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SYNOPSIS 

The use of high tensile steel as normal reinforcement in concrete 

members necessitates the study of the behaviour of such members under the 

action of static, fatigue and sustained loading. The present state of 

knowledge of the effects of the type of steel and the type of loading on 

the serviceability and strength of concrete members has been reviewed. From 

a comparison of structures reinforced with ordinary and high tensile steels, 

it has been indicated that by increasing the permissible steel stresses great 

savings can be obtained, but the deflection and cracking become more pronounced, 

especially when the effects of long-term loading are considered. Limited 

information has been reported on the effect of the static cyoles, subsequent 

to the first cycle, on these two limit states. In view of the above, the 

applicability of the limit state design, and the study of the recommendations 

of codes of practice of several countries, it was felt that an experimental 

investigation was required to study the behaviour, in cracking and deflection, 

of concrete members reinforced with hiEýi tensile steel and subjected to static, 

fatigue and sustained loading. 

A programme of an experimental investigation was designed to study the 

behaviour of reinforced concrete beams. A total of twenty-one beams 152 mm 

x 305 mm with a span of 4570 mm, and two auxilliary beams with a span of 

2740 mm, simply supported, singly reinforced beams were tested under static, 

fatigue and sustained loading. The main variables were the type and percentage 

of the steel reinforcement. The reinforcement consisted of (i) barst plain 

round mild steel (276 N/mm2 yield stress), deformed Unisteel 60 and Unisteel 

80 (414 N/mm2 yield stress and 550 N/mm2 0.2% proof stress respectively), and 

deformed Kam 60 and Kam 90 steel (585 N/mm2 yield stress and 897 N/mm2 0.2f 

proof stress respectively) (ii) wires: crimped prestressing (1380 N/mm2 

0.2f proof stress), plain prestressing (1515 N1=2 0.2% proof stress) (iii) 

strands: prestressing (1690 N/mm2 0.2% proof stress) and reinforcing Bristrand 

100 (690 N/mm2 0.2% proof stress). Only one design strength of concrete was 

used with a cube strength of 41.4 N/mm2. 

An empirical method was suggested for the evaluation of steel stresses 

under any applied short-term static load. This method-was based on evaluating 
the neutral axis depth by assuming a bilinear relationship between the moment 

and the neutral axis depth, taking into account the movement of the neutral 

axis in the transition zone between the untracked and cracked stages. 



Formulae based on the present work are suggested for the prediction 

of crack width and deflection on the first and second cycles. The 

deflection and crack width on the first and second cycles were essentially 

proportional to the stress in the reinforcement. On the first cycle the 

deflection and crack width depended greatly on the cracking load stress. 
The remaining crack width was found to be directly proportional to the steel 

stress at design load, and the remaining deflection to be approximately 4 

of the design load deflection. The deflection was not affected by the surface 

characteristics of the steel, while there was a slightly better crack control 

with deformed bars than with plain bars or prestressing wires and strands. 

The effects of long-term loading (sustained or fatigue) were found to 

cause an increase in the steel stress, the neutral axis depth, the compressive 

and tensile concrete strains, the deflection and cracking. The maximum irc reases 
in the maximum crack width at the level of reinforcement under sustained and 
fatigue loading were 67% and 50% respectively. The maximum im reases in deflec- 

tion were 116% and 32% after about 600 days and 3x 106 cycles respectively. 
The increase in deflection under sustained loading was lower for higher 

permissible steel stress with corresponding smaller steel area. 

In view of these findings and the limitations on the maximum allowable 

crack width suggested by the C. E. B., it has been concluded that the maximum 

steel strength is limited to 550 N/mm2. The economic advantage of using 

such a high strength steel is a saving in the steel area of 51% of that of 

mild steel and 27.6% of that with a yield point of 414 N/mm2. When the 

allowable maximum crack width of 0.3 mm, as suggested by the Draft Code, is 

considered, a steel with a yield strength of 690 N/mm2 can be used. The 

saving in the steel area and cost can be further increased. 

In Appendix (A) an illustrative example has been given using the various 
formulae developed in the present work for calculation of deflection, crack 

width and steel stresses. 

Appendix (B) gives information on the effects of the geometric character- 

istics and the orientation relative to the bar axis of the ribs (transverse 

deformation) on the slip resistance and bond strength of deformed bars. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

The term "high tensile steel" as used in this investigation denotes 

reinforcing bars having yield points or 0.2f proof stresses of 414 N/mm2 

(60000 p. s. i. ) or higher. Furthermore, high tensile steels must have a 

considerably higher bond resistance and higher anchorage than ordinary 

mild steel. 

The present time usage of high tensile deformed reinforcing bars in 

combination with the ultimate load method of design has offered great 

economy in costs of construction as compared with structures reinforced 

with mild steel and designed by the conventional elastic method. During 

the last thirty years the development of high tensile steels with rolled-in 

deformation in Western Europe, e. g. Sweden and Austria, and in the United 

States, has saved sizeable amounts of steel and led to considerable economies 

due to the following factors: - 

1) reduction in steel area which accompanies an inotease in yield 

stress 
2) reduction in width of section, resulting from reduction in steel 

area, which in turn also reduces dead weight 

3) the amount of shuttering is reduced because of smaller section 

4) anchorage hooks are often eliminated and less bending of bars is 

required 
5) placement of concrete is facilitated by eliminating steel congestion 

6) reduction in storey hei8ht and column sizes for tall buildings. 

Thus increases floor space and improves appearance, also ; ermits 

reduction in beam and girder depths where head-room is a consideration. 

The reduction in cost, using high tensile reinforcement, may vary widely 

between various types of structures. The limitations that are imposed on 

reinforced concrete structures by the performance requirements may prevent 

the utilization of high steel stress. These limitations are covered by the 

serviceability requirements: - 

i) limited admissible width of crack 

ii) adequate flexural rigidity, or limited deflection 

Because less steel and smaller sections are made possible by high tensile 
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steel, the rigidity of the section is reduced and therefore the allowable 

stresses in steel may have to be determined on the basis of the limit state 

of either crack width or deflection rather than collapse. 

In laboratories, due to the time factor, most of the structural elements 

are tested under one form of loading, namely, short term static loading. The 

effects of other types of loading, such as fatigue and sustained loading, are 

often included in terms of factors which are usually used in design, without 

any know-how of the actual behaviour of these elements. The unfavourable 

conditions created by these types of loading may lead to a great reduction 

in the allowable stresses determined on the basis of a static loading, and 

thus restrict the use of high tensile steel. 

Limited fatigue and sustained loading tests have been carried out on 

reinforced concrete beams in laboratories and actual structures, and no definite 

conclusions have been drawn. In practice, the magnitude and incidence of loadivg, 

in some cases, are not similar to the loading employed in the laboratory. A 

structure can be under the effect of sustained or repeated loading or both. 

The ratio of live load to dead load could be very high, and thus the structure 

might be subjected to temporary cycles of high live loads and cycles of rest 

periods. 

In practice, a member is under sustained loading when all or part of the 

imposed load is maintained for long periods of time, or when the self weight 

constitutes a substantial proportion of the total load. Fatigue loading 

occurs where there is machine vibration, or under the action of traffic. 

Extensive work has been carried out on the performance of reinforced 

concrete structural members under static loading, and recently in some of these 

studies high tensile steel is considered as the major variable. Little 

research has been carried out on reinforced concrete, particularly using 

high tensile steel, under the action of sustained and/or repeated loading. 

It has indicated that many changes could occur in the behaviour of the 

structural members under such loadings. The ultimate strength, strain, 

cracking and deflection could well be affected, and associated with increased 

allowable stresses, any one of the limit states could well become a oviterion 

for design. Further research, therefore, is required to determine the prop- 

erties of concrete members reinforced with high tensile steel, in order to 

ensure adequate factors of safety against failure and unserviceability under 

sustained and/or repeated loading. 
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In view of the above reasons, the author has attempted to study in 

this thesis the behaviour of reinforced concrete beams with increased 

allowable steel stresses, i. e. using high tensile steel, under static, 

sustained and repeated loading. A great emphasis is placed on the 

serviceability of the beams as indicated by deflection, cracking and 
flexural strains. The author has tried to combine all the effects to 

produce a document on the use of high tensile steel as normal reinforcement 
in reinforced concrete beams. Design rules have been recommended to arrive 

at adequate load factors against failure and unserviceability. 

Allowable stresses are determined in view of two basic requirements, 

namely ultimate strength and serviceability, as indicated by deflection 

and cracking. These two requirements must be considered under the action 

of static, sustained and repeated loading. The task of the engineer, 

therefore, is to study the behaviour under these forms of loading, which 

should be adequately assessed from the expected history, and to obtain 

information for design purposes which will result in a safe and serviceable 

, 
structure over a long period of time. 

1.2 High Tensile Steel 

1.2.1 History and Development 

The term high tensile steel 
l'2' 3'4' 5'6'7 

as distinguished from mild steel 

can be characterised by three conditions which must be fulfilled. It must 

have substantially higher strength and higher bend and/or anchorage 

resistance than mild steel, and the capability of being mass produced under 

mill condition. 

The history and : ievelopment of high tensile steel date back to the 

late nineteenth century when in 1898 Considere8 suggested that "high steel" 

could with advantage be substituted for "iron or soft steel". The first 

American specification for "steel reinforcement bars" appeared in 1911 

with three grades of bars: structural steel grade, hard grade, and cold 

twisted, with minimum yield points of 228 N/mm2,345 N/mm2 and 380 N/mm2 

respectively. The first two grades could be either plain or deformed 

without any specification regarding the deformations. 

Then in 1913 A. S. T. M. specifications for "Rail Steel Concrete 

Reinforcement Bars" were introduced with a minimum yield of 345 N/mm2 for 

all types of bars, e. g. plain, deformed or hot twisted. 
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Although this type of steel has been in use in the United States 

for more than half a century, theworkiig stresses permitted were no 

greater than those for ordinary steel, e. g. 138 N/mm2. 

A great deal of experimental work has been done in the U. S. A., 

which proved the possibility of using deformed bars, and demonstrated 

their advantages, i. e. higher allowable stresses, better bond and better 

control of cracking. 

European practice, in particular Austrian, German and Swedish, has 

benefited by American practice in the development of high tensile reinforcing 

bars leading to great advances in the structural concrete technology. It 

has advanced over the American practice, which was only concerned with 

increasing bond. It has led the rest of the world in using steels of 

higher strength and improved bond, resulting in more economical designs, 

provided adequate deflection and cracking control is exercised. 

Investigation suggests that Germany9 was probably the first country 

to permit the use of higher stresses in steel in 1925. In 1928 Austria 

introduced the twin twisted bars, known as Isteg steel, with a permissible 

stress of 167 N/mm2, and in 1935 Torsteel was introduced with-a permissible 

stress of up to 216 NIM2. 

In the early 1930s, high tensile steel used as longitudinal reinforce- 

ment for columns 
8,10 

was under fundamental investigation. In the U. S. A. 

extensive tests on columns reinforced with steel of different grades and 

yield strengths, and under sustained loading, proved the direct relationship 

between the column strength and the yield strength of the reinforcement. 
The A. C. I. Building Code R: quirements for Reinforced Concrete permitted 

the use of allowable compressive stress, in vertical column reinforcement, 

of 40J of its yield strength (e. g. 207 N/mm2 for bars of 517 N/mm2 yield 

value). 

In 1941 the economic advantages of bars with 517 N/mm2 yield point 

were well recognised in the U. S. A., and an allowable stress of 50% of the 

yield point was permitted in tension reinforcement for small diameter bars 

in short span slabs. However, practical implementation of high tensile 

steel in design did not begin until late 1950. Billet and hail steels of 

high yield points ranging between 414 - 517 N/mm2 spread in application 

initially from column reinforcement to beams, slabs and other structural 

elements. L. S. T. M. Standards were issued for this high quality steel, 
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which led to a wide spread usage of grades 414 N/mm2 and 517 N/mm2. 

A trend 
11 

of development towards higher steel qualities and higher 

permissible stresses is in progress. 

For a long time St37 (with a yield of 37 Kg/cm2) was the only type 

of steel used in Sweden12. The St44 (with a yield of 44 Kg/cm2) appeared 
later by a progressive development. Considerable progress has been made 
in the use of St52 (52 Kg/cm2) in reinforced concrete constructions. 

Initially, the Swedish specifications for constructions in reinforced 

concrete followed the German regulations. However, due to lack of 

experience in using reinforcing bars of high qualities, the Swedish 

engineers often used stresses lower than those recommended in the German 

code. For this reason, the work of the Swedish Committee for standardisation 

was retarded in its development to such an extent that there existed no 

official specifications for certain reinforcing steels. 

The smooth round St52 reached the dominant position for use as 

reinforcement in concrete structures in 1940, whereas nowadays it seems 

to have completely disappeared from the Swedish market. Although St52 

steel is treated in a detailed way in the Swedish specifications for rein- 

forced concrete constructions, it is seldom used. 

The first type of Swedish deformed bars, Kam Steel, appeared in 1941. 

This had such an economic success that other types of Kam deformed steels 

were produced by many Swedish firms. 

During the last thirty years high tensile steel 
8,9,10,11,12,13,14 

with yield strengths ranging from 380 to 830 N/mm2 has been developed 

and used. Reinforcing bars may differ significantly in different parts 

of the world in two aspects: the process of manufacture, the shape and 

characteristics of the surface deformation. 

