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ABSTRACT 

In the literature on inspection modelling, the failure distribution 

traditionally plays a fundamental role in model construction in that it 

is assumed that system failures occur instantly at random time points 

from new with a known pdf. of time to failure. Numerous models have 

been built on this basis. However, Professor Christer challenged this 

traditional idea and proposed the concept of delay time. The idea, 

which is an essential part of most engineers' experience, assumes that 

defects do not just appear as failures, but are present for a while 

before becoming sufficiently obvious to be noticed and declared as 

failures. The time lapse from when a defect could first be identified 

at an inspection to consequential failure has been termed the "delay 

time". It is this idea which can be captured to reveal the nature and 

scope for preventive maintenance or inspection. It appears that the 

concept is now being taken up by many other authors. 

In this thesis, various models for condition monitoring inspection are 

built on the basis of delay time analysis. Extensions and further 

developments are made here to enrich the delay-time modelling. Since 

the distribution of the delay time is important to delay time 

modelling, a new approach to estimate the delay time distribution is 

proposed. This technique, which contrasts with the previous subjective 

data estimation technique, is based upon objective data. 

Assuming the distribution of the delay time is known, models of 

condition monitoring inspection are fully discussed for both perfect 

and imperfect inspections, and for infinite and finite time horizons. 

Based upon the models for perfect inspection, algorithms are presented 

to find the optimal solution. Numerical examples are presented in each 

Chapter to illustrate how models and algorithms work. 
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CHAPTER 1. INTRODUCTION 

1.1 Maintenance, production and models 

The production function manifests itself materially in the products 

that are manufactured. It is because of the use of means of production 

that maintenance is necessary, and consequently the costs of 

maintenance are to be attributed to the costs of the products 

manufactured. The maintenance models which aim at the optimization of 

maintenance must therefore be found in criteria which directly or 

indirectly minimize the cost of the products. This means that 

maintenance exists only by virtue of the fact that its function is 

derived from the production function through the need to output 

production. Seen in this way, it is possible to consider maintenance 

within an organization as a subsystem of production. 

The role of maintenance in production has became paramount in many 

organizations as the equipment or systems in use has become more 

automated, high volume, and expensive. This means that on the one hand 

it is necessary to keep the systems maintained in appropriate running 

condition, whilst on the other hand it is necessary to reduce the 

maintenance cost in order to reduce the costs of production. It has 

been estimated that somewhere in the region of £12,000 million per 

annum is spent on maintenance of equipment in British industry. This 

may appear to be a large figure and to offer scope for considerable 

saving. Maintenance modelling has a significant contribution to make 

because it can help the decision-maker establish a cost effective 

balance between maintenance cost and equipment reliability. 

As a result of technological take-up and improvement in industry, one 

of the consequences to maintenance of the advances in manufacturing 

technology and automated production is a change in emphasis from 

monitoring the quality of a product being manufactured to monitoring 

the quality and condition of the plant manufacturing the product. This 
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leads to the main topic of this thesis, - condition monitoring 

inspection and its models. 

1.2 Condition monitoring inspection and modelling 

Industry world-wide understands the conventional time scheduled 

maintenance known as preventive maintenance, which is essentially based 

upon manufacturers' or suppliers' recommendations. Corrective 

maintenance is also well known, and followed when breakdowns occur or a 

mal-function develops. These conventional practices have some inherent 

deficiencies, the most important being excessive maintenance cost, and 

high manpower and inventory requirements. For the more complex plants, 

particularly process type, monitoring check devices and methods have 

been rapidly developed in recent years. This means that an alternative 

to preventive maintenance has emerged and has become widely used in 

industry, namely, condition based maintenance. The basic idea of 

condition based maintenance is to base maintenance decision making for 

plant upon monitored condition related information. There are two main 

types of condition based maintenance currently in use in industry, 

i. e., on-line condition self-scheduled monitoring . and periodic 

condition monitoring inspection. The former is usually the continuous 

monitoring type, such as on-line condition monitoring of a flexible 

manufacturing cell. In this thesis we will focus on the latter, namely 

periodic condition monitoring inspection (for convenience, it willbe 

simply called as inspection in the following text). This is the area 

with decision issue to raise and address and, therefore, presents a 

host of modelling opportunities for OR. and statistics. Like much 

maintenance, it is a relatively novel area for the actual applications 

of OR. and statistical modelling. 

There is an important maintenance concept which has been developed by 

Christer et al since 1973, designed to reveal the nature and scope of 

preventive maintenance or inspection, namely the concept of delay time 

and delay time analysis which will be explained in more detail later. 

The important contribution of the delay time concept to maintenance 
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theory and practice is that it models the failure process as a two 

stage process in which the first stage is from new to the time of a 

defect becoming first visible, and the second stage is from this 

visible time of a defect to a subsequent failure. The time length of 

this second stage is called the delay time. It is the existence of such 

a delay time for a defect that establishes the opportunity for 

effective preventive maintenance under an inspection system. Defects 

are identifiable during the delay time when an appropriate preventive 

maintenance action such as repair or replacement may be undertaken and 

so prevent equipment from incurring a failure. 

In this thesis, various models and algorithms are constructed using the 

concept of the delay time and delay time analysis. In addition to 

condition monitoring inspection modelling within the scope of delay 

time analysis, methods developed to estimate the delay time 

distributions are also established by using the maximum likelihood 

method. Some of the models developed in this thesis can also be applied 

to more general areas and are not necessarily restricted to the field of 

condition monitoring Inspection. The objective of our models here is to 

devise an inspection schedule so as to strike an appropriate cost or 

availability balance between the cost or time of inspection and the 

cost or time of additional or more serious failure which arises through 

not inspecting. It is well known that a defect can arise in a 

stochastic fashion which may or may not be resolved completely or 

partially by corrective action and the signal resulting from the 

monitoring checks may or may not be interpreted correctly by the 

decision maker. The decision problem relates to the choice of 

monitoring checks to apply, when to apply them, and the appropriate 

action to take subsequent to the monitoring check results. These issues 

will be addressed in our models. 

Finally, we would like to point out that the general notation of 

equipment inspection, and the specific notation of condition monitoring 

inspection in particular, are very similar in concept. However whereas 

condition monitoring inspection adopts some specialized tools, such as 
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via the analyses of oil, vibration, thermograph and ultrasonic, a 

general inspection is usually a manual and visual process. The former 

would usually be expected to give more accurate information on a 

component's condition than the latter. since equipment diagnostic 

techniques have rapidly developed during recent years. Whilst some 

special models in the following text may only apply to the case of 

condition monitoring inspection utilizing information of condition 

monitoring, most of models here can be generalized to the case of 

ordinary inspection. 
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CHAPTER 2. LITERATURE REVIEW 

Over the last twenty-five years, OR. and mathematics have played a 
leading role in developing and exploring models of inspection 

situations. The target and objective of much of the modelling work has 

been to assist management by predicting the consequences of alternative 

sets of decision variables available to them. As the mathematical 

sophistication of inspection models has increased in parallel with the 

growth in the complexity of modern systems, numerous papers have been 

published in this field, among which is a series of major surveys made 
by McCall [1965], Pierskalla & Voelker [1975], Christer [1984], Thomas 

[1986], Valdez-Flores & Feldman [1989] and Cho & Parlar [1991]. These 

embrace several hundred papers. In addition to these surveys, 
bibliographic references can be found in Osaki & Nakagawa [1976], 

Sherif & Smith [1981], and Sherif [1982]. Some classical books on 

reliability and maintenance are also concerned with the contents of 
inspection, examples are Barlow & Proschan [1965], Jardine [1973], and 
Ascher & Feingold [1984]. 

Inspection models usually assume that the state of a system is 

completely unknown unless an inspection is performed. Every inspection 

is normally assumed to be perfect in the sense that it reveals the true 

state of the system without error. In general, at every inspection 

epoch there are two decision that have to be made. One decision is to 

determine what maintenance action to take, whether the system should be 

replaced or repaired to a certain state or whether the system should be 

left as is. The other decision is to determine when the next inspection 

is to occur. Thus, in general the decision space of a maintenance 

inspection problem is two dimensional. If however, a choice of what 

condition test to apply at the next inspection epoch also exists, the 

inspection decision space is three dimensional. 

Different authors have produced many interesting and significant 

results for variations of inspection models. The different models 
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developed depend on the assumptions made regarding the time horizon, 

the amount of information available, the nature of cost functions, the 

objective of models, the system's constraints, etc. The different 

models are, for the most part, however, very similar to a basic model 

presented by Barlow et al [1963]. This basic model is a pure inspection 

model for age replacement; i. e., no preventive maintenance is assumed, 

and the system is replaced only on failure. 

The basic model assumes that (a) system failure is known only through 

inspection, (b) inspections do not degrade the system, (c) the system 

can not fail during inspection, (d) each inspection costs cl, and the 

cost of leaving an undetected failure is c2 per unit time, (e) 

inspection ceases upon discovery of failure. Hence the total cost per 

inspection cycle is given by 

C(t, x) =cn+c (Xn - t), 
1 2 

2-1 

where t is the time to failure 
,x= 

(x1, x2,... ) is the sequence of 

inspection times with x1< x2 < x3< ..., and n is the inspection which 

detects the failure, that is x 
n< 

tx. Usually the optimal 
* -1 n 

inspection policy x is the one that minimizes E[C(t, x)]. However there 

two problems concerning this basic model. The first one is related to 

the detection of a failure. Since the model has assumed that the system 

can not fail during an inspection, this means that it either fails 

before or after an inspection. From the first assumption, we know that 

if there is a failure at time t (x 
n-i 

<t<xn), it can only be 

identified at time x. However, in fact, this assumption would appear 
n 

questionable in practice because if a failure occurs, the system would 

normally be examined and a repair or replacement be undertaken. It is 

generally impractical to leave the failed system until the next 

inspection. The second problem, which is actually related to the first 

one, is the possibility of obtaining the value of constant c2 in 

practice. Obviously it is hard to define and estimate this value. 

However even with these practical drawbacks, many authors have made 

further contributions to this basic model because of their theoretical 
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interest. 

Using the basic model of Barlow et al, Beichelt [1981] determines the 

optimal times for the cases when replacement and no replacement of a 

failed system are permitted. He obtains the optimal inspection 

schedules when the lifetime distribution is partially unknown. Beichelt 

uses a minimax approach to find the optimal inspection for the case of 

partially unknown lifetime distribution but does not indicate a 

numerical procedure to obtain the optimal scheduling of inspections. 

A different approach is used by Luss [19761 who looks at a system where 

a degree of deterioration can be observed through inspections. An 

inspection reveals that the system is In one of several intermediate 

states of deterioration. State-dependent maintenance policies are 

determined to minimize the long-run expected cost per unit time. He 

assumes that at inspection times the system may be found in any state 

0,1,..., L. If the system is in state L, the failed state, it is 

immediately replaced at a higher cost than if it were replaced before a 

failure. The replacement cost at any other state is constant. Luss 

presents a very simple iterative procedure that finds the optimal 

control limit policy with control state a and the optimal inspection 

interval for states He assumes that the sojourn times, 

that is the time spent at any state i=0,1,..., L-1, follow an 

exponential distribution with parameter A. 

A similar model is presented by Sengupta [1981]. He, however, lets the 

replacement cost be an increasing function of the deterioration states 

and allows a delayed replacement action. He shows that the policy that 

minimizes the long-run expected cost per unit time calls for inspection 

and delayed replacement intervals that are decreasing in the 

deterioration state. He also shows that the optimal solution is a 

control limit policy when replacements are made at inspection times. 

Sengupta gives an iterative algorithm that computes the optimal 

intervals. 
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Zuckerman [1980] examines a model very similar to Luss's model. 

Zuckerman presents a maintenance model in which the status of the 

system can be determined through inspection. At failure detection, the 

system should be immediately replaced by a new identical one. The costs 

incurred include inspection costs, operating costs, failure costs, and 

pre-planned replacement cost. He restricts the inspection policy to 

periodic inspections. The decision variables include the inspection 

interval and the scheduling of preventive replacements. The problem is 

to specify an inspection-replacement policy that minimizes the long-run 

expected cost per unit time. It is also assumed that a failure is 

discovered only by inspection. Zuckerman considers that the system is 

subject to a sequence of shocks with exponential distribution between 

occurrences and that each shock causes a random amount of damage that 

adds to the degradation of the system. The state of the system can then 

be any real non-negative number. He assumes that inspection and 

replacement are instantaneous. Zuckerman shows that the optimal 

replacement policy is a control limit policy, provided some conditions 

are satisfied. He does not present a general algorithm to compute the 

optimal policy, but notes that the difficulty in finding it depends 

heavily on the structure of the survival function of the system and the 

distribution of the magnitude of the shocks. 

Abdel-Hameed [1987] generalizes the compound Poisson process used by 

Zuckerman and allows a more general damage structure.. Abdel-Hameed 

uses an increasing pure jump Markov process to model the deterioration. 

The system fails whenever the deterioration level is greater or equal 

to a threshold and is immediately replaced at a cost which is higher 

than the cost of replacing the system before failure. The deterioration 

level of the system is monitored periodically. He finds the optimal 

inspection period that minimizes the long-run expected cost per unit 

time. 

A periodic inspection policy for Barlow's model, equation 2-1 is 

optimal when the failure distribution of the system is exponential, 
Barlow et at [1963]. For models that do not assume exponential failure 
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times, a periodic inspection policy is not necessarily optimal. 

Rosenfield [1976] presents a model in which the system is considered to 

deteriorate according to a discrete time Markov chain. His major 

contribution is to prove that, under some condition on the transition 

probability matrix and the inspection, replacement and operating costs, 

a monotonic four-region policy is optimal. Rosenfield presents the 

models for both the long-run expected cost per unit time and the total 

expected discount cost. He does not present any specific algorithm, but 

the optimal solution can be obtained using standard policy iteration 

for Markov decision processes. White [1979,1978] investigates the same 

problem as Rosenfield and proves the same results under less 

restrictive conditions. 

Kander [1978] considers inspection for a system that can be classified 

into discrete deterioration levels. Kander models the problem using 

semi-Markov processes to determine the optimal inspection schedule that 

minimizes the long-run expected cost per unit time. He considers three 

possible inspection policies called pure checking, truncated checking, 

and checking followed by monitoring. Under a pure checking inspection 

policy, successive check times are based on the last state of the 

system observed. Under a truncated checking inspection policy, the 

states of the system are essentially good or failed. If at an inspection 

time the system is in good state, a decision is made to determine the 

next inspection time; however, if the system is found in a bad state, 

the unit is replaced and the cycle is completed. For the checking 

followed by monitoring inspection policy, the states of the system are 

divided into two sets. If at inspection the system is in the set of 

states that is considered good, the next inspection time is determined 

as in the truncated checking case and no monitoring occurs. However, if 

the system is the state that belong to the set that is considered as 

not good, the system is continuously monitored at a certain cost until 

failure of the system occurs. When failure is detected the system is 

immediately replaced. Kander does not show a numerical procedure for 

obtaining the optimal policies. However, he gives an example in which 

the solution is found analytically, although this type of solution can 
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not always be obtained. 

An algorithm which is also adopted by Barlow & Proschan [1965], Jardine 

[1973], is presented by Brander [1963] in which an optimal inspection 

policy can be obtained for long-run expected total cost per unit time. 

He transforms the traditional formula of expected total cost per unit 
time into another one which can be simply minimized under some 

conditions with an extra parameter a. By varying a and x1, an optimal 
inspection schedule can be obtained through a certain recursive 

relationship among xi(i=2,3,... ), x1, and a. The cost function he 

adopted is the same as equation 2-1 and a numerical example is also 

presented in his paper. 

A modified inspection model is proposed by Nakagawa [1984]. He 

considers a system that is checked periodically to see whether or not 

it needs to be replaced. If the system is not in good condition, it is 

immediately replaced. In this model the system has the same age after 

checks as before with probability p and is as good as new with 

probability q=1-p. He obtains the mean time to failure and the 

expected number of inspections before failure using a renewal-type 

equation. Nakagawa then investigates the properties of the mean time to 

failure and the expected number of inspections to failure when the 

failure rate of the system is increasing. He also derives the total 

expected cost and the expected cost per unit time until failure. 

Nakagawa notes that it is very difficult to obtain an analytic solution 

for the optimal inspection times, and suggests the use of a numerical 

search procedure to find them. 

Menipaz (1979] considers an inspection model where inspection and 

downtime costs change over time. He finds that the optimal inspection 

policies for cases in which (a) the system is inspected at discrete 

points in time, and replaced as soon as a failure is detected, (b) the 

system is inspected up to a predetermined age and is replaced if it has 

not failed, and (c) if the system is inspected at discrete points of 

time t, it is continuously inspected from then on and replaced at 
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failure. The optimal inspection policies that minimize the total 

discounted cost for the different inspection strategies described are 

obtained using algorithms that had been published by Kander and Naor 

(1969] and Luss [1977]. Luss [1977] studies an inspection model in 

which the duration of inspections and repairs (replacement) are not 

negligible. He presents two algorithms to solve the problem. 

Wattanapanom and Shaw [1979] give algorithms for finding optimal 

inspection times in case of uniform and exponential failure time 

distributions. They assume that every inspection is hazardous and may 

degrade a good system. Their main contribution is the presentation of 

convergent algorithms for solving the optimization equations given to 

solve the basic model, equation 2-1. For a system subject to failure at 

random time, Keller [1982] presents an asymptotic solution for the 

inspection model with the cost of inspection small compared to the 

expected loss due to downtime. He shows that the limiting form of the 

equation needed to find the optimal inspection times is a nonlinear 

ordinary differential equation. Schultz [1985] presents an approximate 

periodic inspection solution to the basic model under a general failure 

distribution. He claims that this approximation is good as long as the 

cost of inspection is small relative to the cost of undetected failure. 

Furthermore, Schultz's approximation is easily computed and only 

requires knowledge of the mean time to failure. 

Nakagawa and Yasui [1980] present an algorithm to compute near-optimal 

inspection policies for the case when the distribution to failure is 

not exponential. They give a numerical example that shows that the 

approximation is fairly good for a Weibull distribution. The procedure 

computes successive inspection times backwards by a recursive scheme. 

When the hazard rate is increasing, Munford [1981] has shown that 

inspection policies with decreasing intervals between successive 

inspections as a function of age are superior to periodic policies. 

It has been mentioned that some inspection models are constructed under 
the assumption of Markov deteriöration. The first original model of 
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this type for a single deteriorating unit is described by Derman 

[19631. It will be useful to briefly recall this paper. A unit is 

inspected every period and the state of the unit is ascertained. It is 

assumed that if nothing is done then the unit deteriorates according to 

a Markov chain on a finite set of states {O, 1,2,..., k}, where 0 denotes 

a new unit and state k means the unit has failed completely. At each 

period, once the state is known, a decision has to be made whether to 

replace the unit, perform a preventive maintenance overhaul, or do 

nothing. The difference between replacement and repair is the 

difference of the state that the unit returns to after the performance 

of that action. In most variants of the above model economic criteria 

are used, in which one tries to minimize the sum of the maintenance 

cost, the cost of replacement/repair due to failure, and the cost of 

preventive repair/replacement. Derman shows that if the probability of 

deterioration next period increases with the present state i, then a 
'control limit' rule is optimal, so that one should repair or replace 

when the observed state i is greater than some limit i 

There have been a large number of extensions of this original model. 

Derman's model did not involve a maintenance cost, but Kolesar [1966] 

adds the maintenance cost without affecting the optimality of the 

'control limit' rule. Ross [1969] extends the problem to a more general 

state space while Kao [1973] allows the time in each state to be random 

and proves similar results for a semi-Markov model. 

Inspection is usually assumed to be perfect. However this assumption 

can be relaxed by allowing for imperfect inspection in the modelling. 

Anderson and Friedman [1977,1978] present a very theoretical model 

which involves the imperfect inspection case. They find the optimal 

inspection times by reducing the stochastic problem to a free boundary 

problem in analysis, which is then solved using iterative procedures. 

Furthermore, inspection may pose a hazard to the system to be checked. 

Chou and Butler [1983] and Butler. [1979] have studied hazardous 

inspection models for aging systems. They found optimal policies that 

minimize the expected lifetime of the system under inspection. Their 
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model assumed that each inspection either causes immediate failure or 

else increases the failure rate. However, on the other side, if the 

inspection contains the content of preventive maintenance, it may add 

some benefit to the system to be inspected. Baker [1990] considers this 

problem and presents a model to test the effect of such preventive 

maintenance. A similar problem is also discussed in a paper by Baker and 

Wang [1992], see Chapter 5 of this thesis for details. 

There are parallel but completely different models for inspection 

problem which were first proposed and substantially studied by Christer 

et al [1973 - 1992] in which the delay time concept has been used to 

construct the models for both perfect and imperfect inspections. 

Christer notices that there is a time lapse between the time of the 

first noticeable event of a potential failure of a component (he calls 

a defect arisen) to the time of this failure resulting in a breakdown 

and a repair or replacement is imminent. In other words, the component 

failure process is actually a two-stage process in which the first 

stage is from new to the time a defect becomes first visible, and the 

second stage is from the time of this visible defect appearing to a 

consequential failure. The time lapse of this second stage is called 

the delay time of a defect. Clearly the concept of the delay time gives 

a more physical explanation of the principle of preventive maintenance 

and also overcomes two disadvantages of Barlow's basic model, equation 

2-1. In the fundamental paper of Christer and Waller [1984a], they 

present a prototype model of the industrial maintenance problem using 

the delay time concept. It is proposed that the pdf. of the delay time 

is assessed via the collection of subjectively based data. It is shown 

how such a data base makes it possible to construct models for 

determining the optimal interval between inspections or the optimal 

replacement time that minimizes the expected downtime per unit time or 

the expected operating cost per unit time, Christer and Waller 

[1984b, c]. Subsequently, a series of papers followed extending the 

basic model and applications to cover more cases of maintenance 

modelling. Preliminary studies have been undertaken to investigate the 

applicability of delay time analysis and delay time models to condition 
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monitoring problems be they discrete monitoring processes, Christer 

[1987,1988] or continuous monitoring processes, Chilcott and Christer 

[1991], or a specific condition monitoring problem, namely the 

condition monitoring of a bearing wear process in production plant, 

Christer and Wang [1992]. In a more recent paper, Christer [1992] 

establishes models of condition monitoring inspection with irregular 

inspection intervals. It is worth pointing out that throughout this 

thesis, all models and algorithms constructed use the concepts of the 

delay time and delay time analysis, and contribute further developments 

of delay time modelling. 

Christer and Redmond [1990a, b] consider the mathematics of delay time 

analysis and prototype models of inspection policies. The essential 

role of subjective estimation is indicated and the need for revisions 

of both the subjectively based prior delay time distribution and of the 

delay time model is highlighted. They notice that an unavoidable bias 

arises when estimating delay time distribution and present a mechanism 

for correcting this bias, based upon maximum likelihood consideration. 

Other applications of delay time modelling can also be found in the 

papers by Gebbie and Jenkins [1986], and Pellegrin [1992] who develops 

a graphical tool for maintenance decision making based upon the delay 

time concept. 

Turco and Parolini [1984] also present a model which is very similar 

mathematically to delay time modelling [see Christer 1987]. They state 

the hypothesis of a different damage rate before and after the 

exceeding of the alarm threshold. However they did not mention how to 

estimate the distribution function of the time to the damage state 

while using the Weibull or Erlang distribution as the example. 

In traditional delay time modelling, the distribution functions of the 

delay time are estimated by subjective data which is quite useful when 

there are no historic records. When historical data on inspections and 

failures are available, contrasting with the previous subjective 

assessment method, Baker and Wang [1992] propose an alternative method 
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to estimate the delay time distributions using maximum likelihood 

theory and the Akaike information criterion(AIC), which will be 

explained in detail in Chapter 4 and 5 of this thesis. 

So far in the inspection models mentioned above we have not 

distinguished between the general inspection modelling and condition 

monitoring inspection modelling. However, there are very few papers 

specifically concerned with condition monitoring problems compared with 

the considerable literature on general inspection modelling. This shows 

that modelling condition monitoring inspection is a quite novel area. 

A case study presented by Sullivan [1991] describes a condition 

monitoring practice from the Parenco paper mill in Holland. They use 

the Mrüel and Kjmr Systematic Machine Condition Monitoring concept to 

monitor the vibration spectrum at 6000 measurement points on their 

paper machines and power plant. The system features early fault 

detection, powerful fault diagnosis, and trend analysis to predict the 

lead time to breakdown. However the methods they used in their system 

monitoring consist of engineering judgments. There is no attempt to 

rationally relate the time to failure to the condition of the system 

monitored. 

Chilcott and Christer [1991] propose a model based upon continuous 

condition monitoring for maintenance at the coal face within British 

Coal, again using the delay time concept. This model is used to predict 

the effectiveness of condition monitoring using the resultant downtime 

of machinery as the relevant measure. Numerical examples of the model 

developed are presented using data obtained from collieries in the 

course of a research program. A discrete type of condition monitoring 

model is also presented by Christer [1988] specifically designed to 

model major civil engineering structures. The delay time analysis is 

the main frame of model building, but in this model the cost of a 

repair may now change over the delay time period. 

Usually in condition monitoring models, the equal space monitoring 
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interval is a common assumption. However the best monitoring check 

interval may not be necessarily equal. An irregular inspection interval 

could give a better monitoring result than the equal interval scheduled 

one since if the irregular inspection policy is optimal, it must also 

be superior to the regular inspection one. Christer [1992] presents a 

prototype modelling of irregular condition monitoring of production 

plant for which a detailed description will be given in Chapter 6 of 

this thesis. The models which are based upon the delay time concept are 

designed to model the perfect and imperfect inspection cases with the 

objective of minimizing the long-run expected total cost per unit time. 

Although the paper gives numerical examples to show the method, it is 

mainly concerned with formulating models. It does not address the 

solution of the models, which will be the subject of Chapter 8 of this 

thesis. 

Christer and Wang [1992] propose a particular model of condition 

monitoring inspection of production plant. They consider a bearing wear 

problem in which the wear process is regularly monitored by a special 

device. The detail of this paper will be given in the Chapter 7 of this 

thesis. 

In most papers of Inspection or condition monitoring modelling, the 

time horizons are either infinite or the system life cycle. In the 

infinite case, an asymptotic form of long-run expected total cost per 

unit time is used since it has a more simple form. In fact, this model 

assumes that the failure process is a renewal type in which the system 

is replaced by an identical one upon failure and the process resumes. 

For a model based upon the system life cycle, the modelling objective 

is to minimize the expected total cost over the system life time. That 

is, upon detection of failure the problem ends and no replacement or 

repair takes place. This model which has been addressed by many others 

may apply to the cases of detecting the occurrence of an event, such as 

the arrival of an enemy missile or the presence of some grave illness. 

However, we can not assume that a system is always replaced by an 

identical one because of rapid development of technology. Some 
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replacement models over finite time horizons have to be proposed. 

Christer and Jack [1991] present a model in which an integral-equation 

approach is proposed to calculate the exact and asymptotic estimates of 

expected costs in stochastic replacement problem over a finite time 

horizon. Although the paper focuses upon the replacement problem, some 

insight can be gained through that paper into inspection modelling. 

Jack [1991] also considers a similar problem which involves imperfect 

repair on failure. There appear to be no papers which are directly 

concerned with a finite time horizon for condition monitoring 

modelling. Therefore, some models on Chapter 6 of this thesis will 

contribute to this problem. 

The majority of inspection or condition monitoring modelling papers 

assume that the distribution of time to failure is known, and models 

are built on that basis. Much interest has been shown in the literature 

over the years in the estimation of life time distributions in the 

field of medical data analysis and reliability. Cox [1972] proposes 

proportional hazard modelling which has been used in inspection 

modelling by many authors. Lee and Pierskalla [1987] consider models of 

mass screening for contagious and non-contagious diseases, which are 

quite similar to the inspection models we mentioned above, see also 

Eddy [1980] and Brookmyer et al [1986]. Since the statistical analysis 

of the duration of life time has become a topic of considerable 

interest to statisticians and OR. workers in areas such as medicine, 

engineering, and the biological sciences, hundreds of papers which 

contribute to the areas have been published during recent years. 

Besides these papers, several books by Mann et al [1974], Gross and 

Clark [1975], Kalbfleisch and Prentice [1980], Cox and Oakes [1984], 

and Lawless [1982] deal extensively with estimation and analysis 

procedures for lifetime data. 

To estimate the distribution function of lifetime, the maximum 

likelihood method is a most frequently used one, see Cramer [19461, 

Kaplan and Meier [1958], Cox and Hinkley [1974], and Zacks [1971]. 

Usually the goodness of values of parameters of a specific model can be 
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measured by the expected log likelihood, namely the larger the expected 

log likelihood the better the values of parameters. We know that an 

increase in the number of model parameters can cause the fit to a given 

sample of data to improve the maximum log likelihood. However, the 

maximum log likelihood has a general tendency to over estimate the true 

value of the mean expected log likelihood, and this tendency is more 

prominent for models with a larger number of free parameters. This 

means that if we choose the model with the largest maximum log 

likelihood, a model with an unnecessary large number of free parameters 

is likely to be chosen. Akaike [1973] challenges the traditional idea 

to parameter estimation and proposes a criterion called AIC (Akaike 

Information Criterion) for model selection. The 'best' model is the one 

which minimizes AIC. Baker and Wang [1992] have used the AIC in their 

paper on the estimation of delay time distribution, which will also be 

explained in Chapter 4 and 5 of this thesis. 

In all, papers and books published over recent years which contribute 

to inspection or condition monitoring modelling cover the full range of 

potential applications of mathematics to maintenance management 

problems varying from mathematically based techniques developed to 

solve a specific and recognized problem type, to the development of 

mathematical refinement to models which, while adopting the language of 

maintenance and reliability, are mainly of interest to mathematicians 

and have little or no pretension of applicability. For example, most of 

the published theoretical models of plant inspection problems mentioned 

above adopt the Markov approach, while few of them consider real 

application in industry. However, they provide ideas for possible 

model-building blocks along with some qualitative insight as to how an 

actual system might behave if only it would oblige the model 

assumptions, the major interest is in the solution procedure. 

Notwithstanding this, for inspection and condition monitoring problems, 

the outstanding problem now is not in solving models, but in producing 

and validating them. Thus in this thesis, the main topic will fall in 

the former category, i. e., to identify the problem and to make the 

models applicable to maintenance practice. 
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CHAPTER 3. THE DELAY TIME CONCEPT AND MODELLING 

3.1 The delay time concept 

In traditional modelling of maintenance, the failure distribution plays 

a fundamental role in model construction in that it is assumed system 

failures occur instantly at random time points from new with a known 

distribution function of time to failure. If a failure occurs, the 

event is classified as a breakdown and a replacement or repair is 

usually undertaken to restore the system to the normal working state. 

