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ABSTRACT 

This thesis describes research into remotely sensed weather radar information systems and 

specifically addresses three problems; 1) Weather radar data processing; 2) Real-time flood 

forecasting models and 3) Computer system design for the realisation of the real-time flood 

forecasting system using radar data. 

Quantitative rainfall measurements utilising weather radar is of high temporal and spatial 
resolution when compared with traditional rainfall measurements. Analysis was carried out to 

assess the type of radar data products required for operational use in flood forecasting system. This 
includes issues of data processing such as quantisation, temporal sampling and spatial sampling. 
The influence of the data process on hydrological applications is also addressed. 

Theoretical analysis was carried out to probe the characteristics of Transfer Function Models and 
robust flood forecasting modelling procedure is proposed. The proposed model is always stable 
and physical realisable and is described as PRTF (Physical Realisable Transfer Function model). 
Algorithms and software for the identification of PRTF are presented. It was found that such a 
model is easy to identify and more importantly it can be updated robustly in real time. By 

changing the impulse response of the PRTF, it has been found that significant improvements can 
be observed in river flow simulation. A RST (Rainfall S eparation Tank) model was developed 

and incorporated into the PRTF model. The adaptivity of the PRTF also has the potential to make 

use of high spatial resolution radar rainfall data and could be further incorporated into an Expert 
System suitable for real-time application. 

Finally, the thesis includes the development of the WRIP system (Weather Radar Information 

Processor). Such a system can process weather radar information and use it for the real-time flood 
forecasting. The system design consists of database design, user interface design and program 
design. An object-oriented computing concept is used in the program design. The final system is 

currently in test operation within the N. R. A Wessex Region, including the man machine interface 

(MMI) incorporating a portable computer based data acquisition and display system known by the 

acronym ̀ STORM' (System To Obtain Radar Rainfall Measurements). 
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CHAPTER 1 INTRODUCTION I 

CHAPTER 1 

INTRODUCTION 

1.1 Foreword 

Flooding is of universal concern and interest. It is one of the most dramatic 

interactions between man and his environment, emphasising both the sheer force of 

natural events and man's inadequate efforts to control them. The ability to provide 

sufficient advance warning of flood occurrence is important in reducing the 

potentially disastrous effects of flooding. It may, for example, save lives by giving 
floodplain residents time to remove themselves and their possessions to safety, and 
it may save property by allowing time to effect various structural and other 

adjustments. It is particularly appropriate to note that the 1990's have been 

designated as international decade for the mitigation of natural hazards of which 
flooding is one of the most destructive events identified. 

During the past few decades the enormous increase in the world-wide availability of 

computers has influenced virtually all flood forecasting organisations and has made 

obsolete the classical approach to traditional flood forecasting. Modern high-speed, 

large-capacity computers make it feasible to model the entire flood-producing 

process in one operation. This approach has been encouraged not only by 

developments in computer technology and the complexity of flood calculations, but 

also by advances in our hydrological understanding of the runoff process. 
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The real-time flood forecasting system described in this thesis is based on weather 

radar rainfall data. The weather radar information processing and rainfall runoff 

modelling comprise the main part of the thesis. In this chapter, a brief introduction 

is given to illustrate the general research objectives, data access, rainfall runoff 

modelling developments and the overall structure of the thesis. 

1.2 Objective of Real-Time Flood Forecasting 

The three watchwords in flood forecasting are accuracy, reliability and timeliness. 

Accuracy is clearly important for the forecast. If the forecast of peak river level is 

substantially in error then a false alarm may be raised or, worse, the system may 
fail to warn. In contrast to flood estimation for engineering design- where a poor 

answer is better than none- in flood warning it may be preferable not to issue 

forecasts than to do so using an inaccurate model. 

Reliability of a flood forecasting system is primarily concerned with 
instrumentation, telemetry and procedural matters. However, no matter how well 
designed these aspects are, it is inevitable that the forecasting model will have to go 

through periods of outstation malfunction. It is therefore desirable that the 

forecasting method should reliably cope with imperfect or missing data: by 

validation checks, appropriate default values, and models designed for their 

specifically realtime role. 

Accuracy and reliability are fairly obvious requirements; accuracy suggests we need 

a "good" model, reliability hints that simplicity and robustness may be important. 

But the requirement that gives flood forecasting a flavour of its own is timeliness. 

If warnings are issued consistently late then the system is likely to be of little value, 
irrespective of the accuracy of its modelling. A balance has to be struck between 
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issuing a timely but potentially inaccurate forecast and the more cautious approach 

of compiling a good picture of the event before issuing an accurate but useless 
forecast (because it leaves insufficient time for dissemination of the warning and 

effective action by recipients). 

1.3 Data Accessing 

The variables primarily of interest in flood warning are river flow and rainfall. 
Advanced methods of flood forecasting may additionally require climate data, soil, 

moisture measurements and observations of snowpack characteristics. Many 
factors influence the range of variables monitored, not least modelling philosophy 

and outstation cost. In this section, weather radar rainfall data is described. 

The use of radar in the estimation of precipitation emanated from the Second World 
War. On February 1941, a shower was tracked to a distance of 7 miles by a 10-cm 

wavelength radar located on the English coast. From that date on, radar 
meteorology commenced its development. Radar can produce detailed precipitation 
information for large areas from a single location in real time. For operational 
forecasting of river flow and flash floods, dense telemetered raingauge 

observations are desirable, but their installation has not been practical due to the 

cost of equipment and operation. Thus there has been considerable interest in 

utilising weather radar, since it provides spatially and temporally continuous 

measurements that are immediately available at one location. Although radar has 

been used experimentally for 40 years to measure rainfall, operational 
implementation has not been complete. Today we find that data are still not fully 

utilised quantitatively in hydrology and both confusion and misunderstanding exist 

about the inherent ability of radar to measure rainfall, about factors that contribute 

to errors, and about importance of careful calibration and signal processing. 
Whilst further researches are still needed to improve the performance of weather 

radar. It is now generally accepted that it provides the best means of remotely 
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measuring precipitation in both a qualitative and a quantitative manner. 

1.3.1 Basic Theory of Radar 

First the basic theory should be briefly described ( for further introduction see 

Battan 1973 and Collier 1989). The average power received from a volume of rain- 
filled atmosphere at range r can be expressed as: 

CKZ ` 
P- 

r 
r2 (1,1) 

where C is a constant associated with the radar system, i. e., wavelength, 

transmitted power, antenna gain, beam width and pulse length; K is the fractional 

reduction in the signal strength by attenuation along the path of the propagation; and 

Z (equal to E D16 with D, ' s being diameters of individual raindrops in a unit 

volume of air) is referred to as the reflectivity factor. It is defined as: 

Z=A. RB (1,2) 

where A and B are constants; R is the rate of rainfall, in mm/hr. 

In reality, the Z-R relation varies significantly within storms, and also from storm 

to storm. Considerable work has been carried out to investigate the relationship 
between rainfall rate and radar reflectivity. Strictly speaking, if the rain drop size 

distribution were exponential and known, and vertical air motions were small 

relative to rain drop terminal velocities, there would be no fundamental limitation to 

the accuracy of the radar rainfall estimates. However, the drop size distribution is 

rarely known and it varies in time and space. In addition, vertical air motions are 

frequently of the same magnitude as the terminal velocities of rain drops (particular 
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in thunderstorms). More important is the presence of bright band when radar beam 

intersects the melting layer. The radar reflectivity will be greatly enhanced and the 

Z-R relationship will be quite different with the radar beam just intersecting rain 

drops. Thus the Z-R relationship is not unique and we are forced to rely on average 

empirical relationships. Battan (1973) presents a comprehensive list of Z-R 

relationships derived by a number of investigators. A widely used expression, 
based on the empirical study of Marshall and Palmer (1948), is 

Z-200 R1"6 (1,3) 

In the U. K., radar rainfall data are derived by the relationship Z=200*RI. 6 and 

then modified by gauge calibrated domain maps to change A in Eq. (1,2) while 

retaining a constant value for B. There are some problems in this procedure 

especially when bright band is present. 

1.3.2 Error Sources in Radar Estimates of Precipitation 

Radar rainfall quantification is a complex matter which involves many parameters. 
It depends on a number of physical factors, the effects of which may vary 

significantly from one storm to another and even change within the same storm 
duration. Both the scatter and attenuation of microwaves by precipitation targets 

can be bases for estimation of precipitation. Currently, reflectivity data, either alone 

or in combination with raingauges, are considered most practical for operational 

measurement of rainfall over large areas. Note that the spatial detail of the rainfall 
field could not have been defined by a raingauge network. And also unfortunately , 
radar does not measure rainfall rate directly as do rain gauges, but rather indirectly 

relating it to the back scattered energy from precipitation particles in an elevated 

volume of atmosphere. 
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Some factors affecting radar measurement of surface rainfall have been identified: 

(1) The accuracy of measurement of the equivalent radar reflectivity factor; 

This error source arises primarily from hardware calibration. 

(2) Variations in the relationship between back scattered energy and rainfall 

rate. The relations can be divided into several groups according to rain type and 

geographic location. It is recognised that variation in the Z-R relationship may 

occur within storms, as well as from storm to storm. A large error may occur in 

the presence of bright band when the radar beam intersects the region where ice 

crystals melt to form rain. 

(3) Effects of variation in precipitation with height. Because of curvature of the 

earth and the elevation of radar beam being above zero degree, the lowest height at 

which a radar can observe the atmosphere increases greatly with range. Therefore, 

if either the nature or intensity of the precipitation varies with height, radar 

indications may not be representative of surface rainfall, especially at large ranges. 

In fact, sometimes major changes occur to the precipitation before it reaches the 

ground. 

(4) Hail and vertical air motions in convective cells. The presence of hailstones 

in intense convective storms causes a sharp increase in reflectivity with relatively 

slight effect on the actual rainfall rate. The presence of an updraft (downdraft) 

would decrease (increase) the fall speed of the rain drops relative to a stationary 

horizontal surface so that the value of Z for a given R would be less (greater) than 

for the same rainfall rate in still air, 

(5) Anomalous propagation of the beam. A phenomenon which occurs when a 

shallow layer of cool moist air at the surface causes downward bending of 

microwave rays and produces echoes from ground targets that are normally below 
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the radar horizon. 

(6) Discrepancies which result from sampling. Even if there are no actual errors 

in either gauge or radar measurements, there may be significant discrepancies 

between indicated amounts of rainfall at any given gauge site because of differences 

in sampling modes. 

1.3.3 Radar Data Process 

The rainfall process is a continuously varying signal ( or may be pseudo 

continuous) which is converted from analogue to digital form. The conversion of 

such an analogue signal to a numerical form involves a double approximation. 

First, in the time domain, the signal s(t) is replaced by its values at integral time 

increments T, and is thus converted to s(nT). This process is called sampling. 

Secondly, in terms of signal strength or amplitude, each value of s(nT) is 

approximated by a whole multiple of an elementary quantity. This process is called 

quantisation. The approximate value thus obtained is then associated with a 

number. This process is called coding, a term often used to describe the whole 

process by which the value of s(nT) is transformed to the number that represents it. 

This can be thought of as having digitised the signal by 'level slicing' and that the 

'allocation' of a numerical valve to represent each discrete 'slice' consists of the 

quantisation. 

1.3.3.1 Sampling 

Considering a continuously varying signal f(t) that is to be converted to digital 

form. We do this simply by first sampling f(t) periodically at a rate of fc samples 

per unit time. The question that immediately arises is: What should the sampling 

rate be? Are there any limits to the rate at which we sample? One might intuitively 

feel that the process of sampling has irretrievably distorted the original signal f(t). 
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Have we lost valuable information in the sampling process? 

The answer to this last question, and from this, to the other questions asked, is that 

under a rather simple assumption (closely approximated in practice), the sampled 

signal fs(t) contains within it all information about f(t). Further, f(t) can be 

uniquely extracted from fs(t)! This rather important and not at all obvious result can 

be demonstrated through the use of Fourier analysis where I X(j co)I represents the 

frequency spectrum of the continuous signal to be sampled, w is the frequency and 

the cub, is the sampling frequency. 

I X(iw) l (a) 

ws 0) 
2 XJ(w) (ý) I 

-I-- 

_Ts 

I- 
ws 

IX j(w) 7 
(c) 

-1- 
4ýs 

_2 

1- 

COs 
2 

-º G) 

Figure 1.1 (a) Frequency Spectrum of the Continuous Signal; (b) Frequency 

Spectra of the Sampled Signal; (c) Aliasing of Frequency Spectra 

Assuming the rainfall rate signal f(t) is band-limited to B in the frequency domain 
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(frequency theory will be introduced in the next chapter), it can be shown from 

sampling theory that sampling the signal does not destroy any information content, 

provided that the sampling rate f$ Z 2B. The minimum sampling rate of 2B times 

per unit time is called the Nyquist sampling rate and the 1/2B the Nyquist sampling 

interval. The lower, Nyquist , limit on the sampling rate in the case of periodic 

sampling is highly significant. If we sample at too low a rate, the signal may 

change radically between sampling times. The phenomenon of overlapping spectra 
due to too low a sampling rate, and the distortion that results, is termed aliasing. 
We thus lose information and eventually produce a distorted output. 

In the hydrological process, the flood forecasting model sampling rate will have a 
direct relationship with the catchment response characteristics. It should be kept in 

mind that the radar rainfall data measurement sampling rate is quite different from 

the model sampling rate. Too short a model sampling rate will cause strong data 

collinearity and large errors in model identification. It is never too short for radar 
data measurement sampling providing it is technical possible and without other 

cost. It is always possible to use prefiltering techniques to remove the obsolete 
information and obtain a much improved data set for subsequent hydrological 

usage. 

1.3.3.2 Quantisation 

Quantisation is the approximation of each signal value s(t) by a whole multiple of 

an elementary quantity q which is called the quantising step. If q is constant for all 

signal amplitudes, the Quantisation is said to be uniform, otherwise it is called 

nonuniform. The resultant signals are said to be quantised. Unlike the sampling 

process (providing the Nyquist frequency is above the maximum process 
frequency) this results in an irretrievable loss of information since it is impossible 

to reconstitute the original analogue signal from its quantised version. For practical 

purposes, there is actually no need to retain all possible signal amplitudes and the 
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hydrological process may not be sensitive to the noise introduced by an appropriate 

quantisation procedure. 

nJ 
s (t) .ý Quantization 

Process 
sq(t) 

(a) The Quantisation Operation 

Ad 
...... 17 .................... 

qT 1e (t) 
(b) Quantisation error 

Figure 1.2 Quantisation Process 

The effect of this approximation is to superimpose on the original signal an error 

signal e(t) called the quantising distortion or, more commonly, the quantising noise. 
Thus: 

s(t) = Sq(t) + e(t) (1,4) 

Detailed discussion will be carried out in the following chapter about the 
quantisation properties and its influence on the hydrological process. 
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1.2.3.3 Coding 

The signal which is sampled and quantised in amplitude is represented by a set of 

numbers which are usually in binary form. If each number has N bits, the 

maximum number of quantised amplitudes that it is possible to represent is 2N. 

This method of representation is called binary coding. 

Two coding schemes are available: Fixed-length code and Variable-length code 
(Grant 1989). 

Fixed-length code (also called the block encoding scheme) is to assign a unique set 

of R binary digits to each symbol (or level). The number of binary digits per 

symbol (or level) required for unique encoding when L (the number of symbols or 
levels to be represented) is a power of 2 is 

R= 1092 L 

and, when L is not a power of 2, it is 

(1,5) 

R= [log2 L] +1 (1,6) 

The notation [] denotes the largest integer contained in it. 

Variable-length code is that when the source levels are not equally probable, it is 

more efficient to use variable-length code words. The levels that occur more 

frequently are assigned short code bits and the levels that occur infrequently are 

assigned long bits. The probabilities of occurrence of the different levels are 

utilised in the selection of the code levels. This type of encoding is called entropy 

coding (Grant 1989). 
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For simplification, the radar data are encoded into block code at the radar site. That 

means a fixed number of bits are utilised to represent each radar rainfall intensity 

level. 

A typical identification table for block coding would appear as indicated in 

Table 1.1. 

Table 1.1 Typical Identification Table for Block Encoding 

Binary Code 

7 111 
6 110 
5 101 
4 100 
3 011 
2 010 
1 001 
0 000 

As an example, radar data might be restricted to the 16 values, 1,2,4,8,16,.... If 

one value is 1.9, the quantised output will be 2, the nearest of the allowable values. 
Each of the 16 values can be represented by a set of four binary symbols. The final 

signal output would then be sequences of four-digit binary numbers. Transmission 

errors are less likely with binary symbols than with the original 16-level quantised 

signal. A compromise will be made between the cost and complexity of smaller 

quanta and an increased number of levels on the one hand vs. reduced errors. At 

present, two quantised radar products are available from the Meteorological Office 

which form the 3-bit and 8-bit data stream. 
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1.3 The Rainfall Runoff Model 

The rainfall runoff process is a complicated natural phenomena. For practical 

purposes the rainfall-runoff problem is often considered from the 

phenomenological point of view, mainly on account of the complexity of the 

various physical phenomena involved and also because of scarcity of the data that 

would be required for physical simulation. This means that the internal details of 

the physical mechanism are not examined, but that the catchment is treated as a 
lumped essentially ̀black box' system converting input into output. The main input 

into the system is rainfall and main output is streamflow. One of the better known 

methods involving the phenomenological approach is the unit hydrograph, 

introduced by Sherman [1932] . Later, the TF model (Transfer Function model) 

was adopted (e. g see typically Box and Jenkins (1970)) to simulate the rainfall 

runoff process. The transfer function model is efficiently parametrised and 

naturally suited to real-time use. Researches have been carried out at the 

University of Birmingham ( and lately, following a transfer of period, within the 

Water Resources Research Group at the University of Salford) , Institute of 

Hydrology and other Institutions and have indicate that the TF model is a suitable 

model for exploitation in real time forecasting systems. 

The amount of water stored in a hydrologic system, S may be related to the rates 

of inflow 1 and outflow Q by the integral equation of continuity (1,7). 

dS 
dt 

=1 tl 
(1,7) 

Imagine that the water is stored in a hydrologic system, such as a reservoir in 

Figure 1.3, in which the amount of storage rises and falls with time in response to 

I and Q and their rates of change with respect to time: dl/dt, d2l/dt2,..., dQ/dt, 
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d2Qfdt2,... Thus, the amount of storage at any time can be expressed by a storage 

function as: 

dIý d2Iý... Q, dQ, d2Q 

dt dt dt dt 2 
(1,8) 

The function f is determined by the nature of the hydrologic system being 

examined. For example the storage can be described as S=kQ, where k is a 

constant. 

I (t) 

dS 
dt =IW- Q(c) 

Figure 1.3 Continuity of water stored in a hydrological system 

The continuity equation (1,7) and the storage function equation (1,8) must be 

solved simultaneously so that the output Q can be calculated given the input 1, 

where I and Q are both functions of time. 

For the storage function to describe a linear system, it must be expressed as a linear 

equation with constant coefficients 
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S=a1Q+a2ý + a3 
dt d? 

m-1 

+b1I+b2ý +b3 
i 

+. +bmd m-1 
cl? dt (1,9) 

in which al, a2, an, bl, b2,.. bm are constants and derivatives of higher order than 

those shown are neglected. Constant coefficients also make the system time- 

invariant so that the way the system processes input into output does not change 

with time. 

Differentiating (1,9), substitute the result for dS/dt in (1,7), and rearranging yields 

dnQ dQ dZQ dQ 
- an 

d? 
+an 

dt°-1 
+... + a2 

dt2 
+ a1 ý_ 

2 m-1 dm 
I- b1 

ý" 
b2 

di- 
. """ bm-1 

d 

m-1 - bm 
m cl? dt dt 

which may be rewritten in the more compact form 

N(D) Q= M(D) I 

where D= d/dt and N(D) and M(D) are the differential operators 

dQ 
.. 

d2Q 
.... 

dn. l Q 

(1,10) 

(1,11) 

N N) = 
d° d°-1 d2 d 

ao 
dt° 

+ao-1 
dtn-1 

+... + ai 
dt2 

+ a1 dt +1 
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d°1 diD-1 d 
M(D)=-b 

mm- 
bm-1 

m-1 . -b1 dt +1 
dt dt 

Solving (1,11) for Q yields 

Q (t) =N 
Dý 

I(t) 
(1,12) 

The function M(D)/N(D) is called the transfer function of the system; It describes 

the response of the output to a given input sequence. Equation (1,12) was 

presented by Chow and Kulandaiswarmy (1971) as a general hydrologic system 

model. 

From the above we can view the hydrological process as a system. According to 

system theory it is known that if the input time series is x(t) and the output time 

series is y(t), the system may be described by a system function h(t). 

x(t) 
Input System 
Rain `I Flow 

Figure 1.4 A Single-Variabled Dynamic System 

Generally speaking, any system is composed of three elements: 
1. Input; 

2. Output; 

3. Translation Operator linking the two. 

y(t) 

I Output 
n nwv 

The rainfall runoff process is a continuous system where the input and output are 
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continuous variables. In practice the data are transformed into discrete data by 

sampling from the continuous signals and are called a sampled-data system (a class 

of discrete variable). If we define two sequences of discrete variables (Ut) and 
(Yt) and a translation operator S, then a system can be characterised by the 

transformation equation 

Yt = S(Ut, t) Ut (1,13) 

The transformation operator S is often termed the Transfer Function of the system 

which has the same meaning as in Equation (1,12). It is that operator which 
transfers the single variable sequence (Ut) into the single sequence (Yt). The 

transfer function thus determines the system output (Yt) at any point in time t on 

the sampling interval. The transfer function that links one input and one output is 

usually referred to as a univariate system transfer function model. It can also be 

described as a lumped parameter system as the system is defined at one given point 

or aggregated over an area of space. A transfer function which describes a spatial 

system must depict the transformation operations of a variable sequence or set of 

sequences that are distributed in space and are thus termed a distributed parameter 

or space-time system. 

Two Particular properties of transfer functions deserve special attention: Linearity 

and Stationarity. 

(1) Linearity: The transfer function S of a process is said to be linear if S remains 

constant for all magnitudes of input, that is 

Yt =S Ut (1,13) 

The system is said to be nonlinear if the transfer function is a function of the 

magnitude of the input. That is 
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Yt=S(Ut) Ut (1,14) 

(2) Stationarity: If the transformation S is constant in time, the system is said to be 

stationary and the effect of any input Ut will be the same at any time. The transfer 

function is nonstationary if it varies as a function of time, that is 

Yt = S(t) Ut (1,15) 

The rainfall runoff process is a class of nonlinear and nonstationary system. For 

small storms most of the rainfall on a drainage basin is absorbed by the soil and 

vegetation and it takes a long time for the water to migrate to the outlet of the basin, 

indeed a large proportion is lost through evaporation and evapotranspiration. For 

large storms, in contrast, the soil will soon become saturated as the rate of rainfall 

exceeds the rate of infiltration, and much of the precipitation will flow overground 

or through the upper levels of the soil. Thus the runoff from large storms reaches 

the main drainage channel faster than the runoff from smaller storms, which are 

characterised by a large proportion of flow through intermediate levels of the soil 

and as groundwater. So the parameters governing the transfer function will thus 

differ for various magnitudes of input and different time steps. 

In practical work, after some restrictions are put upon the magnitude of the input 

sequence and the time period, a linear and stationary model can often be utilised to 

describe the system since such a model is easy to set up and usually robust. The 

TF model has been widely utilised by the research group at Salford and it has 

proven a very effective model for the flood forecasting process. 

1) Rainfall Runoff Simulation 

The rainfall runoff process can be simulated by the following formula 
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Yt = alYt-1 + a2Yt-2 +... +apyt-p + bout + blut-1 + b2ut-2 +... 

bqut. q (1,16) 

Where 

ai , bi 

Yt 
ut 

Model parameters; 

River flow at time t; 

= Rainfall rate at time t. 

The system gain is defined as 

SSG = (b0 + bl + b2 + ... + bq) / (1- a1 - a2 - ... - ap) (1,17) 

Which represents the percentage runoff of the process. 

The simulation model is quite useful when we examine the model performance. In 

the forecasting processes, the feedback from the observed river flow can easily be 

incorporated in the model. 

2) Runoff Forecasting 

During flood forecasting, since the system input is used to forecast the system 

output, forecasts can be achieved only if the input leads the output in response to 

changes by a period equal to or greater than the forecasting lead time required. If 

the input is known ahead in time, then leading indicator forecasts are easy to 
develop. But if the input is not known ahead in time, a system input must be 

forecast before forecasting the system output. 
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Rainfall Data Input Model River Flow Data Output 

Simulation Model 

Past Observed Flow 

Rainfall Data Input 
-: I 

Past Observed Flow 
Model 

Forecast Model 

Predicted River Flow Data low- Output 

Figure 1.5 TF Model Simulation and Forecasting of Rainfall Runoff Process 

If the forecast leading time is 1, then the Transfer Function Forecasting model can 
be written as 

Where 

Yt+1 

Ut+1 

yi & Ui 

Predicted flow at leading time 1; 

Predicted Rainfall rate at leading time 1; 

Measured flow and rainfall rate. 

The use of a future rainfall scenario is important for single and multi-step ahead 
forecasting. There are several non-exclusive options which can be chosen: 

a) No more rainfall; 
b) Data generated by a storm forecasting model; 

c) Sequence chosen by the duty hydrologist; 

d) Frontiers data (Collier, 1989). 

Yt+1= alyt + a2yt. 1 +... +apyt_p + boUt+l + blut + b2ut. 1 
+... bqut_q (1,18) 
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In reality, there usually exists a time delay between the rainfall and the generated 

flow, so the term Ut+1 can usually be neglected in practice. 

The TF model in Eq (1,18) can also be expressed as 

H(co)=Y h eiwk 

k 
ý'k 

(1,19) 

The weight function, hk provides a description of the system response in the time 

domain. The discrete function (h k} is called the impulse response function (some 

people prefer to call it the unit sample response function). An alternative way of 
describing a linear system is by means of a function, called the frequency response 

function (Chatfield, 1984), which is the Fourier transform of the impulse response 

function. It is defined by Equation (1,19). 

The frequency response and impulse response functions are equivalent ways of 

describing a linear system. For some purposes H(w) is much more useful than hk. 

1.4 Thesis Structure 

This thesis is divided into 5 parts. The introductory paragraphs have outlined the 

need for accurate real-time flood forecasting. Weather radar is the main provider of 

real-time rainfall data and the rainfall runoff modelling process is principally 

addressed by a transfer function approach. 

Part II consists of two chapters which describe the radar data process in some 
detail. Sampling ( both temporal and spatial) and quantisation are two main 

characteristics of radar data utilisation discussed. The conflict between accuracy 

and cost is addressed by detailed analysis of the various aspects of the digital 
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processing problem. 

Part III concentrates upon the rainfall runoff process. An analysis is carried out to 

illustrate the principal characteristics of the TF model and a alternative structure is 

introduced which is easy to identify and has the ability to adapt dynamically to the 

catchment response. A distributed kinematic wave model is used to simulate the 

relationship between storm type and catchment response. Finally a new model 

which incorporates a PRTF (Physical Realisable Transfer Function ) and RST 

(Rainfall Separation Tank) is developed. 