There are two major methods of producing high tensile reinforcement7,9,10 

One is by hot rolling end increasing the amount of carbon content aided by 

small alloy components (by metallurgical means). An example of this type 

of steel is the Swedish Kam 60 steel. The other method is by cold-working 

of an ordinary grade of steel (cold twisting or cold stretching, or both) 

followed by ageing. An example of this is the Austrian Torsteel. The 

two types of steel, namely hot rolled and cold worked, differ in the 

following characteristics: 



i) Hot rolled steels have sharp yield points with a rate of increase 

in yield stress the same as that for the ultimate strength. 
Cold worked steels are usually of gradual yielding type, with 

an increase in the ratio of yield stress to ultimate stress 

without affecting the ultimate strength significantly. 

ii) Hot rolled (alloy steels) may be of a brittle nature with a 
lower ductility than the cold worked steel. 

In Europe both types of bars are used. Cold worked bars are used in 

Germany, Austria and Switzerland, while hot rolled bars are produced in 

Sweden. In the United States hot rolled bars are in common use. 

At the present time many types of high tensile steel are used in 

Britain. The majority are hot-rolled steels with a yield strength of 

414 N/mm2. Very few types of cold worked bars, e. g. square twisted and 

ribbed bars, are used in this country. The square twisted bars were 

introduced in Britain before 1914. 

The cold worked ribbed bars are Tentor bar, Unisteel 80 and Tor bar. 

Tentor bars were produced in Britain in 1951, with an allowable stress 

of 186 N/mm2. Unisteel 80 and the Tor bars are recent productions, with 

0.2J proof stresses of 550 N/mm2 and 475 N/mm2 respectively. A new 

British reinforcement, formed by stranding three high tensile wires, 

with a yield strength of 690 N/mm2, has also been recently introduced 

in the market. 

1.2.2 Economics of High Tensile Steel 

The economic nature of high tensile steel has been reported since 

early this century by Gilkey and Ernest15 They pointed out the invalid 

objections to the use of the high elastic limit steel (Rail steel). The 

economics of using high tensile steel and high quality concrete were 

discussed at length, and quantitative practical applications were undertaken. 

Several combinations of allowable concrete and steel stresses were used. 

It was concluded that the greatest economy, using elastic theory, was 

obtained by raising the working stresses for both concrete and steel to 

11 N/mm2 and 207 N/mm2 respectively. Hognestad11 also discussed the 

advantages and uses of high tensile steel, and he concluded that "the 

importance of high strength reinforcement to the economy and competitive 

position of reinforced concrete rested on basic engineering considerations. 
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Their importance is affected very little by international differences 

in trade practices. These differences are over-powered by the basic 

economy of high tensile steel. " 

16 
Abeles, based on Hýognestad'sll considerations, gave a comparison 

of the economics of using high tensile steel in tln United Kingdom 

with other European countries and the United States. He concluded 
that a great many advantages can result from these high quality materials. 
Using high tensile steel of 690 N/mm2 yield stress, a saving of 45%, 

with ordinary steel taken as a basis, was obtained. 

In his paper Granholm12 attempted to give a quantitative appreciation 

of the use of high tensile steel. A comparison, using a T-beam, of the 

prices of different types of reinforcing steel, shows that the high tensile 

steels are relatively less costly. In other words, one could say that the 

quotient of the price by the yield point or by the permissible stresses 

diminishes in proportion as the quality becomes better. The economical 

background of the dev3lopment in Sweden of the special types of deformed 

bars, namely Kam 40 and 60, is discussed on the basis of the prices for 

concrete and steel in 1958. 

Further economy can be achieved by using the ultimate strength design 

method as well as high tensile steel bars? '1U, 17,18,19,20,21 
The replace- 

ment of smooth mild steel bars by high strength deformed bars, and 
designing by the ultimate strength method, will result in over 20% saving 
in the cost of steel in a structural framework, including the cost of 

erection and fabrication. 
17 

The savings in the over-all cost in using 

mild steel twisted bars were 12% and 15.5% for slabs and beams respectively. 
18 

In the main, the above considerations lead to the conclusion that 

at higher allowable working stresses a safe, serviceable and economical 

structure is obtained if cracking and deflection can be limited under 

short and long term loading. It is in the next chapter that reference is 

made to previous investigators who carried out extensive research programmes, 

which form the basis of the present knowledge as far as the use of high 

tensile steel is concerned. Gaps in our knowledge are also pointed out. 

A schematic pro gramme of investigation is undertal1 n in this thesis to 

study the behaviour of beams singly reinforced with high tensile steel, 

under static, sustained and repeated loading. 



1.3 Object and Scope of Project 

This thesis outlines the existing knowledge of the actual 
behaviour of reinforced concrete structures with high quality materials. 
It is shown that the present recommendations of C-P-114 22 limit the 

use of higher allowable steel stresses. 

The methods of limiting crack widths and deflections in C. P. 114 

are unrealistic. The limit states method of design in the Draft Unified 

B. S. Code of Practice23 gives a more realistic picture of the behaviour 

of reinforced concrete structures. The aims of the present investigation, 

are to study the performance of singly reinforced beams reinforced 

with high tensile steel in the light of the limit states of design, with 

particular reference to. cracking and deflection. Design formulae are 
derived to predict the steel stress in beams in the uncracked and 

cracked conditions, the crack width and deflection at various stages 

of static loading. 

The effects of creep and shrinkage of long term loading (sustained 

and fatigue) on crack widths, deflections, stresses and strains are 
determined for different grades of steel. Criteria are established 
for maximum allowable steel stresses for desing purposes and economic 
considerations. 

1: 4 Outline of Thesis 

Chapter 2 deals with a review of previous investigations, aiming 

at an historical development of the uses and advantages of high tensile 

steel. A review of static, fatigue and sustained loading tests carried 

out by other investigators is presented. 

The phenomena of creep and shrinkage and their effects on the 

behaviour of a reinforced concrete member are discussed. 

In Chapter 3 it is pointed out that a structural member should 

comply with the limit states for determining its performance under load. 

There are four general performance requirements that should be satisfied 
for every structure: (i) safety against collapse (ii) limited cracking 
(iii) limited deflection (iv) durability. 

The present code of practice, CP11422, limits the possibility 

of using high quality materials by limiting the allow able steel and 

concrete stresses to much lower values than those which could occur 



in serviceable structures. In CP114 the limit states of cracking and 

deflection are not directly considered. It is shown that the aspects 

of collapse and serviceability are better understood and controlled 

in a more rational way in the new Draft Code. 23 
Recommendations of 

several other codes are also given, in particular those based on the 

concept of safety and serviceability. 

Chapter 4 presents the factors that influence the three limit 

states of cracking, deflection and collapse under static bending. The 

theories and mechanisms of these limit states are also discussed. The 

major parameters that influence cracking, deflection and strength of 

reinforced concrete members are pointed out. 

Chapters 5,6 and 7 cover the programme of investigation, design 

and manufacture of test specimens, and instrumentation and test procedure. 

In Chapter 8 procedures for the calculation of steel stresses from 

experimental results obtained for the static, fatigue and sustained 
loadings are explained. For the theoretical calculation of stresses 

under static loading a semi-empirical procedure has been developed. 

It has been shown that for both the cases the procedures depend on the 

determination of the position of the neutral axis in the cracked and 

uncracked conditions of the section. A transition zone between the 

cracked and uncracked conditions is established empirically. 

In Chapter 9 the behaviour of the beams under static loading is 

discussed in terms of the strains and remaining strains, cracking and 

remaining cracking, and deflection and remaining deflection. ! ', relation- 

ship between crack widths and stresses in steel is established and 

semi-empirical formulae for the prediction of crack width and deflection 

on the first and second cycles are proposed. A formula for the evaluation 

of span/depth ratio is given. The ultimate strength of beams is discussed 

and compared to those estimated according to the Draft Code. The effect 

of high tensile steel on the behaviour of reinforced concrete beams is 

studied. 

The effects of sustained and repeated loading on the behaviour 

(cracking, deflection, ultimate strength, stresses and strains) of 

reinforced concrete beams are included in Chapter 10. A comparison 

between sustained and repeated loading is made in the same chapter, 

as regards the three limit states. 



Chapter 11 contains the conclusions drawn from this investigation 

along with recommendations for the design of reinforced concrete 

members. 

Points for future research are suggested in Chapter 12. 

A list of references, tables, figures, plates and appendices are 

included at the back of the thesis. 



CHAPTER 2 

Summary of Previous Investigation 

2.1 General 

It has been indicated in the previous chapter that greater 

economy can be achieved by using high tensile steel as normal rein- 
forcement with high allowable working stresses. By doing so not only 

will the section of steel be reduced but also the cross sectional area 

of the concrete. A greater reduction can also be achieved through the 

use of ultimate load design. A great amount of saving in materials and 

construction can be achieved if complete utilisation rf the steel strength 

is attempted on the basis of safety against collapse alone. However, a 

structure must be designed on the basis of two requirements: safety against 

collapse and unserviceability. The allowable stresses could well be 

reduced to satisfy serviceability requirements, and thus restrict the use 

of high tensile steel in reinforced concrete structures. It is 'well 

known that serviceability is affected by long term loading. There is not 

at present a great deal of knowledge of this type of loading and its 

effect on serviceability, due to the limited number of tests and surveys 

carried out in this field. 

Many research workers have tried to correlate the increase in the 

allowable stresses with the increase in crack widths as a criterion of 

design. However, very little has been published about the effect of 

using high tensile steel on deflection, and the effect of long term 

loadings (sustained and fatigue) on cracking and deflection. 

In the following paragraphs a summary is presented of the work 

carried out by various investigators to ascertain the existing knowledge 

of the performance (strength, cracking and deflection) of reinforced concrete 

beams under static, sustained and fatigue loadings. 

2.2 Review of Previous Research 

2.2.1 Static Loading Tests 

The idea of using high tensile steel as a moans of economy in 

reinforced concrete structures has been suggested as early as the late 

nineteenth century. Gilkey and Ernestl5 reported, in 1935, that high 

elastic limit steel is suitable as reinforcement for concrete within the 

. 
range of current working stresses if handled, fabricated and placed with 
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reasonable care. Though considerable economy results from the use of 

this type of steel with high working stresses, it was suggested that 

several precautions as regards anchorage, safety against diagonal 

tension failures and corrosion attacks, due to severe exposure and 

cracking, must be taken into consideration. 

Hajnal Konyi conducted several series of tests on beams with different 
2 

types of high tensile steel and under different types of loading. In 1943 

in his first series of tests, he tested beams reinforced with square twisted 

steel bars with a proof stress of up to about 480 N/mm2 with 12.7 mm 

maximum bar size, and varying in number of twists per foot length and 

different steel percentages. Beams with mild steel of about 275 N/mm2 

yield point were also tested and compared with those with high tensile 

steel. He concluded that the full ultimate strength of square twisted 

steel could possibly be utilised, because at ultimate loads of the beams 

the yield points were greatly exceeded. Due to the superiority of bond 

of square twisted bars, the encased steel showed greater ultimate strength 

than the ultimate strength of the steel in the air. The ultimate strength 

of all beams agreed very well with thos predicted by Whitney's theory... 

A crack width limit of 0.25 mm was reached at a steel stress not 

less than 275 N/mm2 at first loading, irrespective of steel percentage. 

It was suggested that deflection should be controlled by limiting the-- 

span-deflection-depth ratios regardless of the type of reinforcement and 

allowable stresses. 
V 

comparative tests on thirty-six beams, ranging from mild steel of 275 N/mm2 

yield point to 590 N/mm2 proof stress Danish "Tentor" steel, both in 

ordinary and high grade concrete. Also two beams 26 
reinforced with 

2.65 mm plain wires of 1860 N/mm2 tensile strength were tested. The 

tests have shown the superiority of deformed bars as against plain 

bars on the basis of bond and crack formation. Based on a permissible 

crack width of 0.25 mm, the stress. in the steel in the majority of beams 

with cold worked steel was, as found before, between 275 N/mm2 and 345 N/mm29 

and. that in the beams with high strength wires it was 520 N/mm2 to 576 N/mm2. 

Considering warning before failure, cold worked bars were superior to bars 

having a definite yield point, due to the better bond characteristics and 

higher yield strength. As far as load bearing capacity was concerned 

it wasshown that Whitney's theory27 was applicable to steel of any strength, 

In his second series of tests in 19512 
5 

Hajnal Konyi carried out 
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and that at least 85% of their ultimate strength was utilised, which 

would enhance the factor of safety. 
28 

However, the moment of resistance 
for balanced design was shown to decrease with increasing steel strength. 

In this series of tests the effect of using high tensile steel on 
deflection as a limit state of serviceability was not considered. It 

was suggested29 that the allowable stresses in the tensile reinforcement 
would be limited not only by the admissible width of cracks, but also 
by the deformation of the structure. 

In a third series of tests Hajnal Konyi3O tested twenty-eight 

singly and doubly reinforced rectangular beams as well as T-beams. 

The beams that failed due to the yielding of the reinforcement were 
designed on the basis of economic percentage for mild steel, using a 

permissible tensile stress of 124 N/mm2. The reinforcement used in 

the tests were mild steel and Tentor bars with yield stresses of 275 N/mm2 

and 517 N/mm2 respectively. 

He concluded that "Tentor" steel may safely be substituted for mild 

steel in the inverse ratio of the permissible stresses up to the "economic" 

percentage for mild steel. The calculation of the ultimate bending 

moment of beams reinforced with Tentor steel may be based on the ultimate 

strength of the steel, if the percentage does not exceed the "economic" 

percentage for mild steel. There was a slight decrease in the moment 

of resistance in over-reinforced beams, as compared with beams reinforced 

with mild steel. 