Numerous models in terms of probability measurements have been built on 

this failure distribution basis. However, the assumption of failures 

occurring instantly without any prodromal symptom is unlikely in 

maintenance practice because there will often be a time lapse from the 

first noticeable signal of a potential failure to the time when it 

develops into a breakdown. At the early stage of a potential failure, a 

system may be defective but still running. For example a small crack in 

a concrete structure progressively develops over time into a failure 

when the concrete structure breaks. Recognizing this situation, 

Christer has challenged the traditional idea of failure assumption and 

proposed the delay time concept. 

The delay time concept, which was originally developed as a side issue 

in modelling building maintenance, Christer [1973,1982], exploits the 

ideas of a "delay time" for a fault in building structures. In the 

fundamental paper by Christer and Waller [1984a], the idea which is 

essential to most engineers' experiences, and indeed most papers 

referenced above, is proposed in which they assume that defects do not 

just appear as failures, but are present for a while before becoming 

sufficiently obvious to be noticed and declared as failures. The time 

lapse from when a defect could first be reasonably expected to be 

identified at an inspection to a consequential repair or replacement 

being necessary has been termed the "delay time", usually denoted by h. 

The time length of a system from new to the initial point of a defect 
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being first visible by some inspection devices is called the "initial 

time" of a defect, usually denoted by u. The basic idea is also 

illustrated in Figure 3-1. 

h 

0u failure time 
initial time 

Figure 3-1 The delay time concept 

In common with the notion of an initial time point of a defect, the 

idea of instant of failure is likewise simple enough to cope with 

mathematically, but needs careful consideration in practice since 

possible difficulties with the definition of a failure may arise. What 

actually constitutes a defect which necessitates immediate repair or 

replacement, that is a failure, can vary with both time and 

circumstances. So far, in all applied studies using the delay time 

concept, the moment of failure has been based upon the definition of 

operational practice, and no serious problems of definition have 

arisen. The potential robustness and value of delay time analysis lies 

in its very fundamental engineering-type view of the phenomena being 

studied. One of the important contributions of the delay time concept 

and analysis to maintenance theory and practice is that it reveals the 

nature and mechanism of underpinning preventive maintenance or 

inspection. 

If the distributions of u and h are known (for convenience, we may 

simply call them delay time distributions in the following text), the 

failure behaviour of a system can in theory be determined under any 

specified maintenance policy. Also, if the consequences of defects 

before and after failure are known in terms of whatever variables are 

thought important, i. e. cost, downtime, output, risk, reliability, 

etc., then one expects that such consequent variables may be modelled as 
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functions of the maintenance policy. 

3.2 Delay time modelling 

To introduce delay time modelling, suppose first that we are concerned 

with a particular component of plant which is associated with failures 

characterized by a delay time h with probability density function f(h) 

and an initial time u with probability distribution density function 

g(u). To simplify matters for the moment, think in terms of only one 

failure mode of the component in the plant which generates otherwise 

independent defects which are from the same population of delay times. 

Of course, this restriction can readily be lifted. Let a plant 

inspection be undertaken on a regular basis, with period t, which can 

be also relaxed later, and suppose for now that the inspection is 

perfect in that, if a defect is present at the time of an inspection, 

it will always be identified. Between inspections, say, (ti-1, t1}, 

where I is the sequence of inspection (i=1,2,... ) and ti=i"t, a defect 

can arise at a time u from new, say, and subsequently lead to a failure 

after time h if h< ti -u, Figure 3-2 (a), and be identified at an 

inspection if h ti-u, see Figure 3-2 (b). We assume here that a 

defect identified at an inspection is repaired or replaced at that time 

and the process is resumed. First we model the probability that a 

defect results in a breakdown. 

h 

tut 
i -i i 

(a) Defect leads to a failure 

h 

t 
S-1 ut S 

(b) Defect is identified 

at an inspection 

Figure 3-2 Failure and inspection mechanism 

using the delay time concept 
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Let the last perfect inspection be at time ti-land let the next 

inspection be at time ti. Over the period (ti-1, ti), the probability of 

a defect arriving in the interval (u, u+du) is g(u)du, where (t 
i-i 

<u< 

t1). A defect arising in (u, u+du) with a delay time h< ti-u will arise 

as a breakdown. Clearly, P(h < t! -u) = F(ti-u), where F(") denotes the 

cumulative distribution function of the delay time h. If we further 

assume that both u and h are mutually independent, we have, therefore, 

that the probability of a defect arising over period (u, u+du) and 

resulting a breakdown at u+h (h < ti-u) is g(u)F(ti-u)du. Since u could 

be at any time over (ti-1, ti), integrating over (ti-1, twe find that 

probability pb(ti) of a breakdown over (ti_l, ti) is 

t 
pb(ti) - 

J'g(u)F(t1_u)du. 3-1 

A situation which has been found to have practical significance occurs 

when the initial time is uniformly distributed with pdf. 1/T, where 

T=n"t and n is an integer. The probability of a breakdown given the 

inspection policy t, t ={t, 2t, 3t,... }, denoted by pb(t), is given 

here by 

nn 
pb(t) _E p(ti) _ 

J'_- F(t u) du. 
1=1 i=1 i-1 

Since n= T/t, and S F(t-u)du=ftF(t-u)du, 
i-i 1 

We have 

p(t) =t 
F(t-u) du. f 10 3-2 

The function p(t), or pb(ti) is fundamental in delay. time 

modelling. For example, suppose the following assumptions are valid for 



23 

an inspection process, and that costs and downtime measures associated 

with inspection and plant failure and defect repairs are: 

1. An inspection takes place every t time units, and requires di time 

units, with di« t. 

2. Inspections are perfect. 

3. Defects identified within an inspection will be repaired within the 

inspection period at an average cost of c. 
M 

4. Failures are repaired as soon as they arise at an average cost of 

cb and downtime db, where cb > cm and db « t. 

5. Defects arise within the plant at a known instantaneous rate of 

/i(u) at time u after the last inspection, ie. the number of defects 

arising in the period (u, u+du)=1i(u)du. 

6. the cumulative distribution function F(") of the delay time h is 

known. 

Under these assumptions, a model of the expected downtime per unit time 

as a function of the inspection interval t may be obtained directly. 

The total expected downtime of an inspection cycle consists of the 

expected downtime associated with failures and the downtime due to an 

inspection. Since we have assumed that there is no additional expected 

downtime due to repairing defects identified at an inspection, the 

total expected downtime per unit time is 

B(t)d +db 
D(t) =t +d 

i, 3-3 
i 

where B(t)=föF(t-u)c(u)du, is the expected number of breakdowns arising 

over period (O, t). 

In a similar way we can also establish the costs measure as a function 

of the inspection period t. 

The function pb(t)can readily be calculated for use in a criterion 
function such as D("), and the first industrial use of delay time 
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analysis entailed using the model 3-2 for pb(t) with the downtime 

function 3-3 for D("), to model the downtime of a high-speed canning 

line, Christer & Waller [1984a] 

So far, it has been assumed that inspections are perfect in that any 

defect present will be identified. This assumption will undoubtedly be 

simplistic in some applications and may be relaxed if necessary. 

Assuming still that the initial point u is uniformly distributed along 

(O, t), suppose that there is a probability ß1 that any defect 

present at an inspection will be identified at the inspection. It has 

been shown, Christer & Waller [1984b], that under these circumstance, 

the probability of a defect leading to a failure becomes 

b(t) =1- JEt 
t Co 

(1-ß)n-1{1-F(nt-u)}du. 3-4 
n=1 

Interestingly, the only modelling changes in permitting imperfect 

inspection (ß * 1) is that pb(") changes in form, but the criterion 

function such as D(-), given in equation 3-3, remains the same. A 

variation on this imperfect-inspection formulation with ß*1 was 

required for an application of delay time analysis modelling of the 

planned maintenance for a vehicle fleet, Christer & Waller [1984c]. 

Obviously, the distributions of u and h are vital to delay time 

modelling. In most previous applications of delay time modelling, the 

period of u is assumed to be uniformly distributed and f(h) is 

estimated through subjective data which are obtained by the survey of 

engineers who are responsible for maintaining the system to be 

modelled. Since no explicit data on u and h can be obtained in 

practice, subjective assessments of the distributions of u and h have 

been proved to work in applications of inspection modelling. However, 

if there are past records of inspections and breakdowns on the system 

or component of interest, especially if records show whether or not an 

inspection finds a defect in the system or component, then other 
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estimating procedures become possible. The use of objective data in 

estimating distributions of u and h will be fully discussed and 

explained in the next Chapter. 
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CHAPTER 4. BASIC METHODS OF STATISTICAL ESTIMATION OF DELAY TIME 

, DISTRIBUTIONS 

The delay time concept developed by Christer et al [1973-1992], as 

mentioned in previous Chapters, has provided a useful means of 

modelling the effect of periodic inspections on the failure and 

operating consequences of repairable machinery. Obviously, the 

distribution functions of u and h and their parameterizations are vital 
to delay time modelling. In this chapter we explore basic ideas and 

methods of estimation of delay time distributions. 

4.1 Current methods of estimation of delay time distributions 

From the definitions of delay and initial time distributions, it is 

clear that it is most unlikely to be possible to measure directly 

either the delay time associated with a defect, or the initial time u. 

This is so even when there are past records of inspections and failures 

because they will at best only show the times of failures or 

inspections. However, what has proved possible, as established by 

Christer et al [1984,1991], is to estimate the delay time for a set of 

specific faults and failures from subjective estimates obtained from 

the repairing engineers. Based upon this data, it is possible to deduce 

the location of the initial time, and to estimate both the delay time 

and the initial time distributions. This method has been successfully 

applied to several applied maintenance studies by Christer et al 
[1984a, b, c] and may be applied if there are no historical records of 

inspections and failures. 

Essentially, the method works as follows. At any repair intervention, 

be it due to a breakdown or a fault identified at an inspection, two 

questions could be asked of the repairing engineers: 

(i) How long ago (HLA) could the fault reasonably have been expected 

to first have been noticed had there been an inspection? 
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(ii) If the repair was not carried out, how much longer (HML) could 
it be postponed before a failure was likely, that is, a repair 
is essential? 

The delay time estimate for the fault is taken as h= HLA + HML. 

Although in practice the questions, and lead-up to them, are a little 

more elaborate in order to focus and concentrate the mind of engineers 

supplying estimates, the general principle is as straightforward as 

indicated. It is to be noted that the assessment is subjective and that 

two people could not be expected in general to produce the same 

estimates. Questions are, however, asked under very specific and 

precise circumstances with the defect in question present. By 

accumulating sufficiently many estimates h, an estimate can be made of 

the delay time distribution. 

The definition of failure is important to the assessment of the delay 

time distribution. There is often confusion between a defect and a 
failure in traditional maintenance modelling. Here the definition of 
failure is quite practically oriented towards the organizations being 

studied. A defect is a failure if the organizations consider immediate 

repair to be essential, Christer and Waller [1984a, 1984b]. 

At any point in time T when a defect is being attended to, having an 

estimate of HLA provides at once an estimate of the initial time u, 

namely u=T- HLA. It is the set of such estimates that enables the 

distribution of the initial time u to be estimated. However for most 

papers of delay time applications, the main point of interest is the 

estimation of the delay time h, while it is assumed that over its range 

of interest, u is uniformly distributed. 

One of the interesting aspects of previous delay time analysis is that 

it uses a synthesis of subjectively derived data. If under the current 
inspection policy of constant inspection interval of period to, after 

accumulating records of failure and inspection repairs, the 

probability that a defect arising over the period (0, t0) results in a 
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failure, say, during the first interval (0, to), may be estimated as 

pb0. One may expect from equation 3-1 that 

PbO - Pb(t0) - 4-1 

However, the chance of conditions such as 4-1 being satisfied is 

remote. The left-hand side is an objective observation of practice, and 

the right-hand side is a function based upon an aggregate of subjective 

estimates. In common with any process of decision analysis entailing 

subjective assessment, it is to be expected that some revision will 

need to be made to the prior distribution or perhaps to the prior 

model. Christer and Redmond [1990a1 have addressed this problem and 

proposed a model for the revision of the delay time distribution in 

which a shearing transformation h4z, such as z=ah+w, is used to 

correct the error, where the task is to determine the appropriate value 

of a and w. However in their case, what they consider is the 

probability of failure under the assumptions of an uniform distribution 

of u and a constant inspection interval of t. They do not take account 

of the case of non-uniform distribution of u, which may lead to a 

completely different formula for the probability of failure as we have 

mentioned in Chapter 3. 

In a recent paper, Christer and Redmond [1990b] recognize that an 

unknown bias is entering into the delay time estimation, since h1= HLA 

will produce an underestimate of h, and h2 HLA + HML will produce an 

overestimate of h for reasons associated with the waiting-time paradox, 

Feller [1970]. They also propose a method for coping with the bias. 

Christer and Redmond assume that there is an unknown parameter existing 

in the prior distribution of the delay time h, which is estimated by 

the subjective data, say, T. Accepting this distribution, for purpose 

of correcting this bias, a likelihood function based upon observations 

of failures over time t has been built up to estimate this parameter so 

that bias can be corrected through this parameter. However there is no 

numerical example presented in their paper to show how to use this 

method. 
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It is to be expected that engineers making subjective judgment will 

take into account any objective data available. Besides the subjective 

data based estimating procedure for the delay time distributions, if 

sufficient historical records of failures and inspections for a 

particular component are available, estimation of the delay time 

distributions is, however, possible from such objective data by 

statistical inference. We now develop this later method in detail. 

4.2 Assumptions, notation and likelihood calculation 

It is at first glance at least plausible that both the distributions of 

u and h can be determined from such data as the dates and results of 

pre-planned inspections, and times of failures. If the delay time is 

typically very small, there will be very few inspections in which a 

defect is detected, since failure follows very soon after a defect 

becomes visible. Conversely, the fact of many successful detections of 

defects at inspections implies a long delay time. If a component is 

inspected upon failure the period between adjacent failures is clearly 

an estimate of the sum of u and h if there are no inspection 

replacements during this period, and so the addition of breakdown times 

offers the possibility of determining the distribution of u. More 

clearly, if under the assumption of perfect inspections, there is a 

failure occurring between inspection interval, say, (t 
I-1, 

ti), then we 

can deduce both that u must be less than ti and greater than t 
I-1, 

and 

h must be less than ti - u, Figure 4-1(a). However, if at an inspection 

time ti, a defect is identified, Figure 4-1(b), this implies that ti-1 

<u: 5 t andh? t - u. ii 

h 
I 

u 
ýt 

t 
1-1 1 

h 

1-1 1 

(a) (b) 

Figure 4-1 (a) Defect results in a failure 

(b) Defect is identified at an inspection 
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With such information provided from failures and inspections records, 

we use state-of-the-art statistical techniques to recover the 

distributions of u and h as best we can. The interesting questions are 

perhaps: 1. 'Can this be done? '; 2. 'if so, are the errors in the 

estimates of g(u) and f(h) acceptable for practical purpose? '; and 3, 

'Are subjective data still needed, and if so, how should they be 

combined with objective data? '. We focus on the first two questions in 

the thesis. To answer question 1, we must show both that the techniques 

work with Monte-Carlo data and with 'typical' real life data. The 

Monte-Carlo study alone can tell us that we are able to estimate known 

distributions of u and h to acceptable accuracy. A real life study is 

also essential to ensure that our method would work in practice. To 

answer question 2, a calculation of an optimal inspection schedule 

based upon the estimated delay time distributions will be carried out 

as an exploratory test. This will be discussed in Chapters 6 and 8. 

4.2.1 Assumptions 

The data comprise essentially of a history of breakdown times, and the 

results of inspections, which may be positive (defect found) or 

negative (no defect found). These data were available for key 

components of a sample of about 100 infusion pumps in Hope Hospital at 

Salford, which were originally collected for the use and guidance of 

technicians dealing with the maintenance of these machines occasions. 

The assumptions of the basic methods of estimation of g(u) and f(h) are 

as follows: 

1. The random variables u and h are assumed independent. 

2. g(u) and f(h) are modelled as exponential or Weibull distributions. 

3. The components of a machine are assumed independent, i. e. the 

failure of one will not affect the functioning of another. Further, 

each component is assumed to have only one failure mode. 

4. Inspections are in general imperfect, i. e. they have a probability 

13 {1 of detecting a fault if it is present. When any component 
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fails, an inspection of the machine embracing all of its components 

is carried out, and these adventitious inspections have probability 

ß' 1 of detecting a fault if it exists. In general ß' * ß. There 

are no false positives, i. e. if a fault is not present one will not 

be identified. Probabilities ß are assumed independent and constant 

between inspections. 

5. Machines are assumed to behave identically and to have uniform 

usage. 

6. Repair times are assumed to be negligible. 

7. Repairs are taken as replacements, so that the faulty component is 

restored to an `as-new' condition. The inspection is, therefore, 

effects a renewal point if fault is found and rectified. 

Definitions of breakdown and the appearance of a visible defect are 

taken as operational, which absolves the modeller from the need to 

worry excessively about what these distributions actually measure. A 

breakdown is whatever engineers and users of the machine deem it to be. 

In this sense we follows the lead of Christer [1984a, b] and are 

constructing the user's model. 

Consider first the simple case of a one-component machine where 

inspection is a perfect inspection process with replacement of 

defective components, and then progress to more general cases. 

4.2.2 Notation and likelihood calculation 

First we introduce the necessary terminology. The possible events that 

can contribute to a likelihood function are 

ba breakdown (failure). 

n an inspection where no defect is found. 

y an inspection where a defect is found. 

e the end of observation period, le. censored by the data. 

Event n will be referred to as a negative inspection, and conversely 
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event y referred to as a positive inspection. In addition, the 

following are useful: 

s the start of an observation period, ie. the renewal point of a 

component . 
ra component replacement (following either b or y). 

x to denote any event. 

Event s is equivalent to that of an r event. We wish to write down the 

likelihood of observing a sequence of events x1,..., xn of types b, e, 

y and n at times t1 ..., t 
n* 

The key to doing this is the multiplication 
law of likelihood, i. e. 

L= Px 
1- 

Px 
21x1- 

Px 
3 

1x 
1 , x2 ", ... , "Px 

n 
ix 

1,..., x 
n-1,4-1 

for the likelihood of n events, where xi denotes event x at time ti 

from the last renewal. The probability of an event is P, and Px21x1 

means the probability of event x2 at t2 given that event x1 at tl has 

occurred. 

After a replacement r, the likelihood does not depend on any event 

previous to r. Therefore the likelihood can be written as the product 

of terms conditional on subsequent events rx1x2... starting with the 

last renewal. Further, for an event x at time t following a sequence 

n1,..., nn of negative inspections at times t1,..., t from the last 

renewal, see Figure 4-2, if we let Pxlrn1n2,..., nn denote the probability 

of x conditional on events n ,..., n 
n, 

the fact that there was no defect 
1 

visible on the last inspection t of the sequence is what determines 
n 

the probability of the event x, i. e. Pxlrn 
1n2,..., n . =Pxirn nn 

rnnnx event 
I 11 12 ... In I 
t =0 tttt time 

012n 
last renewal 

Figure 4-2 Inspection and renewal process 
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A replacement or renewal cycle could be defined here as the time from 

the last renewal (or new condition) to when the component is either 

replaced upon a failure or replaced after a defect has been identified 

at an inspection. In this sense, the cycle will consist of a series of 

negative inspections (possible null) followed by an event of type of b 

or y at the cycle end. We require to determine the likelihood of such 

events. 

The contribution to the likelihood function from one replacement cycle 

with n negative inspections and a breakdown or positive inspection at 

time t is the product of the probability of each event conditional on 

events previous to it from the last renewal. Then from equation 4-1, we 

have 

Lcycle =Pn1Pn21rn1Pn3Irn1, n2 ... 
PnnIrn1 n2,..., nn_IPxlrn1, n2,..., nn, 

where x=b or y and L 
cycle 

denotes the contribution to the likelihood 

function from one replacement cycle. 

Since we know that Pxl rnI n2, ... , nn Pxl rnn and Pxl rnn P (x, nn ) /P (nn ) 

=Px/Pn , where Px is the unconditional probability of event x at the 
n 

cycle end and Pn 
n 

is the probability of the last negative inspection 

before x, we have, 

Pn2 Pn3 Pnn 
Px L'cycle=Pni 

Pn Pn Pn Pn =Px, x=b or y 

12 n-1 n 

The same argument can also be extended to the case of censored data, 

that is x=e. Then it turns out that only three unconditional key 

probabilities need be considered. The likelihood can be built up from 

these three. This greatly simplifies the process. The key probabilities 

are now established below. 
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Let Pb(tn, t) denote the pdf of a sequence of negative inspections, of 

which the last occurs at time t from last renewal, and a 
n 

breakdown at time t from last renewal. The sequence of negative 

inspections may be null, in which case t =0. 
n 

This use of notation reflects the fact that an inspection made at the 

instant of renewal must be negative with probability unity. Hence one 

can always `smuggle in' as such a notional inspection without altering 

the likelihood, and hence from the definition, we have 

t 
Pb(tn, t) = g(u)f(t-u) du. 

t 
4-2 

Since g(u) is the pdf that a defect arises at time u, and f(h) is the 

pdf that a breakdown occurs a time h later, g(u)f(t-u) is the pdf of a 

failure at t arising from a defect at u, and the integration sums over 

all possible times u. These can only occur after the last moment that 

there was known to be no defect, t, and before the breakdown time t. 
n 

Let P (t t) denote probability of a (possibly null) sequence of 
en 

negative inspections of which the last is at t, and no breakdown 
n 

before observation ceases at time t from last renewal. We have in 

a similar way 

Pe(tnit) =1- G(tn) -f 
tg(u)F(t-u) 

du, 4-3 

n 

where G(") and F(") are the cumulative distribution functions of u and 

h respectively. 

This expression is simpler to interpret in its alternative form 
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Pe (t 
nJ 

t) =1- G(t) + 
tg(u)(1-F(t-u)) 

du. 
t 

n 

The first part, 1-G(t), is the probability that no defect arises before 

time t, and the second contribution to the probability of no failure 

represents the event that a defect does arise at some time u>t, but 
n 

does not lead to a failure before time t. The product g(u)(1-F(t-u)) is 

the pdf that a defect arises at u and that there is no failure before 

time t. The integration sums over all possible times u, after the last 

negative inspection at t and before time t. 
n 

Let P (t t) denote the probability of a sequence of negative 
yn 

inspections of which the last occurs at t, followed by a positive 
n 

inspection at time t from last renewal. In the same way, we have 

P (t t) =J g(u)(1 - F(t-u)) du. 
yn 

t 
n 

4-4 

To see this result, it is simplest to be understood that the pdf for a 

fault arising at time u is g(u), and the probability of no breakdown 

before t is (1-F(t-u)). The integration sums over all possible times of 

fault origin u. 

The three key probabilities of the proposed method are conditional on 

the last renewal. With Weibull distributions for u and h, the 

probabilities are calculated by substituting: 

G(u) = 1-exp{-(a 
1u)9i). 

g(u) = 13 
laißi u13i-1exp{-(a1u)13i). 

F(h) = 1-exp{-(a 
2u)A2). 

f(h) = ß2a2ß2 uß2 1 exp(-(«2u)ß2). 
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where a1, a2 are scale parameters and ß1, ßZ are shape parameters. The 

likelihood is calculated by accumulating the product of these three 

terms. Each renewal may be followed by a sequence of negative 

inspections, and this must terminate in an event of type b, e or y. 

Event e is really `no event'. The likelihood L for a total of nb 

breakdowns at times t'n 
e' 

no failure before observation ceases' events 

at times ti, and ny positive inspections at times tk, is 

nn 
L= 11bPb(ti, t ýje Pe (t t)YP (tk, t ), 4-5 

1=1 j_1 k=1 
Ykk 

where the notation ti, tj, tk denotes the time of the latest negative 
inspection, or failing that the latest renewal such that ti <t and 

so on. 

In the more general case of several identical machines, the likelihoods 

corresponding to individual machines are multiplied together. 

4.2.3 Multi-component case 

To see how the argument may be extended to systems of components, we 

now focus on the case of a machine comprising two components. They are 

assumed to be mutually independent in that the state of either 

component is assumed not to affect that of the other. There are two 

possible scenarios: when component A fails, component B is either not 

inspected (case 1) or inspected and replaced if visibly defective (case 

2). Happily both case are tractable. 

In case 1, the two components are completely independent---nothing that 

happens to either of them can affect the other, and the likelihood 

factorizes. The log-likelihood is the sum of log-likelihoods for each 

component, log(L) = log(L 
A)+ 

log(L 
B 

). In case 2, they are no longer 

independent, because a failure of A will cause the replacement of B, if 

B iS visibly defective, and vice versa. Happily, the likelihood can 
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still be written in factored form, even although the components are-not 

now independent. A failure of either component (A, say) simply 

generates an inspection event (n or y) for the other, at the failure 

time tA. These extra inspection events mean that the log-likelihood for 

A contains extra contributions at times determined by the behaviour of 

B, and vice versa. The computer analysis is simple, as the program 

merely has to insert these extra inspections into the record before 

further analysis, and then proceed with the calculation for each 

component separately, as long as the components have no parameters in 

common 

The argument generalizes immediately to arbitrarily many components. 

4.3 Imperfect inspection 

So far it has been assumed that inspections always find a visible 

defect if it is there. In the case of imperfect inspections, there is a 

probability 13 1 that a defect is found if it exists. This is 

equivalent to saying that a (perfect) inspection is carried out with 

probability ß, and that with probability 1-ß the inspection is 

'omitted'. 

When a defect is found, the likelihood is simply multiplied by ß, the 

probability of the observed event, as there is a probability 13 of 

carrying out a perfect inspection. However, when a defect is not found, 

the state of the system is not known. It could be either a defect 

existing there but has not being found, or no defect exists. Since it 

is assumed that inspections are imperfect, the meaning of negative 

inspections differs from the one we used in perfect inspection case. 

Negative inspections under the assumption of imperfect inspection 

merely mean that no defects is found at an inspection, but does not 

mean that no defect exists. Therefore, a negative inspection under the 

assumption of imperfect inspection would imply two possibilities, 

either a 'real' negative inspection with probability 13, or a 'false' 

negative inspection (equivalent to an omitted inspection) with 
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probability 1-ß. 

Here the conditional probabilities mentioned for b, y and e events are 

used, and event x denotes any one of these. Note that the probability 

of event x is conditional on the appropriate preceding event---r or n. 

After m negative inspections, there are 2m terms. For example if let 

PnIJr(tJ 
, tI) denote the conditional probability of a real negative 

inspection at time ti from renewal given that the last real negative 

inspection or renewal is at time tj. And let Pxlr(tj, t)denote the 

conditional probability of event x at time t from renewal given that 

the last real negative inspection or renewal is at time tj. For 

example, consider the formulation of likelihood of two negative 

inspections followed by event x, or more precisely, rn1n2x. In this 

case, we have four possible combinations of the following joint events, 

namely, (a) two real negative inspections at t1 and t2; (b) one false 

negative inspection at t1 and one real negative inspection at t2; (c) 

one real negative inspection at t1 and one false negative inspection at 

t2; and finally (d) two false negative inspections at t1 and t2. The 

likelihood of event x at time t after two negative inspections at tl 

and t2 is the sum of four possible terms, that is 

L= lPn11r(0, t1)ßPn21r(t1, t2)Pxlr(t2, t) + (1-ß)ßPn2ir(0, t2)Pxlr(t2, t) 

+ ßPn11r(0, t1)(1-ß)Pxlr(t1 t) + (1-ß)2Pxir(0, t). 

Fortunately this simplifies considerably, as, given that the nth 

negative inspection occurs, the occurrence or otherwise of previous 

events does not change the likelihood. Thus 

Pn11r(0, tl)Pn2ir(t1, t2)Pxir(t2, t) = Px(t2, t), 

Pn2Ir(0, t2)Pxlr(t2, t) = Px(t2, t), 

Pnilr(0, t1)Pxlr(t1, t) = Px(t1, t). 
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Hence, 

L=ß Px(t2, t) + 13(1-13)Px(t1, t) + (1-ß)2Px(O, t). 

For the event rn1n2,..., nmx (m consecutive negative inspections) this 

suggests a simpler way of deriving such likelihoods as a sum of m+1 

terms, each having the last real negative inspection carried out at tj, 

where t0=0. The probability of the jth real negative inspection is 

ßPniir(O, tj), and as the succeeding m-j inspections must not occur by 

definition, they contribute a factor of (1-ß)m-l. The likelihood is 

then 

L= ßPx(tm, t)+ß(1-ß)Px(tm-1, t)+... +ß(1-ß)m-1Px(t1, t)+(1-ß)1°Px(O, t) 

or 
m 

L= ßE (1-i3)m-jPx(tj, t) + (1-ß)mPx(O, t). 4-6 
j=1 

For details of this formulation, see Appendix C. 

Note that the coefficients (weights) in equations 4-6 sum to unity. If 

the event x is y, a positive inspection, then L is multiplied by an 

extra factor of ß, as the probability of observing a positive outcome 

is ßPx. 

4.4 Selection of the fitted distributions ---the Akaike 

information criterion (AIC) 

Distribution functions with ever more parameters may be applied, and 

tests of fit carried out to assess adequacy, while the increase in 

likelihood per parameter added can be used to test whether that 

parameter was needed. Twice the increase in log-likelihood is 

asymptotically distributed as x2(f), where f is the number of new 

parameters added, Cox & Hinkley [1974]. However, Akaike has challenged 

this traditional approach to parameters estimation, Akaike [1984], on 

the grounds that it is not appropriate to set up a series of null 
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hypotheses H0 that each fresh parameter should not be needed. Why 

should we adopt such a conservative Ho, clinging to the assumption that 

no parameter is needed until compelling to include it, when we have no 

a prior idea of what the distribution should look like? 

The Akaike Information Criterion (AIC) is -2log(L)+2f, where f is the 

number of parameters estimated from the data. The 'best' distribution 

function minimizes this AIC. AIC is actually designed for the purpose 

of correcting the bias of the maximum likelihood. We use the AIC as a 

criterion of the 'best' distribution function, which then enables us to 

choose which of several possible parameters should be nonzero. In the 

simple distribution functions used in the analysis of the infusion pump 

data, the AIC was used to choose among four possible combinations of 

distribution functions, as both f(h) and g(u) could have pdf's of 

either exponential or Weibull type. It is thought by statisticians that 

the use of the AIC results in a slight 'overfitting' of data (too many 

parameters are fitted), and other selection criteria are also used: we 

chose the AIC since it is the simplest. 

