subjective estimates from engineers and 

inspectors. 

Christer and Waller (1984a) formally introduce the delay time model for complex 

industrial systems. Models of downtime and cost are formulated assuming perfect 

inspections and HPP defect arrivals. The model is then extended to NHPP defect 

arrivals. The method to model imperfect inspections is then proposed. Numerical 

examples are provided. 

Christer and Waller (1984b) present a case study of a canning line plant. A snapshot 

model is proposed to aid in locating the component types where planned maintenance 

would be an effective option. The delay time p. d. f is estimated through subjective 

estimates of engineers and inspectors via a questionnaire. The system model is proposed 

and the predicted proportion of defects which arise as failures is modelled accurately to 

the observed value for the current inspection practice. 

Christer (1987a) models the reliability function of a single component subject to one 

known defect type. The component is assumed to be inspected perfectly and 

periodically. The model is then expanded to consider the reliability of n components in 

parallel. There is scope to further expand the model to the case of imperfect inspections. 

Christer (1988) develops a cost based model for the maintenance of civil engineering 
structures. A system model is assumed with expected repair costs varying over the delay 

time period. Due to delay times being most likely to be in the order of years, the 
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probability of detecting a defect is also assumed to vary over the delay time period. 

Christer and Redmond (1990) discuss a bias in the parameter estimation of the delay 

time p. d. f when data collected over an operation period is censored. For example, delay 

time estimates may only be obtainable at failures. The biased (or conditional) p. d. fs of 

delay time are formulated for the two cases of breakdowns and inspected defects, 

assuming a complex system is periodically and perfectly inspected. A maximum 

likelihood estimation technique is then proposed to estimate the parameters of the true 

delay time distribution. There is scope to extend the analysis to imperfect inspections 

and considering the bias in the initiation time of defects. Also, the parameter estimation 

bias for single components and n-component systems provides further research. 

Cerone (1991) presents an approximation technique for the reliability function 

formulated in Christer (1987) for a single component. Cubic splines are fitted to the 

reliability function over each inspection interval. Pelligrin (1991) presents a graphical 

procedure to determine the optimal inspection interval for a system delay time model 

allowing for imperfect inspections. 

Chillcot and Christer (1991) present a case study of applying delay time analysis to the 

maintenance of coal mining equipment. A system model is assumed to predict 

downtime. Due to repair downtimes being large compared to the inspection period, the 

modelled process of faults arising will halt during a downtime period, and an iterative 

model is proposed to take this effect into account. 

Baker and Wang (1992) fit a single-component delay time model for estimating delay 

time parameters by objective means given observations of times of failures and 

inspection outcomes, where maintenance was carried out irregurarly. The reliability of 

the components is estimated when various inspection policies are applied. This was an 

important paper in extending the applicability of delay time modelling. 

Christer and Redmond (1992) introduce model updating techniques when the p. d. f of 
delay time has been subjectively derived. The objective is to model the known 

proportion of defects arising as breakdowns for the current inspection practice. The 
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actual delay time is assumed to be linearly related to the subjective estimate. The 

uniqueness and existence of parameter estimates are then discussed. The scope to change 

the model through assuming imperfect inspections is also addressed. An estimation 

technique to estimate modelling parameters given breakdown time and defect 

observations is also proposed. The case study, Christer and Waller (1984b), is used to 

demonstrate the techniques proposed. 

Christer and Wang (1992) present a case study of a model for condition monitoring of 

a production plant. A component's wear property is modelled and a delay time model 

proposed based on replacing a component when its wear reaches a certain threshold. 

Baker and Christer (1994) present a review of delay time modelling. Further research 

topics are outlined and a method to estimate modelling parameters from both subjective 

and objetive data is proposed. 

Christer et al (1995) present a case study for the maintenance modelling of a copper 

production plant. A system model is assumed and the objectively based estimation of 

the delay time modelling parameters undertaken using the observed times of breakdowns 

and the number of defects detected at inspections. The mean downtime per breakdown 

is assumed to increase prior to a planned inspection due to likely occurrence of more 

severe breakdowns as the system operates. A downtime model is formulated and a 

weekly planned maintenance activity is recommended. 

1.4.2 Single-Component Models 

We consider in this section, a delay time model for a single component. Papers and 

reports on the single-component model are given by; Christer (1987), Baker (1991), 

Baker and Wang (1991), Cerone (1991), Baker (1992), Baker and Wang (1992), Christer 

and Wang (1992) and Baker and Christer (1994). The component is assumed to enter 

a defective state prior to failure such that if detected by inspection, then repair or 

replacement options exist to prevent failure. When a component is in the defective state, 

it is assumed that it is still able to provide its necessary service. 
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Assume the initiation time, it, has the p. d. f and c. d. f, g(u) and G(u) say, respectively. 

Likewise, the delay time, h, has p. d. f and c. d. f, f(h) and F(h) say, respectively, 

independent of it. The c. d. f of time to failure, P(x) say, would then be given by the 

convolution of u and h such that it +h <_ x. Therefore, P(x), is given by, 

x 

F(x) = 
J'x(u)F(x 

- u) du (1.23) 
11.0 

and the reliability, R(x) =1- P(x). 

Consider a maintenance strategy, whereby a component is replaced or repaired at failure 

and only when detected in the defective phase at an inspection. Cox (1957) presents a 

similar strategy based on wear level of a component at inspection We shall consider, 

here, perfect inspections, and the special case that g(u) is exponentially distributed. 

Therefore, an inspection would in effect be a renewal point, in that if the component is 

not defective at an inspection (and consequently not replaced), then the time it to 

becoming defective after inspection has the same exponential p. d. f, g(u), due to the 

memoryless property. Assume the expected cost of failure replacement, planned defect 

replacement and inspection have costs cf, c, and ci respectively. The objective is find the 

optimum time to inspect T, after each failure-free period (0,7) of component operation. 

The expected cost over each cycle, C(T), is given by, 

T 

C(T) =c fP(T) + (Cr +Ci) 
fg(u)(1 

-F(T-u))du + c, (1 -GM) 
s 

(1.24) 

= (c f- Cr - ci)P(T) + c, G(T) + c, , 

after simplification. Assuming instantaneous inspection and replacement times, the 

expected cycle length, M(T), is given by, 

T 

M(T) = 
JxP'(x)dx 

+ TR(T) = 
5R(x)dx 

. 
(1.25) 

x-o x=p 

Hence, the long-term expected cost per unit time, c(T) say, is given by, 

A comparison will be made, here, with the age-based policy of Section 1.2.2, whereby 

a component is replaced after time T, regardless of whether it is in the defective state 
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c(T) (ý . 
(1.26) 

or not, that is not inspecting. It will be shown by numerical example that the optimum 

inspection policy can have a lower expected cost per unit time than the age-based 

policy. We will assume the following values of the modelling parameters, where the 

delay time distribution is also taken to be exponential: 

cý = 10, 

Cf = b0, 

c1 = 5, 

G(u) =1- exp(-0.2u) and 

F(h) =I- exp(-0.3h). 

It will be assumed that the cost of a planned replacement of a component at inspection, 

Cr, is equal to the cost of an age-based planned replacement. The graphs of the expected 

cost per unit for a range of T values are given in Fig. 1.2 for the inspection policy, 

function (1.26), and the age-based policy, function (1.11). Clearly, the optimum 

inspection policy results in lower expected cost per unit time. The optimum inspection 

time is shorter than the age-based replacement time. This is to be expected, as 

inspections will reduce the frequency of failures and component replacements. 
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Fig. 1.2. Comparison of an inspection policy and age-based 
replacement. 
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1.4.3 System Models 

We will consider here, briefly, a delay time model for a repairable system. Chapter 2 

discusses the model in greater detail. Papers on the system model are given bv, Christer 

(1982), Christer and Waller (1984a, b), Christer (1988), Christer and Redmond 

(1990,1992). Pellegrin (1991), Chilcott and Christer (1991) and Baker and Christer 

(1994). It will be assumed that a system comprises of many independent component 

parts, and a breakdown can be caused by any one component. Defects are assumed to 

arise as a stochastic process with each defect having a delay time period before causing 

a breakdown. When a breakdown occurs, it is assumed that only the component that 

caused the breakdown is repaired or replaced and other defects go undetected. In the 

absence of inspections, an example of the breakdown arrival process is given in Fig. 1.3. 

It can be seen that a perfect inspection prior to the first breakdown, would detect defects 

within the system, and if the faults are corrected, then future breakdowns would be 

prevented. 

Defect arrivals ' 

Breakdowns * 

0 (System New) Time, t 

Fig. 1.3. An example of the breakdown arrival process for a system. 

The following presents the set of initial assumptions concerning modelling parameters 
for a technical system under study: 
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(a) At time 0, the system is in a new or 'as new' state, that is defect free. 

(b) Defects arise within the system, independently, as a homogenous Poisson 

process (HPP) with rate parameter k, over time. 

(c) Delay times, h. are independent of arrival time it and are described 

by the probability density function (p. d. f), f(h) say. with finite mean p. 

(d) Those defects which cause breakdowns over time are repaired with 

negligible time at failure. 

(e) A breakdown has a repair cost, which is independent of the defect arrival 

time, the delay time and the repair time. The repair cost is assumed to 

have a mean cb. 

(f) Inspections are perfect. 

(g) There is a constant time T between successive inspections. 

(h) The expected cost of an inspection is c1. 

(j) An inspection takes time, d1, to undertake, and all defective components 

that may be found are repaired/replaced within this time. 

(i) The expected cost of a repair to a defective component at an 

inspection is cd. 

It will be shown in Chapter 2, that the process of breakdown arrivals of the system 
described above, under failure-based maintenance (FBM), is a non-homogeneous Poisson 

process (NHPP). A characteristic function of the inspection policy is the proportion of 
defects which would arise as breakdowns, b(T) say. This has been derived by Christer 

and Waller (1984a), and is given by, 

T 

b(7) =Tf (T - h) f(h) dh (1.27) 
h-0 

The model for expected cost per unit time, c(T) say, is then given by, 

`(ý = 
kTb(T)cb + kT(1-b(T))cd + c1 (1.28) 

T+d, , 

over each cycle, (0, T+ d). 

To model downtime, assume db is the expected downtime of a breakdown repair, and 
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that db is small compared to T. Hence, the approximate expected downtime per unit 

time, d(T) say, over each cycle (0, T+ dj), is given by, 

d(ý = 
db kTb(T) + dt 

T d1 
(1.29) 

+ 

The delay time model can further be applied to imperfect inspections, non-homogeneous 

rates of defect arrivals and to other inspection-type policies. These model developments 

and others will be discussed in Chapter 2. 

1.4.4 Estimation of Modelling Parameters 

Central to the application of delay time analysis, is the accurate estimation and testing 

of modelling parameters concerning the selected initiation time and delay time model 

of components and systems. There have been essentially two approaches to the problem, 

that is the subjective method and the objective method. 

The subjective method was introduced in the context of building maintenance, Christer 

and Waller (1984b). Questionnaires were compiled and presented to engineers and 
inspectors. The questions were aimed at obtaining subjective estimates of the initiation 

time and delay time of specific parts. At a breakdown, the engineer was asked how long 

ago the defect would have arisen. Thus, yielding a point estimate of both the initiation 

and delay time. At an inspection, an estimate is also required on how much longer a 
defective component could be delayed before it would cause a breakdown, in order to 

obtain an estimate of its delay time. Standard estimation and test-of-fit procedures can 

then be carried out to estimate the distribution (for single-components) or rate process 
(for systems) of the initiation time, u, and the delay time p. d. f, f(h). However, a model 
formulated from only subjective data, would not necessarily model observational 

characteristics of the known inspection practice, such as the observed proportion of 
defects arising as breakdowns and the sample properties of the observed breakdown 

times. Hence, a form of revision or updating is necessary after subjective estimation. 
Chapter 3 presents methods for a system model to update and test estimated modelling 

parameters. Chapter 4 presents the case when subjective data is further censored, by 

considering the situations when a subjective data set can only be obtained at breakdowns 

or, perhaps, only at inspections. A maximum likelihood technique is proposed to remove 
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this observational bias. 

Objective methods were proposed by Christer and Redmond (1992) for a system model 

and applied by Christer and Wang (1992) for a single-component model. The method 

utilizes the observational information that can be obtained when operating a component 

or system under an inspection practice. The types of data that can be obtained for a 

system which is periodically inspected, say, are; the number of breakdowns over each 

inspection interval, the number of defect repairs at each inspection, the times of 

inspections and the times of breakdowns. The sample distributions of the observed 

number of breakdowns, defect repairs and breakdown times can then easily be 

formulated in terms of the inspection period, T, the defect arrival rate, g(u), and the 

delay time p. d. f, f(h). A model for u and h 'can be proposed and modelling parameters 

estimated via the maximum likelihood process. The estimated distribution of the number 

of breakdowns, defect repairs and breakdown times can then be compared to the 

corresponding sample distributions and the appropriate statistical tests-of-fit carried out. 
If statistical tests fail, then the proposed models for u and h, for example Weibull 

distributions, would need to be revised. Subjective measures of u and h can help in this 

case to decide on appropriate models. The objective method for a system will be 

demonstrated with simulated data in Chapter 5 and with inspections records of the 

deterioration of concrete structures in Chapter 6. 

Evidently, a fusion of both methods would be beneficial due to an increased sample of 
data information, especially if there is only a small sample of objective data. Baker and 

Christer (1994) discuss methods of achieving this. 

1.4.5 Introduction to Chapters 

In Chapter 2, the type of complex repairable system under study and the delay time 

concept used to model maintenance will be defined. A non-homogeneous (or time- 

dependent) Poisson process model is used to describe the arrival process of breakdowns. 

The downtime and cost consequence due to a purely failure based maintenance policy 

are then modelled and discussed. The effects of inspecting the system over time are 

considered. Models for downtime and cost are derived for a periodic based inspection 
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policy. Initially, inspection will be assumed perfect and this requirement is then relaxed 

to include the case of imperfect inspections. Extensions to these models will be 

developed and conditions involving modelling parameters are derived for the decision 

to optimize cost or downtime by an inspection based policy. Numerical examples will 

be provided. An alternative inspection policy based on inspecting a system after a 

specific period of use (or operation) will also be discussed. The chapter is based on the 

paper, Christer and Waller (1984a). 

In Chapter 3, procedures are constructed for estimating the parameters necessary to 

formulate the models derived in Chapter 2. These will be constructed and based upon 

the experience gained and the data collected in operating repairable systems over time. 

Two types of data will be focused on, namely subjective and objective. Subjective data 

can arise from engineers' estimation of the delay time of specific defects at breakdowns 

and inspections. Thus, data of this type is expected to be in error. However, the 

collection of this data has been shown to be possible and prior delay time distributions 

have been estimated in specific cases, see Christer and Waller (1984b), Chilcott and 

Christer (1992), Christer and Desa (1992). The objective data for estimating the delay 

time distribution is based upon observations of times of breakdowns and defect 

detections. This data will aid the estimation of delay time parameters and the testing of 

the fit of the subsequent maintenance model. A maintenance model formulated with a 

substantial subjective input to delay time parameter estimates could not guarantee to 

automatically model the "status quo" characteristics of the system. That is subjective 

data may not imply that which is currently observable. Management interest may be in 

cost, downtime or proportion of defects which arise as failures under a current 

inspection practice. Eitherway, updating procedures are given to force the subjectively 

based model to agree with "status quo" observation. The situation is demonstrated in 

Fig. 1.4, where b(7) is the prior model for the probability a defect arises as a breakdown 

and b,, * is the observed estimate of this probability for the inspection practice, To. This 

updating procedure could be considered as a "model tuning process". We will find in 

Chapter 3 that there is not necessarily a unique option for updating. However, a 

selection criteria is given based on other information, which may be available, over the 

system data collection period. The chapter is substantially based on the paper, Christer 

and Redmond (1992). 
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In Chapter 4, the case of having a censored data sample with which to estimate a delay 

time distribution is discussed. As previously outlined, one situation which could arise 

is that delay times and initiation times of defects may only be readily estimated from 

either breakdown events or when defects are detected at inspections. Another situation 

could be a non-balanced mixture of these two extremes in that we may not be able to 

obtain an estimate of delay time and initiation time for each defect which has arisen 

over a survey period. In the case of censored data, a bias in the estimated distribution 

of delay times or initiation time would exist. This will be established by deriving the 

respective conditional p. d. f of delay time and initiation time associated with defects 

which arise as breakdowns, and those which are detected at inspection. The p. d. fs will 

be derived for both perfect and imperfect inspection policies. An example of the 

unconditional p. d. f and conditional p. d. fs of delay time is given in Fig. 1.5, assuming 

a delay time distribution f(h), defect arrival rate k and inspection period T= 10. A 

maximum likelihood estimation technique and appropriate tests of model fit are then 

recommended to cope with the observational bias introduced. Much of the work of this 

chapter is based on the paper, Christer and Redmond (1990). 

In Chapter 5, a simulation study is undertaken to further investigate and verify the delay 

time models and proposed method of analysis. Simulation programs, written in Pascal, 

have been used to simulate the delay time process given sets of input parameters and 

assumptions. Methods of simulation are shown for the case of perfect inspections and 

instantaneous repair of breakdowns. Then, these assumptions are relaxed to imperfect 

inspection and non-instantaneous breakdown repairs. The output of simulation 

experiments are analyzed and compared to the appropriate theoretical values of the 

models of the earlier chapters. An investigation is undertaken into the accuracy and 

effectiveness of the parameter estimation procedures given in Chapters 3 and 4. 

Correction of bias is carried out on censored simulation data. The effects of not 

correcting for bias but using an updating method, as a further option, is also explored. 

Fig. 1.6 demonstrates the situation when correction of bias has not been undertaken 

compared with the theoretical model and an observed value for the proportion of defects 

arising as breakdowns. An iteration method is developed which alternates between 

updating the scale parameter of a Weibull delay time distribution and only estimating 
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the shape parameter using maximum likelihood. The estimation of delay time 

distribution parameters based upon only observational data (failure times and number 

of defects detected at inspections) is also demonstrated. Results are shown for simulated 
data sets and conclusions drawn. 

In Chapter 6, an account is given on research supported by the Science and Engineering 

Research Council (grant: GR/F 61196) over a three year period. The project was in 

collaboration with members of the Civil Engineering Department at Queen Mary and 

Westfield College, London University. The main objectives were to collect and publish 

data on the observed rates of deterioration of particular defect types in a large number 

of concrete bridges and to develop predictive mathematical models that relate inspection 

frequency to maintenance costs. The delay time model is expanded to an extra phase in 

order to model the deterioration process of cracking and spalling in concrete, see Fig. 

1.7. Costs of repairs are then expected to increase over the cracking and spalling phases. 

Due to the inspection records of components, only intervals containing the times to the 

states are available. A model for the distributions of times within each phase is proposed 

and estimation, via maximum likelihood, is undertaken, given the censored observations. 

Appropriate tests of model fit are carried out using the Kaplan-Meier estimate of the 

reliability function. Single component and multi-component cost models are then 

formulated for a variety of inspection and maintenance options. The motivation for the 

project was in part associated with the prototype modelling paper for inspection practices 

of major concrete structures, Christer (1988). A paper is to be published on this research 

project in the European Journal of Operational Research in 1996. 
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The probability a defect causes a breakdown, b(7) 

4 

b(1? 

Fig. 1.4. The prior model, b(7), compared to the known current practice. 
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Fig. 1.5. The unconditional and conditional p. d. fs of delay time. 
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Fig. 1.6. The effects of not correcting for bias of conditional delay time sets. 
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Fig. 1.7. The deterioration phases of a concrete component. 
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1.5 Discussion 

This chapter has presented an overview of past and current developments in maintenance 

modelling. It is evident that delay time models and other new models are now 

increasingly being applied and tested through case studies. However, there is evidence 

of a deficiency of models for maintenance that takes into account the physical process, 

be it chemical, electrical or mechanical, that leads to a component failure. Geraerds 

(1972) regards the selection of statistical models for component and system failure 

behaviour as a subsection of a complex maintenance model of an organisation, that also 

takes into account such factors as maintenance planning and control, designs of systems, 

inventory problems and the feedback of results. Dekker et al (1995) consider also the 

planning of the maintenance activities for a group of components with different 

estimated optimal policies. It is shown that combining the maintenance activities, by 

delaying or bringing forward planned maintenance for some components with increased 

cost penalty, can reduce overall maintenance costs. This is due to the setup cost being 

shared. Hence, the necessary fusion between mathematical models and organizational 

planning and constraints are evolving in the maintenance field. 

Over the past ten years, delay time modelling has undergone considerable development 

and is increasingly being accepted as an important concept for the real world modelling 

of maintenance of components and systems. There have been models which have 

touched on the concept, for example, Cox (1957, p. 121) introduced a wear model such 

that a component can be defect free or enter a defective state prior to failure. This is 

equivalent to having a finite probability of zero delay time. An inspection model is 

presented to take into account this effect. Cozzoloni (1968) formulates a model whereby 

a system is assumed to have an unknown number of defects after a planned maintenance 

activity with each defect having a delay to cause failure. It is shown that the process of 

breakdowns will be a non-homogeneous Poisson process, as with the delay time system 

model. Butler (1979) classifies a component as functioning, functioning but defective, 

and failed. An inspection is also assumed to possibly increase the chance of failure due 

to the chance of observing a component in the defective state. However, a Markov 

model is formulated, thereby restricting the distribution of u and h to exponential. Lewis 

(1972) suggests an accumulation model whereby defective components which are 
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detectable and do not cause failures, i. e having infinite delay time, are repaired at a 

failure. The expected repair time is then correlated with operating time. Jansen and Van 

der Duyn Schouten (1995) present a model for maintenance optimization of parallel 

production units. In the discussion of extensions to this model, it is assumed that the 

lifetime distribution of a component may be modelled by a convolution of two non- 

identical exponential distributions. The unit is described as 'good' in the first phase and 

'doubtful' in the second phase. The condition can be tested and a decision can then be 

made on whether to overhaul. Hence, the model allows an extra decision option through 

the use of inspections. In addition, the maintenance cost could be further optimized 

when it is decided to take only the doubtful (or defective) units out of production for 

overhaul. 

Statistical methods, testing and policy formulations are evidently being developed and 

formalised for the delay time model with the growing experience through applications. 

It is important that statistical tests are carried out in confirming all postulated 

assumptions, e. g the renewal assumption of a perfect inspection. A method to identify 

the optimal and feasible policy type (e. g periodic or age-based inspections) for a 

component or system also needs to be addressed. The following chapters of the thesis 

develop the theory of the delay time model, formalise statistical methods for revising, 

estimating and testing modelling parameters and apply the model to the deterioration of 

concrete structures. 
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Chapter 2 

Delay Time Models for Maintenance of a 
Repairable System 

2.1 Introduction 

In this chapter, the type of repairable system under study and the delay time concept 

used to model maintenance will be defined. A non-homogeneous (or time-dependent) 

Poisson process model is used to describe the arrival process of breakdowns. The 

downtime and cost consequence due to a purely failure based maintenance policy are 

then modelled and discussed. 

The effects of inspecting the system over time are considered. Models for downtime and 

cost are derived for a periodic based inspection policy. Initially, inspection will be 

assumed perfect and this requirement is then relaxed to include the case of imperfect 

inspections. Extensions to these models will be developed. Conditions involving the 

modelling parameters are derived for the existence and uniqueness of an optimal 

inspection based policy. Numerical examples will be provided. An alternative inspection 

policy based on inspecting a system after a specific period of use (or operation) will also 

be discussed. 

Finally, conclusions are dawn and suggestions are given for further areas of research. 

2.2 Delay Time Concept for a Repairable System 

The repairable system under study can be a simple or complex electrical or mechanical 

plant where the objective is to model the cost or downtime consequences for various 

maintenance policies available to the engineer. The following assumptions are assumed 
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to characterise the system being modelled: 

(a) The system is modelled as a two state system where, over its service life, it can 

be eith°r operating acceptably or down for necessary repair or planned 

maintenance. 

(b) The system is comprised of many component parts or sections which are prone 

to become defective independently of each other when the system is operating. 

(c) Defects which may have arisen in the system, deteriorate over an operating time. 

The deterioration may be due to operating conditions, such as vibration or 

environmental effects. However, the system can remain functioning in an 

acceptable manner until breakdown. 

(d) The breakdown will be assumed to have been caused by one of the defects which 

has deteriorated sufficiently to affect the operating performance of the system as 

a whole (essentially a series type configuration of independent component parts. ) 

Failure is assumed evident to the user and corrective maintenance is essential. 

Hence, the system would then cease operating due to the failed component. Once 

the failed component has been replaced or restored to a 'statistically new' 

condition, the system is assumed to be able to return to the operating state. 

However, other defective components can still be present if only corrective repair 

of the failed component is carried out. 

The concept used to model the system described is delay time analysis, conceived by 

Christer (1973) and introduced into the context of building maintenance by Christer 

(1982) and then to industrial maintenance by Christer and Waller (1984b). A defective 

component is assumed to become defective at a point in time, u say, when the system 

is operating such that it is detectable by current inspection procedures. This epoch will 

be called the initiation time for the defect and a similar process applies to all other 

defects. The arrival process of defects in the system will be a superposition of u values 

across all the components. Due to a large number of component parts in the system, the 

superposition of defect arrivals in the system, u, will be assumed to be approximated by 
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a Poisson process in the homogeneous (HPP) or non-homogeneous (NHPP) form, 

unaffected by breakdown repairs over time. 

Initiation Time, u Delay Time, h 

0u 

LU+h 

Up time 

New Defect First Breakdown 
Component Detectable 

Fig. 2.1. The initiation time and delay time of a defect. 

The delay time, h, of a defective component is the interval of operating time from the 

initiation time, it, to the point at which the defective component will cause a breakdown 

(or failure), at time t -= it + h, see Fig. 2. I. Over the delay time period (u, u+ h), it is 

possible that the defective component in question can be repaired or replaced at a 

planned inspection thus preventing breakdown and consequences associated with it. The 

delay time of a component will be assumed random and independent of the initiation 

time. In general, components which are non-identical or not subjected to similar 

operating conditions would have delay times which are not identically distributed. 

However, it will be assumed that each random defect arrival, at time it, in the 

superposition process of defect arrivals across all components, will have a delay time, 

h, acceptably modelled as being identically distributed and independent of it. 

The above assumptions are characteristic of those which have been successfully used in 

modelling inspection policies for building and industrial maintenance, see Christer and 

Waller (1982,1984b), Chilcott and Christer (1991), Christer and Wang (1992), Baker 

and Nang (1992,1993), Christer and Wang (1)95), Christer et al (1995). 
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2.3 Type of Maintenance Activities 

We, here, introduce the various types of maintenance activities that can be carried out 

on the system. Gits (1986) defines a set of maintenance activity options to be considered 
in the design stage of a maintenance concept. Three main types will be investigated 

a) Breakdown repair, a procedure to repair only the defective component which 

caused failure. 

b) Inspection, an observation process or intervention where defects could be located 

and consequently repaired thus preventing breakdowns (if repairs are perfect). 

Inspection is then classed as a preventive maintenance activity. 

c) Overhaul or replacement, a maintenance process where the whole system is 

assumed to return to a statistically 'as new' condition. 

Inspections or overhauls are planned and can be carried out at planned points in time 

(e. g periodically), or could be initiated at breakdowns (ist or 2nd etc. ) The type of 

policy for a particular system in question would depend on the failure characteristics of 

the system, such as defect rate and delay time distribution, for example, as well as the 

objectives of maintenance. We shall see, for example, that as may be expected, the 

quality of inspections and the cost and downtime levels of inspections and breakdown 

repairs contribute to determining the appropriate maintenance policy. 

2.4 Failure Based Maintenance (FBM) 

The models formulated in this section describe the process of occurrence of breakdowns 

and so provide a conceptual framework for when inspection models are considered. Our 

task is to derive models of repair, downtime and cost over time when performing 

corrective repair to components which cause breakdowns. It is assumed that breakdowns 

are dealt with by only repairing the defective component, that is FBM. The situation is 

demonstrated in Fig. 2.2, where it is assumed, at first, that breakdowns are 
instantaneously repaired. The following presents the set of initial assumptions concerning 

modelling parameters for the first technical system under study, and are based upon the 

previous section: 
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(a) At time 0, the system is in a new or 'as new' state, that is defect free. 