Evans31 in 1937 tested two pairs of rectangular and two pairs of 
T-beams. One of each pair was reinforced with cold worked steel bars 
(two mild steel bars twisted together helically) with a yield point of 

393 N/2, and one with carbon steel bars with a yield point of 399 N/mm2" 

These tests were conducted to study the effect of steel properties, e. g. 

modulus of elasticity, on the deflection and steel strains. It was 

concluded that for equal stresses in the tension reinforcement the 

deflection and steel strains in concrete beams reinforced with cold 

worked or overstrained twisted steel bars were greater than those in 

beams reinforced with high tensile or carbon steel bars of the same 

diameter, but having higher modulus of elasticity. The steel stresses 

are independent of the modulus of elasticity of the reinforcement. 
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Evans and Williams32 tested 102 mm x 152 mm x 1680 mm long beams 

reinforced with 7.9 mm Square Grip steel with 488 N/mm2 yield stress. 
It was found that the steel stress, at which a crack width of 0.25 mm 
was produced, was 517 N/mm2. At a stress of 259 N/mm2 the average 
and maximum crack widths were 0.053 mm and 0.064 mm respectively. It 
was concluded that a working stress of. 241 N/mm2 would provide an 
adequate factor of safety against dangerous cracking and bond failure 

even under sustained loading. 

iewis33934 carried out two series of tests, primarily to investigate 
the behaviour of typical beams and slabs with regard to cracking, deflection 

and factor of safety against flexural failure. A comparison was made 
between beams and slabs reinforced with Tentor bars of 490 N/mm2 yield 
stress and those with mild steel of 275 N/mm2 yield stress, with steel 
percentages inversely proportioned to the working stresses (124 and 
228 N/mm2). It was found that the distribution of cracks was slightly 
better in beams and slabs with deformed bars. In the beams the crack 
widths were considerably greater (2 

-2 times) for Tentor bars than 
for the mild steel bars at equal proportions of their working stresses. 
At the working stress the crack width was well below the critical value 
(0.2 mm) which was reached at a stress of 330 N/mm2, and that the deflection 

was approximately 1.8 times greater in Tentor reinforced beams. 

The warning of failure given by Tentor reinforced beams was 
excellent; they showed very large deflections near failure. It was 
suggested that high working stresses could be used for Tentor bars in 

slabs, and that more stringent limitations on the span-depth ratio 
at working load conditions would seem necessary. It was also suggested 
that Tentor bars can be used without hooks. 

Hognestad has been engaged in the investigation on the ixse; of high 

tensile steel as concrete reinforcement. He conducted a comprehensive 

study on full scale and model structural members. 

In 196235 Gaston and Hognestad tested a full scale roof girder, 

which was of slender cross-section and had inclined stirrups, reinforced 

with high strength alloy steel bars of 577 N/mm2 yield point. It was shown 
that a maximum crack width of 0.23 mm was reached at a steel stress of 
275 N/nm2, and the deflection at working load can be estimated from the 

static theory based on fully cracked section. It was concluded that 

deformed bars with 517 N/mm2 yield points can be used successfully. 



-15- 

In 1962 Hognestad36 reported on the control of cracking using old 
type deformed bars, plain bars and modern American deformed bars. He 

tested thirty-six beams with different bar diameters, beam widths, depths 

and thicknesses of concrete cover. It was shown that cracking occurred 
at a steel stress of 69 - 124 N/mm2, all principal cracks had formed at 
a steel stress of 207 N/mm2, and that crack widths were essentially 
proportional to the steel stress and the amount of concrete cover, and 
that, for deformed bars, the crack widths were less than half those 
for plain bars. Crack spacings and crack widths with variations of 
up to ± 50% from average values we a entire ly normal. 

Wastlund in 195937 recognised three essential engineering requirements 

which a reinforced concrete structure had to fulfil. These are the 

adequate safety against failure, limited crack formation and limited 

deflection. He discussed these requirements and concluded that the 
limitations imposed on crack widths would limit the use of the maximum 

allowable stress, and when using high strength steel, the deflections 

were also regarded as a decisive factor, especially in view of the effect 
of sustained loading. 

Mathey and Watstein in 196038 tested twelve rectangular beams to 

study the effect of the extent of stress and the stress-strain character- 
istics of the reinforcement on the resisting moment, crack widths, strain 
in the concrete and steel, deflection, load carrying capacity and manner 

of failure of beams. 

The beams were reinforced with six different types of steel bars 

with yield strengths ranging from 294 - 720 N/mm2. The ratio of 

reinforcement was inversely proportional to the yield strengths. 

It was found that the load carrying capacity of the beams was not 

appreciably affected by the tensile properties of the longitudinal 

reinforcement, and that deflection, concrete strain and crack widths 

were greater, at a given load, in beams with lower ratios of reinforcement 

and corresponding higher allowable steel stresses. A comparison was 

made between the calculated and observed deflections, strains and stresses. 

Guralnick13,39 tested forty-two T-beams reinforced with high tensile 

deformed bars with yield strengths varying between 574 and 700 N/mm2. 

It was found that the average enhancement in the calculated ultimate 

moment was 24%, as against 5- 20% found by Wastly d37, The measured 
deflections at service load agreed with the calculated values based on 



a fully cracked transformed section, the average crack width at a steel 

stress of 207 N/mm2 ranged between 0.076 mm to 0.127 mm, and the 

average of two maximum crack widths ranged from 0.25 mm to 0.5 mm, the 

maximum value being at a steel stress of 345 N/mm2. 

Abeles40 in 1952 analysed the results of his tests and those of 

several other investigators using high strength steel. He had shown that 

the high strength properties of steel and concrete can be fully utilised 
in reinforced concrete, provided that efficient bond is ensured. The 

resistance moments of beams reinforced with very low percentages of steel 

were higher than the theoretical moments, and sometimes the steel stresses 

at failure exceeded the ultimate strength of the bars. 

As far as cracking was concerned high strength steel could be used 

provided bars of small size or of increased bondwere used. Even plain 
high tensile wires might be used. However, it did not seem advisable 
to use plain high strength wires, in view of the great deflection of 

such members. 

Abeles and Gill16 in 1969 tested seven rectangular beams and two 

T-beams reinforced with three wire strand, having a guaranteed 0.2% 

proof stress of 690 N/mm2 and a working stress of 345 N/mm2. 

They showed that this three-wire strand had excellent bond 

characteristics, which would ensure good crack distribution. A stress 

greatly in excess of the proof stress was reported for beams with low 

percentage reinforcement. Factors of safety in excess of 1.8 have 

been obtained, and an increase in permissible stress to 414 N/mm2 seemed 

feasible. With a permissible stress of 345 Nýmm2 the maximum crack width 

in the rectangular beams for the second cycle of loading was within the 

limit of the C. E. B. recommendations41 between . 10 and . 20 mm. 

The Building Research Station42,43,44 and the C. and C. A. 45 

have tested beams reinforced with high strength bars to assess the perfor- 

mance of these deformed bars in comparison with mild steel bars. The 

tests included fourteen different types of high strength bar, as well as 

mild steel, with yield stresses of 414 N/mm2,550 11/1M2 and 690 NIMM2. 

It was found that the variations in deflection and cracking did not appear 

to be significantly affected by the degree of surface deformation of the 

bar. The plain round bar, with a yield stress of 410 N/mm2, was found 

to give a performance equal to the mean of all the deformed bars with this 



yield stress. The cracking and deflection were controlled by the level 

of stress in the reinforcement. The magnitude of the allowable stress 

in high strength steel is determined by the limit state of deflection 

rather than cracking. 
44 

Clark46,47 tested beams reinforced with deformed high tensile steel 

with yield strengths ranging between 414 and 966 N/mm2. It was concluded 
that cracking and deflection would probably limit the use of high tensile 

steel to 552 N/mm2. Due to the stress-strain characteristics of the 

type of steel at high stress and a corresponding high elastic strain, 

the ultimate moments of resistance for balanced design seem likely 

to decrease with increasing steel strength, while a better agreement 

is reached for under-reinforced beams with steel having an indefinite 

yield point, and a modest ultimate strain, if the ultimate strength of 

the steel is substituted for the proof stress in the analysis. 
47 

Some full scale structures have been under investigation to determine 

the effect of using high strength steel on their behaviour in service. 

Holmberg in 195148 reported the design and construction of two full 

scale reinforced concrete highway bridges in Sweden, which, were reinforced 

with high strength plain steel bars with end anchorage rings, having 

a yield point of 690 N/mm2 with a maximum allowable stress of 294 N/mm2, 

based on elastic theory, with a modular ratio of 15. This design 

resulted in reduced dimensions and economical design. 

, 11,12,14 
In 1959 Granholm 

10 in Sweden used Kam 60 steel with a 

. yield stress of 600 N/mm2 in practice at allowable stresses of 324 N/mm2. 

He reported great savings in the amount of steel. Another type of 

Kam steel has been used in laboratory tests. This has a yield stress of 

about 900 N/mm2 and a working stress of 483 N/mm2.49 It was suggested 

that such a steel should be used for internal members. 

In 196350 it was reported that a saving in steel and concrete 

costs resulted from using high strength steel in a two lane, four span 

continuous girder bridge. This was the first concrete bridge reinforced 

with high strength steel bars (ASTM A432). A saving of 306 in steel 

costs alone was obtained. 

Hognestad5l reported on the use of high strength steel with a, 

yield stress of 483 N/mm2 in the construction of, the girders of the 

Structural Laboratory and the Fire Research Laboratory. He reported 



the satisfactory performance of the girders in service. 

Antoni and Corbisiero52 in 1968 reported on simple and continuous 

concrete bridges reinforced with deformed high strength steel of 
435 N/mm2 yield point, to describe their live load and long term dead 
load performance for the first eighteen months of service. It was 
concluded that both bridges were performing satisfactorily. Measurements 
during the test programme indicated that crack widths and depths might 
be approaching or had already reached maximum recommended values. The 

assumption of fully cracked section to check stresses and deflections 

proved to be too conservative. The long term dead load deflections 

were successfully estimated using the Yu and Winter method. After 

four and a half years another check was made on both bridges53 This 

showed that cracking of the continuous span deck was increasing, but 

the damage was not structurally significant. 

2.2.2 Repeated Loading Tests 

The earliest work on fatigue of reinforced concrete beams was 
reported by Van Ornum54 in 1907. He discussed the elasticity, strength 

and bond of reinforced concrete under repeated loading and established 
a fatigue limit of 50% of the static ultimate load. From that time 
investigators became interested in the behaviour of reinforced concrete 
structures undergoing such a state of loading. 

Berry55 in his tests in 1908 on reinforced concrete beams with plain 

and deformed bars of varying percentages loaded to high working stresses 
Pointed out that therewas no significant effect on the ultimate strengths 

and deflections after one million repetitions of stress. The elastic 
deflection of any beam for a definite load remained nearly constant, 
but there was an increase in permanent set, the greatest part being 

on the first application and release of the load. The maximum deflection 

did not seem to be affected. Progressive cracking with repetitions was 

noticed, but the change in length of cracks was small. Hair line cracks 

became visible on the first few cycles of working load, and some cracks 

appeared after a great number of repetitions of loading. 

The bond between the steel and concrete was not affected by repetitions 
of loading, and the position of the neutral axis was not changed either*55 

Berry55 also observed that the tensile strain in the plane of the 

reinforcement showed a rapid increase in the permanent set for the first 



few applications of the load, and. became constant after the first 

few thousand cycles in some cases. While the strain in the compression 

side was similar to that in the case of deflection, the set increased 

rapidly for the earlier loading and increased directly with the stress 

and the number of repetitions. 

Probst56 reported that in reinforced concrete beams cracks do not 

appear under repeated loading so long as the maximum load of the repeated 
loading range does not exceed half of the static cracking load. When 

the loading range is within the limiting range, cracking and permanent 

deformation increase with increasing number of repetitions until 

stability is reached. At this stage thelength and size of cracks are 

also stabilized and the deformation is almost elastic, The permanent 

deformation and cracking are less significant in the aged concrete, 

and a condition of stability is reached after fewer repetitions than for 

younger concrete. No effect of the age or repetitions on the load 

carrying capacity of the beam was observed. 

It would seem essential, therefore, to take account of the effects 

of repeated loading on the crack formation and stiffness of reinforced 

concrete beams. A fatigue limit is also of great importance and should 

be established to assess the required load factor against failure of this 

type. 

Hajnal Konyi57'58 found that although under static design loading 

the crack widths in a beam reinforced with mild steel and another with 

Tentor deformed bars may be similar the increase in the maximum crack width 

under repeated loading was much greater for the former than for the latter. 

Stabilisation of the maximum crack widths was reached after about two million 

cycles. 

Saliger59'60 reported fatigue tests on beams reinforced with four 

types of reinforcement, including mild steel, cold worked (Isteg) and 

high tensile steels, with ultimate strengths ranging between 428 N/mm2 

to 835 N/mm2 and yield points ranging from 284 N/mm2 to 432 N/mm2. 

The beams were subjected to one to three million cycles at a rate of 

160 to 170 cycles per minute, The maximum stresses in the steel were about 

551 of the ultimate strength. He concluded that at failure the cracking, 

deformation, position of the neutral axis, stress distribution, bond and 

ultimate load capacity appeared to be uraffected by previous repetitions. 
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Repeated stresses within the permissible limits have little effect 

on subsequent deformation at higher loads. Saliger also concluded 

that adequate safety against fatigue failure could be obtained by 

limiting the permissible stresses in steel and concrete to one half 

the-yield point and one third the cube strength respectively. 