4.5 Infusion pump data 

The medical physics department of Hope hospital in Salford, which 

maintains a large amount of medical equipment, records the history of 
breakdowns and repairs carried out via `history cards' for each 
individual item of departmental equipment. 

Information available to us included purchase date, dates of ppms and 

failures, and some description of the work carried out. There were no 

costs recorded, and the record was purely designed to guide technicians 

dealing with the machine on future occasions. Therefore much was 

implicit, but it was easy to recognize ppms, and other entries were 

usually either an initial acceptance test or a failure repair. The 

repairs done were described, and there might be no repair necessary or 

recorded if a reported fault turned out to be a false alarm. Sometimes 

the record was complex, as a fault was noted on ppm by one technician, 
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the machine went to the workshop for repairs, and on further testing, 

perhaps by a third technician, further faults were discovered, and so 

on, resulting in several entries perhaps spanning a number of days. It 

was usually clear that all these entries pertained to the same ppm or 

failure. These infusion pumps were under warranty for their first year, 

but some details of repairs carried out by the manufacturer were still 

recorded. 

Following discussions with the chief technician, it seemed best for our 

exploratory study to focus on the following data, to ensure samples of 

similar machine types, under heavy and constant use, with usefully long 

histories of failure, and with reasonably well-defined modes of 

failure. The items of interest were infusion pumps. 

1. There were 105 volumetric infusion pumps. The most frequent failure 

mode was the failure of the pressure transducer (TX). 

2. There were 35 peristaltic pumps in all, from the Intensive care, 

Neurosurgery and Heart care units. The most frequent failure modes 

were batteries and door-pads. 

Table 4-1 shows the frequencies of the b, e, y and n events. 

component breakdowns + inspections - inspections no-event 

door-pad 4 49 231 34 

battery 36 18 230 34 

transducer 80 20 323 155 

Table 4-1. Number of breakdowns, positive and negative inspections and 

end-of-observation 'event' for the components studied. Unfailed 

pressure transducers were replaced with a later model, given rise to 

the large number of 'no events' for this component. 
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A number of minor problems arose when marrying theory to the real-world 

data. Here we list some of the problems and their solutions: 

1. If a failure occurred just before a scheduled ppm, the ppm was 

carried out as part of a failure repair rather than at the 

scheduled time. The likelihood function does not need altering to 

cope with this, as it is conditional on the observed ppm timings. 

However, simulations of failures and inspections, and predictions 

of reliability and optimum ppm schedules, would need to allow for 

this effect in order to be completely realistic. 

2. False alarms pose a similar problem, not of determination of model 

parameters, but of prediction. Brief inspections are carried out 

when faults are reported, even if the faults were non-existent. To 

make predictions of reliability, etc., one would need to model the 

frequency of false alarms, probably as a homogeneous Poisson 

process. 

3. Acceptance tests and repairs need to be allowed for in our model: 

the machine should not need repairs when it is brand new. 

Acceptance tests and repairs are ignored, and we assume that the 

machine is in a perfect state and at time to after the test. 

4. For two-component systems, the case arises where one component 

fails, and in the resulting inspection accompanying replacement of 

the failed component, the other is also found to be faulty and is 

replaced. This is ab event for one component, and ay event for 

the other. However, it sometimes happens that in such cases where a 

failure has occurred, and both components have visible defects, it 

may not be known which component has actually failed. This 

ambiguity was not completely resolvable from the records in a few 

cases. 

One of the strengths of the likelihood approach is that it can cope 

with such losses of information---it is only necessary to sum over 
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all cases giving rise to the observed events. However, we had a few 

cases where this effect was a problem, and so we simply judged as 

best we could in conjunction with the chief technician. 

5. All of a batch of volumetric pumps had pressure transducers 

replaced with a later version by the manufacturer, which could be 

an example of reliability growth. However, this has no influence on 

our likelihood function and could be modelled 

(a) Inserting an e event into the likelihood, to give the 

probability that no failures had occurred between the last 

renewal and the time of replacement. 

(b) Inserting a renewal r event after the e event. 

In a more elaborate model, it would be possible to use a multiplier 

parameter for the scale factor of the distributions of u and h for 

the new component to allow for its changed reliability. 

6. Some repairs were not replacements, e. g. recharging of batteries. 

In this preliminary study, we classified these as negative 

inspections. 

The log-likelihood corresponding to the likelihood in equation 4-5 can 

be written down as the sum of log-likelihoods, one of the three terms 

just derived for each event of type b, e or y, for each machine in the 

sample; 

log(L) = Eb1og Pb(ti, ti) + te1og Pe(t , t) + 'log P (tk, tk). 4-7 
J=1 jj k=1 

y 

A computer program was written to read in the series of event types and 

machine ages (actually the date of the start of the observation period 

s and further dates convertible to machine ages) at each event. These 

data were stored as a list of elements of the following form: 

1. Type of event (b, e, or y). 
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2. Machine age at last renewal. 
3. Period t since last replacement or machine age if not replaced. 

4. Time tn of the last negative inspection after last renewal, or time 

from last renewal itself if there had been no inspection since 

then. 

This is simple to program: one reads in machine histories, updating an 

array of the above information, updating t and tn by the interval from 

the last event, resetting t and t to zero on a renewal or the start of 
n 

a new machine record, and resetting t to the current time from last 
n 

renewal on a negative inspection. 

It is then possible to step through each event in the array, 

calculating and incrementing the log-likelihood, log(L), by the 

appropriate term for each event. In the case of imperfect inspections, 

we have. seen that the times tl,..., tn of all negative inspections 

preceding an event x are needed. The data structure needed is just a 

little more complex, and a list of the elements is given below: 

1. Type of event (b, e, or y). 

2. Machine age at last renewal. 

3. Period t since last replacement or machine age if not replaced. 

4. Number of previous negative inspections since last renewal. 
S. Pointer to machine age at the last n event (negative inspection) 

since most recent renewal, in an array of all n event times, or 

zero if there was no negative inspection after renewal. 

FORTRAN was chosen as a suitable language, mainly because of the 

excellent NAG, Hopkins and Philips [1988], library of numerical 

routines available for the 386-PC. The NAG function minimizer E04JBF 

was used to minimize minus the log-likelihood. (Take heed that this 

minimizer, we now learn, is soon to be withdrawn). Because scale and 

shape parameters must by definition take positive values, only the 

logarithms of these parameters were seen by the minimizer. The 

sub-routine which evaluated the likelihood function should exponentiate 
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them before use in order to make these parameters be the original 

values. This procedure meant that no bounds needed to be set on the 

parameters, and also ensured faster convergence owing to a more natural 

step size. Similarly, when varying the probability ß of detecting an 

existing defect on ppm, the logit of ß 

logit(ß) = log 1ß ß 

was used. 

Integrations were performed using the Gauss-Legendre method, with n=20 

abscissae. The optimum weights wi and abscissae xi such that 

Bn 
f(x) dx = wif(xi) 

A 1=1 

were found e. g. with A=-1, B=1 and then used to evaluate integrals 

between different sets of limits, e. g. a, b, using the result 

wif(yi), 
J: f(x) dx a-b 

i=1 

where y 
a-b 

X+ 
b"A-a"B 

IB 
Xi A-B 

When various distribution functions were fitted using the Akaike 

information criterion AIC, we chose as starting values those parameter 

values from the best previously fitted distribution function that was a 

subset of the current distribution function. Thus the order of fit for 

g(u) and f(u) was: Exponential/Exponential, Exponent ial/Weibul I (scale 

parameters from last fit, shape set to 1), Weibull/Exponential (scale 

parameters from fit 1, shape parameter set to 1), Weibull/Weibull 

(starting values from fit 2 or 3, choosing that fit with smaller AIC, 



46 

remaining shape parameter set to 1). The calculation of the covariance 

matrix on fitted parameters poses an important practical problem. 

Errors on fitted parameters must be propagated through any subsequent 

modelling to give error bars on quantities of ultimate interest, such 

as recommended intervals between ppms. Now in the next section, a 

reasonably accurate estimate of the covariance matrix is proposed and 

discussed. 

4.6 Calculating the covariance matrix on fitted parameters 

Denoting minus the log-likelihood as F, the covariance matrix C is 

commonly estimated as the inverse of the Hessian matrix H, where 

Hi 
d= 

a2F/av, avit 

and vi, Vi are the ith and jth parameters. Asymptotic arguments now 

indicate that this is a better estimate of covariance matrix C than the 

expectation E{H-1}, Efron and Hinkley [1978]. One can either invest 

effort in calculating the Hessian analytically, or, as we chose, in 

estimating it from the likelihood by numerical methods. 

Because of the non-quadratic nature of the valley bottom around the 

minimum value of F, great care had to be exercised in calculating 

covariance matrix C. If v0 denotes the value of vi that minimizes F, a 

central difference approximation to HIj is 

, if i#j 

(F (v°+S 
, v°+S ) -F (v°+S 

, v°-S ) +F (v°-S 
, v°-S ) -F (v°-S , v°+8 ))/46 S 

iiiii3i1iiJ31ijjsi 
H= 

ij (F(v°+Si)+F(v°-S )-2F(v0))/52 if i=j. 
jiii 

H was calculated using this formula with the 61 set to . 01---. 1 of the 

estimated standard deviation of the vi, and diagonalized. As H is 

symmetric, only one triangle was actually computed. This initial crude 
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estimate of H was not always positive definite, i. e. one or more 

eigenvalues Ai were negative. The matrix S1 that diagonalizes H is such 

that S . H"S1=A, where A is the diagonal matrix of eigenvalues of H. The 

columns of S1 are the eigenvectors of H, and a further set of central 

differences were taken along directions defined by the eigenvectors as 

unit vectors. This second set of differences was a much better 

approximation to H. The matrix of these differences was again 

diagonalized, by a matrix S, and the eigenvalues Ai replaced with the 

difference approximation to the second derivatives of F along the new 

eigenvectors. Finally, H-l was found as 

n 
/Äi. H-1 =kE1(S1S2)iýk(S1SZ) 

J, k 

Any surviving negative eigenvalues were given an inverse of zero. 

The logic behind this procedure is that it is much easier to estimate 

second differentials by difference approximations along the principal 

axes of H. However, these principal axes are themselves found using a 

difference approximation for H, and so two steps are needed to converge 

S. on the true axes. Finally, C=H may be obtained as S"Ä l. T -1 

4.7 Results of fitted delay time distributions 

4.7.1 The estimated delay time distributions: test calculation 

Table 4-2 shows fitted parameter values and estimated coefficients of 

variation for 9 test simulations, in which 4 combinations of 

distribution functions were fitted by taking both f(h) and g(u) to be 

either Weibull or exponential. In all cases, the minimum AIC criterion 

successfully selected the correct distribution functions, which was a 

Weibull distribution for u and an exponential distribution for h. It 

can be seen from Table 2 that the ML estimates are unbiased within the 

standard error of the mean of the simulated results, and if there is a 

bias, it is much less than the random error on the estimates. In 

general one expects a bias of at worst 0(1/n), where n is the number of 
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events, and this would appear to be negligible for sample sizes large 

enough to make the analysis worth while. 

simulation al ßi a CV al CV ßl CV a2 

1 . 298 2.041 . 852 . 073 . 122 . 234 

2 . 293 1.570 . 631 . 092 . 118 . 235 

3 . 258 1.755 . 816 . 085 . 124 . 238 

4 . 246 2.036 . 755 . 076 . 120 . 246 

5 . 266 1.499 . 473 . 100 . 122 . 264 

6 . 265 1.710 . 778 
. 
085 

. 123 . 238 

7 . 253 1.372 . 664 . 110 . 136 . 253 

8 . 298 1.397 . 338 . 105 . 121 . 285 

9 . 272 2.037 . 364 . 130 . 189 . 300 

mean . 2722 1.680 . 6633 

bias -. 0013 . 0640 . 0380 

SEM . 0074 . 0940 . 0586 

Table 4-2. Simulation results. a1 is the scale parameter of the Weibull 

distribution of fault origin times, set to . 2735, ßi its shape 

parameter, set to 1.616, a2 the scale parameter of the delay-time 

distribution, set to . 625. SEM is the error (standard deviation) of the 

mean Monte-Carlo estimate, and the bias is the difference between the 

mean of the estimates and the true value. SEM is thus the error bar on 

the bias. CV is the covariance of parameters. Simulation 9 is an 

imperfect inspection simulation with ß set to 0.7, and is not included 

in the averaging. 

Table 4-3 shows that the standard deviation of the parameter estimates 

derived from the covariance matrix agrees acceptably well with the 
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observed standard deviation between the 8 simulations of perfect 

inspections. The standard deviation from the covariance matrix is the 

root mean variance from the covariance matrix. Thus in this example at 

least, estimated error bars can be relied on as acceptably accurate 

estimates of the true error. 

al ßi a2 

observed s. d. . 021 . 265 . 179 

from covariance matrix . 
0251 . 

209 . 166 

Table 4-3. Simulation results. Standard deviation of the three 

fitted parameters as derived from the variance of the 8 

simulations, and as calculated from the estimated covariance 

matrix. 

Turning now to real data on infusion pumps, Table 4-4 shows the AIC and 

parameter estimates for the 4 combinations of distributions fitted 

under the assumption of perfect inspection, that is set 9=1. It can be 

seen that distributions vary considerably. Delay-time distributions 

tend to be J-shaped, so that once a defect has become visible, the 

hazard of failure remains constant or decreases with time. Presumably 

the interpretation is that if a visible defect such as a crack has not 

caused failure for some time, it is relatively unlikely to do so in the 

immediate future. The occurrence of both IFOM and DFOM (increasing and 

decreasing force of mortality or hazard) distributions vindicates the 

use of the Weibull as a suitable parameterization. 

For the imperfect inspection simulation the estimate of 13 did converge 

to near the true value of 0.7, and the error became smaller and smaller 

as the Monte-carlo sample size was increased, giving us confidence in 

the correctness of the Monte-Carlo program, the statistical theory, and 

the fitting program. For example, when the Monte-Carlo sample size is 

50 breakdowns, 22 positive inspections, 181 negative inspections and 25 

censored data, the estimation of ß is 0.73. The AIC criterion again 
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selected the correct distributions in all cases, out of a total of 

eight simulation data fitted: the four previously mentioned, each with 

P=I and also with ß allowed to vary. 

Components model AIC a1 ßl a2 ß2 

Door-pad E/E 380.1 . 00074 1 . 00044 1 

E/W 376.2 . 00074 1 . 000002 . 31 

C. Vs . 14 0 4.8 . 56 

WE 381.9 . 00073 . 944 . 00043 1 

W/W 377.9 . 00073 . 924 . 000002 . 308 

Battery E/E 754.1 . 0007 1 . 0075 1 

E/W 756.1 . 0007 1 . 0073 . 90 

WE 706.7 . 00073 2.41 . 009 1 

C. Vs . 06 . 11 . 25 0 

W/W 708.6 . 00073 2.41 . 0093 1.20 

Transducer E/E 1400.7 . 0014 1 . 015 1 

E/W 1402.7 . 0014 1 . 0149 . 997 

W/E 1390.4 . 0017 1.42 . 0174 1 

C. Vs . 081 . 091 . 215 0 

W/W 1391.9 . 0017 1.43 . 0174 . 842 

Table 4-4. Results of fitting to infusion pump data. The model 

selected by the minimum AIC is marked with an asterisk, and the 

coefficient of variation of the distribution function parameters 

appears below it. ai etc. are as defined in Table 4-2. Model 

types are e. g. E/W, exponential for g(u), Weibull for f(h). Units 

of time are days. 
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For real data, only the door-pad data gave a value of probability of 

detecting a fault ß<1. An examination of the data confirmed that 

failure often occurred soon after negative inspection. However, with 

only four breakdowns, very small sample size, the fitted value which 

was 0=0.17 should not be taken too seriously. The maximum likelihood 

estimate will be biased, and the calculated confidence limits on 13, 

which are derived assuming a Gaussian distribution of the estimator, 

will be too small. 

4.7.2 Assessing fit of delay time distributions to 

infusion pump data 

There are two strands to evaluating distribution fit. One approach is 

to embed the distribution in a more general distribution, i. e. add 

extra parameters and test whether they are needed, as described in 

e. g. Cox [1983]. This approach was not adopted, since any such extended 

distribution that was contemplated would be fitted, and the 

distribution adopted if the AIC was the lowest. 

The other approach is to carry out a test of fit against a broad 

alternative hypothesis. The chi-squared test is simply such a 

(likelihood ratio) test, where the alternative hypothesis is derived by 

dividing the range of the distribution into classes or `bins', and 

assuming a multinomial distribution of events among classes. The 

asymptotic form of this likelihood ratio is the familiar chi-squared, 

and is distributed according to the chi-squared distribution. 

To apply this logic to our problem, we had to overcome two small 

difficulties. The log-likelihood of equation 4-7 corresponded to the 

continuous case, where breakdown times were not classified into bins, 

and the second difficulty was the existence of the time of most recent 

inspection. It is worthwhile sketching out our solution to the 

test-of-fit problem, as this is a case where the mathematical 

derivation gives insight into what a test of fit really is. This 

analysis and discussion is given in Appendix A. 
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Now with our real data, Figure 4-3 shows failures of peristaltic pump 

batteries, Figure 4-4 shows our predictions and data for positive 

inspections of door-pads, and Figure 4-5 shows breakdowns of volumetric 

pump transducers. The fit seems to be adequate for the first two 

distributions, with x2[6]=3.3, x2[7]=4.8 respectively. Both visually 

and numerically something is clearly wrong with the fit of volumetric 

pump transducers in Figure 4-4, where x2[8]=72.5. It is clear that the 

precise number of degrees of freedom to be allocated to each histogram 

is unimportant. Some further development is clearly needed for 

transducers. In this pilot study we did not carry this out: our aim was 

merely to apply the simplest feasible method and evaluate its 

performance. The answer may lie with the quality of the data since 

components were replaced without failure by the manufacturer, some of 

`no event' or e events may have involved a malfunction, and so should 

have been classified as breakdowns. Either way, further data collection 

add verification is required to resolve the situation. 
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Figure 4-3 Histogram of Breakdowns 



53 

number of positive inspections 
16 

14 

12 

10 

8 

6 

4 

2 

n 

M sample data 

® predicted 

I 

v 

0 150 450 750 1050 1350 1650 1950 
time to positive inspection (days) 

Data source: Door-pad of Peristaltic Pump 
Sample size: 49 

Figure 4-4. Histogram of Positive Inspections 

number of breakdowns 
30 

25 

20 

15 

10 

5 

0 

M sample data 

00 predicted 

0 65 195 325 455 585 715 845 975 
time to breakdown (days) 

Data source: Transducer of Vol. Pump 
Sample size: 80 

Figure 4-5. Histogram of Breakdowns of Volumetric Pumps 



54 

The fact that a method which works well for two components does not 

work so well for a (seemingly very similar) third component exemplifies 
the need for tests of fit. 

4.8 Conclusions and further developments 

This work has tested out our a priori conjecture that parameters of 

distributions based on the delay-time concept can be determined from 

`typical' maintenance data, rather than predominantly from subjective 

data, and that these distributions can then be used for useful 

predictions. This was very much a pilot study, but some strong 

conclusions do emerge. We briefly review how far we might be said to 

have succeeded in our aim, enter some caveats, and conclude with a 

short list of future projects which will be explained in next Chapter. 

The Monte-Carlo studies were limited in scope, but we have demonstrated 

the feasibility of using maximum-likelihood estimation of distributions 

parameters, and their error bars, using the AIC to select the optimum 

distributions. Even under imperfect inspection, the correct 
distributions could be found, and values of distribution parameters 

recovered. 

The first attempt to fit distributions to real-life data and to make 

predictions based on that distribution would seem encouraging. As 

expected, there were large error bars on the estimated mean delay-time 

itself, resulting from the strong censoring imposed by periodic 

inspections. Tests of fit showed acceptable predictions of time to 

breakdown and numbers of positive inspections in two out of three 

applications. In the third, unfailed components had been replaced by 

the manufacturer, and some of these `unfailed' replacement events may 

have been actual failure replacements. 

Clearly more detailed modelling may be needed in particular cases, 

trying alternative distributions to the Weibull, and perhaps embracing 

general assumptions. The method needs some `TLC' (Tender Loving Care), 
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as messy real-world features of the data intrude rudely to spoil the 

elegance of theory. Fortunately, the likelihood method can cope well 

with censored and incomplete data. Methods of developing further need 

to be created, and evolved using several data sets. For example, 

fitting a piece wise exponential distribution would enable a histogram 

of the hazard function to be displayed corresponding to the pdf g(u), 

and this could be used to suggest fruitful parameterizations of g(u). 

A caveat is that just any old information logged by technicians may not 

be adequate, if crucial information is missing, e. g. whether an event 

was a scheduled ppm or a breakdown repair. However, the method will 

work, given only information that lies readily to hand and can be 

recorded and computerized. If only some sufficiently complete database 

is maintained, the method described here, or a tailored version of it, 

can be the tool to convert a mass of lifeless data into cost-saving 

recommendations. 

In conclusion, we have shown the feasibility of using objective data in 

the estimation of delay time distributions, and our experience suggests 

several areas for future extensions. These include developments of the 

method and development of diagnostic tools, such as the already 

mentioned use of piece wise functions as an exploratory tool in model 

development. 

In the next Chapter, some further developments to the basic methods 

presented here will be explored to model more realistic and complicated 

cases based upon the same objective data. In comparison with the basic 

methods, the AIC is also chosen to select the 'best' distribution and 

see whether the complex distribution will improve the fit to data. 
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CHAPTER 5 EXTENSIONS TO THE BASIC METHODS IN CHAPTER 4 

In the last Chapter, a basic method of the selection of distribution 

functions and parameter estimation for distributions of u and h was 

developed based upon objective data, i. e. the historic data of failures 

and inspections. The method contrasts with the previously advocated 

technique of assessment of distributions using mainly subjective data. 

Instead, the criterion of minimum Akaike Information Criterion (AIC) 

was utilized for delay time distributions fitting to data, and was 

successfully applied to real world data. It is therefore evidently 

possible to use routinely collected data (collected by technicians for 

purposes of maintenance) to estimate the parameters of the delay-time 

distributions, and to then use the distributions in inspection model to 

predict the optimum interval between ppms, for example. This latter 

calculation, unlike the fitting process, can be carried out by 

Monte-Carlo methods, and is the end-product and raison d'etre of the 

modelling process. 

In more generality, as stated in the last Chapter, the AIC is 

-2log(L)+2f, where L is the total likelihood, and f the number of 

fitted parameters. The minimum AIC model is designed to be the 'best' 

distribution for predictive purposes on fresh data. The rationale 

behind it is the concept that although increasing the number of 

distribution parameters causes the fit to a given sample of data to 

become better, the likelihood function calculated by applying this 

distributiön to a fresh sample is smaller. However, since the 

parameters estimated are not the true population values, there must be 

errors involved in the estimated parameters. On correcting the 

large-sample log-likelihood from a fit to data, one obtains the AIC. 

The AIC is a complicated function of the distribution parameters. Hence 

it is difficult to assess the goodness of fit to data by plotting 

residuals. A global likelihood ratio test of fit is described in the 

last Chapter, but such tests, which have no specific alternative 
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hypothesis, lack power to detect any specific weakness of the 

distribution. However, the creation of more elaborate distributions 

which generalize the simpler distribution does provide a means of 

ensuring the adequacy of distribution. The fitting of these more 

complex distributions is thus always beneficial; either a better fit to 

data is obtained, or one is given an assurance that the simpler 

distribution is adequate. In this Chapter some natural extensions are 

made to the basic methods, to model more realistic and complicated 

cases, and to make the technique more robust. 

The new developments investigated in this Chapter are: 

1. The functions g(u) and f(h), hitherto parameterized as Weibull 

distributions, may depend on the machine age t. For instance, this 

can be achieved by letting the scale parameter of the distributions 

be a function of the age t at the moment the component was 

renewed, e. g. by taking the scale factor « eAt. 
2. Inspection may have a beneficial or adverse effect on a component's 

performance. We assume that the inspection exerts this influence 

by adding or subtracting a period A to the effective age of the 

component. A may be estimated along with the other parameters 

through the maximum likelihood method. 

3. Often in practice, machines from which the data are collected have 

different usages and ages, and can not be treated as identical. The 

maximum likelihood principle can be extended to cope with a 

population, via the `Empirical Bayes' method. 
4. Two mechanisms which can induce correlations between the periods u 

and h are discussed. One mechanism, which gives rise to positive 

correlations, invokes a population of components. The other, which 

gives rise to a negative correlation, requires a two-stage failure 

process, with an additional delay after the completion of the first 

stage before a fault becomes visible. 

5. Some miscellaneous topics are also discussed, e. g. imperfect 

inspections and the parameterization of g(u) and f(h). 
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Distribution functions including the extensions enumerated are 

derived, and tested on real world data and compared with the results by 

using simple distributions in the last Chapter. 

5.1 The effect of machine age 

New components introduced as replacements into an aging machine may 
fail more quickly than they would if the machine were new, because of 

operating in an aging environment. Both the time u to visibility of a 
defect, and the time h to subsequent failure, may be shortened. 

Let the hazard functions of u and h be defined by ip(u) and 0(h) where 

ti(u)=g(u)/{1-G(u)1 and 0(h)=f(h)/{1-F(h)}. This effect can be 

parameterized by increasing the hazard i/i(u) of a defect becoming 

visible, and the hazard cß(h) of subsequent failure. Alternatively, the 

times u and h could be scaled up. For the Weibull distribution, these 

proportional hazards and accelerated life models are functionally 

equivalent, Cox [1983]. We chose to multiply the scale factors a of the 

Weibull distributions used to parameterize g and f by eAt, where t is 

the machine's age at the time the component was renewed. This means 

that A can take any value from -oo to +oo, with a zero value of A if the 

machine age has no effect on hazards ip(u) and 0(h). Other 

parameterizations were also tried, e. g. a« 1+At. However, a« 

t? L=exp{flog(t)} is unacceptable, as the hazard of the first failure 

would be zero. 

5.2 Hazardous or beneficial inspections 

An inspection could have other effects besides the replacement of 

visibly defective components; a hazardous inspection might damage 

components and increase their hazard of subsequent failure, and on the 

other hand, a beneficial inspection might reduce the hazard of failure. 

This could happen if the inspection included an overhaul, e. g. via some 

adjustment or lubrication. In the context of medical screening, Lee 

[1987], procedures such as X-raying could increase the risk of the 
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cancer they attempt to detect. 

Such effects could be parameterized in very many ways, but a simple and 

economical approach where the hazard of failure increases with age 

would be to regard the inspection as either aging or rejuvenating the 

component by some period A. Here the parameter A means the age 

effectively removed from the component by overhauling it. This 

parameterization is attractive because only one parameter is required, 

and it has a simple interpretation. 

More precisely, the hazard 1(u) of developing a visible fault at age u 

would, after inspection, jump back to its (lower) value at age u-A. 

Common sense suggests that this simple idea needs some modification. 

Two consecutive overhauls could only produce the rejuvenating effect of 

the first: once lubrication or adjustment had been carried out, no 

further improvement could result from immediately repeating the 

process. On the other hand, a second hazardous overhaul could well 

produce still more damage to components. Hence the age removed from a 

component should not exceed either the period from its last overhaul, 

or its total age. This last restriction means that overhauls can never 

restore a machine to `better than new'. 

Given g0(u) a pdf. for a defect arising at time u, and the 

corresponding distribution function G0(u) without any inspection 

influence, it is straightforward to calculate the pdf. of u and 

distribution function G(u) obtaining at time u, after n such hazardous 

or beneficial inspections with parameter A. If the hazard of developing 

a defect at age t is 1(t), after i-1 inspections at times to,..., t 
I-1, 

where to=0, 

i-1 

tt 
effective 

=tE Min{tJ-t 
j-1, 

A }, 

j=1 
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for t 
i-i 

<t< ti, and fi(t) 4 &(t 
effective 

). The sum is nugatory if j> 

i-1, i. e. if 1=1, so that no inspection has yet occurred. 

The survival function S(u)=1-G(u) proves unexpectedly complicated when 

A*0. Let So be the survival function when A=O. The equation 

S Cu) =e-oO(t)at 5-1 
0 

is the key to calculating S(u). For t1-1 <t< ti, the hazard is P(t - 

Ei-1Min{t -t A }). The integral fuo(t )dt must then be 
j=1 j j-1 0 effective 

carried out piece wise, and is 

u n+l t 1-1 
P (teffective )dt =f i1(t 

-E Min{tj-tj-1, A})dt, 5-2 
0 1=1 t 

i-1 
J=1 

where a total of n inspections have been carried out by time u from 

renewal, to=0, to+l=u. 

It is now possible to write down the survival function S, using the 

equation 

e-f t1- 
(t)dt 

= So (ti)/So (t1-i)ý 

derived from equation 5-1. Treating each term in the summation in 

equation 5-2 in this way, and remembering that S0(0)=1, we finally have 

S(u) 
n+i So (t 

i- 
Ej_i Min{t 

i -tj-i 'A}) 
5-3 17 - 

i=i So (ti-i-E1-2 Minfti-tj-i'AH 
J=l 
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where u appears on the right hand side in the guise of to+l. Clearly, 

for exponential distributions the additional terms due to A cancel as 

they must, because when the hazard ili is a constant, rejuvenation can 

have no effect upon it. 

The pdf. g(u) = -dS(u)/du is obtained by differentiating equation 5-3 

n 
g(u) = 'i(u -E Min{tj-tJ_1, A })S(u), 

J=1 

for u> tn. In terms solely of the original survival function S0 and 

pdf. go, the pdf. is 

nn 

g(u) = go (u -E Min{t -t 1, 
A}))S(u)/So (u -E Min{ti-tj-1'A}), 

j=i 
J j- 3=1 

where S is as defined in equation 5-3. 

It is now possible to compute G(u) and g(u) when A is nonzero, if the 

original distribution function G0(u) and pdf. g0(u) can be computed. 

Whether or not rejuvenation would be an improvement would depend on 

whether the hazard of a defect developing was increasing or decreasing 

with age --- restoring the machine to an earlier and more unreliable 

state would not be an advantage. The basic concept of changing the 

component's effective age is still valid for such DFOM (decreasing 

force of mortality) distributions, but here it is the increase in age 

that must be restricted. It is simplest to write 

i-1 

j 
t te££ective = t+ El Min{tj-tj_1, A}, 
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and to define A as the increase in age conferred by the inspection. 