Part IV presents the development of the WRIP system (Weather Radar Information 

Processor). The system structure, database design, user interface design and 

program design are addressed. Some specific problems related to NRA Wessex 

region are also described. 

The final part presents conclusions which summarise the results from this thesis 

and suggests further work to be carried out as consequence. 



PART II RADAR DATA PROCESSING 



CHAPTER 2 TEMPORAL AND SPATIAL SAMPLING OF RADAR DATA 23 

CHAPTER 2 

TEMPORAL AND SPATIAL SAMPLING 

OF RADAR DATA 

2.1 Introduction 

The sampling of radar rainfall data is an important issue for data quality. A dense 

sampling rate can provide more information for the user but will cost more to 

process, archive and transmit. This chapter describes some analysis to assess the 

influence of sampling on radar data quality. 

2.2 Sampling Theorem 

The operation of sampling a signal f(x) at a single point x=a is achieved with the 

impulse function 8(x) and defined by the 'shift integral': 

+oo 

ff(x) 
8(x-a) dx=f(a) 

-410 (3,1) 

Here, the function S(x-a) is the sampling impulse. The periodic sampling of a 

waveform is performed mathematically by means of a sampling impulse train 
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ýS(t-kT) 

k=- oo 

so that the sampled waveform fs(t) is given by the relationship 

+» 
fs(t)= f(t)j: S (t-kT) 

k_-ý 

(2,2) 

(2,3) 

According to sampling theory, we must sample at a rate (Nyquist Frequency) which 
is as least twice the highest frequency in the signal. 

fs z 2fm 

Where fs is the sample rate and fm is the maximum frequency component of the 

signal. In this case, perfect reconstruction can be made by using an ideal low pass 

filter. The perfect reconstruction referred to by the sampling theorem is much more 

complicated, since it uses all past and future sample values to compute a single 

point value. One reconstruction formula that can be shown to provide perfect 

reconstruction is defined by the infinite sum of weighted sample values 

f(t)=ýf(kt )sin 
[n(t"kT)/T] 

, rr f t_ IrTI /T 
k= -oo 

"v t. -.. awia 

(2,4) 

The contribution of distant sample values is small, due to the decaying nature of the 
interpolation function. From the practical point of view, good reconstruction can be 

produced from a finite set of nearby sample values despite the fact that the 

mathematical theorem calls for contributions from all past and future samples. 
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2.3 Spectral Analysis 

Spectral analysis can be a useful exploratory diagnostic tool in the analysis of time 

series. it is essentially a modification of Fourier analysis so as to make it suitable 
for stochastic rather than deterministic functions of time. Fourier analysis is 

basically concerned with approximating a function by a sum of sine and cosine 

terms, called the Fourier series representation. 

The power spectrum of a stochastic process, or spectral density function, is 

defined by the continuous function 

00 
f (co) = (2 7t)'1 [ Co +2ZC., cos wk] 

k-1 (2,5) 

Where co, the frequency in radians, may take any value in the range [- x, n]. 

However, since f(w) is symmetric about zero, all the information in the power 

spectrum is contained in the range [0,1t]. Ci is the autocovariance of the process. 

If yt is white noise, C(k) =0 for k*0, and so 

f((0)=ß2/2n 

Where a2 is the variance of yt. The process may be regarded as consisting of an 

infinite number of cyclical components all of which have equal weight. In fact, this 

effectively provides a definition of white noise in the frequency domain. 



CHAPTER 2 TEMPORAL AND SPATIAL SAMPLING OF RADAR DATA 26 

In practise, the equation above can't be used to estimate the spectrum from the 

sampled data. It can be shown that the sample spectrum of a stationary time series 

may fluctuate radically about the theoretical spectrum since the Fourier series 

representation requires one to evaluate N parameters from N observations however 

long the series. There exist several alternative procedures for carrying out a 

spectral analysis. Each method provides a consistent estimate of the spectrum 
based on some sort of smoothing procedure. 

A popular type of estimation procedure consists of taking a Fourier transform of the 

truncated sample autocovariance function using a weighting procedure to smooth 

the sample spectrum which is defined as 

in 

f (w)=(2n)'1 [w0C0+2lwkCkcos wk] 
k=1 (2,6) 

Where { wk ) are a set of weights called the lag window, and m (<the number of 

sample data ) is called the truncation point. The choice of the truncation point, M, is 

rather difficult and little clear-cut advice is available in the literature. It has to be 

chosen subjectively so as to balance' resolution' against' variance'. The smaller 

the value of M, the smaller will be the variance of f(w) but the larger will be the 

bias. If M is too small, important features off (w) may be smoothed out, while if 

M is too large the behaviour of f (w) becomes more like that of the periodogram 

with erratic variation (refer to Box and Jenkins (1976) for periodogram). Thus a 

compromise value must be chosen. A useful rough guide is to choose M to be 

about two times the square root of the number of sampled data. There are several 

windows available, such as the Turkey window, Parzen window, Barlett window, 

rectangular window and so on, of which Parzen is generally considered superior to 

the others and is employed in this thesis. The Parzen window is as follows 
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Wk=1-6K2+6K3 0<=K<=0.5 

Wk=2(1-K)3 0.5<K<1 

The spectral analysis is mainly concerned with estimating the spectrum over the 

whole range of frequencies and therefore it is an useful tool for the sampling 

analysis. 

2.4 Temporal Sampling of Radar Rainfall Data 

Weather radar measures the rainfall field in a discrete form and the UK 

Meteorological Office uses a shortest interval of 5 minutes to represent quantitative 

data. In hydrological usage, we usually require half hourly or even hourly rainfall 
data. The measurement sampling is related to the sampled signal while the flood 

forecasting model sampling interval will depend on the system response property. 

To evaluate a sampling scheme, we must rely on spectral analysis to treat the 

rainfall rate data as a time series in the frequency domain. As mentioned 

previously, if the Nyquist frequency is above the highest frequency in the sampled 

signal, there will be no loss of information otherwise an aliasing error will occur. 
In the aliasing situation, we not only lose information but also introduce some 
distortion from the foldback of higher frequencies. The rainfall process sampling 

rate will differ for different locations and different seasons. A thorough statistical 

study is needed to obtain an optimum sampling scheme. 

An example is given by using Upavon data for an event on the catchment of the 
River Asker on 26th Dec. 1985. Results show that for the 5 minute interval 

sampling process, the estimated spectrum approaches zero as the frequency 

approaches the Nyquist frequency. This suggests that there is no aliasing and that 
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the choice of the sampling interval is sufficiently small. When the sampling interval 

is increased to 15 minutes, there is still some spectrum above the Nyquist 

frequency and we find there is some aliasing effect. As the the proportion of the 

spectrum above the Nyquist frequency is not large, the error caused by aliasing is 

reasonable small. When the sampling interval exceeds half an hour a noticeable 

noise is observed and the spectrum above the Nyquist frequency can't be neglected. 
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From the example presented above, a sampling interval not more than 15 minutes 

can be utilised and the aliasing effect is quite small. A further statistical analysis 

should be used to assess the radar data sampling scheurein order to prevent large 

aliasing errors and possibly decrease the sampling costs by increasing the sampling 
interval. 

2.5 Spatial Sampling of Radar Rainfall Data 

The preceding section has been concerned with the temporal sampling. Each 

system variable has been assumed to be either a lumped characterisation (averaging) 

of all the effects at that location, or a point sample of events at that location. The 

specificity of the location itself and the relativistic effect of possible interactions 

with other locations have both been ignored. In reality the rainfall process is a 
Space-Time system. Rainfall spatial distribution has a great influence in the larger 

catchment. Spatial sampling is a very important aspect of the systems analysis. 

The spatial sampling process is a 2-D sampling data sequence 

f=[ f(nl, n2)] 

Which is normally of finite extent, i. e., 

0: 5nl<N1; 05 n2<N2 

In figure 2.9 two radar data spatial sampling schemes are shown and they consist 

of 76*76 grids (2km data) and 84*84 grids (5 km data) from the Upavon radar data 

and are typical of the UK radar network. 
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Figure 2.9 Upavon Radar Data Type (2 km & Skm) 

From common sense, the 2km radar data will contain more information than the 5 

km radar data and it is also true from the detailed spectral analysis. A spatial 

sampling scheme is characterised by looking at the signal's frequency response. 
For a 2-D impulse response h(nl, n2) the frequency response is given by the 

Fourier transform extended into two dimensions, wl and w2. 

ýý 
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I 38'2 - _*I 
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ao-ý 
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I 
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H(wl, co2) =IY. h(nl, n2) exp("jwinl) exp(. jco2n2) 
nl -»n= - (2,9) 

The impulse function is h(n1, n2). 

The Nyquist frequency is also applicable in the spatial domain but it depends on the 

spatial interval instead of the time interval. 

When a spatial signal is sampled, the Nyquist frequency should be higher than the 
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highest spatial frequency in the spatial signal. In the spatial sampling of radar data, 

a moving average filter is applied before sampling. The aliasing effect has thus 

been greatly reduced and the accuracy loss will be due to the decreased spatial 

resolution. 

To decide the right data resolution, the purpose of the application will dominate the 

choice. For the hydrological area, the response of the catchment to the spatial 
frequency has the same effects as in the time domain. The catchment can be 

considered as a low pass filter in spatial terms. The high spatial frequency resulting 
from high spatial resolution radar data will be removed by the catchment filter. In 

this case, the low resolution data can produce the same result as the high resolution 

data. To achieve the best utilisation of radar data and minimise the cost, a suitable 

resolution needs to be decided. 

High Resolution in Time High Resolution in Space 

HIGH 
FREQUENCY 

Low Pass Filter Z 
LOW 
FREQUENCY 

Figure 2.10 Filter Effect by Catchment 
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As the lumped TF model is utilised in the current research, the spatial frequency 

information within the catchment is ignored. The input rainfall data is the average 

rainfall data over the whole catchment. As we know that a spatial moving average 
filter has been applied to the radar data, the data spatial resolution will not influence 

the averaged catchment rainfall data very much. A storm event from Hammoon in 

the Wessex Region has been chosen to illustrate such an effect. 
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Figure 2.11 2km Event Data for Hammoon 85.12.26 (Area=400km2) 
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Figure 2.12 3 Step Forecasting by 2km Event Data 



CHAPTER 2 TEMPORAL AND SPATIAL SAMPLING OF RADAR DATA 3S 

150 -1 

Vl 

loo 

d eo ý 
v SO 

. J3 
Ca 

0 
-v -so 

N 

Time (hour) 

Figure 2.13 6 Step Forecasting by tkm Event Data 

5 

". 4 .; ý 

E 3- 

2- Q4 

o 

1 

0 

Radar Skm Data 
From 1985-12-23 21: 00 
To 1985-12-28 21: 00 

Ill. 

. 

i 

1.4 
50 
Time (hour) 

I 

100 

--9 
100 

Figure 2.14 5km Event Data for Hammoon 85.12.26 

150 -1 

E1M 
^, 

ec IU 
ý ea 

50ý 

0 

0 
L 

Forecast :3 hours ahead Observed 

-"- Forecast 

50 100 
Figure 2.15 3 Step Forecasting by Skin Event Data 



CHAPTER 2 TEMPORAL AND SPATIAL SAMPLING OF RADAR DATA 36 

1so., 

100 .a 

50 -I 

Forecast :6 hours ahead 

50 

Time (hour) 

Figure 2.16 6 Step Forecasting by 5km Event Data 

Observed 

--"" Forecast 

100 

The computation results show that the flow forecasting difference between 2km and 

5km radar data is very small. It can be understood that the spatial sampling 
influence to a lumped rainfall runoff model is related to the catchment area. For a 

catchment with several hundred square kilometres, the difference between 5km and 
2km data resolution is small. While for the catchment with 4 or 5 square 

kilometres area, the difference will be much larger. Figure 2.17 illustrates such an 

effect. 
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Figure 2.17 Influence of Spatial Sampling to Lumped Rainfall Runoff Model 
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In reality, the catchment response is not lumped and the influence of spatial 

sampling will be heavier than the lumped case. More statistical analysis should be 

carried to examine this influence on distributed catchment models in relation to the 

availability of remotely sensed data on a grid-square basis. 

2.6 Summary 

Temporal and spatial sampling of radar rainfall data have been discussed. The 

measurement sampling rate should be fast enough that the process is well damped 

above the Nyquist frequency. Although hourly radar data are used in the 

forecasting model, it has been shown that 5 minute or 15 minute measurement 

sampling is necessary. A prefilter should be utilised when the radar rainfall data is 

to be input into a flood forecasting model and this will be discussed in next chapter. 

Spatial sampling is quite an important issue for fully distributed forecasting models. 

It will not affect the lumped TF model providing the sampling area is relatively 

small compared to the catchment size. Larger catchments can tolerate larger spatial 

sampling intervals and a low spatial sampling rate will cause some difficulty for the 

radar data calibration procedure, since it will be difficult to apply pattern 

recognition techniques to identify storm type and important differences will likely 

occur between the calibration raingauge data (point measurements) and radar data 

(spatial average measurements). 
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CHAPTER 3 

RADAR DATA QUANTISATION 

3.1 Introduction 

As radar data are processed by digital computer, quantisation is inevitable for 

practical application of radar data. In this chapter, the quantising error and 

quantisation scheme is described and an adaptive quantisation method is proposed 

to enhance the accuracy of radar data without using a longer wordlength. 

3.2 Uniform and Nonuniform Quantisation 

There exist a variety of quantisation methods. Generally speaking, they are 

characterised by uniform and nonuniform quantisation schemes. It would be 

helpful to introduce some concepts about the basic properties of different 

quantisation schemes. 

The rounding problem is illustrated in Fig 3.1. It is a case of uniform quantisation. 
When the variations in the signal are large relative to the quantising step, that is, 

when quantisation has been carried out sufficiently finely, the error signal e(t) is 

equivalent to an ensemble of elementary signals which are each formed from a 

straight-line segment. The power of such an elementary signal of width t is written 
as : 
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Figure 3.1 Elementary error signal (from Schwartz, 1981) 
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B=ý fe2(t)dt=.! (]2 
, ýqJt2dt =1q 2 

-T/2 -T/2 (3,1) 

The value obtained in this way, B= q2/12, is a satisfactory estimate of the power of 

the quantising noise in the majority of actual cases. Such an equation is popularly 

utilised to represent the uniform quantisation error power. 

In many practical cases such as in hydrological processes, there is no specified 

peak value and the signal level may in fact change in a random manner. The most 

common example is that of a speech signal, with different speakers using the same 

transmission facilities. The range of speech intensity may vary as much as 40 dB 

in going from the whisper of a quiet speaker to the bellowing tones of a powerful 

speaker. It is apparent that to cover this dynamic range effectively nonuniform 

quantisation-level spacing, or its equivalent, signal compression, must be used. If 

this is not done and equally spaced levels are chosen to cover the widest signal 

variation expected, the soft speakers will be penalised. The same problem 

obviously arises in the radar rainfall signals expected to cover a wide dynamic 

range. 
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The signal-to-quantisation noise ratio (SNR) can be utilised to represent the 

influence of noise on the signal. The effect of noise on the performance of a 

system depends on the amount of noise relative to the signal. In a speech system 

quantisation noise cackle, as heard by a listener, is only objectionable if it is 

noticeable compared to the signal intensity of the speaker. A given noise level is 

more objectionable when a quiet speaker is speaking than when a loud one is 

communicating. To overcome the problem caused by uniform quantisation, it is 

necessary to introduce a nonuniform quantisation. In practice it is simple to 

nonlinearly compress the signal such as with logarithmic processing and then apply 

uniform-level spacing to the compressed output signal. It has been shown that in 

this case, the variation of SNR can be greatly decreased when compared with 

uniform quantisation. 

In the case of uniform quantisation, suppose the value range is [0 , V], quantisation 

level is M, so quantising step q will be: 

q-V/M (3,2) 

Each value of the signal between (n- 1/2)q and (n+ 1/2)q is rounded to nq. With an 

input signal power of a2 we have as the signal-to-noise ratio 

SNR = a2 / (q2/12) (3,3) 

Since the quantisation noise is fixed, independent of a2 , in the case of uniformly 

spaced levels, the SNR is proportional to a2. For a signal at low intensity the SNR 

reduces correspondingly and the quantisation noise becomes that much more 

noticeable. 

A typical nonuniform quantisation has a logarithmic form. There are two popular 
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schemes used presently: namely the µ law and the A law (see Proakis, J G 1989). 

µ law: 

V= 
ln(1+µx/V) 

4 ln(1+µ) 
OSx<_V 

Where, parameter t can be varied to obtain a variety of characteristics. t is usually 

set to 225. 

A law: 

1 +lnAx 
1+1nA 

1 
wSx<_1 

Ax 1 
1 +lnA- 

OSxSA 

Parameter A controls the dynamic range increase and it represents V here. The A 

law characteristic is defined to be linear for small x and logarithmic for large x. 

SNR has been found to be almost constant over the quantisation range in the 

nonuniform case. Uniform spacing thus favours the higher-amplitude signals at the 

expense of the lower-amplitude signals. Fig 3.2 (from Schwartz, 1981) shows 

such characteristics clearly. 
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Figure 3.2 Signal-to-quantisation noise ratio (from Schwartz, 1981) 

3.3 Present Radar Data Quantisation Scheme 

The rainfall intensity from the Meteorological Office consists of two types: 3 bit (8 
level) and 8bit ( 208 levels). 3-bit data make use of the whole 3 bit to represent the 
data. The 8 bit scheme uses 208 levels out of the 256 available levels, the 

remaining levels are utilised for data transmission control and checking. 

The two schemes are listed in the Table 3.1 and Table 3.2. 

Table 3.1 3-bit Data 

Intensity Intensity Range 3- Bit 
Level (mm/hr) Value(mm/hr) 

1<0.125 0.0 
2 0.125 -10.56 3 1-4 2.5 
4 4-8 6.0 
5 8-16 12.0 
6 16-32 24.0 
7 32 -126 79.0 
8> 126 319.0 
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The 8 bit data were divided into four groups according to the data value and their 

increments. 

Table 3.2 8-bit Data 

Segment Id Intensity 
(mm/hr) (mm/hr) 

i Range Intensity Range 

1 i/32 i= Deci [ 0,63 ]-1 [ 0,1.96875] 
2 i/32 i=Deci[64,252]-4 [2.0,7.875] 
3 i/32 i= Deci [ 256,1008]-16 [ 8.0,31.5] 
4 i/32 i= Deci [ 1024,40321-64 [ 32.0,126.01 

Radar data are held in float notation. This allows numbers up to 4032 to be held in 

8 bits. Units of 1/32 mm/hr are used, which allows rates of up to 126 mm/hr to be 

held. The two high order bits of the byte are the exponent and the other 6 bits are 

the mantissa. The value is interpreted as (2 to the power of twice the exponent) 

times the mantissa ( see Banks CJ et al. 1984, FAAG Report 108). For example, 

fora number of 01011111, it will be converted into 22*31=124 and from Table 3.2 

it can be found this number is in group two with the step of 4. To get the rainfall 
intensity, this number is substituted into the equation on the left and the result is 

3.875 mm/hr. 

3.4 Quantisation Error 

To simplify the research and generate some common results, synthetic rainfall data 

was utilised to analyse the quantisation error so that the process can be reproduced 

and compared to other researchers' work. We suppose the rainfall rate obeys a 

normal distribution law since it follows some characteristic features of true rainfall 
data (Refer to Graham, 1988 for detailed analysis). As the rainfall rate can not be 

negative, the x value will distributed from [0, +co ]. The ordinary normal 

distribution density is 
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Figure 3.3 Probability Density Function 

By changing the variance (a), we can obtain different kinds of rainfall rate 

distribution. With larger a, the average rainfall intensity tends to also be larger. 

With Figure 3.4 and Figure 3.5, the synthetic rainfall distribution curves are plotted 

according to the variance a. 
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Figure 3.5 Synthetic Rainfall Distribution with a= 10 

The shapes of the rainfall data distribution are similar. Figure 3.6 - Figure 3.11 

show two sets of rainfall data generated by changing the variance by 10 and 100. 

The effects of the 3 bit transformation are also shown in these Figures. 
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Figure 3.8 Error Caused by Quantisation with Q= 10 
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Figure 3.10 3-Bit Synthetic Rainfall Data with a= 100 
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From the figures above, it can be found that errors caused by quantisation are 

around the zero line and increase with rainfall intensities. The distribution of errors 

is not uniform as more negative errors occurs than positive ones. This illustrates 

the potential of a better scheme based upon non-uniform procedures. To illustrate 

such effect, relationships between the average rainfall rate, signal power, signal 

noise ratio and the variance are drawn in the Figure 3.12 - Figure 3.14. 
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Figure 3.12 Average Comparison between Original and 3-Bit Data (6530) 
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Figure 3.14 Signal Noise Ratio between Original and 3-Bit Data (ßS30) 

Here the average value is derived by 

Signal Noise Ratio 

IN R=N ý Ri 
i=1 
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and the power value is derived by 

N 
1 

P=Ný R2 

; =t 

where Ri is the individual rainfall intensity and N is the number of data. 

From the above figures we observe how the average value of the deviation 

increases with the variance. This means that the middle value in the quantisation 

scheme is not the same as that in the data. The quantisation error is increasing as a 

increases. Before a reaches 20, the quantisation error is reasonably small. To 

depict a larger range of rainfall intensities, Figure 3.15 - Figure 3.17 are plotted to 

the extend the range to a=1000. 
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Figure 3.15 Average Comparison between Original and 3-Bit Data (a51000) 
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Figure 3.17 Signal Noise Ratio between Original and 3-Bit Data (a--M00) 

When the a reaches 150 (in standardised form), the average deviation begins to 

decrease and is zero at a variance value of 260. From that point on, the 3 bit 

average value is always below the original value. This is because at high rainfall 

intensity, a large portion of rainfall rate exceeds the 3 bit quantisation range and the 

high magnitude rainfall rate is suppressed. This shows that the dynamic range of 
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the quantisation scheme is very important and should be decided by analysing the 

actual rainfall data. 

3.5 Radar Rainfall Distribution 

It has been found that the statistical properties of the rainfall distribution will 

influence the quantisation scheme. In this section, some preliminary analyses are 

carried out to discuss the radar rainfall distribution. A test was undertaken by using 

some 5 minute Upavon Radar data to assess the basic features of the radar rainfall 

data distribution. 

Radar data files from the Upavon Radar site which contain a relatively heavy 

rainfall rate are used for such a purpose. 2 km resolution data from node (18,18) 

to node (58,58) were used (given that the bottom left was (0,0)), that meant 400 

2km x 2km nodes in each, picture. Rainfall rates are distributed from 0,1,2,..., 

150 mm/hr. Figure 3.18-Figure 3.21 provide analysis of the Upavon radar data. 

Rainfall rate (mm/hr) 

Figure 3.18 Radar Rainfall Data Distribution 1 
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Figure 3.19 Radar Rainfall Data Distribution 2 
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Figure 3.20 Radar Rainfall Data Distribution 3 
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Rainfall rate (mm/hr) 

Figure 3.21 Radar Rainfall Data Distribution 4 

Compared with the positive normal distribution, the radar rainfall rate sample 
distribution is similar except contained more lower level intensity data as in Figure 

3.22. This portion is well below 0.5 mm/hr and depended on how many zeros 

were included in the sample data. 

f(x) 
Radar Sample Distribution 

Positive Normal Distribution 

Rainfall Rate (mm/hr) 

Figure 3.22 Comparison of Positive Normal and Radar Data sample 

The rainfall data was obtained by scanning every 5 minutes. In hydrological 

processes usually hourly data are utilised for flood forecasting models and it is 

common to average 5 minutes data over one hour. It has been shown that the 
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longer the time length, the more the rainfall rate distribution approximates the 

normal distribution( Figure 3.23). 
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Figure 3.23 Schematic Rainfall Frequency Change with period length 

Note : a) Short Duration; 

b)Mediwn Duration; 

c)Long Duration; 

d)Very Long Duration. 
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This can also be explained by reference to the Limit Theorems from Probability 

Theory. 

Suppose independent random variables X1, X2, ... Xn,, 

E(Xk)=mk, D(Xk)=ßK2 (k=1,2,... ) 

Let 
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n 

BZ=I ß2 nk 
k=1 

The probability distribution function Fn(x) will be: 
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lim F (x) = lim P 
n 

Ya Xk Ya 
Mk 

k: 1 k: 1 
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=J 
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e dt 
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-00 

J-2-p 

sX} 

When n is very large, Ex will approximate the normal distribution. For 

comparison, two events were chosen to demonstrate such effects and the results are 

shown in following figures. 

Events Chosen: UPA ALL 86-08-25 

UPA ALL 85-12-25 

UPA ALL 85-12.25 

For 1 Hours 

T-ý- 468 10 

Rainfall rate (mm/hr) 

Figure 3.24 Rainfall Distribution with Different Duration 1 
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Figure 3.25 Rainfall Distribution with Different Duration 2 
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Figure 3.26 Rainfall Distribution with Different Duration 3 
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Figure 3.27 Rainfall Distribution with Different Duration 4 

The computation show that when the averaging interval increases from 1 hour to 5 

hours, the rainfall rate distribution behaves as the theorem described above defines. 

With hourly data, not much error will be introduced by using positive normal 

distributions to generate the synthetic data for the research. The results above show 

that a positive normal distribution is close to the true rainfall distribution and could 

be utilised to generate synthetic rainfall data for 1 hour periods. 

3.6 Optimum Quantisation of Rainfall Data 

Quantisation scheme is important issue and some further analysis is carried out to 

illustrate the statistic quantisation method. In the past sections, the influence of 3 

bit quantisation has been discussed. Different quantisation levels can be utilised to 

represent the radar rainfall data. It is worth while to study which is the best 

quantisation scheme so the minimum distortion can be achieved by using the same 

number of bits (or code) to describe the same set of data. From the statistical point 

of view, the optimum quantisation method will depend on the statistical properties 

of the related radar data. In this section, some considerations will be given to 

reconsidering the optimum quantisation proposal for radar rainfall data. 
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In designing a quantisation scheme, statistical analysis of the data should be carried 

out. Suppose that the data sequence {xi) has a pdf (probability density function) 

p(x) and we want to use R bit to represent it (that is L= 2R levels). Then the 

average distortion resulting from quantisation of the signal amplitude is given: 

06 
D =1 f (Xy-x)P(X)dx 

0 (3,6) 

where f(xq - x) denotes the desired function of the error. For the rainfall process, 

the minimum rainfall rate is zero. It is difficult to set the maximum rainfall rate so 

an infinity is used to represent the highest rainfall intensity. 

The optimum quantiser can be obtained by minimising D. This optimisation 

problem has been considered by Lloyd (1982) and Max (1960). Let the output 

level be Yk when the input signal amplitude is in the range xk_1<_x<xk. For an L- 

level quantiser, the end points are xo=0 and x1=°°. The resulting distortion is then 

given by: 

L xrk 

IJ f(yk-x)p(x)dx 
k=1x 

k"1 
(3,7) 

Which is now minimised by optimally selecting the { yk) and (xk) . 
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Figure 3.28 Quantisation and output level 

The necessary conditions for a minimum distortion are obtained by differentiating D 

with respect to the ( xk } and { yk }. The result of this minimisation is the pair of 
equations 

f(A'xk)=f(Yk+i'xk) k=1,2,..., L-1 (3,8) 

YA 

1 f'(yk-x)p(x)dK=O k=l, ý..., L 
x'`i (3,9) 

As a special case, we consider minimising the mean square value of the distortion. 