Most failures of reinforced concrete beams were due to failure of 
the reinforcing steel. The effect of repeated loading on the ultimate 

carrying capacity of beams should be studied in two aspects: a) the 

load at which the beam fails reaching its fatigue strength while under 

repeated loading, and b) the effect of the history of previous repeated 
loading on the ultimate static strength. The former has been found to 

be much less than the static ultimate load, and depends on the range of 

stress and the number of cycles to which it is subjected. It is believed 

that beams critical in their reinforcement have an endurance limit of 
60 - 70- of the static ultimate strength for one million cycles 

56,5961962 

An endurance limit for ten million cycles of 43% and 706 have been reported 
by Chang and Kesler 

63 
and Lea 

64 
respectively. Repeated loads as low as 

40f and 50% of the ultimate strength have been reported in tests in which 

beams have failed in shear61 and bond64 It was found that beams subjected 

to repeated stresses below the critical stress were not materially affected 

in their ultimate static loads . 6959,60,63 

An increase in static ultimate strength for under-reinforced beams 

subjected to previous fatigue loading of minimum of 100,000 repetitions 
65 

was obtained by Verna and Stelson 

Verna and Stelson66 concluded from repeated loading tests on reinforced 

concrete beams that the dynamic failure mode is dependent on the load 

level as well as the static failure mode. Beams failed statically by bond 

always failed by bond when subjected to repeated loading. This opinion 

was also shared by Chang and Kesler, 
63 

who concluded that for beams 

designed to fail in flexural tension under static load, a low magnitude 

of repeated load generally resulted in a flexural failure by fatigue 

of steel, while a high magnitude resulted in a shear failure. 

Bate 
67 

reported on the effect of cold working on the fatigue 

strength of steel bars, and showed from results of Graf that the 

fatigue strength of plain bars is increased relatively by small amounts 

of cold working, but is reduced by larger amounts of cold working. From 
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test results given by Le Camus, Bate 
67 

showed that beams reinforced 

with mild steel, when subjected to fatigue loading, failed at higher 

proportions-T their static ultimate loads than those with high tensile 

or cold worked steel. 

It was suggested67 that the load factor against fatigue failure 
is unlikely to be less than two for beams with normal amounts of mild 
steel, and may be greater for beams with larger or smaller amounts of 
mild steel, depending on the mode of failure. For beams with medium 
tensile or cold worked mild steel the load factor is likely to be between 

1.3 and 2, depending on, the ratio of dead load to live load. From tests 

carried out by Bate 
68 

the load factors against failure under one million 

repetitions of loading for beams reinforced with plain mild steel bars, 

and others with cold worked deformed mild steel bars were 2.2 and 1.6 

respectively. The former beams failed by yield of steel, while the latter 

failed by fatigue fracture of the bars. The increase in deflection and 

crack width due to fatigue loading is shown by Bate68 to increase only 

slightly, and the maximum crack width is not likely to be 0.25 mm with 

a little risk of corrosion. 
67 

Bate 
67 

pointed out that the type and percentage of steel affected 
the strength and mode of failure of reinforced concrete beams under 
loading. Beams reinforced with mild steel of normal pro portion, which 

generally fail statically as a result of yield of steel, leading t". i 

crushing of concrete, fail in the same manner when subjected to repeated 
loading, but the upper limit of the loading range is likely to be much 
less than the ultimate strength under static loading. Fatigue failure 

of the steel is unlikely, and the fatigue strength of the beam may not 
be influenced very much by the value of the minimum load in the range. 
If beams contain a small percentage of mild steel, fatigue fracture of 

the steel may occur, whereas sufficiently high percentage may result 

in fatigue of concrete. 

Beams reinforced with a normal proportion of medium tensile steel 

or cold worked mild steel reinforcement fail statically in a fashion 

similar to those containing mild steel. Under repeated loading, however, 

these steels may fail in fatigue, with a maximum steel stress appreciably 
less than its yield value. The minimum value of the stress has an 
important influence on the maximum value in the critical range. 

67 

In recent years, due to the development of high tensile steel, 
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some investigators followed the steps of Bate in investigating the effect 

of repeated loading on the ultimate strength and serviceability of beams 

reinforced with high tensile steel. 

Hognestad69 carried out an extensive programme of fatigue loading 

tests on 181 beams reinforced with three grades of steel. The number 

of repetitions of load were two million. Steel of different deformation 

patterns, all conforming to ASTM Designation A305, were used. It was 

concluded that for the same deformation pattern the stress range at a 
fatigue limit taken at two million cycles of load repetition is 

relatively insensitive to the magnitude of the minimum stress and to 

bar yield strength. The form of bar deformation has a great influence 

on the fatigue strength, depending primarily on the local geometry 

where transverse lugs meet the longitudinal ribs, and according to 

Kobrill and Sverchkor70 the radii of curvature where the transverse 

rib joins the body of the bar, and also its inclination to the axis of 

the bar. 43 
Similar observations have been reported by Kokubu-et al. 

71 

It was shown by Hognestad, that for one pattern of deformation, the 

stress range and the fatigue limit may be 355ý less than for another 

pattern of deformation. At a maximum stress below yield the stress range 

is the determining factor in design, and not the minimum or the maximum 

values, since the effect of minimum stress level is minor. These findings 

agreed well with thorn of Rehm69 and disagreed with those (if Blackwe1172 

and lash et a1; 
3 

who stated that for a minimum stress of almost one 

quarter yield strength the stress range at two million cycles vro higher 

for higher grade steel, provided the bars had the same deformation pattern. 

Soretz74 reported tests on fatigue strength of ribbed bars (Tor steel 

reinforcement) in rectangular and T-beams. The effect of repeated loading 

on the concrete, steel and bond, and the effect of unlimited repetition 

of stress on the cracking and deformation of the structural member were 

reported. 

For the rectangular beams the maximum crack width after two 

million cycles between steel stresses of 30 and 330 N/mm2 increased by 

50% to a limited value of 0.25 mm. The residual crack width at the 

lower load limit around zero was about 0.13 mm. These results were 

obtained for concrete strengths of 16 and 60 N/mm? There was a large 

scatter in deflection due to crack formation. After two million cycles 

of stresses between 40 N/mm2 and 330 N/mm2, the residual deflection at 

the lower stress limit became one half of the total deflection under the 
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upper stress limit, and an average increase of 7c% was reported. 

Nakayama71 reported an increase in crack width in beams with 

deformed bars of 0- 20% after 105 cycles for a stress range of 
560 - 2200 Kg/cm2. For beams with a single reinfo rcing plain bar, the 

crack width was 1.5 times that in a beam with a single deformed bar, 

and increased to 1.8 as the number of repetitions increased. The elastic 
deflection increased by 5- 20% after 100,000 cycles, and remained constant 
thereafter. 

Russel and Webber75 found that the deflection at working stress in 

beams reinforced with deformed bars increased by 60%, and the crack width 

by 15% after two million cycles of stress between about 86 - 173 N/mmz. 

2.2.3 Sustained Loading Tests 

The effect of sustained loading or stress on the strength and 

serviceability of concrete structures must be studied with respect to 

creep in concrete. Creep is a phenomenon whereby concrete exhibits 
time-dependent stress-strain characteristics induced by an applied 

sustained stress. Concrete also exhibits a change in strain when 

subjected to drying without the application of external applied stress. 

This phenomenon is known as shrinkage. These two phenomena take place 

when the reinforced concrete members are subjected to long term loading. 

It is well known that the creep behaviour of the extreme fibres 

of a beam under compressive or tensile stresses is much the same as in 

plain concrete. Many research workers have suggested methods of 

predicting creep in reinforced concrete beams, making use of the creep 

magnitude and characteristi:. s of plain concrete. The inter-relation 

between the creep behaviour of both types of constructions is apparent 

and the existing quantitative knowledge of the creep of plain concrete 

can be used to analyse the creep behaviour of reinforced concrete 

structures. This procedure will be dealt with later in this chapter, 

after a brief historical review of the effects of creep and shrinkage 

on the strength and behaviour of reinforced concrete beams as reported 

from tests by other investigators. 

Sustained stresses can be induced in a member either by sustained 

loads or from restrained deformation. The effect of sustained load on 

a statically determinate reinforced concrete structure is an increase of 
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deflection, at a decreasing rate, with time. The compressive strains 
in the concrete increase more rapidly with time than deflection. The 

reason for this behaviour is that, as the compressive strain increases, 

the neutral axis drops due to the tensile stresses not increasing in 

proportion. As a result there will be a relatively smaller rotation 
per unit length or deflection. A redistribution of stresses was noticed 
in the concrete compressive zone which led to a decrease in the lever 

arm of the internal stress and thus an increase in tensile steel stress. 

Glanville and Thomas76 reported this phenomenon, assuming the 

creep in compression and tension to be equal, by showing that the 

stress in the steel increased with time, and it was accompanied by a 
lowering of the neutral axis. As a result a lower rate of creep is 

obtained, because the concrete stress is reduced. They concluded that 

the steel stresses increased by 5W-, the compressive strains increased 

by 3-4 times and the deflection by 2- times. The concrete stress was 
found to be 40%o less than the initial value on loading. 

Washa77 in 1947 conducted tests on reinforced concrete slabs 
reinforced with intermediate grade steel, with an average yield point 
of 340 Nimm2. It was concluded that after five years of sustained loading 

each slab exhibited a large number of tensile cracks, the ratio of final 

to initial deflection averaged about 3, the final deflection being 34% 

due to initial loading, 20% due to warping and 46% due to creep, the 

strain in the plane of the steel remained about the same, the top 

compressive strain increased at a faster rate than the deflection and 

attained a value about six times the strain at seven days, which again 

shows the effect of the lowering of the neutral axis due to creep. 
Of the total deflections 82f were obtained in the first half-year. 

Inclusion of arbitrary amounts of compressive reinforcement resulted 
in a decrease in the plastic deflection and compressive strains? 

8'79980 

Washa and F1uck80 reported the results of 22 years of sustained 

loading on thirty-four reinforced concrete beams reinforced with 

different sizes of deformed bars, with yield strengths ranging from 

324 to 387 N/mm2, with tensile reinforcement alone, and with different 

amounts of compressive reinforcement, and loaded at a 70 - 850F 
temperature and 20 - 80% R. H. The plastic deflections were reduced 
to one half and one third, and the compressive strain by 60% and 40$ 
by inclusion of compressive reinforcement equal in amount and half the 
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amount of the tensile steel respectively. The plastic deflection 

for beams with no compression reinforcement, and those with full 

compression reinforcement, were double and slightly greater than the 

immediate elastic deflection respectively, while for the compressive 

strains the ratios were 44 and 2 respectively. The plastic tensile 

strain was small, but the increase in the steel stress ran¬od from 

18.6 N/mm2, for beams without compressive reinforcement, to 49.7 N/mm2 
for beams with full compressive reinforcement. 

The plastic deflections were found to increase with increasing 

span-depth ratio77978,80 

After a sustained loading of up to 10- years, the ultimate strength 
was found to decrease by amounts of 5 to 10%, while the modulus of elasticity 

of concrete increased by up to 200/0 
1782,83 

Washa and Pluck 84 
reported 

that beams, which had been under sustained design load for three years 
and later loaded to 85% of the ultimate strength for nine months, and to 
90f and 95% to the tenth and eleventh months, showed no significant 
changes in ultimate strengths. Similar observations have been reported 
by-other investigators76'85 

Soretz57 in 1957 reported test results on the effect of sustained 
loading on the cracking of concrete floor slabs reinforced with Tor 60 

steel at a permissible stress of 330 Kg/mm2. Initially, there was 

a rapid increase in crack widths and number, and then equilibrium 

. of crack formation was reached, after a period of two months, in the 

case of beams loaded under their working load, and after five months 

in the case of beams loaded near failure. The crack width increased 

by 50% to a value of 0.225 mm, and the stiffness was found to increase. 

Soretz86'87 in 1961 reported observations, made on the crack formation 

and deformation, of two bridges of cellular cross section, under the same 

condition of service loading, reinforced with Tor 60 and Tor 40 

respectively, and a foot bridge with Tor 60. In the twin bridges, at 

permissible stresses of 2400 kg/cm2 and 3500 kg/em2 respectively, 

the cracks developed perpendicular to the axis of the bridge, and 

increased rapidly in number in the first months, and attained 90% 

of the final value after the first year, reaching stabilisation 

after three years. In the foot bridge, at a permissible stress of 

3000 kg/cm2, the beams behaved in a fashion similar to the twin bridges, 
but about 95% of the total number of cracks was attained after two years. 
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The lengths and widths of cracks and the deformation also increased 

rapidly during the first months, and then stabilised after three years. 
At the final state, the maximum crack width in the twin bridges was 
lower than 0.2 mm for the two types of steel used, whereas in the foot 

bridge the maximum crack width at the level of reinforcement was 
0.28 mm with a mean of 0.14 mm, and at the middle height was 0.45 mm- 
In comparing the two twin bridges, despite the difference in permissible 

stresses of 50% between Tor 60 and Tor 40, the final values of the 

number of cracks were the same, and the crack widths were only l0% 

higher. The deformation due to creep and shrinkage and repeated over- 
loading was only 20% higher for the bridge reinforced with Tor 60 

than that with Tor 40. 