However, for DFOM distributions the rationale of this approach, namely 

the notion of restoration to a younger and more reliable state, is not 

appropriate. 

5.3 Population of machines and/or components 

Initially all machines in the sample were treated as identical. 

However, usage of machines may vary, as well as intrinsic robustness. 

Modelling a population of machines with varying `frailty is at once a 

means of generalizing the method, and of testing the hypothesis that 

machines are identical, by examining the decrease in AIC on introducing 

a population. 

The following logic can be regarded as simply an application of maximum 

likelihood estimation, where it is usual to sum the likelihood over all 

events that could have given rise to the observations. However, it also 

falls under the heading of `Empirical Bayes' methods, Maritz and Lwin 

[1989], as the pdf. of the population of frailties can be regarded as a 

Bayesian prior distribution; however, this is a `prior' whose 

parameters can be estimated, hence the qualification of `empirical'. 

Let the scale factors of g(u) and f(h) be proportional to a frailty A, 

characteristic of each machine. A is assumed to be a random variable 

from a distribution such as log-normal or Gamma. Without loss of 

generality, it can be assumed the mean of A to be unity. Then the pdf. 

of frailty is e. g. 

p(XI') - r(ý) ' 5-4 

where the variance of A is --1. The likelihood function corresponding 

to each machine is conditional on A, and must be integrated over all 

the (unknown) values of A, i. e. 
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Co 
L(xI') =f L(xIX)p(AI') da, 

0 

where x is the vector of observations. L(xIT) must be maximized for 7 

as well as for the parameters of f(h) and g(u), which are now 

parameters at average frailty. The total likelihood is the product of 
the likelihoods corresponding to individual machines. 

As 'r co and the variance of the population tends to zero the 

likelihood reverts to that calculated assuming identical machines. 

5.4 Correlation between u and h 

The concept of a two-stage failure process leads naturally to the 

assumption of independence of u and h. The condition of the component 
deteriorates to a point where it is held to be defective, and then 

further deterioration ensues until the component is regarded as failed. 

The determinant of time to failure would then be merely the fact of the 

machine's defective condition and not the time taken to deteriorate to 

that condition. Hence u and h should be independent. 

However, there are several reasons why this simple notion might need 

modification. One is that there could be a population of components, 

some with longer periods both for a defect becoming visible and for 

subsequent failure, and some with shorter periods for both events. The 

two periods would then be correlated. Formally, one mode of generating 

correlated values of u and h would then be to consider a distribution 

of scale factors A such that components have a hazard AO(u) of becoming 

visibly defective and hazard AO (h) of failing. Integrating the joint 

pdf. g(u)f(h) over the population of unobserved values of A would give 

a correlated bivariate distribution of u and h. This is precisely the 

same 'Empirical Bayes' logic considered earlier, and generates only 

positive correlations. When g(u) and f(h) both have exponential 

distributions, and Aa Gamma distribution as in equation 5-4, the 
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integral can be evaluated analytically. Here g(u)=ale-a1 

f(h)=a2e-a2h, and 

co 
g(u)f(h) 

f lzala2exp(-l{alu-a2h})f(AIx)da. 
Jo 

This yields 

(ä+1)«o 
g(u)f(h) p(u, h) =a1u+ a2h 7+2, [1+ 

71 

the Bivariate Pareto distribution for u and h. As co , by virtue of 
the limiting result 

Limn (1 + x/n)n= ex, 
=> co 

it can be seen that p(u, h) reverts to its original form, as it must. 

When g(u) and f(h) are Weibull variables, u and h are replaced by their 

powers, if the hazards are scaled by X (the proportional hazards 

assumption). The Takahasi-Burr distribution resulting has survival 

function: 

P(U>u, H>h) = S(u, h) =1 
(a1u)ß1 + (a2h)ß2 a 

[1+ ly 1 
5-5 

The bivariate pdf is 
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2 
(ä+l)ala2ß1%« u)ßi-1(a2)ß2-1 

p(u, h) =ö S/auch = 5-6 
(o u) 

ßl+ (a h)ß2 X+2 12 

These and similar distributions resulting from components sharing the 

same environment are described by Hutchinson and Lai [1990]. If the 

accelerated life model is used, u and h are scaled by A rather than ußi 

and hß2 , and the integration must be carried out numerically. 

Stone [1978], as quoted by Lawless [1982], measured times to 

development of microscopic faults in electrical cable insulation, and 

subsequent times to failure. The Spearman correlation between u and h 

for these data is pS=0.583, which suggests that the Takahasi-Burr 

distribution could be fitted. The results of this fit are quoted later 

in this Chapter. 

Another mechanism by which f(h) might become dependent on u, i. e. 

become f(hlu). would be if the component condition regarded as 

defective were to vary from inspection to inspection. Since the total 

time u+h to failure would be unaltered by the precise definition of 

`defective', longer periods u would be associated with shorter periods 

h. This would induce a negative correlation between u and h. 

The epidemiological analogy makes the logic clearer. Death from a 

disease is a two-stage process, with the period from birth to infection 

being the first stage, and the period from infection to death the 

second. There will in general be a lag t between infection and 

diagnosis of the disease. The period u corresponds to time to 

diagnosis, and h is the period from diagnosis to death. 

If the distribution of diagnosis lag t, ie. from infection to diagnosis 

of the disease, is q(t), the bivariate distribution of u and h changes 

from g(u)f(h) to p(u, h), such that 
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p(u, h) = Jg(u_t)f'(h+t)q(t)dt. 
0 

The periods u and h are now correlated, unless the distribution f of 
delay time is exponential, when f(h+t) factorizes, and u and h are 

still uncorrelated. 

5.5 The parameterization of the distributions g(u) and f(h) 

The Weibull distribution with survival function S(t)=e-(at) was used in 

the simple model of the last Chapter, as it can model both increasing 

and decreasing hazard distributions with only two parameters, and has 

been very widely applied in failure-time problems. An obvious drawback 

is that for ß>1 the hazard aß(at)ß-1 is zero when t is zero. This 

seems restrictive, and a 3-parameter Weibull distribution with survival 

function 

S(t) =e(aS)ß- 
(a(t+S)ß 

where ö>0 allows the initial hazard to be nonzero. As will be seen, 

it is necessary in fitting data to compute the distribution functions 

G(u) and F(h). Use of the Weibull distribution, where G and F can be 

evaluated without resorting to numerical integration, is an advantage. 
Error bars on the fitted distribution f(h) are higher than those on 

g(u), because under regular perfect inspection, a fault that has become 

visible can not remain so for longer than the period between 

inspections. The tail of the f(h) distribution is thus undetermined. 

Hence in this study the f(h) distribution was parameterized more simply 

than was the g(u) distribution. With Weibull distributions for u and h, 

the required probabilities are: 
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G(u) =1- exp{(alö)ßi- (al(u+a))ß1}, 

g(u) =1 aß1(u+S)ßi-lexp{(a1S)ßi - (al(u+ö)ßß}, 
1 

F(h) =1- exP{-(a2h)ß2}, 

f(h) = 13 2202-lexp{-(a2h)ß2}, 
22 

where ai, a2 are scale parameters and ßi, 13 
2 are shape parameters. 

As will be shown, bivariate distributions p(u, h)=g(u)f(hIu) * g(u)f(h), 

where u and h are positively or negatively correlated can be built up 
from the independent distributions described here. 

5.6 Assumptions for the estimation of g(u) and f(h) 

Assumptions for the model to estimate the parameters of g(u) and f(h) 

are relaxed considerably from the list quoted in the last Chapter, 

section 4.2. They are now as follows: 

1. The components of a machine are assumed independent, i. e. the 

failure of one will not affect the functioning of another. 
2. Components with identified defects are repaired immediately and 

instantaneously. 

3. Repair times are assumed to be negligible. 

4. The pdfs of u and h are modelled as 2 or 3-parameter independent 

Weibull distributions, which are subsequently built into a 
bivariate distribution of pdf. p(u, h), assuming neither, either, or 

both of the two correlation-inducing mechanisms described. 

5. Imperfect inspections: inspections are in general imperfect, i. e. 
they have a probability ß: 1 of detecting a fault if it is 

present. When any component fails, an inspection of the machine 

embracing all of its components is carried out, and these 
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adventitious inspections have probability ß' 1 of detecting a 

fault if it exists. In general ß' * ß. There are no false 

positives, i. e. if a fault is not present one will not be 

identified. Probabilities ß are assumed independent between 

inspections. In addition to this parameter ß, the bivariate form 

p(u, h) allows some faults to be undetected before breakdown. 

6. Machines are assumed to be members of a population, with varying 
hazards both of defects becoming visible and of these visible 
defects causing a breakdown. This allows for unequal usage or 
differing intrinsic machine `frailties'. The distribution of 
hazard-scale factors was taken as Gamma in this study. 

7. Repairs are no longer taken as replacements, so that the faulty 

component is restored to an `as-new' condition. Instead, the 

hazards of failure etc. are a function of machine age. 
8. Inspections are no longer assumed to simply imply replacement of 

defective components. Instead, they may also be either hazardous or 
beneficial, effectively rejuvenating or aging components. 

Clearly, attempts have been made to extend the simple distribution to 

include likely real-life features, such as failure-rate changing with 

machine age, side-effects of the inspection process, and correlation 

between time to visibility of a defect and subsequent time to 

breakdown of the component. The assumptions of component independence, 

immediate repair and negligible repair times stand out as unconditional 

assumptions, rather than descriptions of parameterizations which, 

although themselves assumptions of a sort, are in fact attempts to 

relax previous more stringent assumptions. 

In this study it was known that repair-times were small enough to be 

regarded as negligible, and that identified defects were immediately 

rectified. 

Component dependency was not modelled, except in that breakdown and 

subsequent repair of any component caused an 'adventitious' inspection 

of all other components. The approach used to deal with hazardous 
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inspection could be used to treat component dependency; breakdown of 

(or even appearance of a visible defect in) any component could exert 

an aging effect on all other components of the machine. The amount of 

aging could be taken as a universal constant, or as a matrix of pair 

wise increments, where Aij would be the increase in effective age of 

the ith component caused by breakdown of the jth. Thus, although our 

data were inappropriate for developing such distributions of pair wise 

dependency, all the necessary mathematics has been derived, and the 

fitting of these extra parameters would present no difficulty for our 

approach. 

5.7 Calculation the likelihood 

For reasons of which we have stated in the last Chapter, it again turns 

out that only three key probabilities need be considered; the 

likelihood can be built up from these three, and others which are 

special cases of them. The general case which allows negatively 

correlated periods u and h is now considered. A defect arises at time w 

with pdf g(w), distribution function G(w), becomes visible at time u 

with pdf q(u-w), distribution function Q(u-w) and causes breakdown of 

the component at time t=u+h with pdf f(h), distribution function F(h). 

When the pdf. of the lag u-w between a defect arising and becoming 

visible is a Dirac delta-function so that these events occur 

simultaneously, the model presented here reduces to the simpler one 

proposed in the last section where a defect arises and becomes visible 

at time u with pdf g(u). 

The probability expressions are quite similar to the ones in the last 

Chapter. But since we have introduced an extra period between the time 

of a defect arising and the time of this defect becoming first visible 

as a more general case, expressions 4-2,4-3, and 4-4 need to be 

slightly modified. For details see Appendix B. 

The three key probabilities Pb(tn, t), Pe(tn, t) and P (t t) are yn 



70 

conditional on the last renewal. The corresponding expressions in the 

simpler case when there is no time-lag between a fault arising and 

becoming visible are derived by setting Q(t) equal to unity everywhere 

it appears, irrespective of the value of t. 

Similar to that in previous Chapter, the likelihood is calculated by 

accumulating the product of these three terms. Each renewal may be 

followed by a sequence of negative inspections, and this must terminate 

in an event of type b, e, or y. Event e is really `no event'. The 

likelihood L for a total of nb breakdowns at times ti, ne `no failure 

before observation ceases' events at times tj, and ny positive 

inspections at times tk, is 

L= 
'b 

P (t*, t ) 11 ep (t*, t ) Tr P (t*, t ) 5-7 

1_1 
bii 

j^1 ej k_1 ykk 

where the notation tt 

inspection or, failing that 

so on. The likelihood under 

terms of the three key prob< 

tk denotes the time of the latest negative 

the latest renewal, such that ti < ti, and 

imperfect inspection can also be written in 

abilities, as described in the last Chapter. 

5.8 Results of fitting the extended distributions to data 

Data comprised historical data on inspection results and breakdown 

times of the three infusion-pump components described in the last 

Chapter. In addition, the data of Stone, Lawless [1982] provided direct 

measurements of the periods u and h for failures of epoxy insulation of 

cables. 

Turning to this data set first, it comprised 17 measurements of u, h 

pairs, and three censored cases in which no defect had appeared after a 

long time interval, and for which consequently only a lower bound on u 

was quoted. The likelihood to be maximized is the product of terms 
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17 82S(ui, hi) 3 

Ti öuöh Ti S(u1 0) 
J=l 

where the survival function S(u, h), is given by equation 5-5. The 

bivariate pdf. has been written in terms of the survival function. A PC 

386-based FORTRAN program was written, which called the NAG routine 

minimiser- E04JBF to minimize the resulting AIC. The fitted value of 7 

was 0.39, corresponding to a coefficient of variation of '-1/2=1.6 for 

the Weibull scale factor, a very large variation in `frailty' between 

samples. Several other parameterizations were also investigated, i. e. 

the use of a log-normal distribution for the Weibull scale factors 

rather than the Gamma, and the use of an accelerated life model rather 

than a proportional hazards model. The likelihood proved to be very 

insensitive to the different parameterizations. 

To compute the Pearson correlation predicted by the fitted model, 

values of u were assumed censored at t=1740 hours, the lowest censored 

u value, and the distribution resulting from the conditional survival 

function 

S'(u, h) 
S(u, h) - S(u h) 

01- 
S(uh) 

The Pearson correlation of the 17 data values was 0.505, and the 

correlation from the fitted distribution was 0.530, showing that the 

method has reproduced the observed correlation between the variables. 

The bivariate distribution does not fit better merely because it 

chances to fit the marginal distributions for u and h better than does 

the product of two unvariable distributions. 

However, the population method also predicts a long tail to the 

distribution of u, and allows the distribution to successfully fit data 
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points that would undoubtedly have been regarded as outliers and 

ignored under the hypothesis of independent u and h. The log-likelihood 

decreases by 4.7 on adding the mixing parameter X, which corresponds to 

a decrease in goodness of fit chi-squared of 9.4. The criterion of 

minimum AIC would definitely require this parameter to be present. With 

populations of component `frailties', one expects both correlation 

between u and h, and also long-tailed marginal distributions. 

Turning to the infusion-pump data where the observations are indirect, 

the FORTRAN program used for the earlier study was considerably 

enlarged. A total of ten parameters can now be fitted, i. e. 

1. The three Weibull parameters al, 13 and 6 for the distribution g(w) 

or g(u). 

2. The two Weibull parameters a2 and ß2 for the distribution of f(h). 

3. The probability ß that an inspection detects an existing defect. 

4. The age A removed or added by a beneficial or hazardous inspection. 

S. The (compound) rate of increase with machine age A of hazards of 
defects arising and causing failure. 

6. The scale parameter 71 of the exponential distribution of the delay 

between a fault arising and becoming visible. The distribution 

function is Q(t)=1-e 

7. The standard deviation 1/2 of the log-normal distribution of the 

hazard scaling factors for different machines in the population. 
8. Ditto, for the population of components. 

Of these eleven parameters, only ten could be fitted at once, as the 

idea of a population of machines and a population of components 

simultaneously would require a double integration, and hence in total a 

triple integration for the likelihood, which would be prohibitively 

slow on a 16 MegaHertz 386-PC. 

As before, the minimum value of the Akaike Information Criterion (AIC) 

was sought. 



73 

Since cycling through all possible subsets of the full distribution was 

a very time-consuming process, the program was modified to permanently 

keep any parameter that decreased the AIC, but to continue evaluating 

other parameters from distributions both with and without a parameter 

that failed to decrease the AIC. This strategy allows for the fact that 

some parameters can and were seen to potentiate others. Also, some 

parameters are known to exert no effect at all in the absence of 

others, and hence certain combinations did not need to be explored. 

For example, the third Weibull parameter ö has no effect for 

exponential distributions where the shape parameter ß=1, and neither 

does the rejuvenation parameter S. The delay in visibility of a defect 

does not produce a correlation between u and h if the distribution of h 

is exponential (although it could in theory improve the distribution of 

g(u). Regarding imperfect inspections, there would be little chance of 

obtaining a superior fit with ß<1 If the likelihood, obtained with ß 

0.99 and all other distribution parameters fitted, was increasing 

with the value of P. A population would also tend to zero variance if 

the likelihood tended to increase as variance decreased, for small 

variances. Avoiding these cases speeded up the computations to the 

point of feasibility. 

Data for three components were fitted, and the values of fitted 

parameters and their error bars are shown in Table 5-1. The third 

Weibull parameter 6 lowered the AIC for transducers, but the 

2-parameter distribution was adequate for the other two components. 

Increasing machine age increased the hazard of failure of batteries, to 

the extent that a lower AIC was obtained when the hazards of the g(u) 

and f(h) distributions were allowed to increase exponentially with 

machine age. This parameterization gave a better fit than a linear 

increase. Over the 10-year life-span of the machine, the value of A of 

0.0002 would give a twofold increase in hazard. New batteries inserted 

into an old machine would have a significantly shorter time to failure. 
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Transducer 

Parameter Description Values Stan. Dev. 

a g(u) scale factor 0.0009 0.0009 

01 g(u) shape factor 2.90 2.50 

a2 f(h) scale factor 0.0171 0.0036 

8 g(u) third parameter 518.0 1051 

Battery 

a g(u) scale factor 0.0007 0.00004 

ßl g(u) shape factor 2.72 0.3 

ai f(h) shape factor 0.008 0.002 

machine age 0.0002 0.0001 

Door-pad 

ai g(u) scale factor 0.049 0.003 

ßi g(u) shape factor 2.41 0.25 

al f(h) scale factor 0.0002 0.0001 

91 f(h) shape factor 2.58 0.91 

13 imperf. insp. para. 0.175 0.023 

Table 5-1 Fitted parameter values and their standard deviations 

for minimum AIC delay time distributions of historical breakdown 

and inspection data for three infusion pump components. 

Allowing inspection to be imperfect improved the fit for door-pads. The 

data do show some very short times from negative inspection to failure, 

as well as much longer times, so this result is not surprising. It 

could well be that door-pads progressively deteriorate, and that no 

well-defined defect is evident. It is interesting that the imperfect 

inspection parameterization fitted the data much better than the `Q' 

distribution approach in which there is a time delay from a fault 
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arising to its becoming visible. 

None of the other parameters were able to produce a better fit as 

defined by one having a smaller AIC. Table 5-2 shows the parameter 

values obtained. Although the populations of machines and components 

seemed to have quite a large variability in hazard of failure, this 

increased the likelihood function of the fit only slightly, so that the 

AIC did not decrease. There must be a much higher variability before a 

population method will significantly improve the fit to data, as 

evidenced by the 300% coefficient of variation of the hazard scaling 

factor for the Stone data. 

parameter 7)days ar 
m 

a* 
c 

A days 

transducer 0.88 0 0 473 

battery 2.01 0.127 0.170 -60 

door-pad 0.93 0.29 0 -82 

Table 5-2 Values of parameters that would not be introduced into 

delay time distributions because they did not reduce the AIC in 

any of the three cases considered. Here ndayslis the scale factor 

of the 'Q' distribution, o- the standard deviation of the hazard 
m 

scale factor of the machine age, o- that of the component 
c 

population, and A days the rejuvenation conferred by maintenance. 

For our data, it seems that inspection is neither significantly 

hazardous or beneficial to the components studied. Also, the simple 

distributions of uncorrelated times to visibility of a defect, and 

subsequent time to breakdown cannot be improved upon. This is now 
known, because the parameter 7) that would import a negative correlation 

between u and h was not required, nor were the population parameters 

that would have given a positive correlation. 
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5.9 Conclusions 

In this Chapter, a number of extensions to the relatively simple method 

of the estimation of delay-time distributions proposed in last Chapter 

have been described. It proved quite feasible to fit such extended 

delay time distributions to data, at the cost of writing a 1500-line 

FORTRAN program, and of waiting a few hours for it to run on a slowing 

386-PC. 

Some of the extensions, such as a third Weibull parameter, a hazard of 

component failure increasing with machine age, and a population of 

components of differing 'frailties' did improve the fits to data, but 

only for particular components. 

We suggest that such extended methods are useful, as goodness-of-fit 
tests are insensitive towards particular defects of a fit to data, and 
because diagnostic plots have not been devised for this situation. 
Therefore, to be certain that a simpler method is adequate, 

parameterizations that relax the assumptions of the simpler method are 

needed. 

After fitting the gamut of delay time distributions described in this 

Chapter, to continue developing a delay-time model, one would focus 

attention on those parameters whose inclusion drastically lowered the 

AIC, and extend the parameterization in that area. For example, where a 

population of components was indicated by a large value of the 

coefficient of variation of the Weibull scale factors, one would vary 
the compounding distribution from log-normal, and introduce other 
distributions, perhaps with more parameters. 

The extensions to the basic method proposed here were intended to relax 

as many assumptions as possible, while economizing on the number of 

fresh parameters to be fitted. The extensions which were not required 

in order to fit these data were the concepts of a time lag in the 

visibility of a defect, and of hazardous or beneficial inspections. The 
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practical usefulness of these extensions will only become clear after 

more data have been fitted. However, it is hard to believe (for 

example) that inspections are always neutral, and never exert a 

beneficial or hazardous effect. 

5.10 Discussion on the methods of estimating the delay time 

distributions 

In Chapter 4, section 4.1, we briefly introduce the basic methods of 

estimating the delay time distributions by subjective data developed by 

Christer [1984-1991]. Then, ' we intensively described the approaches 

used in the estimation of the delay time distributions using objective 

data. In fact, both methods are useful in certain instances which 

depend upon what kind of data are available. If there are no historical 

records of breakdowns and inspections in the past available, the only 

method we can use is the subjective assessment of the delay time 

distributions. Our experience also shows that such estimation can_ be 

close to the reality. When we have obtained some objective data, since 

we know that both the delay time and initial time distribution 

functions are estimated from indirectly observed data, (i. e., in 

general, no one can directly observe the delay time and initial time), dnd 

therefore the sample size should be big enough to make the estimation 

accurate. We especially need to know whether defects are found or not 

at inspections. 

Another problem in using objective estimation is that the objective 

data may contain no information on some parameters, for example, the 

tail of the delay time distribution. Because the information we can 

obtained through the records of breakdowns and inspections can only 

tell us that the delay time' is either shorter or greater than the 

inspection interval, if the inspections are carried out strictly 

according to a pre-scheduled inspection interval, there is limited 

information contained in such data. However, an engineer may know the 

consequence of introducing a very long inspection interval. Here one 

would be extrapolating objective data well into the tail of the delay 
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time distribution, determined purely from data of small delay times. It 

may also be that subjective data, which gives estimates of u and h for 

each failure, might allow the probability of detecting a defect, ß, to 

be determined more accurately, Christer and Waller I19 8+c). 

It is also noted from our data that the records kept in the maintenance 

department are not usually as accurate or complete as desired. For 

example the transducer data records show that all the transducers were 

replaced after one year by the manufacture because of the design 

problem, but there are no indications as to which were replaced on 

failures and which were not. In this case, obviously the use of all 

available data is needed, both subjective and objective data. The 

likelihood is then the product of the likelihoods for the two types 

data. Distribution forms for subjective data can be parameterized, and 

the best parameters found by minimizing the AIC. 

However, in general, the objective data assessment of the delay time 

distributions are reliable and accurate because it comes from the real 

world data. Compared with the subjective data estimation, it also gives 

more confidence since we can directly carry out the goodness of fit 

test to confirm the models since even after the estimation of the delay 

time distribution by the subjective data, we still need objective data 

(if available) to revise the distributions. 

When subjective and objective data conflict, the question arises as to 

whether we. can salvage anything useful from subjective and objective 

data? Clearly this is an interesting new area, full of unsolved 

questions. 
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CHAPTER B. MODELS OF CONDITION MONITORING INSPECTIONS 

An early paper, Christer and Waller [1984a] presented prototype models 

of the inspection of industrial equipment which were constructed 

utilizing the concept of delay time and delay time analysis. In a more 

recent paper, Christer [1992] extended the basic model to embrace 

condition monitoring tests where the test is assumed to be a (0,1) type 

in that it records there is either nothing wrong, or a defect requiring 

repair is identified. The model developed in Christer's paper [1992] is 

essentially for the case where the time horizon is infinite, but the 

case of a finite time horizon is also briefly discussed. Based upon 

that paper, extensions are made here to discuss more cases of condition 

monitoring inspection modelling, particularly models over a component 

life cycle or over a finite time horizon. For the sake of continuity, 

models over infinite time horizon are also included here as a part of 

the discussion because they share the common notation. Compared with 

the paper by Christer [1992], different format of modelling is adopted 

here in order to make the presentation consistent with the previous 

Chapters. As usual, it is convenient to first introduce the basic 

assumptions and notation of models. 

6.1 General assumptions and notation 

Condition monitoring inspection models vary according to the chosen 

time horizon, whether be it finite or infinite, the assumption of 

perfect or imperfect inspections, the nature and content 'of 

condition information obtained, and the decision criterion. For 

convenience, before we proceed to discuss specific models, we introduce 

some general assumptions for the models established in this Chapter. 

They are as follows: 

1. Time is measured from the origin t0=0, and ti is the time to the 

ith inspection from t0. 

2. The initial point of a defect is at time u after t0, and the pdf. 
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of u is known and denoted by g(u). 
3. The delay time h of a defect has a known pdf. f(h). 

4. The delay time h is independent of its initial time u. 
5. Inspections are ordered as a sequence of ti, i=1,2,.... 

6. Defects identified at an inspection are repaired or replaced as 

part of the inspection. Failures arising are rectified at once as 

breakdown repair or replacement. 

7. Repair is equivalent to replacement in that it restores the 

component to the as good as new status. 
8. Whenever there is a renewal (repair or replacement), the inspection 

process starts again from time zero. 
9. Inspections are benign in that the process of inspection will not in 

itself induce defects. 

10. Inspections are either perfect or imperfect. 

11. Here we consider a single component with one failure mode. 

At the same time, the notation which will be used in this and 

subsequent Chapters are also defined here. 

Now let t denote the inspection policy, t= (t0, t1, t2, ... , tn), 

where t0=0. Figure 6-1. presents the relative positioning 

of inspections when the repair times are negligible. 

t =0 ttttttT 
012345n time 

horizon 

Figure 6-1. Inspection policy t 

Again Let pb(ti) denote the probability of a failure occurring in the 

inspection interval of (ti-l, ti). 

pm(ti) denote the probability of a defect being identified at 
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an inspection time ti. 

pb(t) denote the probability that a defect will result in 

a failure under the inspection policy t. 

P (t) denote the probability that a defect will be identified 
m 

at an inspection time under the inspection policy of t. 

cb, ci, cm denote the costs of a failure, an inspection 

without finding defect, and an inspection at which 

defect is found respectively. For convenience they are 

assumed to be constants. 
And finally, let 

db, di, dm denote the times spent on a failure repair (or 

replacement), an inspection without finding defect, and 

an inspection at which defect is found respectively. 

Again these values are assumed to be constants. 

Obviously, since the failure process is a typical stochastic process, 

the key functions to determine for subsequent inspection modelling are 

the probability measures defined above. Now, we first try to derive the 

key probability measures used in our models. 

6.2 Key probability expressions 

Since whether inspections are to be assumed perfect or not influences 

greatly the formulation of probability measures, it is both convenient 

and appropriate to start from the simplest case, namely perfect 

inspections with the downtime of inspections and breakdowns are assumed 

negligible. 

6.2.1 Case of perfect inspections 

The first probability measure derived is the probability of a failure 

occurring in an inspection interval, say, in (t1 
, 

ti) where time is 

measured from the last replacement or as new instant. If we assume that 

the inspection is perfect in that any defect present at an inspection 

will always be identified, then we must have ti_1 <u< ti and h< ti- 
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u if there is a failure in (tti). Since we have assumed that u and 
h are independent, then the probability of a defect arising in time 

interval (u, u+du), (t1_1< u< ti) and resulting in a failure before ti 

is g(u)F(ti-u)du, where F(ti-u)=föiuf(h)dh. Integrating over all 

possible u in (ti_i, ti), we have 

pb(t1) =f 
ig(u)F(ti-u) du. 6-1 

From the probability law of summation of all possible independent 

events, we have the probability of failure over the time interval (0, T) 

given the inspection policy t is given by, 

nT 

pb(t) _E pb(ti) + 
Jg(u)F(t-U)dU, 6-2 

1=1 n 

where n is the sequence number of the inspection which is just 

performed before the time horizon T. The last term in equation is due 

to the fact that if t is less than T, there is still a chance for a 
n 

failure occurring in (t , T). But usually this term is very small if T 
n 

is large. In the case an infinite time horizon, the expression for 

pb(t) is obtained taking the limit of equation 6-2 as n- co. 

Consider now the probability of an inspection repair where a defect 

is identified at an inspection, say, ti, and then repaired. This will 

be derived with a similar way. Under the perfect inspection assumption, 

if a defect is identified at an inspection time point from new, say, 

ti, the initial time interval (u, u+du) of this defect must lie in 

(ti_1, tI), and the delay time h should be longer than ti-u. Since the 

probability of this event is g(u)du{l-F(ti-u)} under the assumption of 

independent u and h, we have, integrating over u from ti_1 to ti, 
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t 
pm(ti) =f 

'g(u){1-F(ti-u)}du. 6-3 
t i-i 

Summing over the probabilities of these events, we have, the 

probability of an inspection repair is, under the inspection policy t. 

n 
pm(t) _E pM(ti), 

i=i 
6-4 

where as before, n is the index of the last inspection before the time 

horizon T of interest. 