In this case, f(x)=x2 and hence, 

yk + yk-1 
k2 k-1,2,..., Ir1 

(3,10) 

Which is the midpoint between yk and yk. l. The corresponding equations 
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determining { yk } are 

xk 

1 (yk -x)p(x)dx=0 
x k-1 

k=1,2,..., L 

(3,11) 

Thus, Yk is the centroid of the area of p(x) between xk_1 and Xk. These equations 

may be solved numerically for any given p(x). 

With the procedure described above, we can obtain an optimum quantisation 

scheme and obtain an optimum output level under fixed quantisation intervals( such 

as in the case of using the 3 bit radar data product from the Met Office. ) As a 

comparison, a computation is carried out to judge the effectiveness of the optimum 

quantisation procedure. 

Table 3.3 Optimum Output Level for The Met Office Quantisation Scheme 

Range 
(mm/h) 

The Met 
Office a =5 G=10 a =20 a =30 a =40 

Logarithmic 
Average 

0-0.125 0 0.062 0.062 0.062 0.062 0.062 0 
0.125 -1 0.56 0.561 0.562 0.562 0.562 0.562 0.354 

1-4 2.5 2.425 2.480 2.494 2.496 2.497 2.000 
4-8 6.0 5.689 5.919 5.978 5.989 5.993 5.657 
8-16 12.0 10.025 11.379 11.837 11.925 11.956 11.314 

16 - 32 24.0 17.340 20.051 22.758 23.431 23.674 22.627 
32 -126 79.0 N/A 34.652 40.442 47318 54341 64 
> 126 319.0 N/A N/A N/A 128.860 132.933 512 

Note: N/A in the above table means the that probability of the rainfall rate data being in the related 

range is below 10'= and should be considered as highly unlikly to happen in practical case. 

Since it is difficult to analytically determine the result, a Monte Carlo method is 

utilised to compute the optimum output level from the Meteorological Office 

quantisation scheme. The results has been listed in the Table 3.3. 
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Comparison figures are presented to compare the different methods. It has been 

shown that the logarithmic ( or harmonic) scheme performs better than the 

arithmetic and the optimum can be achieved by the use of the probabilistic 

approach. 
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Figure 3.29 Average Value Comparison between Different Allocation Schemes 
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Figure 3.31 SNR Comparison between Different Allocation Schemes 

The results show a remarkable improvement in quantitative data integrity for the 

optimum quantisation scheme compared with other schemes. 

Information theory can also be utilised to achieve the optimum quantisation scheme. 

A scheme which can maximise the information contained in a quantised data set is 

then chosen as the optimum quantisation scheme. 

Information theory is a branch of probability theory originating from two papers by 

C. E Shannon (1948). He provided the first consistent attempt towards the 

measurement of such difficult and abstract notions as information and uncertainty. 
The information measure is a logarithmic function that depends upon the 

uncertainty, or probability of occurrence, associated with the message symbol. 
Thus if a particular message symbol s; was to occur with probability pig we would 

say that the self-information associated with this symbol is defined as : 

Si (s) _ -1og2 pi Bits 

fJ"ý^ 
ý w'. M 

� ý+ 

The information content of a message symbol is the negative of the logarithm of the 
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probability that this symbol will be emitted from the source. The information 

content of an individual symbol is termed self-information, Si. The choice of the 
logarithmic base determines the unit of information content. If the chosen base is 

two (which is the usual case) the unit is termed a bit. Thus the self-information 

content of a symbol from a binary source in which the symbols 0 and 1 occur with 

equal probability, is equal to log2(2) =1 Bit. If the base chosen is 10 then the unit 
is termed a hartley; if the base chosen is the natural base the unit is termed a nat. 

The average information of the whole symbol source is termed Entropy and it is an 
important quantity in Information Theory. Entropy is given by the following 

expression: 

H(s)=ý p, 1og2(P ) 
ý (3,8) 

Since any quantiser reduces a continuous amplitude source into a discrete amplitude 

source, we may treat the discrete amplitudes as symbols, say S =(sk, 1Sk5 M), 

with associated probabilities (Pk). By maximising the entropy, we can obtain the 

optimised quantisation intervals. 

Considering that: 

ý 
p. =1 

According to Information Theory, the maximum information content of a source 
having M elements is log2M Bit, and is achieved only when all elements have equal 

probability. 
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The entropy described is called Shannon's entropy. Underlining the importance of 
Shannon's entropy, it is necessary to notice at the same time that this formula gives 

us the measure of information as a function of the probabilities with which various 

events occur. There exist many fields dealing with random events where it is 

necessary to take into account both these probabilities and some qualitative 

characteristics of events. So a qualitative weight can be introduced into the 

computation of entropy and the information content will depend both on the 

probabilities of events and on qualitative weights of the possible events. This 

entropy is called the weighted entropy. It is defined as : 

I(s)=ii 

If w1 = w2 =... = w, then I (s) =H (s). 

(3,9) 

In hydrological processes different rainfall intensities can play different roles in 

flood forecasting. Proper selection of entropy weights is quite important in the 

quantisation scheme. Although large rainfall intensities should carry larger weight, 
in the U. K. it has been found that quite a number of floods are caused by relatively 

small rainfall intensities, presently an equal weight entropy is utilised in the analysis 

of the quantisation process. 

The following table shows the entropy from the Met Office 3-bit quantisation 

scheme. From the point of view of Information Theory, the optimum entropy for 

3 bit coding would be H=3 Bit. That means each quantisation level contains 3 bit 
information. From the table, it is seen that when the data variance is 5, the entropy 
is 1.9 bit/per level. One bit of information is wasted compared with the optimum 2 

bit quantisation scheme to achieve the same information content. 
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Table 3.4 Entropy Value For the Met Office 3 Bit Quantisation Method 

Variance 
6 

5 10 20 30 40 

Entropy 1.919 2.216 2.369 2.285 2.117 

3.5 '1 
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Figure 3.32 Entropy from the Met Office 3 Bit Quantisation Method 

Table 3.5 Entropy Value For the Met Office 8 bit Quantisation Method 

Variance 
a 

5 10 20 30 40 

Entropy 6.967 7.011 7.128 7.094 7.063 
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Figure 3.33 Entropy from the Met Office 8 bit Quantisation Method 

These results indicate that further improvements can be expected by adopting an 
improved quantisation scheme. 

3.7 Optimum Word Length for Radar Data Quantisation 

Usually the more bits used to represent rainfall data, the more accurate the output 
data quality. But the cost will increase as we increase the word length to represent 

radar data, so there must be an optimum word length with which we can achieve 
both high quality of output data and low cost. 

The choice of word length (or the number of quantisation levels) is a kind of 
decision process. Our target is to maximise the benefit of the scheme. The purpose 

of quantisation is to obtain the useful information and to decrease the cost of data 

management. When we select 3-bits or 8-bits as the word length, it is true that 8- 

bit data are much more accurate that 3-bit data. The question is to judge the cost 

and the benefit of the new information introduced by more accurate data. If the cost 

of the extra bits exceeds the benefit, then extra data accuracy is not required. 



CHAPTER 3 RADAR DATA QUANTISATION 68 

It has been found that the information content is related to the probability and the 

value of information is a very subject related concept which depends on the 

knowledge about the data. The same information may have great value for some 

applications, and no value for others. Thus, whenever we talk about the value of 

information, we must specify the purpose of the application. 

The following figures illustrate the relationship between the quantisation word 

length and the quantisation noise. 
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Figure 3.35 Influence of Quantisation Level to Noise Power and SNR 2 
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Figure 3.34 and Figure 3.35 show the influence of the word length on the 

quantisation noise and clearly indicate that in a noisy environment that 4-bit data 

probably proves optimal though 3-bit data is practically acceptable. 8-bit data 

would appear to contain extra information of relevance to the hydrologist at either 

the input or output side of the equation but at a consequent high cost in terms of a 

rather marginal return in additional information. 

We can find from the above figures that the data quantisation accuracy will not be 

improved linearly with the increasing of the word length. This can be illustrated by 

Table 3.6 and 3.7 and Figures 3.36. 

Table 3.6 Wordlengh Influence on Output Data Accuracy ( Perfect Data) 

Bit 1 2 3 4 5 6 7 8 

Error 
Power 3.61 1.40 0.57 0.24 0.10 0.04 0.02 0.01 

SNR 6.9 17.8 43 104 239 559 1257 2908 

kccuracy % 61.9 76.3 84.8 90.2 93.5 95.8 97.2 98.1 

Table 3.7 Wordlengh Influence on Output Data Accuracy ( Contains 10% 

Error Power)) 

Bit 1 2 3 4 5 6 7 8 

Error 
Power 

3.79 1.61 0.80 0.48 0.34 0.28 0.26 0.24 

SNR 6.5 15.4 31.2 52.0 73.2 88.1 96.9 97.1 

ºccuracy % 60.7 75.0 82.1 86.1 88.3 89.3 89.8 90.1 
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The accuracy is represented as 

N 

11 Ro-NI 

Accuracy = 100 (1- 
N 

Ro 
i=1 

Where Ro is the rainfall data before quantisation and Rq is the rainfall data after 

quantisation. 

345 

Word Length (Bit) 

Figure 3.36 Quantisation accuracy and the wordlength 

The assessment of quantisation levels is a complicated subject. From the 

computational results, we find that the quantisation accuracy is a nonlinear process 

and it is not numerically worthwhile to utilise long word length (i. e. like more than 
8 bit) to represent the radar data. Another important conclusion is that the original 

radar data quality will influence the accuracy of the quantised radar data. With 

noise corrupted radar data (as shown in the above figures and tables) it is 

impossible to improve the accuracy even with a very long word length. A law of 
diminishing returns would seem to apply. Above all, for hydrological purposes, 4- 

bit data would seem to be more appropriate than other schemes and in some sense 
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represents the 'optimal' choice from a 'hydrological' and quantitative perspective. 

3.7 Adaptive Quantisation of Radar Data 

From the statistical point of view, the optimum quantisation method will depend on 

the statistical properties of the related radar data. As storm data keeps changing 

with time, the quantisation scheme should also change with time. Static 

quantisation schemes ignore the dynamic variation of the rainfall data and attempt to 

cover the whole range of rainfall data with a static scheme. The result is in most 

cases is that the quantisation works with low efficiency. To overcome such a 

drawback, some considerations have been given to construct an adaptive 

quantisation procedure for radar rainfall data. It is highly probable that similar 

arguments will pertain with other forms of remotely sensed precipitation including 

that which will eventually be obtained from satellite systems. 

Adaptive quantisation means that the dynamic range of the quantisation scheme will 

change with the magnitude variation of the rainfall data. Regardless of the 

magnitude of the rainfall data, adaptive quantisation will always reflect the 

quantitative natural variation of the rainfall process and make full use of each 

quantisation level. 

A unit quantisation skeleton with a dynamic range of 1.0 should be set up first. 

When a new radar frame comes, a computation is carried out utilising this frame to 
find the actual data range. The quantisation of this frame of radar data will be based 

on its data range. Suppose that the data sequence {xi) has a dynamic range of M 

and we want use R bit to represent it (that is 1= 2R levels). 

The unit quantisation skeleton is : 
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Quantisation levels, 
46 

Qý { i= 1,2, ..., 1+1 } 

Quantisation output, 

U1 {i= 1,2,..., I} 

With Q1=0, Q+1 =1.0 and U1=0 

Here Ui represent the rainfall data which fall in the range of (Qi, Q; +t ) 

The actual quantisation will be as below 

Quantisation levels, 

Tt=Qt*M { i= 1,2, ... ,1 +1 } 

Quantisation output, 

(3,10) 

01=U1*M {i=1,2,..., 1} (3,11) 

With T1=0, T1+1=M and 01=0 

The unit quantisation skeleton should be decided to reflect the radar data statistical 

properties. An optimum unit quantisation skeleton can be achieved upon the 

analysis of large number of radar frames. For simplicity and the data consistency, 

it is possible to build a procedure which is based on the existing quantisation 
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scheme. 

Suppose the existing quantisation scheme is : 
Quantisation levels, 

T1 {i=1,2,..., 1+1} 

Quantisation output, 

01 {i=1,2,..., 1} 

With T1=0, T1+1=M and 01=0 

The derived unit quantisation skeleton will be 

Quantisation levels, 

Q1=T1/M {i=1,2,..., 1+1} 

Quantisation output, 

U1=O1/M {i=1,2,..., 1} 

With Q1=0, Q1+1=1.0 and U1=0 

The data range of each frame can be found by : 

(3,12) 

(3,13) 

Max [x, ] l i= 1,2, ... ,1} (3,14) 

A case study by using Upavon radar data is presented here to illustrate the 

application of adaptive quantisation. The 3 bit quantisation scheme from the U. K. 

Met Office is used for comparison. 
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First a unit quantisation skeleton is set up. A logarithmic increment was used to 

level slice [0,1] and the arithmetic mean was chosen to represent each slice. 

Table 3.8 Unit Quantisation Skele 

Intensity 
Number 

Data Range 3- bit Value 
(mnVhr) (mm/hr) 

10-0.00781 0.0 
2 0.00781 -0.0156 0.0117 
3 0.0156 - 0.03125 0.0234 
4 0.03125 - 0.0625 0.0469 
5 0.0625 - 0.125 0.0938 
6 0.125-0.25 0.1875 
7 0.25-0.5 0.375 
8 0.5-1.0 0.75 

Now we can use this unit quantisation skeleton to quantise the radar data. The 

radar data range should be decided from each radar frame and it would be written 
into the data header for further decoding usage. Some computational results are 

given in figure 3.9. 

The error is obtained by 

N 

Error =N (R0 -Rq )2 
i=i 

The error reduction is obtained by 

Error Reduction = 
Error2 - Error! 

Error2 x 100 

Where Ro is the rainfall data before quantisation and Rq is the rainfall data after 
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quantisation. Error2 is static error and Errorl is adaptive error. The unit of error is 

(mm/hr)2. 

Table 3.9 Event from Upavon 85-12-24 

Data Range Error 
No. (mm ) Static Error Adaptive Error Reduction (%) 

1 1.44 4.71 0.326 93.1 
2 2.25 1.12 0.598 46.7 
3 0.47 1.34 0.063 95.3 
4 0.18 4.99 0.119 97.6 
5 0.78 6.49 1.060 83.6 

Table 3.10 Event from Upavon 86-01-10 

No. 
Data Range Error 

(mm/hr) Static Error Adaptive Error Reduction (%) 

1 4.62 6.71 1.27 81.1 
2 5.25 7.51 1.41 81.2 
3 2.62 8.45 0.75 91.1 
4 3.12 6.67 0.64 90.0 
5 5.25 1.33 0.26 80.3 

Table 3.11 Event from Upavon 86.08-25 

No. 
Data Range Error 

(mm/hr) Static Error Adaptive Error Reduction (%) 

1 8.00 2.87 0.87 69.7 
2 9.00 3.57 1.31 63.3 
3 14.00 3.41 1.29 62.0 
4 11.5 3.95 1.58 59.9 
5 21.0 6.17 3.62 41.3 
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It can be seen that significant quantisation error reduction occurs and the radar data 

accuracy can be greatly improved without increasing quantisation word length. The 

information content of the data is thus maximised for a limited word length. 

3.8 Quantisation Influence on Hydrological Model 

3.8.1 Impact of Quantisation Noise on a TF Model 

Consider quantisation noise eq with prescribed spectral density G1((u) passing 

through a linear transfer function model with frequency transfer function H(w). An 

output spectral density G20)) is produced from the TF model. 

eq 

G1(o) 

TF Model 

H (co) 
e(p 

G2(W) 

Fig 3.36 Quantisation Noise through a TF model 

The effect of a linear TF model on the quantisation noise is described by the 
following relationship between input and output spectral densities: 

I 
G2(w) =I H(w) 12 G1((u) (3,15) 

In a hydrological application, the TF model acts as low-pass filter. The bandwidth 

of the TF is quite low so that most of the quantisation error will be filtered out and 
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consequently a relatively short word length will still preserve the primary 
information carried in the precipitation signal. 

3.8.2 Prefiltering Data to Reduce Noise and Prevent Aliasing 

Strictly, before we use radar rainfall data to predict river flow, some prefiltering 

process should be carried out. Usually a linear filter is utilised. The linear filter is 

a device which operates on the input xt(t) to give an output x2(t) according to 

a* 

x2(t)=I hkxl(t - k) 

t=o (3,18) 

Where hk is the weighting function or impulse response function of the filter. 

Suppose that the input xt(t)=s(t) + z(t), where s(t) is the signal or useful 

information and z(t) is the noise or unwanted information. The optimal filter is 

then defined as the weight function which minimises the mean square of the error 

signal between the actual and desired outputs. The calculation of the optimal filter 

is made easier by working with the spectra of the signal s(t) and the noise z(t) 

Another important issue concerned with prefiltering the radar data is that the 
information at frequencies higher than the Nyquist is lost by model sampling 
(usually the model sampling interval is larger than the rainfall measurement 

sampling interval, this means lower frequency sampling). It is then important not 
to let the folding effect distort the interesting part of the spectrum below the Nyquist 

frequency. This is also achieved by a linear filter. 

Suppose the highest frequency of the useful information in the signal is N, then 



CHAPTER 3 RADAR DATA QUANTISATION 78 

the spectrum of the filtered output will be 

I' (w) =1 H(w) 12 X(w) (3,19) 

Ideally, H(w) should have a characteristic such that 

IH(w)I=1, w< IwNI 

IH(Q I=O, w> Ia)NI 

This can be realised only approximately. With an ideal filter we can achieve a 

sampled spectrum with no aliasing effects. 

As the spectrum of the noise is more broadband that that of the signal. The prefilter 

then essentially cuts away the high-frequency noise contributions. This is a 

significant noise reduction if the noise spectrum has considerable energy above the 

Nyquist frequency. 

Presently, a moving average filter is adopted in the research group which has equal 

weights in the window. 

k"1 

xZ (t)= 
ký x1 (t- k) 

1-o (3,20) 

Its frequency response for different averaging steps is shown in following figures. 

The frequency are represented in the angle unit (the maximum value is it). 
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Figure 3.37 Frequency Response from 2 Average Steps 
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Figure 3.38 Frequency Response from 4 Average Steps 
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Figure 3.39 Frequency Response from 8 Average Steps 
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Figure 3.40 Frequency Response from 12 Average Steps 
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Figure 3.37 -- Figure 3.40 indicates the filter frequency response and it can be 

observed that the filter frequency response will be close to the ideal Nyquist 

frequency when the number of moving average steps are increased. 

Figure 3.41-Figure 3.43 illustrate the influence of prefiltering on quantisation 

errors. 
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Figure 3.41 Quantisation Error Reduction by Prefiltering Radar Data 1 
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Figure 3.42 Quantisation Error Reduction by Prefiltering Radar Data 2 
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Figure 3.43 Quantisation Error Reduction by Preflitering Radar data 3 

The quantisation error could be greatly reduced by utilising 2 or 4 step moving 

average filtering. 

3.8.3 Influence of Quantisation on Flood Forecasting 

Some practical cases are considered to show the influence of quantisation of radar 

rainfall data on the flood forecasting process. 

In this section the River Stour (at Hammoon) was utilised to carry out a case study. 
The TF model utilised was as below, 

UPPER STOUR (at Hammoon) TF(2,4) Timestep =5 hr 
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Flowt+l = 0.9709 Flowt - 0.1716 Flowt-1 +A [1.1116 Raint + 0.8092 Raint-1 

+ 2.0554 Raint-2 + 0.9915 Raint-3 ) 

A is a model updating factor developed by Cluckie and Owens (see Cluckie and 

Owens, 1987) and will be further introduced in other sections of the thesis. For 

convenience, an hourly model of the River Stour was utilised and the computational 

results are presented in the following figures. 
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Figure 3.46 6 Step Forecasting by 8-Bit Data 
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Figure 3.47 3-Bit Radar Rainfall Data 
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Figure 3.48 3 Step Forecasting by 3-Bit Data 
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Figure 3.49 6 Step Forecasting by 3-Bit Data 

It was found that 8-bit data produced no obvious benefit in real-time flood 

forecasting when compared with 3 bit data. This and other similar results (Cluckie & 

Tilford 1988, Cluckie, Tilford and Shepherd 1989) confirming the theoretical arguments 
developed in section 3.9.1. 
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3.9 Summary 

Signal quantisation of radar rainfall measurements is an important issue in 

modelling the hydrological process. The quantisation noise can be decreased by 

choosing the quantum steps or level slicing schemes to be sufficiently fine to 

preserve the original information content of the data. A trade-off amongst accuracy, 

quantisation noise, and the number of quantisation levels is required. As few 

quantisation levels as possible are chosen consistent with the preservation of the 

information content of the signal process. 

A practical radar data quantisation scheme will depend upon the statistical properties 

of the radar rainfall data. It has been found that the radar rainfall distribution varies 

with several factors. 

The measurement noise contained in the original data set will affect the quantisation 

scheme. In this case (and it is always true in practice) , high resolution is not 

worthwhile because the accuracy of the data will not be improved. It has been 

found that there is a negligible difference between 4-bit and 8-bit data. Although 

the results indicate that 3-bit data can be utilised in flood forecasting models without 

causing significant errors. It would be more appropriate to use 4-bit data than the 

original 8-bit data. However, the difference between 4-bit and 3-bit is also 

negligible on almost all occasions. 

Prefiltering of radar data removes a large percentage of the quantisation noise. By 

selecting a more optimal numerical filter, a further reduction of quantisation error 

can be achieved. 

The TF forecast model acts as a low pass filter and the quantisation noise will be 
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reduced after the prefiltering of the quantised radar signal. A case study from the 

River Stour has been used to illustrate this aspect. Though other rivers have been 

studied in the Anglian and the Northwest regions to confirm the general conclusion. 

Adaptive quantisation provides a very useful tool to improve the radar data 

quantitative precision without increasing the number of quantisation levels. Unlike 

static radar quantisation schemes, adaptive quantisation makes full use of almost all 

information contained in the incoming signal. The decoding of adaptively 

quantised data is almost the same as statically quantised data except that a data range 
indicator has to be available in the radar data header. This indicator is used to 

recover the quantised data from either in real-time or from an archive. With 

decreased data range, adaptive quantisation will tend towards the static quantisation 

scheme but is always better than it. 
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CHAPTER 4 

TRANSFER FUNCTION MODEL ANALYSIS 

4.1 Introduction 

The notion of a mathematical model is fundamental to hydrology. A model is a 

very useful and compact way to summarise the knowledge about a process. As 

mentioned in Chapter 1, the TF (Transfer Function) model has been increasingly 

utilised in hydrology in recent years and it has been proven to be an effective 

model. However, several problems still exist in the application of TF models such 

as the difficulty in identification of the TF model and real-time robust parameter 

updating. In this chapter analysis is carried out to reveal the internal properties of 

the TF model and the development of a Physical Realisable Transfer Function 

(PRTF) model. 

4.2 Z- Transform Process 

The Z- transform provides the engineer with a powerful method for the analysis of 

linear time-invariant discrete systems. Consider the discrete-time sequence u(t), for 

t=0,1,2,.... Since a causal sequence forms the basis of most physical systems, 

right-sided Z-transforms will be emphasised, that is, sequences for which the time 

index t is defined only for positive values. The Z-transform of this sequence is 

defined as (Refer to DcFaua, Lucas and Hodgkiss 1988) : 
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U(z) - Z(u(t)] = 
lu(t) 

z` 
t=o 

u(t) Z [u(t)] a-- U(z) 

Figure 4.1 The Z-transform process 

(4,1) 

It is instructive to view the Z-transform as a transformation that maps an input 

sequence u(t) into a complex function U(z). Therefore, the Z-transform process is 

an operation on the input signal. This transformation to the z-domain allows the 

analysis of linear time-invariant discrete time systems to be performed with relative 

ease. 

If u(t) is to have a z-transform, then the magnitude of U(z) must be finite. We now 
define the region of convergence (ROC) to be the set of all z in the complex z-plane 
for which the magnitude of U(z) is finite. Representing z in polar form, we require 

that 

I U(z) I= Ilu(t) z't 1 s1I u(t) Irt 
t=o t=o (4,2) 
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For the sums of Eq. (4,2) to be finite, we must satisfy the condition Iu(t)I S MRt for 

tS0. The series will converge outside a circle of radius R. On substituting these 

bounds into Eq. (4,2), we obtain 

00 00 

.d1 
u(t) z't 15 MRt r 2: *t ] 

t=o t=o (4,3) 

We now observe that the sum in Eq. (4,3) is finite if and only if R/r < 1, that is, 

Eg4.1 converges absolutely for all z in the ring of convergence R< W. 

Im z 

Re z 

\\\ 

Figure 4.2 Region of convergence - IzI >R 

In summary, for causal sequences the ROC is exterior to a circle passing through 

the pole farthest from the origin in the z-plane. Also, no poles of U(z) can occur 

within the ROC since the Z-transform does not converge at a pole. If the sequence 
is also stable, then all poles lie inside the unit circle and the ROC includes the unit 

circle. 
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The time delay property of the Z-transform is very important to the interpretation of 
TF models. The delay theorem for causal sequences can be expressed as 

Z[U(t-k)]=Z' kU(Z) +Z 
k 

2u(m)z"m 
, k>=0 

m=-k 

where k is an arbitrary delay integer. 

(4,4) 

This property is useful when considering a system with nonzero initial conditions. 

For the case when u(t) = 0, t<0, that is, for zero initial conditions we obtain 

Z[u(t-k)]-z* kU(z) 
(4,5). 

This property is used extensively to transform difference equations to the z-domain 

when the initial conditions are zero. 

From the definition of the unit-impulse function, we can write that 

Z [S(t)] =1 ROC : (zl>=0 (4,6) 

Since Z [S(t)] is independent of z, the ROC is the entire z-plane. It can be shown 

that since Z[S(t)] =1, that is, U(z)=1, then the unit-impulse response of a discrete 

system can be obtained by finding the inverse Z-transform of the system transfer 
function. The three basic methods that can be employed to recover the original 

sequence from its Z-transform are : 
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1. Complex inversion integral. 

2. Partial-fraction expansion. 
3. Inversion by division. 

Since the complex integration method is the most general method and essentially the 

same as the partial-fraction method, our analysis will focus on the application of the 

method of residues for the evaluation of the complex inversion integral to get the 

unit-impulse response of a TF model. 

The Z-transform inversion integral can be derived from 

U(z)= Z[ u(t)] =E u(t) zt 

and using the Cauchy integral theorem from the theory of complex variables. 