Hajnal Konyi1,88 tested beams with span-depth ratios of 20,30 

and 40, reinforced with mild steel and Tentor steel with permissible 

stresses of 138 N/mm2 and 235 N/mm'2 respectively, and designed to carry 
the same ultimate n,, ment. After 4 years of sustained loading, the 

deflection increased to 3.14 - 3.94 times the original deflection, and 
the average ratio of the maximum deflections of beams with Tentor steel 
to thos with mild steel was only 1.14, despite the fact that the ratio 

of area of mild steel to tentor steel was 1.7. The beams became 

unserviceable, implying that the recommended slenderness ratios in 

OP 114 (1957) are excessive if a substantial proportion of the 
design superimposed load is to be supported for a long period of time. 

The depth of the neutral axis was reported to have increased considerably. 

A comparison of measured deflections with computed ones showed 

that the simplified C. E. B. method, 
41 

which takes account of concrete 

tensile stresses before cracking was in good agreement with the 

measured instantaneous deflections. Good agreement was also found 

using the Yu and Winter method78 which included a "reduced modulus" 

for the prediction of long time deflection. 

For design purposes it was suggested by Hajnal Koriyil that the 

tensile reinforcement index and the permissible stresses would have to 

be restricted as a function of the slenderness ratio of members subjected 

to bending. This is so because of three factors; 

a) The ratio of the final to instantaneous deflection 

b) The ratio of superimposed load to dead load 

c) The initial position of the neutral axis as related to the 

tensile reinforcement index. 



Corely and Sozen89 in 1966 found from tests on beams under two 

years of sustained loading at 70OF and 50% R. H., and with permissible 

stresses of 138 and 207 N/umi2, that the creep strain and deflection 

were 3 and 2j times the instantaneous strain and deflection respectively, 
there was no escalation in deflection due to the use of higher permissible 

steel stresses, the length and number of cracks increased with the first 
60 days and in later stages the upper portions of the cracks closed as 
the neutral axis moved to a position below the tops of some cracks. 

Lutz et a190 found that after five months of sustained loading at 

steel stresses of 207 N/mm2, the ratios of the final deflection and 

compressive strains to the corresponding instantaneous values were 

2415 and 3.32 for a singly reinforced beam, and 1.62 and 2.09 for a 

doubly reinforced beam with equal amounts of compression and tensile 

steel. The average increase in the maximum crack width for a singly 

reinforced beam was about 40%, and was about 5% greater than that of 

doubly reinforced beams. 

Evans and Paterson9l reported sustained loading tests, over a 

period of 750 days, on lightweight aggregate Lytag and gravel concrete 

beams, reinforced with high bond bars. The instantaneous deflections 

at design load were greater for Lytag concrete beams than for gravel 

concrete beams, while the ratio of the final deflection to the 

instantaneous deflection was smaller, averaging 2.16 and 2.71 

respectively, The crack widths at design load were greater, and in 

both cases did not exceed those regarded as permissible for conventional 

gravel concrete beams. 
92 

2.2.4 Prediction of Creep 

It is convenient to express the creep-time relation in a form of 

an equation, so that values of creep may be predicted without performing 

long-term tests. 

Creep deformation, by definition, is a function of stress and 

time. Several expressions, e. g. hyperbolic, exponential, or logarithmic, 

have been suggested by many investigators. 93,94 The equations of 
z 

Lorman and Ross 
3 

give satisfactory results. They are extremely 

easy to apply and have the advantage of quickly predicting the 

ultimate creep. 

As suggested by Thomas, 95 the final creep does not exceed 
4/3 

of 
the creep after one year for specimens loaded at 28 days. This ratio 
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increases as the age of loading increases. Troxell et all96 found 

that the average increase in creep, using a period of one year as a 
basis, is between 14% in two years to 36% in thirty years. Therefore 

it will be of interest to know the value of creep after one year. 
A quantitative method for the estimate of final creep strain is 

suggested by the C. E. B. 41 
This method depends on the evaluation of 

several coefficients, from given charts, which are established on 
the basis of statistical analyses of concrete deforming under working 
loads, producing stresses of the order of 30 to 35% of the ultimate 

stress. These coefficients are derived for the effects of the member 

size, the water/cement ratio and cement paste content, the climatic 

conditions, the age at loading and the variation of creep with time. 

2.2.5 Prediction of Shrinkage 

In most cases it is assumed that the shrinkage-time relations can 
be treated in a similar fashion as for creep. I, 4yse97998 suggested that 

at a given relative humidity of the ambient atmosphere, if a given 

sustained stress is applied, the curve for creep will be nearly the same 

as that for shrinkage. He also found that creep and shrinkage are 
directly proportional to the amount of cement paste in the concrete. 
He suggested an exponential expression. 

Hansen and Mattock" suggested that both expressions for creep 

and shrinkage can be given in a hyperbolic form, as given by Lorman. 
93 

They also investigated the effect of the size of the member (volume 

/surface ratio) on the variation of the final value of shrinkage. 

Using this and the value suggested by the C. E. B. 41 
a correction 

factor of 0.86 for the ratio of the free shrinkage strain in the top 

fibre of the beam to the free shrinkage of the companion prism was 

adopted, to allow for variation in sizes in the author's calculations. 

2.2.6 Prediction of the Time Dependent Behaviour of Reinforced Concrete 

Beams. 

The influence of time on the behaviour of reinforced concrete 

structures subjected to sustained loading has been studied over a 

period of several years. Utilisation of higher quality materials and 

ultimate strength design has resulted in relatively slender flexural 

members. This has broughtto light the greater significance of the 

various aspects of time effects. Concrete exhibits creep under sustained 
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stress, and even under a constant stress the time varying behaviour of 

reinforced concrete is characterised by a progressive redistribution 

of internal stresses'in the concrete and steel, and by an increase in 

over-all def lection. 

Early attempts to analyse creep in a cracked reinforced concrete 
beam were b'tised on the "effective" or "reduced" modulus hypothesis 

introduced by Faber79 and used by Glanville and Thomas76 Ross, 100 

Yu and Winter78 and Neville. 94 
The author has included the methods 

presented by Pauw et al101 and Gesund102 in his calculations. The former 

has presented some refinements of the "effective" modulus technique, which 

permit estimation of neutral axis position, and steel and concrete stresses 

to be made. The latter recognised the fact that the plane of zero stress 
did not coincide with the plane of zero strain, 

76'79 
and in the rest of 

the analyses he used the "effective" modulus. 

The "effective" modulus E is defined as the ratio of the stress, 
c 

fc, to the total strain (elastic and creep), where the constant stress, 

fc , is sustained: 

Ef = 
fc 

c_ 
a E 

c ¬e + to Ce 

Where E 
e 

E 
C 

= 
0 

ý 0 

elastic strain 

creep strain 

creep coefficient 
Ee + Cc 

Ee 

For the calculation of creep deflection Pauw et a1101 has given 

the following steps: 
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Where mt time dependent modular ratio Ccm 
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Kt = time dependent neutral axis depth coefficient 

KA creep effect ratio 

Qi= initial deflection 

V 
ct-6 i= creep deflection 

The other terms, viz. m, p, and K have the usual meaning. 

The other methods of analysis which are concerned with creep 
769100,103 

of cracked reinforced beams are called the "rate of creep" method, the 

superposition method, 
104 

and the linear viscoelastic method. 
105,106,107 

All these methods of analysis are based oa the assumption of the linear 

proportionality between creep and stress. 

The choice of employing any one of the above methods depends on 
the importance of the problem, whether the state of stress is constant 

or variable, and the simplicity of the method. As has been pointed out 
by Ross, 100 

for gradual loss of stress, the "effective" modulus method 
is extremely simple to use, and depends on creep data, which can be 

obtained experimentally from concrete specimens under sustained constant 
load. 

The effects of shrinkage on warping of reinforced concrete structural 

members have been analysed quantitatively and qualitatively by several 
investigators. 1019108V10991109111 The author has used the equation suggested 
by Pauw101 in predicting warping due to shrinkage. The equation is in 

the following form: 

v sh = 
3s esh 

L2 ............ (6) 
a3-Kt d 

where &sh warping due to shrinkage 

esh free shrinkage of prism 

sa size reduction factor (0.86) 

Under certain circumstances, such as abnormal creep and/or 

shrinkage, the Draft Code23 recommends separate consideration of creep 

and shrinkage, and the use of a method which is basically that due to 

Branson, 
109 but with certain empirical coefficients adjusted in accordauoe 

with the creep and shrinkage coefficients given in the Code. 

The time-dependent behaviour of reinforced concrete members is affected 
by the magnitude and characteristics of creep and shrinkage of concrete. 
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Creep and shrinkage of concrete depend toa great extent on the 

ambient conditions of humidity and temperature. The effect of 

environment is, therefore, a very important factor in influencing 

the long-time behaviour of reinforced concrete members. 
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CHAPTER 3 

Buildin Codes 

3.1 Concept of Safety and Serviceability 

3.1.1 General 

A historical review of the design procedures, given by Rowe et 

a1112 Bate 
113 

Abeles114 Beckett 
115 

Torro'a 116 
and Rose 

117 
shows 

that limit state design is the logical development. This has evolved, 

as Bate113 puts it, "... from the intention expressed less rationally 
in the present codes. " 

The load factor method has been used, as early as the beginning of 
this century, 

114 
in the design of reinforced concrete structures. Large 

scale failure tests were taken as a basis for ensuring a definite load 

factor of safety against failure, and satisfactory behaviour under 

working load. No account was taken of the actual distribution of stresses. 

The design of reinforced concrete entered a second stage when it 

was agreed that the tensile strength of concrete should be ignored, when 

considering resistance to bending, based on the elastic theory* 
114 

Since then until the more recent general acceptance of the ultimate 
load method, the elastic theory was included in the regulations of 

almost all countries. For over 75 years the analysis of concrete 

structures has largely been based on the assumption of the elastic theory, 

incorporating a stress factor of safety with limits imposed on span to 

depth ratios. Over the past 20 years, the inelastic behaviour of 

reinforced concrete has been gradually included in the codes. 

In 1938 the Russians 112,115 
abandoned the proportioning of reinforced 

concrete, based on the elastic theory, emerging with a well known fact 

that the elastic, or working load, theory of reinforced concrete gave 

a very good agreement with regard to safety against deflection, but 

varied to a great extent for the actual behaviour at failure. In the 

thirtios they paid greater attention to a more rational design procedure, 

the limit state design, which was later generally accepted112 in 1954 

in the Russian code. 

At present, many countries, e. g. Britain and the United States, are 

drafting their codes of practice in the light of the limit state design. 
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3.1.2 Current Codes and Limit State Design 

The evolution of the current design procedures in the present codes 

can be clearly seen in the three kinds of design which have been developed 

during the last century. These are the working load design, the ultimate 
load design, and the limit state design. The working load design is based 

on the stress factor of safety and the cross section is dimensioned for 

the permissible stresses. The ultimate load design is based on a load 

factor of safety and the proportioning is based on yielding at failure. 

Limit design evnnlvud from this method by assuming a failure mechanism 

in the structure, due to localised plastic hinges forming as a result 

of redistribution of stresses. The serviceability of the structure was 

also considered, because the ultimate load design allowed higher vn rking 

stresses to be used. 

As a result of the above development, a third method has emerged 

which considers three limit states for the design of reinforced concrete, 

namely, collapse, deflection and local damage (cracking), and which is 

now explicitly identified as limit state design. In the current codes 

a definite global load factor is used, whereas in the new approach 
flexible partial safety factors are introduced with regard to collapse, 

local damage and excessive deformation. These factors are related to 

loadings and strength of a probabilistic nature. The design must ensure 

the achievement of an acceptable probability that the structure being 

designed does not become unfit for the use for which it is required 

during its specified life. The acceptable probability should ideally 

be chosen to give a satisfactory balance between the inititil cost, the 

maintenance cost and the insurance premiums related to the probability 

of structural failure. In any structure, unfitness for use may arise in 

various ways, the principal ones being collapse, excessive, deflection 

and excessive local damage. 

In the present codes the strength of individual members and sections 

oan{be calculated on plastic basis related to the actual behaviour of the 

materials. However, the analysis to obtain the force and moment system 

in a structure is still based on elastic assumptions. 

The lack of freedom of choice in the design procedures and the 

misinterpretation of the concept of safety will render the structure 

generally conservative and uneconomical. The concept of failure must 

be treated in terms of probability of failure. Vague suggestions have 



been made relating to the serviceability of a structure which render 
the methods employed in the current codes inadequate to apply. 

All the above difficulties that are apparent in the current codes 
of practice are shown to be overcome once the concept of safety is 
based on the probability of failure relating to collapse, deflection 

and cracking associated with available statistical data on loads and 
materials. Based on this concept, the potential is available to produce 
satisfactory and cheaper structures. 

3.1.3 The Statistical Concept of Safety 

To calculate the probability of failure of a structure account 

must be taken of the expected and unexpected variation in the loads 

and materials, and of an acceptable probability of failure. 

A choice of a "desirable" factor of safety has been investigated 

and discussed by-Freudenthal, 118,119 
Torroja, 

120 
Pugsly, 

121 
Thomas, 

122 

The Institution of Structural Engineers, 123 
and Baker. 

124 
This suggests 

that a decision on an appropriate factor of safety must take into account 

economy as well as safety. 