Finally, the probability of neither a failure nor an inspection repair 

arising before the finite time horizon T, denoted by pn (T), is 

pn(T) =1- pb(t) - pm(t). 6-5 

Introducing equation 6-1 and 6-3 into equation 6-2 and 6-4, we have 

pb(t)+pm(t)=E(rig(u)F(ti-u)du+tig(u){1-F(ti-u)}du)+tg(u)F(tn-u)du 
1=1 1-1 1-1 n 

_ E(ftig(u)du)+ftg(u)F(tn-u)du 
n 

tT 

= 
J0ng(t11u 

+ 
fg(u)F(t_u)du. 

n 

Then finally we have 

tT 

pn(T) =1- 
Jjg(u)du 

- 
Jg(u)F(T_u)du. 6-6 

n 

Now we turn to the case of imperfect inspection. 
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6.2.2 Case of imperfect inspections 

If inspections are not perfect, there is a probability ß that a defect 

present at an inspection will be identified. This means that some 
defects may pass the inspections without being discovered. In this case 
the above formulations of pb(ti) and pm(ti) and pn(T) will need to be 

modified whilst the form of pb(t) and p(t) will be as before. For the 

sake of simplicity, we still assume that the downtime of inspections 

and breakdowns are negligible. 

Consider the probability of a failure arising in the inspection 

interval (ti_i, tI). If a defect arises at u in the first inspection 

interval (O, tI), it will result in a failure in (ti_1, tI) provided the 

delay time is long enough, that is t1_1-u <h<t; -u, and at each 

intervening inspection tj, the defect is not observed. 

From the probability law of joint events, we have as before, the 

probability of this joint event would be 

S(u)du(1-13)i-i {F(t1-u)-F(tl-i-u)}, 

where (1-13) has a power of i-1 implies there are i-1 inspections at 

which the defect is present yet not identified. 

Integrating above probability expression over all u in (0, t1) we 

obtain the probability for a defect arising in (0, ti) and resulting in 

a failure in (ti_l, tI), namely 

J01g(u)(1_13)11 {F(ti-u)-F(ti_, -u)}du. 

This can be easily generalized into the case of a defect arising in an 

arbitrary inspection interval (t 
1-1 ,t1), j=1,2,..., i-1, and resulting 
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in a failure in (t1_1, tI). Figure 6-2 illustrates this situation. 

h 

I Iu-... tI 
t t 

J-1 J 1-1 i 

not identified at these 
inspection time points 

Figure 6-2 Imperfect inspection process 

Consider the probability of a defect arising in (u, u+du) in (t 
j-1 ,t1) 

and resulting in a failure in (ti-l, ti), i>j. Since we know that the 

probability of this event is g(u)du(1-13)1-j{F(ti-u)-F(t1-1-u)}. 
Integrating u over (t 

j-1, 
t 

j), we have for the probability of a defect 

arising in (tJ-1, ti) and leading a failure in (ti-i, ti) 

Jt 
g(u)(1-ß)i-j{F(ti-u)-F(ti-i-u)}du. 

t j-i 

In the case uc (ti_i, tI), probability of a defect arising and 

resulting a failure in (ti-l, t is the same from equation 6-3, namely 

ft t 

ig(u){1-F(ti-u)}du. 

1-1 

Summing over all the possible inspection intervals containing the 

initial point u, we finally have for the probability of a breakdown 

occurring in the ith inspection interval 

J 
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i-1 
Pb(t1)= Ef Jg(u)(1-ß)1-j{F(ti-u)-F(ti-1-u)}du)+ t It-u)du. 

6-7 
J=1 tjt 

-1 

J 
1-1 

1 

For the probability of failure over the time horizon (0, T) given that 

the inspection policy is t, namely pb(t), in a similar way, it is given 
by 

n+1 

pb(t) E pb(t1 6-8 
i=1 

where t 
n+1 

=T and 

Pb(T E ftt'9(u)(1-j3)'-JfF(T-u)-F(t 
n -u)}du)+ftg(u)F(ti-u)du. 

J=1 n j-i 

We now formulate the probability of an inspection repair in which a 
defect is identified at an inspection, say, ti, and then repaired. As 

before, consider a defect which arises in (tj_1, tJ ), j<i, and is 

identified at inspection ti. The following joint events arise, i. e. 
t'_1< u tj, h ti-u, and there is one successful inspection, and i-j 

unsuccessful inspections. We have, therefore, that the probability of a 
defect arising in (tj_l, tj) and being identified at ti is given by 

ti 
9(u)13(1-13)1-j{1-F(ti-u)}du. 

ft 

J-1 

In the case where u arises in the last inspection interval, (ti-1, ti ), 

the probability of the defect being detected at inspection time ti is 
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ft t 

ißg(u){1-F(ti-u)}du. 

1-1 

This is the same form as the above probability expression when j=i, and 

so the formulation may be extended to all interval jýs 1. Summing over 

all j=1,..., i, we have for the probability of a defect being identified 

at inspection point ti, 

pm(t1) =E 
j" 

g(u)ß(1-ß)i-J{1-F(ti-u)}du. 6-9 
j=1 t 

J-1 

The probability of having an inspection repair under the inspection 

policy t is the same structure as equation 6-4, but equation 6-9 should 

be used instead of equation 6-3 under the assumption of imperfect 

inspection. 

The structure of the probability that no event arisen over T, p (T), is 
n 

similar to equation 6-5, but the component terms need modification 

because of the imperfect inspection influence. A defect may arise at 

any time before T and not be identified till T without causing a 

failure. In fact, introducing equation 6-8 and 6-9 into equation 6-5; 

we have 

n r1-1 rt 
pn(T) =1-E Ij E1JtJg(u)(1-p)i-j{F(ti-u)-F(ti-1-u)}du) + 

1=1 ` j-1 

ftig(u)F(ti-u)du+jElftg(u)ß(1-ý3)i-i{1-F(ti-u)}du)] 
- 

i-1 J-1 
J 

j 
Elftig(u)(1-ß)n-i{F(T-u)-F(tn-u)}du+ftg(u)F(T-u)du. 6-10 

J-1 n 

With these probabilities measures, cost or downtime modelling 

associated with an inspection process can be undertaken. We now discuss 
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this modelling. 

6.3 Models for an infinite time horizon 

Infinite time horizon models are developed in two sub-sections since as 
before the formulations for perfect inspection are quite different from 

imperfect inspection case. 

6.3.1 Perfect inspection 

We first discuss the cost model 

6.3.1.1 Cost model 

Assuming perfect inspections, there are two events that could be 

associated with a defect, namely either a failure or an inspection 

repair. Suppose for the moment we are interested in maintenance costs 

only, and that the downtime of repairs and inspections may be 

neglected. We may further assume that the process is a renewal type in 

that either a failure repair or inspection repair restores the system 

as good as new, and that the inspection policy is restarted upon a 

renewal. The consequences would, of course, be different in the case 

where the inspection policy is continued. Now under the assumption of 

an infinite time horizon, one of the appropriate objective functions 

would be the asymptotic form of expected total cost per unit time, 

denoted by CT(t). That is 

CT(t) = 
Expected cost per repair cycle 

6-11 
Expected repair cycle length 

Let C(t) denote the expected cost per repair cycle given the 

inspection policy is t. 

Let T(t) denote the expected repair cycle length given the inspection 

policy is t. 
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We have, assuming concern is only with the maintenance costs, 

C(t)=Ex( cost per repair cycle ) 

= Ex(cost of a failure repair cyclelfailure repair cycle)"pb(t)+ 
Ex(cost of an inspection repair cyclelinspection repair cycle)"p (t) 

m 

Consider the first term on the right hand side. Since we know that 

cost of failure 

Ex cost of failure failure repair 
Ex 

repair cycle Crepair 

cycle Icycle 
, 

pb(tý Pb (t) ýpb(tý 

cost of failure 
= Ex 

repair cycle 

,' 

and 

Ex cost of failure 
_ 

total cost ocurred in probability of 
repair cycle 

,- 
LjCI 

a failure repair cycle) 
( 

this failure 
J)' 

where E means summing all possible failure repair cycles. 

It turns out that only unconditional expected values are necessary. The 

same argument can also be extended to the case of an inspection repair 

cycle. 

For a failure repair cycle terminated at u+h in (ti_l, tI), the total 

cost up to and including the final failure cost is (i-1)cI+cb. 

Likewise, for an inspection cycle ended at ti by an inspection repair, 

the total cost would be (i-1)ci+cm. Multiplying events by their 

correspond probabilities and summing over all i=1.... co, we have for the 

expected cycle cost 

l 
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Co 
C(t) = E[{(i-1)c1+ cb}"pb(ti) + {(i-1)c1+ c }"pm(t6-12 

1=1 

Introducing equations 6-1 and 6-3 into above equation, equation 6-12 

becomes 

00 tt 
C(t) =E ({(i-1)c 

1+cm}' 
ig(u)du + (c ti cm)J ig(u)F(ti-u)du). 6-13 

1=1 
Jt 

it 

i-1 i-1 

Adopting the same principle, the expected repair cycle length would be 

given by 

T(t) = Ex(repair cycle length) 

= Ex(failure repair cycle length) + Ex(inspection repair 

cycle length). 

Consider the first term on the right hand side first. If a failure 

occurs in (t 
i-i, 

ti), the contribution to the expected failure repair 

cycle length due to this failure is 

t -u J'J'(u+h)g(u)f(h)dhdu. 

t i-1 

Since the contribution to the expected time to an inspection repair 

cycle for an inspection repair at ti, would be tIpM(tI), we have, 

summing all the possible values of i, expected cycle length T(t) is 

co t-u 
T(t) =Ec 

ft + ti"pm(ti))" 6-14 
1=1 t0 
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Again, introducing equatii 

manipulation, equation 6-14 

CO rt T(t) _E (t1J 'g(u)du 

1=1 t 
1-1 

where F(") = f0F(x)dx. 

)ns 6-3 into equation 6-14, after some 
becomes 

t 
- 

Ju)(t1_u)du). 
6-15 

t 1-1 

The model objective is, of course, to minimize C(t)/T(t) with respect 
to '_ t, that is 

Min C(t) 

t T(t) 

A similar expression can be constructed for downtime per unit time. 

6.3.1.2 Downtime model 

If now we consider the down time measure, we can not neglect the time 

spent on a failure repair or an inspection repair. Figure 6-3 shows the 

relationship among ti, di, dm, and db 

di 
d 

k 77N I- 
t u+h t 

i-1 1 

(a) failure repair 

h di 
d 

u tt 

(b) inspection repair 

Figure 6-3 Failure and inspection times are not negligible 
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Let DT(t) denote the expected total downtime per unit time associated 

with failure repairs and inspection repairs given the 

inspection policy is t. 

Let D(t) denote the expected downtime per repair cycle given the 

inspection policy is t. 

We have the percentage availability measure of downtime, denoted by 

PA(t), under the inspection policy t is 

PA(t) = DT(t)"100%, 

where DT(t)= D(t) 
T(t)' 

6-16 

The form of T(t) will have changed since we now count the time spent on 

failure or inspection repairs. In a similar way to developing equation 

6-12, D(t) can be written as 

D(t) = Ex(downtime per repair cycle) 

= Ex(downtime of failure repair cycle) + Ex(downtime of 

inspection repair cycle). 

If we assume that defects or failures do not occur at an inspection, we 

have 

Co 
D(t) _E ({(i-1)d1 +db}pb(t1 )+ {(i-1)d1 +dm}pm(t. )) 

i=1 

_t ({(i-1)d 
i+dm}fig(u)du 

+ (db-dm)1 g(u)F(ti-u)du), 6-17 
i=1 aa 

11 

where ai=ti_l+di for 1=2,3,... while 1=1 ai=to. This is because under 
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the assumption that u can not arise during an inspection time di, the 

integration of u should start from ti_i+di. 

We have stated that equation 6-14 for T(t) needs a slight change here. 

From Figure 6-3, we can write down T(t) as 

00 tt -u 
T(t)=1ýl(faifoi(u+h+db)g(u)f(h)dhdu+(ti+dm)f, 'g(u){1-F(ti-u)}du), 

6-18 

where a is as before. 

This can be further simplified as 

ttt 
T(t) _ ((t1+dm)ja1g(u)du+(db -dm)faig(u)F(ti-u)du-Ja1g(u)F(ti-u)du). 

1=1 1i1 

6-19 

Clearly, if we consider the times of failure repairs and inspections, 

equation 6-15 should be replaced by equation 6-19 when using equation 

6-10 of the expected cost per unit time measure and the lower 

integration limit in equation 6-12 should be replaced by a1. 

As before, minimizing DT(t)=D(t)/T(t) in terms of t gives the optimal 

inspection policy t which makes the expected downtime per unit time 

to be the smallest. 

6.3.2 Imperfect inspections 

If inspections are not perfect and there is a probability ß that a 

defect present at an inspection will be identified, the above 

formulation will need to be modified. However, it is known that 

functions of the perfect inspection case will clearly provide 

respectively lower and upper bounds for the imperfect inspection case. 
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This property could prove useful in dismissing a particular and 

ineffective inspection option without the need for the more complex 

modelling of the imperfect case. We do, however, now formulate the non 

perfect inspection case. 

Consider first the expected cost per unit time measure. Since the 

format of equation 6-12 is still structurally correct for the imperfect 

inspection case, we simply introduce the non perfect inspection 

probabilities of equation 6-7 and 6-9 into equation 6-12 and obtain 

C(t) _ I{(i-1)ci+ cb}ýjEiJJg(u)(1-ß)i-J{F(ti-u)-F(ti-i-u)}du) + 
i=i l i-i 

{(i-1)c+ c (JZ, ftjg(u)ß(1-ß)i-j{1-F(ti-u)}dul, 6-20 
J 

j-1 

) 

where for j=i, we define F(ti-1-u)=0 and if the inspection time is not 

negligible, t and t should be replaced by t +d and t +d j-1 1-1 j-i i 1-1 i 

respectively except j=1. 

When ß=1, equation 6-20 reduces to equation 6-12 of the perfect 

inspection case as, indeed, it must. However, equation 6-20 can not be 

further simplified because the second term involves an extra ß. This 

will pose no problem for calculating. by a computer. 

The expected length of per repair cycle, T(t), is as before, given 
by 

T(t) = Ex(failure repair cycle) + Ex(inspection repair cycle). 

If db, di, and dm are not negligible, the first term, for a defect 

arising at time u in (t +d ,t) from new, it will arise as a 
breakdown at u+h in (ti-l+dt provided that it is not identified at 
tk, k=j,..., i-1, and the delay time satisfies t1-1+di-u <h< ti-u. 
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Then the contribution to the expected failure cycle length is 

fti 
+d 

f 
ti +d _u(u+h+db)(1-ß)i-Jg(u)f(h)dhdu. J-1 1 i-1 1 

Summing from j=1 to i, we have the total contribution to the expected 

cycle length when failure occurs at u+h in (t 
i-1, 

t 
i) 

is 

Itt -u 
ESi fbi(u+h+db)(1-ß)i-jg(u)f(h)dhdu, 

=1 ji 

Where as before, we define aj=tj_l+di (j=2,3,... 1) and bi=t1-1+di-u 

(i=2,3... ). For j=1 and i, we set aj=to and bi=0 respectively. 

For the contribution of the expected cycle length when a defect is 

identified at ti, we can easily write it down here as 

(ti+dm) fai 
g(u)ß(1-ß)' {1-F(ti-u)}du, 

J=1 JJ 

where a is defined as above. 

Now summing all i from 1 to infinity, we have 

T(t) 
[1J fb1 

u+h+db(1-ß)ig(u)f(h)dhdu + 
1 

(ti+dm)S g(u)ß(1-iB)i-j{1-F(ti-u)}du. 6-21 
J=1 j) 

In a similar way, replacing c1, cb, and cM in equation 6-20 by d1, db, 
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and d, and let ai and bi be defined as before, we can write down D(t) 
m 

as 

D(t)= Eý 
[i_1d1ý 

db} (jE 
1=1 

{(i-1)d 
i+ 

dm}(jz1 

jgu1_1iFt1_u_Fb1»du 
f) 

fJg(u)pc1_13)1_J{1_F(tj_u»duJ). 6-22 

6.4 Models for finite time horizons 

In the last section we have discussed models of condition monitoring 

inspection over an infinite time horizon. For the long term expected 

cost per unit time measure, equation 6-10 gives the asymptotic form if 

the time horizon tends to infinity. One of the advantages of using 

equation 6-11 is that it has the simplest . form and can be easily 

computed. However, we know that in practice the time horizon of use may 

be large, but it is always bounded. The solution obtained using this 

asymptotic criterion are , therefore, limiting approximations to 

reality of usually unknown error. In other words, we need to consider 

the more realistic case where the time horizon is finite. Now in this 

section, we discuss two cases which are related to the finite 

inspection time horizons. Starting from the simple one, we first 

consider models over a component life time. 

6.4.1 Models over a component life time 

In these models we assume that upon the detection of defect or the 

occurrence of failure the inspection process ends. There is an 

obligation to maintain the equipment cost effectively until it fails or 

a defect is identified at an inspection, at which point it will not 

be replaced. As an example, consider the problem of detecting the 

occurrence of an event (say, the presence of some grave illness such as 

cancer or the arrival of an enemy missile) when the time of occurrence 

is not known in advance. Each inspection, be it is an inspection or an 
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inspection with a defect found, involves a cost so that we do not wish 

to check too often. On the other hand, there would be a cost associated 

with the occurrence of failure, which is higher than the inspection 

cost, so that we wish to check often enough to avoid a catastrophic 

failure. This kind of models is particularly useful in medical study 

since the checking process of a disease will usually stop upon the 

detection of it. Still under the general assumptions made in the last 

section, we hope to find an inspection policy which minimizes the 

expected cost or downtime measures during the component life time. 

In fact, since what we want to minimize is the expected cost or 

downtime per cycle, therefore equations 6-13 and 6-17 for the perfect 

inspection case and equations 6-20 and 6-22 for the imperfect 

inspection case can be directly used here to establish the criteria 

functions. But, since it is assumed that there is no replacement at a 

cycle end, there would be no cost or downtime associated with an end 

cycle replacement. However, at this point one must expect some cost or 

downtime to be incurred because of the failure or the recognition of a 

defect. In this situation, in order to be consistent with the previous 

notation of costs and downtimes parameters, it is convenient to define 

m cb and dm, db in general as follows. 

Let c and d denote the cost and downtime associated with a defect if 
mm 

it is identified at an inspection. 

c and d denote the cost and downtime associated with a failure. 
bb 

Notation ci and di have the same meaning as before, namely the cost and 
downtime respectively for an inspection. Clearly it is expected that cb 

>c>c and d>d>d 
mIbmI 

For the sake of simplicity, if di, dm and db are assumed to be 

negligible, we have from 6-13 and 6-20, the cost models are 
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CO tt perfect : ({(i-1)ci+cm)}ftig(u)du + (cb-cm)ftig(u)F(ti-u)du). 
i 

1-1 nspection 1=1 i-1 

C(t)- 
oo it 

E 
r{(i-1)ci+ 

cb}ýýElftjg(u)(1-ß)i-j{F(ti-u)-F(ti-1-u)}du) + 
1=11-1 

{(i-1)c +c }( E ftlg(u)ß(1-ß)i-j{1-F(t 
-u)}du)l, 

imperfect 
im j=1 t 

J-1 
iJ inspection 

6-23 

If we count the times associated with inspections and failure, the 

downtime models, from equation 6-17 and 6-22 are given by 

CO tt 
E({(i-1)di+dM}faig(u)du + (db-dm) ' g(u)F(ti-u)du, perfect 

i=1 JiJi inspection 

D(t)= 
CO it [{(i_1)d1+ 

d}ýEfg(u)(1)i{F(tiu)F(bi)}du +) 
J 

it imperfect 
{(i-1)di+ dm}(jE1JJg(u)ß(1-ß)i-J{1-F(ti-u)}du)J, inspection 

JJ 

6-24 

where a and bi are as before. 

An optimal inspection policy is a specification of successive 
inspection times t1< t2< t3,... for which C(t) or D(t) is minimized. 

6.4.2 Models over finite time horizons 

Now we consider a decision making problem of conditional monitoring 

inspection for a component over finite time horizons. In this section, 

the time horizon of interest, T, is finite. After a replacement(either 

a failure replacement or an inspection replacement) the inspection 

process resumes. In this sense, there may be several replacements over 
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the time length (0, T). Figure 6-4 shows an example of this situation. 

Xxxx 
13i K(T)+1 

0ttttTttItT 
I2szt12t1 time horizon 

33 
failure inspection inspection 

replacement replacement repalcement 

Figure 6-4 Inspection starts from time zero, upon failure or 
inspection replacement, the process re-starts, where xi denotes the 

time between replacements( either a failure replacement or an 

inspection replacement), ti denotes the time to the ith 

inspection from last renewal,   denotes the failure replacement, 

and * denotes the inspection replacement. 

Clearly from Figure 6-4, the modelling of this kind of problem is not 

an easy job because T is finite. But since the process repeats and the 

inspection policy is assumed not to change over time T, the time 

between replacements follows a renewal process with identical and 

independently distributed cycle. Renewal theory in conjunction with 

delay time modelling can be used here to formulate models of the 

inspection process. 

For the sake of simplicity, we only consider here the case under the 

assumption of perfect inspection, and are content to point out the same 

method, but a more complicated formulation, can be generalized into the 

case of imperfect inspection. 

First we introduce the notation which will be used in this section, 

which is consistent with that commonly used in renewal theory. 

Let N(T) denote the total number of replacements in (0, T). 

Let H(T) denote the expected number of replacements occurring in (0, T). 
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H(T) is usually called a renewal function. 

let C(T) denote the total cost occurring in (0, T). 

Let µ and a, 
2 denote the mean and variance of the inter-arrival times x 

xx 
between replacements. 

Let µ denote the mean of costs occurring in a replacement interval. 
Y 

Since a renewal corresponds to either a failure replacement or an 

inspection replacement which could occur in one of the inspection 

intervals, it follows from Figure 6-4 that the jth inter-renewal time 

is 

x= 
fu+h, ti-1< u< ti, h< ti-u 

1=1,2,... 
ti' ti-1< u -- ti, h 2: ti-ü. 

Obviously xi is a combination of two types of random variables, ie. 

continuous over (ti_l, t) and discrete at ti (i=1,2,... ). The 

cumulative distribution function for continuous part is 

i-i 

Q(x)=p(X: 5xit1-1<x<ti) = E(p(tj-i<X<tj)+p(X=t 
j)) 

+ p(t1-1<x<ti). 
j=1 

Since we know that p(tJ_1<X<ti )=pb(tj) and p(X=tj)=pm(tsfrom 

equation 6-1 and 6-3 we have 

i-i t 
E [p(t3-1<X<ts)+p(X=ti))= g(u)du, 

J=1 
J 

and 

t 
p(t1-1<x<t1) 

ft 1 g(u)F(ti-u)du. 
i-1 
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Finally we have 

g(u)F(x-u)du, 0<x< t1 
0 

J1g(u)du 
+ftg(u)F(x-u)du, ti< x< t2 

J1 

Q(x)=P(X x)= 

(ti-1 X 

Jo g(u)du + g(u)F(x-u)du, t< x< tft 
1-11 

1 -1 
And the discrete part, the probability of having an inspection replacement 

at t is 

Jt 
p(x=t1) = pm(ti) = ig(u){1-F(ti-u)}du. i=1,2,... 

1-1 

From renewal theory, if we assume that the first replacement occurs at 

x, then from well known equation that Ex{N(T)Ix1=x} =1+ H(T-x) if x 
T, it follows that 

TT 
H(T) = Ex{N(T)} = 

JEx{N(T)1x1=x}dQ(x)=J{1+H(T_x)}dQ(x). 

0 
T 

i. e. H(T) = Q(T) + 
fH(T_x)dQ(x). 

o 
6-26 

Since we know that the first renewal must be either a failure 

replacement or an inspection replacement, from the expression of Q(x), 

we know that 
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dl g(u)F(x-u)du, 0<x<t 
O1 

d 
tg(u)F(x-u)du, 

t1< x< t2 
1 

dQ(x) _ 

dJ g(u)F(x-u)du, t1-1< x< ti 
1-1 

If we assume that x1 E (ti_l, ti], i=1,2,... n+1, where n=sup{n such that 

tn< T}, to=0, from equation 6-26, we have 

tX 
H(T)=fo1{1+H(T-x)}dfog(u)F(x-u)du+{1+H(T-tl)}pm(ts) 

+ft2{1+H(T-x)}dJtg(u)F(x-u)du+{1+H(T-t2)}pm(t2 
J11 

+... 

+rti{1+H(T-x)}ditg(u)F(x-u)du+{1+H(T-ti)}pm(ts) 
J 

1-1 
J 

1-1 

+... 

+ 
J'{1+H(T_x)}dJg(u)F(x_u)du. 

n 

6-27 

Hence since dQ(x) = drf. g(u)F(x-u)du] = 
fg(u)f(x_u)dudx, 

then changing 
the integration sequence and letting x=u+h, after some manipulation, we 
finally have 



103 

n (ft, tt -u t 

H(T)=G(T)+E i 
ouH(T-u-h)g(u)f(h)dhdu+H(T-ti)fig(u)1-F(ti-u)}du), 

- 
It 

-1 
J 

-u 
+ 

IT 
t tH(T-u-h)g(u)f(h)dhdu, 

6-28 

nn 

where G(T)=fög(u)du. 

Equation 6-27 is equivalent to equation 6-25 which is termed 'the 

integral equation of renewal theory' and is based upon what is 

known as the 'renewal argument'. This basically means that the 

probabilistic structure of the process begins anew after the moment of 
the first renewal, xi. 

The renewal function H(T) is fundamental in renewal theory since it 

forms the basis of renewal reward processes which is of interest in our 

modelling. However, as can be seen from equation 6-27, it is not 

generally possible to derive an exact solution analytically since it is 

a double integral equation. However, according to the renewal theory 

and the structure of equation 6-27, since it satisfies the renewal 

assumption of identical and independently distributed inter-renewal 

times, it is possible to derive an asymptotic solution to H(T). 

We now discuss this asymptotic solution. 

Suppose now that Z(T) is some expectation related to the renewal 

process, and that a(") is a known non-negative function. The integral 

equation 

T 

Z(T) = a(T) + 
fz (T-v)dQ(v). 

0 
6-29 

is called the 'generalized renewal equation'and its solution is given 
by the following 
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T 

Z(T) = a(T) + 
Ja(T-v)dH(v). 6-30 

Suppose now that the asymptotic form of Z(T) is of interest. If a is 

directly Riemann integrable and the inter-renewal times x1 are 

non-lattice, then Smith's [1958] key renewal theorem gives 

Lim Z(T) =1 
Jo"" 6-31 

Tx 

where µX Ex(xi), the mean inter-renewal time. 

Now let Z(T)=H(T)-T/µ., using equation 6-26 and 6-29, after some 

manipulation and let T -. co, we have the well known formula 

22 
O- ý1. 

H(T) =T+ x2-2 x+ o(1). 6-32 

xx 

For reference see Tijms [19861. 

The above discussion can now be easily extended to renewal-reward 

process. 

Suppose now that a cost yi is occurred in the ith renewal interval, 

this will comprise the inspection costs that accumulate during the 

cycle together with the replacement cost of a new component at the end 

of the cycle (either failure replacement or inspection replacement). We 

assume that y1, y2,... to be independent and identically distributed 

non-negative random variables with mean µY< in. This is true in our 
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case considered here. yi may depend on xi, but we suppose that the 

pairs (xi, yi), i=1,2,... are independent and identically distributed. 

In fact, this sequence defines a renewal reward process. 

The total cost of the inspection policy up to time T, y(T) is then 

given by 

N(T) 

y(T) _E yi+c(T) 
1=1 

where N(T) is the number of renewals occurring in (0, T], and c(T) is 

the inspection cost that accumulates in (xx(T), T). Since we know that 

N(T)+1 is a stopping time for the sequence (x1, x2,... ), it follows 

that N(T)+1 is also a stopping time for the dependent sequence (y1, 

y2,... ). We have therefore from Wald's equation that 

N(T)+1 
C(T) = Ex( Ey)- Ex(yN(T)+i) + Ex{c(T)} 

i=1 

= {1+H(T)}µY - Ex(YNM+1) + Ex{c(T)}. 6-33 

It is known that C(T) can also be defined by an integral equation, 

Christer [1978], Christer [1987], Christer and Jack [1991], and Jack 

[1991], which raises the possibility of utilizing the above asymptotic 

results and generalized integral equation solution to the 

renewal-reward process. Conditioning on the time of the first renewal 

it follows that, if v is the time to the first replacement, 

Ex{Y(T)Ix1=v} _ "j a(T) +C(T-v) 
v>T 

where a(v)=Ex{y(v)Ixl=v} and T(T)=Ex{y(T)IxI>T}. Hence 
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Co w 
C(T) = 

foEx{Y(T)Ixl=v}dQ(v) 
= 

f{c(v)+C(T_v)}dQ(v) 
+ 

j'(T)dQ(v), 

i. e 

C(T) = M(T) + Jc(T_v)dQ(v), 6-34 

wh ere M(T)=föT a(v)dQ(v)+, (T){1-Q(T). 

Knowing the solution, equation 6-30, of the generalized renewal 

equation 6-28, we have the solution of the cost equation 6-34 as 

T 

C(T) = M(T) + 
JM(T_v)dH(v). 

The alternative form for the above equation which will be used later 

can be derived by integration by parts and using the fact that 

M(O)=H(O)=O, namely 

T 

C(T) = 
J0{1+H(T_v)}dM(v). 6-35 

Let Z(T)=C(T)-(µ 
y 

/µ 
x 

)T, then using equation 6-34 and the key renewal 

theorem 6-31, after some manipulation, we have 

µQ a+[I 

µ 
4u 

mEx{e(T)}, 6-35 C(T) =XT+ 
2µ2 

x µy -Tl im 
co 4 

Ex(yr[(T)+i) +T 
co x 

whereTl 
coEx(yx(T){1) 

µxfoa(v)vdQ(v), 

and lim Ex{e(T)}= µ fy(v){1-Q(v)}dv. 

Tx 
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See Heyman and Sobel [19821, and Jack [19911 for detail. 

From equation 6-36 we have, the expected cost per unit time measure 

22 
C(T)_ µy 

+ 
r. 

2�2 

Nx 

T µx 
µY 

x 

- lim Ex(yx(T)+l )+ lim Ex{c(T)}J/T. 6-37 

oo T co 
J 

Clearly as T -> co, equation 6-37 becomes p i, i for which we have used in 

the previous sections. 