(b) Defects arise within the system, independently, as a homogenous Poisson 

process (HPP) with rate parameter k, over time. 

(c) Delay times, h, are independent of arrival time it and are described 

by the probability density function (p. d. f), f(h) say, with finite mean p. 

(d) Those defects which cause breakdowns over time are repaired with 

negligible time at failure. 

(e) A breakdown has a repair cost, which is independent of the defect arrival 

time, the delay time and the repair time. The repair cost is assumed to 

have a mean cb. 

It is also convenient, here, to define F(h) as the cumulative distribution function (c. d. f) 

of delay time h. 

Defect arrivals ' 

Breakdowns * 

0 (System New) Time, t 

Fig. 2.2. An example of the breakdown arrival process. 

2.4.1 Number of Breakdowns arising over Time 

If we define t to be a time scale in units of time since the system was in the new or 'as 

new' state, then breakdowns would arise as a stochastic point process along the t axis. 

The failure arrival pattern is a superposition of failure arrivals across all the components 
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within the system. It is clear that over an indefinite period of time and in the absence 

of inspection based maintenance, each defect can be expected to cause a breakdown 

event. 

The process of breakdown arrivals can be described by defining, B, say, to be the 

cumulative number of breakdowns after operating the system for time t and define 

B(t) = E(B), the expected number of breakdowns in (0, t). To derive, B(t), we observe 

that a defect arising in an interval (u, it + du), for u<t, where du is small, will cause 

a breakdown in interval (0, t) if its delay time h<t, it, see again Fig. 2.1. The 

probability that h<t-u is F(t - u). Clearly, the expected number of defects to arrive 

in (u, u+ du) is kdu, due to HPP defect arrivals. Hence the expected number of 

breakdowns caused by defects arriving in (u, it + du) is, 

F(t - u)kdu . 
(2.1) 

The expected number of breakdowns, B(t), can then be obtained by integrating over all 

possible it < t. Hence, 

rr 

B(t) =kf F(t - u) du =kf F(h) dh (2.2) 
u=0 h-0 

which is given in Christer and Waller (1984a). As expected, B(t) is a monotonically 

increasing function, with its differential being kF(t) when F(t) is differentiable. 

Considering the integrand as a product of I and F(h), the expression for B(t) can be 

integrated by parts and re-written, 

B(t) =k tF(t) - 

r 
fhfth)A 

, 
h=0 

(2.3) 

which can be seen to tend to the line k(t - µ) as t tends to infinity, where µ is the mean 

delay time. This suggests that a property of the model is that breakdown occurrences 

arise asymptotically as a HPP when defects arrivals arise as a HPP independently of the 

delay time distribution. It may be necessary and intuitive to obtain the distribution of 
B,. An analogy of the stochastic process, B1, arises in queuing theory. The process is an 

example of an M/G/oo queue, see Ross (1983) or Medhi (1983, p. 321). In this situation 

customers arrive according to. a Poisson process and each one is immediately served 
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with a commonly distributed service time. Customers are analogous to defect arrivals 

and the service time is analogous to the delay time. A breakdown is analogous to a 

completed service for a customer. Ross (1983) shows that the arrival process of 

completed services is a non-homogeneous Poisson process (NHPP), see also Parzen 

(1962, p. 125). Hence, Bt is Poisson distributed with mean B(t), i. e, 

p{Br = n} = 
B(t)ne-acn 

n! 
(2.4) 

Hence, for example, the reliability of the system can be determined, that is C"I", the 

probability no failures arise in interval (0, t). The NHPP requires a time-dependent rate 

function, say r(t), such that r(t)dt represents the expected number of breakdowns in 

interval (t, t+ dt). The function r(t) has been called arrival intensity, see Parzen 

(1962, p. 125), or rate of occurrence of failures (ROCOF), see Ascher and Feingold 

(1984, p. 4). For this process, r(t) is given directly by equation (2.2) as, 

r(t) =B '(t) = kF(t) 
, 

(2.5) 

which can be seen to be a multiple k of the delay time c. d. f. As t -4 oo, we have from 

equation (2.5) that the rate of arrival of breakdowns tends to the defect arrival rate, k. 

Hence for this system the breakdown process tends asymptotically to an HPP, identical 

to the process of defect arrivals, that is the system performance would tend to a limit. 

It follows that in the limit the inter-arrival time between breakdowns would tend to the 

exponential distribution of mean 1/k, which will prove to be an important property in 

asymptotic considerations of cost and downtime. Properties of the inter-arrival times of 

breakdowns for a general NHPP, can be found in Parzen (1962, p. 138). 

2.4.2 Modelling Cost 

The repair cost of a breakdown can include factors such as manpower, materials, lost 

production and environmental damage. Independence is assumed between the number 

of breakdowns occurring in time t and the cost of each repair, with an a°sumed mean 

cost per repair of Cb. Letting, c,, say, be the repair cost of the n'th failure, then the 

cumulative repair cost, say C, is given by, 
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B' 
(2.6) B cn for Bt >_ 1 Cr = 

n=1 
0 for B1 =0 

which is a cumulative Poisson process when the repair costs, c, are independent and 

identically distributed, see Cox (1957). Defining C(t) as the total expected cost after 

operating the system for time t we have, 

C(t) = E(C) = cbB(t) , 
(2.7) 

which is given in Christer and Waller (1984a), though derived slightly differently there. 

The expected asymptotic repair cost per unit time over all time, c� say, is then given by, 

c� = lim Cýtý 
= kcb 

t--_ t 
(2.8) 

This is an expected result, since k defects are expected to arrive in unit time, each with 

an expected subsequent repair cost, cb, incurred when the defect ultimately causes a 

breakdown. 

0 2.4.3 Modelling Downtime 

Here we relax assumption (d) so that repair times are finite and our interest is in 

modelling the effects of downtime. It will be assumed that each breakdown is repaired 

with a repair time independent of each other, and with an identically distributed repair 

time with mean, db say. The situation is depicted in Fig. 2.3. When the system is in the 

down state, it will be assumed that new defects do not arise within a breakdown repair 

time and that other defects are effectively frozen, that is deterioration (i. e the expiry of 
delay time) does not take place for other defects which may be present in the system at 

the time of failure. When db is small, the repair downtime can be thought of as being 

a repair cost, that is cost is measured in units of downtime. Hence, the expected 

cumulative downtime over real time t can be approximated by; D(t) say, given by, 

D(t) = dbB(t) 
, 

(2.9) 
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Defect arrivals ' 

Breakdowns * 

Up time 
* 

0 (System New) Downtime 

Fig. 2.3. An example of breakdown arrivals with repair times. 

and the approximate downtime per unit time, d., over an indefinite time period is given 

by, 

d� = kdb . 
(2.10) 

It is evident that the condition, k. db <_ 1, needs to be satisfied in the absence of 
inspection intervention because the expected downtime per unit time must lie in the 

interval (0,1). 

For a system with parameters such that k. db> 1, or when db is not small, the appropriate 

theoretical stochastic model for expected cumulative downtime would need to be 

derived. This is outlined in the appendix. Chillcot and Christer (1991) propose ý. n 

iteration method to model the expected downtime per unit time when db is not small. 

However, for the case of FBM over an infinite time horizon, the theoretical expected 

downtime per unit time, d,,, and cost per unit time, c,,, can be easily derived. 

For the case where we are interested in modelling downtime, d� will essentially be the 

long term proportion of time the system is in the down state. In Section 2.4.1, it has 

been stated that the time between breakdowns, when breakdowns are instantaneously 
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repaired, tend to the exponential distribution, mean 1/k. When a period of downtime 

occurs, the stochastic process of breakdown arrivals effectively stops for the duration. 

Hence, the operating time between breakdowns would tend to the exponential 

distribution in the long term. We assume here that repair times are independent and 

identically distributed, with mean db. Hence in the long term, the FBM process can be 

thought of as being an alternating renewal process of up and downtimes, see Cox 

(1957, p. 8O). The long term proportion of time spent in the down state, d,,, is then given 

by, 

d= E(downtime) kdb (2.11) 
1 +kdb E(uptime) + E(downtime) 

which, as required, lies in the interval (0,1) for any positive values of k and db. The 

result is also given in Smith (1985, p. 27) for systems which have exponential time 

between failure and arbitrary downtime distribution. It is worth noting that d� is 

independent of the delay time distribution or parameters from it. However, the speed at 

which the limit is achieved will depend upon the delay time distribution form. Also, it 

can be seen that the approximate model needs the condition that kdb is small compared 

to unity. 

In the long term, performing FBM, the up-down cycle length, that is the uptime before 

repair plus downtime of repair, has the expected value 1/k + db. An expected cost, cb, 

would be incurred over this interval. Therefore, the theoretical asymptotic cost per unit 

time, c., can be derived by considering the process as a renewal reward process. The 

value c� is then the ratio of expected cost for one repair, cb, to the expected cycle length 

Ilk + 'b, giving, 

kc 
c� =b (2.12) 

1+ kdb 

2.4.4 Non-Homogeneous Defect Arrivals 

We can extend the model to a more general technical system where defects may arrive 

as a NHPP, with properties given in Section 1.3.1. The NHPP requires a rate function 

g(u) such that g(u)du represents the expected number of defects arriving in the small 



45 

interval (it, it + du), when the system has been operating for time it, see Christer and 

Waller (1984a), Christer and Wang (1995). Hence, following the analysis in Section 2.3, 

the expected number of breakdowns, B(t), will take on the convoluted form, 

I 

B(t) =f g(u) F(t -u) du 
14 =0 

(2.13) 

given in Christer and Waller (1984a). The occurrence of failures, once again, will be 

NHPP due to the underlying process of defect arrivals and the independence between 

delay times and defect arrivals, see Ross (1983). The ROCOF is given by, 

I 

r(t) =B '(t) = 
fg(x)f(t 

- x)dx (2.14) 

x=o 

The number of breakdowns, B1, to arrive in operating time t, is Poisson distributed, with 

mean B(t), due to breakdown arrivals arising as an NHPP. The models for cumulative 

expected downtime and cost, derived in the chapter, will have identical forms for NHPP 

defect arrivals, but using the revised B(t), given above. However, the asymptotic 

behaviour of breakdown occurrences and consequent downtime and cost per unit time, 

will depend on the defect arrival rate g(u) and delay time p. d. f }(h). 

Many of the breakdown maintenance models presented above, or their variants will be 

used in the subsequent sections and chapters on inspection modelling. These models are 

not management models in the sense that they have no decision variable to control the 

failure pattern of the system. What the models do provide is estimates and forecasts of 

the stochastic consequence of a particular practice, which has value to management. It 

has been shown that modelling the failure characteristics of a repairable system can be 

achieved using the technique of delay time. Our objective, next, is to model the 

consequences of the inspection option, that is build a management model. 

2.5 Periodic Based Inspection (PBI) 

In this section, it is proposed to construct models assuming a policy of inspection on a 
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periodical basis. The models will aim to predict cost and downtime consequences for 

alternative inspection periods. Inspection will at first be considered perfect and then 

relaxed to include the case of imperfect inspections. 

A perfect inspection is a planned maintenance stoppage of the system whereby all 

defective components present in the system are located and corrected to a statistically 

'as new' condition within the time allocated for inspection. The time constraint is 

imposed initially for simplifying convenience and will later be relaxed. It will be 

assumed that a perfect inspection returns the entire system to a 'statistically-as-new' 

condition, i. e it is analogous to a renewal, replacement or overhaul. An inspection is also 

assumed not to generate any defects. The following additional assumptions to the FBM 

set will be applied, see Christer and Waller (1984a): 

(a) There is a constant time T between successive inspections irrespective of 

the cumulative breakdown repair time within each inspection interval (i. e 

T will not always be the operating time between inspections). 

(b) Breakdowns impose a small amount of downtime compared to the 

inspection period T, with expected value db, db « T. 

(c) The downtime required for each inspection is a constant d1. 

(d) The expected cost of an inspection is c1. 

(e) The expected cost of a repair to a defective component at an 
inspection is cd (< cb, the expected cost of a breakdown). 

(f) If the system is down for breakdown repair, and is due for inspection, the 

component which has caused the breakdown has the repair completed 

within the time allocated for inspection, di. 

The effect of inspection is shown by example in Fig. 2.4, where it is evident that perfect 

inspections reduce the number of breakdowns. However, over frequent inspections will 

incur an increased downtime and cost penalty. Hence, a compromise needs to be sought 

to identify the most appropriate inspection interval. The assumptions of the model were 

influenced by the research at a canning line plant, Christer and Waller (1984b), whereby 

daily inspections were planned, breakdowns were repaired within the inspection period 

and defective components were rectified at inspections. Management adopted the 

predicted optimum policy which was interestingly close to the current inspection 

practce. 
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Defect arrivals ' 

Breakdowns * 

Perfect inspections 

ýý Up time 

0 (System New) 
ý Li r-I 

Downtime 

Fig. 2.4. The reduction of the number of breakdowns due to perfect inspections. 

2.5.1 The Probability a Defect causes a Breakdown 

Under the inspection policy proposed, it is clear that defects which arise will be either 

identified at inspections or cause breakdowns. Defects are assumed to arise 

independently of each other. Hence, we can define a probability, b(T) say, that a defect 

will cause a breakdown given a defect has arisen in an inspection interval (0,7), see 

Christer and Waller (1984a). This is a basic function in inspection modelling. Defects 

arriving as an HPP will be considered first. 

In the case of instantaneous repairs {db = 0}, the probability, b(7), can be calculated by 

the ratio of the expected number of breakdowns, B(7), to the expected number of 

defects, kT, in time T. Hence, 

T 

b(T) IF(x)dx 
. 

(2.15) 
x=0 

As F(x) <_ F(T) for x<T, it can be seen that b(T) S F(T). The probability, b(T), can 

more formally be obtained by considering the initiation time, u, given only one defect 
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has arisen in (0, T). The distribution of it will be uniform over interval (0,7), due to 

HPP defect arrivals. If the defect has a delay time in the small interval (h, h+ (1h), an 

event occurring with probability f(h)dh, then it would cause a breakdown if the 

initiation time satisfies it <T-h, which has probability (T - h)/T. Hence, combining 

these probabilities and summing over all possible it, we have, 

T 

b(7) _ 
1(T 

- h)f(h)dh (2.16) 
h=0 

which was originally formulated in Christer and Waller (1984a). The functions (2.15) 

and (2.16) provide approximations for the probability a defect leads to a breakdown, 

when db >0 and db « T, and can be shown to be equivalent by integrating equation 

(2.16) by parts. The function is an approximation due to the stochastic accumulation of 

breakdown repair time over each interval (0,7). The characteristic shape of the function 

b(T) is shown in Fig. 2.5. It can be seen to increase from zero, monotonically, to 1 when 

T tends to infinity, as expected. Due to F(0) =0 and b(T) 
_< 

F(T), then b(7) -4 0 when 

T -4 0. Essentially, the T=0 implies that defects are immediately detected when arisen 

and subsequently repaired, which implies no failure occurrences and so b(0) = 0. The 

policy of FBM described in Section 2.4 is equivalent to T= oo. The differential of b(T) 

is given by, 

T 

b'(7) _Lf {F-(T) - F(x)) dx 
X--o 

which is non-negative, implying the function is non-decreasing. 

2.5.2 Modelling Downtime 

The total expected downtime incurred over time interval (0, T) can be approximated by 

the function (2.9), if assumption (b) holds, namely db « T, and the expected number of 

breakdowns B(T) is small. These conditions are required due to the random loss of 

operating time over each inspection interval. Due to inspections being perfect and the 

cycle length constant at T+ d1, we have that the approximate expected downtime per 

unit, d(T), over each cycle (0, T+ d), is given by, 
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Probability a defect leads to a breakdown, b(7) 

1 

Fig. 2.5. The probability, b(T), a defect arises as a breakdown. 

d(T) = 
D(T) + di dbB(T) + (11 kTdbb(T) + dI 

(2.18) 
T+d1 T+d1 T+d1 

which was originally formulated in Christer and Waller (1984a). The asymptotic value 

of function (2.18), as T -4 oo, can be seen to be kdb since b(T) tends to unity. In 

comparing this value with the limit for the actual asymptotic downtime per unit time 

(2.11), it can be seen that an additional condition for this model to be asymptotically 

valid is that kdb should be small so that the value k. d)(1 + k. db) is close to kdb. If the 

condition is not satisfied then the optimal inspection period may be in error and either 

the stochastic model of downtime, given in the appendix, or the downtime model for an 

alternative inspection policy (Section 2.6) would need to be derived. 

The value of T which minimizes the objective function (2.18) can be found graphically, 

or by numerical search or when analytically valid by differentiating with respect to the 

decision variable T and setting the result to zero to obtain the equation, 

T 

di F(T) + 
fhfth)dh 

- 
d' 

=0 (2.19) 

h=o kdb 

0 Inspection Period, T 
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The differential of the L. H. S of equation (2.19) is (T + (I1)f(T), which is positive for 

T>0 and f(T) > 0. Hence, it follows that the L. H. S is a monotonically increasing 

function. Thus, a finite solution r, if it exists, will be unique if f(T) > 0. 

Inspection will not always be an optimal choice and a finite solution to equation (2.19) 

will not always arise since its existence is dependent on the selected parameters. The 

function on the L. H. S of equation (2.19) is negative at T=0. Hence, for a solution, T", 

to this equation, a necessary and sufficient condition for a unique solution is that the 

L. H. S must be positive as T --- oo. It then follows that for a finite solution to equation 

(2.19) to exist the following condition must hold, 

Il+ dI 1- 1>0 (2.20) 
kdb 

If this condition is not satisfied by the estimated parameters, then FBM or another form 

of planned maintenance scheme will provide the lowest expected downtime per unit time 

for the system in question. When considering PBI, d(T) would be a monotonically 

decreasing function with a limit of k. db as T -) °°. If condition (2.20) is satisfied then 

the solution inspection interval, 7', obtained from equation (2.19) is the recommendation 

for optimizing downtime assuming a policy of inspection on a regular periodical basis. 

2.5.3 Modelling Cost 

We now turn our attention to the task of modelling cost under the assumptions given in 

Section 2.5. In order to model costs either cumulative or on an expected time basis, we 

need to calculate the expected number of defects which can be located and repaired at 

each inspection. Denote AT as being the number of defect arrivals in (0,7) and ST as the 

number of defects in the system, which have arisen but not yet caused a breakdown, and 

therefore identified by perfect inspection at time T. Also let BT be the number of 

breakdowns in each inspection interval. Therefore, as each defect would either be in the 

system or have caused a breakdown, 

AT=B,. + ST E(AT) = E(BT) + E(ST) (2.21) 

Due to HPP defect arrivals, the expected number of defects to arrive in time T, 
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E(AT) = U. Thus the mean number of defects in the system at time T since last 

inspection, S(7) = E(ST) say, is given by, 

S(T) = kT - B(T) = kT(1 - b(n) =k 
f(1 

- F(x))dx 

. rte 

(2.22) 

which, using expression (2.3), tends to the product of the defect arrival rate and the 

delay time mean, kµ, as T increases, . This is analogous to the immigration-death 

population model (or MIM/- queue) where k is the immigration rate and 1/µ is the death 

rate, see Cox and Miller (1965, p. 168). The limit, kµ, is the expected size of the 

population (in this case defects) as T increases to infinity. The limit is also the expected 

number of defects to be found on first inspection when switching from a contingency 

breakdown policy, i. e FBM, to a perfect inspection policy, shown in Christer (1982). 

Medhi (1982, p. 321) shows that in the related queuing situation, ST is Poisson distributed 

with mean given by equation (2.22) when breakdown repair times are negligible. Ross 

(1983) shows that ST and B,. are independent. These properties will aid in model 

parameter estimating and testing the fit of the model. 

The expected total cost for breakdowns, C(T) = cbB(T), would here apply over each 

inspection cycle, T+ d1. The expected cost of repairs carried out at inspections is cdS(T) 

where as before S(T) is the expected number of defects detected at T. It is assumed that 

the cost of an inspection is c,. Hence, if we define c(T) to be the expected cost per unit 

time over each cycle, (0, T+ d), then for the case of effectively instantaneous repairs, 

C(T) = T+d1 
(2.23) 

Clearly, the model c(T), (2.23), would serve as an approximation for the case of non- 

instantaneous repairs, provided assumptions (b) and (f) hold, namely db> 0 and db « T. 

The approximation improves as the approximate downtime of breakdown repairs per unit 

time over interval (0,7), namely dbB(T)/T, decreases. 

The asymptotic value of function (2.23), that is kcb, can be found in the FBM case by 

ý[ + CbB(`) + CdS(T) 

noting that B(T)IT tends to k and S(T)IT tends to 0, as T -4 °°. In order to investigate 
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conditions for a unique finite optimal solution, the value of T, if it exists, which 

minimizes this function can be found by differentiating, simplifying and setting to zero 

the equation, 

T 

d1F(T) + 
Jhf(h)dh 

- 
(c1 - cdkdi) 

=0. (2.24) 

ham) 
k(cb Cd) 

The differential of the L. H. S of equation (2.24) is d j(7) + Tf T), implying the function 

is monotonically increasing , and that an optimum inspection period will be unique. 

C(T) 

c Id 

IGCb 

0 

Fig. 2.6. The expected cost per unit time, c(7), against T. 

A similar shape of curve to the downtime model is seen to exist for the c(T) model, see 
Fig. 2.6. In comparing equation (2.24) with equation (2.19), we see they differ only in 

the constant term. Hence, a unique solution to equation (2.24) exists if the L. H. S is 

negative at T=0 and positive at T= °°. At T=0, we evidently require, 

cI - kcA >0, (2.25) 

since we expect cb > Cd. The necessary condition as T --* co implies, 

0 Optimal region Inspection period, T 
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+ 
(ci - kcddi) 

>0 (2.26) 
k(cb - Cd) 

2.5.4 Perfect Inspection Models with Non-Homogeneous Defect Arrivals 

Here, we now relax the HPP assumption of constant rate defect arrivals and let g(u) be 

the instantaneous rate of defect arrivals at time it from the 'as new' condition. The 

defects are assumed arise in time as a non-homogeneous Poisson process (NHPP). 

Therefore the total expected number, K(7) say, of defects to arrive in interval (0,7) is 

given by, 

T 

K(T) = 
fg(u)du 

u-0 

(2.27) 

The arrival time, u, assumed for a random defect, given to arise over interval (0,7) has 

the p. d. f, q(u; T) say, given by, 

- 
g(II) 9(u; T) = K(ý 

for 0<u<T, (2.28) 

which is a relationship shown by Ascher and Feingold (1984, p. 32), and given in 

Christer and Redmond (1990). Essentially, if, B say, failures have been observed in time 

interval (0, T), then the B ordered breakdown arrival times, y1, y2, ..., YB say, are the 

order statistics of a sample, size B, taken from the p. d. f (2.28). 

In this case, the probability that a defect arises as a failure now takes on the form, 

T 

b(7) = 
5q(u; F(T - u) dcc 

U --o 

T 

= 
5Q(T-h; T)ith)dh 

A=0 

(2.29) 

where Q(u; T) = K(u)/K(T) is the c. d. f of u. The form of the models for downtime and 

cost have identical structures (2.18) and (2.23) respectively, but now having 

B(T)=K(T)b(7) and S(7) = K(7) - B(7) = K(7)(1 - b(T)), given in Christer and Waller 

(1984a). Due to Q(u; 7) :51, it can be seen that b(7)., 5 F(T) for the case of NHPP defect 

arrivals as well as HPP defect arrivals. It is noted that in the special case of HPP when 
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y(u, T) is uniformly distributed over (0, T), equation (2.29) reduces to equation (2.16) 

as required. 

2.5.5 Imperfect Inspection Models with Homogeneous Defect Arrivals 

It is common that inspections may not reveal all defects present in a system, especially 

for large complex systems. The quality of inspections depend on inspection practices 
imposed includes inspection techniques used, inspection training and the nature of any 

supervision. A method to model imperfect inspections is to allow a probability ß for 

each defect present at an inspection to be detected. Under assumptions given in Section 

2.5, Christer and Waller (1984a) have shown that, b(T; (3), the probability that a defect 

(generated by a HPP) arises as a breakdown, is given by, 

T eO 

b(T; (3) =1-! 
f (3(1 

u=0 nI 
- (3)" -1(1 - F(n T- u)) du . 

(2.30) 

The probability is calculated under the assumption that an indefinite number of 

inspections will be carried out so that a defect will eventually either arise as either a 

breakdown or be identified and repaired at inspection. Since the other aspects of the 

model (2.23) are otherwise the same, the function can be used in the downtime and cost 

models previously derived. 

The function, b(T; ß) was derived by considering a single defect assumed to arrive in 

interval (u, u+ du) over an inspection interval (0,7), an event with probability du/T. 

The probability that the defect will be detected on the n'th inspection after defect arrival 

is equal to ß(1 - ß)" " II 1- F(nT - u)), i. e the event that delay time h> nT - it, 

the defect is detected on n'th inspection and not detected on n-1 previous inspections. 

Then, to form b(T; ß), the two probabilities above are formed for general n, summed 

over all possible values of n, and integrated over all possible ue (0, T) and the 

complement taken. 

Clearly as expected, the function, b(T; 1) monotonically increases from 0 to 1 as T 

increases from 0 to °°, in the case of perfect inspections. For a given inspection period 
T, b(T; ß) would intuitively decrease from I 

., 
to b(T; 1) as 1 increases from 0 to 1. 
1I , 
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However, this property cannot easily be extracted simply by partially differentiating 

function (2.30) w. r. t P. 

It is possible to estimate the expected downtime and cost per unit time over a finite time 

period from the 'statistically-as-new' condition. This can be achieved by deriving the 

expected number of breakdo%k ns, B, (T) say, arriving in the n'th inspection interval from 

new, and the expected number of defects detected at the n'th inspection, Sn(T) say. As 

will be seen, the probability b(T; (3) can also be derived from the function BS(T) by 

letting n -- oo. The property that the partial differential of b(T; ß) w. r. t (3 is negative can 

also be shown. The functions B�(T) and SS(T) would also prove to be valuable in the 

estimation of modelling parameters. 

C 

Failure 

Fig. 2.7. An example of a breakdown occurrence under imperfect inspections. 

It is clear that B, (T) = B(T), the expected number of breakdowns in the interval (0,7) 

from new, function (2.2), and that S, (7) _ 13S(7 ), where S(T) is given by function (2.22). 

For the second interval, a failure can arise from either a defect arisen in the first interval 

or a defect arisen in the second interval, see Fig. 2.7. The expected number of 

breakdowns arising from defects which arrive in the second interval is again B1(7), and 

the expected number of defects detected at the inspection is PS1(7) from such defect 

arrivals. For a defect which arises in the first interval say at time it, we require its delay 
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9 

time, h, in interval (T - it, 2T - u) and to be not detected at T, in order to cause a 

breakdown in the second inspection interval (T. 27). The probability of this event is 

(t - ß) { F(2T - u) - F(T - u) } and the expected number of defect arrivals in (u, it + du) 

is kdu. Therefore integrating the combined probability for all it <T and adding B(T) for 

the expected number of breakdowns arising from defect arrivals in the second interval, 

it follows that, using expression (2.2) for B(T). B, (T) is `ºiven by. 