Granholm49 proposed that the design should be based on reduced 

strengths (design strengths) and enhanced loads (design loads) which 

are obtained by applying certain factors to the probable strengths and 
loads (characteristic strengths and loads). This approach has been 

recommended by the C. E. Ii. 41 

3.2 C. E. B. Recommendations for an International Code of Practice for 

Reinforced Concrete 

Since a complete probability analysis will be difficult and 

awkward to apply, the C. E. B. has adopted a semi-probabilistic method 

which, as compared with the present system, gives a clearer understanding 

of the behaviour of a structure and a better concept of the structural 

safety. Partial safety factors are introduced into the characteristic 

values of the stren, th (reduction factors) and loading (enhancement 

factors). 

A coefficient of 1.64 was adopted to ensure that a probability 

of 5% of the results will be below the characteristic strength. For 

concrete the characteristic strength can be ascertained from the contx)l 



procedure intended, but for steel the characteristic strength is 

at present taken from the minimum strength. 

For the present time the characteristic load cannot be defined 

on a statistical basis due to the lack of data concerning the occurrence 
of loading on structures. 

The characteristic values of the loads and strengths take into 

account the expected variation, but do not allow for the following: 

loads significantly different from that assumed in design, the 

probability of different types of loads occurring at the same time, 

the degree of approximation in the calculation, the method and quality 

of construction, the cost of damage following a possible accident, 

the strength being significantly different from that determined by 

quality control, and the deterioration of the strength during the life 

time of the structure. Partial safety factors for strengths and loads 

are suggested for each limit state. The factors for the strength of the 

materials for the limit state of collapse are 1.5 and 1.15 for concrete 

and steel respectively, and that for loads is 1.4. These factors can 
be increased or decreased depending on the quality of construction, 
workmanship and risk of damage. 

For the control of cracking the crack widths are limited to 0.3 mm 

for internal structural parts in normal atmosphere, 0.2 mm for internal 

structural parts in humid or aggressive atmosphere and external structural 

parts exposed to the weather, and 0.1 mm for internal or external 

structural parts exposed to a particularly aggressive medium or where 

watertightness is needed. The ratio of the maximum to the mean crack 

widths are assumed to be between 1.5 and 2.0. A method for the calculation 

of crack width is proposed. 

For the calculation of the short term deflection, a method has 

been suggested, which takes into account the stiffening effect of 

concrete in the tensile zone. 

3.3 Recommendations of the C. E. B. - F. I. P. Joint Committee 1970125 

These recommendations are the result of combining the C. E. B41 

recommendations for international code of practice for reinforced concrete 
(1964) and the Draft F. I. P. C. E. B. recommendations for the design and 

construction of prestressed concrete structures (issued in 1966 for 

the fifth F. I. P. Congress in Paris). This has been done with a view to 
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establishing a common basis for codes or standards, and achieving a 

uniform and appropriate structural safety for the design and construction 

of all civil engineering structures. 

In this code the over-all correction factors with regard to 

strengths and loads have been sub-divided to include the separate 

effects of (1) the reduction in the strength of materials in the 

structure, as compared with the characteristic values, and the 

reduction due to local effects, (2) the possibility of a deviation of 
the loads from the characteristic values, (3) the low probability of 

simultaneous combination of loads all at their characteristic values, 

and (4) the possibility of adverse modification of the load effects. 
The design strength of the concrete is related to partial safety factors 

which depend on the quality and control of concrete. 

For the control of cracking, four verification classes have been 

introduced to cover all structures with varying degrees of prestress, 

ranging from reinforced concrete to fully prestressed concrete. The 

different limit states of cracking are namely the limit state of crack 

width, the limit state of crack formation and the limit state of 
decompression. The limitations on crack width depend on the type of 
loading considered, short or long term loading, the conditions of environ- 

ment and aesthetics reasons. 

For the calculation of the limit state of crack width in reinforced 

concrete an equation is recommended, which includes the effects of cover, 

stress in the reinforcement, the bar diameter and the effective percentage 

of reinforcement. 

For the control of deflection, span-depth ratios are given and 

methods for calculating the instantaneous deflection, taking account of 

the stiffening effect of concrete in tension and the amount of steel, 

are suggested. 

For long term loads the instantaneous deflection should be increased 

by a factor of 2 in temperate or humid climates, and 3 in dry climates 

at an early application of the loads. The values of this factor should 

be reduced respectively to 1.5 and 2 when the age of loading is at least 

six months. In doubly reinforced beams the above increases should be 

reduced to 6Wo if As = 2As and to 40% if As = As. 
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3.4 Recommendations of the Draft Unified B. S. Code of Practice23 

The C. E. B. Code was adopted by the B. S. Code Drafting Committee 

as a guide in the preparation of the new British Codes. 

In considering the limit state of collapse the maximum values of the 

design loads are obtained by multiplying the dead load and the live load 

by separate partial safety factors of 1.4 and 1.6 respectively, and the 

minimum value of the design load can be obtained by considering the dead 

load alone with a factor of unity. Moment redistributions from the 

elastic distribution of up to 3(% are allowed when certain conditions 

regarding the depth of the compression zone are fulfilled. The strength 

of individual sections is based on its inelastic properties, and may be 

assessed by using the following equations: 

based on the yield strength of the reinforcement 

Mr = (0.87) fy As la 

la = (1 
_ 

1. lfy As ) d1 
Uw bdl 

............ c7) 

based on the strength of concrete in compression 

Mr 0.15 Uý bdi .".......... 

(8) 

The compressive concrete strain at the outermost fibre is taken 

as 0.0035, and the maximum stress is 0.45 Uw or 0.4 U for a rectangular- 

parbolic or a rectangular concrete stress distribution, extending to the 

full depth of the compression zone. 

For the control of deflection the code has recommended the use of 

limiting values of span to depth ratios depending on the span length, 

the fixity condition, the percentage of tension reinforcement, the ratios 

of permanent to total load and of compression to tension reinforcement, 

the severity of the effect of creep, shrinkage and temperature changes 

and the criticality of deflection. 

A formula for the calculation of deflection is given, which takes 

account of the stiffening effect of concrete in the tension zone. 

The calculated deflections should not exceed the limiting values 

suggested in the code. They range between L/250 to L/350 (L being the span). 
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Two methods are suggested for the calculation of the additional 
long term deflection, due to creep and shrinkage. When the ultimate 

shrinkage strain is less or equal to 0.0006, and the ratio of creep 

elastic strain is less or equal to 3.5, the following multiplying 
factors can be used: 

Age at Loading 

l days 28 days 90 d1 yea 

As =02.0 1.8 1.5 1.3 

ý As = 2AS 1.2 1.1 0.9 0.7 

1 
As = As 0.8 0.7 0.5 0.3 

In controlling cracking the strain in the steel is limited to 
0.7_5 fY 

or 0.0015, whichever is the lesser. The maximum surface cracks 
F 

B 

are limited to 0.3 mm and 0.1 mm for normal and aggressive environments 

respectively. A method for calculating the width of the most probable 

crack has been suggested, which includes the effect of concrete cover, 
the concrete strain and the stiffening effect of concrete in the tensile 

zone before cracking. 

3.5 Codes of Practice 

A. British Code CP11422 

In the design of individual structural members two methods are 

permitted, namely the elastic method and the load factor method. The 

elastic method is based on a constant modular ratio of 15, and permissible 

stresses calculated by introducing factors of safety in steel and concrete 

of 2 and 3 respectively, which were later, in 1965, amended to include 

1.8 and 2.73. The load factor method is based on permissible stresses to 

give the working load associated with a load factor of 1.8 to give the 

ultimate capacity of the section at failure. For the analysis of the 

structure to define the forces and moments acting on individual members 

the code allows 15% adjustment of moments obtained by elastic analysis. 

The limitations on deflection and cracking are implicitly included 

in limiting the span-depth ratio and the permissible stresses respectively. 

No account is given of the possibility of calculating deflection or 

cracking. 
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The use of rolled steel bars, hard drawn steel wires, cold twisted 

steel bars and steel fabric is recommended. Other reinforcing stee]s may 

be regarded as suitable if due regard is given to yield stress, ductility, 

tensile strength and other essential properties. The permissible steel 

stresses were limited to a maximum value of 207 N/mm. 
2 

B. American Code A. C. I. 
126 

The American Code (A. C. I. 318-63) is drawn up in the same manner 

as CP114, however, there are differences in details. A redistribution 

of moments of 10% is allowed only when using the ultimate strength 

design approach. Separate load factors are used for dead and live 

loadings, and a partial safety factor, taking account of the variation 

in strength of materials (cylinder strength), workmanship etc., is 

incorporated in the equations giving the strength of section. Minimum 

thickness, limiting values and methods of calculation are specified for 

the control of deflection. The additional long term deflection due to 

sustained loading is accounted for by multiplying the instantaneous 

deflection by a factor of 2 for AS 0,1.2 for A. a J-A5 and 0.8 for 
i 

As m As . The cracking is controlled by using deformed bars well 

distributed in the zone of maximum concrete tension, and by limiting 

the average crack widths to 0.38mm for interior members and 0.25 mm 

for exterior members. 

C. Proposed Revision of A. C. I. 318-63127 

Notable changes in the design of a structural member and in the 

control of deflection and cracking have been suggested. When using the 

ultimate strength design approach the load factors, for the dead and 

live loadings, were previously 1.5 and 1.8 respectively, but the 

proposed values are 1.4 and 1.7. For the control of deflection the 

minimum thickness, for a reinforcement having a yield strength greater 

than 414 N/mm2, is a function of the yield strength, and the instantaneous 

deflection is calculated using elastic methods, and incorporating an 

effective moment of inertia obtained from a cubic equation, which includes 

the effect of cracking. The factor for additional deflection due to 

creep and shrinkage is obtained from a linear equation including the 

effects of the compression steel. Four different limiting deflection 

values are proposed, depending on thetype of member considered. 

For the control of cracking only deformed bars are allowed and a 



formula for the calculation of crack widths as a function of steel 

stress, concrete cover and distribution of steel reinforcement, is 

pxo posed, and limiting crack widths of 0.4 mm and 0.33 mm for 

interior and exterior exposures respectively are given. F'ýr deep beams 

with depths of 915 mm or more vertical face reinforcement, of a minimum 

value of 10% of the main tension steel area, with spacing not more than 

300 mm or the width of the web, is recommended. 

D. German Code DIN 1045128 

The German Code allowed a saving in steel by increasing the 

permissible stresses. It distinguishes two types of steel: naturally 

hard steel and cold worked steel. These are in different forms: 

round and deformed twisted, knobbled and ribbed, and with various 

elastic limits ranging from 2200 kg/cm to 5000 kg/cm. 22 

The elastic analysis is based on a modular ratio of 15, and the 

allowable stresses for steel and concrete, which are given as a 

function of concrete and steel grades as well as the type and shape 

of the member considered. The maximum permissible steel stress in 
22 

slabs is 2400 kg/cm and in beams is 2000 kg/cm. 

Cracking and deflection are indirectly controlled by specifying 

allowable steel and concrete stresses. 

E. Danish Code 
129 

The steel used for the reinforcement should generally be rolled steel. 

Cold worked steel can be used only if it is suitable for use in reinforced 

concrete. The permissible stresses for reinforcing steel depend on the 

types of steel and on the class of control measures. For loads of a 

purely temporary nature, the permissible stresses may be increased by 

25%. With careful control the permissible stresses may be increased by 

5%. 

No limitations on cracking and deflection are given. 

F. (Netherlands) Dutch Code GBV130 

The code distinguishes three types of reinforcement according to the 

process of manufacture, e. g. hot rolled reinforcing steel (normal and high 

tensile) and cold worked steel. The bars may be plair., of prismatic, 

circular or oval shape, or deformed, of twisted oval, square or cruciform 
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with ribs perpendicular or inclined to the centre line. 

For the calculation of stresses, either the elastic method, with 

a modular ratio of 15 or less, or the load factor method, with a load 

factor of 1.8, can be used. The values of the permissible stresses in 

the steel and concrete depend on the type of loading and the reinforcing 

steel used. The maximum permissible steel stress is 2600 kg/cm2. 

For the control of deflection, a minimum effective depth of a member 

can be calculated from an equation depending on the type of steel, the 

magnitude of loading and the length of the span. 

A method of calculating crack width, depending on the type and form 

of bars, is recommended. Crack widths are limited to 0.25mm and 0.2 mm 

for exposed structures which come into contact with water and soil, and 

structures exposed to aggressive medium respectively. 
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CHAPTER 4 

Calculations for the Limit States 

4.1 General 

The theories and mechanisms of the three limit states of excessive 
local damage (cracking), excessive deflection and collapse (ultimate 

strength) are discussed in this chapter. With the help of recommendations 

given in Chapter (3) for the limit state design, and the work of several 
investigators in this field, it is possible to arrive at simplified 

design rules for the prediction of crack width, deflection and ultimate 

strength of singly reinforced, simply supported concrete beams. With 

reference to early work by other research workers on cracking and 

deflection, only the main parameters are considered in the discussion 

for these limit states. These parameters will be shown to be in direct 

relationship with the limit state considered. 