Multiplying both sides by zm-1 and then integrating around a closed contour in the 

z-plane, it follows that 

fU 
(z) z'n'1 dz =f 

lu 
(t) zm't'1 dz 

cc n=o (4,7) 

According to the Cauchy integral theorem, if the integration path is within the ROC, 

and if the ROC includes the unit circle, the series u(t) is absolutely convergent. It is 

then valid to interchange the summation and integration, yielding 

U (z) zm«l dz =1f u(t) zm't'1 dz 
c n=0 c (4,8) 

If the path of integration encloses the origin, then, according to the Cauchy integral 
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theorem, the integral on the right side is zero except for m=t, where for this case 

the integral reduces to 2nj. We finally obtain the Z-transform inversion integral 

u(t) =Z'1[ U(z) ]= 
2rzjý 

U(z) zt'1 dz 
c (4,9) 

Equation (4,9) represents a contour C, within which U(z) is analytic; That is, let 

the poles of the system, pi, be inside the closed contour C. For rational Z- 

transforms, the contour integral given by Eq. (4,9) can be evaluated using Cauchy's 

residue theorem, which is a fundamental result obtained from complex variable 

theory. First define UO(z) as a rational function with the denominator expanded in 

a product of pole factors 

Uo(z)=U(z)zt"1 _ 
N(z) 

N 
JJ(z 

- pi )m' 
1=1 (4,10) 

where N is a positive integer representing the total number of poles and mi is the 

pole order. Then by the residue theorem we obtain for poles inside the contour of 

integration. 

N 

U t>= O 
1=1 z-pI 

where for simple poles, that is, m=1, the residue of U0(z) at pi is given by 

Reps[U0 (z) ] =i m['(z-pt) Uo (z) ] 
z= 

(z- pi) Up (z) I2=p, 

For an mth-order pole, (m =2,3,... ) the residue is given by 

(4,11) 

(4,12) 
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m -1 
Res [Uo(z)=(mil): lim 

dm-1[(z-Pi)m 
Uo(z)l 

Pi z--) P, dz 

1 dm- 
1 

m-1 
[(z'Pi)m Upýz))lz=Pý (m-1)! dz 

(4,13) 
For the poles of Uo(z) outside the contour of integration, the sum of the residues of 

UO(z) is given by 

N 

u(t)=" I Res [Uo(z)] t<0 
1=1 z=Pl (4,14) 

It should be noted that for the case where Uo(z) has a simple pole at the origin 

when t=0, u(0) is determined independently. We also note that the terms in the 

inverse Z-transform are determined by the poles of the transform function, with the 

zeros affecting only the magnitude of the terms. 

4.3 Z-Transform Analysis of TF Model 

A general form of TF model can be derived as 

NM 

Y(t)= ai Y(t-i) +Ib, U(t-j) 
i=i J_o (4,15) 

Rearranging the above equation: 
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NM 

Y(t) -[ ai Y(t-i) I b, U(t-j) 
i_i J=O 

Employing the Z transform to both sides 

(4,16) 

Z[Y(t)- (al Y(t-1)+a2Y(t-2)+... +aNY(t-N)]= 
Z[bo U(t) + bl U(t-1)+b2 U(t-2)+... bMU(t-M)] (4,17) 

We assume 

A(z) Y(z)= B(z) U(z) 

Where 

A(z)= 1- alz' 1- a2z' 2 aNz'N 

B(z)=bp+blz'1+b2z'2+... + bMz'M 

Let 

H(z) = 
Y(z) 

_B 
(z) 

Mz-Az 

M 
2: b' Zt 
i=o 

1- 
2a, 

z- 
l_i (4,18) 

Y(z) = H(z) U(z) (4,19) 

H(z) is the transfer function of rainfall and runoff. 
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As an example case, a TF model from the River Asker in the Wessex region is 

used to illustrate the Z-transform analysis. 

TF(2,3) for River Asker is as below 

Flow(t) = 0.9709f1ow(t-1)-0.1716 flow(t"2) + 

1.1116 rain(t-1) + 0.8092 rain( t"2)+2.0554 rain(t. 3)+0.9915 rain(t. 4) 

To get 
Flow(z) = H(z) Rain(z) 

Applying the Z-transform to both sides, we get 

A(z)= 1- (0.9709 z 'I. 0.1716 j-2 ) 

B(z)= 1.1116 z' 
l+0.8092 Z-2+ 2.0554Z-3 + 0.9915z' 4 

So 

H(z) _(1.1116 z" 
l+0.8092 z' 2+ 2.0554Z* 3+0.9915i-4)/ 

[1" (0.9709 z". 0.1716 z'2 )]. 

The excitation of y(t) by a unit-impulse sequence yields the unit-impulse response 

h(t) of the system. Since H(z) is in the form of a rational function with real 

coefficients (ratio of polynomials ), h(t) is of infinite duration. 

Now to determine the inverse Z-transform of the function. 
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Let C(z) = A(z)-1, then 

C(z) = 1/( 1- (0.9709 z1-0.1716 z-' )) 

= 1/[S (z-'-ßl) (z-'-ß2» 

= z2 /[S ßl ß2 (z- 1/ß1)( z- 1/ß2)l 

where (31=4.304, ß2=1.354, S= 0.1716 

B(z) = (1.1116 z3 + 0.8092 z2+ 2.0554z + 0.991S)/z4 

H(z) =(1.1116 z3 + 0.8092 z2+ 2.0554z + 0.9915)/ 

[z2 S ßl ß2 (z- 1/ßl)( Z. 1/ß2)l 

H(z) has 3 poles (0,1/01,1/02). By the residue theorem, 

h(t) = Res [H0(z)] + Res [ H0(z)] + Res [H0(z)] 
z=0 1 2=U 

ßl Z_ 
ß2 

The result is a complicated expression and is omitted here. The impulse response 

of the Asker model is shown in Figure 4.3. From the figure we can observe that 

the TF model for the river Asker is a stable and physical realisable model. The term 

physically realisable means a stable TF model with no negative or fluctuating 

impulse response. In the next section, we are going to discuss the situation where 

unsatisfactory TF models for the rainfall runoff process can be identified. 

z= _ 



CHAPTER 4 TF MODEL ANALYSIS 97 

River Asker 

0 
I"I 

10 15 

Time Steps 

20 

Figure 4.3 Impulse Response of River Asker 

5 

4.4 Unsatisfactory TF Model for Hydrology 

The response of a linear system like the TF model is uniquely characterised by its 

impulse response function. If a system receives an input of unit amount applied 

instantaneously (a unit impulse) at time t, the response of the system at a later time 

t is described by the unit impulse response function u(t-r); t-ti is the time lag since 

the impulse was applied. In hydrology, the TF model is used for the simulation of 

the rainfall runoff process. This distinguishes the TF model in hydrology with one 
in other areas as the impulse response of a TF model should not only be stable but 

also non-negative. Three unsatisfactory cases for hydrological applications are 
discussed below: Unstable, Fluctuation and Negative Response. 
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4.4.1 Unstable 

As we know, the unit- impulse response of a TF Model can be expressed as 

N 

h(t) Res [ H(z) ) Pý ý1 
1=1 z=Pl (4,20) 

where pi = rie4»», that is , ri and ýi specify the magnitude and angular location of 

the poles inside the unit circle and N is the number of poles inside the unit circle. 

As a result, a necessary and sufficient condition that the foregoing summation 

converges is Ipil <1, for i=1,2.... N. Therefore, if the system is causal (i. e. tZ 

0), the system response will remain bounded if the poles of the transfer function are 

all inside the unit circle. Formally, we can state that a linear time-invariant discrete 

system with unit-impulse response h(t) is stable if and only if 

"1 
)I h(t) I< 00 

tý-o (4,21) 

Finally, the stability criterion can be evaluated by finding the poles of the transfer 
function. Notice that since the poles of B(z) are all located at the origin in the z- 

plane, B(z) are always stable. 

A basic model like 

H(z) _ 
(-ß) 

_z (z* 1 
-ß) (z- 

ß) 

(4,22) 
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H(z) = 
ß1 ß2 

= 
z2 

tz -P 1)ýZ--02) (z- R )(z- R) N1 P2 (4,23) 

The transfer function in Eq(4,22) has a real pole and the transfer function in 

Eq(4,23) has two poles which occurs in complex conjugate pairs. If P, and P2 

are both real, it will be illustrated in a later section that H(z) in Eq(4,23) can 

considered as a cascade form (or equivalently as a parallel form ) of H(z) in 

Eq(4,22). As a result, if the characteristics of H(z) in Equation (4,22) and 

Equation(4,23) are known, it can greatly help us to understand other complex 

forms of transfer function. 

Figure 4.4 Unstable Impulse Response for Single Pole TF Model 
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ß= 0.05 
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ý: u 
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Figure 4.5 Unstable Impulse Response for Double Pole TF Model 

Figure 4.4 and Figure 4.5 illustrate the unstable response from two TF Models. 

These results show failure examples of TF models not only in hydrology but in 

other areas as well. 

4.4.2 Fluctuation 

In the hydrological area, it is necessary to not only avoid unstable impulse 

responses but also to ensure that the impulse response is not oscillatory or 

fluctuating. In Figure 4.6 and 4.7, although pole ß is outside of unit circle (or 1/ß 

inside the unit circle) , resulting responses are not satisfactory for rainfall runoff 

simulation. 

10 

ß=-1.2 Im 

Figure 4.6 Stable But oscillatory Response for Single Pole TF Model 
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/11ý 

ßX 0.7 

'Y 
0.9 

10 20 30 40 

Im 

Re 

Figure 4.7 Stable But oscillatory Response for Double Pole TF Model 

The reason for a stable but fluctuating response can be derived from the inverse Z- 

transformation. 

For a single pole TF model 

t 
Ho(z) = H(z) zt-1 =z1 

Zß 

[ Ho(z)] =(ß)t h(t) = Res 
1 z=- ß 

, t=1,2,3, 

It can be seen that for 3<-1 (or 1/ß <0), we have 

h(t) >0 when t= 2i, i =1,2,3, ... 
h(t)<0 when t=2i-1, i=1,2,3,... 

(4,24) 

(4,25) 
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h(t) will be sometimes larger than zero and other times smaller. If ß is positive, 

there will be no fluctuating response function. 

For a double pole TF model 

Ha(z) = H(z) zt-l = 
t+1 z 

) (Z-ßl)(Z-P2 

Let 1/0t = a+ jb, and 1/f 32 =a- jb. The impulse response is then 

h(t) = Res [ H0(z)] + Res [ H0(z)] 
z=a+Jb z=a - Jb 

t+l t+1 

z-a+ jb 
Iz=a+jb+z 

Za- jb 
Iz=a. jb 

1 
=2-b a+jb)t+1 .(a- Jb)t+t ý 

Since 

at jb = retJo 

where 

r2=a2+b2 , 
ý= arctan(ä) 

(4,26) 

we have 
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t 
) h(t) 

j2b 
[r e)(t+1)o . re'J(t+1)o 

Finally, since b=r sin 0, we obtain 

t 
NO =7ro sin [( t+1) ý] 

if- 

h(t) represents a damped sinusoid decaying exponentially to zero. 

(4,27) 

Figure 4.6 and Figure 4.7 illustrated the stable oscillatory response from two TF 

Models. To avoid a fluctuating response, the 0 should be zero, that means there 

should be no complex poles for a stable and non-fluctuating TF model. 

4.2.3 Negative Response 

Negative response is a special case of the fluctuating type. It usually happens at the 

tail of the response function. Although it is very close to the physical realisable 

response, it is still not suitable for hydrological applications. 
4, 

ßx= 1.71 
Im x 

ý 1.65 

5 10 15 20 25 30 

Re 

x 

Figure 4.8 Stable But Negative Impulse Response at Tail for Double Pole TF 
Model 
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4.5 Physical Realisable TF Model (PRTF) 

4.5.1 First and Second Order Pole's Constraints for PRTF 

From the last section it was shown that to achieve a physical realisable first or 

second order TF model, the poles of the TF model must be constrained into the 

positive real axis and 0 is outside (or 1/0 inside) the unit circle. 

0. s 

0.6 

0.4 

0.2 

0.0 0 10 20 30 40 50 

=1.2 

Re 
Qx 

Figure 4.9 A Physical Realisable Response for Single Pole TF Model 

a) Requirment of PRTF Model for 1/ß b) Requirment of PRTF Model for ß 

Figure 4.10 Pole's Location for PRTF Model 
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To understand other complex forms of TF model, it is necessary to analyse the 

cascade and parallel forms of the TF model. It can be shown that the realisation of 

any H(z) can be factored into the realisation of two transfer functions, that is 

N(Z) = HD( Z) NN (Z) = B(z) ( 
A( z) 

) 

M 

I b, z' 
1=0 1 

B(z) 

1 

N 

ý 
la, z" 
t=1 

(4,28) 

Equation(4,28) gives H(z) as the product of the denominator portion of the transfer 
function, HD(z), with the numerator portion given by HN(z). This is referred to as 

a cascade factorisation of the transfer function into the feed-forward portion 

resulting from the zeros ( the numerator) and the feedback portion resulting from 

the poles ( the denominator). 

U(z) 

) 

I/ A(z) 

Figure 4.11 Cascade of TF Model 

Y(z) 

The impulse response function of the TF model can then be derived from two parts 

which are discussed separately. 
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4.5.2 B(z) Part 

B(z) is a finite impulse response linear system. The shape of the impulse response 
is directly decided from the B(z) parameters. Since the poles of B(z) are all located 

at the origin in the z-plane, B(z) is always stable. 

0 2 

Time Index 
Figure 4.12 Impulse Response from B(z) part. 

4.5.3 1/ A(z) Part 

4 

The 1/A(z) is a infinite impulse response linear system as illustrated in Figure 4.5. 

Time Steps 

Figure 4.13 Impulse Response of 1/A(z) 
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If the impulse response of B(z) can be viewed as rainfall and 1/A(z) as the Unit 

hydrograph, the impulse response of H(z) can be viewed as the river flow. It is 

then straightforward to show that to achieve a physical realisable TF model , 1/A(z) 

must be a positive stable TF Model without fluctuation. And if parameters in B(z) 

are limited to positive, a physical realisable TF model can then be achieved by 

combining B(z) and 1/A(z). 

B(i) 

Impulse Response of H(z) 

Time Steps 
Figure 4.14 Impulse Response of H(z) 

Transfer function 1/A(z) can then be transformed into a rational function 

1( -1)N p1 p2 ... pN 
A(z) (zýl-P1)(zl-p2)... (zl - pN) (4,29) 

Since the coefficients of the polynomial of H(z) are real, all the complex poles will 
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occur in complex conjugate pairs, where pi are the non-repeat poles of the rational 
function. 

For distinct poles the function C(z)=1/A(z) is expanded in the form 

C (Z) _ . 1C1 +. 
C2 

+... + CN-1 Z pl Z- P2 Z- pn 
(4,30) 

In this sense, the transfer function of C(z) is given by the parallel form of a 

summation of transfer functions. 

C (z) =1C. (z) 
1 =i 

Time Steps 

(4,31) 

+ 

+ 

n 
C (z) 

Figure 4.15 Parallel Form of H(z) components 
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From figure 4.15, if any of the components in the parallel transfer function is not 

stable then the resulting C(z) will highly likely be unstable or fluctuating. This 

result also hold true when C(z) has repeat poles. 

This result can also be extended from first and second order TF models to more 

complex TF models and a general PRTF model can be derived as : 

H(z) = 

M 
Ya 

i=o 
fj 

(z4. P, )MI 

1=1 

ßle91 and `d ß, ßl > 1.0 

b, Z0 i-0,1,2, ... M 

And 

S- 
1 

-N 
ý 

(. I3l ým i 

i=1 

(4,32) 

(4.33) 

where N is a positive integer representing the total number of poles and mi is the 

pole order. As all the poles are in the unit circle and real, the transfer function 

represented in Eq (4,33) are always stable, non-negative and non-fluctuating. 
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Although the PRTF from Eq. (4,32) and Eq. (4,33) are always stable with no 
fluctuation and negative value, it is not straightforward to estimate the model 

parameters and it is difficult to adjust the model impulse response. A simplified 

model form is used in the following chapters to build a model and to utilise it in the 
following computer simulations. 

b, zý+ 

H (z) - 
1=0 

S (zýl'ß)N 

ß1 E Si and `dß, ßi > 1.0 

and 

S= 
1 

('ß)N 

(4,34) 

(4,35) 

Here, only one pole is used and the experience from the following chapters shows 

that N= 3 is suitable for most catchments. The limitation for all bi z0 has been 

removed as it was found in the following work that in the practical situation it will 

usually not affect the physical relisability of the model and the negative bi can be 

helpful to the adaptivity of the PRTF model. 

As (z-1-(3)N can be written as 

(z-1 .ß )N = (z-ý )N 1N-1 N(-1) (z-1 )N-2 +N (z-) (-ß) +2 ("ß)2 + 

N(N-1)(N-2) .1 N-3 3 + 3! (z )( -ß) +... + 

+ 
N(N-1) ... [N-(k-1)l 

(Z"1)N. k (-ß)k + ... + (-ß)N ký (4,36) 
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and 

k N(N-1) (N-2) ... [N- (k -1) ] 
CN= 

kº. 

So a PRTF can be written as 

NM 

Y(t) ai Y(t-i)+ I b1 u(t-i ) 

i_i i=o 

aý _ -S CN-1 ý- ß) N-i 
=- CNN-1 (- ß) -1 

(4,37) 

ßt E 91 and VO, ßý > 1.0 

Eq (4,37) is written in common TF model format and is easy to appliy in practice. 

4.6 Features of PRTF 

PRTF has common features just as the general TF model. As its poles are 

constrained some new features are very useful for the model identification and 

flood simulation. 

The pole locations of a TF model can influence the stability of the TF model. The 

behaviour of a simple PRTF model can be analysed when its pole changes. In the 

following figures, the influence of the pole's locus on the TF behaviour is 

illustrated. 
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Figure 4.16 Moving Range of Poles for PRTF 

Im 
z- plane 
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Re 

Figure 4.17 Impulse Response from Single Pole PRTF 
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Time Steps 
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Figure 4.18 Impulse Response from Single Pole PRTF with Constant Area 

Time Steps 

Figure 4.19 Impulse Response from Double Pole PRTF 
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Figure 4.20 Impulse Response from Double Pole PRTF with Constant Area 
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Figure 4.21 Impulse Response from Triple Pole PRTF 
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Figure 4.22 Impulse Response from Triple Pole PRTF with Constant Area 

From the figures above, it was found that the pole's position can dramatically 

influence the impulse response of TF model. This feature is very important for 

PRTF model updating in real-time flood forecasting. From chapter 6, it can be 

found that the impulse response of 1/A(z) is 

For N=1 

h(t)=( ß)t 

where t=1,2, ..., 

For Nz2 

,, r+, (N-1+t) (N-2+t) ... (1+t) 
,1 aa \&! = (N-1) ! 

(4,26a) 

(4,26b) 

where t=1,2, ..., 
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For special cases, if N=2 

h(t)=(1+t)(ß)t 
(42 , 7) 

If N= 3 then 

h(t 
(2+t) (1+t) 1 )t 

27 (4,28) 

Let 

k(t)=( ß)ý 

and 

p (t) = 
(N-1+t) (N-2+t) ... (1+t) 

(N-1) ! 

where K(t) is a kernel function and P(t) is a polynomial function. 

So the PRTF model consists of 

(4,29) 

(4,30) 

NO = P(t) K(t) (4,31) 

The impulse response of a PRTF was found to be composed of a kernel function 

K(t) and a polynomial function P(t). K(t) is a monotonic decreasing function and 
P(t) is a monotonic increasing function. The following figures show that both K(t) 

and P(t) are changeable with the poles position and order. It is illustrated that the 

kernel function K(t) is only influenced by the model's pole position while the 

polynomial function P(t) is only influenced by the model pole's order. 
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Figure 4.23 Kernel Function K(t) Change with Pole's Position 
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Figure 4.24 Polynomial Function P(t) Change with Pole's Order 

The values in the above figures have been standardised such that they have the 
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same maximum value. Results show that the kernel function K(t) and the 

polynomial function P(t) have a very similar appearance except in opposite 
directions. 

1.0-, 
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Figure 4.25 Impulse Response with Pole's Position (0=2.0) 
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Figure 4.26 Impulse Response with Pole's Position (ß = 1.2) 
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Figure 4.27 Impulse Response by Small Pole's Order 
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Figure 4.28 Impulse Response by Large Pole's Order 
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It can be observed that when the model pole's order is fixed, the shape of the TF 

model will change with the pole's position. The peak location of a TF model 

impulse response will increase when 1/0 increases. The same result can be found 

when the model pole's position is fixed, the peak location of the TF model impulse 

response will increase when the model pole's order N increases. As the impulse 

response function h(t) is the product of the kernel function K(t) and the polynomial 

function P(t), it can be seen that the shape of a TF model impulse response can be 

changed either by altering the model pole's position or by altering the model pole's 

order. 

I 

More Effective by Pole's Position 

More Effective by Pole's Order 

º 

Time Steps 

Figure 4.29 Impulse Response Sensitivity by Model Pole 

Since the kernel function k(t) has more shape influence on smaller time steps, it is 

very effective for changing the peak of the model impulse response in this area. As 

the peak of the model moves to the right, it become less effective to adjust the 
impulse response by the kernel role. The model pole's order plays an opposite 
function. As the change of TF model pole's order is not a continuous process and 

must be integer 1,2, ..., etc and also the large pole's order is not reasonable for 
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N> 10 ( this means that there is more than ten parameters for the A(z) part), the 

adjustment of the TF model shape by the pole's position is more practical. To 

achieve a desirable result, the pole's order should be kept at a reasonable low order 
(experience shows that N=3 was on the low and not unreasonable side). 

4.7 Summary 

This chapter describes the basic theory of the Z-transform process and utilises 

related mathematical tools to analyse the TF model. It showed that instability, 

fluctuation and negative impulse response are due to incorrect pole positions. A 

new TF model structure (PRTF) is proposed such that all unsatifactory impulse 

response forms can be avoided. The resulting model is easy to identify and always 
in a physical realisable form. 

An important feature of the PRTF is that its impulse response shape can be adjusted 
by directly altering the model pole's position and model pole's order. It was found 

that adjusting the model pole's position was more practical than adjusting the model 

pole's order. The identification of a PRTF will be discussed in the next chapter. 
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CHAPTER 5 

IDENTIFICATION OF PRTF MODEL 

5.1 Introduction 

Identification is the process of constructing a mathematical model of a dynamic 

system from observation and prior knowledge. System identification includes the 
following 

Experimental planning ( Hydrological data selection ) 

Selection of model structure ( The order of TF model ) 

Parameter estimation ( Least square principle) 
Validation (Simulation of process by the model) 

This chapter concentrates on the selection of model structure and model parameter 

estimation. 

5.2 Least Square Estimation 

The identification of a TF model from the rainfall and runoff data is to estimate the 

model structure and parameters. The least-squares method has been used 

successfully in the identification of a linear system model for decades. In the 

present research it was found that the direct application of the least square criterion 
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to the TF model can yield unstable and fluctuating impulse response function which 

are physically unrealisable. This may be due to the nature of the historical rainfall 

and runoff records, which may not be accurate or long enough to provide a 

representative sample population, and all the information essential for satisfactory 
identification. 

To be satisfactory, a system identification method should yield a robust result, in 

the sense that the computed TF model not only can reproduce historical flood 

hydrographs and provide a good prediction of future hydrographs from storm 

rainfall, but also be easy to identify. 

According to Gauss (1809) the principle of least squares is that the unknown 

parameters of a model should be chosen in such a way that the sum of the squares 

of the differences between the actually observed and computed values multiplied 
by numbers that measure the degree of precision is a minimum. To be able to give 

an analytic solution, the computed values must be linear functions of the unknown 

parameters. 

In the general least-square problem, the model utilised relates an observed variable 

yt, the regressand, to p explanatory variables, the regressors u It to upt, all known 

in advance or observed. In dynamic models like the TF model the sample-index 

variable t is time. The model has one unknown coefficient Oi per explanatory 

variable. If the u's for one sample and A's are collected into p-vectors such that : 

ut= I ult, u2ts ... uptJT (5,1) 

e=[e1, e2,... 8p]T 
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then the model is given by : 

yt=f(ut, O) + et, t= 1,2,3, ..., N (5,2) 

where et accounts for observation error (measurement noise) and modelling error, 

since even without observation error few models are perfect. We aim to find the 

value O of 0 which minimises 

NN 
1: 

eý =y (yt f (Ut 
90 ))2 

t=i t=i (5,3) 

for the practically useful case where f(. , .) is linear in the unknown coefficients 

making up 0. That is 

yt =uý 8+ et t=1,2,3,..., N 
, (5,4) 

To make the algebra tidy, collect all the samples yl to YN into a N-vector y, all the 

ut vectors into an Nxp matrix U and el to eN into e, giving 

y=UA+e 

and 

S= eTe =( yT - OTUT)( y-U6) 
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The 8 that makes the gradient of S zero is therefore 

®= [ UTU]-1 UT y (5,5) 

Such a process is a batch algorithm that processes all the observations of y and u 

simultaneously and produces a single estimate of the parameter vector. By contrast, 

the recursive methods process the observations one sampling instant at a time and 

update the parameter estimates each time. Batch algorithms are suitable only when 

estimates are required once and for all or at long intervals, or when computing is 

cheap, since they process the entire record every time. Most real-time applications 

are better met by recursive algorithms since time and computing power are strictly 

limited. In this thesis, the recursive least square algorithm is adopted to estimate 

the TF model parameters. 

The recursive least square algorithm for the ordinary TF model is given by : 

yt = ai yt, l+aZyt, 2+ . . aNyt-N+ b0 ut + blut-l+ ... + bMut-M 

(5,6) 

A 
T ©t 

+1 
= E) 

t+ 
Kt+1 ýy 

t+1 ' Xt+1 E) 
tý 

where 

T1 Kt+i ' Pt Xt+t [Xt+1 Pt Xt+I +1]. 

(5,7) 

Pt+l -ýI' Kt+i XT 
t+i 

l Pt 
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6t= 

aly t-i a2 y t-2 

aN 
bo 
bl 

xt = 
Y t-N 
ut 
u t-1 

bl ° t-m 

The general least square method can't directly be applied to the identification of the 
PRTF model. Some modification had to be made to utilise the idea. 

5.3 Identification of PRTF 

Estimating the parameters of a PRTF is not a linear parameter estimation problem 

and modification is needed to utilise the least square estimation procedure. As the 

parameters for y are controlled by the A(z) part, a two step procedure was adopted 

to estimate the A(z) and B(z) separately. 

5.3.1 Parameter Estimation for A(z) 

The parameters for A(z) are controlled by the root value of A(z) and the correct 

choice of pole locations 0 and the pole order is important. From the last chapter it 

was shown that the shape of the impulse response of 1/A(z) can be described as 

For N=1 

h(t)= (1)t 
(5,5a) 
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where t=1,2,..., 

ForNý: 2 

h (t) _ 
(N-1+t) (N. 2+t) ... (1+t) 1t 

(N-1) ! 
(ß) 

where t=1,2, ..., 

(5,5b) 

The pole order and pole location can both influence the behaviour of the TF model. 
A pole order N of 2 or 3 or more is desirable for the adjustability of the PRTF 

model. But in practice, a TF model will have too long a memory and not be 

parametrically concise. It was found that with the same peak location a large pole 

order N can produced a narrow impulse response function as in Figure 5.1. 

12 

1.0 

ý 0.8 

0.6 

0.4 

02 

0.0 

Pole's Order 

--c- N=2 

14 ---- N=3 

10 20 

Time Steps 

Figure 5.1 A Narrowing Effect by Pole's Order Increasing in Low Peak Time 

The effect is more obvious when the pole location (3 becomes large. A narrow 

impulse response function can accommodate more cases than a broad one. Another 
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interesting fact is that a pole order will not influence the rising limb as much as the 

recession limb. This can explain the situation that some TF models can simulate the 

rising limb very well but the recession limb very poorly. 