T 

B2(T) = B(T) + k(l -ß) 
5F(2T-u)_F(T-u)ilti 

I, _0 
(2.31) 

2T 

=k (1 - (3)ý-ý fF(IT 

'=ý «=o 
- u) - F((i -l )T - u)}du , 

where F(h) =0 for h<0. To formulate B�(T), the expected number of defects 

breakdowns arriving in the n'th inspection interval due to defects arisen in the interval 

(0, nT), we notice that the expected number of breakdowns in the n'th interval attributed 

to defects arriving in inspection intervals other than the first is B�_, (T). Therefore, for 

a defect arising in the first interval at time it we require its delay time, h, to be interval 

(nT - it, [n -l IT - u) and not to be detected at n-1 inspections to cause a failure in 

the n'th inspection interval. Using previous analysis, it follows that B�(T) is given by, 

T 

B(7) = B�-1(T) + k(1-(3)"-' J(nT-u) 
-F((n -1 )T-u)}du 

�-o 

nT 

= kE (1-ß)'-I f (F(iT-ui)-F((i-1)T-u))dci (2.32) 
'_I u=o 

n-I TT 

=k ßE (1-ß)'-' f F(iT-u)du + (1 -(3)"-' 
f F(nT-u)dii 

ýýý 
! 1=0 

by expanding. It can be seen from the last formulation, that as n -* 00 and using the 

geometric result that E(I - (3)n -_ I/(3, then B�(7)/kT --* b(T; ß), function (2.30), as 

expected. Hence, using the second expression of equation (2.32), as another alternative 
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form for b(T; ß), it can be verified that, 

B_(f ab(T; ß) 
<0 (2.33) b(T; ß) _ kT aß 

This again is as expected, and indicates that the more perfect an inspection, the less 

chance that a defect arrival will cause a breakdown. 

Next, consider the derivation of S�(T). Given a defect arrives at time it in the first 

inspection interval, then it would be detected on the n'th inspection if its delay time 

satisfies h> nT - u, it is not detected at the n-1 previous inspections and it is detected 

on the n'th inspection. The probability of this event is ß(1 - (3)" -' {1- F(nT - u) }. 

Following the analysis for breakdown arrivals, we have, 

T 

S^(7) = S^-1(7) +kß (1f{1-F(nT-u)}du 
14.0 

(2.34) 
nT 

= kßE (1-(3)' fn 
-F(iT-u)}du . 

'a1 14=0 

It can be seen that, as expected, the limit of S, (T)/kT, as n -> oo, equals 1- b(T; ß), the 

asymptotic probability that a defect is detected at an inspection. Having derived these 

models, we are in a position to formulate models of cost or downtime over a finite time 

horizon when 1#1. E. g, the expected cost per unit time, say c(T, na), over the time 

interval for ºn inspections of interval T and inspection downtime d1, is given by, 

c(T, m) = 

m 

I11C1 +E {CbBf(T) + CAP)} (2.35) 
n-I 

in (T + d1) 

If interest was in reducing cost of a new system over a planned finite service time, say 

P, then the option exists to optimize over values for in such that P= rn(T + d). 

2.6 Use Based Inspection (UBI) 

This type of policy can provide models for downtime and cost, which may give lower 
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expected downtime and cost per unit time than performing PBI. It is a policy 

whereby inspection is undertaken after a prescribed amount of operating time, t say, has 

elapsed, i. e t is the decision variable. The number of breakdowns arising before each 

inspection can vary in number as in the case of PBI. The assumption, db « t, can also 

be relaxed so that models of downtime and cost will be stochastic. For example, UBI 

could be applied to vehicles where the mileage is being recorded. 

Consider a model for downtime when inspections are perfect. If the inspections are 

carried out indefinitely, the total real time between two consecutive inspections, T, will 

be a random variable, i. e T=t+D. where D1, is the cumulative breakdown repair 

completion time since last inspection when the system has operated for a total time t. 

The theoretical expectation of 9, , E(D) = d, B(t). If inspections take a constant time d, 

to perform, then the expected downtime per unit time, d(t), over an infinite time horizon 

for the case of perfect inspections, would be given by, 

d(t) = 
dbB(t) + d1 

(2.36) 
t +. dbB(t) + di 

The asymptotic value is kdb/(1 + kdb) as t -4 °°, which is the same value (2.11) as 

obtained in Section 2.6 for the HPP defect arrival case. This confirms the theoretical 

asymptotic expected downtime per unit time expression for the FBM policy. 

In comparing this model with the PBI model (2.18), it is noted that the denominator in 

the expression (2.36) is larger. Therefore this model will lie beneath the periodic perfect 

inspection model when plotted on the same axes. Hence, it follows that if an optimal 

solution exists for expression (2.36), then it would be associated with a lower expected 

downtime per unit time consequence compared with the optimal solution obtained in the 

periodic case. However it must be remembered that the PBI model is under the 

assumption, db « T, in which case, providing the inequality is valid, the difference in 

downtime per unit time may only be slight. 

Turning our attention to cost consequences of the UBI policy, the expected cost per unit 

time model measured over an infinite time horizon, would take on the form, 

where, as before, S(t) = kt - B(t), the expected number of defects to be found at 

inspection after operating time t. In the case of HPP defect arrivals, the asymptotic value 
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C(t) _ 
Cl +cbB(t) +cdS(t) 

t+dbB(t)+dl 
(2.37) 

of c(t) is kcb/(1 + kdb), formulated in Section 2.4.3, which is the same value (2.12) as 

the FBM policy, obtained using renewal reward theory. 

The models can also be extended to imperfect inspections by replacing B(t) by 

k. t. b(t; (3), where b(t; (3) is given by function (2.30). 

2.7 Exponential Delay Time Model 

In a number of cases, it has been found that delay times can be acceptably modelled by 

the exponential distribution with mean µ and the process of defects arriving by a HPP 

of rate, k say. In this case, the form of b(T) is given by, 

b(7) =1- 
! (1 - e-T ) (2.38) 

As can be seen, the probability b(7) is independent of the value of k, since the 

distribution of one defect given to arise over an interval (0, T) is uniform. Extending the 

result to the case of imperfect inspection, a closed form for the probability, b(T; ß), can 

be calculated using properties of the geometric series, namely 

b(Tß) =1- 
ßµ(1 

- e-T/µ) 

T(1 - (1 - (3)e-Tlµ) 
(2.39) 

As a numerical example of b(7), the case with p=5, ß=1 and ß=0.7 is given in 

Fig. 2.8. A numerical example of the cost consequences model (2.23) is given in Fig. 2.9 

for the PBI policy. The modelling parameters selected are: 

cb = 0.5 (Cost of a breakdown repair), 

cl = 0.3 (Cost of inspection), 

cd = 0.2 (Cost of a defect repair), 
d, = 0.5 (Downtime of inspection), 

k=0.5 (Defect rate), 
5 (Delay time mean), 

=1 and 0.7 (Inspection perfectness). 
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Fig. 2.8. The probability, b(7), assuming exponential delay times. 

The optimum inspection period is at T=5.1 for the perfect inspection model and at 
T=4.7 for the imperfect inspection model in Fig. 2.9. This implies that with the 

assumed costs for imperfect inspections, more frequent inspections would need to be 

carried out in order to optimize cost. This is reasonable to expect. 

The exponential delay time and HPP defect arrival case can also be described by a 

Markov process in continuous time. Let breakdown repair times be negligible and define 

S, to be the number of defects present in the system after time t, given the system is 

defect free at time 0. Consider the case when S, =n (it >_ 0) and the change of state in 

small time interval St. Now P{S, + 8: =n+1IS, = n} = k8t, i. e a defect arrival. A 

breakdown arrival event in 8t would be attributed to any one of the n defects, each with 

probability 8t/µ to cause the breakdown. A breakdown repair would decrease S,. Hence, 

P{S, +8, =n-1IS, = n} = nötlp. 

It then follows that P{ S, 
+ s, =nIS, =n}=I- (k + n/µ)St. Hence, a state transition 

matrix can be formulated and an analysis into the finite and limiting behaviour of the 

05 10 15 20 25 30 35 40 
Inspection Period, T 
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Fig. 2.9. The expected cost per unit time, c(7), assuming exponential delay times. 

process can be undertaken, i. e S1 is Poisson distributed with mean S(t) = kµ(1 - e"""), see 

Feller (1970a, p. 460). However, the Markov model is only applicable in special cases 

and does not encompass the more realistic general situations. Work is being carried out 

elsewhere on the applicability of Markov models to delay time problems. 

2.8 Conclusion 

It has been seen that the concept of delay time can be used in modelling maintenance 

of a complex system. The NHPP model for the arrival process of breakdowns of a 

repairable system, endorsed by Ascher and Feingold (1984), can incorporate the concept 

of delay time by allowing the ROCOF to be a convolution of the defect rate and delay 

time p. d. f under the assumption of independence. In this way, the expected number of 

defects detected at inspections can also be modelled. However, the assumption of an 

NHPP breakdown arrival rate for a system will need to be tested in a specific case. 

The case of imperfect inspection with NHPP defect arrivals has not been considered here 
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and is an area for further research which is underway elsewhere. The inspection point 

for this case is not a system renewal implying that the defect arrival rate g(u) cannot be 

considered identical in each inspection interval. This increases the modelling complexity. 

Clearly, the downtime and cost of other inspection policies can also be investigated. For 

example. a policy could be to inspect after the n'th failure occurrence or when a 

particular length of operating time t has elapsed. The decision variables would be n and 

t. The UBI policy is when n= oo. The case, n=1, implies an age based replacement 

policy, for the case of perfect inspections, with the p. d. f of time to first failure, x say, 

given by, r(x)e B`", due to the process of failures following an NHPP. 

Under restricted circumstances, it has been shown that the system can be modelled by 

a Markov process in continuous time. This model could also be expanded to the more 

realistic case when there are a finite number of defect prone components within a 

system. 

A criticism of these models is that ageing of the system after each inspection has not 

been modelled. Ageing can be modelled by assuming non-identical defect rates, g(u), 

over each inspection interval. It is also possible to allow the delay time of a defect to 

be dependent on u and the inspection interval in which the defect occurred, see Christer 

and Wang (1992). The process of breakdowns then would not necessarily be an NHPP. 

The type of model selected is directly dependent on assumptions as to how the system 

is operated and used, the type and quality of maintenance, and the deterioration 

processes over time. The purpose of this chapter has been to introduce the basic nature 

of the delay time concept and the variety of models that may be constructed. Many of 

the models presented here will be used in conjunction with the results of the subsequent 

chapters on revision methods and the estimation of the parameters for the delay time 

distribution, in the light of observational and subjective data. 

týýFý 
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Chapter 3 

Parameter Estimating and Updating for 

Delay Time Models 

3.1 Introduction 

In this chapter, procedures are constructed for estimating the parameters necessary to 

formulate the models derived in Chapter 2. These will be constructed and based upon 

the experience gained and the data collected in operating repairable systems over time. 

Two types of data will be focused on, namely subjective and objective. Subjective data 

can arise from engineers' estimation of the delay time of specific defects at breakdowns 

and inspections. Thus, data of this type is expected to be in error. However, the 

collection of this data has been shown to be possible and prior delay time distributions 

have been estimated in specific cases, see Christer and Waller (1984b), Chilcott and 

Christer (1991), Christer and Desa (1992). The objective data for estimating the delay 

time distribution is based upon observations of times of breakdowns and defect 

detections. This data will aid the estimation of delay time parameters and the testing of 

the fit of the subsequent maintenance model. This objective data, can be in error, but 

for now, we will assume this data to be accurate. 

A maintenance model formulated with a substantial subjective input to delay time 

parameter estimates could not guarantee to automatically model the "status quo" 

characteristics of the system. That is subjective data may not imply that which is 

currently observable. Management interest may be in cost, downtime or proportion of 

defects which arise as failures under a current inspection practice. Eitherway, updating 

procedures are given to force the subjectively based model to agree with "status quo" 

observation. This could be considered as a "model tuning process". We will find that 

there is not necessarily a unique option for updating. However, a selection criteria is 
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given based on other information, which may be available, over the system data 

collection period. 

A case study example is given to highlight the sensitivity of the updated models in the 

case of downtime criteria. A decision consequence of changing operating practice to 

alternative inspection policy is discussed, and appropriate tests for the fit of the model 

recommended. 

The work will be substantially based on the paper, Christer and Redmond (1992). 

3.2 Assumptions and Data 

The system, considered here, will be assumed to have been operated under the policies, 

periodic based inspection (PBI) or use based inspection (UBI) over a data collection 

period, with the following observational information, usually available in operating 

practice: 

(a) The current practice is of inspecting the system on a constant time period, 
To say. The value represents the real time between inspections for PBI; 

or this could represent the operating time before inspections with UBI. 

(b) Inspections are initially assumed perfect and defective components 
detected at each inspection are replaced or repaired to 'as-new'. 

(c) The observed number of inspections carried out, over the survey period 
is M say, each with downtime d, and average cost, cl. 

(d) The total number of breakdowns observed over each inspection interval, 

i, is B; say, 1 <_ i <_ M. 

(e) The incident time of each breakdown which arrived, say {yj}, 

1 <_ j <_'B, where B=EB;, is the total number of breakdowns arisen over 

the survey period. 

(f) The total number of defects identified and repaired at each 
inspection is S; say, 15i <_ M. 

(g) The average downtime for each breakdown repaired, db. 

(h) The average repair cost of each breakdown repaired, cb. 
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Measures of delay time, h, are not generally available from direct observation and need 

to be estimated in specific cases. For instance at a breakdown, the maintenance engineer 

could be asked to estimate how long ago (HLA) the defect could first have reasonably 

been expected to have been noticed by a given inspection procedure, see Fig. 3.1. This 

would provide an estimate of h in a specific case. Evidence of imperfect inspections 

would be indicated if h spans a previous inspection point. In making this assessment, 

the specific case is before the engineer along with any other evidence or clues that may 

exist, and in that sense the question is well defined. Of course, the answer will depend 

upon the engineer's understanding of the system and his relevant experience, that is, be 

his subjective estimate. By accumulating such delay time measures it has been seen that 

an estimate of the delay time p. d. f f(h) associated with defects arising can be obtained, 

Christer and Waller (1984b, c). 

How long ago ? (HLA) 

u 
Defect arrival 

u+n 
Breakdown 

Fig. 3.1. Estimating delay time at breakdowns. 

There are other ways of obtaining an estimate of 1(h). For instance, if a defect is 

identified at an inspection, the engineer could be asked both how long aco (HLA) the 

defect could be first have been observed by an inspection, 11 say, and also if left 

unattended, how much longer (HML) the defect would last until a repair was necessary 
because of failure, say 12. The accumulation of such measures {11 + 12}, and pooling with 
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any breakdown based delay time measures, would lead to the estimation of a distribution 

which is directly related to f(h). 

A situation of censored data may arise. For example, the delay times of defects detected 

at inspections may not be possible to estimate due to the necessary prediction of the 

future time to breakdown, i. e the inspection time + HML. This will be discussed in the 

next chapter. For the present, we will assume that a subjectively based estimate of the 

delay time distribution may be available. Essentially, the availability of subjective data, 

that is the willingness of those involved to collaborate with data collection experiments 

and surveys, will influence the form of the delay time distribution selected. Considerable 

care must be taken when collecting such estimates to ensure the questions being asked 

are properly understood. It may also be necessary to invite the engineer to provide a 

range estimate of HLA and HML. Eitherway, by perhaps by permitting and taking the 

mean or otherwise, such as an optimistic and pessimistic measure, we assume a single 

estimate of h (= HLA + HML) is available for each defect or breakdown considered. 

How long ago ? (HLA) I How much longer ? (HML) 

uiu 
Defect arrival Identified 

Fig. 3.2. Estimating delay time for defects identified at inspections. 

The system will be assumed to have been operated over a survey period of M 

inspections of constant period T0, subject to the assumptions of Sections 2.4 and 2.5 

namely: 
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(a) At time 0, the system is in a new or 'statistically new' state, that is defect 

free. 

(b) Defects arise, independently at a constant rate (HPP), with rate 

parameter k, only over the operating (or up) time. A prior test on 

estimates of it have been assumed, here, for the HPP assumption. 

Essentially estimates of it would be obtained from the estimates of HLA. 

(c) Delay times, h, are independent of defect arrival time, it, and are 

distributed with the p. d. f f(h) and c. d. f F(h). 

(d) A breakdown imposes a small amount of downtime compared to 

inspection period, T, with expected value db, db « T. 

(e) The expected value of breakdown cost is cb and the expected value of 

defect repair cost is cd. 

(f) Inspections are carried out with perfectness, (3, where ß is the 

probability that a defect present at an inspection is detected and 

consequently repaired. 

The condition, db « T, is not necessary in the case of the UBI policy, but for the current 

simplified model is necessary in the PBI case. 

3.3 Need to Update Prior Model 

It should be noted that the downtime models (2.18) or (2.36) are driven by specific 

observable and measurable parameters such as; downtimes, di and db, by modelling 

assumptions such as (3 =1 or ß#1, and, in this case, by the subjectively based 

distribution F(h). Information relating to the observed level of overall downtime being 

experienced under the existing operating conditions has not been specifically used. It is 

a surprising fact that here we have been able to produce a downtime model for different 

inspection periods which has been derived without considering the downtime levels 

associated with the current practice, since conventionally the latter would be a starting 

point for the former. That current experience appears not to have had an explicit 

influence on the model is due, so far, to the mechanistic method of delay time analysis 

adopted. Of course, we are utilising subjective assessments each of which is presumably 

coloured by current experience. 
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Expected downtime per unit time, d(T) 

a 
d(7a 

b 

T 

Fig. 3.3. Comparison of estimated model, d(T), and possible observations. 

The existing expected downtime levels should, and do, directly influence the model 

through estimates of d, and db. However, these parameters, the delay time distribution 

and the delay time model should also influence the model since it must be capable of 

predicting the status quo situation, that is current practice. If, for example, an inspection 

practice is to operate with a period To and the operating experience is of an average 

plant downtime per unit time do*, then the curve of Fig. 3.3 should pass through the 

point (To, d(To)). The chance of this subjectively derived point coinciding with the 

observed point (To, do) is remote. What is expected to occur is typified by Fig. 3.3 in 

which the observed point (To, do) could be in a position such as (a), or perhaps (b). 

Effectively, d0*, is likely to be a periodic based estimate of a stochastic variable, and the 

models of downtime presented here, are average value models of a stochastic variable. 

If d, * is above (below) the curve then the delay time p. d. f chosen has most likely been 

estimated with a higher (lower) mean value. The estimated defect rate, k or g(u), 

modelling parameters, ß, for the probability of detecting a defect at inspection, and 

estimates of the mean values of inspection and breakdown downtime, d1 and db, will also 

influence the position of do' relative to the estimated model. 
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Ideally, we would wish the subjectively derived curve d(T) to pass through the known 

point, and an updating or revision is necessary either to the prior distribution estimate 

F(h) or to the structure of the model where the F value is changed, or to both F(h) and 

to the value of P. The rest of the chapter will be devoted to investigating techniques for 

this updating process. 

3.4 Updating Procedure 

Any method of updating a prior delay time model will obviously depend upon the 

existing information available for comparison of theory and practice. It will both be 

realistic and useful to suppose that the information which will exist is the number of 

defects which cause breakdowns. B, arising within a system over a series of M 

inspections and the total number of defects spotted at inspections, S= ES; say. An 

estimate of b0 = BI(B + S), the probability that a fault leads to a breakdown can be 

made under the current inspection period To. The value b0 would be an unbiased 

estimate of the theoretical probability of a defect arising as a breakdown for perfect 

inspections of period To, but may be biased in the case of imperfect inspections, due to 

any defects which may have gone undetected at the last inspection of the data collection 

survey. An approximate 100(1 - (x)% confidence interval for the true value of this 

proportion is stated in Chatfield (1970, p. 364), 

bo* ±z bý (l -bo*)/(B + S) , 
(3.1) 

when b0 is not close to 0 (i. e no breakdown occurrences) or 1 (no inspection practice), 

and P{Z < zß, 2} = a/2 when Z is standard normal. We then wish to model b(T) to pass 

through the point (To, b(, ), assuming that bo* lies inside a sufficiently small confidence 
interval, and b(T0) lies significantly outside, see Fig. 3.4. We will assume initially that 

defects arise as an HPP. 

To carry out the task of updating the prior model b(7), we need to let the delay time 

p. d. f f(h) be dependent on a set of parameters, ? say. The requirement to update and 

model given the known point is met by formulating the likelihood function for the 

observed number of breakdowns and defect detections for the survey period. It follows 
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from Section 2.5 that the number of recorded breakdowns, B. and defects detected, Si, 

over the i'th inspection interval, are independently Poisson distributed with means 

kTob(T0; 1) and kT0(1 - b(T0; 1) } respectively, when inspections are perfect. Hence, the 

likelihood fui. ction over the survey period, given the observed B, breakdowns and Si 

inspection identified defects in the i'th inspection cycle, L(ý) say, is given by, 

e-kTo tTo: xi (kTob(To;? )) B ekr0(b(T0 1- i) (k To(1 - b(To; X )S, 
L() _ 

(3.2) 11 
- B.! S, 

Here, b(T; 1) is given by function (2.16) using the parameterized form of delay time 

p. d. f j(h). By simplifying equation (3.2) and partially differentiating with respect to I 

the corresponding log likelihood function, it follows that we need to solve, 

b(To; ý) = B/(B + S) = bö 
, 

(3.3) 

to obtain the maximum likelihood estimates (MLE) of X. It also follows that the MLE 

for the rate of defect arrivals, k, when allowing k to be a parameter, is as expected, 

B+S (3.4) 
MTo 

Hence the proposed process to model the known point of current practice by equating 

b(T0; 2) to bo* is equivalent to satisfying a requirement for a maximum likelihood fit of 

objective data. Techniques to generate a set of parameters in order to revise or update 

the prior model of b(T) are now considered. 

3.5 Linear Delay Time Update 

Here we consider the case when each estimate of delay time It for a defect is linearly 

related to its actual delay time h' by, 

h' = ah +co , 

where a and co are parameters to be estimated. 

(3.5) 

There are two restrictions on the parameter values of a and CO. First, it is assumed that 

a>0, i. e., 
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The probability a defect causes a breakdown, b(7) 

16 

b(1? 

Fig. 3.4. Comparison of model, b(T), with known observation point. 

a>0 , 
(3.6) 

otherwise large estimates of h would transform to small actual values h' and vice-versa. 

Secondly, h' must be non-negative so if ho is the smallest value of h for which the prior 

distribution satisfies F(h) >0 for h> ho, then we require, 

aho +w >_ 0. (3.7) 

It follows that for any x, the probability P{h' <_ x} = P{h <_ (x - (0)/a}. Consequently 

the parametric form for the c. d. f of h' is given by, 

P{h'<_x} = Fx-w 
, 

(3.8) 
a 

where F(h) is assumed zero for h <_ 0, which implies c. d. f (3.8) is zero when 
0<_h' _aho+w. 

Let the initial model b(7) be constructed with an estimate ßo for the probability of 

perfect inspection, ß, and let b(T; (X, ci) be the updated parametric form for b(T) when 

replacing F(h) by the transformed expression (3.8). Clearly we seek a set of parameters 

(a, w) such that the status quo condition is satisfied, that is, 

0 TO Inspection Period, T 
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b(T,,; a, (o) = b0 . 
(3.9) 

Essentially we are seeking maximum likelihood estimates of the scale, a, and location 

parameter Co of an assumed delay time p. d. f family based on numerous observations. We 

now consider the possible existence of and uniqueness of solutions to equation (3.9). 

3.5.1 Special Case: Scale Parameter, a, Update 

Consider, first, the case when co = 0. It will be shown that a unique solution for a 

exists. Now, if (30 = 1, the case of perfect inspection, to satisfy condition (3.9) with b(T) 

given by function (2.16) and using the parameterised c. d. f (3.8), we seek a value a 

satisfying, 

T 40--(XX, J 4-ixi 
dx = hý (3.10) 

Using the substitution x= ah and re-arranging, we have, 

Twa (TWoc - h) (3.11) fTa f(h)dh = bo* 
h=0 

where the left hand side of (3.11) is the model of b(T), function (2.16), with T replaced 

by Tda. For a solution to equation (3.11), therefore, we require an a such that, 

(3.12) 

(l 
a 

[l 

The model b(7) increases monotonically from zero to one as T increases from ho to 

infinity. Thus, since 0< )o' < 1, there exists a unique inspection interval T,, such that, 

b(T1) = bo` 
. 

(3.13) 

It then follows that the unique solution for a is given by, 
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a= 
TO 

(3.14) 
T, 

The solution a can also be found graphically by scaling or shearing the model b(T), that 

is, by translating each point IT, b(T) } to (T, b(T(T1/To)) }. 

In other words, in the case of perfect inspections, ß=1, a unique transform of the delay 

time h' = ah can always be made to satisfy a status quo observation on b(T), where 

a= To/T, and Tt is the solution of equation (3.13). In the case when ßo < 1, it can be 

seen that equation (3.9) is also appropriate for this case by using the substitution x= ah 

in function (2.30). It then follows, as before, that a unique solution for a exists. 

It also follows that, 

b0 >b(T0)=Tl>To =cc <1, 
(3.15) 

bö < b(T0) = T1 < To =a>1. 

The main point here is that there exists a unique transform of the initial prior 

distribution which will modify the model of b(7) to satisfy a known status quo 

observation for (30 <_ 1. An example of this formal updating is given below. 

Example. The following example is based upon a case study for a canning line, 

Christer and Waller (1984b). For this situation we let, 

To = 24 hrs, 

f(h) = 0.0447. exp(-0.0447h), (exponential), 

ßo = 1, (perfect inspections), 

db = 0.698 hrs, 

di = 0.525 hrs, 

bo` = 0.390, 

k=0.101 hrs-`. 

In the study it was found that, b(T0) = 0.387, which was not felt significantly different 

from bo` to warrant updating. This is envisaged to be a rare occasion because the model 
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b(T0) is subjectively derived, whereas the number 0.387 reflects observation. For 

demonstration purposes, we consider two extreme cases here, one of over estimating and 

one of under estimating, namely, we suppose two levels of observed downtime, 

(a) bo` = 0.2 

and 

(b) b0 = 0.6 

and update the model of b(T) using the transform h' = ah. Case (a) represents an 

observation significantly less than the prior model value b(T0) = 0.387, and case (b) is 

correspondingly significantly greater. Hence, the equation for a, (3.10), takes on the 

form, 

24 
('(24 - x) 0.0447 

exp(-0.0447x/a)dx = bý , 
(3.16) 

x=0 
24 a a 

which on integrating the L. H. S. of equation (3.16), simplifies to, 

exp(-1.0728/a)) 
_b.. (3.17) 

1.0728 -o 

This equation can be shown to have the following respective solution for case (a) and 

case (b), 

(a) a=2.304, 

(b) a=0.481. 

To demonstrate the effect of these updates, the initial model of b(T) is shown in Figs. 

3.5 and 3.6, with the scale update model for cases (a) and (b) respectively. The updated 

curves for b(7) clearly pass through the known point (24,0.2) and (24,0.6) as required, 

that is the curves satisfy the status quo condition (3.9). 
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M 
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CL 

Prior Model 

Scale Update 

Shift Update 

Fig. 3.5. Updating the model, b(7), by the scaled-a and shift-w methods for bo' = 0.2. 

3.5.2 Special Case: Shift Parameter, w, Update 

Returning to the general discussion with h' = ah + co, we consider the case ßo <_ 1 and 

a=1. It will be shown that a unique solution to condition (3.9) exists for 0 if and only 

if, 

boy ý b(T0; 1, -ho) , 
(3.18) 

where (30 <_ 1. The transformation method here, is equivalent to shifting the p. d. f along 

the time axis until the model b(T) passes through the status quo point. For the case of 

perfect inspections, providing the observation b0* > 0, it is clear that CO < To - ho, 

with ho equal to the smallest prior delay time. This condition is necessary because no 

breakdowns would arise when w >_ To - ho as all delay times would be greater than To. 