Christer [1978] used an alternative approach to obtain result similar 

to equation 6-37 under the assumption that the renewal cost occurs at 

the end of the renewal cycle. Under such assumption the term Jim 

Ex{c(T)} is nolonger needed. Christer substituted the asymptotic form of 

H(T), result 6-32, into equation 6-33 to give, as T4 oo 

22 
µ o- +µ 

C(T)= -X T+" 
2µ 

X µy - 11mEx{Y«(T)+l} . 6-38 

x 

Christer [1978] refers to result 6-38 without term limEx{yHM 
+l} 

as 

the 'refined' asymptotic form for C(T), with µy/µX being the 

corresponding 'crude' asymptotic form. However, even if we use equation 

6-37 as a solution of renewal reward processes, it is also a limiting 

result because we use the property T- co. If T is not sufficient large, 

there must be an unknown error involved by using equation 6-37. The 

exact solution should be obtained by solving equation 6-34 or 6-35 of 

the integral equation form without using the key renewal theory. But, 

comparing the cost of complicated calculation of equation 6-34 or 6-35 

with the relative small error (see following numerical example) by 

using simple form of equation 6-37, it is clear that equation 6-37 is 

preferable. For the present we leave the discussion on the exact 
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solution to equation 6-34 or 6-35 to a future study. To be consistent 

with the term 'refined' asymptotic form, equation 6-37 is called 
'accurate' asymptotic form. 

Now turning to our problem, since equation 6-28 is equivalent to 

equation 6-26 in principle we can, therefore, in a similar way, also 

establish the expression for C(T) of our problem using the integral 

equation method as follows. 

Knowing that 

l Cb 
Jl 

c 
m 

ci+Cb, { 

Ci+Cm, 

a(v) = Ex[y(v)Ix1=v}= 
(i-l)c+cb, 

{ 
(i-1)ci+cm, 

L 

nc +c ib 

and also from the expression of Q(x), we have 

0<V< tl 

v=t 
ti< v< t2 

=t 2 

6-39 

ti-1< V< ti 

V=t 
1 

t<v: T 
n 

Ttv 
rt 

oa(v)dQ(v) = cb 
olfog(u)f(v-u)dudv 

+ cM. o1g(u)1-F(ti-u)du 
tvt 

+ (ici+cb)ft2Jtg(u)f(v-u)dudv + (ici+cm)ft2g(u){1-F(t2-u)} 
J111 

+... 

+ {(i-1)c 
i 
+c bIt 

[t(u)f(v-u)dudv+{(i-1)c 
i 
+c 

mIt g(u){1-F(ti-u)} 
- i- i-1 i-1 

Tv 

+ (ncI+cb)ft ftg(u)f(v-u)dudv. 

nn 
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Inter-change the integration sequence and let h=v-u. Since we know that 

'(T)=Ex( y(T)IxI)=nci, and 

T 

1- Q(T) =1- G(T) - 
Jg(u){1-F(T_u)}du, 

n 

then from the expression of M(T) (see equation 6-34), after some 

manipulation, we obtain 

M(T) _iEll 
J 

I{(i-1)ci+c. }fti g(u)du + (cb-cm)ftig(u)F(ti-u)du) + 
- i-1 i-1 J 

T 
(nci+cb)ftg(u)F(T-u)du + nci{1-G(T)+ftg(u){1-F(T-u)}du}. 

Jn 

6-40 

Then from equation 6-35, we have the cumulative cost expression as 

T 

C(T) = M(T) +f H(T-v)dM(v). 
0 

6-41 

Similar to the expression for M(T), M(v) is defined as Fva(v)dQ(v) 

since z(v)=O for vsT. Then from the expression of a(v), we write down 

dM(v) as 

cJOg(u)f(v-u)dudv, 0<v< t1 

(ci+cb)ftg(u)f(v-u)dudv, t1 <v< t2 

dM(v) 

{(i-1)c 
i+cb}ft g(u)f(v-u)dudv, t< v< ti 

i-i 

(nci+cb)Jtg(u)f(v-u)dudv. to <v<T 

n 
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When v=ti, 1=1,2,..., n, since Q(v) is discrete at these points, but we 

know probabilities of event v=ti, then similar to Q(v), the 

contribution to dM(v) at these discrete points are 

t 
{(i-1)ci+c } fti 

g(u){1-F(ti-u)}du. 
mJ 1-1 

Then inter-change the integration sequence and let v=u+h, we have 

C(T) = M(T) +ErL: T_uhi-1)ci+cb}ftiu)f(h)dhdu + 

t 
H(T-ti){(i-1)ci+cm)}ftIg(u){1-F(ti-u)}du) + 

1-1 J 

TT 
Jt11T_u_hnci+CbJtUfhdhdu. 

6-42 
nn 

Equation 6-42 is equivalent to equation 6-35 in principle and can be 

solved in a similar way. 

We have that px=T(t), µy C(t), and 

Co 
o' 2= J0(X_gx)2 dQ(x) 

_EI 
Jlu+h)2J0ig(u)f(h)dhdu) 

+ t(1-fti-i 1g(u)[1-F(ti-u)]dul-µ2 

111 J 

Therefore from equation 6-36, we can calculate the value of C(T)/T, if 

we can derive the formula for 
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and 

lim Ex(Yx(T)+i) µ 
Ja(v)vdQ(v). 6-43 

Tx 

lim Ex{e(T)}= f02, (v){1-Q(v)}dv. 6-44 
Too 

µxJ0 

In our case, using equation 6-39, equation 6-43 becomes 

1 Co t1 t-u 

lim Ex(yN(T)+i} -E 
({ 

(1-1)c1+cm} ft J0'(u+h)g(u)f(h)dhdu 
µx 

i-S 
J 

i-1 

t1 
+ {(i-1)ci+cm}tiftIg(u){1-F(ti-u)}du). 6-45 

J i-1 

Since 

0,0sv<t1 

Ci, t1 v< t2 

i"C t2 v< t3 

3'(v)=Ex{y(v) I x1>v}= 
(i-l)"ci, ti_lr v< ti 

and because we know that 

1-Q(v) = 
Jg(u)du 

+ 
ftg(u)1-F(v-u)}du, 

J 

where tj is the inspection time point just before v, equation 6-44 

becomes 
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00 [J'(i_1c1{J(udu+JuE1_Fv_unducivJ. t co 
lim Ex{c(T)}= 1E 

t)vg)tg()(}6-46 A. i=li-i i-i 

This completes our formulations, namely, the 'accurate' 

asymptotic formulation, equation 6-37, ' the 'refined' approximation, 

equation 6-38 without the last term, and the 'crude' approximation, 

equation 6-11. 

To confirm our formulations we now give a numerical example to 

illustrate the method. 

Let the initial time u be an exponentially distributed variable with 

scale factor a=0.5822, and let the delay time distribution be 

exponential with scale factor A=0.7633, namely g(u)=aeau and f(h)=AeAh. 

The cost values are ci=15, cb =200, and cm 150 units. Suppose further 

the inspection policy is regular with inspection interval At=2.0. For 

time horizons T=10,15,20,25,30,35, and 40, the results of the 

renewal reward function of equation 6-37 is shown in Table 6-1. 

'accurate' time horizon T 
10 15 20 25 30 35 40 

asymptotic 

C(T)/T 55.63 56.20 56.48 56.66 56.77 56.85 56.92 57.35 

Table 6-1 Results of the 'accurate' asymptotic model over finite 

time horizons. 

The expected total cost per unit time over infinite time horizon in our 

example is 57.345 which clearly shows the difference between the cost 

measures over finite and infinite time horizons. As T increases, Table 

6-1 shows that C(T)/T increase as well as it must be. 
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As a matter of interest, the expected number of renewals in time 

horizon T using equation 6-32 is also illustrated in Table 6-2. 

time 
10 15 20 

horizon 
25 

T 
30 35 40 

H(T) 3.46 5.61 7.55 9.59 11.64 13.68 15.72 

Table 6-2 Expected number of renewals in time horizons 

It is possible to obtain the exact solution to C(T) if we can solve 

integral equation 6-35. Numerical analysis can provide us a tool to 

handle this problem within the required accuracy. However, as can be 

seen from the above expressions, the formulations are very complicated 

since they involve the double integration. As the time horizons in our 

example are not very long, we want to know how good the approximations 

are, that is, whether there is significant difference between the true 

value and the asymptotic one. To do this, we ran a thousand simulations 

on each time horizon with the parameters of our example, Since the 

sample size is big enough (1000), we feel this provides a good estimate 

of the true value of C(T). The comparison between the results of our 

'accurate' asymptotic formulation and simulation is illustrated in 

Figure 6-5, which shows the agreement between these two results and the 

trend that as T increases, these two results are tending to be equal 

and approaching p /µ =57.34. 
yx 

This result is quite encouraging because it shows that even in the case 

where T is relatively short, we can still use the asymptotic approach 

to obtain the approximated solution to our problem without losing much 

accuracy. Note also that in this example the difference between the 

results of finite and infinite time horizon is not very large, which 

illustrates the possibility of using µy/µX as an objective function 

instead of C(T)/T because the former can be more ready calculated and 
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optimized. 

expected cost per unit time 

57 
F** 

56 

55 

* simulation 
" 'accurate'asymptotic 

54 F time 
horizon 

10 15 20 25 30 35 40 

Figure 6-5 Comparison of the results between simulation and 
'accurate' asymptotic solution 

6.5 Conclusions 

Delay time analysis has already proved useful in the rudimentary 

applications made so far. Its scope for development has still to be 

really explored. The purpose of this Chapter was not so much to develop 

specific models of condition monitoring inspection as to show such 

activities could be modelled using the concept of delay time and to 

both discuss and highlight some of the issues and modelling options 

involved. Measuring the condition of plant by some process has, 

intuitively, a connection with estimating the delay time of a defect. 

But there is also a difference. Whereas the delay time measure entails 

consideration of defect prognosis and, therefore, can be and is used in 

analysis to model consequences of maintenance actions, the current 

state of much of condition monitoring is embryonic in that it is 

crudely of a (0,1) nature. A monitoring test will often indicate 
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whether or not a defect exists, but yields little additional 

information of a prognostic type. Once an abnormality is identified at 

a monitoring check, corrective action is often taken as though a 

breakdown were imminent. This is essentially the situation captured in 

models of this Chapter, where no attempt has been made to exploit the 

unexpired delay time that may be available to seek more cost effective 

repair schedules and perhaps, exploit opportunistic events. 

Hopefully, however, the industrial situation will improve with 

technological advancements in monitoring techniques to the extent that 

monitoring test results will be allied with a quantified prognosis, and 

perhaps the monitoring policy t will become consequential on the 

results of previous inspections, that is the timing of ti and the 

nature of test at ti will depend upon the results of the previous test 

up to ti_1. Such a dynamic monitoring regime could perhaps be arrived 

at through modelling where the delay time distribution for a defect is 

conditional upon the previous condition measures at tj, j<I. 

Proportional hazard modelling (PHM), Cox [1972], could be a tool to 

model this situation. An initial effort has been made to model the 

condition monitoring inspection by using PHM and delay time modelling, 

which is essentially based upon the idea of using the historic data of 

monitoring checks. Since much work needs to be done in this modelling 

and many ideas need to be tested and developed, for the time being this 

topic is not included in this thesis. However, clearly this is an area 

worth exploring. 

As has been stated, models developed in this Chapter are based upon the 

prototype model proposed by Christer [1992]. Extensions are made here 

to discuss more cases of condition monitoring inspection modelling. It 

is shown in the models over finite time horizons that delay time 

modelling can be used to model a renewal reward process provided that 

after each replacement the process resumes. Also, in the models over 

finite time horizons, for the sake of simplicity, only models for 

perfect inspection case are discussed. However, the same argument can 

be generalized to the case of imperfect inspection at the price of 
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more complicated formulation. We leave the modelling of condition 

monitoring inspection over finite time horizons for the imperfect case 

to a future study. 

Finally, the modelling of inspection efficiency has been through the 

probability ß that a defect present at inspection will be identified. 

This simplification is appropriate to the prototype modelling being 

discussed here. Another form of error is the probability p that a 

non-defect will be identified as a defect. This is just as real a 

problem as the ß type of error. A related 'false alarm' problem is that 

of non-defects reported as defects to the maintenance staff. When 

collecting the data of infusion pumps in Hope Hospital at Salford, it 

is found that in some records equipment is reported faulty, but 

actually no defect was found. User errors could be the main reason for 

this kind of false alarm, but it involves the cost of inspections. 

Clearly the p type errors, ß type errors as well as false alarms exist 

and require study within the context of monitoring models. 
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CHAPTER 7. A SPECIAL CASE OF CONDITION MONITORING INSPECTION MODELLING 

7.1 Preliminary 

This chapter is concerned with modelling a practical decision problem 

relating to an area of growing significance to production engineers, 

namely condition monitoring of production plant. The situation may be 

presented in its simplest form as follows: there is a critical 

component such as a bearing, say, used in production machines for which 

a condition test is capable of indicating the extent of wear. If the 

wear is less than a certain amount "H", the bearing is functioning 

satisfactorily with no immediate risk of failure. If, however, the wear 

is greater than "H", the level is regarded as critical and a 

replacement is initiated as soon as possible. Should thelining reach the 

zero level, a costly failure occurs. 

In order to avoid the inconvenience and the costly consequence of a 

breakdown of the production plant, a condition monitoring inspection 

check is used to test the wear level at regular intervals. If the wear 

is below the "H" level, no action is taken, but if it is above the "H" 

level, the bearing is replaced immediately before a breakdown occurs. 

It is possible such an inspection replacement could be undertaken 

during a non production time. 

In this situation, the test result is effectively of a- (0,1) type in 

that it signals either all is ok or that a failure is imminent. The 

main decision problem relates to how and when to schedule condition 

checks. If tests are very frequent, there is an increased chance of 

detecting a defect before it leads to a failure. However, there is a 

proportional increase in the cost of condition inspections and, if the 

plant is required to be stopped for condition testing, an increase in 

lost production time. The problem is to select an economic condition 

monitoring inspection schedule to balance the cost and downtime to be 

expected due to breakdowns and inspections. 
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Here we will follow the prototype modelling suggested by Christer 

[1992], which is discussed in the last Chapter, and develop a delay 

time based inspection model for production plant with a particular type 

of wear pattern. Wear can not be assumed to be either a uniform or a 

determinate process and it is the need to establish an appropriate wear 

model in any particular case that causes the real problem in modelling 

and scheduling condition-monitoring inspection. However, we consider 

here the case when the pattern of wear varies linearly with time, but 

where the constant of proportion is a random variable, see Figure 7-1. 

This particular pattern of wear was suggested by B. Gits of Eindhoven 

University as a wear pattern appropriate to some production equipment 

in a steel plant. 

M 

H 

_ý m 

fall 

Figure 7-1 Presentation of the wear mechanism 

e 

To fit ideas, we assume that the initial or "as new" thickness of 

lining in a bearing, say, is M. When the lining is known to have 

degraded to m or below, a replacement would be made. Clearly, H= M-m 

is the tolerance of the wear. The angle of wear 0, Figure 7-1, is a 

measure of bearing wear 
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random variable assumed bounded between limiting angles 61 and 62 so 

that the unknown random variable 0 satisfies 0 
lm 

0s02. 

Assuming for now the level "m" has been set in the condition monitoring 

device which essentially records (0,1) as the output. Although 

simplistic in form, this modelling of a condition monitoring device 

embraces a number of forms of monitoring including looking for a trace 

element in oil, or a special frequency in vibration analysis, which may 

or may not be present. It is seen from Figure 7-1 that the first 

opportunity to detect a pending fault given wear angle 6 is at point 

(a) after time u when the remaining thickness of the bearing lining is 

m. If the defect is not detected at point (a) or subsequently, it will 

lead to a failure after time t at point (b) where the lining thickness 

reaches zero. 

In the context of delay time analysis, Christer and Waller [1984], 

Christer [1992], see also Chapter 3 and 6, u represents the initial 

point of the defect, that is when it first becomes detectable. The 

delay time of this defect from its initial point to the failure time if 

left unattended is h= t-u, where the failure occurs after time t at 

point (b) when the lining thickness of the bearing reaches zero, Figure 

7-1. 

If ti denotes time to the first inspection from new, a minimum and 

maximum time range of ti exist for usefully implementing the condition 

monitoring inspection, namely 

tmin = (M-m)tan(61) and tmax = M"tan(O2). 

If t1< tmin' no defect will be identified and the monitoring is 

pointless. However, if t1>t 
max, 

and if a failure hasn't already 

occurred, the monitoring check will identify the component wear to be 

greater than the tolerant level H, i. e. the remaining lining thickness 
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is below m and the check will always result in a replacement. Under 

this condition the test is again not necessary to the decision process, 

that ist :5t <t 
min I max 

We are assuming that the angle of bearing wearing 0 is a random 

variable which has a known distribution with the lower bound 01 and 

upper bound 0 
2, and our task is to construct a model of the condition 

monitoring process where the decision variables are the number and 

frequency of inspection checks and the critical wear level m. 

Consequence variables are the operating costs, probability of failure 

and available production time. 

7.2 The basic model 

7.2.1 Assumptions and notation 

Since the model developed here is different from the general models 

described in Chapter 6, it is convenient to introduce some special 

assumptions related to this particular model. The assumptions of the 

model are: 

1. Bearing wear is linear with time, when at time tt, the wear 
max 

level is given by t"cot(8). 

2. The angle of wear 0 is uniformly distributed over (01,02). 

3. n condition monitoring inspections are scheduled on a regular 

cyclic basis with the initial inspection taking place at a time 

greater than or equal to tmin, n 1. 

4. Inspections are assumed to be perfect and benign in that the 

results of condition monitoring are true and accurate and 

inspections do not induce defects. 

5. The monitoring check produces binary information on the bearing 

condition, i. e. (0) or (1). (0) means the bearing wearing is less 

than H and all is assumed well, while (1) means bearing wear is 

greater than H and a replacement is urgently required. 

6. Once the. wear is recognized as being greater than H, a bearing 
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replacement is undertaken immediately as a preventive replacement. 

In addition to costs and time parameters, there are certain 

probabilistic events which are important elements in developing a 

condition monitoring model and require specific definition. It is 

convenient to introduce them here along with other terms. 

1. Let cb, ci and cm denote the average cost of failure replacement, 

condition monitoring inspection and inspection replacement 

respectively as before. 

2. Let db, di, and dm denote the average time duration of failure 

replacement, condition monitoring inspection and inspection 

replacement. Clearly, we expect cb>c> ci and db> dm di. 

3. Let CT(n) denote the asymptotic total expected maintenance cost 

per unit time when the number of planned inspections is n. 

4. Let AT(n) denote the asymptotic expected percentage availability 

of the bearing per unit time when the number of planned 

inspections is n. 

5. Let C(n) denote the expected total cost arising over a bearing's 

life time when the " number of planed inspections is n. We 

assume here it consists of the contributions from the cost of 
breakdown replacement, inspection replacement and condition 
inspection monitoring. With slight modification, downtime cost can 

also be included within C(n). 

6. Let T(n) and A(n) denote the expected total time and available 

production time to the first completed bearing replacement of a 

new bearing under the current condition based maintenance policy 

with n planned inspections. 

7. Let t denote the length of the regular monitoring inspection 
n 

interval when the number of planned inspections is n, that is t= 
n 

(t 
max 

tmin 

8. Let t denote the time to the ith planned monitoring inspection 
i, n 

from new when the number of planned inspections is n, that is 

t 
1, n =t+ i"t ,1in. It will be both convenient and 

,n min n 

consistent to define t=t 
n+1, n max 
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9. Let pb(i, n) be the probability of a failure occurring during the 

ith monitoring inspection interval when the number of planned 
inspections is n. 

10. Let pm (i, n) be the probability of a defect being identified at the 

ith monitoring inspection time point when the number of planned 
inspections is n. 

11. Let pb(n) denote the probability of a failure occurring during the 

bearing life time when the number of planned inspections is n. 
12. Let pm (n) denote the probability of a defect being identified at 

any one of the monitoring inspection time points when the number 

of planned inspections is n. 

Clearly, we have 

n 
pM(n) _E pm(i, n), 

1=1 

and 

b(n) =1- pm (n). 

7.2.2 Model criteria 

Assuming as criteria the asymptotic cost and availability formulation 

per unit time measured over numerous bearing replacement cycles, as 
discussed in the last Chapter, we have 

C(n) 
CT(n) =, 7-1 

T(n) 

and 

A(n) 
AT(n) _ (100 0/0). 7-2 

T(n) 
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Now, C(n) = (expected contribution to total cost from cycle ending in 

a breakdown replacement) + (expected contribution to total 

cost from cycle ending in an inspection replacement), 

that is, 

n+l n 

C(n) _E{ (i-1)"ci +cb }"pb(i, n) +E{ (i-1)"ci +c }"pm(i, n). 7-3 
1=1 i=1 

Again, T(n) = (expected contribution to total time from cycle ending 

in a breakdown replacement) + (expected contribution to 

total time from cycle ending in an inspection 

replacement), 

n+l n 
that is T(n) _E (Ti, 

n+db)"pb(i, 
n) +E (ti, 

n+dm)"pm(i, 
n), 7-4 

1=1 i=1 

where T denotes time to the breakdown which occurs in the ith 
i, n 

inspection interval when the total number of planned inspection is n. 

And finally, 

A(n) = (expected contribution to total available production time 

from cycle ending in a breakdown replacement) + (expected 

contribution to total available production time from cycle 

ending in an inspection replacement), 

that is, 

n+l n 
)"p(i, n). 7-5 A(n) _ (T1ýn(i-1)"di)"pb(i, n) +E (ti'-n (i-1)"di 

m i=1 1=1 

These expectation expressions in conjunction with criterion 7-1 and 7-2 
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establishes the basic format of models which may be optimized with 

respect to the decision variable n and m. It remains, however, to 

establish expressions for the probabilities in equations 7-3 - 7-5. 

7.2.3 Expressions for the probabilities 

Adopting the concept of delay-time, see Chapters 3 and 6 and also 

Christer and Waller [1984], we have for a breakdown to occur during the 

ith monitoring inspection interval given n perfect inspections in 

total, the initial point u must lie in (t 
i-1, n, 

t 
i, n 

), and the delay 

time satisfy hc (O, t 
1, n-U) , as shown in Figure 7-2 (a). 

di 
tut 

i, n 
(a) 

tut 
i, n 

(b) 

Figure 7-2 The delay time concept 

Then under the assumption of perfect inspections, we have 

pb(i, n) = p{ uc (ti-1, 
n'ti, n), 

h (ti, n-u) }. 7-6 

Similarly, for a defect to be identified at the ith monitoring 
inspection time point given n inspections in total, we must have the 

initial point uc (t t) and the delay time satisfy hc (t -u, co 1-1, n' i, n i, n 
), see Figure 7-2 (b). That is, 

pm(i, n) = p{ uc (ti-1, 
n't1, n), 

h> (ti, n-u) }. 7-7 
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From Figure 7-1 and assumption 1, it is clear that u and h are actually 

related here and satisfy the relationship 

u=(M-m )" tan(6) and h=m" tan(O), 

and therefore, 

u"m 
h=M-m' 7-8 

Introducing the relationship 7-8 into expressions 7-6 and 7-7, it 

follows that 

pb(i, n) = pr{ ti-1, 
n 

<u< (MMm)"ti, 
n 

7-9 

and 

pm n) = pr{ (MMM) "ti, n 
u tin }. 7-10 

Since we have defined g(u) as the pdf. of u, then expressions 7-9 and 

7-10 become 

M-ml 
t CMJi, n 

b(i, n) _f g(u) du, 7-11 
t 1-1, n 

and 
t 1, n 

pm(i, n) =f g(u) du, 7-12 

rx-m 
K 

)tn 

respectively. 
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Clearly tshould be less than or equal to 
MMm 

"ti, 
n, 

that is the 

lower limit of integration in equation 7-11 should be less than the 

upper limit, otherwise slight modifications would be required. Since 

the situation can arise where this condition is not satisfied, this 

case will be considered in more detail later. 

Our task here is to find the appropriate form of g(u) for the current 

problem. Let G(u) denote the probability function of u. From assumption 

(1), which establishes u as functions of 6 (01 04 02), we have, 

using Figure 7-1, 

G(u) = P{ (M-m)"tan(O) u} 

= P{ 0 tan- 1 (u/(M-m) }. 7-13 

Because we have assumed 0 to be uniformly distributed over (81,02), it 

follows from equation 7-13 that, 

G(u) ={ tan 1(u/(M-m) 
- 01 }/(A2 -0). 7-14 

Returning to the probability expressions 7-11 and 7-12, we now have 

pb(i, n) = G{ t1:. (MMm) }- G{ t1-1, 
n 

} 

={ tan-1(tiýn/M) - tan- 1(ti-l, 
n/(M-m) 

}/(82 -0 1), 
7-15 

and 

G{ ti, 
n} - G{ ti, n(MMm) } 

={ tan- 1(ti, 
n/(M-m)) - tan l(ti, 

n/M) 
}/(6Z -0l). 7-16 
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The significance of the angles in these two probability expressions, 

which are illustrated in Figure 7-3, in that they represent bounding 

angles on 0 for a defect to be detected at the ith monitoring 

inspection time point, or for a failure to occur in the ith monitoring 

inspection interval. 

7_M 

H 

im 

fall 

measure of bearing wear 

2 tan 
ltt-t, 

r�(M-m)) 

tan(ti,,, /M) 
1 

-i tan (t,., /(M-m)) 
0, 

train-1 

t1-1, 
n ---- 

tln 

----------------------------- imax --------------------------- 

time 

Figure 7-3 Relationships between 0, pb(i, n) and pm(i, n) 

As already indicated, equations 7-15 and 7-16 are key probability 

expressions in developing a condition monitoring inspection model. 
However, before we proceed further to develop this model, there are a 

number of pragmatic modelling considerations to raise associated with 
bounds on parameters if inspections are to be intelligently scheduled. 
We now formally list these for clarification and convenience. 

1. The smallest delay time in our problem is m"tan(61). When the 

regular inspection interval is less than m"tan(O ), a detect will 

always be detected when the wear angle is 0, Al 6s A2. 

Consequently there is nothing to be gained by inspecting on a 

period less than m"tan(ei), and the maximum number of monitoring 
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inspections n to consider for this problem is bounded above by 

t -t INT( max min 
m"tan(A 

where INT(x) denotes the smallest integer value which is greater 

or equal to x. Beyond this number of inspections, the monitoring 

effort would be wasted on unnecessary inspections. 

2. It can be seen from Figure 7-4 that if t /(M-m) t 
i, n 

/M and 

the wear angle e> tan(t /(M-m)), then if the remaining part 

of the bearing lining reaches the critical level m after the 

(i-1)st monitoring check, it must be identified at the ith check 

point, that is no failure will occur before the ith check. For this 

case, therefore, pb(i, n) = 0. At the same time, the limits of 

integration of equation 7-12 for pM(i, n) become tand t 

see Figure 7-4. 

measure of bearing wear 

TM 2 

tan (tt-t, n/(M-m)) 

H1 /ýý tan tti n/M) 

m 

tall 

min 
I time 

ý 

----- 

i- 

--------------ti-- --------------" 

----------------------------- tin 
ax -----------------------------r 

Figure 7-4 Situation if t 
i-1, n 

/(M-m) >t 
I, n 

/M 
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Here the appropriate expression for equation 7-16 becomes 

nm(i. n) ={ tan-'(t 
1, n 

/(M-m )- tan'(t 
1-1, n/(M-m)) 

}/(O 0 ). 7-17 
1 

3. If a monitoring check takes place at time (M-m)"tan(O2), see Figure 
7-5, then no subsequent failure can arise. In other words, if t 

i, n (M-m) " tan(o2) 
, we must have pb(j, n) = p(j, n) =0 for all j>1. 

In this case, the integration limits on equation 7-12 become 

t1, 
n"(M-m)/M 

and 62 and equation 7-16 becomes 

pm(i, n) ={ tan-'(o 
2)- 

tan 1(t1, 
n 
/m) }/(82 -01). 7-18 

TM 

H 

ý_m 

fall 
e 

Figure 7-5 Situation if ti, 
n 

> (M-m)"tan(O) 

measure of bearing wear 
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4. Finally, if the bearing survives into the time interval (t 
,t n, n max 

then a failure must occur in this interval. Let pb(n+l, n) denote 

the probability of this event, then we have 

pb(n+1, n) ={02- tan- 1(tnýn/(M-m)) }/(A2 - el ). 7-19 

This completes the formulation of the appropriate parts of equation 7-3 

for the expected cycle cost. 

We now establish from equations 7-4 and 7-5 the corresponding 

expressions for the expected cycle time to replacement, and the 

availability over a cycle. It is noted that the time to a breakdown in 

the ith inspection interval, T, can be represented by u+h. Using 

this result in conjunction with equation 7-11, equations 7-4 and 7-5 

can be rewritten as 

m 

n+1 H 
ti, 

n n 

T(n) =f (u+h+db)g(u)du + (ti 
n+dm)"pm(i, 

n), 7-20 
i=1 t 1=1 ' 

1-1, n 

and 

n+1 H i, n n+1 

A(n) =)f (u+h-(i-1)"di)g(u)du +E (tiýn(i-1)"di)"pm(i, n). 7-21 
1=1 t i=1 

i-i, n 

Differentiating expression 7-14 of the probability function G(u) to 

obtain the density function g(u), and using relationship 7-8 between u 

and h, expressions 7-20 and 7-21 for T(n) and A(n) become, after some 

re-arrangement and integration, 
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n+1 (M-m)2 + (1-m/M)2t2 
T(n) _E 

12(0M-0 
)logt 22 

1'2) + db. pb(i, n)] 
i=i 2i (M-m) +t i-1, n 

n 
+ (t +d )"p (i, n), i, n mm 1=1 

and 

7-22 

n+1 (M-m)2 + (1-m/M)2t2 

A(n) =E 
C2(eM-9 

log( 
22i, 

n + (i-1)d, "pb(i, n)1 
i-1 21 (M-m) +tJ 

i-1, n 

n 
+E (ti 

n- 
(i-1)di)-p(1, n), 7-23 

1=1 

respectively. 

Expressions for pb(i, n) and pm(i, n) are given by equations 7-15 and 
7-16 along with special cases 7-177-19. We still need to pay 

attention to special situations, namely: 

1. Since equations 7-22 and 7-23 are derived from equation 7-4,7-20, 

7-5 and 7-21 and are summed over each inspection interval, if in 

the kth inspection interval pb(k, n) = 0, then, since the expected 

value is obtained through the correspondent probability measures , 
the corresponding part in the equations 7-22 and 7-23 should be 

zero as well. 

2. If both pb(k, n) and pm(k, n) = 0, then for the same reason as above, 

we should set the relevant part in equation 7-22 and 7-23 whici 

involves pb(k, n) and pm(k, n) to zero before the evaluation of 

equations 7-22 and 7-23. 