1.2 

1.0 

ý. 0.8 
4c a 
51 0.6 

ý 0.4 

0.2 

0.0 
Time Steps 

Figure 5.2 A Narrowing Effect by Pole's Order Increasing in High Peak Time 

Time Steps 

TF Model 

I/A(z) 

Low Pole 
Order N2 

Time Steps 

Figure 5.3 A Typical Phenomenon For TF Model With Low Pole Order 

Good Fit Poor Fit 

The solution to the overshooting recession limb is to select a narrow impulse 



CHAPTERS IDENTIFICATION OF PRTF MODEL 12 9 

response of 1/A(z) compared with the hydrological system to be simulated. This is 

not meant that a higher pole order must be selected. In fact there are two solutions 

which can be adopted. One is to select a high order, Another is to use negative bi 

parameters to force the the recession limb down. As a high pole order is not easy 

to be handled as mentioned before (N-3 is suggested in this thesis), the 

negativity of bi parameters is more practical. This is why the PRTF bi positive 

condition in chaper 4 was removed in the course of practice. 

As the shape change of impulse response is not linear with the ß value and also the 

root value 0 is very abstract so that it is not convenient to adjust the ß value. In 

Chapter 6, a relationship has been found such that the peak time tpeak of the 

impulse response from 1/A(z) is closely related to the root value P. For commonly 

used second and third order A(z) PRTF, we have derived a relationship : 

ForN=2 

tpeak 
In ßý1 

1 

P=e( tpsaic+l ) 

ForN=3 

2 
. 3+ 

2 2_ 
1nß 

(3- 
ln 

4(2 
In t 

peak _-2 

2 tP. k +3 

) 

(5,8) 

(5,9) 

(5,10) 

(tp 
e uk +3tPk +2) 
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When the right tpeak is known, A(z) parameters can be easily computed from 

at = -C 
N-1 (_ ß)-i 

where i=1,2,... N 

At initialisation, tpeak can be roughly estimated as 

tpeak = Ct -M 

where 
Ct ----- Estimated Catchment Response Time 

M ---- The Number B(z) parameters 

(5,11) 

(5,12) 

If there is no idea about the catchment response time, a zero value can used as an 

initial tpeak estimate. That is : 

tpeak Ik=1 
-U 

(5,13) 

An optimisation technique is needed here to achieve an optimum (or least error) 

tpeak value. 

A TF model from the River Tone at Greenham in the Wessex Region is used to 

illustrate the influence of tpeon the PRTF model. 

Rainfall is generated from pseudo random generator and is represented in Figure 

5.4. 
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Figure 5.4 Rainfall Data for River Tone 

From Eq(5,6) - Eq(5,9), a relation between tpeak and ß can be illustrated in Figure 

5.5. It is found that a nonlinear reletionship exists between tpeak and P. tpeak 

approaches zero when ß is increasing and will increase infinitely when ß is close to 

1.0. This is the reason that 0 is not easily adjusted compared with tpeak . 
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Figure 5.5 Relation between ß and Tpeak 

50 

River flow data is convoluted with the unit hydrograph model to give measured 
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flow. 

UH peak flow PO = 20 cumecs; (Refer to page 145 for the detail) 

UH time to peak TO =5 Hrs; 

UH duration of steep recession WO =8 Hrs; 

UH duration of shallow recession BO = 24 Hrs; 

To identify a suitable tpeak for the River Tone model, 11 speak values were chosen 

to depict the influence of speak on the goodness of fit. From Figure 5.6 it can be 

seen that there is a distinct minimum error location and this makes it easy to identify 

the correct tp . Finally speak = 3.7 was selected as the model parameter. 

t peak (hour) 

Figure 5.6 Influence of tpeak on the Goodness of Fit of TF Model 

The square error is derived by 

Square Error =( Fm -FP )2 
i=1 

Where Fm is measured flow and Fp is predicted flow. 
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The simulated flow is illustrated in Figure 5.7. 
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Figure 5.7 River flow for River Tone 

The identified model parameters are : 

(3,5) model with Tpeak =3.7, ß= 1.474 

b(0)=3.2194; b(1)= 0.5330; b(2) = -0.2407; b(3)=2.3829; b(4)=0.8012 

5.3.2 Parameter Estimation for B(z) 

When the A(z) parameters are selected, according to the least square principle, the 

procedure to identify B (z) can be derived as below. 

To simplify the equation, a new variable ý is introduced to replace the original y. 
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N 

t= yt -ýa, Yt., 
ý_i 

N-i 
al = -C N (- ß )" 

The identified system can be expressed as 

C= XO+ e 

or Ct = bo ut + blut. l+ ... + bMut. M 

Parameters for B(z) can be estimated as 

AA 

E) t +i 'Ot+ Kt+i [ý t+j ' XT t+i 
E) t 

where 

+1 ýýt Kt+1 - Pt Xt+t [ Xt+t Pc Xt+l 

(5.14) 

(5,15) 

(5,16) 

Pt+l -ýI' Kc+t xT 
t+l 

l Pc 
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dt = 

bo 

bl 

b2 

bmd 

xt = 

Uc - 

U t-i 

Computation Process: 

A 

u c-2 

U t-M 

Pt 
--+ 

Kt+t 
_, 

e 
t+i -, 

Pt+i 

Initialisation: 

t=1, P1 = 1000 1 

0 
0 

d1 
= 

0 

0 

Kt, Pt and et are updated with the addition of each rainfall and runoff event. 
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Estimate initial tpeak 
-1 

Compute ß value from tpeak 
I 

Solve for initial estimate for ai 
a1 C N'I 

i=1�2,. .., N 

Compute new variable CN 
X-1 

ýYt- Adi a1 Yt-1 

Using Least Square to estimate bi 

Compute residual error 

Determine new tpeak according to error 

New tpeak 
9 

Stop 

Figure 5.8 Flowchart for PRTF Identification 

A flowchart for the PRTF model estimation is presented in Figure 5.8. 

5.4 Transformation of TF Model into PRTF Model 

Many TF models exist in the water industry which need to be transferred into PRTF 
form before using them for real-time robust updating. In principle, PRTF and the 
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ordinary TF model are in the same family except that the PRTF should follow a 

specific law as described in Chapter 4. To identify the PRTF from the ordinary TF 

model, flow data are generated from the TF model by inputing pseudo random 

rainfall data. A modified least square scheme described in last section is then used 

to identify the PRTF model. A case study to transfer TF models from the River 

Asker and River Stour into PRTF models and examination of the differences 

between two types of TF models is presented below. 

The relationship between sampled rainfall data and flow data are illustrated in 

Figure 5.9. River flow data are instanuously sampled while the radar rainfall data 

are averaged over the last hour. 

0 
yt-1: yt 

U result from rain droped 
t+l between [t, t+l] 

yt+l 

º 

t-1 t t+1 

Figure 5.9 Relation between Sampled Rain and Flow Data 
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The time lag influence on the TF model impulse response is presented in Figure 

5.10. 

Unit Impulse b0 *0 

bo=0 

Time Steps 

Figure 5.10 Effect of Time Lag on Impulse Response of TF Model 

River Asker ( at Bridport) TF (3,3) Timestep =1 hr 

yt+1 = 1.3756yt - 0.7086yt-1 + 0.2094yt-2 

+ 0.1183ut + 0.1358ut-1 + 0.1139ut-2 

This model has a1 step time lag. For PRTF identification, there is usually no time 
lag in the model structure because the selected storm for the catchment should be 

evenly distributed. During real time forecasting, the time lag of the PRTF will be 

variable according to the situation. 

First the tpeak is to be estimated. From Figure 5.11 it can be found that tpea _ 
1.5 is suitable. 
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t peak (hour) 
Figure 5.11 Selection of tpeak Value for River Asker 

6 

The impulse response of the River Asker Model is represented in Figure 5.12. 

Figure 5.12 Impulse Responses of Two Types of TF Model for River Asker 
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Figure 5.13 Simulated River Flow from Two Types of TF Models for River 
Asker 

The identified PRTF for the River Asker is 

Tpeak =1.5, ß=1.985 

a(1) = 1.5112 

a(2) =-0.761 

a(3) = 0.128 

b(1) = 1.1105 

b(2) = 0.1318 

b(3) = 1.7423 

The identification results indicate that a good simulation can be achieved by the 

PRTF model. Both the impulse response function and the river flow simulation are 

very close. 

The PRTF model for the River Stour can be derived in the same way. From Figure 
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5.14, tpeak can be found as 2.2 steps. 
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Figure 5.14 Selection of tpeak Value for River Stour 

Impulse response of River Stour model is represented in Figure 5.15. 

o. s, River Stour 

10 
Time Step (5 hour) 

20 

Figure 5.15 Impulse Responses of Two Types of TF Model for River Stour 
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Figure 5.16 Simulated River Flow from Two T pes of TF Models for River 
Stour 

The identified PRTF for the River Stour is 

Model (3,3) with Tpeak =2.2,0 = 1.73 

a(1) = 1.730 

a(2) =-0.997 

a(3) = 0.192 

b(1) = 0.0951 

b(2) = 0.0903 

b(3) = 0.0397 

For the River Stour, the impulse response functions of the TF and the PRTF are as 

close as for the River Asker, and the river flow simulations are very close from 

both models. 
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5.5 Transformation of UH Model into PRTF 

The unit hydrograph is a popular technique widely used in the water industry and is 

the unit pulse response function of a linear hydrological system. First proposed by 

Sherman (1932), the unit hydrograph (originally named unit-graph) of a watershed 
is defined as a direct runoff hydrograph (DRH) resulting from 1 in ( usually taken 

as 1cm in SI units) of excess rainfall generated uniformly over the drainage area at 

a constant rate for an effective duration. The unit hydrograph is a simple linear 

model that can be used to derive the hydrograph resulting from any amount of 

excess rainfall. 

The principles of linear system analysis form the basis of the unit hydrograph 

method. In hydrology, the unit pulse response function in a linear system sense 

corresponds to the unit hydrograph. 

TF Model 
Input Output 

R 
SYSTEM I 

Flow 
Flow 

Unit Hydrograph 
--r-- 

SYSTEM 
input Output 

I ý- TlirPrt rninnff 
rainfall 

i. u w" f u. AvLa 

Figure 5.17 Data Flow in UH and TF 
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As the unit hydrograph is widely used, it would make full use of current resource if 

the transfer function model can be generated from the existing unit hydrograph 

model. As mentioned above, there exists a close similarity between the transfer 

function (which is based on the linear system) and unit hydrograph model as 

illustrated in Figure 5.18. This will forms the basis of the model transformation. 

Unit pulse input 
Discrete pulse 
response function 

-º1 oý 

I 

ý 

n -ýI At I* 

Figure 5.18 Reponse Function of TF and UH 

n 

In NRA Wessex region, the shape and timing of the UH were principally defined 

by 4 model parameters as follows 

P® = UH peak flow 

TO = UH time-to-peak 

WO = UH duration of steep recession 

BO = UH duration of shallow recession 

1 in or cm 
excess rainfall 

Unit hydrograph 
\ of duration At 

These parameters are illustrated in Figure 5.19. 



CHAPTER 5 IDENTIFICATION OF PRTF MODFl, 14 5 

10 
mm 

.:. U 
ý 
ý 
3 
0 

.................................................... 00-1 Time (hr) 
BO 

Figure 5.19 Unit Hydrograph Definition Sketch 

The Unit Hydrograph ordinates are synthesised from these parameters, which have 

the following values for the existing model: 

PO TO w® B® 

cumecs hr hr hr 

Lovington 40 10 10 26 

Halsewater 22 7 10 30 

Chisleborough 20 10 12 25 

Bishops Hull 50 10 12 33 

Greenham 20 58 24 

Pen Mill 53 11 11 38 



CHAPTERS IDENTIFICATION OF PRTF MODEL 146 

0 ý 

a 

0 

b C 

BO 

X 

Time 

Figure 5.20 Ordinates Computation from Unit Hydrograph 

From Figure 5.20, U(x) can be derived as 

Let K= TO/2 +WO 

If x: 5 TO then 

U(x) =x/ TO * PO (5,17a) 

if TO <x : 5K then 

U(x) = PO -(x- TO )/ (K -TO )*PO/2 (5,17b) 

If x>K then 

U(x) = PO/2 - (x -K)/( BO -K )* PO/2 (5,17c) 
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The identified results are (Refer to SOM Division 1973 for the details of the 

catchments), 

Lovington tpeak=6.5,0=1.285, a (1)=2.3341, a(2)= - 1.8160, a(3) = 0.4710 

b(1)=4.3925, b(2)= 0.2849, b(3) =-0.5251, b(4)=0.9885, 
b(5) = -0.0789, model time interval=1 hour. 

Halsewater tpeak=6.5,0=1.285, a (1)=2.3341, a(2)= - 1.8160, a(3) = 0.4710 

b(1)=3.0610, b(2)= - 1.0536, b(3) = 0.3184, b(4)=1.4623, 
b(5) =-0.8030, model time interval= 1 hour. 

Chisleboroughtpeak=6.5,0=1.285, a (1)=2.3341, a(2)= " 1.8160, a(3) = 0.4710 

b(1)=2.1604, b(2)= 0.0161, b(3) = 0.0166, b(4)=0.4938, 
b(5) = 0.0094, model time interval= 1 hour. 

Bishops Hull tpeak=8.1,0=1.232, a (1)=2.4344, a(2)= - 1.9755, a(3) = 0.5344 

b(1)=5.5638, b(2)= -0.1791, b(3) = -1.0869, b(4)= 0.9240, 
b(5) =-0.4000, model time interval=1 hour. 

Greenham tpeak=3.7,0=1.474, a (1)=2.0348, a(2)= - 1.3802, a(3) = 0.3120 

b(1)=3.2194, b(2)= 0.5330, b(3) =-0.2407, b(4)=2.3829, 
b(5) = 0.8012, model time interval= 1 hour. 

Pen Mill tpeak=8.0,0=1.235, a (1)=2.4291, a(2)= - 1.9668, a(3) = 0.5308 

b(1)=3.2271, b(2)= -1.222 4, b(3) = 2.6083, b(4)=-0.1618, 
b(5) = 0.8990, model time interval= 1 hour. 

The following figures are used to illustrate three of the models identified by the 

PRTF model. 
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Figure 5.25 Impulse Response by PRTF 3 

T- 20 
7 

40 60 

Time Step (hour) 

Figure 5.26 Flow Simulation by PRTF 3 

Unit Hydrograph 

PRTF 

1 80 

40 

11 
100 



CHAPTER 5 IDENTIFICATION OF PRTF MODEL 151 

The above figures show some examples from Somerset. It can be observed that the 

PRTF can effectively simulate the UH model process. Although the UH is 

composed of a broken line approximation, the impulse response from the PRTF can 

smoothly simulate the the UH response. As the effective rainfall data are input into 

UH, adjustment is needed when utilising the PRTF derived from the UH in flood 

forecasting. 

5.5 Summary 

The identification of the PRTF model is addressed in this chapter. The order of the 

model is an important item. A higher pole order can produce a narrow shape of 

impulse response from 1/A(z) and can adapt to more situations than a lower order 

one. But a longer memory will be resulted and a compromise has to be made to 

achieve the best result without using a highter order. Another solution is to remove 

the restriction of positive bi parameters in the PRTF. 

A modified least square estimation technique has been proposed. Two iterative 

steps are needed to estimate the PRTF model parameters. As there is no worry 

about unstable and fluctuating response characteristics, the identification of the 

PRTF is much easier than for the ordinary TF model. 

Since many TF models and UH models currently exist in the water industry, case 

studies are provided to illustrate transformation of TF and UH models into PRTF 

models. It was found that the PRTF can successfully replace the TF model and the 

UH model. 
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CHAPTER 6 

ADJUSTABILITY OF PRTF MODEL 

6.1 Introduction 

The impulse response of the TF is critical to the accuracy of the model forecasting. 

As the rainfall runoff is nonlinear and time variant, it is necessary that the impulse 

response of the forecasting model should reflect the current situation in the 

catchment. In this chapter, equations have been derived to introduce 3 new 

adjustment factors which can alter the shape, volume and time of the model. With 

the new adjustment factors, the TF model potentially can perform better than a 

model with a static impulse response as illustrated in chapter 7. The detailed 

considerations apply to both conventional TF models as to the PRTF model which 

this chapter primarily concentrates upon. 

6.2 Main Error Sources from TF Model 

A major problem in the real-time operation of a hydrological model is that the 

simulated runoff generally deviates from the measured runoff at the time of 

forecast. In order to obtain optimal benefit from the real-time runoff measurements 

in the forecasts, some sort of updating of the hydrological model is required before 

the forecast is made. 
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There are several ways of updating model forecasts, including the following : 

a) Error prediction. This most obvious method approaches the problem by 

accepting that a discrepancy exists between the model forecasts and the flow 

observations and trys to anticipate how this is likely to develop in the near future. 

The procedure generally works well in the case where the error has the same trend 
in the near future as the past. It is not very effective in the case of a timing error. 

b) State Update. The catchment runoff ( or some other observable quantity) acts as 

a state variable so that a telemetered observation can be used to update the state of 

the model directly. The formulation of the TF model makes this method very easy 

to apply. Telemetered flows are inserted in place of previously forecast values as 

soon as they become available. 

c) Parameter Update. The parameters in the model are adaptive to recent model 

performance. The Kalman filtering technique has been generally utilised in many 

areas for adaptive updating. The kalman filter has the capacity for dealing with a 

non-stationary process and a simple scalar kalman filter can be described as below: 

X(n+1) = aX(n) + k(n+1) (y(n+1) -c aX(n)) 

k(n+1) = 
pl(n+1) c 

c2p1(n+1) + ß, 

pl(n+1) = a2 p(n) +g 
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p(n) = (1-k(n) c) pl (n) 

Where k is the Kalman gain. The scalar kalman filter can only handle the first order 
Markov model (ie a (1,0) TF noise Model). In practice a vector Kalman filter is 

more applicable when the process can be described as a ARMA type process. 
When a Kalman filter is to be utilised in parameter updating, the model paramters 

can be described as a simple random walk process. 

0(k+1) =O (k) +w(k) 

Here the parameters are allowed to vary in accordance with probabilitic laws 

governing the noise process w(k). The problem with the Kalman filter is that it 

requires explicit knowledge of the environment in the form of correlation functions, 

state space models or possibly even probability density functions. In many 

situations such functions are unknown and/or time-varying. An adaptive filter is a 

means of realising an optimal estimator in some of these situations. The explicit 
knowledge' is replaced with a requirement for a second input sequence, known as a 

training or desired input. Three commonly utilised adaptive filters are Recursive 

least squares, Stochastic gradient methods andSelf-orthogonalising algorithms. 

Cluckie and Harpin (1982) investigated many adaptive schemes and found it was 

very difficult to apply them to flood forecasting models as there was not enough 
time updating steps available for the models. A simple approach was proposed by 

Cluckie and Smith (1980) and further developed by Cluckie and Owens (1987) as 
described below. 

This approach aims at updating the percentage run-off represented by the model. A 

real-time correction factor, delta, scales the rainfall parameters of the model to 

match the model's steady-state gain with the event percentage run off in the 
following manner: 
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Yt+1= alYt + a2yt. 1 +... +apyt. p + 

At(boUt+1 + blut + b2ut. i +... bqut. q) 

Where 

µ) y` (alyc-1+a2yc-2 + ... + apyt-p) 
0t= ýt + (1- btut-1 + b2ut-2 + ... + bqut-q 

0: 5 µS1 is a smoothing factor. 

Such a procedure performs quite well in some applications and the initial delta is 

important which depends on the hydrologist's experience. Usually it can set to 1.0 

if the catchment conditions are unknown. It has been found in some cases, that the 
delta utilised to update the percentage runoff has a detrimental effect. This is 

because the delta is effectively used to modify the MA part of the model. In some 

cases, the MA parameters are quite small even equal to zero or become negative 

which prohibit the usage of delta in such situation. 

It is not easy to say which approach should be adopted in the real time flood 

forecasting in general terms. As the TF model is primarily used in this thesis, we 

only analyse how to update the model to correct the forecast deviation. 

The TF model is a linear time-invariant system, while rainfall runoff is a class of 

nonlinear and nonstationary system. There are many factors which influence the 

catchment response. It has been shown that the parameters governing the transfer 
function will thus differ for various magnitudes of input and different time steps. 
The following figure shows that in the same catchment there exists many unit 
impulse response functions. 
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a. Fast Response 
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b. Medium Response 
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Figure 6.1 Differences of Catchment Unit Impulse Response Shapes 

Figure 6.1 shows the catchment responses are different with different storm type 

and catchment condition. Sometimes it is fast while sometimes slow. 

a. High Response 
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H 
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Time 

Figure 6.2 Differences of Catchment Unit Impulse Response Volumes 

Figure 6.2 shows the catchment responses have different volume responses. If the 
catchment is very wet, there will be more production of river flow and vice verse. 
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Figure 6.3 Differences of Catchment Unit Impulse Response Times 

Figure 6.3 shows the catchment responses have different timing variations. If the 

storm is located on the up per part of the catchment, the response will be delayed. 

The main error source from a model is that a static model can only simulate one 

type of catchment response and the forecast can only work well if a similar event as 

the model calibration event happens. The error caused by three types of impulse 

response can be illustrated in the following figures. 

Q 
1 

Volume Error AQ = Qmes -Qsim 

Time 

Figure 6.4 TF Simulation Error by Incorrect Impulse Response Volume 
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The forecasting error caused by incorrect impulse response volume has a convex 

curve if the catchment is very wet or has a concave curve if the catchment is very 
dry. 

Q 
ºMeas ýn- 

I/ \ 
Simulated 

-a Tune 

AQ = Qmes -Qsim i 

Figure 6. S TF Simulation Error by Incorrect Impulse Response Shape 

The forecasting error caused by incorrect impulse response shape has a similar 

shape as the sine curve. 

Time Error 
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Time 

Figure 6.6 TF Simulation Error by Incorrect Impulse Response Time 

The forecasting error caused by incorrect impulse response time also has a similar 
shape as the sine curve. 

Shape Error 

Simulated 
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During real-time forecasting 

Flow 
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Measured Flow 

Shape Error ? 
Volume Error? 
Time Error ? 

Simulated Flow 

Now 
Figure 6.7 Real Time Forecasting Error 

lime 

The task of updating flood flood forecasting system is to select the right unit 
impulse function for the actual event. This means that the parameters of the model 

must be able to change. The next chapter will the deal with error sources illustrated 

in Figure 6.7. 

6.3 Adjusting PRTF Model Impulse Response 

Many researchers have investigated ways of updating the parameters in the TF 

model. The commonly used way is to use real-time filter theories to estimate new 

parameters from the recent observations. Cluckie and Harpin (1982) investigated 

many adaptive schemes including Kalman filters and found it was very difficult to 

apply them in real time flood forecasting system as there was not enough time steps 

and hence information to update the model parameters and it was likely that the 

system would become unstable or fluctuating. 

With the PRTF model in porticular, it is possible to derive an adaptive TF model 

which is easy to update and can be updated robustly. Generally speaking, the 
impulse response H(z) from an adaptive transfer function can be written as : 
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H(z)-F(a, ß, T, z) (6,1) 

where 

a -- Volume factor 

y -- Shape factor 

T -- Time factor 

Each factor can only influence one aspect of the TF model. One of them can cause 

the TF model to become unstable or fluctuating. By adjusting these three factors, it 

is possible to make the TF model more accurate than the static TF model. 

The general identified PRTF is 

N 

y(t) =Ia, y(t. i)+ 
1=1 

M 

I b, u(t-i ) 
i_o 

aý _ -S CNN-1 (- ß) N-1 Cý-1 (ß) -t 

0(=- 91 (Real) and 0>1.0 

(6,2) 

In real-time forecasting, it would be convenient to use the forecasting form of the 

TF model where the model parameters will change with catchment conditions and 

storm type. The forecasting form of the TF model is as : 

NM 

Y(t) _1 Y(t-i)+ 1 Bý u(t"i ) 
t=i t=o (6,3) 

Ai = ai i=1,2, ... N 
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Bi = bi i=0,1,2, ... M 

ai = -S CN-1 ý- ß) N-1 
CN-1 ý ýß ) ýt 

0 ESR and 0 >1.0 

It is noted that the model parameters ei and bi have been replaced by Al and B" as 

the forecasting model will keep changing is parameters. The identification form of 

the PRTF is the basis for the forecasting form of the PRTF and the parameters 

change will occur around the identification form of the PRTF. 

The following procedures are used to derive the PRTF with adjustment factors. 

6.3.1 Volume Adjust Factor a 

The impulse response of TF model is 

H(z)=B(z)/A(z) 

A straightforward way to change the impulse response volume is to multiply all the 

bi with a constant factor (1+a), a here is the percentage of volume change. A 

volume adjustable PRTF would be as follows: 

NM 

y(t) = 
ý, AI y(t-i)+ I B, u(t-i ) 
i=i t=o (6,3) 

Ai = ai i=1,2, ... N 
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Bý= (1+a) b, i=0,1,2,... M 

aý _ -S CN-1 (' ß) N-t 
=- CN. t ( -ß ) 't 

0e 91 and 0>1.0 

Two TF models from Somerset are used here to test the effectiveness of factors. 

The Yeo Model is a (3,5) TF model (River Yeo at Pen Mill in Wessex Region) with 

identification model form as (ß = 1.235 ) is used to illustrate the effects of a factor 

b(0)= 3.2271 

b(1)= - 1.2224 

b(2)= 2.6083 

b(3)= - 0.1618 

b(4)= 0.8990 with model time interval of 1 hour 

ý .. 
10 20 30 ý0 

Time Step (hour) 

Figure 6.8 Effect of a on Impulse Response of Yeo Model 
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Tone Model is a (3,5) TF model (River Tone at Greenham in Wessex Region) with 

identification model form as (ß = 1.474 ) is used to illustrate the effects of a 

factor. 

b(0)= 3.2194 

b(1)= - 0.5330 

b(2)= -0.2407 
b(3)= -2.3829 
b(4)= 0.8012 with model time interval of 1 hour 

10 20 30 40 
Time Step (hour) 

Figure 6.9 Effect of a on Impulse response of Tone Model 

Results show from Figure 6.8 and Figure 6.9 that the volume adjust factor can 

effectively alter the volume of the TF model impulse response without distorting 

the response shape and time. This indicates that the a factor has been set correctly. 
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6.3.2 Shape Adjust Factor y 

The shape of a TF model is influenced by the A(z) part. To control the shape of the 
impulse response, an index is needed to identify the degree of the shape. The 

shape adjust factor y is used to illustrate the peak location deviation between the 

forecasting form of the PRTF and the identification form of the PRTF. The unit of 

y is the time step of the model and it can be a real number as distinct from integer. 

Forecasting PRTF 

Identification PRTF 
U 
H 
ý 

V C4 
ý ... ý a 

H2 H1 

Figure 6.10 y Factor and Peak Location of PRTF 1/A(z) Part Impulse 

Response 

From Figure 6.10, y factor can be derived from peak location 111 and H2. 
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y= H2 - H1 (6,5) 

As we know that the roots of A(z) (or poles of 1/A(z) ) will control the shape of 

the PRTF, the peak location of 1/A(z) can be derived from the poles of 1/A(z), i. e. 