To satisfy condition (3.7) when a=1 we must select co such that, 

w? -ho . (3.19) 

Inspection Period, T 
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As w is increases to T. - ho, b(T0; 1, w) tends to zero because the minimum delay time 

is increased beyond bound, which implies no breakdowns will occur in the system. In 

the case of perfect inspections, ßo = 1, we consider the partial derivative of b(T0; 1, w) 

with respect to co from equation (2.15). 

ab -F(TO - co) (3.20) 
7w- TO 

Thus, 

ab(To; l, w) 
<0 for To > ho + (3.21) 

aw 

Clearly, therefore, the maximum value of b(T0; 1, w) is when co = -ho, which 

corresponds to the shortest possible actual delay time, and b(T0; 1, (0) monotonically 

decreases to zero as to increases from -ho to To - co. It follows that there exists a unique 

solution co if and only if condition (3.18) is satisfied, namely boo <_ b(To; 1, -ha), due to 

the upper bound on b(T0; 1, co). It can be seen using equation (2.30) that the result 

generalises to the case ßo <_ 1. b(T0; (30, co) decreases to zero when co tends to oo, as there 

is evidently no maximum bound on co. 

Returning to the above case study example when ho =0 and (30 = 1, condition (3.19) 

implies co >_ 0. Since we need bo* <_ b(T0) an update based on the co parameter can only 

be performed in case (b), bo* = 0.2, and in this case equation (3.9) takes the form, 

24 
(' (24 - x) 0.0447exp(-0.0447(x - cw))dx = 0.2 , 

(3.22) 
X- 

24 ý 

which has the unique solution to = 7.55. A graph of this scaled updated model for b(T) 

is also given in Fig. 3.5. 

3.5.3 General Linear Case 

Here we let a and w be unrestricted. It will be shown that for each a>0, there exists 

a unique co which satisfies condition (3.9) if and only if, 
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Fig. 3.6. Updating the model, b(T), by the scaled-a and revised-n methods, b0* = 0.6. 

bo* 5 b(To; (x, -aho) , 
(3.23) 

where w >_ -aho and (io < 1. 

To satisfy condition (3.7) we require (o > -aho, which gives the maximum value of 

b(T0; a, co) with respect to w. Due to a>0, the partial derivative (3.20) of b(T0; a, co) 

with respect to 0 will still be negative. In the case (30 = 1, the maximum bound of u0 

would be To - aho because all transformed delay times, h', would be greater than To, 

implying no breakdowns would arise (assuming bo' # 0). For the case Do < 1, b(T0; a, co) 

tends to zero as w tends to 0. Hence, condition (3.23) above is both necessary and 

sufficient. 

It is interesting to show, here, that for the case of perfect inspections, a relationship 

exists between the parameters (a, w) selected and the updated delay time mean. If p is 

the mean of the prior distribution F(h, ) then the mean of the transformed distribution, 

µ' say, is given by, 

Inspection Period, T 
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µ' =aN+ Co . 
(3.24) 

In the case ßo = 1, to satisfy the known point we can also solve, using function (2.15) 

for b(T), the equation. 

To(I - b0) = 
j[i 

- 
1. 

' 
aw 

Jjdx . 
(3.25) 

Xo 

The R. H. S is the integral of the survivor function, which tends monotonically to µ', as 

To tends to oo. Therefore, the L. H. S would be less than the delay time mean value. 

Hence, we obtain the relationship, 

P/ = aµ +w > T0(1 -bo) . 
(3.26) 

which provides a lower bound for the delay time mean, assuming that bo' is known to 

a sufficient degree of accuracy and modelling assumptions are valid. 

3.6 Model Parameter Variation 

In this case we now allow I to vary in the prior maintenance model, which is denoted 

by the probability function (2.30), b(T; ß), and we seek a value (3 such that, 

b(T0; ß) = b, )* . (3.27) 
That is, we now seek to satisfy the status quo condition on the assumption that it was 

the original modelling that was at fault in assuming that inspections were or were not 

perfect, i. e selecting the wrong value for (30. 

The minimum value of b(T0; ß) corresponds to ß=1, the perfect inspection model. 

When (3 =0 we have b(T; (3) =1 for all T, and as shown with result (2.33) in Section 

2.5.5, 

ab(To; ß) 
(3.28) 

for any value of P. 
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We have, therefore, that b(T0; ß) is monotonically decreasing as (3 increases from zero 

to one and, therefore, there exists a unique solution to the status quo condition (3.27) 

if, bo' satisfies, 

b0 > b(To; 1) . 
(3.29) 

In the above case study example, a solution can only be found for case (b) when 

bot = 0.6 since bo* lies above the initial perfect inspection model value of 0.387 when 
0a = 1. Hence, equation (3.27) for P takes the form, 

1 _(ia 
E ß(1-ß)"-` 

exp(-0.045(24n -Y))dy) = 0.6 (3.30) 
J ,,,, 24 

which using function (2.39), has the unique solution (3 = 0.551. 

A graph of this ß-update of the b(7) model is given in Fig. 3.6, and is seen in this case 

to give an updated result for b(7) which is very similar to that resulting from the a 

transformation method. Case (a) cannot be updated in aß variation transform since the 

necessary condition (3.29) for a solution is not satisfied. 

3.6.1 Combining the Methods 

Here we consider the more general case in which (3, a and (1) are all permitted to vary 

in the model form for the probability of a defect resulting in a breakdown, denoted by 

b(T; ß, a, (), and we seek a parameter set (ß, a, w) such that the status quo condition 

(3.9) is satisfied, that is, 

b(T0; ß, a, w) = bö (3.31) 

The solution set (ß, a, (o) is clearly not unique. We have already seen above, for any 

(a, (3) pair there exists a unique solution for w satisfying condition (3.31) provided, 

bo _< b(T0; ß, a, -(xho) , 
(3.32) 

with different ((x, ß) pairs leading to different members of the solution set ((3, a, c)). In 

particular, when w=0, for each 0 there exists a unique a, such that condition (3.31) is 

satisfied, shown in Section 3.5.1. As ß tends to zero, a will tend to infinity because a 
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more imperfect inspection means delay times need to be longer for condition (3.31) to 

hold. The minimum value of a will be the solution to equation (3.11) when (30 = 1, the 

case of perfect inspections. 

When a=1, we have from the above analysis that as ß tends to zero, w tends to 

infinity. However, the range of ß will be bound and the maximum value ß which will 

be the solution to equation (3.31) when w= -ho and a=1. This is due to condition 

(3.7). 

The main point is that the solution set (ß, (X, co) for updating the delay time model is 

non-empty and non-unique. Our task in any practical situation will be to select one 

member from this set, that is, produce an updated model. 

3.7 Criteria for Choosing Method of Updating and Estimating 

As indicated above, it is clear that in the general case there is a non-unique set 'y, say, 

of the vector (ß, a, w) capable of updating the prior model b(T) to satisfy the status quo 

condition (3.9). Many forms of criteria of choice of update can be used here depending 

on the objective information available from the current inspection practice and the 

occurrence of breakdowns. If all we have, for example, is the observation b0*, then we 

could select the parameters (ß, a, (o) to update the model on the basis of minimizing the 

Euclidean distance between the initial parameters (ß = (30, (x = 1, w= 0) and the update 

choice from the set (ß, a, (o), i. e, we select (ß', a`, co) such that, 

(ß', a', ( 5) = Min {(a - 1)2 +0+ (ß - ßo)2} (3.33) 
(p, a, w) cy 

This might be seen as some form of 'purely' measure based upon the original subjective 

assessments. A weighted form of this criteria could also be used if it was felt some of 

the a, w or I measures were more important. For instance, the term in ß could be 

replaced by 0.1(13 - ßo)2, say, to bias against a large shift from the recognised quality 

of current inspection practice ßo. 
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3.7.1 Method of Moment Parameter Selection 

Another possibility for choosing a solution ((3', a*, w) from the satisfying set 

arises from the observations of times of breakdowns, was mentioned in the papers 

Christer and Redmond (1992). Accepting current practice, we can calculate the time 

since the last inspection for each breakdown, y say. The moments of the breakdown 

time, e. g mean and variance, can be estimated and set equal to parametric models of 

such statistics. Then, the parameters (ß, a, w) can be selected to satisfy the set of 

equations produced. In order to achieve this, we need to first derive the p. d. f of times 

of breakdown. 

Breakdowns arise as a NHPP, shown in Section 2.4. Therefore, the conditional p. d. f of 

the breakdown time of a given random breakdown, pb(y; 7) say, is given by, 

Pb(Y; 7) _ __ for 05y<T, (3.34) 

where B(T) is the expected number of breakdowns in interval (0, T) and r(y) is the 

ROCOF for the system after time 0. In the case of perfect inspections, r(y) = B' (y). The 

corresponding result to the breakdown time distribution (3.34) can be found in Parzen 

(1962, p. 145) and Ascher and Feingold (1984, p. 32). 

For perfect inspections (ßo = 1) and HPP defect arrivals, r(y) = kF(y), and using function 

(2.15) the p. d. f Pb (y; 7), equation (3.34), then takes on the form, 

Pb(Y: = 
F(y) 

= 
F(y) 

Tb(T) T (3.35) 5F(y)dy 

r=o 

The function pb(y; 7) can be seen to be non-decreasing function over the interval 

yc (0,7). Hence, it is anticipated that bounds can be attached to the mean value of y. 
The p. d. f with the least mean value would be the uniform distribution when all delay 

times of defects are zero. Hence, defining the mean breakdown time by M(7), we have, 

T 

M(7) 
Tb(7) 

fyF)d)' T (3.36) 
y=0 
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Also since F(y) <_ 1, we have M(T) <_ T/(2b(T)). Due to the p. d. f (3.35) being 

numerically equal to the delay time c. d. f divided by its integral over the interval (O, T'), 

a method of obtaining a prior delay time c. d. f could also be obtained from observation 

of failure times. E. g if 1)^(v) is the sample p. d. f of breakdown times, an estimate of the 

c. d. f of delay time is F y) = T0b0`jA"yv), for 0 <_ y <_ T, assuming that 1) (Y) is 

monotonically increasing. Consequently the model 1)(T) and subsequently B(T) can be 

estimated for 0: 5 T STo. 

In Section 3.5, it was shown that there exists a non-unique set (a, () to update the 

model b(7). If an estimate of the mean time of breakdown is available, ino` say, then it 

follows, using the above p. d. f (3.35), that we need to solve, 

ra 
1 fvF(cxv 

+ w) dy = 11107 . 
(3.37) 

b(To; a, w) Ta 
V, -0 

in addition to solving the condition (3.31). We are in effect seeking values for a and w 

such that the mean time of breakdown and the proportion of defects arising as 

breakdowns satisfy the observed current inspection practice, To. Clearly, we require 

ino' > Tß/2 for the existence of a solution. This proposed method is demonstrated using 

simulated data in Chapter 5. Clearly, the method could also be extended to imperfect 

inspections by using the sample estimate of the variance of breakdown times to give 

three equations to solve for ß, a and co. 

3.7.2 Maximum Likelihood Parameter Selection 

The maximum likelihood method of estimating parameters, in general, gives more 

efficient estimates, i. e they become closer to the true theoretical value of the parameters 

rapidly as the sample size increases, see Edwards (1972). If Nb breakdowns have 

occurred over the interval (0,7) and {y, }, 1 
_< 

j <_ Nb, are the failure times measured 

from 0, then due to NHPP breakdown arrivals, the likelihood, L say, is given by, 
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A 

Np 

Li = exp(-B(T))[J r(y, ) , 
(3.38) 

i-I 

shown in Cox and Hinkley (1974) for the NHPP. The functions r(y) and B(7) can then 

be parameterized in terms of (ß, a, (o). For the case of imperfect inspections the 

ROCOF would need to be formulated for each inspection interval over the survey 

period. This can be achieved by deriving the expected number of breakdowns, Bn(y; 7) 

say, occurring in the interval (0, y) after the n'th inspection. The ROCOF for the n'th 

interval from when the system was new can then be obtained by differentiating this 

function w. r. t y. If times of failures have not been recorded then an alternative likelihood 

can be formed from the observed number of breakdowns within each inspection interval. 

This likelihood would be constructed using function (2.32), that is the expected number 

of breakdowns, B�(7), occurring in the n'th inspection interval. 

Over the series of inspections, the likelihood of each interval would be combined, and 

this can then, also, be multiplied with the likelihood of the number of defects recorded 

at each inspection, based on the Poisson distribution. The combined likelihood for 

perfect inspections, using the notation in Section 3.2, is then given by, 

E S` 
-MS(To) IN 'S(TO) e 

-MB(T 
B 

L= 
Al e °ý r(yj) (3.39) i 

ll Si 
j=1 ! 

i-1 

where B(T) is the expected number of breakdowns in an inspection interval (0,7) and 

S(T) is the expected number defects to be detected at each inspection. The function 

(3.39) can then be simplified to (omitting constant factors), 

L3= K(7)se -MK(7)(1 
B 

- ý(T))S rl r(y j) 
j=1 

(3.40) 

where K(7) is given by function (2.7). In the case of assumed HPP defect arrivals then 

r(y) = kF(y), the likelihood factorizes to give, 
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B 

b(7))' Il F(y) (3.41) 

, _I 
The parameters can then be selected to maximize over the resulting likelihood (or log- 

likelihood) function. This process will be demonstrated using simulated data in Chapter 

5. When inserting the selected parameters into the function b(7), the status quo condition 

will not necessarily be modelled exactly. Clearly, if modelling assumptions are correctly 

postulated the estimated value b(T0) should lie within confidence limits of bo Modelling 

assumptions will need to be revised in the case when this is not so. 

The method to use objective data has been used for estimating the delay time 

distribution of a single-component system, see Christer and Wang (1992), Baker and 

Wang (1992). 

3.8 Statistical Tests of Fit 

A list is given here on the ways of testing the selected model, assuming that 

parameters ((3, a, w) have been estimated using any of the methods outlined in Sections 

3.5,3.6 and 3.7: 

(a) Satisfying the known point, b0*. 

(b) Chi-square test or Kilmogorov-Smirnov test, based upon the number of 
breakdowns in each interval being Poisson distributed. 

(c) As in (b), but for the detected defects at inspections. 

(d) As in (b), but where the times of failures have the p. d. f pb(y; 7). 

(e) Satisfying the sample mean time of failure, nzo'. 
(f) Satisfying the sample variance of time of failure, vo* say. 

If in a practical situation, all tests (a)-(f) are positive, then the belief is reinforced that 

modelling assumptions and updating procedures are valid for the system in question. 

If many tests are negative then we could infer that defects may not be HPP, in which 

case a time dependent form of the rate of occurrence of defects should be sought. Also, 
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linear updating may not be appropriate. E. g, the delay times defects which caused 

breakdown under an assumed perfect inspection policy may be more accurately 

estimated than delay times captured at inspections. The p. d. f type for delay time may 

also be wrongly selected. 

3.9 Other updating methods 

The section outlines other updating methods for further research. For example, a non- 

linear delay time transformation could be applied, such as, 

hI = ah1 + Co . 
(3.42) 

In this case, if h was initially estimated as being exponential, then the true delay time 

h' would be distributed as a three parameter Weibull. 

Alternatively to this method, one could select different standard parametric distributions 

for the delay time distribution, e. g Weibull and Gamma, use maximum likelihood 

estimation for the parameters given the observations, and then carry out the goodness-of- 

fit tests outlined in Section 3.8. 

In general, it could be assumed that there exists a conditional p. d. f of the actual delay 

time, h', given a subjective estimate h, say ff(h'; h). It then follows that if f(h) is the 

prior p. d. f of delay time subjective estimates, then the p. d. f of delay time, say f (h' ), is 

given by, 

f'(h ') = 
ff(h'; h)f(h)dh (3.43) 

h=0 

For the case of the delay time non-linear transform, the c. d. f form of L(h'; h) would be 

the Heaviside function H(h' - (ahl+ w)). 

3.10 Decision Consequence 

Having discussed the updating and testing of fit, we now consider the decision 

consequence of the various updating procedures. That is, how would the optimal 
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decision for d(7), say, change with the update and how different is the actual associated 

d(T) value. We shall consider this in the context of the above case example. 

b 
V 

c 

aD 0- 
G) 

c 
0 
a aý 
U 
U 
d 
X 

W 

Inspection Period, T 

Prior Model 
-A- 
Scale Update 
-)K 
Shift Update 

Fig. 3.7. The decision consequence, d(T), for update methods a and w. 

First, we shall look at case (a) when bo' = 0.2. In Fig. 3.7 the graphs for d(T), equation 

(2.18), using the delay time distribution update methods based on a-scale and w-shift 

are shown. The point at which the update methods intersect, would be the estimated 

downtime per unit time do' for the current practice To, where the values of bo', k, db and 

(1, are estimated over the same time survey time period, that is M(T0' + d1), for which 

do' is estimated i. e, 

d' = 
kTodbbo + d` 

0 To +dt 
(3.44) 

The initial model has its minimum around T= 24 hours, for the actual current practice. 

Whilst the minimum for the a-scale update model is greater, around T= 36 hours, it is 

evident that the co update model is slightly less. Considering the two methods, it can be 

seen the optimal region is probably between 20 and 40 hours. Although the downtime 
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Fig. 3.8. The decision consequence, d(7), with the update methods a and P. 

consequences over this range from 20 to 40 indicate that considerable care needs to be 

taken in selecting an updating method. Secondly, we shall look at case (b) when b0' - 

0.6. In Fig. 3.8 the graphs for d(T) using the update methods based on a and 0 are 

shown. It can be seen that minimal change of the optimum value of d(T) has resulted 

from these updates. Also, the change in d(T) is very slight as T ranges from 10 hours 

to 120 hours and the value of d(7) is close to the limiting value of b(T) for large T, 

which is kdb = 0.07 in this case. The value of kdb, as shown in Chapter 2, represents the 

approximate expected downtime per unit time experienced under a breakdown 

maintenance scheme, and so for case (b) inspections may be considered, in the example, 

not to have much impact on reducing downtime as T increases beyond 24 hours. 

Inspection Period, T 
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3.11 Conclusion 

Several formal techniques of updating delay time models have been presented. These 

have been based on the existence of subjective data to decide a prior or type of delay 

time distribution. The prior is then parameterized under a linear transform and the 

uniqueness and existence of a solution to modelling the "status quo" discussed. It has 

been found that a unique solution exists under a simple scale transform and a set of 

solutions under the more general linear case. The effects of changing the model, that is 

for 1=I to 13 : P--L I and vice-versa, or simply varying ß, as another updating option has 

also been investigated which highlights the variety of updating options. 

The effects of the change in the downtime model and consequently the optimum 

inspection period has been demonstrated for various updating techniques. Further 

research could lie in predicting the behaviour of the optimum for updating options, 

modelling parameters and delay time p. d. f types. 

Another method of parameter estimation has been proposed based on observed times of 

breakdown and the defects detected at inspections. For this method, the prior distribution 

type can be assumed and the parameters are then determined using the method of 

moment or maximum likelihood technique. It has been seen that the observed failure 

times can be also be used in a test for fitting a model and in deciding upon a delay time 

prior when no delay time data is available. 

Delay times may not only be biased subjectively, but also through estimates being drawn 

from a censored data set. Delay times, for example, may only be estimated from the 

failures which occur over a data collection survey. Hence, an observational bias enters 

the problem. The existence of this type of bias will be discussed in the next chapter 

along with methods for its resolution. 
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Chapter 4 

Bias in Delay Time and Initiation Time 

Parameter Estimates for Censored Data 

4.1 Introduction 

In this chapter, the case of having a censored data sample with which to estimate a 

delay time distribution is discussed. As previously outlined, one situation which could 

arise is that delay times and initiation times of defects may only be readily estimated 

from either breakdown events or when defects are detected at inspections. Another 

situation could be a non-balanced mixture of these two extremes in that we may not be 

able to obtain an estimate of delay time and initiation time for each defect which has 

arisen over a survey period. 

In the case of censored data, a bias in the estimated distribution of delay times or 

initiation time would exist. This will be established by deriving the respective 

conditional p. d. f of delay time and initiation time associated with defects which arise as 

breakdowns, and those which are detected at inspection. The p. d. fs will be derived for 

both perfect and imperfect inspection policies. A maximum likelihood estimation 

technique and appropriate tests of model fit are then recommended to cope with the 

observational bias introduced. 

Much of the work of this chapter is based on the paper, Christer and Redmond (1990). 

4.2 Bias in Delay Time Estimates 

Practical applications of delay time analysis have so far exhibited the usual 

characteristics of any initial exploration or application of an applied scientific idea. The 
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approach has been pragmatic in style in an attempt to obtain initial order-of-magnitude 

effects and feedback prior to refinement. Delay time estimates, h, have, for example, 

been derived by estimating both the delay time associated with a breakdown, hb = HLA 

(How long ago the defect first arisen) say, and that with the inspection repair of a 

defect, h, = HLA + HML (How much longer if left to deteriorate), see Figs. 4.1 and 4.2. 

These two data sources have then been pooled and the prior p. d. f, j(h) estimated and 

appropriate analysis undertaken, see Christer and Waller (1984b). 

Delay Time, hb How Long Ago (HL4) 

Ub 

Defect arrival 

ub+ hb 

Breakdown 

Fig. 4.1. Delay time estimated at breakdown. 

In following this initial process, it is recognized that apart for a possible bias in 

individual estimates of delay time associated with the individual providing the estimate, 

an additional statistical bias may enter into the modelling. 

To demonstrate this we initially assume perfect inspections and estimates of h= hb are 

only obtained at breakdowns. Here, a set of estimates of hb will generally produce 

parameter estimates which underestimate the p. d. f of h, due to the delay times, hb, all 
being constrained to be less than T. Further, a set of estimates of hd, will produce an 

overestimate of the p. d. f of h, due to sampling at T which gives rise to a higher chance 

of estimating a longer delay time. This effect ties in with length-biased sampling 
discu ; sed by Cox (1957,1.65) and with the w, i, -ing time paradox, s--c Feller (1970b). 
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Delay Time, hd = HLA + HML 

How long ago ? (HLA) I How much longer ? (HML) 

äI Udtnd 

Defect arrival 
Identified 

Fig. 4.2. Delay time estimated at inspections. 

We imply here, that if pb is the expected value of hb and µd is the expected value of hd, 

then we infer that Nb <_ µ and Pd >_ p, where p is the expected value of h. Strict inequality 

will apply in most cases. These hypotheses will be proved in the following sections. We 

shall deal first with the distribution of delay times based upon estimates captured at 

breakdowns, hb, and then with delay times based upon inspection based estimates, hd. 

4.2.1 Delay Times associated with Breakdowns 

Initially, assume a perfect periodic inspection policy T with defects having delay times 

distributed with p. d. f f(h) and the conditional initiation times, it, having p. d. f q(tt; T), 

It e (0, T). It is also assumed that breakdowns are repaired with negligible time. We then 

wish to calculate the p. d. f of the delay times captured at breakdowns, hb, say fb(ý; 7'. All 

the delay times would evidently be less than T. Hence the p. d. f will have its domain 

over the interval (0, T). We are, in effect, dealing with a conditional p. d. f, the condition 

being that a defect causes a breakdown. 

Consider the probability of the event, { hb e (ý, ý+ dý) }, for any ý, that is, fb(ý; T)dE for 

small dý. If we now let b be the event that a defect leads to a breakdown when 
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inspection is on period T, and let H be the event that the delay time, h, of a defect 

satisfies, he (ý, ý+ dý), it follows that, 

P{hb c (ý, ý+ dý)} = P{Hlb} . 

Using Bayes' theorem, we have for P(b) >0 the relation. 

P{H I b) - 
P{H, b} P{H} P(b I H) 

PT)-- P{li 

(4.1) 

(4.2) 

In the case P{ b}=0 there is no data set { hb } to consider, and for the current case, 

therefore, we assume P{ b}>0. We have by definition that the probability of H is 

f(ý)dý. Therefore, if we let dý tend to zero in equation (4.1), using result (4.2), we can 

obtain the formula, 

fb( '' = 
f() P(b Ih =) (4.3) 

Tv- 

The probability of b is b(T), which is given by function (2.29), 

T 

b(7) =f Q(T - h; 7)f(h) Ah , 
(4.4) 

h =0 

where Q(u; T) is the c. d. f of u. It remains to calculate, P{blh = ý}, the probability that 

a defect leads to a breakdown given delay time h=ý. If ý>T the defect would be 

detected by an inspection, assuming inspections are perfect. If ý<T the defect would 

cause a breakdown if the initiation time u<T-ý, which is an event with probability 

Q(T - ý; 7'). Hence we obtain the p. d. f over the domain (0,7), 

fb(ý _) 
Q(T ý; 7) fror 0<<T (4.5) 

A c. d. f form of this p. d. f, Fb(ý; 7) say, was derived in Christer and Redmond (1990), 

namely, 

FA; 7_G 
F(ý)Q(T - 4; + 

1 

T 
f 

q(u; T)F(T - u)du 
u=T-E, 

E<T 
9 

'? T (4.6) 
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and is equivalent to the integral of function (4.5). 

We can investigate the mean p. of f, (ý: 7) by noticing that the function Q(T - ý; T) 

monontonically decreases from I to O as ý ranges from 0 to T. Therefore, there exists 

a unique value '=0 such that Q(T - 0: 7) = b(T). Evidently, the p. d. f fb would lie 

above f over the interval (0.0) and below f over the interval (0. T), see Fig. 4.3 for an 

example. %%-hereby 0 is the delay time value at the intersection of the three p. d. fs. It 

follows that the c. d. f of h, will lie above the c. d. f of It over the interval (0,0). Hence, 

the associated reliability function (r. f) of hp will lie below the r. f of fi over this interval. 

It can be readily seen that over the interval (0,7), the r. f of hb will also lie below the 

r. f of h. It is a well known result that the mean of a non-negative random variable is the 

integral of its r. f. Hence. we obtain the expected result. 

tu (4.7) 

that is the delay time parameter estimates associated with failures are biased. Clearly, 

as T -* -, f -' f, that is estimates of he becomes asymptotically unbiased with T. An 

example of bias is pnivided by the special case when delay times are exponential and 

defertc arise uniformly as a HPP. Let a= I/p be the exponential parameter, then we 

obtain from equation (4.4). 

a a(T - ý)e~, fi)r 0<<T. (4.8) 
` aT +e" -I 

As anticipated. it can be seen that f, -a f as T -4 ca by replacing e"1T by its Maclaurin 

series. A numerical example is given in Fig. 4.3 for T= 10 and a=0.2. The mean Pb in 

this case is equal to 2.38, whereas p=5. It is evident here that the biased p. d. f of h can 

be radically different from the true distribution. 

3.2.2 Delay Times associated %iith Inspected Defects 

In this case. we seek the p. d. f, say f (ý; 7). of delay times, hi, which span the inspection 

point T. again assuming the inspection at T is perfect. That is we require the conditional 

p. d. f of delay time given a defect is detected and repaired at the inspection T. Let d be 

the event that a defect is detected at an inspection, then by following the process of 

analysis leading to equation (4.3), it can be shown that for P(d) > 0, 
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0 

0 

0 

a 

Unconditional 

Breakdowns 
-*- 
Inspection repairs 

Fig. 4.3. An example of unconditional and conditional p. d. fs of delay time. 

fd(ý = fý 
)PW I h=ý) if P(d) >0 

(4.9) 
P(d) 

We have for a defect that P{d} =I- b(7), and therefore need to consider the 

probability Pfd Ih= ý}. For the case, ý>T, we have that Pfd Ih= ý} = 1, i. e the 

defect will be detected given its delay time is greater than T and the inspection is 

perfect. When E<T, then the defect will be detected if its initiation time satisfies 

u>T-4, which is an event with probability 1- Q(T - ý; T). Hence, the required p. d. f 

of detected delay times is given by, 

f(ß)(1 - Q(T - i; 7)) 
1- b(T) 

fA; 7) 

1- b(T) 

for 0<4<T 

for ; >_T . 

(4.10) 

As T -+ 0, it can be seen fd -4 f, that is hd becomes asymptotically unbiased as 

inspections become more frequent. This behaviour is to be expected. A c. d. f form of fd, 

02468 10 12 14 16 
Delay Time 
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say Fd(ý; T), was derived in Christer and Redmond (1990) namely, 

T 

Fd(; T) = q(u; 7) [F(ý) - F(T - u)] A (4.11) 
u=maX(O. T-ý) I- b(7) 

and is equivalent to the integral of function (4.10). Returning to the special case example 

in Section 4.2.1, we find that the p. d. f (4.10) takes the form, 

a 2e-4 

1- e' r 
fill; 

lJ 

Ta 2e-°4 

1 -e -aT 

for 0<? <T 
(4.12) 

for ý>_T 

As anticipated, fd -4f as T --ý 0, which is established using the Maclaurin series for e-° '. 