7.3 Numerical example 

Dm 

we should set the relevant part in equation 7-22 and 7-23 which 
involves pb(k, n) and pm(k, n) to zero before the evaluation of 

equations 7-22 and 7-23. 
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Assume M= 20, m=2, 

61= n/8,02 n/3, 

cb= 350, ci= 15, cm 150 cost units, 

db= 0.60, di= 0.014, 
md=0.42 

time units, 

With the above data, the numerical results of the model when n=1 and 2 

are shown in Table 7-1 and 7-2. These results are intuitively 

reasonable in that they show that as the number of inspection checks 

increases from 1 to 2, the probability of a failure decreases, the 

maintenance cost decreases, and both the expected cycle length, T(n), 

and available production time 
, A(n), over a cycle decrease. 

The expected total maintenance cost per unit time, the expected 

percentage availability and the probability of failure when 

n=1,2,..., 32 are shown in Figure 7-6,7-7 and 7-8, (max(n)=32 in this 

example). These figures display the expected tradeoffs between 

increasing the number of inspections and reducing the probability of 

failure, or decreasing the availability of plant, or increasing the 

maintenance cost. If it were possible to conduct monitoring checks 

during downtime periods, there would be greater plant availability. The 

interpretation of these figures for decision making would be 

considerably influenced by the value of plant operating time and 

considerations associated with risk if the plant were not available and 

risk should the plant breakdown. 

number of 
inspection C(n) T(n) A(n) p (n) (n) p CT(n) AT(n) 

n b m 

1 338.21 19.25 18.66 0.920 0.080 17.56 0.969 

2 327.70 19.15 18.57 0.884 0.156 17.11 0.970 

Table 7-1 Result of the numerical example when n=1 and 2 
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number of sequence of probability of failure 
inspection 

n 
inspection 

i 
pb(i, n) pý(i, n) in the last interval 

pb(n+l, n) 

1 1 0.6390 0.0080 0.3530 

1 0.4547 0.0796 
2 0.1372 

2 0.2516 0.0769 

Table 7-2 Values of p(i, n) and p(i, n) when n=1 and 2 

expected total cost per unit time 
19 r 

18 

17 

16- 

15- 

14- 

13- 

12- 
0 5 10 15 20 25 30 35 

number of inspection 

Figure 7-6 Expected total cost per unit time 
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7.4 Extensions to the basic model 

Several extensions to the above inspection model could be considered. 

For instance, the schedule of monitoring checks has been assumed to be 

regular. It could be that an irregular schedule has sufficient 

advantage for some equipment to justify the additional effort of 

operating on a non-regular basis. This can only be checked by 

considering the consequence of a variable period between monitoring 

checks and the readily formulated model solved as a multi-dimensional 

optimization problem. This will be discussed in next Chapter. 

Again, if at each check there was detail information available on the 

wear, and not just binary data as assumed in the basic model, then 

depending upon the confidence that can be placed in the measure, a 

model could be constructed to help decide when to carry out the next 

inspection. We now take a brief look at this particular point. 

Suppose that the past records of condition monitoring times and 

information are available in more than binary form, and that at each 

inspection time point the detail information of a wear measurement of 

the bearing has been recorded, see Figure 7-9. 

measurement of bear wear 
z(t) 

20 

z(t 

z(t 

z(t3) 

z(t4) * threshold level 

z --------- -------- -------- -------- -------------------z 
°ttttt time 

12345 

Figure 7-9 Bearing wear process 
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The problem is to decide when to conduct the next condition inspection 

and what action to take conditional upon the previous results of 

condition monitoring checks. 

There are two approaches which could be used to model the above 

situation. The first one, as have stated in Chapter 6, section 6.5, 

will utilize proportional hazard modelling (PHM) to model the 

consequence of condition monitoring inspection using the full 

information of previous monitoring checks. The second one, perhaps a 

more generalized one, will adapt the stochastic theory of wear process 

to model building. To see this, consider the case when failure is 

dependent upon the wear of the bearing. Let z(t) be the value of the 

wear of the bearing at time t (age). Clearly {z(t)} is a stochastic 

process of specified structure. Suppose further that there are two 

fixed critical levels of wear, namely z and z0. That is, if zo< z(t) 

z, the component is defective, where z denotes the threshold level of 

wear in defective state. And then, if z(t) ? z0, a failure occurs. The 

initial time u of a defect being first detected is now the first 

passage time of the stochastic process {z(t)} across the barrier z 

See Cox [1962] for a definition of the first passage time. For suitably 

simple {z(t)} the distribution of u can be determined explicitly. For 

example, suppose that wear is produced by a series of 'blows' occurring 
in a Poisson process, or more generally in a renewal process. Suppose 

also that the wear at the ith blow is a positive random variable wi, 

the sequence {wi} being independent identically distributed random 

variables of the renewal process. Mercer [1961] gives a special case of 

this model where the wear per blow has a Gamma distribution. 

Another variant of the problem is where other forms of distribution of 

the wear rate parameter 0 might be considered more appropriate, and 

where this distribution is revised after each inspection result becomes 

known. The consequence of wear models, other than the linear one 

adopted here, could also be considered. Such generalizations will pose 

no problem of principle, though they would obviously lead to a more 

complex formulation. 
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7.5 Conclusions 

The above discussion has described a specific model of condition 

monitoring based on a linear wear pattern and presented numerical 

results. Both the model in general and the results in particular 

feature the tradeoffs that are to be expected of a condition monitoring 

situation. In the numerical example, both the plant availability and 

maintenance costs are optimized at between 10 and 15 monitoring checks 

over the variable monitoring range. The fact that the optimal range is 

common for both availability and cost considerations is simply 

fortunate in this case. As the number of monitoring checks increases, 

the probability of a failure decreases as expected. 

Possible extensions to the basic model have been briefly addressed in 

the last section. It is expected that some of them will be discussed in 

detail in due course. Particularly, the modelling of condition 

monitoring inspection based upon records of condition information z at 

the past. The effect of this later method depends upon the correct and 

accurate estimation of the pdf of u conditionally on z. 

The benefit of this and related studies at this stage is that they give 

some quantitative insight into the order of magnitude of the various 

effects and gains that might be expected from condition monitoring of 

equipment. This in turn gives a measure of the effort in data 

collection and experimentation that can justifiably be spent in 

establishing appropriate wear models. As indicated in the reference of 

Christer [19921, a key issue in justifying quantitatively the 

implementation of condition monitoring is an understanding of the 

prognosis of plant behaviour subsequent to a condition monitoring 

reading, such as the revision of a failure distribution in the light of 

the monitoring result. The technology of condition monitoring appears 

currently short of this ideal. 

It is hoped that attempting to model quantitatively condition 

monitoring, attention can be focused on the issues, and the 



138 

contribution that engineers, statistician and OR scientists can jointly 

make be highlighted and research in the area stimulated. 
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CHAPTER 8. ALGORITHMS FOR CONDITION MONITORING INSPECTION MODELLING 

8.1 Introduction 

As we have stated before that the importance of equipment conditional 

monitoring Inspections in many organizations is increasing markedly as 

manufacturing plant -becomes more automated, high volume, and expensive. 

In response, more condition monitoring check devices and methods are 

being developed and implemented in industry. The purpose of undertaking 

conditional monitoring inspections is to monitor the condition of plant 

manufacturing the products either continuously or periodically so that 

appropriate responsive maintenance actions may be undertaken. 

Accordingly, management expect to maintain the plant in adequate 

working condition with an acceptably low level of production loss. 

Obviously a well structured condition monitoring inspection schedule is 

important because the decision of how and when to carry out monitoring 

checks may not only be vital to the performance of plant, but may also 

be of considerable significance to the cost and efficiency of 

maintenance performance. Traditionally, the inspection schedule is 

usually made on a regular basis, that is, the inspection interval is 

equally spaced. However, inspections may not be regular. It is possible 

that irregular inspection intervals could give a better result. Clearly, 

if an irregular inspection schedule is optimal it must also be superior 

to the regular inspection schedule since the latter is a special case of 

the former. Therefore, in this Chapter, we will focus upon the problem 

of irregular conditional monitoring inspection scheduling and take the 

regular inspection scheduling as a special case of it. 

In Chapter 6, we have discussed models of conditional monitoring 

inspection originally developed by Christer and Waller [1984a, b] to 

model the inspection of industrial equipment using the concepts of 

delay time and delay time analysis, see Chapter 3. In a more recent 

paper, Christer [1992] presented prototype models of irregular 

condition monitoring inspection, but did not discuss in any detail 
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methods of obtaining their solution. In this Chapter, we develop 

algorithms to obtain the optimal condition monitoring inspection 

schedule based upon the models addressed in Chapter 6. For convenience, 

only cost measures are taken as the objective function to be minimized. 

However, the same method can be easily generalized to the case of 

downtime models. In Chapter 6, three kinds of models are discussed, 

namely, models over an infinite time horizon, models over a component 

life time, and models over a finite time horizon. For reason of 

simplicity, only algorithms for the first two models, le. models over 

an infinite time horizon and models over a component life time, are 

established here because these two have relatively simple structures. 

We leave the development of algorithms of the finite time horizon case 

to a future study. Numerical examples are given to illustrate the 

methods developed here. 

8.2 Model assumptions 

Since we have listed the basic assumptions of models in Chapter 6, most 

of them still hold in this Chapter, but, as the algorithms developed 

here are for special cases, it is convenient to repeat them here. We 

now formally list them as follows 

1. Inspections are perfect, that is the condition monitoring check 
information is accurate in that any defect present will be 

identified at an inspection. 

2. If a defect is identified at an inspection, a repair or 

replacement is undertaken as a part of the inspection, which 

restores the component to as good as new condition. For 

convenience, we simply refer to it as an inspection replacement(we 

regard repair as the replacement). If a failure occurs, the 

component is also repaired or replaced immediately. This is simply 

refer to a failure replacement. 

3. Times taken to conduct a monitoring inspection, inspection 

replacement and failure replacement are assumed negligible compared 

with the inspection interval. Without difficulty, we can generalize 
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to the case where such times are not negligible. 
4. Inspection intervals need not be equal, but could be any time 

length and are decision variables of our model. 
5. Inspections are benign in that the process of inspection will not 

in itself induce defects. 

6. The task is to determine the optimal inspection schedule t which 

minimizes, say, the expected total cost per life cycle or the 

expected total cost per unit time over an infinite time horizon. 

7. The initial time u and the delay time h are independent with pdfs 

g(u) and f(h) and cdfs G(u) and F(h) respectively. 

We now first discuss algorithms of the model over a component life 

time. 

8.3 Algorithm for irregular conditional monitoring inspection over 

a component life cycle 

8.3.1 Algorithm for continuous case: Algorithm 8-1 

Adopting the perfect inspection model, we established in section 4 of 
Chapter 6, the expected total cost per life cycle, denoted by C(t), as 

C(t) = Ex(cost of failure replacement) 

+ Ex(cost of inspection replacement). 

That is, from equation 6-23 of Chapter 6, 

C(tM =E 
[(u_nc 

+c )pb(ti) + «1-1)c +c)) pm(ti)1,8-1 

1=1 

where 

- J'g(u)F(t1-u)dui pb(ti) 8-2 
i-1 



142 

and 

t 
pm(ti) = 

J'g(u){1_F(t1_u)}du. 

i-1 
8-3 

The notation is that of Chapter 6 in which pb(ti) is the probability of 

a failure occurring in (t, tI) and pm(ti) is the probability that a 

defect is identified at t 

Introducing equations 8-2 and 8-3 into equation 8-1, we have 

lg(u)F(t-u)dul. 8-4 
ýo [{(i_1)c 

C(t) =l+cm)}f 1g(u)du + (cb-cM) it- 

i=1t J 
-1 1-1 1 

Equation 8-4 is the objective function which will be minimized with 

respect to the decision variables t=(tl, t2,..., ti,... ), where t0 =0. 

As we know, a necessary condition that a sequence {t 
i} 

be a minimum cost 

inspection procedure is that öC(t)/öti=0 for all i. Hence using 

equation 8-4 and noting that 

t ti 

öt 
(, 

Jtig(u)F(t, -u)du = 
J'g(u)f(t1_u)du, 

1-1 

we obtain for all i=1,2,3,... 

t 
-c1g(t1) + (cb-cm)(ft1g(u)f(ti-u)du -g(ti)F(t1+i-ti» = 0. 

1-1 

That is, for the optimal inspection policy t= {ti}, 
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(cb cm )ftt ig(u)f(ti-u)du - cig(ti) 
i-i F(t1+1 

i) = (cb-cm)g(ti) 8-5 

Equation 8-5 defines an implicit recursive relationship among t, t 
i-1 i 

and ti+1. Since to=0, if we know the value of t1, a sequence of {ti} 

may be recursively obtained through equation 8-5. 

We now discuss how to choose the appropriate value of t1. Our initial 

objective is to find some bounds upon tl to simplify subsequent 

numerical analysis. 

Suppose that the first inspection is scheduled at time t, then the 

expected cost is 

zT- 
c 

fog(u)du+(cb 
Cm )fog(u)F(z-u)du + C(T*), 8-6 

co t rt 
where C(z*)= E {(i-1)ci+cm), Itg(u)du+(cb 

C. ) Jtig(u)F(ti-u)du} and z 
1=2 1-1 1-1 

denotes the optimal inspection policy starting from t1=i. 

If an additional inspection is performed at time x before 'r, the 

expected cost is 

XXZZ 

cýog(u)du+(cb-cm)Jog(u)F(x-u)du+(ci+cm)JXg(u)du+(cb-cm)fXg(u)F(z-u)du 

co tt 

+E ({(i-1)ci+cm}Jt'g(u)du + (cb-cm)ftIg(u)F(ti-u)du). 8-7 
1=3 1-1 1-1 
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We note that E({(i-1)ci+cm)}ft'g(u)du + (cb cm)ftig(u)F(ti-u)du) can be 
1=3 J 1-1 1-1 

be expressed as 

Co t 00 t -t 
c1 E 

J'g(u)du+E CM-1)c 
1 

+c 
m} 

lt 1+1g(u)du+(cý 
cm) 

f 

ti+1g(u)F(ti+lu)du) 
1=3 i-1 1=2 1J1 

00 00 t +- ' 
= c1Jzg(u)du+E ({(i-1)c 

1+cm} 
fti+ig(u)du+(cb 

cm) 
fti+ig(u)F(ti+1u)du), 

iJJ 

and note also that the last two integrals are over adjacent inspection 

times. Now if we further require that we adopt the optimal inspection 

policy starting from r, then equation 8-7 becomes 

XTT 

cto g(u)du+(cb-cm)Jog(u)F(x-u)du+(ci+cm)f1g(u)du+(cb cm)I g(u)F(t-u)du 
x 

00 
+ c1J g(u)du + C(T*). 8-8 

Thus having the first inspection performed at time t1=z is preferable 

to having the the second performed at time t if the equation 8-8 minus 

equation 8-6 is greater than or equal to zero, that is 

00 XLT 

c1J g(u)du+(cb cm) {fog(u)F(x-u)du+f g(u)F(T-u)du-fog(u)F(z-u)du} '0 

or 

J0g(u){F(t-u)_F(x_u)}du c 

c -ic Jguciu 

Xb 
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By varying i and calculating s(x, T) for all x, x<z, we can find the 

appropriate range of z for which condition 8-9 is satisfied. In other 

words, if the range of -r is (0, t1u) where tIu is the upper limit of z, 

then for the optimal inspection policy t ={t1}, t2 should be greater 

than or equal to t1u, ie. no additional optimal inspection point should 

be scheduled before z where 0Tt 
lu 

Now consider an example. Suppose the initial time is Weibull 

distributed with scale factor a=0.1722 and shape factor ß=1.68, and 

that the delay time distribution is exponential with scale factor 

A=0.6633. Suppose further that cb 200, cm 50, and c1=15. We. have the 

following computed values of s(x, z) for additional inspections, which 

are also plotted in Figure 8-1. 

Clearly from Table 8-1 and Figure 8-1, the appropriate range of z 

satisfying condition 8-9 is in (0,4.1) since ci/(cb-cm)=0.1. 

, r=2. z=3.0 z=4.0 -c=4.1 -r=4.5 

x s(x, i) x s(x, i) x s(x, i) x s(x, z) x s(x, z) 

0 0 0 0 0 0 0 0 0 

0.5 0.011 0.6 0.015 0.7 0.027 0.8 0.9 0.033 

1.0 0.027 1.2 0.039 1.4 0.067 1.6 0.086 1.8 0.083 

1.5 0.037 1.8 0.054 2.1 0.097 2.4 0.100 2.7 0.121 

2.0 0.032 2.4 0.049 2.8 0.090 3.2 0.098 3.6 0.144 

2.5 0 3.0 0 3.5 0 4.0 0.019 4.5 0 

Table 8-1 Values of s(x, T) 
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S(x, -r) 
0.14- 

0.12- 

0.1 

0.08- 

0.06 
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0.02 

Figure 8-1 Values of s(x, z) 

However, there is another issue we must pay attention to. Since 0 

F(t1 -ti) 1, we have, the necessary condition for a solution to 

equation 8-5 existing is 

fig(u)f(ti-u)du 

g(ti) cb -c 

and 

8-10 

Jtig(u)f(ti-u)du 
:5 (1 +c 

ci 

c) g(ti), i=1,2,... 8-11 
i-1 bm 

In order to produce a sequence of {t 
i} 

for which C(t) can be minimized, 

0- 
012345 

time x 
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we require t1 < t2 < t3 .... However, experience has shown that equation 

8-5 can not be used recursively forever. It will stop at a certain 

stage of n because expressions 8-10 or 8-11 can no longer be satisfied. 

In this case, it means that no more inspections are needed beyond t 
n 

when t1 is fixed. However, if to is not sufficient large, there may 

exist the possibility of a defect arising after tn and resulting in a 

failure. In this sense, we need to consider the probability of a 

failure after t in our cost model, equation 8-1. Suppose now that 
n 

using equation 8-5, we obtain the optimal inspection policy 

t={tl, t2,..., tn}, then the total expected cost per cycle would be, 

t1 nt 
C(t) _ 

[{(i_1)c1ýc}J'g(u)du 
+ (cb-c )ftig(u)F(ti-u)duJ +m 

1=1 1-1 1-1 

(nc1+c )P('t), 8-12 

where p(t )=1- G(t 
n) 

is the probability of a failure after tn. 
n 

Since by using the recurrence equation 8-5, the multi-dimensional 

optimization problem is changed into one dimensional one because we 

only need to determine the value of tl, we can ready specify the 

computing procedure for obtaining the optimal inspection schedule. 

Algorithm 8-1 

1. Choose the range of tl satisfying the bounds of equation 8-9, 

denoted by (t11, tlu), where in general t11=0. 

2. For the given range of t1, set the step of At. Then for t1=t11+ 

j"At till tlu, calculate t2, t3,..., tnrecursively from equation 

8-5. 

3. For each t={t1, t2,..., tn}, compute C(t) according to equation 8-12. 

4. Select the optimal one from all C(t). 

Consider now our numerical example described above, introducing the 
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distribution of f(h) into equation 8-5, we have 

t 
(c -c. ) fi 

b ti-ig(u)aexp{-a(t -u)}du-c ig(ti) log 
11- (cb-cm)g(ti) 

t1+1 
l 

-A 
+t 8-13 

Since we known that range of t1 is (0,4.1), enumerating all the 

possible ti in (0,4.1) by setting At=0.005, we found that the optimal 

C (t) is 141.17 and the optimal inspection policy is shown in Table 

8-2. 

inspection inspection inspection inspection inspection inspection 
sequence time point interval sequence time point interval 

1 3.23 3.23 9 12.49 0.95 
2 4.83 1.60 10 13.44 0.95 
3 6.17 1.34 11 14.39 0.95 
4 7.38 1.21 12 15.37 0.98 
5 8.50 1.12 13 16.43 1.06 
6 9.55 1.05 14 17.66 1.23 
7 10.56 1.01 15 19.32 1.66 
8 11.54 0.98 16 23.94 4.62 

Table 8-2 Optimal inspection policy by using algorithm 8-1 

Note from Table 8-2 that the optimal inspection interval decreases till 

the 10th inspection time point then increases after that, which is not 

what we expected. We will give a brief discussion about this problem in 

section 8-5. 

For the purpose of illustration, values of C(t) when t1=2.5,..., 4.1 are 

also shown in Figure 8-2, which clearly shows that t1=3.23 is the 

optimal one 
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C(t) 
200 r 
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100`- 
2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 

first-inspection time 

Figure 8-2 Values of C(t) while ti is from 2.5 to 4.1 

The above algorithm gives the optimal inspection schedule for the 

continuous case. However in practice maintenance engineers usually 

adopt a convenient integer time unit as the inspection interval, for 

example days, weeks, months or years. Of course, we can still use the 

above algorithm and adjust the inspection interval to be equal to the 

near integers of the optimal inspection time points. But clearly we can 

not expect this to also be an optimal solution. However, according to 

the structure of equation 8-4, if we assume that the inspection 

interval is taken as the integer times a specified minimum time unit, 

we can use an alternative approach to derive the optimal inspection 

schedule for which the inspection interval is an integer multiple of a 

convenient minimum time unit. 

We now discuss this method 
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$. 3.2 Algorithm for discrete case: Algorithm 8-2 

Consider the perfect inspection case. If we assume that the inspection 

interval is an integer multiple of a specified minimum time unit, see 
Figure 8-3, we can construct the algorithm as follows. 

minimum time unit At 
ýI 

IIII, IIII... I, III, III... 
_1 

t =0 t, tttT 
oi2 1-1 1 

where T is the time horizon. T should be sufficiently large 

so that no defect could arise after it, that is G(T) 4 1. 

Figure 8-3 Inspection process 

Since we know from equation 8-4 for C(t) that if we fix one of the 

inspection time points, say ti, then equation 8-4 can be divided into 

two parts which are mutually independent, namely 

i [{(j_iicj+c}JJg(u)du+(c tt 
C(t)=b-cfjg(u)F(tj-u)dul+ 

j=1j-1 j-1 J 

n (ýt 

C ý', ({(k-1)Ci+c }Jt kg(u)du+(c 
-C J ý)tkg(u)F(t-u)du)+ k=i+1 k-1 k-1 

(ncI+cb){1-G(tn)], 

where t denotes the last inspection before T. 
n 

This property provides us with the chance to use dynamic programming 
technique to compute the optimal inspection policy. 
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Algorithm 8-2 

Suppose now that we start from n=1, i. e. only one inspection is 

performed. Then the optimal expected total cost, C (t), for convenience 

denoted this by C (1), is given by 

C (1) = min{ C(O, ti) + C(t1, T) t1=kAt, k=1,..., nmax 
t 

1 

where C(O, t1) and C(t1, T) are contributions to the expected values for 

which 

C(O, ti)=cmfolg(u)du + (cb-cm )folg(u)F(tl-u)du 

and C(t1, T)=(ci+cb)P(tl) _ (ci+cb){1 - G(t1)}. 

The maximum number of possible inspection points is given by, 

n =INT(T/At). max 

Now, for n=2, the optimal expected total cost, denoted as C (2), is 

C (2) = min{ C(O, t1) + C(t1, t2) + C(t2, T)}, 
t2't1 

where t1=kAt, k=1,.. ., nmaX 1 and t2 jAt, j=k,... , nmax. 

Since we have known the values of C(O, t1) in last step calculation, 

what we need here is to calculate the values of C(ti, t2) and C(t2, T) 

for which 
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2g(u)du + (cb cm)ft1g(u)F(t1-u)du, C(t1, t2) _ (c1+cm)fti 
i2 J 

and 

C(t2, T) = (2"ci+cb){1-G(t2)}. 

Now let 

C (O, t2) = min{ C(O, tl) + C(tI't2) 
t1' 

where t2=jAt, j=2,..., nmax and t1=kAt, k=1,..., j-1. 

We now proceed to n=3. Clearly, the optimal expected total cost, 
" C (3), is 

C*(3) = min{ C*(0, t2) + C(t2, t3) + C(t3, T) } 
t2, t3 

= min ( C*(O, t2) + min{ C(t2, t3) + C(t3, T) }J, 
tt 23 

where t3=jAt, j=3,.. "'nmax and t2 kAt, k=2,..., j-1. 

As before, since we have known the value of C (0, t2), we need only 

compute C(t2, t3) and C(t3, T) for which 

33 
C(tz, t3) _ (2c1+cm)ft2 g(u)du + (cti cm)ft2g(u)F(t3-u)du, 

zz 

and C(t3, T) = (3ci+cb){1 - G(t3)}. 
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Similarly, let 

C*(0, t3) = min{ C*(0, t2) + C(t2, t3) }, 
t 2 

where t3=jAt, j=3, """, nmax and t2 kAt, k=2,..., j-1. 

We can proceed to n=4 and so on. 

Suppose now that n=i and we have known the value C (0, t ), then we i-i 
have 

C (i) = min {C (0, ti-1) + C(ti-1, t1) + C(ti, T) 8-14 

t, i-1't1 

where ti=jAt, j=i,..., nmax and ti-1=kAt, k=i-1,..., j-1. 

In a similar way we can obtain all the values C (i), i=1,..., n 
max 

among which we can select the minimum one which minimizes the expected 

total cost over the component life time. This completes our algorithm. 

The principle behind algorithm 8-2 is quite straight forward since it 

is the principle of dynamic programming. In each step we change the 

last inspection time point, then add its contribution to the expected 

value to the last step local optimal result which must remain optimal 

as the latter are independent of the former. It is this recurrence 

relationship , as presented in equation 8-14, which provides the basis 

of our algorithm. 

Now we consider to use algorithm 8-2 on our numerical example which has 

been used in algorithm 8-1. With the same data used in algorithm 8-1, 

let T= 20, which G(20)=0.9994 is quite close to 1, and set At=0.5. We 

have n =INT(20/0.5)=40. The computed results of C*(i) are shown in 
max 
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Figure 8-4. The optimal result is n=17 with Cß(17)=141.49 for which the 

optimal inspection policy is shown in Table 8-3. 

inspection inspection inspection inspection inspection inspection 
sequence time point interval sequence time point interval 

1 3 3 
2 5 2 
3 6 1 
4 7 1 
5 8 1 
6 9 1 
7 10 1 
8 11 1 

9 12 1 
10 13 1 
11 14 1 
12 15 1 
13 16 1 
14 17 1 
15 18 1 
16 19 1 
17 20 1 

Table 8-3 Optimal inspection policy using algorithm 8-2 

C(i) 
220 

200 

180 

160 

140- 

120- 

100 
0 10 20 

. 
30 

number of inspections 

Figure 8-4 Values of C*(i) 

40 

Comparing Table 8-2 with 8-3, it is shown that the two optimal policies 

are quite similar, as indeed they should be. The difference between the 
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optimal cost results of these two algorithms is only 0.33. From the 

point of view of the theory, algorithm 8-1 gives the exact optimal 

solution no matter what time unit is used. However algorithm 8-2 can 

only give the optimal one when the inspection intervals are integer 

multiples of a specified and chosen calendar time unit. When the step 

or time unit in algorithm 8-2 is very small, it could give an answer 

which is quite close to the one obtained from algorithm 8-1, but will 

be associated with the cost of more computing time. However from the 

point of view of maintenance practice, algorithm 8-2 is preferable 

because the result obtained from it is easy to use and more consistent 

with maintenance practice. 

For the purpose of comparison, the expected cost in the regular 

inspection case, that is with constant inspection interval AT, is also 

computed. The results are that the optimal AT=1.8 and the expected 

total cost is 148.43. Compared with the irregular inspection, 
r C (t)=141.17, the latter clearly gives the optimal result, as indeed it 

must. It should be noted, however, that the extra cost of managing a 

variable policy over a constant one has not been costed, and could make 

the constant period policy more attractive. 

8.4 Algorithm for irregular conditional monitoring inspection over 

an infinite time horizon 

In the last section we have derived optimal algorithms under the 

assumption that the time span extended only until the detection of a 

defect or a failure. In many situations, however, the process is 

continuing after a renewal (resulting from repair or replacement). For 

example a machine produces units continuously, the performance of the 

machine is inspected periodically to determine whether the machine is 

functioning satisfactorily or not. Upon detection of the malfunction, a 

repair or replacement is made, production then resumes, and inspection 

continues. 

In this situation, the optimal inspection schedule should be the one 
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that minimizes a measure of the expected total cost per unit time, or 

usage, as we have discussed before. Now in this section, an algorithm 

is presented which was first suggested by Brender [1963] to derive an 

optimal inspection schedule. However since the models we adopted here 

are based upon the concepts of delay time and delay time analysis and 

are, therefore, different from Brender's model, necessary revisions are 

made and numerical analysis techniques used to solve the infinite time 

horizon model presented in Chapter 6. 

The expected total cost per unit time over an infinite time horizon, 

using the asymptotic formulation, is 

C(t) 
CT(t) = 8-15 

T(t) 

where C(t) and T(t) denote the expected cost per cycle and expected 

cycle length given an inspection policy t. 

From Chapter 6. section 6.3.1, we know that 

0o 
C(t) 

[{(i-1)c 
+c } ft- ig(u)du + (c -c) 

f ig(u)F(t 
-u)dul, 8-16 

1=11 
im Jb mtiJ 

i-1 i-1 

and 

Co tt_ 
T(t) =E 

[tif ig(u)du 
-f 

ig(u)Ft1-u)dul, 8-17 
i=11 

Jt 
tJ 

i-1 i-1 

where F(")= f0F(h)dh. 

The task is to find an optimal inspection schedule t which minimizes 

the expected total cost per unit time measure, CT(t)=C(t)/T(t). 
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8.4.1 The algorithm in general 

In an early paper of Brender [1963], an algorithm, which was also 

quoted by Barlow and Proschan [1965] and Jardine [1973], is developed 

to solve equation 8-15. The idea is to transform equation 8-15 into 

another form with an extra parameter a, that is, to define 

D(a, t) = C(t) - a"T(t). 8-18 

Brander established the necessary condition for minimizing CT(t) as: 

1. first find t minimizes D(a, t) and, 

2. require D((x, t) = 0. 

For a proof, see Brender [1963]. 