Y= f (ß) 

The impulse response of 1/A(z) is 

A(z) =S( z-1. ß)N 

S= 
1 

(-ß)N 

(6,6) 

(6,7) 

It has an Nth order pole and according to the residue theorem, the impulse response 

can be derived. 

First define A0(z) as a rational function with the denominator expanded in a product 

of pole factors 

A `'1 
=(' 

ß)N Zt'1 

(Z. 1'ß)N 

N t"1 
zz 

(6,8) 

(Z'R)N 
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where N is the pole order at point 1/0 

where for simple poles, that is, N=1, 

Ao (z) =- 
(z -1) 0 

The residue of A0(z) is given by 

t z 

z=ß 

-ß) Aa (z) 1 

=z` ý1= (ý)` 
F' 

For a Nth-order pole, (N = 2,3, ... ) the residue is given by 

Res [ Ao (z) l= 
(N11)ý 

11md 
NN--1 

1 
[( z- 

1)N 
Ao(z) ] 

z= ý zý 1 dz 0 

Res [ Ao (z)] = lim [(z 

z=ß z-ý ß 

1d N-1 1N zN zt-1 

N (N-1)! dzN'-1 
[(z-ß)(Z. 

1) i z=ß 
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_1td 
N-1 

[ zN-1+c ] Iz (N'1)' dz 

As 

(i( Zk) k-1 

dz 

So 

=KZ 

Res [A (z) ] =(N-1+t) 
(N-2+0 ... (1+t) zt 

1°( N-1) 
Z= b 

1 
Z= T 

(N-1+t) (N-2+t) ... (1+t) 1t 
(N-1) ' 

(ß) 

where t=2,... andNZ2 

The impulse response function of 1/A(z) will be 

h(t)=( ß)t 

where t=1,2, ..., N=1 

h (t) _ 
(N-1+t) (N-2+t) ... (1+t) 1t 

(N. 1)! (ß) 

(6,9) 

(6,1 0a) 

(6,10b) 

where t= 1,2, ..., Nz2 
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if N= 2 then 

if N= 3 then 

h (t) -( l+t) (ß )t 

h(t 
(2+t) (1+t) 

2 

(6,11) 

(6,11) 

Take h(t) as a continuous function, the peak of h(t) can be derived as 

dh(t) 
dt 

for N=2 

1+ (1+t) In (ß) =0 

1 
t- 

In ß -1 

So given a0 value, the peak time will be ( for N=2) 

ß-1 
tpeak 

in 

If the peak time is given, a desirable 0 will be 

I 

0=e(t peak +1 ) 

(6,12) 

(6,13) 

(6,14) 
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for N=3 

Ti 
d[ (2+t)2 (1+t) 

(1)t l=o 
0 

( 2+t) (1+ t) In (ß) + 2t +3 =0 

t2+(3-Inß)t +2-Inß =0 

Solving the equation we get : 

t= 
inß-3± 

(3-ýnß)2 -4(2-! n 
2 

ý 

) 

As the impulse response is a single peak curve, the positive sign is selected from 

the root result. Given the 0 value, the peak time will be ( for N=3) 

t 
peak = --- ýy --2 InInß)2"4(2- In ) 

(6,15) 

It also possible to derive ß from tpeaý and here 
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ln(3_ 
2t +3 

t2+3t+2 

So a desirable ß will be 

0 -e 

2 tP. k +3 

(tom +3 t1, +2) 

(6,16) 

With the equation derived above, it is possible to derive the shape adjust factory. 

For N=2, the new root corresponding to H2 is ßnew, 

1 
_1 H2_ 

In 
new 

So 

y=H2-H1=1nßnew 1nß 

1 

0 

New ai value will 

1 
7+1n 

new 
e 

I 

I 
)-i a1 =- CN"1 ßnew ). 1 

=-C 
N-1 (- e` 

7 In ß) 

(6,17) 

(6,18) 

(6,19) 

(6,20) 
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0E 91 90>1.0 and y> - 

where i=1,2,... N 

For N=3, the new root corresponding to H2 is ßnew' 

2 

H2 = 
in ßnew 

So 

-3+ (3- 
22 

In ßnew 

2 

-4(2- )- 

Y=H2-H1 

2 

In ßnew 
-3+ 

F(3- 2 
.2 

In ßnew 

2 

)- 

1 
In ß 

3 
Illßnew 

I 
) 

(6,21) 

(6,22) 

3 
Inßnew 4(2- 

Inß-3+ 
(3-Inß)Z-4(2-Inß 

2 

It can be derived as 

1nß _2 
2yr +3 

new 
yr +3tV+2 

ý 

) 

-� 
) 

where 
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Vr=Y + 

So finally 

nß-3+ 
(3-lnß)2-4(2-nß) 

2 

2W+ 3 

=e 
(W2+31y+2) knew 

New aj value will 

8ý _ -C N. 
i ( ßnew ). i 

2yr+ 3 

NRnew =e 
tW=+3W+2> 

V=Y + 
1n2 

2: 
ß-3+ 

(3-1nß)2-4(2-1nß) 

2 

ßE 9t, 0>1.0 

2 
-3+ (3-ýnß)2-4(2-In 

3 

2 

1 

) 

(6,23) 

(6,24) 

Now, the Yeo Model is used to illustrate the effect of the y factor. 
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River Yeo at 
Pen Mill 

0 
Time Step(hour) 

Figure 6.11 Effect of y factor on Impulse Response of Yeo Model 

As we found in Figure 6.11, the peak of the impulse response can be adjusted by 

the y factor. One problem here is that the y factor also alters the volume of the 

impulse response and conflicts with the a factor. To overcome the impulse area 

change, it is necessary to modify Bi parameters at the same time in order to 

preserve the orginal impulse area and hence the mass balance of the system. 

AREA 1 
"___.... _1 -(1-R 

)N 

eins 1 

(6,25) 

ßl )N 
new 
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The Bt in Eq (6,3) will be 

Bi=(1+a) 
AREA 

AREA 2 
b1 1=0,1,2,... M 

=(1+a)[ 

Or it can be simplified as 

1- 

1- 
ß 

_1 
ßnew 

N I b1 

ßnNw(ß-1)N 
Bý- 

NN 
(1+a)bý i-0,1,2,... M 

0( new 
1) 

For N=2 the shape and volume adjustable forecasting PRTF will be 

NM 

Y(t) = 
JAI 

Y(t-i)+ Bi u(t-i) 
t_i 1=o 

Ai = al i=1,2, ... N 

(6,26) 

(6,27) 

(6,28) 

B =ßnew(ß. 
l)N 

(1+a)b i=0,1,2,... M 1ßN( 
ßnew - 1) N1 

1 

1 
ý-1 ai = -CN. 

i ý- 
new 

). i 
=-CN-i i- e( 

7+ In 
) 
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1 
1 

ß 
new 

=e 
In 

(3E91, ß>1.0and y> - 

(6,29) 

i-0,1,2,... M 

(6,24) 

For N=3 the shape and volume adjustable forecasting PRTF will be 

NM 

Y(t) _ At Y(t-i)+ I Bt u(t-i ) 
t=t t=o 

Ai=ai i=1,2, ... N 

B_ 
ßneN 

w(ß"1)N (1+a)b 
' RN ( ßnew 1)N 

i 

ai =- 
N-1 ( ßnew ). i 

2w+3 
'anew _e 

(W2+3yr+2) 

V--: Y + 

0 E9t, 0 >l. o 

2 

2 23 

Inß-3+(3- Inß) 
4(2- 

In 

1 
In ß 

2 

- 

-3+ (3- 

ýnß)2-4(2- 
1nß) 

2 
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Two models from the River Yeo and the River Tone are chosen to illustrate the y 
factor. 

River Yeo at 
Pen Mill 

10 20 30 40 50 
Time Step (hour) 

Figure 6.13 Effect of y factor on Impulse Response of Yeo Model 
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Figure 6.14 Effect of y factor on Impulse Response of Tone Model 
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The results show from Figure 6.12 and Figure 6.13 that the Shape adjust factor 7 

can effectively alter the shape of the TF model impulse response without changing 

the response volume and time. This proves that the shape adjustment factor Y is 

correctly derived. 

6.3.3 Time Adjust Factor z 

The impulse response time of a PRTF can be adjusted by a time shift operator 

applied to the rainfall terms. 

NM 

Y(t) = 
JA, y(t-i)+ I B, u(t 
1=1 i=o 

or in another form to shift Bi parameters as 

N M+t 

) 
Y(t) =JA1 y(t-i)+ B 

1-t 
0"! 

1=1 1= t 

where ti = 0,1 92, ... 

(6,26a) 

(6,26b) 

Two models from the River Yeo and the River Tone were chosen to illustrate the ti 

factor. 
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River Yeo at 
Pen Mill 
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Time Step (hour) 

Figure 6.15 Effect of T factor on Impulse Response of Yeo Model 

10 15 20 25 30 
Time Step (hour) 

Figure 6.16 Effect of r factor on Impulse Response of Tone Model 

The results show from Figure 6.14 and Figure 6.15 that the time adjust 
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factor T can effectively alter the time of the TF model impulse response without 

distorting the response shape and volume. This justifies the selection of the r 

factor. 

6.4 Forecasting Form of PRTF Model 

The final form of the adjustable PRTF will be : 

NM 

Y(t) = 
IAi Y(t. i)+ EBIU(t-r-i) 

1=1 i=0 

or as 

N M+T 

Y(t) = 
JA, 

y(t-i)+ IBI -'r 
u(t -i) 

[=1 i=2 

Ai = ai i=1,2, ... N 

B_ 
ßneN 

w(N'1)1V (1+a)b 1 
ßN ( ßnew Ni 

aý _- CN. i (. ßnew ). i 

(6,27) 

i-0,1,2,... M 

ßE91, ß>1.0 
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where ti = 0,1 , 2, ... 

For special cases, if N=2 

1 
1 

7+inß 
ßnew e 

Y> - 

IfN=3 

2yr+ 3 

Onew =e 
(W2+3yr+2) 

W=Y + 

1 
In ß 

2223 
Inß -3+ (3-Inß) -4(2-In 

2 

1nß3+_/(3 ln2 ß)2- 
4(2 

in Y>- 
2 

Some mathematical combinations are : 

) 

) 

for N=2 
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a1 =" C1 
2 
T 

2 a="C2(-R)"2 =' 
i 

ForN=3 

al = 

a2 =- C3 

a3=-C3("ßýý3= 

6.5 Summary 

The impulse response of a TF is critical to the accuracy of the model forecasting. 

In this chapter, 3 adjustment factors are introduced into the PRTF model. Each 

factor is developed to only influence one aspect of the TF model. None of them 

can cause the TF model to become unstable or fluctuating. Computational results 

were satisfactory. These features are important for river flow forecasting and may 
be used as tools for Artificial Intelligence applications in real-time flood forecasting 

systems. 
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CHAPTER 7 

CATCHMENT RESPONSE AND 

FLOOD FORECASTING 

7.1 Introduction 

The rainfall runoff process is a nonlinear and time variant process. To achieve 
better flood forecasting, the impulse response of the TF model should change with 

catchment conditions and storm type. In this chapter, analysis is concentrated on 

the catchment response to the storm type and the adaptivity of the PRTF model. 
Firstly, a distributed kinematic wave model is used to generate runoff according to 

various types of storms and research is carried out to analyse the behaviour of the 

catchment response. Some case studies are used to illustrate how the PRTF can 

cope with the catchment response changing. A RST ( Rainfall Separation Tank) 

model is also developed to improve the river flow simulation process. 

7.2 Kinematic Wave Model Computation 

The St Venant Equation (Refer to Chow, Maidment and Mays 1988 for the detail) is used 

to model the unsteady flow in open channels, it has the form : 

Continuity: 

aA aQ + ax =9 at (7,1) 
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Momentum: 

aV +VaV +g 
a(YA) 

+Vg = g(S-St) at ax A ax A 

where V- flow speed 

x- distance along the channel 

Q- channel flow 

A- channel cross section area 

t- time 

q- distributed flow along the side of the channel 

g- gravity acceleration 
S- gravity slope 
Sf - friction slope 

(7,2) 

The Saint-Venant equations have various simplified forms, each defining a one 
dimensional distributed routing model. The simplest distributed model is the 

kinematic wave model, which neglects the local acceleration, convective 

acceleration, and pressure terms in the momentum equation; that is, it assumes S= 

Sf and the friction and gravity forces balance each other. 

The kinematic wave model is defined by the following equations. 

Continuity (The same as the original form): 

aQ aA 
ax + at (7,3) 
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Momentum: 

S =Sf 

The momentum equation can also be expressed in the form 

A=cc Qß 

where 

a& Pare coefficients. 

where 

(7,4) 

(7,5) 

The kinematic wave method has been applied to describe flow over planes, as a 

model of the rainfall-runoff process. In this application the lateral flow is equal to 

the difference between the rates of rainfall and infiltration, and the channel flow is 

taken to be flow per unit width of plane. 

The kinematic wave model of the rainfall-runoff process offers advantages over the 

unit hydrograph method in that it is a solution of the physical equations governing 

the surface flow, but the solution is only for one-dimensional flow, whereas the 

actual watershed surface flow is two-dimensional as the water follows the land 

surface contours. As a consequence, the kinematic wave parameters, such as 
Manning's roughness coefficient, must be adjusted to produce a realistic outflow 
hydrograph. Eagleson(1970), Overton and Meadows(1976), and Stephenson and 
Meadows(1986) present detailed information on kinematic wave models for the 

rainfall-runoff process. 

The Saint-Venant equations for distributed routing are not amenable to analytical 

solution except in a few special simple cases. They are partial differential 

equations that, in general, must be solved using numerical methods. There are two 

popular methods: finite difference (FD) and finite element methods (FEM). Finite 



CHAPTER 7 CATCHMENT RESPONSE AND FLOOD FORECASTING 185 

difference methods are found to be discrete techniques wherein the domain of 

interest is represented by a set of points or nodes and information between these 

points is commonly obtained using Taylor series expansions. In contrast, the finite 

element method employs piecewise continuous polynomials to interpolate between 

nodal points. Although points or nodes play a role in finite element theory, the 

emphasis is directed more toward the interpolation functions. The FEM possesses 

considerable advantages when used to solve highly spatially dependent problems 

and is less efficient in solving time dominated problems. Conversely, the FD 

method only approximates complex spatial boundaries but excels in solving 

essentially time dependent problems. The finite difference method is adopted here 

to solve the partial equation. 

The fundamental concept encountered in this form of approximation theory is that 

the domain of solution of the given partial differential equation is first subdivided 

by a net with a finite number of mesh points. The derivative at each point is then 

replaced by a finite difference approximation. Alternatively, one can visualise this 

discretisation procedure as the replacement of the solution of the partial differential 

equation with a polynomial and the differentiation of this polynomial. 

The finite-difference form of Eq(7,3) can be expressed as 

ý+1 
. 

+l AJ+1 _AJ gJ+l + qJ 1+1 i 1+1 1+1 
_ 

I+1 1+1 

Ax + At 2 

Eq(7,4) can be expressed as 

Aj+l =aý +1 ýß 1+1 1+1 

(7,5) 

(7,6) 
Ai+1 = a' ( 

q, 
+1 

)ß 
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Figure 7.1 The Grid used for Numerical Solution by Finite Differences 

Eqs (7,6) is substituted into (7,5) to obtain, after rearranging, 

ý+1 j 
At ý+a ý+i)ß - 

At 
Qý+i + a(Qi+i)ß + At ( 

gj+i + qi+i ) Oz +i -x2 

(7,7) 

This equation has been arranged so that the unknown discharge is on the left-hand 

side, and all the unknown quantities are on the right-hand side. It is a nonlinear 

equation, so a numerical solution scheme such as Newton's method will be 

required. 

The known right-hand side at each finite-difference grid point is 

J+1 J 
C_ ex �J+1 + a(Q1+1)ß + At ( 

qt+1 2 pt+1 

(7,8) 
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From which a residual error is defined as 

ý+1 At +1 +1 ß f (+l ) =AT`t1+1 + a'(41+1) 'C 

The first derivative of error is 

At 
+ aß (Qi+i)ß-1 

(7,9) 

(7,10) 

Using Newton's method(Chow, Maidment and Mays 1988) with iterations k=1,2,. .. 

(`l +1) 
_ (, ýj+lý . 

f(`ti+l1 ýk 

I+1 k+1 1+1 ký 
-'+ f (( i+l)k 

The convergence criterion for the iterative process is 

ý+i < +14+1 6 ý 

where a is an error criterion. 

7.3 Impulse Response from Different Types of Storms 

(7,11) 

(7,12) 

As the kinematic wave model can be used to simulate the rainfall runoff process, 

the relationship between storm type and the catchment impulse response was 

analysed here. 



CHAPTER 7 CATCHMENT RESPONSE AND FLOOD FORECASTING 188 
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ý 

Figure 7.2 Simulated Catchment by Kinematic Wave Model 

The parameters are selected as follows. 

A 0.5 km wide catchment is 5 km long, has a bed slope of 10 percent, and a 

Manning's roughness factor of 0.035. Boundary value and initial value are 

Ql Ii=o = 
Q0 (i) 

Qi, Lo =0( Start of Catchment flow ) 

Manning's equation with P=B, So =Sf, and channel width B is written 

S1/2 AS/3 
Q= 

n P2/3 (7,13) 

which can be solved for A as 



i 
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A_Cn 
P2/3 

)3/5 Q3/S 
ý 

So ß=0.6 
and 

here 

(7,14) 

(7,15) 
a_(ý 

P2/3 
) 0.6 

FSO 

So 

a 
0.035 " 500 2/3 

) 0.6 
0.1 

= 3.2 

To identify a PRTF model from the kinematic wave model, evenly distributed 

random rainfall data was input into the model. The solution is as below. 

PRTF (3,3) model with tpeak = 4.0, 

b(0)=187.1 

b(1)=28.45 

b(2) = -85.9 
Model time interval is 3 minutes. 

... 0 a 

ý ý "I 

10 is 
Time Step (3 minute) 

Figure 7.3 Impulse Response from Kinematic Wave Model 

20 
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7.3.1 Influence of Rainfall Intensity 

To analyse the catchment response to different rainfall intensity, ten storms were 

generated with 10 different intensities. It can be imagined that the catchment will 

respond to the storm intensity as illustrated in Figure 7.3. 

Storm with Hight Intensity 

Storm with Medium Intensity 

I 

Time Steps 

Storm with Low Intensity 

Figure 7.3 Influence of Storm Intensity on Catchment Response 

It is known that a high intensity storm will generate fast response and a lower 

intensity one will generate slow response. As we know, the tpeak parameter in the 

PRTF controls the shape of the impulse response of the TF model, a relationship 

can be therefore derived between the storm intensity and tpeak. 

As flow speed is related to the flow discharge 

v=kQß 

where k- equation parameter related with catchment 
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speak should be a inverse of flow speed v, so 

_L tpeak 
k Qß 

where k, L is parameters related with catchment. 

(7,16) 

Catchment discharge comes from storm rainfall and directly relates to storm 

intensity when the storm is evenly distributed. We assume that 

Q= aI 

where a= constant parameter related to the catchment. 

Substitute Equation (7,17) into Equation(7,16), we have 

tpeak -ýj ýß 

Where c, (3 ------ Equation Parameters 

I ------ Storm Average Intensity 

(7,17) 

(7,18) 

Eq(7,18) assumes for the same catchment with a uniform storm distribution, there 

exists a unique relationship between storm intensity and the response shape of the 

catchment. A diagram is plotted in Figure 7.4 to represent the relationship between 

tpeak and storm intensities derived from Eq(7,18). 
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Figure 7.4 Idealised Relationship between Storm Intensity and tpeak 

To verify the correctness of Equation (7,18), several intensities were tested to 

estimate parameters c&ß and their relationship with tpeak. The result is shown in 

Figure 7.5. 

6" 
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-4 
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200 
-1 
250 300 

Figure 7.5 Y Factor and Storm Intensity 
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From Figure 7.5, it is found that the curve is similar to figure 7.4 and the derived 

equation for tpeak (which is related to the yy factor) is correct. Some examples of 

impulse responses influenced by storm intensities are given below. 

In Figure 7.6-7.7, a comparison is made between the PRTF simulation with and 

without changing the impulse response of the model. It can be seen that an 

observable improvement after altering the impulse response of the PRTF model 

results. 

200 -, 

150- 

% 100. 

50 

Kinematic Wave Model 
Static PRTF Simulation 

T- 

10 
'I 
30 20 

Time Step (3 minute) 

Figure 7.6 Static PRTF Simulation in 20 and 50 mm/hr Storm 

Kinematic Wave Model 
Adaptive PRTF Simulation 

0 
I"I"I 

10 20 30 

Time Step (3 minute) 

Figure 7.7 Adaptive PRTF Simulation in 20 and 50 mm/hr Storm 
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Storm Intensity of 50 mm/hr 

Storm Intensity of 20 mm/hr 

10 15 20 25 30 

Time Steps ( Step interval 3 minutes) 

Figure 7.8 Catchment Response Function in Storm 20 and 50 mm/hr 

It can be seen that the impulse response for 20 mm/hr is flatter than the 50 mm/hr 

rate and the peak is delayed. 

Kinematic Wave Model 
Static PRTF Simulation 

I"I" 

10 20 30 

Time Step (3 minute) 

Figure 7.9 Static PRTF Simulation in 150 and 50 mm/hr Storm 
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Figure 7.10 Adaptive PRTF Simulation in 150 and 50 mm/hr Storm 

10 20 
Time Step (3 minute) 

Figure 7.11 Catchment Response Function in Storm 150 and 50 mm/hr 

It can be found the impulse response of 150 mm/hr is steeper than 50 mm/hr and 

the peak is advanced. 
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7.3.2 Influence of Rainfall Location 

Storm 

a Upper Reach b Middle Reach c Lower Reach 

Figure 7.12 Storm Location on Catchment 

29 
ý a 

Storm at Middle Reach 

Storm at Upper Reach 

Time Steps 

Figure 7.13 Influence of Storm Location on Catchment Response 

The storm location will influence the catchment response as in Figure 7.12 and 

Figure 7.13. Storm centres over the lower rpart of the catchment will generate fast 

response and over the upper reaches a slow response. Two parameters need to be 

modified which are tpeak and time delay i. It can be considered as a two step 
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process (1) Transposition of the impulse response time by time i. (2) Reshape the 

impulse response by tp. 

Time Steps 

Figure 7.14 Transposition of PRTF from the Influence of Storm 
Location 

CG 
ý 
... 0 a E 
ý, 

ti 
Time Steps 

Figure 7.15 Reshape of PRTF from the Influence of Storm Location 

The delay timer is related to the location of storm, so 

T= aloc Lloc (7.19) 

where aloc is parameter from catchment. 
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Parameter y has not got a simple linear relationship with the storm location Lloc. 

We assume : 

Y= bloc L1ocf (7,20) 

The following figures show that the assumption above is true during the kinematic 

wave simulation. 

1200 

1000 y= - 2.22 Calibration Storm i/\- 
r= O Storm at Lower Reach 

ý 800 
ý 
ý a 600 ä 
ý 400 
ý 

200 

48 12 
Time Steps (Step interval 3 minutes) 

1"r 
16 20 

Figure 7.16 Impulse Response of Storm over Lower Catchment 

0 4 8 12 
Time Steps ( Step interval 3 minutes) 

16 20 

Figure 7.17 Impulse Response of Storm over Middle Catchment 
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I 
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Time Steps ( Step interval 3 minutes) 

40 

Figure 7.18 Impulse Response of Storm over Upper Catchment 

7.3.3 Influence of Rainfall Movement 

Storm movements were also very influential in relation to the catchment response. 

Here two storms were generated by the computer to simulate the movement of 

storms on the catchment with one moving up and another down the general 

alignment. 

Outlet 

a Storm Movement from 
Lower Stream to Upper 
Stream 

b Storm Movement from 
Upper Stream to Lower 
Stream 

Calibration Storm 
Storm at Upper Reach 

Figure 7.19 Storm Movement on the Catchment 
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Figure 7.20 Assumed Influence of Storm Movement on Catchment Response 

It can be understandable that a storm may occur close to the outlet of a catchment 

and will have an immediate and 'peaky' impulse response and a storm that occurs 

close to the top end of a catchment will be delayed and produce a more attenuated 
impulse response. The computer simulation indicates that only half of this 

assumption is true. 

Calibration Storm 
Storm Moving Up 

7= 2.16 
T=0 

I" 

10 20 30 40 
Time Steps ( Step interval 3 minutes) 

Figure 7.21 Storm Moving Up 
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Time Steps (Step interval 3 minutes) 

Figure 7.22 Storm Moving Down 

The computation results show that a storm moving down the catchment can 

produce a 'peaky' impulse response though it is delayed. This confirms that the 

storm moving speed as well as storm direction is also an important factor in the 

assessment of storm movement. 

7.4 Flow Simulation from PRTF 

The last section illustrated that the catchment behaves differently with different 

storm characteristics. The impulse response of a TF model should be adaptive with 

the storm changing. The effectiveness of the PRTF in adapting to the different 

storm situation was assessed by some case studies. 

Rainfall and flow data are from Blackford Bridge in the Northwest region. Model 

calibration was carried out using data from 18 Dec 1982. By using the 
identification scheme introduced in Chapter 4, a calibrated PRTF is as below 
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(3,3) model with tpeak=14.7 hour 

b(0)=0.015, b(1) = 0.1895, b(2) =-0.0786, model time interval is 1 hour, 

Three storm events are chosen to illustrate the PRTF runoff simulations. 
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Figure 7.23 Storm Data Event 1 
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Figure 7.24 Flow Simulation by Static PRTF for Event 1 

Figure 7.24 shows a PRTF simulation of the runoff process. It can be observed 
that a large difference exits between the measured flow and the simulated flow. 
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Figure 7.25 Flow Simulation by Adaptive PRTF for Event 1 

Great improvement can be found in Figure 7.25 in the PRTF runoff simulation. 

The impulse response function is changed according to Figure 7.26. 

3.0 

. ý. 
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0.0 

Calibrated PRTF 
Adaptive PRTF 

40 60 80 
Time Step (hour) 

Figure 7.26 Adaptive Impulse Response for Event 1 

Event 1 above comes from 12 Dec, 1985 (Internal Code A3). 

Square Error by static PRTF simulation = 8292 Sqr cumecs 
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Square Error by static PRTF simulation = 2819 Sqr cumecs, with a=0.425, y=- 

1.7 hour, ti =0 hour. 
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Figure 7.27 Storm Data Event 2 
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Figure 7.28 Flow Simulation by Adaptive PRTF for Event 2 

Figure 7.28 shows a PRTF simulation of the runoff process from storm event 2. It 

can also be observed that a large difference exits between the measured flow and 

simulated flow. 
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Figure 7.29 Flow Simulation by Static PRTF for Event 2 

Great improvement can be found in Figure 7.29 in the PRTF runoff simulation. 

The impulse response function is changed according to Figure 7.30. 