The expected value of hb is, 

2T (4.13) µd 
(eaT - 1) , 

which has a limit of 1/a when T -4 0 and 2/a when T -* oo, and corresponds to failure 

based maintenance. Again, use of the Maclaurin series is required to establish these 

limiting results. The limit when T --3 oo compares to the limiting p. d. f of the length- 

biased sampling example given in Cox(1957, p. 65). The p. d. f fd -4 af(t) as T 

The differential of equation (4.10) w. r. t T, is given by, 

d(µ) e°T(aT - 1) +1 (4.14) 
dT (eaT _ 1)2 

This can be seen to be positive for all values of T>0. Therefore the expected value, µd, 

monotonically increases from 1/a to 2/a, as T increases. In the above example, it is 

evident that µd > p. That is delay times captured at inspections give rise to an 

overestimate of h. In the general case, we can confirm this by noting that, 

E(h) = E(hlb)P{b} + E(hld)P{d} 
(4.15) 

V= pbb(7) + µd(1 - b(7)) 

In Section 4.2.1 it was shown that Pb < p. Hence re-arranging the above equation to 

obtain Pb' it follows that, 
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Pb 
b(T)) 

Pd µ, (4.16) 
b(T) 

Hence, in the general case the delay times of defects captured only at inspections are 

biased with an expected value greater than the delay time mean. A numerical example 

when T= 10 and a=0.2 is also given in Fig. 4.3 with p. = 8.34. It can be seen that all 

three p. d. fs intersect at the same point. The delay time at this point (0 = 4.34), is such 

that a defect with this delay time value will have probability Q(T - 0; 7) = b(T) of 

causing a breakdown, and it can be seen that the delay time p. d. f in equations (4.5) and 

(4.10) at ý=0 will equal f(0). 

4.3 The Bias in the Initiation Times 

We shall proceed to derive the p. d. fs of the initiation time associated with failures and 

defects repaired at inspections. It will then be shown that the initiation time parameter 

estimates are also biased under censored data. This is reasonable to expect, because the 

initiation times of, for example, breakdowns, would be more likely to occur in the first 

half of the inspection interval under a perfect inspection policy. In the case of inspection 

identified and repaired defects, the initiation time would more likely to be in the latter 

half of the inspection interval. 

Let qA; 7) be the p. d. f of initiation time, ub say, for defects which result in failures, 

where ýC (0, T). It follows from analysis in Section 4.2.1 that the p. d. f would be given 

by, 

9b(ß; fl = 9(c; ) P{h ju =t? (4.17) 
b(7) 

Essentially, h has been replaced by u and f by q in function (4.3) due to independence 

between u and h. Given the initiation time of a defect, u=ý, the defect will cause a 

breakdown if its delay time h<T-C, which is an event with probability F(T - ý). 

Therefore, the p. d. f of irb is given by, 
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9b(ß; T) _ 9(C; 7) F(T - C) 
b(T) 

for 0<ý<T. (4.18) 

We shall now investigate the mean of ub, say tab. In Section 2.5.5, it was shown that for 

perfect inspections, b(7) S F(T). Hence the p. d. f qb lies above or at q at ý=0. At 

ý=T, the p. d. f then must lie below or at q, since F(T - ý) is a monotonically 

decreasing function. In the strictly decreasing case, there will exist only one point 0 such 

that F(T - 0) = b(T). Hence, it follows from analysis on the conditional p. d. f fb, in 

Section 4.2.1, that if the mean of the initiation time is tj then, 

l1b <1 (4.19) 

That is the initiation times of defects which cause breakdowns are biased with an 

expected value less than the population initiation time. 

The initiation times of defects which are detected and repaired, say ud, will also be 

biased. In order to calculate the p. d. f of ud, it is evident from previous arguments that 

we require the probability that a defect will be detected given its initiation time, it = ý, 

that is P{dI it =ý}, for ýc (0,7). In this case, it is clear this is the probability that a 

delay time satisfies h>T-ý, which is given by 1- F(T - ý). Let qd(C; 7) be the p. d. f 

of ud, then as before it follows that, 

ýd(P) = 
R(ý; T) [1- F(T - ý)J 

1- b(7) 
(4.20) 

To show the expected bias exists, we can follow a similar argument to that used in the 

case of breakdown initiation times. Alternatively, if we let tad be the expected value of 

ud, then, 

that is, 

E(u) = E(ulb)P{b} + E(uld)P{d} , 

T, = 11bb(7) + ld(1 - b(7')) 

(4.21) 

(4.22) 

Hence, due to the fact that 1lb < T, we obtain the result, 
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11d > 11 1 
(4.23) 

that is the initiation times of defects which are repaired at inspections will be biased 

with a greater expected value. 

4.4 Imperfect Inspections (ß # 1) 

Here we relax the condition of perfect inspections and seek the p. d. fs of delay time and 

initiation time, for breakdowns and inspection repairs. It will be assumed that the 

probability a defect is detected if present at an inspection is ß and defects arise 

uniformly over time, i. e as a homogeneous Poisson process. Breakdown and inspection 

repairs carried out in different inspection intervals will have non-identical conditional 

p. d. fs of delay time and initiation time. However, here we shall seek the derivation of 

the asymptotic p. d. fs, i. e assuming data has been collected over a sufficiently large 

number of inspection intervals, so that the theoretical probability that a defect will arise 

as a breakdown is given by b(T; (3), function (2.30). The conditional p. d. fs of delay time 

will then be given by function (4.3) and (4.9). Hence in order to calculate the p. d. f of 

delay times which cause breakdowns, we require the probability that a defect will cause 

a breakdown, P{b Ih= ý}, given h=ý for imperfect inspections. 

First, we consider the case ý<T in which the event that a breakdown will occur 

corresponds to the initiation time satisfying u<T-ý, which has probability (T - ý)/T, 

or when u>T-ý and the defect is not detected at the inspection at T, which has 

probability, (1 - (3)E/T. Hence, summing these two probabilities, 

P{bIh=} =T Tß 
1 0<_ <T (4.24) 

Next, consider the general case ýe [nT, [n + 1]7) for n? 1. Again, a breakdown can 

occur in two ways, that is in the interval (nT, [n + 1]7) or ([n + 11T, [n + 2]7). For the 

former event, u< (n + 1)T -ý and the defect remained undetected on the previous n 

inspections. For the latter event, u> (n + 1)T -ý and the defect remained undetected 

on n+1 sequential inspections. It follows that the probability of a defect with delay 

time h=ýe [nT, [n + 1]7) arises as a breakdown, is given by, 



99 

PUJIh= (1 
- 

p)n 
[(11 + )T 

-ý+ (1 
_ 

(ý`n +Il Tn7) 

T 
Fýl 

(4.25) 

-n7)) , nT<_ <(n + 1)T 
T 

This has the same format as (4.24) in the case of n=0 and we have (4.25) is valid for 

all n. Therefore, defining fb(ý; T, (3) as the p. d. f of delay times of breakdowns hb, we 

obtain, using the equation (4.3) and writing n as [ý/T], the integer part of EJT, 

fb(' T4ß) _ 
fß)(1 - ß)l"(T - ßcß - ['f7fl) (4.26) 

Tb(T; (3) 

Returning to the discussion on bias, we can see that the p. d. f (4.26) for fb is not equal 

to f. Further, at ý=0, fb >f when b(Tß) < 1, and as ý -> °°, fb --> 0 below f. The 

function P(blh=ý) is monotonically decreasing. Hence it follows the p. d. f fb will intersect 

f only once. Thus, we obtain as in the case of perfect inspections, 

Pb <µ, (4.27) 

where µb is the mean of hb and µ is the mean of delay time h. 

We consider now the case of defects detected at inspections. To derive the p. d. f of delay 

time, we evidently require the probability a defect is detected and repaired at a non- 

perfect inspection of period T given the delay time h=ý, P{d Ih= ý}. This is simply 

given by equation (4.25) as, 

P{d (h =ý) =I- P{b jh =ý} =1- 
(1 - ß)(" 

(T -ß(- [ý/Tl . 
(4.28) 

T 

Defining fd(ý; T, ß) as the p. d. f of delay times hd, then it follows using equation (4.9) 

that, 

fd( ; Tºß) _ 
fib) (T-(1 - ß)ý ý(T - ß( - [/t]T))) (4.29) 

T(1 - b(T; ß)) 

The expected delay time p, Pb and µd are clearly connected by the relationship, 
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µ= b(T; ß)µb + (1 - b(T; ß))µd 
. 

(4.30) 

Hence, due to the condition Nb < µ, it follows that µd > µ. 

4.4.1 Initiation times when ß#I 

Assuming imperfect inspections, the parameter estimates of the initiation times of 

defects will also be biased. In order to derive the p. d. fs, we require the probability that 

a defect will be detected given its initiation time it for ýe [0, T). This has been 

derived in Christer and Waller (1984a), 

P{d Iu (1 - F(nT - ý)) 

(4.31) 

=1-ß (1 - (3)" - `F(nT - ý) 
/ýs] 

Letting qA; T, ß) and qA; T, (3) be the p. d. fs of the initiation times, Ud and Ub 

respectively, it follows from previous analysis using functions (4.17) and (4.20) that, 

1- OE (1 - ß)" - 'F(nT - ý) (4.32) 
9d(ß: TO) _ "_' 

T(1 - h(T; ß)) ' 

and 

Týßý _ qA; 

IF(nT - (4.33) 
n-1 

Tb(T; 13) 

It can be seen the p. d. f q, monotonically decreases over the interval ýe (0, T). Therefore 

due to qb being a p. d. f, qb must lie above q at c=0 and below q at C=T. Therefore, 

the mean of ub, will be less than the mean of it. The expected value of u for HPP defect 

arrivals is T/2. If Ti,, is the expected value of breakdown initiation times and lid is the 

expected value of initiation times for inspection repairs, then it follows from previous 

analysis that we have the following relationships, 

ý1 b<2 (4.34) 
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flbb(T; ß) + Td(1 -b(T; ß)) =T (4.35) 

tad >T. (4.36) 

We conclude that for both perfect and imperfect inspections, delay times and initiation 

time parameter estimates will be biased given a censored data set. The delay times and 

initiation times of defects repaired at inspection give rise to an overestimate of their 

respective mean values. For the case of breakdown repairs, the delay time and initiation 

time would provide an underestimate of their respective expected values. In practical 

situations it may be necessary co collect censored data, and we now propose methods 

to cope with a censored data set. 

4.5 Correcting for Bias in Estimates of Delay Time and 
Initiation Time 

Suppose that at least one of the following data sets of estimates have been obtained from 

a field subjective data collection experiment, observing a total of, B say, breakdowns 

and, D, inspection repairs of defects, namely, 

Set {hb,; }, of failure based estimates of delay times, i=1,..., M,, where 

M, <_ B, i. e the situation allows for not having captured all delay time 

estimating opportunity available. It then follows the set {ub,; }, of failure 

initiation times, corresponding to the i'th delay time, will also be 

available. 

2. Set {hd,; }, of inspection-repair based estimates of delay times, i=1,..., M2, 

where M. S D, which implies not all inspection opportunities to estimate 

the delay time are assumed taken. The set { 110) v of inspection-repair 

initiation times estimates, corresponding to the i'th delay time estimate 
is likewise available. 
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The initiation times and times of failure are assumed to be measured from the start of 

the inspection interval in which the defect or failure occurred. A prior p. d. f of delay 

time, f(h, X) say, will be assumed available, where X is a set of parameters to be 

estimated. Likewise, the defect arrival rate will be parameterised as g(u, y). The prior 

format may be inferred from initial histogram plots of the data sets. A prior value of the 

perfectness of inspection, (3, say, will also be assumed available. 

4.5.1 Perfect Inspections, ßo = 1. 

The p. d. fs of the initiation and delay times have been derived in Sections 4.2 and 4.4. 

Hence, we can now formulate the likelihood for each data set: 

M, 

llfb(hbi; T, 2,. I) , 
(4.37) 

M= 

L2Q, ) _ rIfd(hdi; T, DIY) 
" 

(4.38) 
; _, 

M, 

L9 b(uW; T, X., 1) , 
(4.39) 

3L Y=ý 

and 

M2 

L4(k, y) - 4d(«d;; T, ý, y) (4.40) 
1=ý 

Due to the perfect inspection assumption, it will be assumed that the delay times of 

breakdowns, {h,,; }, are all less than T. 

Maximum likelihood estimation could be applied to each likelihood function and 

parameter estimates can be compared. The maximum likelihood method proposed in 

Christer and Redmond (1990), is based on combining the delay time likelihoods Lt and 

L2. Indeed the initiation time likelihood functions, L3 and L4, could also be combined and 

parameter estimation carried out. The joint likelihood of only observing the breakdown 

data set (1), would not be the product of Ll and L3 due to the delay time and initiation 

time of each breakdown being dependent. To derive the joint likelihood, we first 

condition on c'b =ý say. The p. d. f of the delay time hb would then be f(4)/F(T - ý), 
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05ýST-ý. Hence, combining this p. d. f with the p. d. f of ub, function (4.16), it 

follows after simplification that the joint likelihood of observing breakdown data set (1) 

is given by, 

L= 
IJ'1b. 

t 
ý) 9(iýb. ý ýY) (4.41) 

h 
, _1 b(T; X, 1) 

Likewise the joint likelihood of observing the inspection repair delay time set (2) is 

given by, 

L_f 
f(ha.; ; 2) g(lld, 1 ; Y) (4.42) 

ai1_ b(T, X, y) 

It can be seen that when the p. d. f of u is assumed to be known, e. g uniform, the 

likelihoods Lb and Ll are equivalent, in respect to estimation, after omitting the factors 

q(u) and Q(u) respectively from each likelihood. Similarly, Ld and L. would be 

equivalent for this case. This is expected due to selecting the prior distribution of u. If 

data is available for both breakdowns and inspection repairs, then the combined 

likelihood, i. e the product LbLd, can also be used to provide parameter estimates. 

It is evident that a number of likelihoods could be used to obtain parameter estimates. 

This is an advantage, because if we obtain similar maximum likelihood estimates from 

different likelihood functions then greater confidence exists in modelling assumptions, 

such as perfect inspections or it may be the assumption of HPP defect arrivals. If 

parameter estimates differ sufficiently the assumptions will need to be revised. Another 

estimation procedure could be to allow the inspection period T be a parameter to be 

estimated in the maximum likelihood process. The estimated T, say r, should then be 

approximately equal to T for the model assumptions to hold. However, a large amount 

of data may be required for this test to work, due to the increased number of parameters 

in the likelihood function. 

It will now be shown that given an uncensored data set, i. e when Ml =B and M2 = D, 

the maximum likelihood estimate of parameters for an initiation time and delay time 

distribution will be unbiased (in the asymptotic sense. ) Assume B breakdowns have 

arisen in one inspection interval (0,7) and D defects were repaired at the inspection. 
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Due to B and D being independently Poisson distributed the probability, say P, of 

observing this joint event is, 

e -amB(T)B e -(K(n - e(7))(K(7) B(7))° 
B! D! 

(4.43) 
K171 B "D 

_c' 
K(T) b(7) (1 - b(7))ß 

B! D! 

To obtain the joint likelihood, say L, of observing B breakdowns, D defect repairs and 

the delay time and initiation time sets (1) and (2), we need to multiply P by Lb and Ld. 

By writing q(u) as g(u)/K(T), then cancelling b(T) and simplifying, we are left with, 

e -Km B 
f(hb. 

i)9 `(11b) 
f( 

D 
ý/h 

d i)g(ud. i) 
(4.44) L=' 

B! 5T 
i=ý I i= t 

where it can be seen that the pooled likelihood of observing both delay time sets, i. e, 

BD 

II f(hb ) Il f(hd )" (4.45) 
i-1 i=1 

factorizes. Also, the remaining part of the likelihood function L is the likelihood of 

observing B+D defects with an assumed ROCOF g(u; y) over the interval (0,7). Over 

a series of inspections, events over each interval are assumed independent in the case 

of perfect inspections. Hence, parameters estimates of initiation time and delay time 

distributions can be undertaken without considering bias when data is collected from a 

complete set of inspection and breakdown estimates. 

4.5.2 Imperfect Inspections 

The maximum likelihood techniques employed in the previous section could also be 

used if imperfect inspections and HPP defect arrivals were assumed. The p. d. fs derived 

in Section 4.4, which correspond to each data set, would be used with ß= ßo. If 0 is 

unknown then this could also be allowed to be estimated by the maximum likelihood 

process. This method could also be used to confirm perfect inspections. Again T could 

be used as a parameter to confirm the model. 
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4.6 Additional Tests of Model Fit 

Splitting the delay time and initiation time data into disjoint sets based on failures and 

inspection repairs can provide additional tests of fit to those given in Chapter 3, even 

with uncensored data. The procedure can also help in verifying modelling assumptions. 

Let the model parameter estimates be L', y') for perfect inspections with NHPP defect 

arrivals or L', ß) for imperfect inspections with HPP defect arrivals. We could, for 

example, then proceed with distribution tests such as K-S or chi-square on all or some 

of the data sets of delay time and initiation, assuming enough data is available for each 

case. 

4.7 Conclusion 

It has been seen that a statistical bias can exist in the data leading to parameter estimates 

of delay time and initiation time for censored data. Breakdown based observations give 

rise to an underestimate of delay time and initiation time, whilst observations based 

upon defects identified and repaired at inspections give rise to overestimates. The bias 

has been shown to be dependent on inspection frequency and the perfectness of 

inspections. 

Methods based on maximum likelihood have been proposed to correct for the bias have 

been proposed, which leads to the estimation of the actual initiation time and the delay 

time distributions. 

In the case of censored data, it may be possible that parameters for the delay time 

distribution can be estimated to an acceptable degree of accuracy by updating procedures 

instead of performing the bias correction. Some form of iteration method could also be 

adopted. The task of parameter fitting will be further investigated in the next chapter on 

simulation. 
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Chapter 5 

Simulation Study of the 

Delay Time Model 

5.1 Introduction 

A simulation study is undertaken to further investigate and verify the delay time models 

and proposed method of analysis of earlier chapters. Simulation programs, written in 

Pascal, have been used to simulate the delay time process given sets of input parameters 

and assumptions. Simulation algorithms are derived for the case of perfect inspections 

and instantaneous repair of breakdowns. Then, these modelling assumptions are relaxed 

to imperfect inspections and non-instantaneous breakdown repairs. The outputs of 

simulation experiments are analyzed and compared to the appropriate theoretical values 

of the models of the earlier chapters. 

An investigation is undertaken into the accuracy and effectiveness of the parameter 

estimation procedures given in Chapters 3 and 4. Correction of bias is carried out on 

censored simulated data. The effects of not correcting for bias but using an updating 

method, as a further option, is also explored. An iteration method is developed which 

alternates between updating the scale parameter of a Weibull delay time distribution and 

only estimating the shape parameter using maximum likelihood. The estimation of delay 

time distribution parameters based upon only observational data (failure times and 

number of defects detected at inspections) is also demonstrated. Results are shown for 

simulated data sets and conclusions drawn. 
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5.2 Pilot Simulation of the Delay Time Model 

A simulation of the delay time model would involve simulating over a time period for 

a set of inspect; ons when defects would arise within each inspection interval. However. 

for a pilot simulation, we shall assume one defect to arrive in one inspection interval, 

say (0, T). This model along with its development could be used as a modelling module 

6 in a more complex situation. The outcome for a defect, i. e failure or detected at 
inspection, can then be repeated for N defect trials. Given this assumption, we can then 

calculate, for example, the proportion of failures arising for different values of T. which 

should asymptotically agree with the model b(T), that is function (2.15), as the number 

of simulated defect trials, N --4 °. We shall first deal with the perfect inspection case, 

Section 2.5.1, and then with the imperfect inspection case. 

5.2.1 Perfect Inspections 

The following assumptions will initially be assumed to apply for the system to be 

simulated: 

(a) The conditional arrival time of a defect is uniformly distributed over the 

interval (0, T) since the last inspection. 

(b) The delay time of the defect is Weibull distributed with scale parameter 

a and shape parameter y, the c. d. f being, F(h) =I- exp(-(cch)r). 
(c) Breakdowns are instantaneously repaired. 

(d) The inspection at T is perfect. 
(e) The simulation will be repeated N times. 

A program, DTS 1, written in Pascal, was used to perform this simulation. The method 

used to generate random samples of is and It was the inverse transform method, see 

Maisel and Gnugnoli (1972, p. 150), given a pseudo-random number generator which 

generates uniformly distributed random numbers between (0,1). A seed value can also 

be given to select different sequences of random numbers. The program requires as input 

the input parameters ((x, 'y, T, N) and produces files containing the simulated events. 
The events recorded are u and It values for both failures and inspected defects. 
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The algorithm used to simulate the inspection process is as follows: 

1. Generate the defect arrival time, u;, 1 <_ i <_ N, given by, 

U=r. T (5.1) 

where. r;, is a sequence of independent unordered uniform random 

numbers on interval (0,1). 

2. Generate the defect delay time, h;, for defect i, given by, 

hl. =1 (-ln(9; ))"Y (5.2) 
a 

where, q;, is another sequence of uniform random numbers. 

3. Generate indicator variables, f, such that, 

1 if u. + h, <T (5.3) f0 
otherwise 

where f=1 indicates the defect caused a breakdown and f=0 indicates 

the defect was detected at the inspection T. 

4. Tabulate results in files. 

The program stores data in three files: 

1. u;, h; and f, 1 <_ i <_ N (i. e all defect trials). 

2. u;, h; when f=1, (failures only). 

3. u;, h; when f=0, (detections only). 

The user is informed of the total number of breakdown occurrences, BT say, given by, 

N 

Br=Ef, i=1 

(5.4) 

which will be binomially distributed with parameters N and b(T), where b(7) is the 

probability a defect leads to a breakdown, given from equation (2.29) by, 
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T 

b(T) =1-T 
fexp(-((xh)')dh (5.5) 

h=0 

The proportion of defects which have led to breakdowns, bT = ß, /N s:, y, having 

expectation b(T), is also signalled. 

The program was then extended to allow the user the option to investigate a series of 

M equi-spaced inspection periods, T, 1 <_ j <_ M, resulting in a single file containing; 

the inspection period, T, number of breakdowns, BTj, proportion of 'failures, bT;, and the 

sample standard error, err; say, of bTJ, given by, 

err, = bT(1 - b)I(N - 1) (5.6) 

The sample standard error can then be used in constructing confidence intervals for the 

proportion of defects arising as failures. For example, a run was carried out with the 

following input parameters: 

a=0.3, y=1.2, T= (2,4, ..., 20)' and N= 5000. 
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Fig. 5.1. Comparison of a simulation run to the model for b(7). 



A graph of the estimated proportion of breakdowns against the theoretical model (2.15) 

of b(7), for the set of T values, is given in Fig. 5.1. The err, values lie between 0.004 

and 0.007 indicating that a 95% confidence interval for the theoretical probability of a 

breakdown {predicted to be b(7)) will have a width between 0.008 and 0.014. A 

statistical test to compare the theoretical and sample proportions, b(7) and bT, was 

carried out for all T values. The result was to accept the hypotheses that defects arise 

as failures with probability b(T) for all T values under a 5% significance level. 
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Fig. 5.2. Histogram of breakdown delay time data versus theoretical model. 

Members of the conditional delay time and initiation time sets {h;; f=1}, (h,; f. = 0), 

{ u,; f" =1} and { u;; f=0} will be distributed with the p. d. fs of hb, hd, ub and if,, 

respectively given by functions (4.5), (4.10), (4.18) and (4.20) respectively. In this way 

the simulation process has been used to generate data to verify the theoretical 

formulation of these p. d. fs. A comparison of the theoretical p. d. f and those generated 

from the simulated results for delay times are given as an example in Figs. 5.2 and 5.3 

when a=0.3, 'y = 1.2, T= 10 and N= 1000. In carrying out the chi-square goodness 

of fit test, the test statistics for the two cases, namely breakdown and inspected delay 

time, are 4.9 and 11.4 respectively. Adopting a 5% significance level, then. values 
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Fig. 5.3. Comparison of inspected delay time data versus theoretical model. 

should be compared to x9 = 16.9 and x12 = 21.0 respectively. Clearly, the test statistic 

are less in both cases. Hence, even if the physical evidence of Figs. 5.2 and 5.3 are not 

accepted, given the additional significance, we accept the hypotheses that the delay time 

simulation observations are distributed with p. d. fs (4.5) and (4.10) respectively. 

5.2.2 Imperfect Inspections 

Imperfect inspections can easily be dealt with by extending the previous method. Let (3 

be the probability a defect is detected and repaired at an inspection, if it is present. 

Assume also that the process of periodic inspections continues indefinitely, so that a 

defect which arises in an interval (0, T), will eventually arise either as a breakdown or 

be repaired at an inspection. 

For a defect with arrival time, u;, and delay time, h;, 1 <_ i <_ N, the defect will cause a 

failure if not detected within [(u; + h; )/TJ inspections which is an event with probability 
(1 -, where [x] denotes the integer part of x. Hence, if we redefine the 

indicator variable, f;, so that it is given by, 

<1 23456789 10 11 12>12 
Delay time class 
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if r< < (1 - 
Not. + ti, )/71 (5.6) 

f` 
0 otherwise 

where r; is uniform (0,1), it follows that f=1 implies the defect causes a breakdown 

over the current inspection period or a future inspection period and f =O implies the 

defect is repaired at an inspection. 

A numerical example for b(T) is given in Fig. 5.4 when ß=0.7, a=0.3, 'y = 1.2 and 

N= 1000 and T=2,4,..., 20. Close agreement between b(T) and simulation estimates 

is attained. Members of the conditional delay time and initiation time sets {h;; f. =1}, 

{ h,; f= 0), { u;; f=1} and { u;; f=0} will be distributed with the p. d. fs of hb, hd, ! 1b 

and Ud, respectively, given by functions (4.26), (4.29), (4.32) and (4.33). Numerical 

examples for delay time are given in Figures 5.5 and 5.6 for T= 10. Close agreement 

is achieved which again verifies the formulation of the p. d. fs formulated in earlier 

chapters. In carrying out the chi-square goodness of fit test, the test statistics for the two 

cases, namely breakdown and inspected delay time, are 12.2 and 6.6 respectively. 

Adopting a 5% significance level, these values should be compared to XIO = 18.3. 

Clearly, the test statistics are less in both cases. Hence, we accept the hypotheses that 

the delay time simulation observations are distributed with p. d. fs (4.26) and (4.29) 

respectively. 

The simulation procedure is a module for the simulation of an inspection practice of a 

system. The next section deals with the simulation of the delay time process over a 

series of inspections taking into account downtime, cost and assuming defect arrivals 

arise as a rate process over time. 
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Fig. 5.4. Comparison of imperfect inspection model b(T) with simulation. 
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Fig. 5.5. Imperfect inspection p. d. f of breakdown delay time versus simulation. 
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Fig. 5.6. Imperfect inspection model for inspected delay time versus simulation. 

5.3 Simulation over a Series of Inspections 

We give here a method to simulate the delay time process over a series of inspections. 

First, perfect inspections with instantaneous breakdown repairs are dealt with. Then, we 

relax these conditions to include the case of imperfect inspections and non-instantaneous 

breakdown repairs. 

5.3.1 Perfect Inspections 

We assume the following assumptions apply to a situation to be simulated over a series 

of inspections: 

(a) The system is defect free at the start of simulation. 

(b) N perfect inspections will be undertaken with period T. 

(c) Defects arise as a homogeneous Poisson process (HPP) with rate parameter k 

<2 468 10 12 14 16 18 20 >20 
Delay Time Class 
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over each of the N inspection intervals. 

(d) The delay time of each defect is Weibull distributed with scale parameter a and 

shape parameter y. 

(e) Breakdowns are instantaneously repaired. 