4.2 Calculation for the Limit State of Cracking 

4.2.1 Mechanism and Theory of Cracking 

A crack in concrete is a narrow, irregular opening of indefinite 

length and depth. Recent research has cast new light on the mechanism 

of cracking in reinforced concrete members under load, to achieve a better 

control over cracking, the widths and distribution of the cracks. Much 

of the work has been of a theoretical nature, often involving higher 

mathematical techniques. Extensive investigations have been carried out 

in the past, aiming at developing equations for spacing and width of 
flexural cracks in reinforced concrete members. Summaries of the causes, 

mechanism and control of cracking in reinforced concrete members can be 

found elsewhere. 
579131,132,133,134,135 

Three cracking mechanisms have been reviewed by Bianchini et als131 

(i) Observation of the surface cracking phenomenon and the 

assumption that concrete tensile stress is uniformly 
distributed over an effective area of concrete, and that 

a certain distribution of bond stresses exists. 
36,133,134,135 

(ii) Redistribution of concrete stresses at crack formation that is 

compatable with observed internal and surface cracking as 
suggested by Broms. l36,137,138 139 
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(iii) Fracture mechanics concept. 
140,141 

The first mechanism is discussed here as follows: 

In axially loaded reinforced concrete members the cracks initiate 

at critical locations where the limiting tensile properties of concrete 

have been exceeded, due to weak material or high stress and strain 
(see Fig. 1). These cracks, known as primary cracks, are randomly 

located through the concrete and propogate to the surface. At this 

stage the concrete surfaces at the cracked sections are free of stress 

and the force in the reinforcement equals the external load. Tensile 

stresses in concrete are present between the primary cracks due to the 

bonding action between steel and concrete which determines the 

distribution of concrete and steel stresses in this region. As a result, 

additional cracks form between the initial primary ones at higher loads 

where a uniform concrete stress exceeds the concrete tensile strength. 

Cracking will continue to take place until the bond is not sufficient 

to transfer enough stress to the concrete to cause another crack due to 

excessive slip and reduced distance between cracks. 

Many investigators believe that the axially and concentrically 

loaded reinforced concrete tensile specimen is a satisfactory model 

for the tensile region of a flexural member between existing cracks. 

If the distance between two primary cracks is assumed to be twice the 

minimum crack spacing (a min. ) (see Fig. 1) then a new crack will 

form when (a max) is slightly greater than (2a min. ). However, if 

(a max) is slightly smaller than (2a min) then a new crack cannot form. 

Since most theories on cracking are based on the same concepts and 

differ essentially in the assumption on bond and effective concrete area, 

a general theory has been established by the C. E. B. 
36'73 

regarding the 

mechanism of flexural crack formation: 
I 

amin 
ft e 

ou 
i 

a max 2a min 
I 

a max ft D 

2u P 
e 

IIZ 
whe re Go = 4As PaA 'es 

Dä 
e 

............ (9) 

............ (10) 

............ (ii) 
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Assuming that the steel slips over concrete and neglecting the 

concrete extension: 

w max 
= a max f 

s 

E 
s 

2u pE 
es 

............ 
(12) 

............ ( 13) 

However, because of bond, at some distance from the crack, the concrete 

is strained and therefore the steel stress and crack width are reduced: 

max a Ki D fs ft 

PE 2u 
es 

I 

= g±, D fs ft 

I 
= ft D fs 

4 
Pe E8 u 

............ (14) 

............ 
ý15) 

This is similar to the relationship proposed by Rusch and Rehm 57 

It is assumed that ft and uare both dependent on the strergth of concrete 
I! 

in compression. Therefore ft will be constant & 

u 

Wmax = K3i Dfs 

PE 
es 

" ........... 

( 16 ) 

The previous investigation indicated that (i) crack widths were 

essentially proportional to steel stress142 (ii) crack widths did not 

decrease significantly with decreasing bar size (D) and increasing effective 

reinforcement ratio (Pe). 36 Based on these facts, Efsen and Krenchel 
57 

suggested the formula: 

w max x4 + x3 D fs 
P 

e 

and adopted by the C. E. B. 
36'41 in the form 

wmn. 
x 

(4.5 + 0.4 ) Dfs 

----- r e9 

............ 
(17) 

006*0.060060 (18) 

Based on their findings, it was pointed out by Broms, 
389139 Kaar 

and Mattockl, '43 Hogm stad36 and the C. and C. A. 
45 that crack width is 

strongly influenced by the steel stress, the distribution of the reinforce- 

ment over the effective concrete area, and the amount of concrete cover. 
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The C. E. B. simplified equation (Eq. 18) includes the effect of 

concrete cover, indirectly in the effective reinforcement ratio Pe 

(see Fig. 1) 

Pe l As 
............ 

(19) 

A 
2C +Db Ab 

Hognestad36 found that by varying the cover, and keeping the rest 

of the parameters constant, the C. E. I. equation gave values in good 

agreement with experimental crack widths. 

It can be concluded, therefore, that the main parameters which 

directly influence the maximum crack width are the concrete cover and 

the stress in the reinforcement. 

4.2.2 Cracking in Reinforced Concrete Members 

It is generally accepted that cracks are only objectionable if they 

exceed a certain width. This limit has not been specified until recently. 

The codes, because of the low extensibility of concrete, have specified 

permissible steel stresses to limit the crack width, which becomes 

objectionable if it assists in the corrosion of the reinforcement, the 

disintegration of concrete, and mars the appearance of the structure. 

In studying the crack formation in reinforced concrete members, it 

may be pointed out that the presence of the reinforcement in concrete 

has no appreciable effect on the strain capacity of the plain concrete. 

Microcracks occur at bending stresses which correspond to the direct 

tensile strength of concrete. The lengths and widths of the first micro- 

cracks were found, by Evans, 
144 to be as small as 1.26 mm and 1.69 x 10-3mm 

respectively. Kaplan 
l45 found that the strain at cracking varied depending 

on the volume of coarse aggregate in the mix. He observed an average of 

110 microstrain in concrete before cracking in flexure. This cracking 

occured at loads considerably less than those required to cause visible 

cracking. Cracks became visible to the unaided eye when they were 

about 0.01 - 0.02 mm in width, and when the nominal tensile stress in 

concrete equalled the modulus of rupture. 

Early work on the phenomenon of cracking has suggested that cracking 

can be controlled and limited by employing a higher percentage of steel, 

smaller bar diameter with high bond resistance, and limited permissible 
steel stresses. 

5791469147,1489149 Efsen and Krenchel, 57 from direct 
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tension tests, found that the crack widths were not affected by the 

surface. characteristics of the bars. This finding opposes those of 

Watstein and Parson 142 
and Watstein and Seese. 

148 
Watstein and Mathey147 

found that the crack width at the exterior surface of a deformed bar was 
about one half that at the exterior surface of the concrete at a steel 
stress of 138 MN/M2. 

Rusch and Rehm, 
57 

from test results on beams and slabs, concluded 
that the actual distribution of bond stresses along the bar is not 

essential in the calculation of crack spacing. Values of bond stress 

were estimated from pull-out tests on plain and deformed bars. 

In the 1960s extemsive tests and analysis by various investigators 
36,45,131,138,139,143,150,151 

regarding the crack widths and spacings 

in flexural reinforced concrete members suggested that the magnitude 

of the crack width is greatly influenced by the magnitude of the steel 

stress, the amount of concrete cover, and the arrangement and distribution 

of reinforcement in the effective concrete tension zone. A variation of 

- 50% of the average in the crack widths and spacings has been reported 
by Hognestad, 36 

and Kaar and Mattock. 
143 

From these studies the 

following conclusions can be derived-. 

1. The term D/ 
e 

is an insensitive variab1e. 
369131,138,139 

2. Crack widths and spacings depend on the amount of concrete 

cover. 36+45,131,138,139,143 

3. For the same concrete area (A), the crack widths vary with 

steel arrangement. 
36,138,139,152" 

4. For a uniform distribution of reinforcement over the effective 

area of concrete, the parameter (A) appears to be significant. 
131,152 

5. The steel stress is the major variable in the prediction of cracking? 

6. The bottom and side cracks can be calculated from the same 

equation, except for the strain gradient, 
45,139,153 

provided 

the reinforcement is well distributed and the side crack width 

is little affected by the compression zone of the beam. 

7. The maximum crack width, not the average crack width, is of 

practical significance in design . 
369131P154 

8. The surface characteristics of the reinforcing bar have little 

effect on the width of the cracks. 
9. Appearance is controlled by cracks at the soffit of the beam, 

while durability (corrosion) is controlled by cracks at the 

reinforcement level on the side of the beam. 36 
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4.3 Calculation for the Limit State of Excessive Deflection 

4.3.1 Mechanism and Theory of Deflection 

The problem of deflection in reinforced concrete structures has 

recently attracted the attention of several bodies and investigators 

to study the mechanism and theory of deflection more closely in order 

to arrive at a simplified formula for the design and control of deflection. 

The increase in the present day usage of high strength steel and 

concrete, and the ultimate load method of design has led to the adoption 

of slender members of less stiffness, resulting in increased deflection. 

Summaries of the mechanism and theory of deflection have been 

included in several papers, codes and bulletins. 
4l'134,155,156,157,158,159,160 

In reinforced concrete, three stages can be distinguished in the 

mechanism of deflection. Firstly, the concrete is uncracked and hence 

the section behaves elastically up to the cracking moment (Mc). Secondly, 

the tensile concrete has cracked, but concrete in compression and the 

steel continue to behave elastically up to the yield properties of the 

materials. The third stage is the zone of high concrete or steel stress, 

where the yielding characteristics of the steel or concrete affect 

the behaviour of the section, depending on whether the beam is over- 

reinforced or under-reinforced. 

For the consideration of the limit states under working design load, 

the first two stages are of importance and many investigators have 

represented the behaviour of a beam in a bilinear relationship to allow 

for the stiffening effect of concrete before cracking. 
23'419156,158, l59 

On the other hand, several others allowed for the stiffening effect of 

, 160,161 78'159 
concrete between the cracks. 

From elementary elastic theory a method of calculating the deflection 

of a reinforced concrete beam may be developed. 
23'156'158 This theory 

is based on a commonly accepted expression: - 

ßý a 
2y M ............ 

(20) 

dx2 EI 
0 

When 0= curvature 
M applied moment 
Ea modulus of elasticity of concrete 

c 
I second moment of area 
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The stiffness (ECI) in the cracked condition, especially for 57 

reloading, undergoes the most change. It has been reported by Soretz 

that the stiffnesses for initial loading and reloading of beams in 

the cracked state showed a considerably wide range of scatter of up 

to ± 20 and 
± 50 respectively. These variations can be attributed 

to many factors, namely: percentage of reinforcement, cracking load, 

magnitude of stress at design load, extent of cracking, curing conditions, 

concrete strength, and shape of section. 

The importance of the interdependence of the values '. )f E and I 

has been emphasised by many investigators and codes. 
'55'158'192 

Westlake162 stressed the fact that the Ec and I values should be 

considered simultaneously. 

Some of the previous codes have specified limiting values of the span- 

depth ratios for the control of deflection, but have not given the main 

factors that enter into the determination of this ratio. These factors 

are the span, steel quality, percentage of steel, amount of compression 

reinforcement and type of loading.. For the short term loading the first 

three factors must be considered. 

4.3.2 Deflection of Reinforced Concrete Members 

The cracking moment in a beam with normal amount of reinforcement 

is only a fraction of the working design moment as compared to slabst63 

and hence the deflections at design loads in beams are more critical 

than in slabs. More attention should therefore be placed on the control 

of deflection in beams and a reasonable assessment of their stiffness 

(EI) should be made. 

Various recommendations as regards the stiffness of reinforced 

concrete members have been given by several codes. The variation of 
16U 

the stiffness with loads has been studied by many research workers. 
57 

145 4' 
' 

Eppes164 found that the measured values of (EI) where the beams are 

uncracked are comparable with those calculated on the basis of a gross 

section with a transformed steel area, and the values where the beams 

are cracked with those calculated on the basis of cracked transformed 

section. It was reported, however, by Lash et a173 that over a 

substantial part of the initial loading, the observed values of 

stiffness in some beams were less than the calculated values based on 
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a fully cracked section. In the working load range three stiffness 

values have been distinguished by Soretz. 
57 

The stiffness is greatest 

for the uncracked condition, and is least for the initial loading in 

the cracked condition; for subsequent reloading in the cracked condition 

the stiffness is greater than for the initial loading in the cracked 

condition. 

The effects of the principal factors affecting deflection and 

comparisons of the measured and calculated deflections from various 

theories are included in the work of the A. C. I. Committee, 160 
Bewtra, 

165 

and Beeby. 
158 However, little information has been reported on the effect 

of long-term loading on the deflection of reinforced concrete. 

4.4 Calculations for the Limit State of Collapse 

For the calculation of the ultimate strength of reinforced concrete 

beams, it is essential to assume a distribution of the stress in the 

concrete compression zone, the maximum value of the compressive stress 

and the plastic strain in the concrete that can be attained at failure. 

Many shapes of the stress distribution for concrete have. been 

suggested by several authors and codes of practice. 
23'27'41,1259166,167,168, 

169 

The C. E. B. 41 
and the F. I. P. - C. E. B. 

125 
codes recognised the fact 

that the stress distribution at the ultimate limit state depends on 

many factors; for example, the position of the neutral axis, the rate 

and duration of the application of the loads, the quality of concrete 

and the geometric shape of the section. They also reported that basic 

theoretical approaches and the statistical interpretation of experimental 

evidence have shown that simplified stress distribution in the concrete 

compression zone can be used. 

Ultimate strength theories, except that given by Baker, 
57'170 

assume that there is no slip between steel and concrete in tension. 