Calibrated PRTF 
Adaptive PRTF 

"I"I"I"1 

0 20 40 60 80 100 
Time Step (hour) 

Figure 7.30 Adaptive Impulse Response for Event 2 

Event 2 above comes from 8 Nov, 1983 (Internal Code B3). 

Square Error by static PRTF simulation = 8292 Sqr cimucs 

Square Error by static PRTF simulation = 2819 Sqr cumecs, with a=0.425, y=- 

1.7 hour, ti =0 hour. 



CHAPTER 7 CATCHMENT RESPONSE AND FLOOD FORECASTING 206 

2.0- 

I 

11.0. 

0.0 
0 100 200 

Time Step (hour) 

Figure 7.31 Storm Data Event 3 

Time Step (hour) 

Figure 7.32 Flow Simulation by Static PRTF for Event 3 

Figure 7.32 shows a PRTF simulation of runoff process from storm event 3. It can 

also be observed that a large difference exits between the measured flow and 

simulated flow. 
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Figure 7.33 Flow Simulation by Adaptive PRTF for Event 3 

Great improvement can be found in figure 7.32 in the PRTF runoff simulation. 

The impulse response function is changed according to Figure 7.34. 
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Figure 7.34 Adaptive Impulse Response for Event 3 

Event 3 above comes from 2 Jan, 1982 (Internal Code C3). 

Square Error by static PRTF simulation = 8217 Sqr cumecs 

Square Error by adaptive PRTF simulation = 654 Sqr cumecs, with a=-0.18, 
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y=6.66 hour, ti =4 hour. 

Results show that the model simulation can be greatly improved by adapting the 

model impulse response to the catchment conditions. By adjusting 3 parameters of 

the model, it was found that the PRTF can easily adapt to the new situation without 

causing system instability and fluctuation. Although the PRTF can adapt to the 

different catchment condition and storm type, some factors can decrease its ability 

to adapt. In next section, a rainfall loss analysis is carried out to enhance the 

performance of the PRTF when significant initial rainfall losses occur. 

7.5 RST (Rainfall Separation Tank) to Improve the PRTF Simulation 

It has been found that the PRTF can perform satisfactorily with different storm 

types and catchment conditions. As the total rainfall instead of net rainfall is used 

in the simulation, it can be illustrated that sometimes this can reduce the 

performance of the PRTF. When the rainfall runoff percentage is different, PRTF 

will adapt itself by adjusting its a factor as in Figure 7.34. 

6 

E 

Time Steps 

Figure 7.34 Influence of Percentage of Runoff on Catchment Response 
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Figure 7.35 Rainfall Separation Proportional Loss Method 

In this case, a proportion of the rainfall loss is assumed as in Figure 7.35. In 

reality, the percentage of runoff is closely related to soil conditions , vegetation 

conditions and weather conditions. The net storm rain ( that portion of the total 

precipitation which will appear as direct surface flow) can be obtained from 

consideration of the phenomena of retention, infiltration and overland flow. 

Essentially, in terms of watershed yield ( surface runoff ), one may write a simple 

continuity equation ( see Gray 1970 ): 

Precipitation = Depressional Storage + Evaporation + 

+ Infiltration + Interception + Surface Runoff 

In other words, runoff is the residual of precipitation after accounting for the 

various component losses. In practice, the most frequently considered techniques 

are loss rate methods: e. g. the fixed loss rate (ý - index) method and Horton's 

method. The variable loss rate concept is based on the theory of a limited capacity 
for a given soil type to absorb water by infiltration, the capacity decreasing as the 

soil moisture content rises. Although such threshold effects are clearly important 

on small homogeneous areas, the loss rate approach is less relevant at catchment 

scale. It could be assumed to be constant throughout the storm (b index) as 
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illustrated in Figure 7.36a. to consist of an initial loss and a continuing loss 

rate(Figure7.36b), or to change in the form of a curve( Figure 7.36c). The latter 

may prove to be more appropriate if the curve can be defined. The concept of the 

loss rate curve is the applied hydrologist's extension of the infiltration curve 

Figure 7.36d), originally due to Horton (1940) 

ft=fc +(fo. c) e-kt 
(7,21) 

where ft = infiltration rate at time t, fo = initial infiltration rate, fc = final constant 

infiltration rate. 

(a) Constant loss rate, 0 index 

fo 

(b) Initial loss plus continuing loss 

ft= c+( Ö_ c) ekt 

fc 

(c) Loss rate curve (d) Exponential decay curve of 
infiltration due to Horton 

c 

Figure- 7.36 Variation of the Loss Rate Concept (NERC, 1975) 

The loss rate curve is assumed to include the effects of all forms of loss in addition 

to infiltration. 
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For the convenience of the rainfall loss computation, a three parameter RST 

(Rainfall Separation Tank) is proposed here to modelling the rainfall separation as 
illustrated below, 

Rainfall Seperation Tank 

C- 
Current Level 

a 
H- 
Tank height 

L- 
Rainfall loss ( Infiltration, 
Evaporation .. ) 

Figure 7.37 Initial Condition of RST 

The tank height H represents the capacity of the catchment in absorbing rainfall. 

Rainfall loss L is a constant which includes all losses to rainfall data. L will be 

influenced by soil type and weather condition. Tank current level C represents the 

current catchment condition. When the catchment is dry ,C will be small, 

otherwise C will be large. 

P- Precipitation 

C- 
Current Level 

1I Effective Rain 

0000, 

H- 
Tank height 

IL 

Rainfaloss ( Infiltration, 
Evaporation ... ) 

Figure 7.38 Effective Rainfall Production Procedure from RST 
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When precipitation occurs, the production procedure of effective rainfall can be 

illustrated by figure 7.38. If the precipitation is larger than the loss L, the tank 

level will rise and when the tank height is reached , effective rainfall is generated. 
If the precipitation is smaller than the loss L, the tank level will decrease and can 
become zero if the duration of such storm is long. In reality, rainfall intensity 

varies with time and the tank can simulate the situation by changing its level and 

effective over flow. 

The advantage of the RST model is that it is easy to understand and convenient to 

use in practice. In real-time flood forecasting, the RST will replace the a factor to 

counter the influence of rainfall losses. 

Basic RST Equation is 

C=0 ; Empty tank 

C=H; Tank full; 

So constraint is 

05 C 5H, E(t)z0 

Computation procedure is 

C(t) = C(t-1) + P(t) -L( when P(t) -L5H) (7,20) 

C(t) =H (when C(t-1) + P(t) -L >H) 

E(t) = C(t -1) + P(t) -L-H (when P(t) -L> H) 

E(t) =0 (when P(t) -L : 5H) 
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Rainfall 
. 

SYSTEM 

RST Model 

C, L 

PRTF 

Y, ti 

Figure 7.39 System Composed of RST & PRTF 

Event 4 below comes from 5 Feb, 1984 (Internal Code C6). 

4 ý 

Flow 
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logo 
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Time Step (hour) 

Figure 7.40 Storm Data for Event 4 

Measured Flow 
Static PRTF Simulation 

J-. -1--- "-I 

0 50 100 150 

Time Step (hour) 

Figure 7.41 Static PRTF Simulation 
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An example is provided in Fig. 7.41 of a very poor rainfall runoff simulation by a 

static PRTF model. This was because the catchment was very dry before the storm 

arrived and a large portion of the rainfall had no contribution to the flow 

production. 

80 -1 

ýýý 
9 
340 

20 

0 
0 50 100 

Time Step (hour) 

-v- 150 

Figure 7.42 Adaptive PRTF Simulation 

By adjusting the model impulse response, the flow simulation is greately improved, 

but the result is still not satisfactory. This illustrates that the volume adjustment 

factor a is not always effective in compensating the percentage of runoff changing. 

80 -1 

60- 

. ý. 40. 

20 -a 
0 

0 
-IF 
50 100 

Time Step (hour) 

r -u- 
150 

Figure 7.43 Adaptive PRTF - TANK Simulation of Event 4 
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In Figure 7.43, a RST+PRTF model can simulate the runoff process very 

effectively. This indicates that the RST can perform better that the volume 

adjustment factor a on its own. The following figures show the rainfall data by 

separating them into rainfall loss and effective rainfall. 

3. 

ý 

E v 
C 
vs 

124 

2 ,' 

II 

k. 50 i Rh 
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Time Step (hour) 

3.0 
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.ý 
924 

1.0 

0.0 1 
j 

0 

Figure 7.44 Net Rainfall from TANK model 

II i 

Rain Losses 

1 111211 IM, 

50 100 150 
Time Step (hour) 

Figure 7.45 Rainfall Deduction from TANK model 

If the a factor is kept constant as zero it was found that its effect can be replaced 

by the RST model as illustrated in Figure 7.46. 
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Figure 7.46 Adaptive PRTF - TANK Simulation of Event 4 without a factor 

Computational results show that the RST+PRTF was an effective model system. 

Effective rainfall is computed from the RST model and was input into the PRTF 

model. 

It was found that the square error from the static PRTF simulation = 1134291 Sqr 

cumecs, and the square error from the adaptive PRTF simulation = 11856 Sqr 

cumecs, with a=-0.394, y= 11.2 hour, t =3 hour. When the PRTF was 

combined with the RST model, the square error from the adaptive PRTF simulation 

= 4274 Sqr cumecs, with a=0.019, y=1.77 hour, t=0 hour and tank 

parameters as H =30 mm, C=0.2 mm, L=0.1 mm/hr. It is obvious that the 

RST+PRTF was the best simulation among them. Square error from the Adaptive 

PRTF simulation without the a factor was 4277 Sqr cumecs with y= 1.77 hour 

and ti =0 hour. This shows that the RST can effectively replace the a factor. 
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7.6 Summary 

In this chapter a distributed kinematic wave model was used to illustrate the 

catchment response to different kind of storm type. The catchment response 

behaves differently with storm characteristics. A more intense storm can produce 

fast catchment response compared with less intense storms. The distribution of the 

storm is also important in terms of affecting the catchment response. Results show 

that there exist some general characteristics in the catchment response. This could 

be further implemented in the expert system which can adjust the flood forecasting 

system from the past information, the current catchment conditions and storm type. 

Through the simulation of the kinematic wave model and the data from Blackford 

Bridge, the PRTF has shown the ability to adapt to the variability of the catchment 

response and the result was promising. 

A RST (rainfall separation Tank) was developed which can overcome some 

shortcomings of the pure PRTF and results show a great improvement in the case 

study described. 



PART IV WRIP SYSTEM 
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CHAPTER 8 

WEATHER RADAR INFORMATION PROCESSOR (WRIP) 

SYSTEM DESIGN 

8.1 Introduction 

WRIP ( Stand for Weather Radar Information Processor) is an information system 

which can process the real-time radar information, monitor the catchment condition 

and model the storm and river flow behaviour. The system design is the process of 

creating the specification, or blueprint, used to implement an information system. 

8.2 Components of WRIP 

Commonly an information system integrates five components - people, procedure, 

data, software, and hardware - to produce information by accessing and processing 
data. The five component model of an information system is represented 

graphically in Figure 8.1. The components in the figure are arranged symmetrically 

to denote their equal importance in the system development process. 

Notice that the two left-hand components concern people and the two right-hand 

components concern computers. Both hardware and people are actors - sources of 

activity. Both software and procedures are sets of instructions; software instructs 

hardware, whereas procedures instruct people. Data is the central component of the 
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WRIP information system. It is information that is entered, stored, and accessed 

to answer questions. People enter data, which is stored on hardware. This stored 

data is accessed and processed to generate reports, messages, and displays. 

Figure 8.1 The Five Component Model of An Information System(Eleanor W. 
Jordan 1990) 

The three types of data are 

* input data - data received by hardware 

* data stores - data stored in hardware 

* output data - data generated by hardware 

The design of the system involves the making full use of the database to provide as 

much information as possible to the users. Data sources for the WRIP system are 

represented in Figure 8.2. the WRIP database contains all the information provided 
by weather radar , telemetry raingauges, river flow stations, other weather 
information and materials input by the users (or hydrologists). The system 

should make it easy to allow all components to communicate with each other and 

avoid communication conflict. 
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Figure 8.2 WRIP Data Source 

The system design principles will be described in following sections. 

8.3 User Interface Design 

The user interface design is to specify how the system will appear to the users 
through its reports, screen, menus, and other control mechanisms. Because the 

user accesses the system via the interface, designing an effective user interface is 

crucial to meeting the ease-of-use and ease-of-learning objectives of the system 

quality. 

Window-based user interfaces are becoming a common feature of most computer 

systems, and as a result, users have come to expect all applications to have polished 

user-friendly interfaces. Unfortunately, a user interface that is easy to use is 

seldom easy to build. Some experts estimate that as much as 90 percent of the total 
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effort required to develop a typical window and mouse-based application goes into 

the user interface (graphical user interface or GUI). The X Window system ( Jones 

1988) provides a standard window platform that allows application programmers to 

spend more time improving their Programs and less time porting to new computer 

systems as illustrated in Figure 8.3. 

Figure 8.3 A Window Hierarchy in WRIP 

Root Window 

Window A 

Window C 

Window B 

Window E Window D 

Window G 

Figure 8.4 Window Tree for Fig. 8.3 

Window F 

Window H 
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X organises windows as a hierarchy, referred to as the window tree. The WRIP 

window hierarchy is represented in Figure 8.3 and Figure 8.4. The top window in 

this window tree is known as the root window. 'The root window occupies an 

entire physical screen, and can not be moved or resized. Every window except the 

root window has a parent window ( also known as an ancestor) and can also have 

children (also known as descendants or subwindows). Windows that share the 

same parent are known as siblings. 

The root window of WRIP shows a control panel and a real-time clock as 
illustrated in Figure 8.5. Most of the screen is left blank for further opening of 

application windows. The control panel is composed of a label widget, menu 

widget and push button widget. The most important functions in WRIP are 

classified into five parts: Radar Data, Raingauge data, Flow data, Modelling and 

File management. 

Title WRIP 

Activated Control Panel Fixed Real Time Clock 19: 21: 46 
Thu Jan 24 

1991 
Control 

FUNCTION 

INTRO 
RADAR 
GAUGE 
FLOW 
MODELING 

MANAGER 

EXIT 

PY 
Control 

FUNCTIONS 

Movable Control Panel 

Figure 8.5 Root WRIP Window 
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By clicking a selected button from a control panel, a child of the WRIP root 

window will appear. The user can easily manoeuvre in any window. As the 

children of the WRIP root window support the primary functions, they are 

connected directed with the WRIP root window without crossing each other as 

represented in Figure 8.6. 

Figure 8.6 Children Window of WRIP Root 

For the next level of windows, as some space is needed for graphics, menus are 

placed on the left of each window and space on the right is left for graphics. 

8.4 Database Design 

Database design is the process of specifying how the data requirements for a 

system will be implemented as a data base. Your objectives as you design a 
database are to ensure that it satisfies the data requirements of the users and the 

system quality criteria of functionality, maintainability, and flexibility. 

Transforming a data model into a database is a complex process. 

Figure 8.7 shows the inputs and outputs of database design. Database design can 
be viewed as a three-step process. The first step, conceptual data model modelling. 



CHAPTER 8 WEATHER RADAR INFORMATION PROCESSOR (WRIP) SYSTEM DESIGN 224 

The second step, logical database design, transforms the conceptual data model into 

a logical description of data used by a database management system (DBMS). The 

third step, physical database design, transforms the logical description into a 

physical model that describes how the database will be organised and accessed on 

secondary storage devices. 

Data Requirements 
- Conceptual Data Model 
- Database Transactions 

r 
Database 
Management 
System 

Database 
Design fý-I 

Quality Criteria 

- Flexibility 

- Integrity 

- Efficiency 

i 

Logical and 
Physical Structure 
of the Database 
- Data Elements 
- Records 
- Keys 
- Relationships 
- File 
Organisation 
- Physical 
Records 

Indexes 

Figure 8.7 Database Design(Eleanor W. Jordan 1990) 

At the first step in database design, a conceptual data model is to be set up. 
Conceptual data modelling is a technique for analysing and describing the data 
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needed by the users of a system. In analysing the data, the focus is on 

understanding the conceptual structure of the data. 

RAINGAUGE 

Raingauge-id 
Gauge name 
National code 
NGR x 
NGR y 
Catchment id 

RIVERS 

River id 
River Name 

x(i) 

TF MODEL 

tpcak 
N, M 

a(i) 
b(i) 

Figure 8.8 Conceptual Model for WRIP Permanent Database 
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Figure 8.9 Conceptual Model in WRIP Versatile Database 
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Catchment Grid 

The conceptual data model is built for WRIP as in Figure 8.8 and Figure 8.9. the 

next step was to translate the conceptual data model into a logical data structure that 
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conforms to the rules of the network DBMS used to implement the database. 

During this step, entities are transformed into records, attributes are transformed 

into data elements, identifiers are transformed into keys, and relationships between 

entities are transformed into relationships between records. After the logical and 

physical structures have been specified, they are described in a scheme written in 

the data description language of the DBMS. 

Logical database design constructs describe the logical and physical data structures 

of a database. Four constructs make up a logical data structure: (1) data elements; 
(2) logical records, (3) keys, and (4) relationships. 

A name within a box denotes a data element. A data element represents the smallest 

unit of information defined for data. Data elements, often called fields, correspond 

to attributes, derived attributes, or identifiers in a conceptual data model. A box 

with a label denotes a record. A record is a named group of data elements. A 

logical record corresponds to an entity or to a collection of attributes from one or 

many entities. An underlined data element denotes a key. A key uniquely identifies 

an instance of a record. A relationship is a correspondence between records. 

8.5 Program Design 

Program design is the process of packaging the interface, procedure, and database 

specifications into specifications for Programs. The objective during program 
design is to specify programs that are adaptable and easy to maintain. 

8.5.1 Object-Oriented Programming 

The emergence of object-oriented programming in the late 1980s is one of the most 

significant steps in the history of computing. The ideas behind object-oriented 

computing are now having a profound impact on the areas such as languages, 
databases and artificial intelligence. The recognition of object-oriented computing 
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is a classic example of overnight success after 20 years of painstaking research. It 

was only around 1986 that interest in object-oriented computing became 

significantly more widespread. Since 1986, the renewed interest in object-oriented 

computing has filtered down from research and development to practical 

exploitation. It is now commonplace for industry and commerce to adopt object- 

oriented solutions to their problems. Tools such as Objective-C [Cox86], C++ 

[Stroustrup86], CLOS [DeMichiel87], MacApp[Schmucker86] and Iris 

[Fishman87] are now in widespread use. 

The first principle of object-oriented computing is that of data abstraction. The 

essence of data abstraction is that the programmer is presented with a higher level 

of abstraction over both the data and the algorithms required to manipulate. On 

closer examination, data abstraction actually encompasses two separate but closely 

related concepts : 

i) modularisation, and 

ii) information hiding. 

Modularisation is concerned with the breaking down of complex systems into a 

number of self-contained entities (or modules). All information relating to a 

particular entity in the system is held within that module. Thus a module is self- 

contained and complete description of a part of the overall system structure. In 

terms of computing, this means that a module will contain all the data structures and 

algorithms required to implement that part of the system. This is beneficial as it 

means that there is an obvious place to go to if changes have to be made or 

problems occur. More fundamentally, Modularisation enforces a particular design 

approach whereby the programmer breaks down the problem domain into a number 

of recognisable conceptual entities. This design approach forms the essence of 

object-oriented computing. 
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Information hiding takes the level of abstraction one stage further by hiding the 
implementation details of a module from the user. With information hiding, users 

must access an object through a protected interface. This interface normally 

consists of a number of operations which, as mentioned above, collectively define 

the behaviour of an entity. The user is thus not allowed to sec internal details such 

as local procedures or data structures. This is a major tool in handling complexity 

as it allows the user to abstract over a level of detail in the system. Information 

hiding also supports the development of more reliable Programs by strictly 

controlling the entry points to a module. 

The modules in WRIP are designed according to object-oriented programing as in 

Figure 8.10. 

Other Modules Other Modules 

Private Routine A 

Private Routine B 

Public Data 

Private Data 

N 
ý 

uhlir ftuuntinr A 

Puhlir Rountinc A 

One of the WRIP Module 

Figure 8.10 Object"Oriented WRIP Module 

The public data items in WRIP are sharable to all modules (or Objects ) and they 
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are kept in minimum numbers to prevent interference between different objects. 

The private data items are used by the internal private routines which control the 

data access, management and display. If any other module wants to access the 

private data items, it can only do so by asking the public routines in this module to 

carry out the specific function. In this way, the WRIP system became easier to 

code and convenient to maintain in the future. 

8.5.2 Structure of W RIP Program 

As WRIP is a window oriented system, the application software is based on the X- 

Window system. Although programmers can use Xlib to build applications, this 

library can be tedious and difficult to use correctly. Just handling the window 

manager conventions can require hundreds of lines of code. 

Application 

Widget Set 

Xt Intrinsics 

Xlib C Language Interface 

Network Connection 

X Server I 
Figure 8.11 Programmer's View of the Complete X Window System 

To ease the utilisation of X-Window, the C-language is adopted to use the both high 

level and low level X-Window utilities in graphics as illustrated in Figure 8.11. 
The start screen of WRIP is an input menu interface. The user controls the system 



CHAPTER 8 WEATHER RADAR INFORMATION PROCESSOR (WRIP) SYSTEM DESIGN 230 

performance by selecting a desirable button in the menu. The control module is the 

central part of the system. It is used to manage all the main functions in WRIP. 

Menu System 

Radar Data Raingauge Flow 

Figure 8.12 WRIP Structure 

Forecast 

WRIP can not run in real-time without the WRIP server providing a data source for 

it. Figure 8.13 illustates the communication between WRIP and the WRIP server. 
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Display 
& Modeling 

Control 

Update All Objects 

Figure 8.13 Data Synchronisation System for WRIP 
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The event flag is sent by the WRIP server to inform WRIP that the WRIP database 

has been updated. WRIP takes the event flag, updates its system and then clears 

the event flag for the next step. 

8.5 Summary 

WRIP is a real-time information system. which is used to process weather radar 

information and provide quantitative flood forecasting. A well designed system 

structure, user interface, database and program is crucial for a successful system. 

In this chapter, the system design principle of WRIP is described. A window- 

based user interface is adopted to convenience the using of WRIP. As the system is 

complicated and there is a large amount of data to be processed, an object-oriented 

computing concept was utilised in the WRIP program design. This has been found 

to be a significant improvement to the system development. 
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CHAPTER 9 

APPLICATION OF WRIP IN 

NRA WESSEX REGION 

9.1 Introduction 

The Wessex region is characterised by infrequent heavy rainfalls and has produced 

many of the record British rainfall totals in addition to some of the more infamous 

floods. The continual development of modern telemetry systems and the 

concurrent application of flood forecasting procedures have led to the current 

system being evolved which will be based upon the real-time quantitative use of the 

composite radar network data for modelling purposes. This chapter describes the 

WRIP working environment in NRA Wessex Region and some specific technical 

issues in this region. 

9.2 The Wessex Region 

The Wessex region consists of three river basins each with its own hydrological 

regime varying from relatively rapid response catchments in Exmoor to the more 

sedate Bristol Avon. The increased availability of computers in the mid 1970's led 

to the development of the first predictive models based upon unit hydrograph 

convolution and flood routing. These models are still in use and rely on the 

precipitation input derived from representative telemetered raingauges in the 

catchments. 
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The region is characterised by infrequent heavy rainfalls. Indeed, many of the top 

falls appearing in the United Kingdom record books have occurred in the Wessex 

region: Martinstown, 275 mm in 1955, Lynmouth, 225 mm in 1952, Cannington, 

225 mm in 1924 and Bruton, 225 mm in 1917. In all cases the spatial distribution 

of intense rainfall was small and were it not for the location of gauges within these 

storm cells the true precipitation would never have been known. The 

commissioning of the weather radar at Upavon in 1979 provided the opportunity to 

record these intense rainfall cells. The storm in May 1979, again centred near 

Bruton, was an early example of the value of weather radar with precipitation 

measurements from raingauges underestimating the true fall. 

Figure 9.1 Wessex Region and Weather Radar Coverage 

The gradual introduction of weather radars and the availability of the network 
picture prompted a review in recent years of the existing models. Associated with 
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the availability of increased computing power, the possibility of developing a 

regional model utilising weather radar as the primary precipitation input was 

explored. In 1984, the Wessex Water Authority was embarking on an Information 

Technology(IT) strategy based on integrated river basin management. Wessex 

already had a comprehensive telemetry system for the utility functions of supply 

and sewage treatment, digital maps of the assets and rivers, computer based flood 

models and the network radar product, all accessed within one 24 hour regional 

Control Room at Bristol. 

This strategy was to produce an integrated Water Management System (WMS) 

allowing access to all functions through one computer screen using windows and 

including the facility to extract data from one source (window) and combine with 

data from another (window). Specifically, weather radar quantitative information 

was to be passed into real-time flood models and the forecast products disseminated 

through internal communication networks. Development of the WMS pilot 

concentrated on the Man-Machine Interface and was in association with Software 

Sciences Ltd. 

Privatisation of the industry and the creation of a National Rivers Authority 

required the dismantling of river basin management integration and as a 

consequence, the IT strategy based on WMS had no future. However, the flood 

forecasting aspects; weather radar and flood models, and the development of the 

MMI; are proceeding in cooperation with the Water Resources Research Group at 

the University of Salford. 

As previously described the Wessex region consists of three catchment based 

divisions each with its own particular hydrological regime (see Fig 9.1). The 

region is characterised by infrequent heavy rainfalls and an analysis of the extreme 
rainfall records for the British Isles produces a table of falls that concentrate on and 
around the Wessex region. This phenomenon was publicised by Bootman and 
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Willis(1979) which prompted further research into its cause. Such was the concern 

that the Institution of Civil Engineers Manual for Reservoir Design advises that 

local rainfall analysis should be applied rather than the regional analysis 

recommended elsewhere in the United Kingdom. 

The hydrometeorology results from the interaction of warm moist northerly 

moving thunder cells with the jet stream meeting over the South West of England 

leading to both rapid rain cell development and negligible movement. The impact 

on flood forecasting has been to ensure that any models adopted can recognise and 

cope with intense localised rainfalls. 

9.2.1 BRISTOL AVON 

The Bristol Avon catchment (see Fig. 9.2) is bordered by the Cotswolds to the 

north, Salisbury Plain to the east and the Mendip Hills to the south. 

Figure 9.2 Bristol Avon Rivers 
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Figure 9.3 Existing Data Flow Within Bristol Avon Division 

The River Avon itself rises in the Cotswolds and drains southward picking up 
tributaries from Salisbury Plain then turning westward, collecting tributaries from 

S days 
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the Mendips and draining to the sea through the Avon Gorge west of Bristol. 
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Figure 9.4 Schematic of Avon Catchment Model Network 

The current flood forecasting model was developed for the Bristol Avon catchment 
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by Grimshaw and Wong(1975) and is shown in schematic form in Figure 9.4. The 

drainage system is modelled as a network of nodes connecting various 

subcatchment elements and open channel reaches. Discharging into the head of 

each reach is the flow either from a subcatchment or from another reach. Each 

reach has in addition a subcatchment element discharging into its mid-point, 

representing the lateral inflow. Each subcatchment is modelled using a non-linear 

reservoir lag-and-route rainfall/run-off model, and each reach a Muskingham river- 

routing model. Data collection is by a DEC VS2000 scanning 20 raingauges and 
19 river level outstations as in Figure 9.3. The models have recently been re- 

written to operate on the same Vax VS2000 workstation. 