It is clear that the number of defects to arrive in each inspection interval (0,7) is Poisson 

distributed with mean U. Hence, one approach to simulating the system could be to 

generate samples from the Poisson distribution for the number of defects to arrive in 

each of the N inspection intervals and then use the pilot simulation method for each 

inspection. There are many methods to generate Poisson samples. One method, which 

was the method adopted, is to use the result that the time between defect arrivals is 

exponentially distributed with mean 1/k. If r; is a sequence of uniform (0,1) random 

numbers then, 

e. _-! ln(r) (5.7) 

is a sequence of exponentially distributed random variables of mean 1/k. Consider the 

number of defects, A say, to arrive in an inspection interval. For A to be Poisson 

distributed with mean kT we need to sum the values e; until the result exceeds T. Hence, 

let un say, be the n'th summation, given by, 

un = Fe, 
, uo = 0, n=1,2... (5.8) 

. =t 

Then let A be given by, 

A= {n; it, <_ T, itn, l > (5.9) 

It follows that A is Poisson distributed with the required mean value. The pilot 

simulation method can then be used to calculate the number of breakdowns arriving over 

the interval (0, T). However, for the case of HPP defect arrivals the generation of A has 

also generated a sample of defect arrival times, i. e the set { u"), 1 <_ it <_ A, for A>0. 

Essentially, this set is the order statistics of a set of A independent uniform random 

samples on the interval (0,7). 
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Note: If If, } is the set of indicator variables corresponding to (u,, } and {Ii}. then in this 

case due to the index n corresponding to the n'th defect arising over (0, T), the 

probability that the n'th defect arises as a breakdown, i. e P{fn =I}# b(T). For example, 

the first defect arrival will have less chance of causing a failure than the second defect 

arrival. However, a defect chosen at random will have the probability b(7) to cause a 

failure. 

The total number of breakdowns, B, arising over interval (0, T) is given by, 

10 if A =0 
B=A (5.10) fn if A>0 

n: l 

The number of defects detected and repaired at the inspection T, say S, is then given by, 

S=A -B . 
(5.11) 

B will be Poisson distributed with mean kTb(T) and S will be Poisson distributed with 

mean kT(1 - b(T)), independently of B. 

The program written in Pascal, DTS2, on execution creates four files as output. The first 

file contains N lines of four data: 

(a) Inspection interval number j, where j=1,2... N, that is j'th interval 

terminates at jT. 

(b) Number of defect arrivals, Aj. 

(c) Number of failure occurrences, B1. 

(d) Number of defects detected, S1, where S, = Aj - B1 due to perfect 
inspections. 

The second file contains seven data items on each defect which arrives over the 

simulation period, in the order of defect arrival time : 

(a) Inspection interval number j. 

(b) The defect arrival number, i, for the ith defect to arrive in inspection 

interval j. 
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(c) Delay time of defect, h. 

(d) Arrival time of defect, u, from start of inspection interval j. 

(e) An indicator variable, f, where f=0 if defect was detected, 

(i. e. if it +h> T), and f=I if defect caused a failure (i. e if it +h <_ T). 

(f) How long ago defect first arrived. HLA, where HLA =T- it, if f=0, and 

HLA=h. iff=I. 

(g) How much longer, HML, the defect can be left before causing a failure 

where, HML = 0, if a failure, and HML = it +h-T, if inspected. 

The third file contains only the data on defects which were inspected. The items of data 

will be the same for the defect file except for the indicator variable, f. The fourth file 

contains only the data on defects which caused a failure. The items of data are (a), (b), 

(c) and (d) from the first file plus the following : 

(a) The time of failure, yb, where Yb =u+h. The p. d. f of yb is given by 

function (3.34). 

(b) The failure arrival number, in, for the m'th failure in inspection interval 

J. 

The following parameter values have been selected for an initial test, 

k=0.5, a=0.2, "y= 1.2, T= 10, N= 1000. 

The theoretical mean and standard deviation of the sampled variables are tabulated in 

Table 5.1, along with the sample mean, standard deviation and standard error of mean 

from a simulation run. Some variables have a suffix implying a condition; b indicates 

breakdowns and d indicates detections. The total number of defects arising for this 

particular test was 4918 with 2823 failures. It can be seen that there is close agreement 

between theoretical parameters and sample estimates, validating the simulation 

procedure. 

5.3.2 Imperfect inspections 

A program, DTS3, was written to accommodate imperfect inspections. The probability, 
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P, that a defect present at an inspection is detected is given on input to the simulation. 

The indicator variable, f, for a defect arising as a failure is set accordingly by, 

f_1 if (1 - p)E(t4 )m <r and (it + ii + JT) < NT (5.12) 
0 otherwise 

where it is the defect arrival time from last inspection point. h is the delay time, j is the 

inspection interval in which the defect arisen. 1 <_ j: 5 N, and r is a uniform (0,1) random 

number. An additional file is output by the simulation on defects which are left in the 

system after the Nth imperfect inspection. 

Variable Theo. 

Mean 

Sample 

Mean 

Mean 

Error 

Theo. 

St. Dev 

Sample 

St. Dev 

A 5.0000 4.9180 0.0708 2.2361 2.2384 

B 2.8213 2.8230 0.0539 1.6797 1.7060 

S 2.1787 2.0950 0.0476 1.4760 1.5061 

h 4.7033 4.6582 0.0544 3.9361 3.8828 

it 5.0000 4.9396 0.0415 2.8868 2.9089 

f 0.5643 0.5740 0.0071 0.4958 0.4945 

h, j 7.3146 7.2990 0.0932 4.2884 4.2644 

tcd 6.7396 6.7873 0.0546 2.5092 2.4990 

hb 2.6867 2.6985 0.0365 1.9807 1.9380 

ub 3.6566 3.5684 0.0449 2.4011 2.3863 

yb 6.3432 6.2669 0.0441 2.4012 2.3427 

Table 5.1 Comparison of theoretical parameters and sample estimates from simulation data. 

5.3.3 Non-instantaneous Breakdown Repairs 

A program, DTS4, was written to simulate downtime and cost consequences under the 
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assumption of non-instantaneous breakdown repairs and either the periodic based or use 

based inspection policies. The program assumes constant breakdown repair times, db, and 

perfect inspections. When a breakdown occurs, the delay time of each defect that may 

be present in the system does not expire and defects do not arise. Also, a breakdown 

being repaired when the system is due for inspection at T is repaired within the 

inspection time, d,, along with any other defects. The output, of which, can then be 

compared to the approximate downtime models (2.18) and (2.36), or the theoretical 

downtime model using function (A. 3), given in the appendix. A sample of output is 

given in Fig. 5.7 for the canning line case study, Christer and Waller (1984b). The 

modelling parameters for the case study were, a=0.0447, y=1, (3 = 1, db = 0.698 hrs, 

dI = 0.525 hrs and k=0.101 hrs. The number of inspections carried for the simulation 

was taken to be N= 500. Simulation estimates of downtime per unit time versus the 

approximate model for expected downtime per unit time, function (2.18). Close 

agreement is achieved which validates the simulation procedure and, interestingly also 

the model approximation (2.18) for the selected modelling parameters given. 
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Fig. 5.7. Comparison of simulated downtime versus the model approximation for perfect inspections. 
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5.4 Estimation Techniques using Simulated Data 

Chapters 3 and 4 have discussed various estimation techniques which can be applied to 

a system given various sets of observational and subjective data. This section verifies 

some of these methods and demonstrates other options available to the analyst. 

5.4.1 Correcting for Bias in Delay Time Parameter Estimates 

A program, MLEI, was written in fortran to verify the maximum likelihood procedure 

given in Chapter 4, for the correction of bias due to the collection of delay times of 

defects only at breakdowns or to the collection of delay times of defects detected only 

at inspections. The program uses the likelihood functions Ll and L. given in Section 4.5. 

A test was conducted using the following input parameters; 

a=0.3, y=0.8, k=0.5, T= 10, N= 100,13= 1. 

The theoretical probability of failure, equation (2.29) is, given the above parameters, 
b(T) = 0.673 

. 

Over the time period required for 100 simulated inspections, a total number of 485 

defects had arisen, resulting in 310 failures and 175 inspected defects. The sample 

estimate of the proportion of failures, that is the total number of breakdowns (310) 

divided by the total number of defects (485), is, 

b' = 0.638. 

A 95% confidence interval for the theoretical probability of a breakdown is then given 

by, 

b* ± 1.97 0.638(1 - 0.638)/485 - (0.595,0.681) 9 
(5.13) 

which contains the theoretical value. After 100 inspections were performed, the 
histogram of delay times for the two cases are given in Figures 5.8 and 5.9, which also 

compares the results with. the theoretical expectation. 

The bias corrected estimates, for the set of the delay times of inspected defects and 
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breakdowns. {hd} and {hb} respectively, using equations (4.10) and (4.5) in the program 

MLEI, were, 

{ hd }: d=0.368,7 = 0.748, bA(T) = 0.683 and 

{ hn }: a^ = 0.306, y^ = 0.796, b^(T) = 0.677, 

where b"(7) is the estimated probability that a defect arises as a breakdown, using 

function (2.29), with the estimated parameters in both cases. 

The estimated p. d. fs are also given in Figures 5.8 and 5.9. The chi-square test was 

carried out on both sets of data assuming the data is distributed with the appropriate 

estimated conditional p. d. f. In the case of inspected delay times x2 = 8.63, and for the 

case of breakdown delay times, X2 = 5.3. Adopting a 5% significant level, we reject the 

hypothesis if X2 > 16.9 (9 degrees of freedom) for the first case, and we reject if 

x2 > 18.3 (10 degrees of freedom) for the second case. Clearly, we can accept the 

estimated p. d. fs in both cases. 

It can be seen that for the case of breakdowns, bA(T) lies within the confidence limits 

(5.14) of the probability a defect arises a failure. No updating in this case would be 

considered necessary. Although, possible updating could be explored for the case { hd } 

whereby the estimate bA(7) does not lie within the confidence limits (5.14). However, 

it can be seen that bA(T) for this case does lie close to the theoretical value for the 

simulation, b(7). 

The main point, here, is that actual delay time population parameters can be estimated 

given censored data sets. 

5.4.2 Updating Option 

An investigation is carried out to estimate the Weibull parameters assuming no bias 

exists. It will be found that the estimated model b"(7) will be either greater or less than 

the observed value b', depending on using breakdown or detected delay times. It is then 

possible to use the scale update method given in Section 3.5.1. The effects of 

undertaking this approach will be discussed. 
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A program. MLE2, was written to estimate the parameters for assumed Weibull 

distributed data using the Newton-Raphson root finding method. The same set of data 

was used in the previous section. When not correcting for bias, using MLE2, we obtain, 

{h, } : a% = 0A EI y=1.315, b"(, 7) = 0.358 

{ hh }: d=0.596, y" = 0.902, hA(7l = 0.825. 

Clearly, the effects of updating can be investigated in this situation as the sample 

proportion of defects arising as failures, b' = 0.638, and the theoretical modelling 

parameters are a=0.3 and 'y = 0.8. The true model for b(T) compared with the above 

model estimates is given in Figure 5.10. The observation point, b', is also labelled. 

When respectively updating these two estimate sets by the scale method, using the 

observation b', we obtain, 

{ hd a" = 0.249, y=1.315 

{ hb }: a" = 0.256, y= 0.902 

6 

[Z 

-0 

Co 
.0 2 
a 

True Model -+- Inspection Prior -- Breakdown Prior 

Fig. 5.10. The true model h(T) versus the model estimates. 
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It can be seen that, in both cases, there is improvement in the estimated scale parameter, 

that is comparing it to the theoretical value of 0.3. 

To investigate decision consequence of these estimating and updating procedures, the 

model (2.23) of cost is used. The parameters selected were; 

c, = 0.3 (cost of inspection), 

c, = 0.5, (breakdown repair cost), 

cd = 0.2 (defect repair cost) and 

d, = 0.5 (inspection downtime). 

The parameters were chosen so that the optimality conditions (2.25) and (2.26) are 

satisfied. The theoretical optimum inspection period is, 

7'=5.16, 

and for the estimated models using the parameter estimates from updating, the optimums 

are, 

Inspection-Update : 7" = 4.35 

Breakdown-Update :r=4.95. 

Graphs of the true model versus the model estimates are given in Fig. 5.11. An error in 

the optimum inspection period is about one time unit for the cost model based on the 

inspected delay time defects. There is no significant error in the optimum inspection 

period with the cost model based on breakdown repairs. As can be seen, both the cost 

models based on the updating procedure, lie beneath the true model. In Section 5.4.4, 

a test of model fit will be given to decide whether to accept the updated models. 

5.4.3 Iteration Method to Capture Scale and Shape Parameters 

A program, MLE3, was written to estimate the shape parameter of a Weibull distribution 

given a set of delay time data observations and a value for the scale parameter. Perfect 

inspections are assumed. Only minor modifications to MLE1 are necessary to perform 

this. The re-estimated shape parameter is then used in the updating procedure to produce 

an updated scale parameter. The procedures can be iterated until a possible convergence. 
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Fig. 5.11. The true cost model versus model estimates. 

In both cases of the small data sample, convergence to 3 decimal places, occurs in 4 

' iterations. The results obtained were, 

Detected defects iteration : a" = 0.259, y% = 0.805, 

Breakdown repairs iteration : a" = 0.260,0.789. 

Close agreement between the estimated and input parameters ((x = 0.3, 'y = 0.8) has been 

achieved through this process. In the case of a large data sample test (5000 defects in 

all), using the simulation program DTS1 (Section 5.2.1) with a different set of input 

parameters, even closer agreement was found between the estimated and input 

parameters. The Weibull parameters selected for the delay time p. d. f of the large sample 

case, were a=0.2 and '' = 1.2. The results obtained in 4 iterations were, 

Breakdown repairs iteration : a" = 0.206, '% = 1.182 

Detected defects iteration : a" = 0.206, y=1.185. 
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5.4.4 Criteria for Deciding on whether to accept the Updated Model 

We have seen that a method exists for correcting the recognised bias in delay time 

parameter estimates obtained from delay time measures captured at only breakdowns or 

inspection situations. The first method (Section 5.4.2) based upon shearing the scale 

parameter worked in one numerical case, based upon breakdown delay time estimates, 

but didn't work in another, based upon inspection delay time estimates. The second 

method (Section 5.4.3) based upon an iteration updating of both parameters gave 

satisfactory results to both these numerical cases. What is now required is a means of 

deciding whether or it necessary to update the estimates, and if so, what techniques to 

adopt. 

A simple method is proposed for deciding on whether to update via the bias correction 

procedure or through use of the iteration method : 

1. Perform a Chi-square test or K-S test on the censored delay times under 

the hypothesis that the delay times are distributed by the conditional p. d. f 

fb(ý; 7), equation (4.5) or fd(ý; T), equation (4.10) depending on breakdown- 

based or inspection-based censoring. 

2. If the test fails then either perform the bias correction method or the 

iteration method. If the tests fail in these cases then the delay times may 
be assumed not to follow the Weibull distribution. 

The Chi-Square values corresponding to each data set obtained by simulation in Section 

5.4.1, when not correcting for bias and scale updating has been performed (Section 

5.4.2), are as follows; 

A { hd }: a=0.249, y=1.315, x2 = 150.2, 

(hb) :d=0.256, Y% = 0.902, x2 = 9.94. 

Using a 5% significance level, we reject the hypothesis if X2 > 18.3 for the first case (10 

degrees of freedom), and reject if x2 > 16.9 for the second case (9 degrees of freedom). 
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Therefore, it follows that bias correction or iteration would not, on the basis of the test, 

be necessary for the case of breakdown delay times. It is clear that bias correction or 

iteration would be necessary for the detected delay times. Theses two conclusions agree 

with, our previous analysis of the decision consequence for cost. 

It is expected that when a decision not to correct for bias is taken, the models for cost 

and downtime agree closely to the models when a correction is initiated. This is due to 

the biased distribution and updated distribution being approximately equal. 

Chi-square tests have been performed on the bias correction estimation and iteration 

method. In all cases, these produce a decision not to reject the hypothesis. 

An alternative procedure to test whether to correct for bias, would be to use the 

observed times of breakdowns, if available. A K-S or Chi-Square test could be carried 

out on the empirical sample of breakdown times measured from the last inspection. The 

empirical distribution would then be compared to the theoretical distribution, function 

(3.34), using the updated parameter set. The option is examined below. 

5.4.5 Estimation using the observed breakdown times 

The section verifies the maximum likelihood and method of moments procedures given 

in Section 3.7, to estimate delay time parameters when the only data obtainable are 

observations of breakdown times and the number of defects repaired at inspections. A 

program MLE4, using equations (3.35), (3.36) and (3.41), was written to estimate the 

Weibull delay time parameters, assuming perfect inspections (ß = 1) and given this type 

of observational data. 

A test was conducted given the input parameters; a=0.1, y=1.3, T= 30, N= 500 and 

k=0.1. The total number of breakdown arrivals from this simulation were 1119 and the 

total number of defects detected at inspections were 494. The maximum likelihood 

parameter estimates of a and y, using the likelihood function (3.41), were a" = 0.100 

and 'y = 1.24, which are acceptably close to the input parameters. Hence, it follows that 

delay time modelling parameters can be estimated from only observations of breakdown 
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time and the number of inspection repairs. 

We now turn to the method of moments method. The sample mean time of breakdowns 

was 18.43. In solving the two equations for a and y. namely, 

T 

b(T. a,, y) 
1(1 

-e -"")dl= = 0.694 . 
(5.14) 

hJa0 

and 

T 

m(a, Y) =1 
fh(1 

-e -(("") dh =18.43, (5.15) 
Tb((x, y) ti= 

the method of moment parameter estimates were a" = 0.100 and y=1.285. The 

estimates are very close to the modelling parameters. Thus, the method provides an 

alternative estimation procedure. 

5.5 Conclusion 

It has been seen that the simulation models and various parameter estimation procedures 

produce results in agreement with theoretical models. This, validates the programming 

of and the derivation of the delay time models and theory of the previous section. The 

bias correction and iteration methods estimate the parameters of the delay time 

distribution to within 10% of the theoretical values for a moderately sized sample, on 

the tests carried out so far. The method of estimation using only observed data also 

produces results in accordance with theory. We conclude that these are formal 

techniques. However, convergence properties of the iteration method needs to be further 

researched. The answer to the convergence will lie in the form of the log-likelihood 

functions. E. g, for the case of failure delay times the log-likelihood function, omitting 

constant terms due to assumed HPP defect arrivals, is given by, 

F 

L({hb}; (X, 'Y) = -F ln(b(T; a, y)) +E ln(f(h;; (x; y)) , 
(5.16) 

i=1 

where f is Weibull, F is the number of failures, b(7) is the probability of failure and {h; } 
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is the set of failure delay times, hb. The likelihood if not correcting for bias is the above 

function without the Fln(b(T)) term. As the number of observations of hb increases, the 

likelihood estimates when correcting for bias will be such that the estimated model b"(T) 

will tend to b(T) the true model. Hence, the estimates can also be obtained by 

conditionally selecting values of a and ? such that b(T) = b`, the observed proportion. 

The maximum likelihood method under this condition is then the procedure to not 

correct for bias. It is believed, for the work required here, that if convergence occurs 

through the iteration method, then the estimates will tend to the maximum likelihood 

estimates when correcting for bias, as the sample size increases. 

Investigation into the error of the optimum inspection period when carrying out these 

method also needs research. A clue could lie in the behaviour of the function b(T; a, 7) 

for values of T, under the non-unique set ((x, y) which satisfy the observation point b'. 

The cost and downtime curves under such restrictions, may have optimum inspection 

periods which lie within a certain calculable interval. However, the measure of error, if 

the iteration method gives accurate results in most cases, may not now be necessary to 

consider. 

The criteria for deciding whether to perform iteration or bias correction has produced 

satisfactory results. The suggested decision procedures for deciding whether or not to 

correct for bias may only work when the biased distribution can be approximated by a 

Weibull distribution. This occurs in the test of Section 5.4.4, as the failures delay times 

are almost exponential. A decision to not correct for bias may be made on the status-quo 

point being satisfied. However, the resulting model for inspection periods other than the 

current practice may be inaccurate. A further statistical test, such as, for example, 

comparing the empirical and theoretical distribution of times of breakdowns, would need 

to be applied. 

Overall, simulation programs have been successfully written and tested, and methods 

have been developed for estimating delay distributions given accurately estimated data 

in practice. Further work could also lie in the effects of subjective errors when 

estimating delay time, the possibility of imperfect inspections and convergence 

properties of the iteration process. 
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Chapter 6 

Application of Delay Time Analysis to 

Concrete Structures 

6.1 Introduction 

This chapter gives an account of research supported by the Science and Engineering 

Research Council (grant: GR/F/61196). The project was a collaborative venture between 

operational researchers and civil engineers over 3 years. The main objectives were to 

collect and publish data on the observed rates of deterioration of particular defect types 

in a large number of concrete bridges and to develop predictive mathematical models 

that relate inspection frequency to maintenance costs. The motivation was in part 

associated with the prototype modelling paper for inspection practices of major concrete 

structures, Christer (1988). 

Concrete structures, like other civil engineering structures, deteriorate over their service 

life. The main cause of this deterioration, in an adequately built structure, can be 

described as environmental effects. Repair and maintenance represents an ever increasing 

share of maintenance expenditure on concrete structures and there is, therefore, an 

economic requirement to quantify and model the deterioration and maintenance process 

of such structures. Repair options exist at different stages of deterioration with different 

costs and consequences, and modelling is necessary to aid management decision making 

to improve the cost effectiveness of maintenance expenditure. 

A survey carried out by Queen Mary and Westfield College (QMWC) Concrete 

Research Group, Rigden et al (1988), indicated that the principal cause of concern 

amongst engineers with responsibility for structures was their inability to predict rates 

of change of defective concrete components and to decide on the timing of concrete 
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repairs in order to make cost-effective decisions. Maintenance organisations were found 

to be spending a great deal of time in analyzing and recording the conditions of 

components. However, the data recorded was under-utilized, was subject to little by way 

of analysis, and seldom led to any conclusions. It was not incorporated into any 

predictive modelling. 

There is evidently a need to develop and validate models of the random growth of 

defects arising in components based upon data that is or could be collected. Christer 

(1988) highlighted the scope for modelling deterioration and maintenance of concrete 

structures, based on the concept of delay time, Christer and Waller (1984a), Baker and 

Wang (1992), Baker and Christer (1994). RILEM (1988) gives an account of 

engineering factors that may be necessary to include in a model for concrete 
deterioration and recognises that a component's life should be modelled at least as two 

phases, namely defect free (initiation period) and defective (corrosive) period. The main 

factors which affect the rate of degradation of reinforced concrete are assumed to be 

environmental conditions, concrete type and concrete cover to the reinforcing steel, see 

also Currie and Robery (1994). 

The chapter reports on the delay time modelling of the growth of defects in concrete 
bridge components, the analysis of data collected and the development of cost based 

inspection models. The two phase delay time model is extended to an extra phase in 

order to model the process of cracking and spalling. 

6.2 Deterioration of Concrete Components 

Virtually every concrete structure eventually develops detectable cracks at some point 
in time of a sufficiently long service life. These may be already visible when built or 

could develop and widen due to environmental factors such as corrosion of steel 

reinforcement caused by the carbonation of the concrete or the impurities it may contain. 
If left to deteriorate, spalling will eventually occur, exposing the reinforcement and 
leading to corrosion, until the structure reaches a point in time when it is perhaps in an 

unacceptable state for safety or other reasons and a major repair is deemed necessary. 
Defects deteriorate through a number of definable states where the time scale is 
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measured in years. Data analysis indicates that the time within a state is not 

deterministic, and that the chance of changing state within a given period is dependent 

upon the time duration within the current state, that is the deterioration is not 

Markovian. 

In the context of delay time. the time interval between the arrival of repairable cracks 

and severe spalling would normally be the delay time measure, and repairs could be 

undertaken at non-decreasing costs at any point over this interval of time. However, for 

the present, the delay time will be split into two phases, namely cracking and spalling. 

The key phases of the deterioration modelling are now, new to cracking, which occurs 

at a time, u say, cracking to spalling which occurs over time, h, and spalling to failure 

when repair is essential, which occurs after a further time period v. Defining a 

component to be a section of a structure in which only one defect can arise, Fig. 6.1 

depicts the deterioration over the cracking and spalling phases. 

Defect free Phase Cracking Phase Spalling Phase 

0U u+h u+h+v 
Defect Multiple Minor Spalling with 
Free (New) Cracks Spalling 

exposed reinforcement 

Fig. 6.1. The Deterioration Phases of a Concrete Component. 

By dividing the time into respective key phases, the effects of alternative maintenance 

strategies can be explored. It is noted that the time intervals, u, h and v for this 

application would be in the order of years, which is in sharp contrast to hours and days 
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observed in the delay time modelling of a mechanical plant, Christer and Waller 

(1984b). Currie and Robery (1994) model the time from new to cracking and spalling 

via a chemical process model and estimate the time to cracking at around 25 years and 

spalling at around 40 years under nominal environmental conditions. However, there was 

no discussion of the variance of cracking and spalling times. This chapter proposes to 

model the distribution of time to these states using the inspection records of components 

that were subjected to varying environmental conditions in order to predict consequences 

of maintenance and inspection decisions. 

6.3. Data Collection and Analysis 

Inspection records from London Underground Limited and British Rail of concrete 

bridges were analyzed by the co-researchers at QMWC. The records contained 

information of inspection reports of bridge structures which constitutes snapshots of 

condition spanning more than fifty years in some cases. Data extracted from the records 

were entered into a linked database organised into three tables concerned with the 

location, the structure and the defect type. The categories for each table are given in 

Table 6.1. A unique code is provided for each component which had developed a defect 

in at least the hairline cracked state. This is then used in linking and querying the 

database. The structure table contains data on the structure type (e. g an overbridge) and 

the component type (e. g a flexural beam) which is a member of the structure. The defect 

table contains data on a set of inspection reports on each defect of a member. Exposure 

relates to environmental conditions experienced by the component measured on a scale 

mild, moderate or severe, and could change over the period of inspections undertaken. 

Urgency is a code relating to the original inspector's judgement on whether to carry out 

repairs or not. The key fault/action code is a number (L. 12) relating to the degree of 

cracking/spalling of the component or the form of maintenance to be carried out on the 

component. Current practice is to initiate maintenance on the recommendation of 

inspectors and engineers following inspection reports. The categories are given in Table 

6.2. Fault conditions I to 9 are ordered by the research team to represent the perceived 

stages of degradation. The worst state of the component is recorded. 

Complete data on around 700 defect arrivals on 400 bridges are currently held within 



134 

the database and available for analysis. An example of the development of defects on 

an overbridge is given in Fig. 6.2. The inspection period adopted was approximately 

every 2 years before 1950 and every 4 years after 1950. 
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Fig. 6.2. Defect developments on an overbridge built 1928. 
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Address Table Structure Table Defect Table 

Code Code Code 

Address of Structure Reference Inspection Year 

Comments Type of Structure Fault/Action Code 

Year Built Size of Crack/Spalling 

Component Type Possible Cause 

Construction Exposure Condition 

No. of Spans Urgency 

Maximum Span Comments 

1 aale o. i. categories Rncluaed in the Database. 
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Fault Code Description 

I Hairline Cracks 

2 S; ngle Crack (< 1.5mm) 

3 Multiple Cracks (< 1.5mm) 

4 Single Crack (> 1.5mm, < 3mm) 

5 Multiple Cracks (< 3mm) 

6 Cracks over 3mm 

7 Minor Spatting 

8 Spatting with Exposed Reinforcement 

9 Severe Spatting 

10 Demolition 

11 Minor Repairs 

12 Major Repairs 

table O. Z. Description of raultAction Codes. 

In interpreting the model in the context of the data, we require a fault condition 

corresponding to each of time periods u, h and v. It is recognised that when a 

component reaches state 3, (multiple cracks), the state is visibly detectable and a repair 

such as resin injection might be feasible. Hence, we define u to be the age to state 3. 