The first condition can be satisfied by minimizing equation 8-18 in 

terms of ti. Partial differentiation will produce a recursive function 

among ti_1, ti, t1+l and a which, since to = 0, can be used to solve 

recursively for {t, minD(a, t)} if t1 and a are known. Therefore, in 

fact, t is a function of a and t1 . By varying a and tl to make the 

D(a, t) zero, an optimal solution could be obtained. That is, to 

minimize CT(t) is equivalent to finding appropriate t and a which 

minimize D(a, t) and then require that D((x, t) must be zero. Thus in 

Brender's algorithm, the first step, is for given a, to find t(a) which 

minimizes D(a, t); this can be achieved by varying different t. Suppose 

it is t Then we vary a until we find an a for which a and tl minimize 

D(a, t) and for which D(a, t(a , ti)) = 0. However for the sake of saving 

computation time, the algorithm needs to be revised and also satisfy 

the two optimal conditions presented in Brender's paper. That is, for a 

given t1 we first find an a which makes D(a, t)=0, (finding the root of 

equation 8-18). Repeat this procedure for all possible t1 we may obtain 

a series of D(a, t) which all are zero. Among them the one which has the 
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smallest a minimizes CT(t). We will give the proof of this revised 

algorithm in section 8.4.2. Clearly, in general, finding the root of 

equation 8-18 is much quicker than finding the minimum of the same 

equation from the point of view of numerical calculation. And actually 

we only need one time minimum in the revised algorithm. Also, since the 

cost and time functions of C(t) and T(t) were quite simple in Brender' 

model, the problem could be solved analytically. But in our model, it 

can be seen from equations of C(t) and T(t) that the structures of C(t) 

and T(t) are more complex and involve double integrations and an 

analytic solution is not generally possible. 

In principle, numerical analysis techniques enable us to solve this 

optimization problem to the required accuracy with the assistant of a 

computer. Now, in the following, the chosen optimal algorithm will 

follow the principle of Brender's algorithm, but with a different 

approach to solve our particular problem. 

8.4.2 Revised algorithm: Algorithm 8-3 

It was stated above that since it includes many minimizing processes 

Brender's algorithm needs more computation time that is necessary. We 

present here a slightly different method to solve the problem, though 

using the same general principle. 

Now algorithm 8-3. 

1. For given t by varying a find an a which makes D(a, t(a, tI))=0. 

2. Repeat above procedure for all possible t1, then find a t1 which 

makes D((x t(a t l))=0 
and a*=min{ a }, where {a} denotes all 

the values of a obtained in step (1). Then t(a , ti)) minimizes 

CT(t). 

The logic behind this algorithm is as follows: If for given a and tl, 

we can obtain t=(to, tl,... }, where t=t(a, tI) which minimizes D(a, t), 

when ti is fixed. Thus, by varying a for given t1, we can obtain a 
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series of t which minimize D((x, t). Of these a, we may find an a which 

makes D(a, t(ä, tI))=O. By definition, we know that t(a, tl) minimizes 

D(a, t(a, tl)), then for any t which has the same ti as above we have 

D(a, t(a, tl)) D(a, tl 

where ti denotes an inspection policy whose ti is fixed as above and 
the others are arbitrary. 

Since D(a, t((x, t1)) =0 implies C(t(a, tI))/T(t(a, tl)) = a, this leads to 

C(tl) 
CC. 

T(t 

If we repeat this procedure for all possible t1, we can obtain a series 

of D(a, t(a, t )) which all are equal to zero. Among them we can at least 

find a D(a t(a , tl)) which has the smallest value of a. Since 

C(t(c 
, 

ti)) 

- 

C(t(&, ti) 

T(t(a*, t1)) 
=a 

then we have, for all possible t1 

C(t(a , tl)) C(t) 

T(t(a , tl)) T(t) 

T(t(a, tl)) 
= a, 

Now there are two problems which must be resolved. The first one is how 
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to find at which minimizes D(a, t). The second one is how to vary a so 

that D(a, t)=O. These lead to the follows; 

8.4.3 Necessary condition for minimizing D(a, t) 

A necessary condition for a minimum for D(a, t) as t is varied is 

obtained by setting each 8D(a, t)/öti=0 if a is fixed. According to the 

structure of D(a, t), this will implicitly produce a recursive 

relationship among ti_l, ti, tand a. We now discuss this procedure 

below. 

Since 

D(a, t) = C(t) - a"T(t), 

therefore 

aD(a, t)/ati = ac(t)/at, + «"aT(t)iati. 

Now for convenience, we derive äC(t)/ati and. aT(t)/ati separately, and 

then sum them together. From equation 8-16,8-17, we have 

tt 
ac(t)iatiaiati[({(i_1)c1+c}J1g(u)du+(c_ cm)ftig(u)F(ti-u)duJJ 

i=1 1-1 1-1 

t 

=aiatil{(i-1)ci+cm}ftig(u)du+(cb-cý}Jtig(u)F(ti-u)du lJ 
i-i i-1 

-u)du). 8-19 +(ic 
i 

+c 
mi 

)ftti+ig(u)du+(c -c )rti+ig(u)F(ti+l 
J 1bm 

Jti 

Simplifying equation 8-19 and differentiating it with respective to ti, 
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since we know that ä/8ti(ftig(u)F(t-u)du) =ftig(u)f(t-u)du, equation 

8-19 becomes 1-1 1-1 

t 
0C(t)/ati=(c -c )rf ig(u)f(t 

-u)du -g(t )F(t -t )) -c g(t ). 8-20 
bmltii i+l iii 

1-1 

In a similar way but with slightly more complicated differentiation, we 

have, 

0tt 
aT(t)/ati=a/ati[E[t1J'g(u)du - 

f: '(u)(tj_u)du)] 
i=1 i-1 1-1 

t 
g(u)F(ti-u)du = G(ti)-G(t1-1) - 

SI 

t 
i-i 

+ g(ti)(ti-t1+1) + g(ti)F(ti+-ti)' 8-21 
1 

where F(") = 
JF(x)dx. 

Since we have assumed that we know the distribution density functions 

of u and h, and the values of ci, cm, cb and a, it is clear from 

equations 8-20 and 8-21 that by letting 3D(a, t)/äti=0, we have, 

t1 
(cb-cm) r 

Iftig(u)f(ti-u)du -g(tI)F(t1+1-ti)1 - cig(ti) - 

rt 
c G(t )-G(t )-f ig(u)F(t 

-u)du+g(t )(t -t )tg(t )F(t -t )1=0. 
J li i-1 Jti ii 1+1 1 1+1 1 

8-22 

If ti_1, ti and a are known, t1+1 may be implicitly obtained through 
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equation 8-22 recursively. However, as can be seen from equation 8-22, 

it is impossible in general to derive an analytical solution to t1+1 if 

the pdf. of h is a complicated function such as Weibull or Gamma. A 

numerical analysis tool has to be used, for example, NAG routine 

CO5ADF(routine to find the roots of a function), to obtain the 

numerical solution. Now supposing equation 8-22 is solvable, repeating 

this procedure, we can find t=(to, tl, t2,... ) for which the necessary 

condition of minimizing D(a, t) is satisfied. 

However, it is interesting to note that, under the assumption of 

exponentially distributed delay time f(h), equation 8-22 becomes 

tractable. For example, introducing f(h)=pe-ph, after some 

manipulation, equation 8-22 becomes 

i -p(t -u) ýi t-11 -gýu)e 
i du J t1+1-t 

l- 
log 1+ 

ob -cm a/p -p g(t1) 
/(-p)=0.8-23 

This is actually an explicit function for t1+l, which can be easily 

calculated if we know the values of ti_l, ti, and a. 

For convenience, let equation 8-22 be defined in general by 

I-1, 
ti, t1+i, a) = 0, i=1,2, .... 8-24 

Then, for a given value of a, since we know that t, =0, then, once tl is 

selected, t2, t3,... may be obtained recursively from 8-24 by numerical 

method, that is, to the root of t1+l of equation 8-24 is known when 
ti_1, ti, and a are known. By either varying t1 or a or both we can 

find a series of t(a, t) which all achieves the minimum value for 

D((x, t). 
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As discussed in section 8-3, difficulty may occur when we solve 

equation 8-24 because for given ti and a, equation 8-24 may show no 

roots beyond a certain value of n and no value of ti (j > n) exists. To 

this situation, since we know that equation 8-24 is the necessary 

condition for minimizing D(a, t), this means there is no such ti(j > n), 

for which D(a, t) is minimized. In other words, for the given values ti 

and a, the inspection policy is t={tl, t2, 
... , to}. Then as in section 

8.3, C(t) and T(t) should be re-written as 

nrtt 
C(t) _ I{(i-1)ci+c. }fig(u)du + (cý cm)f ig(u)F(ti-u)dul+ E 

i=1` ttJ 
i-1 1-1 

(nci+cb){1-G(tn)}. 

and 

ti 
T(t) _ 

[tif(u)du 
- 

J'(u)ýt1_u)duJ 
+1Jn 

Co 00 Co w Co 
Since 

it 

10(u+h)g(u)f(h)dhdu 
= 

Jug(u)du 
+ 

J{g(u)f0hf(h)dh}du 
Jn 

ro Co 

= 
Jt')du 

+ {1-G(tn)}f S(h)dh, 

n 

where S(h) =1_- F(h), 

we have, T(t) becomes 

[tjt1g(u)au_$t1g(u l rT(t)=E (ti-u)du]+ f 
ug(u)du+{1-G(t)}J0(h)dh. 

ttJn i-1 S-1 

,ý 
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However if tn is sufficiently large, the last term in C(t) and T(t) 

would be small since g(t ) is small and G(t ) tends to 1, so that the 
nn 

last term is expected to be negligible. However, as in section 8.3.1, 

if g(t 
n) 

is not small or G(t 
n) 

is not close to 1 we can not ignore the 

last term in C(t) and T(t) and should use the full formulas. Similarly, 

for the purpose of reducing the computing time of the algorithm, we 

will also discuss the boundary problem of t1 and a in the numerical 

example section. 

8.4.4 Numerical computation procedure: Algorithm 8-4 

From algorithm 8-3 and the last section, it is clear that from equation 

8-18 and 8-24, D(a, t) is a function of a and ti, that is, once a and t1 

are selected, we can obtain t=(t1, t2,... ) by using equation 8-24 

recursively if it exists, and then D(a, t) is minimized. Since we know 

that equation 8-24 is a necessary condition for minimizing equation 

8-18, then according to algorithm 8-3, if t1 and a are found for which 

equation 8-18 is sequentially minimized and then zeroed, t=(tl, t2,... ) 

minimizes CT(t). 

It has already been stated that the complication of equation 8-20 and 

8-21 implies a numerical analysis technique must be used here to solve 

the problem. For convenience, NAG, Hopkins and Philips [1988], library 

of numerical routines available for 386-PC was chosen as the numerical 

analysis tool in which routines D01AJF, CO5ADF and E04JBF were utilized 

to fulfill the purpose of calculation. 

Now the complete computing procedures, algorithm 8-4 as follows: 

1. Set the range of a and t1. 

2. Start from the low limit of t 
i 

3. Call C05ADF (routine to find the root of a function) repeat to find 

t=(t0, t1, t2,... ) 

4. Call COSADF again to find the root of a in D(a, t)=0 when t1 is 

selected. 
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S. Call E04JBF (routine to minimize a function of variables), Here the 

function is CT(t) and the variable is t1. During this call we call 

C05ADF again with different parameters, this call is used to obtain 

the root of a in D((x, t) while ti is passed from the E04JBF and a is 

send back to E04JBF as the function value of CT(t). Noted here 

that, on each iteration, CO5ADF is called repeatedly to find 

t. We now have that (x* and tl for which D(a, t) is minimized and 

equal to zero. 

6. Setting a--(x and t1=t1, call COSADF again to find t*=(ti, t2,... ). 

7. Print out the result: 
the optimal inspection schedule: t=t and 

the expected total cost per unit time: CT(t) =a 

8.4.5 Numerical example 

Assume the initial time distribution is Weibull and the delay time 

distribution is Exponential. The parameters and the other data are as 

used in the previous sections, which, for convenience, are also shown 

in Table 8-4. 

distributions parameters values of cost 

g(u)=7ºß(Au)ß-1exp 
A=0.1722 ci = 15.00 

(-(fu)ß) ß=1.6800 
c= 50.00 

m 

f(h)=pexp(-ph) p=0.6633 c = 200.00 
b 

Table 8-4 Distribution density functions of u and h and their parameters 

The first step is to set the range of a and t1. Since we know that 

D(a, t)=0 means that a=CT(t) and the optimal irregular inspections must 

include the regular cases, then ä simple way to set the range of a is 
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to run a program to obtain the optimal CT(At where Ate denotes the 

optimal regular inspection interval by enumerating. Clearly, a=CT(At*) 

can be the upper limit for a since a* must be less than CT(At). For 

the lower limit of a, a, zero can be selected because a must be always 

greater than zero. Now we try to derive the range of t1. 

From equation 8-23, we know that the necessary condition for t1+1 

existing is 

ft 
i -p(t -u) gýu)e i du 

ýc c 
ti_l 

g(t 
01+ 

ýý ýa/p -p 
i) 

1. 

This is equivalent to 

i -p (t -u) J1g(u)e t 
ci i du c 

cb-cß a/p p g(ti) 
`- 1+ 

cb cm c -a-1p 

C 
fl= 

Cb-Cm-a/p, 

Let i=1, and let It f2 =p1 

-p (t -u) 
o g(u)e i du 

g(ti) , 

'Jý 
Ci 

f3 = 1+c 
-c -a/ bmP 

Then by introducing a and a into f3 and fl, and letting f2=f3, f1=f2, 
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using numerical methods we can obtain the value of t1 which would be 

the upper and lower limits of tl respectively. The result is shown in 

Figure 8-5. 

Before using algorithm 8-4 in our example, it is found by trial and 

error that equation 8-23 is not sensitive to a but very sensitive to 

t1. Since for a given a, equation 8-23 is continuous in terms of t1, by 

trying equation 8-23 with different values of a below a, only t1 >3 is 

seen to give lower CT(t). Therefore in the following calculation, we 

set tl in the range of (3,4) which is also shown in Figure 8-5 below. 

f 

2r 

48 12 16 20 24 

1.5 

maximum range of ti 

f3 

1 

0.5 

f2 

real range of ti 

f1 

oý 
0 123456 

Figure 8-5 Relationship among a, tl, a, and t 

a 

t, 
7 

The numerical example problem was programed in Fortran 77 in 

conjunction with NAG library routines E04JBF, CO5ADF and D01AJF. The 

result shown in Table 8-5 below required only a few minutes of 

computing time. 
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inspection 
sequence 

inspection 
time points 

inspection 
intervals CT(t*) 

1 3.7499 3.7499 
2 5.5488 1.7989 
3 7.0544 1.5056 
4 8.4064 1.3522 
5 9.6607 1.2543 
6 10.8485 1.1878 24.2812 
7 11.9925 1.1440 
8 13.1140 1.1215. 
9 14.2392 1.1252 
10 15.4095 1.1703 
11 16.7070 1.2975 
12 18.3500 1.6430 
13 21.6444 3.2944 

Table 8-S Optimal inspection policy 

As a matter of interest, if we assumed that the inspection interval is 

AT, constant, with the enumeration method under the same pdf. g(u), 

f(h), and values of costs, the optimal result are AT=2.212 and CT(At) = 

26.30. Compared with the optimal result of irregular inspections, the 

difference is about 2 units which shows that irregular inspections do 

give a better mathematical solution, though perhaps not necessarily a 

valid operational solution. The usefulnesses depends upon the valuation 

of the gain versus the additional effort. 

8.5 Discussion and conclusions 

The algorithms derived in this Chapter are both for the perfect 

inspection cases over a component life time and over an infinite time 

horizon. The objective functions are to minimize the cost measures. 

Obviously they can be easily extended to the case of optimizing 

downtime or reliability measures. The excellent, -Fortran Library Routine 

NAG has been adopted as the numerical analysis tool and the computer 

programs coded in Fortran are run and tested on numerical examples. The 

results on these examples are satisfactory and confirm our algorithms. 

However there are a few problems which may need attention and a further 
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study. 

1. Noted from Table 8-2 and 8-5 that the optimal inspection intervals 

are decreasing at the early stage of inspections, then increasing 

again, that is, they are U-shaped, see Figure 8-6. 

inspection intervals 
5r 

4 

3 

2 

1 

data taken from Table 8-2 

Figure 8-6 Inspection intervals 

In general, it has been proved, Barlow et al [1965], that if the 

pdf. of time to failure is a PF2 (PÖlya frequency density of order 

2) density function, then the optimal inspection interval is 

non-increasing. A density function is PF2 if and only if it 

satisfies 

pdf. of x 
s(x)= (x, time to failure). 

p{ failure in (x, x+A)}' 

is increasing in x. 

0 
05 10 15 20 

sequence of inspections 
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Taking the numerical example of algorithm 8-1 in section 8.3 as an 

example here. Let x--ti and A=t1+1-ti, then x+A=t1+1 for i=1,.... 

Since we know that 

pdf. of x= 
J'g(u)f(x-u)du, 

x=t1, i=0, ... 
1 

and 

we have 

t 
ii +Ig(u)F(x-u)du, i1,... p{ failure in (ti , ti+i)} -It 

rti+1g(u)f (x-u)du 

S(ti) = 

Jti 
i=1,... 

f 
ti+ig(u)F(x-u)du Ji 

With the data in Table 8-2, we have values of s(ti) as shown in 

Figure 8-7. 

3s(t 

2.5- 

2- 

1.5- 

1 

0.5 

Figure 8-7 Values of s(ti) 

01 
0 10 15 20 

inspection time tI 
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Clearly from Figure 8-7, we see that s(ti) is increasing from i=1 

to i=12, then decreasing till i=16. We have stated that if s(x) is 

increasing in x, the optimal inspection interval is non-increasing. 

Figure 8-6 confirms this statement when i=1,..., 12. It is very 

interesting to note that from i=12 to 16, s(ti) is decreasing and 

the optimal inspection interval is increasing. Although there is no 

mathematical proof that if s(x) decreases, then the optimal 

inspection interval increases, our example shows this trend. This 

topic could be worth exploring 

2. The algorithms developed here are only for the perfect inspection 

case. Models of imperfect inspection developed in Chapter 6 are 

seen to be more complicated. Since we can not obtain the simple 

recursive relationship among ti_l, ti, and t1+i, we could not 

directly use the algorithms presented in this Chapter. To develop 

an algorithm for imperfect inspection case would be another 

research topic. 

3. In Chapter 6, we also construct a model over finite time horizon 

using renewal theory. However there is no appropriate approach to 

derive an optimal irregular inspection schedule on this model. 

Similar to the last problem, it could be a potential future 

research subject. 

4. Numerical examples presented in this Chapter do show that irregular 

inspections are numerically superior compared to regular 

inspections, but there was not very much difference in the 

example taken. Since the purpose of the example is to show how our 

approach works, and also the model output depends heavily on the 

distributions of u and h and the values of costs, it is dangerous 

to generalize here since other examples may well produce different 

results. 
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APPENDIX A GOODNESS OF FIT TEST 

We first derive the `multinomial' likelihood. The multinomial 

log-likelihood log Lm is given by 

bbb 
log(Lm) _ Lb nbIlog(Pb1 + E` nemlog(Pem) +t nynlog(Pyn), A-1 

1=1 m=1 n=1 

where 
bbb 

J, bPb1 + }-'P. 
m 

+ J'Pyn = 1. 
1=1 ro=1 n=1 

Here bb, be and b are the numbers of bins for breakdown, `no event' 
Y 

and positive inspection events respectively, and nbI is the number of 

breakdowns in the lth breakdown bin. The origin of time is a renewal, 

and the size of each bin Al is arbitrary. Probabilities must sum to 

unity, as there must be some outcome, if we include `no event' as an 

outcome. 

This multinomial likelihood is maximized (e. g. by Lagrangian 

multipliers) when probabilities P are set to the values P, where e. g. 

bbb 

P= nbI/( Lbnbl + Eenem +'nyn). A-2 
1=1 m=1 n=1 

The test of fit statistic is S=log(L )-log(L), and by asymptotic 
m 

theory, for large samples 2S is distributed as X2(bb+be+bY-1-f), where 

f is. the number of model parameters fitted to the data. 

To convert the log-likelihood of equation 4-7 in Chapter 4 to a 

log-likelihood where events are grouped into classes or bins 
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corresponding to equation 4-9, we need the probability that an event 

falls into a particular bin. If the bins are narrow, we may approximate 

the probability fa+AP(y)dy by P(x)"A, where x is the observed time of 
a 

the event. This simply puts back discrete versions of the differential 

coefficients that belong to the likelihood, but are customarily 

omitted. Finally, all terms corresponding to events belonging to a 

particular bin 1 must be added, to give for example 

nb1log(Pbl) _E log{ Pb(tI, tI)"Aj}, 

iEA 
i 

where log-likelihood terms for the nbI breakdown events in the lth 

breakdown bin have been added. Note that P is the geometric mean of the 

nb1 probabilities involved, as 

Pbl= (Ti {Pb(ti, ti) -A1} )1/nbi. 

icA 
I 

These factors of A are not required for positive inspections and `no 

event' or e events. 

Aimed with the P probabilities, which are predictions, one simply needs 

to form S as indicated above. 

bbb 

S= Ebnb 
1 

log(Pb 
1 
/Pb 

1) + Ee ne m 
log(Pe 

m 
/Pe 

m)+t 
ny n 

log(Py 
n 
/Py 

n 
). A-3 

1=1 m=1 n=1 

Maclaurin series expansion of the logarithm now shows that 2S can be 

approximated by the usual definition of a chi-squared for large 

samples: 
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b (Pb - Pb )2 b 

2S = N{ ý' 11+ Ee 
1=1 Pb m=1 1 

(Pe - Pe )2 b (Py - Py )2 
m m+ fn n} 

Pe n=1 Py 
mn 

A-4 

where N is the total number of renewals, 

bbb 
H=ýb nbI + Ee IIem + nyn. 

1=1 m=1 n=1 

Thus the likelihood-based test of fit requires the summation of the 

chi-squareds for three histograms: breakdowns, positive events, and 'no 

event's. To obtain a useful graphical picture of the fit, the 

histograms and predictions can be exhibited. 

Strictly speaking, one can not partition degrees of freedom between the 

three histograms comprising the total chi-squared, as the multinomial 

prediction loses one degree of freedom in total since all probabilities 

must sum to unity, and the model has f degrees of freedom. However, if 

one can neglect this effect, or subtract the (f+l)/3 degrees of freedom 

from each histogram. 

This approach has the drawback that when there are few events, bins 

must be wide, and it is then really necessary to integrate the 

probability over the whole bin. This however causes a further problem, 

in that as soon as one looks at probabilities for e. g. breakdown at 

times later than actually observed, it is unclear what value of the 

time from renewal t should be used. The occurrence of the actual 

observed breakdown itself imposes a renewal, which one would have to 

ignore, but the sequence of future inspection times if the component 

had not failed is unknown. In the absence of completely regular 

inspections, which would have enabled us to evaluate the integral, we 

preferred to side-step that problem. 
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APPENDIX B KEY PROBABILITY MEASURES IN THE LIKELIHOOD FUNCTION 

Let Pb(tt) is the pdf. of a sequence of negative inspections, of 

which the last one occurs at time tn from last renewal, and a breakdown 

(b-event) at time t from last renewal. 

Pb(tn, t) = 
Jflg(w){i_Q(t_w)}f(t_w)dw 

+ 
ft 

g(w)f(t-w)dw. B-1 
ot 

n 

The first term is the pdf of a breakdown at t, from a defect that 

arises at w<t. It arises at time w with pdf g(w), has a probability 
n 

1-Q(t 
n 

-w) of being unobserved in inspections to time tn, and causes a 

failure at time t, a time t-w after arising, with pdf f(t-w). The 

contribution of such defects to the breakdown pdf. is then the integral 

over all possible times w<t 
n 

The second term is the pdf. of breakdown at time t from defects arising 

after time t. Here we do not care whether the defect is visible or 
n 

not, and the contribution to the pdf. of breakdown is the pdf. g(w) of 

a defect arising at w, multiplied by the pdf. of breakdown t-w later, 

and integrated over all w>tn and less than t. 

Let Pe (t 
n 

t) is the probability of a (possible null) sequence of 

negative inspections of which the last one is at time t, and no 
n 

breakdown before observation ceases at time t from last renewal. This 

is referred to as an e-event as before. 

rt t 
Pe(tn, t)=1-G(t)+J ng(w){1-Q(tn-w)}{1-F(t-w)}dw+fg(w){1-F(t-w)}dw. B-2 

ot 
n 

The first term, 1-G(t), is the probability that no defect arises before 

time t, the second contribution to the probability of no failure is 
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the probability that a defect does arise at time w<t, but is 
n 

unobserved by time t and does not lead to a failure before time t. The 
n 

third contribution is the probability that a defect arises after time 

t, and does not lead to failure before time t. As before, one must 
n 

integrate over all possible (unknown) times w at which the fault might 

have arisen. 

Let Py (t 
n 

t) is the probability of a sequence of negative inspections 

of which the last occurs at time t, followed by a positive inspection 
n 

at time t from last renewal. This is called a y-event (y for yes). 

PY (t 
n , 

t)=f0tng(w){Q(t-w)-Q(t 
nJ -w)}{1-F(t-w)}dw+fttg(w)Q(t-w){1-F(t-w)}dw. 

n 

B-3 

The first term is the contribution to the probability of a positive 
inspection at t from faults arising at times w<tn, the second term 

the contribution from faults arising at times w>t and less than the 
n 

time of breakdown t. 

A fault arising at time w with pdf. g(w) has probability Q(t-w)-Q(t 
n 

-w) 

of becoming visible after the last inspection at time tn, and before 

the final positive inspection at time t. The probability that no 

failure occurs before time t is 1-F(t-w), and the product of these 

three terms is the probability of a positive inspection from defects 

arising at time w. This must be integrated over all w<tn. Faults 

arising after the last negative inspection at t contribute similarly 
n 

to the probability of a positive inspection, but. must now simply not be 

visible or cause a breakdown by time t. 
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APPENDIX C FORMULATION OF THE LIKELIHOOD FUNCTION FOR IMPERFECT 

INSPECTION 

For the events rninz,..., nmx at times t0't1't2,..., tID, t, see Figure 

C-1, 

rnnnnx event 
11 12 ,., li ... IM I3 

tttttt time 
012im 

Figure C-1 Inspection process 

we have, in theory, 2m terms contribute to the likelihood of this 

series of events. However, from the property of conditional probability 

Pxir(tit), as defined in section 4.3, the likelihood function can be 

simplified considerable to only m+l terms needed as shown in equation 

4-6. We now use induction to prove the formulation, equation 4-6. 

Since when m=2, we have derived the formula for a likelihood of event x 

at time t after two negative inspections at time t1 and t2 from the 

last renewal in section 4.3, namely 

L= IPx(t2, t) + ß(1-ß)Px(tI, t) + (1-13)2Px(O, t). C-1 

Suppose for now that when m . 5n , the likelihood of event x at time t 

after n negative inspections, from equation 4-6, is given by 

L=ßPx(t , t)+ß(1-ß)Px(t 
n-1, 

t)+... +ß(1-ß)n-1Px(t 1 , t)+(1-ß)nPx(O, t). C-2 
n 
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We will prove that when m=n+1, the likelihood of event x at time t 

after n+1 negative inspections will be 

L=ßPx(tn+1, t)+13 (1-ß)Px(tn, t)+... +0(1-ß)nPx(tI, t)+(1-13)n+1Px(O, t). C-3 

For convenience, assume that one extra negative inspection is performed 

at time to+1 before t. From equation C-2, the likelihood of a negative 
inspection at to+l after n negative inspection is 

L= ßPn(t 
n ,t n+1 

)+0(1-13)Pn(t 
n-1, 

t 
n+l 

)+... +ß(1-ß)n-1Pn(t 
1 ,t n+i 

) 

+(1-ß)nPn(O, tn+l )' C-4 

Since event n at to+1 may be either a real negative inspection or a 

false negative inspection, then the likelihood of event x at time t (t 

>t 
n+1 

) after n+1 negative inspections with event n at t 
n+1 

being a 

real negative inspection, denoted by L, is given by 
r 

Lr= (tPn(tn'tn+l)+ß(1-ß)Pn(tn-1'tn+l)+... +ß(1-ß)n-1Pn(t1, tn+1) 

+(1-ß)nPn(0, tn+l))fPxir(tn+1't). C-5 

For definition of Pxir(tn+i, t), see section 4.3. 

From the definition of Pn(tI'tn+i ), for any 1=0 to n, we have 

Pn(tI, tn+l)-Pxlr(tn+l't) = Px(tn+l't). C-6 
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Note also that the sum of all coefficients in equation C-4 Is 

unity. Then equation C-5 becomes 

Lr = ßPx(tn+1't). C-7 

If the inspection at to+1 is a false negative one, the state at time 

to+1 is not known. But the possibility that event n at time ti(i < n+1) 

could be a real negative inspection exists. Since if event n at ti is a 

real negative inspection, we can confirm that there is no defect before 

t. Then if let L denote the likelihood of event n at time t after i-1 

negative inspections, we have 

Li = lPn(t1-1, ti)+ß(1-ß)Pn(t1-2't1)+... +ß(1-ß)1-2Pn(t1, tI) 

+C1-ß)i-1Pn(O, ti). C-8 

Let L denote the likelihood function of event x at time t after n+l 
f 

negative inspections with event n at to+1 being a false negative 

inspection. The task now is to formulate L£. For convenience, we 

consider the situation in a backward order. Start first from i=n. If 

the inspection at t is a real one, we have the contribution to the 
n 

likelihood L of f 

L ß(1-ß)Pxlr(t 
, 

t), 
nn 

where (1-13) means the inspection at to+lis a false one. 

If the inspection at tn is a false one, the inspection at t 
n-i 

may be a 
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real one. If so, the contribution to L., when inspections at to+l and to 

are false ones and the inspection at t 
n-i 

is a real one, is 

Ln-113(1-ß)2Pxlr(tn-1, t). 

In a similar way, we have the contribution to the likelihood Lf when 

inspections at to+1'tn'''''t1+l are false ones and the inspection at 

ti(i=1,2,..., n) is a real one, is 

Li 3(1_13)n+l-iPxlr(ti, t). 

Summing all i from i=1 to n, we have 

n 

L=E Li3(1-(3)n+1-i Pxlr(ti, t) + (1-13)n+'Px(O, t), C-9 
1=1 

where the last term denotes the contribution to the likelihood L when 

all previous n+1 inspections are false ones. 

From equation C-6 and the property that the sum of all coefficients in 

equation C-8 is unity, we have 

n 
E 13(1-13)n+1-i Px(ti, t) + (1-ß)n+, Px(O, t). C-10 

1=1 

Sum equation C-7 and C-10 we obtain C-3. Thus, assuming C-2 is true for 

all m n, we find it is true for m n+1, and since C-2 is true for 

m=2, it is true for all m. This completes our formulation. 
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