9.2.2 AVON AND DORSET 

The Avon and Dorset catchment (see Fig. 9.5) has two distinct areas. 
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Figure 9.5 Avon and Dorset Rivers 
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To the east is the Hampshire Avon draining southwards from Salisbury Plain and 

the Stour draining south eastwards. To the west are the Dorset rivers, draining 

south from the Dorset Downs typically fast response chalk catchments. It is in one 

of these catchments where Martinstown is situated where the highest British daily 

rainfall of 275 mm was recorded in July 1955. 

The models adopted for the Avon and Dorset rivers have been the subject of several 

research exercises. Initially developed as unit hydrograph models the current 

versions were developed as transfer-function models with elements of correlation 
for forecasting downstream levels (see Final Report on Flood Forecasting Project 

For Wessex Water Authority - Avon and Dorset Division, 1980 and Cluckie, Yu 

and Tilford, 1989). Bliss (1981) refined the models for real-time updating, but 

manual updating is the current practice. 

Data collection is by a Texas dedicated computer scanning 18 raingauges and 33 

river level outstations. This data collection system was part of the water industry's 

Experimental and Demonstration Facility (EDF). The models have operated on a 

portable Hewlett Packard programmable calculator during the period of system 

development. 

9.2.3 SOMERSET 

The Somerset catchment (see Fig. 9.6) is also divided into distinct regions. To 

the west are the catchments draining Exmoor and the Brendon Hills, very fast 

responding catchments adjacent to the River Lyn scene of the disastrous Lynmouth 

floods of August 1952. Central Somerset is drained through several rivers flowing 

through land below high tide level and reaching the sea near Burnham-on-Sea. 

North Somerset, now in the county of Avon, has a number of small rivers draining 

the Mendip Hills and flowing westwards. 
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Figure 9.6 Somerset Rivers 

The original flood forecasting models for the Somerset division were developed by 

Bootman(1978) based on unit hydrographs and level correlations. Rainfall input 

was derived by a surface fitting algorithm described by English(1978) to allow for 

missing data and to represent areal catchment totals. Biggs(1980) developed a 

system based upon transfer functions and applied a recursive least squares 

recalibration routine. The current models were reconverted to unit hydrographs by 

Bootman and Willis(1979) in order to operate on an Apple II microcomputer. Later 

modifications were added to the models by applying the transfer function approach 

to the embanked watercourses flowing through the central Somerset levels. The 

models have recently been converted to run on a Toshiba T5100 lap-top. The 
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current data collection from 13 raingauges and 8 river level sites is through Datacall 

outstations polled by a fixed Apple Ile masterstation, or by polling Telegen 

equipment as required from the Toshiba T5100. 

9.3 WRIP Working Environment 

9.3.1 Regional Computer and Telemetry System 

The occurrence of intense rainfalls resulting in disastrous flooding in the summer 

months in the recent past; Martinstown, 275 mm in 1955, Lynmouth, 225 mm in 

1952; and prolonged winter floods in October 1960: prompted the newly created 

River Authorities to embark on the development of flood forecasting procedures. 

At this time, techniques were graphical relying on manual observation of rainfall 

being telephoned to the Authority Offices. 

The advent of teletone raingauges and computers in the late sixties established the 

basis for applying better methods of flood forecasting. The requirements to install 

rainfall and river gauges, and training in current metering, to identify water 

resources potential indirectly produced the database of flood records for model 

calibration. Significantly, the floods of July 1968, strengthened the case for 

prepared emergency procedures, including flood forecasting, in the Wessex region. 

The increasing availability of computers in the 1970's, and the associated 
development of better modelling techniques allowed each division to install its own 
forecasting methodology, suited to the catchment, the resources and the staff 
expertise then available. 

Wessex Rivers inherited three entirely different stand-alone telemetry systems. The 
flood forecasting models in use depended entirely upon manual input data gleaned 
from the telemetry systems and other observational data. Prior to the creation of 
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Wessex Rivers in preparation for the formation of the National Rivers Authority, 

the decision to replace the Bristol Avon telemetry with a system based on a DEC 

VAX 3600 computer had already been taken. Proposals were already in hand to 

replace the Somerset telemetry system and the decision was made to use a DEC 

VAX 3600 as the master station for a new Wessex Rivers Regional Telemetry 

System. 

The computer receives information via the Public Switched Telephone Network 

(PSTN) and also by private wires from over 150 outstations collecting data from 

rain gauges, gauging stations, river level sites, pumping stations, sluices, etc. Not 

all are used for flood warning purposes directly but many are used to monitor 

operational situations throughout the river network. Figure 6 shows the general 

outline of the system. 

The computer master station interrogates outstations to obtain present values and 

logged data as well as maintaining a database of the entire system. The information 

is presented from the database on a local monitor which includes graphic facilities. 

The computer is also capable of all archiving required. Information from the 

database is sent to remote PSTN terminal equipment in response to requests from 

those sources and carries out validation of all data received. Information from this 

new telemetry system continues to be manually fed into two of the flood forecasting 

models and this will continue until the new models are commissioned. 

The Bristol Avon flood forecasting model has been rewritten to run on a DEC 

MicroVax II (MVII) computer which is linked in a cluster with the VAX 3600. As 

part of the enhancement of the Bristol Avon system, development of software to 

pass information from the primary database to the MVII is in hand. The two 

computers provide the core of the telemetry flood forecasting system and ultimately 
the MVII will be used to run all flood forecasting models. At that time, a further 

DEC VAX2000 workstation currently being configured by the Water Resources 
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Research Group at the University of Salford will provide the primary access to the 

system. Additionally, the MVII will be capable of running the telemetry in the 

event of a failure of the VAX 3600. 
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Figure 9.7 Computer Network in Wessex Region 

Access to the VAX 3600 is via networked personal computers. The Area offices 

and the Regional Headquarters are to be linked using a megastream system and 

within the Area offices and the Regional Headquarters, all PC's will be networked 

at each location using Ethernet. It will thus be possible to obtain data held on the 

telemetry computers at any Area office as required. 

106 new outstations are being provided serving 30 rain gauges, 40 now gauging 

stations and river level sites, 22 combined rain gauge and flow sites, and 14 
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pumping station sites. These will cover the Bristol Avon and Somerset areas. 
Although the detail of each type of outstation is slightly different, all are capable of 

accepting digital and analogue inputs, displaying present values, dialling out to the 

master station if four high or four low level alarm set points are transgressed and 

retrieving logged data. The amount of logged data varies from 500 events for rain 

gauge outstations to 40 days of 15 minute data for flow gauge outstations. 
Outstations are capable of programming for PSTN setting up from the master 

station or from on site. Mains and standby batteries are provided on all sites. 

In addition, these Servelec outstations are considered to be "intelligent" as logic 

controllers are incorporated in them to control activities on site. At operational sites 

(e. g. pumping stations and sluices) some will be used to control pumping and gate 

control. In addition, consideration is being given to the remote control from a 
Control Room of certain activities on some of these sites. At these locations, 

outstations will be linked to the master station by private wires rented from British 

Telecom whereas all other sites will rely on PSTN. 

The Avon and Dorset area outstations are a relatively new design with similar, 

"unintelligent" capabilities to Servelec outstations and will be retained. However, 

as these are of Delta Technical Services (DTS) manufacture, emulator software is 

being provided on the DEC VAX 3600 to deal with these as if they were Servelec 

outstations. 

The availability of weather radar was looked at enthusiastically by the Wessex 

region as providing the means to track and monitor intense rainfall cells and to 
provide objective answers to the quantitative precipitation forecasting problem. 
Although most of Wessex lay beyond the quantitative limit of the Upavon 

(Wiltshire) radar, the subjective coverage extended to the western boundary of the 

region. The commissioning of additional radars at Camborne (Cornwall) and Clee 
Hill (Shropshire) showed that most of Wessex had some coverage and thus the 
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region became one of the first users of the composite radar product. The 

availability of the composite, and the products ability to infill the unreliable Upavon 

radar area prompted Wessex to embark on a regional based flood forecasting 

system using radar as the primary precipitation data source. 

The technology had advanced sufficiently to make a regional approach feasible. 

The radar images were available on a variety of data access and presentation devices 

from a number of different manufacturers. Stand-alone workstations were also 

appearing on the market. Offerings by Apollo, Sun and DEC allowed multi-tasking 

and high definition graphics through windowing, icons, menus and pop-ups 

(WIMPs). Latterly, the availability of high power lap-top machines from Toshiba 

and Compaq in particular have allowed the processing to go home with the duty 

hydrologist or forecaster for operational convenience. 

The weather radar at Upavon has reached the end of its useful life and a new 

weather radar has finished construction at Warden Hill in Dorset which has 

provided quantitative cover for the whole of the Wessex Region. It is intended that 

the data from this site will be fed into the national network and the networked data 

will be received at the Bridgwater Headquarters directly by the DEC VAX 3600 

computer. This will allow access to radar data on any of the networked PC's 

although it is intended that in normal circumstances one PC will be dedicated to the 
display of radar data. 

As part of the development of the Regional Flood Forecasting System, access to 

radar data in places other than Regional Headquarters and Area offices is being 

provided. This is being achieved using a Toshiba T3200 portable PC which will 
also be able to access telemetry data and ultimately flood predictions via the DEC 
VAX 3600 (see Fig. 9.7). This will allow Duty Hydrologists to access all required 
information via one lap-top computer via any PSTN line allowing far more 
flexibility than is currently the case. This is particularly vital as the Area's manning 



CHAPTER 9 APPLICATION OF WRIP IN NRA WESSEX REGION 246 

levels do not allow for the provision of a Duty Hydrologist in each area which has 

been the practice in the past. One Duty Hydrologist will cover the whole Region 

providing predictions and information to operational staff in all areas. 

The T3200 portable PC is currently only available with a monochrome screen. It 

has therefore been necessary to develop a portable radar display system to allow for 

eight display levels of rainfall and this has resulted in the development of the 

STORM (System To Obtain Radar Rainfall Measurements) system (see Fig 9.8) 

as part of project of WRIP. Ultimately once they are available, it is proposed to 

move towards the use of colour screens on the lap-top PC's and the portable 

displays will also provide direct communication with the real-time forecast models. 

The provision of adequate quantitative radar data throughout the Wessex Rivers 

Area has made the use of radar for direct input into Flood Forecasting Models a 

viable proposition. It is still intended that a weather radar be commissioned in 

Devon which will also cover a significant part of the Wessex Region and the 

security provided by this overlap of coverage will be important. However, the 

models being developed will allow for radar and telemetry information to be 

automatically fed into the models and for predictions to be made. There will 

continue to be a facility to allow for manual editing and input as appropriate. These 

developments will allow for more timely flood warnings to be provided, 

particularly to those areas which are the subject of intense local heavy rainfall where 

the catchments are often very steep with short times of concentration. This will 

allow the provision of flood warnings to areas which currently cannot receive any 

warnings because of the lack of adequate lead time between rainfall and a flood 

occurring. 
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9.3.2 WRIP System Connection 

The WRIP system connection is shown in figure 9.8. The weather radar data, 

telemetry raingauge and flow data are collected in the water authority office. The 

data can either be accessed by the terminal in the office or a portable system which 

can be operated at home or event on a trip by a car. 
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Figure 9.8 WRIP System Connection 
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As the telemetry system is archived by ORACLE software and radar data are 

collected by a radar rainfall data collection software, WRIP server will process data 

from both databases into WRIP database. A WRIP communication process can be 

illustrated in figure 9.10. 
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Figure 9.10 Communication Process in WRIP System 

Outstation data are processed by ORACLE into a ORACLE database. Currently, 

raingauge data and river flow data are needed by WRIP, the output data from 

ORACLE is arranged as a direct access file with each gauge and flow station as one 

record. To ease the access and retrieve of data item, the raingauges and flow 

stations are identified by a unique id code as in figure 9.11. 

Avon & Dorset Bristol Avon Somerset 

101 Raingauge 1 201 Raingauge 1 301 Raingauge 1 

102 Raingauge 2 202 Raingauge 2 302 Raingauge I 

lxx Raingauge xx 2xx Raingauge xx 3xx Raingauge xx 

I Oracle Database 

Storm 
Server 

pSTN Serial Line 

Figure 9.11 Identification Code for Raingauges in Wessex Region 
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9.5 Storm Forecasting in Wessex Region 

The storm forecasting in WRIP is based on the pattern recognition technique. 

Firstly the storm movement is traced by pattern recognition and then a linear 

extrapolation is used to generate the forecasts. 

Pattern recognition is regarded as a basic attribute of a human being, as well as 

other living organisms (Tou and Gonzalez 1974). According to the nature of the pattern 

recognised, we may divide the acts of recognition into two major types: the 

recognition of concrete items (like visual and aural pattern) and the recognition of 

abstract items( like an old argument, or solution to a problem). Storm tracking is 

within the first type of pattern recognition. 

The design of an automatic pattern recognition system generally involves several 

major problem areas. The first one is concerned with the representation of input 

data which can be measured from the objects to be recognised. This is the sensing 

problem. Each measured quantity describes a characteristic of the pattern or object. 

The storm data measured by weather radar is in the form of a 2-dimensional digital 

array. This forms the basis of the storm pattern recognition. 

The second problem in pattern recognition concerns the selection of design concept. 

The design concept for automatic pattern recognition are motivated by the way in 

which pattern classes are characterised and defined. Our experience suggests 

several basic possibilities. When a pattern class is characterised by a roster of its 

members, the design of a pattern recognition system may be based on the 

membership-roster concept. When a pattern class is characterised by common 

properties shared by all its members, the design may be based on the common- 
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property concept. When a pattern class exhibits clustering properties in the pattern 

space, the design may be based on the clustering concept. These basic design 

concepts are described in the following paragraphs (Tou and Gonzalez 1974). 

1) Membership-roster concept 

Characterisation of a pattern class by a roster of its members suggests automatic 

pattern recognition by template matching. Then sets of patterns belonging to the 

same pattern class is stormed in the pattern recognition system. When an unknown 

pattern is shown to the system, it is compared with the stored patterns one by one. 

The pattern recognition system classifies this input pattern as a member of a pattern 

class if it matches one of the stored patterns belonging to that pattern class. 

2) Common-property concept 

Characterisation of a pattern class by common properties shared by all of its 

members suggests automatic pattern recognition via the detection and processing of 

similar features. The basic assumption in this method is that patterns belonging to 

the same class possess certain common properties or attributes which reflect 

similarities among these patterns. 

3) Clustering concept 

When the pattern of a class are vectors whose components are real numbers, a 
pattern class can be characterised by its clustering properties in the pattern space. 
The design of a pattern recognition system based on this general concept is guided 
by the relative geometrical arrangement of the various pattern clusters. 

For the storm movement tracking, the simplest membership-roster concept is 

adapted in the WRIP. Usually a cross correlation can be used to test the matching 
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patterns (Collier, 1989). 

Currently, WRIP is using 3 bit Network 128x 128 radar data. It format is shown 

in Figure 9.12. 

128 grid 

1400 020790 

80 x 80 

128 
grid 

Start Grid 
(30,30) 

Forecasting area 

L14816T5 

Wessex Region 

Figure 9.12 Cross Correlation Area for Wessex Region 

The forecasting is up to 6 hours. The speed, direction and volume change are 

derived from maximising the correlation between two radar data fields for 

successive time frames through an appropriate displacement in space. Forecasting 

is based on linear extrapolation forecasting. A given pair of velocity components in 

an easterly and northerly direction are used to shift the rainfall field in space. 
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Figure 9.13 Correlation Surface of Wessex Region 

Let x, y represent the two radar frames. The radar data will be denoted by 

(xll, yl1), (x12, Y12), (x13, Y13)'" .. 

The correlation coefficient is given by 

r= 

where 

l( 
XU - 

X) (YU- 3') 

JT �ý Xiý- X)2ý ý Yiý- Y )2) 

X xij/ (N-1) 
j 

Y= (N-ý> I yl, / 

(9,1) 

As the computed maximum point is in a grid scale, it can be more accurately 

estimated by polynomial approximation. 



CHAPTER 9 APPLICATION OF WRIP IN NRA WESSEX REGION 253 

V3 . 1k. 

x 

VZ 0 
G. 

ax 

0 

43 Skm 

Figure 9.14 Maximum Point Grids 

V1 

max 

When Gmax point is found, 4 points around Gmax are also selected to compute the 

maximum point location Pmax as illustrated in Figure 9.14. A parabola curve is 

used to fit three point data in each direction in Figure 9.15. 

Figure 9.15 Parabola Curve Fitting for Pmax 

The curve function can be described as 

2 
y. y0_a( x. XO ) 

ý 

ý 

(9,2) 

where xo, yo and a are parameters of parabola curve function. xo is the maximum 

correlation point in this direction. Three parameters can be estimated from three 
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data points (x t, yt), (x2, y2), (x3, y3) with following equations. 

2 
yl - yo =a(X1 -X0 ) 

2 

y2"yo=a(x2-x0) 
2 

Y3-YO=a(x3"x0) (9,3) 

To simplify the derivation, a few conditions are substituted into Eq (9,3). As we 

know that the spacing between three points is the same and equals to 5 km, the 

point location can be described as an integer times the 5km distance. 

xi = (! -1)*5 

X2 = j*5 

x3=(j+1)*5 

where j =0,1,2, ... 

The final form of the maximum point location is (when yl * y3 ) 

xo= 5 [j - 

or 

1 

2(1"2ýy1. 
Y2) 

Y1 ya 

5 
xo= x2 (Y1 . Y2) 

2ý1ýý(Y1-Y3) ) 

and when y1= Y3, 

x0 = x2 

(9,4) 

(9,5) 

(9,6) 

When Pmax is found, three results can be derived from the equations above. 
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Speed (km/hr )S =Sqrt ( Sqr Sx +Sqr Sy )*4 

Direction (degree) D= ATAN (Sy / Sx ) 

Volume Change (%) 

V =(New volume -Old Volume)/Old Volume 

where Sx and Sy are the coordinates of Pmax. 

The short term storm forecasting can be made by moving the current storm with S 

speed D direction and V volume change. 

Current Step 1 Forecast Step 2 Forecast 

X- 
Sx 

Figure 9.16 Storm Forecasting Steps 
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With a fast moving storm, it is possible that the current storm may move out of the 
Wessex Region. In this case, radar network data is more appropriate over a larger 

scale. 

9.5 Flow Forecasting in Wessex Region 

The main forecasting window is shown in figure 9.17. This window will be 

automatically updated every 15 minutes to coordinate with network radar data and 
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tclcmetry outstation data. 
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Figure 9.17 Forecasting Main Window 

There exist several options for storm forecasting. Currently WRIP storm 
forecasting is used as default storm scenario. Users have options to select other 

storm scenario to view the different aspects of storm influence. The manually input 

storm given the user the flexibility to test all kinds of interesting storm profiles. 
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Figure 9.18 Storm Forecasting Selection 
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For the historic rain data, the default selection is radar derived data. In the case of 

radar network failure, the raingauge data will be used as backup data as in Figure 

9.18. 

C Historical Storm 

Figure 9.19 Historical Storm Selection 

The flood forecasting model can be of variety forms. The current WRIP utilises the 

TF model as a forecasting tool. The parameter adjustment of the TF model has 

been addressed in previous chapters. Figure 9.20 illustrates a model adjustment 

window for the PRTF model. Users can explore the different parameter's 
influence on the flow forecasting ability in real-time. The flow feedback and storm 

type should be considered in adjusting model parameters. Experience in practical 

operation will help hydrologist select suitable parameters for the model. 
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Figure 9.20 Model Adjustment Window 
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9.6 Summary 

Application of WRIP in NRA Wessex region has been described in this chapter. A 

well organised computer and telemetry system has provided an appropriate 

environment for the WRIP system The U. K. network 128x128 radar is utilised as 

a main rainfall data source. The storm forecasting scheme is based on a cross 

correlation surface with parabola curve fitting and a linear forecasting scheme is 

applied for the Wessex region. In the future this will be extended by access to the 

Met Office FRONTIERS system. For the flood forecasting, a default setting for 

the system is decided in the customisation of WRIP. The user has other options to 

choose which enable hydrologists to explore the catchments response to various 

kinds of storm type. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

Studies have been carried out to analyse weather radar data processing and to 
develop a real-time flood forecasting system. Some concluding comments are as 
below, 

10.1.1 Radar Data Processing 

a) Quantisation 

" Signal quantisation of radar rainfall measurements is a important issue in the 

hydrological process. The quantisation noise can be decreased by choosing the 

quantum steps or level slicing schemes to be sufficiently fine to preserve the 

original information content of the data. A trade-off amongst accuracy, quantisation 

noise, and the number of quantisation levels is required. As few quantisation levels 

as possible are chosen consistent with the preservation of the information content of 

the signal process. 
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9A practical radar data quantisation scheme will depend on the statistical properties 

of radar rainfall data. 

" The measurement noise contained in the original data set will affect the 

quantisation scheme. In this case (and it is always true in practice) , high 

resolution may not be worthwhile because the accuracy of the data will not be 

improved after some level. It has been found that there is insignificant difference 

between 4 bit and 8 bit data. The results from this thesis show that 3 bit data can be 

utilised in flood forecasting modelling without causing large error, though it would 
be more appropriate to use 4bit data to replace the original 8 bit data were this to 
become a future possibility. 

" Adaptive quantisation provides a very useful tool to improve the radar data 

precision without increasing the quantisation levels. Unlike static radar 

quantisation scheme, adaptive quantisation will make full use of every bit of 
information in the quantisation scheme. The decoding of quantised data is almost 

the same except a data range indicator has to be placed in the radar data header and 

this indicator is used to recover the quantised data It should be seriously 

considered as a part of any future updates of at-site radar processing software in 

order to enhance the quantisation nature of the rainfall signal. 

b) Sampling 

" Temporal and spatial sampling have been discussed. The measurement sampling 

should be fast enough that the process is well damped above the Nyquist 

frequency. Although hourly radar data are used in the forecasting model, it has 

been shown that no more than 15 minute measurement sampling is necessary for 
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rural flood forecasting problems. A prefilter should be utilised when the radar 

rainfall data is to be input into flood forecasting model. At minimum this should 

consist of a moving average processor simulator. 

" Spatial sampling is quite an important issue for fully distributed forecasting 

models. It will not affect the lumped TF model providing the sampling area is 

equal or smaller than the catchment size. Larger catchments can tolerate larger 

spatial sampling intervals. But low spatial sampling rate will cause some trouble 

for radar data calibration procedure, since it will be difficult to apply the pattern 

recognition technique to identify storm type and much difference will occur 

between the calibration raingauge data (point measurement) and radar data (spatial 

average measurement). 

" Spatial averaging is a low pass filter process and will reduce some proportion of 

the quantisation noise. 

c) Influence on Flood Forecasting 

" For model identification, though a short sampling interval will contain as much 

information as possible , it will cause trouble for model parameter estimates owing 

to the presence of partial linear dependencies. If the sampling interval is too long in 

time or too long in space, residual autocorrelation will result and parameter 

estimates will be biased. An optimum model data interval should be chosen based 

upon the system response characteristics. 

9 Prefiltering of radar data removes a the large percentage of quantisation noise. 

By selecting a more optimal numerical filter, a further reduction of quantisation 

error can be achieved. 
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" The TF forecast model acts as a low pass filter and the quantisation noise will be 

reduced after the prefiltering of the quantised radar signal. Some case studies have 

been used to illustrate this aspect. 

10.1.2 Flood Forecasting Model 

" The TF (Transfer Function) model has been widely utilised in hydrology and has 

been proven an effective model. However, several problems still exist in the 

application of the TF model such as the difficulty in identification of the model and 

real-time robust updating. A PRTF ( Physical Realisable Transfer Function) model 
has been developed to overcome these shortcomings in ordinary TF models. 

" An important feature of the PRTF is that its impulse response shape can be 

adjusted by altering the model pole's position and model pole's order. It is found 

that adjusting the model pole's position is more practical than adjusting the model 

pole's order. 

"A modified least square estimation technique has been proposed. Two iterative 

steps are needed to estimate the PRTF model parameters. As there is no worry 

about instablility and fluctuations, the identification of a PRTF is much easier than 
for the ordinary TF model. 

" Since many TF models and UH models exist in water industry, case studies were 

provided to illustrate the transformation of TF and UH models into PRTF model. It 

was found that the PRTF can successfully simulate the TF model and UH model. 

9 The impulse response of the TF is critical to the accuracy of model forecasting. 



CHAPTER 10 CONCLUSION AND FURTHER WORK 263 

Three adjustment factors were introduced into the PRTF model. Each factor was 

constrained to influence one aspect of the TF model. None of them can cause the 

TF model to become unstable or fluctuating. Computational results were 

satisfactory. 

"A distributed kinematic wave model was used to analyse the catchment response 

to different kinds of storm type. Results show that there exists some general 

characteristics in the catchment response. This can be further implemented in an 

Artificial Intelligent system which could adjust the flood forecasting system from 

the past information, the current catchment conditions and storm type. It is 

important that this approach to dealing with the variety of the catchment response is 

developed as a means of obtaining a comprehensive solution. 

9 Through the simulation of the kinematic wave model and the data from Blackford 

Bridge in the Northwest Region, PRTF has shown the ability to adapt to the 

variability of the catchment response and the result was promising. 

"A RST (rainfall separation Tank ) was developed which can overcome some 

shortcomings of pure PRTF models. Results showed a great improvement in many 

cases. 

10.1.3 Development of WRIP System 

"A well designed system structure, user interface, database and program is crucial 

for a successful system. 

"A window-based graphical user interface (GUI) is adopted to ensure convenience 
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in using WRIP. As the system is complicated and there is large amount of data to 

be processed, an object-oriented computing concept was utilised in the WRIP 

program design. It has been found to be a significant improvement to system 

development and has resulted a major advance in real-time flood forecasting system 

utility. 

" Storm forecasting is based upon pattern recognition techniques. It has been 

found that the membership-roster concept can be applied in the simple storm 

tracking system. A cross correlation with parabola curve fitting can closely locate 

the maximum cross correlation point. Future developments will embrace the 

Meteorological Office FRONTIERS system. 

" The Wessex region is characterised by infrequent heavy rainfalls and has 

produced many of the record British rainfall totals in addition to some of the more 
infamous floods. A computerised WRIP system has made flood monitoring and 
forecasting much more productive and has provided the United Kingdom first 

integrated radar based flood forecasting system when it was commissioned during 

1990 and early 1991. 

10.2 Recommendations 

" The data resolution ( Sampling and quantisation ) influence the operational cost 

and the application usage. More Statistical analysis should be carried out to assess 

the radar data processing scheme and its influence on the distributed catchments.. 

" PRTF and RST have been proven as a much improved model structure. More 

research is needed to fully apply it in real-time flood forecasting systems, however, 

it appears to offer considerable advantages over more conventional approaches. 
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" The application of Artificial Intelligent systems in realtime flood forecasting is 

likely to be very promising in the future. With more understanding about the 
hydrological process, it is more likely that an operational expert system will appear 
in the near future. 
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APPENDIX 

WRIP GUI (Graphical User Interface) 

Some principal user interfaces are illustrated in the following 

pictures. 



ýý 

(1 

a) WVRIP Start Screen 
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