Likewise, Iz is the time interval from state 3 to state 7 (minor spalling), and v is the time 

interval from state 7 to state 8 (spalling with exposed reinforcement), when a repair is 

considered necessary. It is to be noted that a component in state 4 would likely have 

multiple cracks of less than 1.5mm, that is the worst defect defines the state. Hence, a 

component cannot and will not realistically bypass a state, e. g pass from state 2 to 4. 

If we refer to the example of defect arrival on the beam in Fig. 6.2, we see that in this 

case, assuming a 2-6 year inspection period, intervals containing u, /i and v can be 

estimated in years, i. e, 
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uc (21,23) uE (21,23) 
(6.1) 

u+h c (23,28) h e- (0,7) 

u+h+v c (28,34) ve (0,11) 

The data clearly enables bounds upon the estimates of it, It and v to be established. 

6.4. Modelling Deterioration of a Component 

This section details the methodology used to model the deterioration of a concrete 

component section subject to one defect arrival over time. Due to defects being recorded 

only at inspections, a situation of censored data arises. One question which needs to be 

answered, is whether the times u, h and v are mutually independent. Also, possible 

dependency on exposure factors may need to be considered. Indications from an earlier 

data sample show that defect developments within beams and columns share the same 

p. d. f for u but not for values of It and v. This could be due to differing tensile forces 

experienced across the element types. Aggressive exposure conditions have indicated an 

increased rate of defect development which is as expected. As stated earlier, exposure 

levels can vary over time. Hence, estimation of it, h and v will be undertaken without 

conditioning on exposure levels, that is we assume exposure is a random factor in defect 

development. 

In the absence of strong indicators to the contrary, we assume the variables are mutually 

independent and then proceed in deciding on a form or type of distribution for u, h and 

v for a component type. This choice is aided by histograms of the lower and upper 

estimates for the variables. Once distribution functions have been decided, maximum 

likelihood estimation of the parameters of the selected p. d. fs can then be undertaken 

based upon the interval data. For example, if we let g(u), ft h) and w(v) be the beam 

component p. d. fs of u, h and v respectively, assuming independence between the phases, 

then the contribution to the likelihood of the data for the defect arrival on the beam in 

Fig. 6.2 would be : 



137 

23 28-u 34-u-h 
f 

g(u) 
f f(h) f 

rt'(v)dvdhdu (6.2) 

u: 21 h=23-u v=2$-u-n 

These likelihood functions would be multiplied together across the initial data set for all 

elements and optimized over the unknown parameters. 

Due to defect histories of components having being recorded over an average of 50 

years, it is assumed that a component has a probability, p say, that a defect, i. e the 

deterioration to at least state 3 (multiple cracks), will arise over a 50 year time span. 

This is to allow for a set of components which are unlikely to develop a fault due to, 

for example, mild exposure. In effect we are attempting only to model defect arrivals 

over a 50 year period. In this way, an inspection policy based on reducing costs can be 

proposed over this finite time horizon. The conditional distribution of it over the 50 year 

interval will be assumed to be of 'Weibull' form with c. d. f, G(u) say, given by, 

G(u) = 
[1 - exp(-(auu)'-))] 

[1 - exp(-(50(x«)a")] 
for 0<_u_<50 . 

(6.3) 

The unconditional p. d. f of u, g(u), is then equal to pG (u) in the interval (0,50), and 

has not been modelled for it > 50. The model is also equivalent to the process whereby 

a defect on a component will either arrive within 50 years or not at all within its 

lifetime. 

Secondly, it is assumed that a component which develops a defect within 50 years will 

develop spalling in time, h, where h has c. d. f, F(h) say, given by, 

F(h) =1- (1 - q)(exp(-((xhh)ß')) . 
(6.4) 

The distribution has been selected due to the observation of a substantial number of 

components which were first detected in the spalling state after a series of defect-free 

inspections. This suggests that the cracking phase would be small for some components, 

say in the order of months. The extra parameter q is the finite probability that the delay 

time, h, to spalling is effectively zero. 
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The delay time, v, from minor spalling to spalling with exposed reinforcement, will be 

modelled as exponential with c. d. f, W(v) say, given by, 

WV(v) =1- exp(-(avv)) 

Maximum likelihood estimation will be used to estimate the seven modelling parameters 

for two component types, namely flexural beams and compressive columns. Results from 

the two data sets are given and model tests of fit are proposed to test the accuracy of 

the parameter estimates. 

6.4.1 Maximum Likelihood Estimation 

A program, ESTu, was written to estimate the Weibull parameters of it and the value 

of p. The program reads in data on each component of the form is e (a, b) or it c (a, ('0), 

i. e either a defect was detected at age b and the component was defect free at the 

previous inspection at age a, or the component was detected defect free at the last 

inspection, age a. The likelihood for the former data type, it e (a, b), is given by, 

{exp(-(anmin[a, 50])a")- exp(-(ccU min [b, 50])0-)) 

{1 - exp(-(50a�)p")) 

where a? 0,1(b) =0 (for b <_ 50), 1 (for b> 50) . 

(6.5) 

The likelihood for the data type, it e (a, oo), is given by, 

L2 =p 
{exp(-(aumin[a, 5O])a") - exp(-(50(x, 

4)ß")) +(1 -n) (6.7) {1 - exp(-(50a�)a")} 

which allows for the two possibilities that a defect will develop or not within the 50 

year time span, for a >_ 0. 

A program, ESTh, was written to estimate the Weibull parameters of h, and the 

parameter, q. To reduce computation time, the program conditions on the estimate of u 

from ESTu, i. e the parameters (p, a,,, (3�), so that only three parameters need to be 

estimated, namely (q, ah, P j. The program reads in data on each component which has 

developed a spalling or crack defect within 50 years, i. e it e (a, b) where b <_ 50. The 

two types of data are of the form, it + It e (c, d) or is +hC (c, co), i. e either a defect was 
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detected as a spall at age d and the component was cracked (or defect free) at the 

previous inspection c, or the component was detected cracked at the last inspection, age 

c. The likelihood for the first data type is given by, 

b 

LA = /' 
f G'(u)(F(d - ii) - F(c - u))dcu , 

(6.8) 
I. vO 

and the likelihood of the second data type is given by, 

b 

L4 =pf Ga(u){1 - F(c - u)}dcc . 
(6.9) 

u-a 

A program, ESTuh, was also written to estimate the parameters of lt and h without 

conditioning on u. The parameters obtained using this method produced exactly the same 

parameter estimates obtained in ESTu and ESTh. 

A program ESTv was written to estimate the v phase. Again, and to reduce computation 

time, the program reads in the parameters (cc., ß,,, q, (Xti, ph) estimated from the programs 

ESTu, ESTh and ESTuh. Therefore, only the parameter, av, needs to be estimated. The 

program reads in data on each component which has developed a failure or spalling 

defect and u is known to be less than 50 years. The two types of data are of the 

form, u+h+ve (e, oo) or it +h+ve (e, J), i. e either a defect was last detected as a 

spall (not severe) at age e or the component was detected failed at age f. The likelihood 

for the first data type is given by, 

bd 

L5 =p 
5GI(u)[(1 

- WV(e - u))I(b, d) +f F'(h)(1 - Me-u-h))dh 

J 
du 

Im s tiac-� (6.10) 

where l(b, d) =0 (for b# d), 1 (for b= d) 

The likelihood for the second data type is given by, 

bd 

L6 =pf GI(u) q(W(e - cc) - W(f - u))I(b, d) +f F'(h)(W(e-u-h) - W(f-u-h))dh (it 
u=a h=c-u 

(6.11) 
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6.4.2 Estimation on real data 

A maximum likelihood calculation was undertaken on data from 195 beam components 

and 176 column components using the programs ESTu, ESTh and ESTv. A check was 

also made using the program ESTuh. The same parameter estimates for u and h were 

obtained with this procedure. The results are given in Table 6.3. 

Parameter Beams 

195 

Simulation 

(200) (500) 

Columns 

176 

Simulation 

(200) (500) 

p 0.665 (0.640) (0.676) 0.472 (0.445) (0.482) 

au 0.035 (0.035) (0.036) 0.030 (0.024) (0.029) 

2.08 (1.89) (2.08) 1.90 (1.63) (2.10) 

q 0.472 (0.446) (0.434) 0.379 (0.382) (0.356) 

ah 0.036 (0.033) (0.036) 0.022 (0.022) (0.024) 

Ph 1.04 (1.02) (1.01) 2.11 (2.16) (2.06) 

av 0.105 (0.135) (0.110) 0.033 (0.033) (0.033) 

E(ul u< 50) (Years) 24.2 (23.3) (23.7) 25.3 (26.2) (26.8) 

E(h) (Years) 14.3 (16.9) (15.8) 24.6 (24.9) (24.3) 

E(v) (Years) 9.5 (7.4) (9.1) 30.3 (30.3) (30.3) 

jLauic u. 3. rarameLer estimate results [or beams and columns. 

A simulation was undertaken to test the proposed method. Parameter estimates for the 
beam and column components in Table 6.3 were selected as the theoretical parameters 

of the simulation. A sample of 200 and 500 components were simulated with an 
inspection period of 2 years over a 50 year time span. The parameter estimates results 

are given in brackets in Table 6.3. For the case of beam components, the estimated 

mean values of u, h and v can be seen to converge to the input parameters. For the case 

of column components, slight divergence in the mean of u for the larger sample can be 

seen. However, the individual estimated parameters of u are closer to the input 
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parameters. 

The main point, here, is that it is possible to obtain estimates of the distribution 

functions of discrete snapshots in the concrete degradation process obtained from 

available interval and censored data. It then remains to test the fit of the distribution and 

to model the consequences of maintenance actions. 

6.4.3 Test of Model Fit 

Due to the censored nature of the data, a test of model fit was developed so as to 

accommodate the interval type data. This test involves the Kaplan-Meier (K-M) estimate 

of the reliability function for progressively censored samples, see Kalbfleisch and 

Prentice (1980). Two K-M estimates are plotted by taking the uncensored observations 

of u, first at u=A, and then at u=B, for the interval constrained event, ue (A, B). Due 

to discrete observations of u, the K-M estimator, a nonparameteric representation, R'(u) 

say, of the reliability function, R(u) =1- pG(u), is given by, 

R "(u) _I1_d (6.12) 
j: u, <u n 

where { u; }, is the sample of uncensored u values, d, is the number of coincidental 

defective components at inspection time uS,, and nn is the number of defect free 

components at time uu. The distribution of the K-M estimator is approximately normal. 

The approximate variance of R'(u), V(u) say, is given by, 

V ̀ (u) =R '(u)2 Ed (6.13) 
j: u, <u n(ný - d) 

The variance can then be used to construct a 95% confidence interval (C-I) estimate for 

the reliability function of u, R(u), that is R'(u) ± 1.96'[ß'(u), for u <_ 50. The maximum 
likelihood reliability estimate can then be tested for accuracy by seeing if it lies within 
the estimated confidence bounds over the 50 year range. Similar procedures apply to 

time to spalling, u+h, and times to spalling with exposed reinforcement, at u+h+v. 



142 

Plots for beams and columns are given in Figures 6.3 - 6.8. The maximum likelihood 

reliability fits, formulated using functions (6.3), (6.4) and (6.5), are plotted along with 

the upper and lower K-M estimates, and the lower (upper) C-I bound for the lower 

(upper) K-M estimate. The estimated C-I interval plotted would then be expected to be 

slightly overestimated due to the interval constrained data. It can be seen that close fits 

between the K-M estimate and the maximum likelihood estimate are achieved for both 

beams and columns for u and u+h over 50 years, and u+h+v over 35 years for 

beams and 50 years for columns. The lower and upper K-M estimators can be seen to 

differ by approximately 4 years. This is due to the inspection period being 

approximately 4 years. There are also crossovers between the two K-M estimators in the 

plots for time to failure, Figs. 6.7 and 6.8. This is believed to be due to the small sample 

size of detected failures. The maximum likelihood fits in all cases lie within the 

confidence bands of the reliability function. Hence, given the additional confidence, we 

accept the estimated model for concrete degradation. Interestingly, the hazard function 

for u for both beams and columns is not strictly increasing over the range (0,50) years. 

The hazard has a convex shape with a peak at around the conditional mean value of u. 

This implies that a beam remaining in the defect free state for around 25 years is 

unlikely to develop a defect over a 50 year span, say due perhaps to mild environmental 

conditions or denser concrete. 

For a test of independence between phases u and h, the sub-sample of components 

where spalling was detected was selected. The mid-point of the interval of u, say um = 

(a+ b)/2 was selected as a point estimate of u. Given this value of u, the value of h 

would occur in interval (c - uo,, d- um). The mid-point of this interval was then selected 

as an estimate of h. For a test of independence between phases h and v, the sub-sample 

of components where spalling with exposed reinforcement was detected was selected. 

The mid-point of the interval of u+h, say sm = (c + d)/2 was selected as a point 

estimate of u+h. Given this value of u+h, the value of v would occur in interval (e - 

sm, f- sm). The mid-point of this interval was then selected as an estimate of v. The 

scatter plots for both cases are given in Figs. 6.9 and 6.10, and clearly indicate 

independence between states. 
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Fig. 63. Reliability plots for time to cracking, u, for beams. 

p 
E 
:3 
O U 

O 

Zý 
2 
.5 

A 

---- Lower K-M Max. likelihood fit -----'- Lower C-I 
Upper K-M -, ---- Upper C-I 
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Fig. 6.5. Reliability plots for time to spalling, u+h, for beams. 
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Fig. 6.7. Reliability plots for time to failure, u+h+v, for beams. 
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Fig. 6.9. Scatter plot of u and h estimates for beam and column components. 
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Having established basic delay time parameters for the various stages of the deterioration 

process, it is now possible to model the cost consequences of an inspection process. 

6.5. Maintenance Models of Cost 

When cracks develop in a component, a repair such as resin injection, would vary in 

cost depending on the location and severity of cracks. Likewise, patch repairs to spalled 

areas would increase in cost over time when larger areas of the component become 

affected. When a component reaches the state of necessary major repairs, hazard and 

safety cost could be incurred until the component is repaired. Frequent effective 

inspections followed by appropriate action would reduce costs of this type, but a 

compromise must be sought due to the high cost of inspections. A conceptual example 

of the cost of a repair over time is given in Fig. 6.11. 

Cost of repairs 

Defect Multiple Minor Severe 
Free (New) Cracks Spelling Spalling 

Fig. 6.11. An example of repair costs over the deterioration phase. 

0u u+h u+h+v 
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Informal and formal meetings were held with the civil engineers at Queen Mary and 

Westfield College with a view to estimate this cost profile. A questionnaire was 

designed to be completed by staff at Concrete Repairs Ltd and twelve cases of various 

defect types at different stages of deterioration were selected for assessments. The 

questionnaire included background information on the defect, e. g a photograph, 

description and location of the structure, and the extent of degradation. 

Questions were put on the necessary action to establish the cause of the degradation and 

the costs of inspection, investigation, mobilization and repair of the structure. Questions 

were also put concerning delay time : 

1. Would you consider that this repair should be carried out; 

a. within one year. 
b. in 3-5 years. 

c. after 10 years. 
d. no action would be needed. 

2. What would be a reasonable estimate of expected repair cost if: 

a. the fault was left for another ten years. 

b. the fault was repaired when first noticed. How long ago would you 

estimate this might reasonably have been first noticed. 

c. the fault was left until repair was absolutely essential. 

With a sufficient sample size of this subjective type of data, estimates of the repair cost 
functions for cracking and spalling can be obtained. However, the data will only be of 
limited value due to the small sample size. The responses to questions, implied the 

estimator(s) did not fully understand what was being sought. The data was received near 

to the end of the project completion time, and if received earlier, a revised questionnaire 

would have been submitted and meetings arranged to clarify further the nature and use 

of delay time measures. 

IN 
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In an effort to alleviate the problems encountered, it was decided to estimate the 

expected repair cost of particular states of degradation. 

The estimated repair costs per beam or column were: 

1. Multiple cracks (£1080). 

2. Severe cracks (£1680). 

3. Minor spalling (£1370). 

4. Severe spalling (E1870). 

The costs were based on a typical scenario for a component of a set size with an 

estimated expected extent and area of degradation when detected in these states. The 

cost of inspection was estimated as £50. The investigation, access and de-mobilisation 

cost was estimated at £1650. Anti-carbonation treatment, which can be applied to define 

defect free components, was estimated at £480. The costs above were accumulated from 

estimated costs of each of the stages of the repairing process. It can be seen that the 

estimated cost of minor spalling is lower than that of severe cracks. This is due to the 

high cost of crack injection fluids. It was also estimated that repair costs after the failed 

state double in ten years. The current day repair cost was assumed not to be dependent 

on the age of the component. It is noted that the above costs do not increase uniformly 

with deteriorating state. 

For the modelling phase, the expected repair cost is assumed to increase linearly over 

each of the phases, cracking and spalling. Penalty factors could also be attached for the 

time when a defect in the failed state is left unrepaired. 

6.1 Single Component Cost Models 

A simple model will be given here to show how the consequences of maintenance 

decisions can be modelled for a component section subject to a single defect. We adopt 

the following assumptions: 

(a) The p. d. fs for u, It and v are g(u) = pG' (u) for uc (0,50), f(h) = F(h) 

and %v(v) = W' (v), respectively. 
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(b) An inspection is perfect, and of cost I, and is to be first scheduled at time, 

T. 

(c) If at time Ta component is found to be in either the cracked or the 

spalling state repair state at inspection, then it is repaired perfectly to the 

'as-new'condition. The repair time is very small compared to T and may 

be assumed both instantaneous and undertaken at time T. 

(d) The expected cost of a crack repair, at time T, is given by c(y; h) where 

y is the time since the crack first arose, i. e y=T-u at time T, and h is 

the delay time of the defect, where h>y. 

(e) The expected cost of spalling repair is given by s(y; v) where y is the time 

since spalling occurred, i. e. y=T-u-h at time T, where v>y. 

(f) The expected cost of major repairs is m(y) if inspected in the severe 

spalling state, where y is time spent in the failed state. 

Further to these assumptions, we assume that a defect or failure is only spotted at an 

inspection. This refelects observed current practice. 

Consider the expected repair cost of a defect which is observed as a crack at inspection 

time T, with associated defect arrival time u<T. Let the expected repair cost be denoted 

, 
(T; u). For the defect to arise as a crack it must have delay time h>T-u. The by R,, 

expected repair cost for a particular h>0 will be c(T - u; h). Hence summing over all 

possible h, 

R, (T; u) =f f(h) c(T - u; h) dh . 
(6.14) 

hT -u 

Next, let the expected repair cost of a defect identified as spalling at inspection time T 

with, again, associated defect arrival time u<T, be denoted by R, (T; u). For the defect 

to arise in the spalling state, it must have delay time h<T-u. The expected repair cost 
for a particular v and h will be s(T -u-h; v) for v>T-u-h and m(T -u -h - 

v) for v<T-u-h. Hence summing for all possible h and v, we have, 

The expected cost per unit time, c(T) say, over the first interval (0, T), can then be 

derived, 



151 

T- u 

RS(T; u) = 
fs(T, 

u, h)f(h)dh + gS(T, u, O) 
h-0 

T-u-k 

where S(T, u, h) =f s(T - it - h; v)w(v)dv +f m(T -u-h -v)w(v) dv 

vs T-u-h v. 0 (6.15) 

T 

c(ý =TI+f g(u)fRc(T; u) + RS(T; u)}du . 
(6.16) 

G=O 

The inspection point T could then be selected so as to minimize this objective function. 

An adaptive dynamic policy can be undertaken here using information on the state of 

the defect gathered from each inspection. Once an inspection is competed, the optimum 

time to next inspection can be determined. Under current assumptions, if a component 

defect is noticed and repaired to as new at T, then the instant T is a renewal point for 

the beam. Should no defect be found, the optimum time to the next inspection would 

be derived from cost function, as before, but with a modified p. d. f for u, namely, 

p. g(u + 7)1(1 - p. G(7)), for ue (T, 50). The process is clearly repeatable. 

Consider the following numerical example for flexural beams, where the p. d. fs of u, h 

and v are given by the distributions in the previous section. An example of costs are 

given by: 

I= 50, c(y; h) = 2730 + 600y1h, s(y; v)=3020 + 500y1v and m(y) = 3520 + 1870y/10, 

which include investigation and access costs for defective components. The costs were 

estimated by QMWC and based on a typical scenario for a component (beam or column) 

of an expected area (40m2), with an estimated expected extent and area of degradation 

when detected in states 3,6,7 and 8. As can be seen, the expected repair costs are 

assumed linear over each delay time phase. The smaller the delay time the faster is the 

rate of repair cost over the delay time period and vice-versa. The expected costs per unit 
time over the first inspection point T for beams and columns are given in Fig. 6.12. It 

can be seen that an optimum occurs at around 4 years for beams and 5 years for 

columns. The expected cost for columns is lower than beams and more shallow due to 

the estimated lower rate of deterioration. Interestingly, the current inspection practice is 
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around 4-5 years for the bridges analyzed. 

C 
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Beams -+- Columns 

Fig. 6.12. Expected cost per unit time over first inspection point for beams. 

6.5.2 Multi-Component Cost Models 

In practice, it is usually practical to carry out inspections on all concrete components on 

a bridge at inspection. Consider a simple bridge consisting of, NB say, beam components 

and Nc say, column components. The components are further assumed to be 

independent. Consider a policy to renovate the bridge periodically every T years with 

set-up cost I per renovation (involving access and investigation, £1650). Assume that on 
inspecting a component in at least the multiple cracked state that a repair is initiated, 

and that the component is restored to the 'as-new' condition. Also, for a component not 

defective, anti-carbonation treatment is used to restore the component to an assumed 'as- 

new' state. The expected cost per unit time, c(T) say, is given by, 

c(7) = 
I(1 

+ NB(MB(7) + A) + Nc(Mc(7) + A)) 

02468 10 12 14 16 
Inspection Point, T (years) 
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where MB(T) and MS(T) are the expected maintenance repair costs, at T, for a beam and 

column respectively, formulated in function (6.16), using the respective parameterized 

p. d. fs for it, h and v, functions (6.3), (6.4) and (6.5). 

The defect repair costs, c(y; h) = 1080 + 600y1h, s(y; v)=1370 + 500y/v, 

m(y) = 1870(y/10 + 1) and A= 480, is the anti-carbonation treatment cost. 

For a numerical example, assume a bridge consisting of 5 beams and 3 columns. 

Assume the inspection and repair cost functions are given in Section 6.5.1 and the 

parameter estimates for ii, h and v in Section 6.4. The total expected maintenance cost 

per unit time, c(7), over the period to the first rennovation T, is given in Fig. 6.13. As 

can be seen the optimum is around 20-30 years which is considerably in excess of the 

five year time period for the visual element inspection model of Fig. 6.12. This is due 

both to the high set-up cost applied at the time of rennovation (E1650 as opposed to 

£50) and also to the fact that if all elements are defect free or in deterioration states 1 

or 2, then an anti-carbonation treatment will be given. 

N 
E 

I- a) 

U) 0 U 
ID 

W 

Fig. 6.13. Expected cost per unit time versus rennovation period, T, for a bridge. 

5 10 15 20 25 30 35 40 45 50 
Rennovation, T (years) 
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Next, we consider the effects of a periodic inspection policy, without rennovation, over 

a 50 year life span for a bridge. Two policies will be considered, that is repairing any 

defect found at inspection and that of only repairing spalling defects. The current 

practice of the two companies who provided the data, is to generally repair only the 

spalling or worse defects. A simulation is used to estimate the expected maintenance 

cost per unit time, c(7) say, over 50 years. It will be assumed that if more than one 

component is found defective at inspection then the set-up cost, £1650, will be shared 

across the components. A sample size of 4000 bridges was selected. The expected cost 

per unit time for the two policies for the bridge consisting of 5 beams and 3 columns 

is given in Fig. 6.14. It can be seen that the optimums are around 5 years, that of the 

current practice. However, the spalling repair policy has a lower cost per unit time. 

Thus, a recommendation would be to only repair cracks if the need is essential. 

240 

E 
: 

22 

X21 

a 2C 
Ü_is 

E 17 

1 

1 

1401 1 2468 10 12 14 
Inspection Period, T (years) 

16 

Spalling Only 

Repair all defects 

Spalling (VI = 25) 
p 

Spalling (VI = 75) 

Repair all (Vl= 25) 
A 

Repair all (Vl= 75) 

Fig. 6.14. Simulated expected cost per unit time versus inspection period. 

For a sensitivity analysis, the subjectively estimated visual inspection cost (£50) was 

varied to £25 and £75 for both the policies of repairing all defects and of repairing at 
the spalling only. The simulation outputs, for expected cost per unit time over a 50 year 
time horizon as a function of the inspection period are given in Fig. 6.14. For the case 
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of spalling repair, the optimum inspection is reduced to 2 years for the £25 inspection 

cost and still at 4 years for the £75 cost. For the case of repairing all defects, the same 

reduction in the optimum can be seen for the £25 cost. However, the optimum is 

increased to 6 years for the £75 inspection cost. Clearly, the requirement to a more 

degradable state before repair does, in this case, lead to notably lower costs. It is also 

evident that the cost of the inspection is more influential upon the inspection period 

when all defects are repaired and not postponed to the spalling stage. This is consistent 

with intuition. 

6.6. Conclusion 

The chapter has highlighted a method to model the deterioration and maintenance of 

concrete structures. The concept of delay time is an important ingredient in the 

modelling process, and this is extended to a four phase classification of a component; 

namely defect free, cracking, spalling and failure. 

Analysis of the database shows the deterioration of components over a series of 

inspection and initial p. d. fs of the delay time phases have been calculated. A method to 

estimate parameters with the censored data based using maximum likelihood has been 

proposed, along with a technique for testing the fit obtained. 

Other models for the delay time distribution have been considered. We recall that the 

probability, p, that a defect will develop within 50 years, was defined due to defect 

histories being, on average, recorded over this period. If interest is in a maintenance 

strategy upto a 50 year time span then the time of defect developments beyond 50 years 

need not be modelled. However, a defect development beyond the 50 year time span is 

most likely to arise in components subjected to mild and dry environments, see Currie 

and Robery (1994). Hence, the parameter I) introduced in Section 6.4 seems a reasonable 

parameter to employ for modelling the initial point distribution, g(u), in the assessment 

of the 50 year condition, equation (6.3). The need to introduce a probability, q, that the 

cracking phase takes zero time was due to a substantial number of components being 

detected first in the spalled state. It is known that the cracking phase can be short in 

some cases when a component is subjected to intermittent wet conditions, see Currie and 
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Robery (1994). Hence, it is of interest to estimate this parameter. 

Parameter estimation programs were successfully written and tested using simulation. 
The parameter estimates for beams and columns were tested using the Kaplan-Meier 

estimate of the reliability function, resulting in close fits for u and u+h over 50 years 

and for u+h+v over 35 years for beams and 50 years for columns, with the maximum 

likelihood fit lying within 95% confidence bands of the Kaplan-Meier estimate. 

Problems that arose when estimating repair costs for concrete components have already 
been outlined in the text. The main factors in achieving success in the current type of 
data collection are: 

1. The questions need to be fully understood by the organization involved 

in estimating. 

2. Regular meetings with the repair organization and operational researchers 

are important to clarify the nature and use of the information sought. 
3. A large data sample is required, especially to estimate bi-variate cost 

functions. 

4. Timely return of costing information so that, if necessary, revised 

questionnaires can be prepared within the project time. 

The recent paper by Wang (1995) would have assisted us considerably here, and the 

concepts will be utilised in developments when distributions of costs are required. Close 

collaboration and continuous contact with civil engineers is also necessary to fully 

understand the process being modelled, so that accurate predictions of concrete 
deterioration and cost consequences of inspection and repair practices can be formulated. 

Single component and multi-component cost models were formulated incorporating the 

estimated model for deterioration and the estimated cost functions. The single 

component model recommends to inspect beams at around 5 years and columns at 6 

years. The cost model for a bridge suggests to overhaul at around 20-30 years. The 

recommended periodic inspection policy for a bridge is to inspect every 5 years, 
repairing only spalling defects, which interestingly is approximately the current practice 
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of the companies involved. Further research would lie in investigating the effect of 

inspections prior to an overhaul or in some form of age based policy. Other extensions 

relate to the stochastic distribution nature of costs and the non-perfect nature of 

inspections. The sensitivity analysis, on varying the visual inspection cost, has shown 

that the cost of inspection has greater influence upon the optimum inspection period for 

the case of repairing all defects, compared to the practice of repairing only at the 

spalling stage. 

The main conclusion of the research program is that if the appropriate input data is 

collected in a coherent and methodical fashion, it is possible to utilise it to model 

deterioration rate, and further, the potential exists to model cost consequences of 

inspection policies and thereby optimize inspection practices. 
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Chapter 7 

Conclusion 

7.1 Literature Review 

Chapter 1 has presented an overview of past and current developments in maintenance 

modelling. It is evident that delay time models and other new models are now 

increasingly being applied and tested through case studies. However, there is evidence 

of a deficiency of models for maintenance that takes into account the physical process, 

be it chemical, electrical or mechanical, that leads to a component failure. Geraerds 

(1972) regards the selection of statistical models for component and system failure 

behaviour as a subsection of a complex maintenance model of an organisation, that also 

takes into account such factors as maintenance planning and control, designs of systems, 

inventory problems and the feedback of results. Dekker et al (1995) consider also the 

planning of the maintenance activities for a group of components with different 

estimated optimal policies. It is shown that combining the maintenance activities, by 

delaying or bringing forward planned maintenance for some components with increased 

cost penalty, can reduce overall maintenance costs. This is due to the setup cost being 

shared. Hence, the necessary fusion between mathematical models and organizational 

planning and constraints are evolving in the maintenance field. 

Over the past ten years, since the first paper, Christer and Waller (1984a), delay time 

modelling has undergone considerable development and is increasingly being accepted 

as an important concept for the real world modelling of maintenance of components and 

systems. There have been models which have touched on the concept, for example, Cox 

(1957, p. 121) introduced a wear model such that a component can be defect free or enter 

a defective state prior to failure. This is equivalent to having a finite probability of zero 
delay time. An inspection model is presented to take into account this effect. Cozzoloni 

(1968) formulates a model whereby a system is assumed to have an unknown number 
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of defects after a planned maintenance activity with each defect having a delay to cause 

failure. It is shown that the process of breakdowns will be a non-homogeneous Poisson 

process, as with the delay time system model. Butler (1979) classifies a component as 

functioning, functioning but defective, and failed. An inspection is also assumed to 

possibly increase the chance of failure due to the chance of observing a component in 

the defective state. However, a Markov model is formulated, thereby restricting the 

distribution of u and h to exponential. Lewis (1972) suggests an accumulation model 

whereby defective components which are detectable and do not cause failures, i. e having 

infinite delay time, are repaired at a failure. The expected repair time is then correlated 

with operating time. 

Statistical methods, testing and policy formulations are evidently being developed and 

formalised for the delay time model with the growing experience through applications. 

It is important that statistical tests are carried out in confirming all postulated 

assumptions, e. g the renewal assumption of a perfect inspection. A method to identify 

the optimal and feasible policy type (e. g periodic or age-based inspections) for a 

component or system also needs to be addressed. 

7.2 Delay Time Models for Repairable Systems 

It has been seen that the concept of delay time can be used in modelling maintenance 

of a complex system. The NHPP model for the arrival process of failures of a repairable 

system, endorsed by Ascher and Feingold (1984), incorporates the concept of delay time 
by allowing the ROCOF be a convolution of the defect rate and delay time p. d. f under 
the assumption of independence. In this way, the expected number of defects detected 

at inspections can also be modelled. However, the assumption of an NHPP for a system 

will need to be tested for a specific case. 

The case of imperfect inspection with NHPP defect arrivals has not been considered here 

and is an area for further research which is underway elsewhere. The inspection point 
for this case is not a system renewal implying that the defect arrival rate g(u) cannot be 

considered identical in each inspection interval. This increases the modelling complexity. 
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Clearly, the downtime and cost of other inspection policies can also be investigated. For 

example, a policy could be to inspect after the n'th failure occurrence or when a 

particular length of operating time t has elapsed. The decision variables would be n and 

t. The use-based inspection policy is when n= co. The case, n=1, implies an age based 

replacement policy, for the case of perfect inspections. 

Under restricted circumstances, it has been shown that the system can be modelled by 

a Markov process in continuous time, see also Duyn Schouten and Wartenhorst (1994). 

This model could also be expanded to the more realistic case when there are a finite 

number of defect prone components within a system. 

A criticism of these models is that ageing of the system after each inspection has not 
been modelled. Ageing can be modelled by assuming non-identical defect rates, g(u), 

over each inspection interval. It is also possible to allow the delay time of a defect to 

be dependent on u and the inspection interval in which the defect occurred, see Christer 

and Wang (1992). The process of breakdowns then would not necessarily be an NHPP. 

The type of model selected is directly dependent on assumptions on how the system is 

used, type and quality of maintenance and the deterioration processes over time. The 

purpose of this chapter has been to introduce the basic nature of the delay time concept 

and the variety of models that may be constructed. 

7.3 Updating and Estimating Parameters for Delay Time Models. 

Several formal techniques of updating delay time models have been presented. These 

have been based on the existence of subjective data to decide a prior or type of delay 

time distribution. The prior is then parameterized under a linear transform and the 

uniqueness and existence of a solution to modelling the "status quo" is discussed. It has 

been found that a unique solution exists under a simple scale transform and a set of 

solutions under the more general linear case. The effects of changing the model via the 

parameter, ß (the probability a defect is detected at inspection), that is for ß=I to 
(3 #1 and vice-versa, or simply varying ß, as another updating option has also been 

investigated which highlights the variety of updating options. 
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The effects of the change in the downtime model and consequently the optimum 

inspection period has been demonstrated for various updating techniques. Further 

research could lie in predicting the behaviour of the optimum for updating options, 

modelling parameters and delay time p. d. f types. 

Another method of parameter estimation has been proposed based on observed times of 

breakdown and the defects detected at inspections. For this method, the prior distribution 

type can be assumed and the parameters are then determined using the method of 

moment or maximum likelihood technique. It has been seen that the observed failure 

times can be also be used in a test for fitting a model and in deciding upon a delay time 

prior when no delay time data is available. 

Delay times may not only be biased subjectively, but also from a censored data set. 
Delay times, for example, may only be estimated from the failures which occur over a 

data collection survey. Hence, an observational bias enters the problem. 

7.4 Bias in the Initiation and Delay Time Parameter Estimates 

It has been seen that a statistical bias can exist in the data leading to parameter estimates 

of delay time and initiation time for censored data. Breakdown based observations give 

rise to an underestimate of delay time and initiation time whilst observations based upon 

defect repairs at inspection give rise to overestimates. The bias has been shown to be 

dependent on inspection frequency and the perfectness of inspections. 

Methods based on maximum likelihood have been proposed to cope with the bias and 
lead to the estimation of the actual initiation time and delay time distribution. 

In the case of censored data, it may be possible that parameters for the delay time 
distribution can be estimated to an acceptable degree of accuracy by updating procedures 
instead of performing the bias correction. Some form of iteration method could be 

proposed. 



162 

7.5 Simulation Study of the Delay Time Process 

It has been seen that the simulation models and various parameter estimation procedures 

produce results in agreement with theoretical models. This, validates the programming 

of and the derivation of the delay time models and theory of the previous section. The 

bias correction and iteration methods estimate the parameters of the delay time 

distribution to within 10% of the theoretical values for a moderately sized sample, on 

the tests carried out so far. The method of estimation using only observed data also 

produces results in accordance with theory. We conclude that these are formal 

techniques. However, convergence properties of the iteration method needs to be further 

researched. The answer to the convergence will lie in the form of the log-likelihood 

functions. It is believed, for the work required here, that if convergence occurs through 

the iteration method, then the estimates will tend to the maximum likelihood estimates 

when correcting for bias, as the sample size increases. 

Investigation into the error of the optimum inspection period when carrying out these 

method also needs research. A clue could lie in the behaviour of the function b(T; a, 'y) 

for values of T, under the non-unique set ((x, y) which satisfy the observation point b', 

where a and w are the scale and shift parameters respectively. The cost and downtime 

curves under such restrictions, may have optimum inspection periods which lie within 

a certain calculable interval. However, the measure of error, if the iteration method gives 

accurate results in most cases this may not now be necessary to consider. 

The criteria for deciding whether to perform iteration or bias correction produces 

satisfactory results. The suggested decision procedures for deciding whether or not to 

correct for bias may only work when the biased distribution can be approximated by a 
Weibull distribution. This occurs in the test of section 5.4.4, as the failures delay times 

are almost exponential. A decision to not correct for bias may be made on the status-quo 

point being satisfied. However, the resulting model for other inspection periods than the 

current practice may be inaccurate. A further statistical test, such as, for example, 

comparing the empirical and theoretical distribution of times of breakdowns, would need 

to be applied. 
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Overall, simulation programs have been successfully written and tested, and methods 

have been developed for estimating delay distributions given accurately estimated data 

in practice. Further work could also lie in the effects of subjective errors when 

estimating delay time, the possibility of imperfect inspections and convergence 

properties of the iteration process. 

7.6 Application of Delay Time Analysis to Concrete Structures 

The chapter has highlighted a method to model the deterioration and maintenance of 

concrete structures. The concept of delay time is an important ingredient in the 

modelling process, and this is extended to a four phase classification of a component; 

namely defect free, cracking, spalling and failure. 

Analysis of the database shows the deterioration of components over a series of 

inspection and initial p. d. fs of the delay time phases have been calculated. A method to 

estimate parameters with the censored data based using maximum likelihood has been 

proposed, along with a technique for testing the fit obtained. 

Other models for the delay time distribution have been considered. We recall that the 

probability, p, that a defect will develop within 50 years, was defined due to defect 

histories being, on average, recorded over this period. If interest is in a maintenance 

strategy upto a 50 year time span then the time of defect developments beyond 50 years 

need not be modelled. However, a defect development beyond the 50 year time span is 

most likely to arise in components subjected to mild and dry environments, see Currie 

and Robery (1994). Hence, the parameter p introduced in Section 4 seems a reasonable 

parameter to employ for modelling the initial point distribution, g(u), in the assessment 

of the 50 year condition, equation (6.3). The need to introduce a probability, q, that the 

cracking phase takes zero time was due to a substantial number of components being 

detected first in the spalled state. It is knwown that the cracking phase can be short in 

some cases when a component is subjected to intermittent wet conditions, see Currie and 

Robery (1994). Hence, it is of interest to estimate this parameter. 

Parameter estimation programs were successfully written and tested using simulation 
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The parameter estimates for beams and columns were tested using the Kaplan-Meier 

estimate of the reliability function, resulting in close fits for u and u+h over 50 years 

and for u+h+v over 35 years for beams and 50 years for columns, with the maximum 

likelihood fit lying within 95% confidence bands of the Kaplan-Meier estimate. 

Problems that arose when estimating repair costs for concrete components have already 

been outlined in the text. The main factors in achieving success in the current type of 

data collection are: 

1. The questions need to be fully understood by the organization involved 

in estimating. 

2. Regular meetings with the repair organization and operational researchers 

are important to clarify the nature and use of the information sought. 

3. A large data sample is required, especially to estimate bi-variate cost 

functions. 

4. Timely return of costing information so that, if necessary, revised 

questionnaires can be prepared within the project time. 

The recent paper by Wang (1995) would have assisted us considerably here, and the 

concepts will be utilised in developments when distributions of costs are required. Close 

collaboration and continuous contact with civil engineers is also necessary to fully 

understand the process being modelled, so that accurate' predictions of concrete 

deterioration and cost consequences of inspection and repair practices can be formulated. 

Single component and multi-component cost models were formulated incorporating the 

estimated model for deterioration and the estimated cost functions. The single 

component model recommends to inspect beams at around 5 years and columns at 6 

years. The cost model for a bridge suggests to overhaul at around 20-30 years. The 

recommended periodic inspection policy for a bridge is to inspect every 5 years, 

repairing only spalling defects, which interestingly is approximately the current practice 

of the companies involved. Further research would lie in investigating the effect of 

inspections prior to an overhaul or in some form of age based policy. Other extensions 

relate to the stochastic distribution nature of costs and the non-perfect nature of 
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inspections. The sensitivity analysis, on varying the visual inspection cost, has shown 

that the cost of inspection has greater influence upon the optimum inspection period for 

the case of repairing all defects, compared to the practice of repairing only at the 

spalling stage. 

The main conclusion of the research program is that if the appropriate input data is 

collected in a coherent and methodical fashion, it is possible to utilise it to model 

deterioration rate, and further, the potential exists to model cost consequences of 

inspection policies and thereby optimize inspection practices. 
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Appendix 

Stochastic Case Model for Downtime 

An outline is given here on obtaining a more general model for downtime, that is 

relaxing assumption (b), db « T, from Section 2.5. What is required is the expected 

cumulative downtime over a real time interval, say (0,7). It is a more complicated 

option because at time T the system could either be operating or down for repair. Hence, 

the model would be dependent on knowledge of the p. d. f of the breakdown repair time. 

Chilcott and Christer (1991) develop an iterative equation method for a similar problem. 

Dagpunar and Jack (1993) derive a minimal repair model for a system with the 

assumption of constant breakdown repair times. Hence, a need could arise for this 

refinement. 

Let DT, denote the cumulative breakdown repair time over interval (0, T). If no failures 

have arisen in interval (0, T) then this implies P{DT = 0) = e-'(), due to NHPP 

breakdown arrivals. Consider the joint event; { the system is up at time T, DT is in the 

small interval (x, x+ dx), n failures have arisen over (0, T) and have been completely 

repaired l. This is equivalent to having only n breakdowns in operating time t=T-x 

and the cumulative breakdown time of n complete repairs in interval (x, x+ dx). 

The joint probability of this event is, P{B,.. 
x = n}zn(x)dx, where zn(x) is the n-fold 

convolution of the p. d. f for each breakdown repair time and P{ Bt = n) is given by 

function (2.4). 

Secondly, consider the above joint event above when the system is now down at time 

T, and the n+l'th breakdown is being repaired at time T. DT will now have a 

contribution from the last and incomplete repair. This event is equivalent to n failures 

in operating time t=T-x, an additional failure in operating time interval 

(T - x, T-x+ dx) and x spanning the interval of the n'th and n+l'th cumulative 
breakdown repair time. The probability of the joint event under 
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consideration, is P{BT_,, = n}{Z,, (x) - Zn+l(x)}r(x)dx, denoting Z,, (x) as the c. d. f form 

of zn(x). Summing the above probabilities for all n, it follows that the p. d. f of DT, say 

n(x; T), for the interval, 0<x: 5- T, is given by, 

n(x; 7) =E B(T -x) nx) e {z(x) + r(T - x){Zn(x) -Z+ (x))} , 
(A. 1) 

n-0 
n! 

letting zo(x) =0 and Z3(x) = 1. Note that the integral of it(x; 7) over the interval (0,7) 

will equal P{DT > 0} =1-e -"('I, i. e the probability of non-zero downtime in interval 

(0, T). 

Hence, the expected cumulative downtime, say DR(T), is given by, 

T 

DR(T) = 
fxir(x; T)dx (A. 2) 

x=o 

Due to the complexity of the p. d. f, it is possible that Laplace transforms could be used 

or some other numerical method could be employed to evaluate the function. The 

revised expected downtime per unit time model, dR(T) say, that is given by, 

dR(7) = 
DRM + dj 

(A. 3) 

can then be used to select the optimum inspection period. Also, validation of the 

approximate model for selected modelling parameters could be undertaken. 



168 

References 

Ascher, H. (1992), Basic probabilistic and statistical concepts for maintenance of parts 

and systems, IMA Journal of Mathematics Applied in Business and Industry, 3,153-167. 

Ascher, H. and Feingold, H. (1984), Repairable Systems Reliability, Marcel Dekker, 

New York. 

Baker, R. D., (1991), Testing the efficacy of preventive maintenance, Journal of the 

Operational Society, 42,494-503. 

Baker, R. D. and Christer, A. H. (1994), Operational Research modelling of engineering 

aspects of maintenance, European Journal of Operational Research, 73,407-422. 

Baker, R. D. and Wang, W. (1992), Estimating the delay-time distribution of faults in 

repairable machinery from failure data, IMA. Journal of Mathematics Applied in Business 

and Industry, 3,259-281. 

Baker, R. D. and Wang, W (1993), Developing and testing the delay time model, 

Journal of the Operational Research Society, 44,361-374. 

Barlow, R. E. (1984), Mathematical theory of reliability: an historic perspective, IEEE 

Transactions on Reliability, R-33,1,16-19. 

Barlow, R. E. and Hunter, L. C. (1960a), Optimal preventive maintenance policies, 

Operations Research, 8,90-100. 

Barlow, R. E. and Hunter, L. C. (1960b), Reliability analysis of a one-unit system, 

Operations Research, 9,200-208. 

Barlow, R. E. and Proschan, F. (1965), Mathematical Theory of Reliability, Wiley, New 

York. 



169 

Beichelt, F. (1981), Minimax inspection strategies for single unit systems, Naval 

Research Logistics, 28,375-381. 

Butler, D. A. (1979), A hazardous inspection model, Management Science, 25,79-89. 

Cerone, P. (1991), On a simplified delay time model of reliability of equipment subject 

to inspection monitoring, Journal of the Operational Research Society, 42,505-511. 

Chatfield, C. (1970), Statistics for Technology, Chapman and Hall, New York. 

Chilcott, J. B. and Christer, A. H. (1991), Modelling of condition based maintenance at 
the coal face, International Journal of Production Economics, 22,1-11. 

Cho, D. I. and Parlar, M. (1991), A survey of maintenance models for multi-unit 

systems, European Journal of Operational Research, 51,1-23. 

Christer, A. H. (1973), Innovatory decision making, The Role and Effectiveness of 
Theories of Decision in Practice, Hodder & Stoughton, London, 368-377. 

Christer, A. H. (1978), Refined asymptotic costs for renewal reward processes, Journal 

of the Operational Research Society, 29,577-584. 

Christer, A. H. (1982), Modelling inspection policies for building maintenance, Journal 

of the Operational Research Society, 33,723-732. 

Christer, A. H. (1984), Operational research applied to industrial maintenance and 
replacement, In: Developments in OR (R. W. Eglese & G. W. Rand Eds. ), Perganuon 

Press. 

Christer, A. H. (1987a), Delay-time of reliability of equipment subject to inspection 

monitoring, Journal of the Operational Research Society, 38,329-334. 



170 

Christer, A. H. (1987b), Comments on finite-period application of age-based replacement 

models, IMA Journal of Mathematics in Management, 1,111-124. 

Christer, A. H. (1988), Condition-based inspection models of major civil-engineering 

structures, Journal of the Operational Research Society, 39,71-82. 

Christer, A. H. (1992), Proto-type model of irregular condition monitoring of production 

plant, IMA Journal of Mathematics Applied in Business and Industry, 3,219-232. 

Christer, A. H., Wang, W., Baker, R. D. and Sharp, J. (1995), Modelling maintenance 

practice of production plant using the delay time concept, IMA Journal of Mathematics 

Applied in Business and Industry, 6,67-83. 

Christer, A. H. and Desa, I. M. (1992), Maintenance and availablity modelling of bus 

transport in Malaysia: Issues and Problems, Proceedings of the International Conference 

on OR for Developing Countries, Ahmedebad, India. 

Christer, A. H. and Jack, N. (1991), An integral-equation approach for replacement 

modelling over finite time horizons, IMA Journal of Mathematics Applied in Business 

and Industry, 3,31-44. 

Christer, A. H. and Keddie, E. (1985), Experience with a stocahstic replacement model, 
Journal of the Operational Research Society, 36,25-34. 

Christer, A. H. and Redmond, D. F. (1990), A recent mathematical development in 

maintenance theory, IMA Journal of Mathematics Applied in Business and Industry, 2, 

p. 97-108. 

Christer, A. H. and Redmond, D. F. (1992), Revising models of maintenance and 
inspection, International Journal of Production Economics, 24,227-234. 

Christer, A. H. and Scarf, P. A. (1991), A robust replacement model, Journal of the 
Operational Research Society, 45,261-275. 



171 

Christer, A. H. and Waller, W. M. (1984a), Delay-time models of industrial inspection 

and maintenance problems, Journal of the Operational Research Society, 35,401-406. 

Christer, A. H. and Waller, W. M. (1984b), Reducing production downtime using delay- 

time analysis, Journal of the Operational Research Society, 35,499-512. 

Christer, A. H. and Waller, W. M. (1984c), An OR approach to planned maintenance: 
Modelling P. M. for a vehicle fleet, Journal of the Operational Research Society, 35, 

p. 967-512. 

Christer, A. H. and Wang, W. (1992), A model of condition monitoring of a production 

plant, International Journal of Production Research, 30,2199-2211. 

Christer, A. H. and Wang, W. (1995), A simple condition monitoring model for a direct 

monitoring process, European Journal of Operational Research, 82,258-269. 

Cox, D. R. (1957), Renewal Theory, Chapman and Hall, London. 

Cox, D. R. and Hinkley, D. V. (1974), Theoretical Statistics, Chapman and Hall. 

Cox, D. R. and Lewis, P. A. W. (1966), The Statistical Analysis of Survival Data, 

Chapman and Hall, London. 

Cox, D. R. and Miller, H. D. (1965), The Theory of Stochastic Processes, Methuen. 

Cox, D. R. and Oakes, D. (1983), Analysis of Survival Data, Chapman and Hall. 

Cozzolino Jr., J. M. (1968), Probabilistic models of decreasing failure rate processes, 
Naval Research Logistics Quarterly, 15,361-374. 

Currie, R. J. and Robery, P. C. (1994), Repair and Maintenance of Concrete Structure, 

Building Research Establishment, No. BR 2-0851256236. 



172 

Dagpunar, J. S. (1994), Some necessary and sufficient conditions for age replacement 

with non-zero downtimes, Journal of the Operational Research Society, 45,2,225-229. 

Dagpunar, J. S. and Jack, N. (1993), Optimizing system availability under minimal 

repair with non-negligible repair and replacement times, Journal of the Operational 

Research Society, 11,1097-1104. 

Dekker, R., Smit, A. and Losekoot, J. (1995), Combining maintenance activities in an 

operational planning phase: a set partitioning approach, IMA Journal of Mathematics 

Applied in Business and Industry, 3,315-331. 

Van der Duyn Schouten, F. A and Wartenhorst, P. (1994). Transient analysis fo a two- 

unit standby system with Markovian degrading units, Management Science, 40,418-428. 

Edwards, A. W. F. (1972), Likelihood, Cambridge University Press. 

Feller, W. (1970a), An Introduction to Probability Theory and its Applications, Vol. I, 

Wiley, New York. 

Feller, W. (1970b), An Introduction to Probability Theory and its Applications, Vol. II, 

Wiley, New York. 

Geraerds, W. M. J. (1972), Towards a theory of maintenance, In: On the Organization 

of Logistic Support Systems, The English University Press, London, 297-329. 

Gits, B. (1986), On the Maintenance Concept for a Technical System, 1, Maintenance 

Management International, 6,131-146. 

Grimmett, G. R. and Strirzaker, D. R. (1982), Probability and Random Processes, Oxford 

University Press. 

Jack, N. (1991), Repair replacement modelling over finite time horizons, Journal of the 

Operational Research Society, 42,759-766. 



173 

Jack, N. (1992), Costing a finite minimal repair replacement policy, Journal of the 

Operational Research Society, 43,3,271-275. 

Jack, N. and Dagpunar, J. S. (1992), Costing minimal-repair replacement policies over 

finite time horizons, IMA Journal of Mathematics Applied in Business and Industry, 

3,207-217. 

Jansen J. and Van der Duyn Schouten, F. A. (1995), Maintenance optimization on 

parallel production units, IMA Journal of Mathematics Applied in Business and Industry, 

6,113-134. 

Jardine, A. K. S. (1973), Maintenance, Replacement and Reliability, Pitman Publishing, 

London. 

Jardine, A. K. S. and Hassounah, M. I. (1990), An optimal vehicle-fleet inspection 

schedule, Journal of the Operational Research Society, 41,791-799. 

Kalbeisch, J. D and Prentice, R. L. (1980), The Statistical Analysis of Failure Time 

Data, Wiley, New York. 

Kaio, N. and Osaki, S. (1989), Comparison of inspection policies, Journal of the 

Operational Research Society, 40,5,499-503. 

Khintchine, A. Y. (1932), Mathematisches über die Ewartung von einen öffenlicher 

Schalter, Matent. Sbornik. 

Khintchine, A. Y. (1960), Mathematical Methods in the Theory of Queuing, Griffin, 

London. 

Kijima, M., Morimura, H. and Suziki, Y. (1988), Periodical replacement problem 

without assuming minimal repair, European Journal of Operational Research, 37,194- 

203. 



174 

Kobbacy, K. A. H., Percy, D. F. and Fawzi, B. B. (1995), Sensitivity analysis for 

preventive maintenance models, IMA Journal of Mathematics Applied in Business and 

Industry, 6,53-66. 

Lewis, P. (1972), Stochastic Point Processes: Statistical Analysis Theory and 

Applications, Wiley, New York. 

Maisel, H. and Gnugnoli, G. (1972), Simulation of Discrete Stochastic Systems, Science 

Research Associates. 

Makis, V. and Jardine, A. K. S. (1992), Optimal replacement policy for a general model 

with imperfect repair, Journal of the Operational Research Society, 43,2,111-120. 

McCall, J. J. (1965), Maintenance policies for stochastically failing equipment: a survey, 

IEEE Transactions on Reliability, 28,133-136. 

Medhi, J. (1983), Stochastic Processes, Wiley Eastern. 

Morimura, H. (1970), On some preventive maintenance policies for IFR, Journal of the 

Operational Research Society Japan, 12,94-125. 

Nelson, W. (1984), Applied Life Data Analysis, Wiley, New York. 

Parzen, E. (1962), Probability and Random Processes, McGraw-Hill. 

Pelligrin, C. (1991), A graphical procedure for an on-condition maintenance policy: 

imperfect-inspection model and interpretation, IMA Journal of Mathematics Applied in 

Business and Industry, 3,177-191. 

Pierskella, W. P. and Voelker J. A. (1976), A survey of maintenance models: the 

control and surveilance of deteriorating systems, Naval Research Logistics Quarterly, 

23,353-388. 



175 

Rigden S. R., Burley, E. and Christer, A. H. (1988), Inspection Practices for Concrete 

Structures in the U. K, in: Chapter 6 in the Life of Structures, Butterworths. 

RILEM (1988), Corrosion of Steel in Concrete, edited by P. Schiessl, Chapman and Hull. 

Ross, S. (1983), Stochastic Processes, Wiley. 

Scarf, P. A. and Bouamra, O. (1995), On the application of a capital replacement model 
for a mixed fleet, IMA Journal of Mathematics Applied in Business and Industry, 6, 

53-66. 

Smith, D. J. (1985), Reliability and Maintainability in Perspective, MacMillan. 

Thomas, L. C. (1986), A survey of maintenance and replacement models for 

maintainability of multi-item systems, Reliability Engineering, 16,297-309. 

Thomas, L. C., Gaver, D. P. and Jacobs, P. A. (1991), Inspection models and their 

application, IMA Journal of Mathematics Applied in Business and Industry, 3,283-303. 

Waddington, C. H. (1973), O. R. in World War II: OR against the U-Boat, Elek Science, 

London. 

Valdez-Flores, C. and Feldman, R. M. (1989), A survey of preventive maintenance 

models for stochastically deteriorating single-unit systems, Naval Research Logistics 

Quarterly, 36,419-446. 

Vanneste, S. G. and Wassenhove, L. N. (1995), An integrated and structured approach 

to improved maintenance, European Journal of Operational Research, 2,241-257. 

Wang, W. (1995), Subjective estimation of the delay time distribution in maintenance 

modelling, to appear in European Journal of Operational Research. 