The assumption of no slip is recommended indirectly by the codes, via 

the assumption that plane sections remain plane after bending. Gray171 

has shown that there is a difference of 10 in the bonding characteristics 

at ultimate moment between plain and deformed bars. This has been shown 

by comparing the actual steel strain with the extrapolated strain, using 

Bernouli'o theory. The effect of bond on the neutral axis position was 

noticed to be insignificant. 
172 
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Evans et al, 
173 

using X-ray technique in measuring slip, bond 

and steel stresses, showed that at ultimate loads and at 90% of 

ultimate loads, the ratios of interface to concrete surface strains 

were 116% and 108% respectively, and that the ratio (F) of the 

maximum strains in the steel to the measured average surface concrete 

strains at the level of reinforcement increased with increasing load and 
improved bond characteristics. This was contrary to Baker's findingl70,172 

which, based on the values of concrete surface strains, at the level of 

steel, obtained from the measured values of the ultimate concrete 

compressive strains, and the neutral axis position, showed a decrease 

in (F) with increasing load. 

Three different shapes of stress blocks have been recommended 

by the C. E. B. 41 These are the rectangular-parabolic, the parabola 

and the truncated rectangle for any shape of section and with certain 

limits on the maximum stress and strain and the position of the neutral 

axis. The Draft Unified Code, as has been discussed in Chapter (3), has 

recommended the use of two shapes of stress block, namely the rectangular- 

parabolic and the rectangular stress distribution. In the latest code 

by the C. E. B. -F. I. P. Joint Committee in 1970,125 it was recommended that 

for sections subjected to uniaxial loadings in the ultimate limit state, 

the rectangular-parabolic design curve, formed by a second degree parabola 

extended by a straight line, is used. For sections subjected to bending, 

the rectangular-parabolic curve may be replaced by an equivalent simplified 

curve of rectangular form. 

In considering under-reinforced beams, the shape of the compressive 

stress block has relatively little influence on the value of the moment 

of resistance of a member subjected to bending. This is because the com- 

pressive strength of the concrete has little influence in such cases. 

Also such beams with low percentages of reinforcement of good bond 

characteristics have been shown by many investigators to carry loads 

much higher than that expected on the basis of the yield strength of 

the steel. The stress in steel sometimes exceeds the tensile strength 

of the steel as tested in air. Results of this type have been reported 

by Hajnal Konyi, 
24925926928 

Granholm49 and many others. 

As far as practical calculations are concerned, one must take into 

account not only the maximum ultimate moment, but also serviceability 

as given by datlection and cracking. Since hyper-strength is accompanied 



by large steel strains, and even if the ultimate strength has not 
been reached, the concrete structure has already exceeded serviceability 
limits. At present agreement between theory and practice has been 

shown to be satisfactory and that the suggested calculating procedures 

result in values for the ultimate moment that are generally on the 

safe side. The European Concrete Committee recognised the effect of 
hyper-strength on the ultimate strength of weakly reinforced beams, 

and suggested its consideration in the calculation of the ultimate 

strength of such beams. 

The recent codes of practice do not include consideration of 

hyper-strength in their recommendations. 

The Draft Unified Code23 recommends a simple equation based on the 

yield stress of the steel using a rectangular stress distribution and 

partial safety factors on the materials, as has been discussed in 

Chapter (3). This'method, incorporating a load factor of 1.6, has 

been used in estimating the design moment. For the analysis of test 

results in controlled tests in the laboratory the partial safety factors 

should be eliminated and a rectangular-parabolic stress distribution, 

suggested by the Draft Code, can be used. This method has been used 

in estimating the ultimate strengths of beams. 

The Need for the Proposed Programme 

From the above review of the work of several investigators, it can 

be seen that there were differences in opinion as regards the suitability 

of high tensile steel as normal reinfb rcement in concrete. No definite 

conclusions were drawn as regards the design and prediction of tip 

behaviour of reinforced concrete members using high tensile steel. The 

effects of raising the steel stresses and the effects of static, sustained 

and fatigue loading on the serviceability and safety of members with very 

high tensile steel have not been fully considered. The, differences in 

the findings of several bodies and investigators suggested that no 

definite magnitude of the permissible steel stress could be arrived at. 

There is a need for a permissible steel stress which could be employed 

in design without jeopardizing the serviceability and safety even after 

a long period of sustained or repeated loading. They also suggested 

that the methods of controlling cracking and deflection are inadequate, 

and they should be derived on the basis of the second cycle as well as 

the first cycle of loading. The behaviour of the members which are already 
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cracked should be based on the cycles of loading subsequent to the 

first cycle, when they are first loaded in the untracked state. 
Limited information has been given elsewhere regarding the effects of 

reloading cycles on the deflection and cracking behaviour of concrete 

members reinforced with high tensile steel. 

The effects of the cracking and deflection and the effects of long 

term loadings on the choice of the strength of steel has not been 

considered before. The choice of steel strength and the economy 

resulting from using a certain type of steel should be based on the 

knowledge of the cracking and deflection behaviour under static, 

sustained and repeated loading. 

The objective of the proposed programme of investigation, 

therefore, is to arrive at a set of design recommendations as regards 

the use of high tensile steel as reinforcement in concrete members. 

These recommendations should provide a safe, serviceable and economical 

structure. These three conditions can be achieved when the maximum 

permissible steel stress is found from the study of the behaviour of 

reinforced concrete members under short and long term effects. 
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CHAPTER 5 

Programme of Investigation 

5.1 General 

The main objective of this investigation is the use of high 

tensile steel as normal reinforcement in concrete. The variables 
that are thought to be of primary importance and considered in the 

design of*the test beams for the investigation are the surface 

characteristics, the diameter size, the percentage and the increase 

of permissible working stresses of the main longitudinal reinforcement. 

The type of loading (static, fatigue and sustained) is also considered 

as a major factor in this programme. 

The aim of the investigation is to reach an acceptable limit of 

permissible working stress where a beam can be designed with a safe 

load factor against collapse, with adequate serviceability as regards 

deflection and cracking under instantaneous and long-term sustained 

and fatigue loading. 

All the beams vie designed to fail in flexure rather than shear or 

diagonal tension. This facilitated the study of beam behaviour at 

very high stresses. Mild steel stirrups were included only in the end 

spans of the beams. The main longitudinal reinforcement varied in yield 

points from 276 N/mm2 to 897 N/mm2, and in the surface characteristics, 

viz. plain round or deformed bars. Sorri beams were reinforced with 
2 

prestressing steel with yield points up to about 1690 N/mm. 

Two auxiliary beams were also 'jested. These beams were designed 

in a similar manner as the others, except that they contained exposed 

reinforcement for direct measurement of steel strains in the mid-span 

of the beam, and they had shorter spare than the main beams. 

The vnrking loads of the beams were calculated on the basis of 

the limit state of collapse with a global factor of 1.8, recommended 
by the Draft Unified B. S. Code of P2actice. 

23 

A summary if the programme of investigation is given in Table (1). 

5.2 Beam Designation 

The test programme included t-oomain groups, and one auxiliary group, 



of beams as shown by the following notation: 

A- Group of beams with the same percentage of reinforcement 

and different types of steel, e. g. All, A31 

B- Group of beams with different percentages of steel and 
different types of steel, e. g. B11, B21 

Bst - Auxiliary group of beams, e. g. Bstl 

The first suffix number in All, B21, A31 etc. refers to the type 

of loading. These are 1,2 and 3 for static, sustained and fatigue 

loading respectively. 

The second suffix number in All, A12, A13 etc. refers to the number 

of beam within each group of beams. Thesa are 1,2,3 etc. for any 

type of loading. 

For details of test beams refer to Tables 2,3 and 4. 

5.3 Beams with the Same Percentage of Steel and Different Types of Steel: 

Group A 

Five types of reinforcement were used in this group, ranging from 

plain round mild steel (276 N/mm2 yield point) to high tensile deformed 

Kam 90 (897 N/mm2 proof stress). It was intended to design the beams 

of this group to include two bars of 19 mm diameter. Unfortunately, 

in beams reinforced with Kam 60 and Kam 90 the nearest available size 

was 16 mm. 

5.4 Beams with Different Percentages and Types of Steel: Grou B 

This group consisted of nine types of steel reinforcement. The 

beams were reinforced with different percentages and strengths of steel 

and different bar sizes. Some of the beams had similar design loads. 

5.5 Beams with Exposed Steel 

Two beams (Bsti and Bst2) with exposed steel reinforcement over 

a length of 450 mm in the mid-span were tested as part of an undergraduate 

project supervised by the author. 

5.6 Bond Tests 

These tests were carried out as part of an undergraduate project 
supervised by the author to study the difference in bond resistance 



between Kam 60 and Unisteel 80. 

5.7 Types of Loading 

5.7.1 Static Loading Tests 

Beams designated A11, A12, A13, A14, A15, B11, B12, B15, B16, B17, B18, B19, 
Bstl and B 

st2 
were tested under static loading. 

Each beam was s ubjected to two cycles of loading before the final 

failure cycle. On the first and cecad cycles the beams were loaded up 

to approximately the design live load, and about 30f higher than the 

design live load respectively. In some beams the load was removed 

completely just before failure and was applied again. This was done 

to measure the amount of recovery in deflection. 

5.7.2 Repeated Loading Tests 

Beams A31, A32, A33 and A34 were first tested statically up to 

design load, which included the self weight of the beam. Repetitions 

of loading were applied with the upper limit corresponding to the design 

load and the lower limit to one half of the design load. 

After every few hundred thousands of load repetitions the test 

was stopped and the beam was loaded statically up to design load. The 

beam was then unloaded again, and was subjected to repeated loading. 

5.7.3 Sustained Loading Tests 

Beams B21, B22, B23, B24 and B25 were tested statically up to 

design load, which included the self weight of the beam. This load 

was sustained on all five beams for the time durations indicated in 

Table (1). 

5.8 Observations 

In the three types of loading and for all the berms a standard of 

observation was followed. The following measurements were taken: 

1) Strains in concrete (concrete surface) 
2) Crack widths at bottom beam edge and at steel level 

3) Length and distribution of cracks at various stages of 
loading 
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4) Deflections 

5) Increase of deflection with time and repeated loading 

6) Incroc, se of strain with time and repeated loading 

7) Increase in cracking; with time and repeated loading 

8) Residual deflection and cracking 
9) Shrinkage : )f c""ncrete 
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CHAPTER 6 

Design, Description of Materials 

and Construction of Test Beams and Specimens 

6.1 General 

All beams were designed as singly reinforced with the same cross 

sectional dimensions of 152 x 305 mm, and the same span of 4570 mm, 

except the two beams with exposed steel, which had a span of 2740 mm. 

The choice of the beam dimensions was to simulate the behaviour 

of actual members in building, and also to allow a comparison with 

other work elsewhere. This size of the beam provided ease of fabrication 

and handling in the laboratory. 

In Tables (1-4) and Figs. (2-4), the beam n"Lrks, type of loading 

and properties of all beams are given. 

6.2 Design of Test Beams 

The details of the design of beams for safety against collapse, 

provision of shear reinforcement and check for bond and anchorage slip 

are given in Appendix A. 

6.2.1 Ultimate Strength 

Two main groups of beams were tested. The first group, designated 

as group (A), contained all beams reinforced with the same amount of steel 
but different surface characteristics and strengths of the reinforcing 
bars. 

Beams All and A31 consisted of two 19 mm mild steel plain round 

bars. Beams A12 and A32 were reinforced with two 19 mm Unisteel 60 

reinforcing bars. Beams A13 and A33 contained two 19 mm Unisteel 80 

reinforcing bars. Beams A14 and A34 were reinforced with two 16 mm 

Kam 60 steel bars. Beam A15 was reinforced with two 16 mm Kam 90 

steel bars. 

The second main group (B) consisted of beams reinforced with 

different percentages, strengths, sizes and types of steel bars. The 

percentage of steel varied between 0.39 and 2.58. 



Beams Bli and B21 consisted of two 25 mm diameter mild steel plain 

round reinforcing; bars. Beams B12 and B22 were reinforced with two 

22 mm Unisteel 60 reinforcing bars. Beam B23 was reinforced with two 

19 mm Unisteel 80 reinforcing bars. Beam B24 contained two 16 mm Kam 60 

steel bars. Beams B15 and B25 were reinforced with two 12 mm Kam 90 

steel bars. 

Prestressing wires and strands were also used in this group. Beam 

B16 contained six 7 mm diameter crimped prestressing wires. Beam B17 

was reinforced with four 8 mm plain prestressing wires. Beam B18 

was reinforced with four 7.94 mm seven ply prestressing strands. 

In beam B19 four 14 mm three-wire Bristrand 100 were used. 

The two beams Bstl and Bst2 of the auxiliary group were reinforced 

with two 16 mm Kam 60 and Unisteel 80 reinforcing bars respectively. 

The reinforcement was left exposed in the mid-span. The size of the 

opening through which the bars were exposed was 100 x 450 mm. Two holes 

(0.79 mm diameter) were drilled on the outer exposed face of each bar, 

giving a gauge length of 200 mm. 

All the beams had the same size of concrete cross-section of 

152 x 305 mm, and equal side and bottom concrete covers to the surface 

of the reinforcing bar of 35 mm. Details of all the beams are shown 

in Pigs. (3-4) and Tables (2-4) 

The beams of all the groups were designed according to the Draft 

Unified B. S. Code of Practice. 
23 The limit state of collapse was 

adopted as a criterion of design. The ultimate moment of resistance 

of the section was calculated, assuming a cube strength of 41.4 N/mm2 

with partial safety factors on steel and concrete of 1.15 and 1.5 

respectively. The working load was calculated by dividing the calculated 

ultimate mggment by a factor of 1.6. 

6.2.2 Shear Reinforcement 

The shear reinforcement of the beams was designed in accordance 

with the Draft Code. All beams were desi gied to contain the same number 

and uniform spacing of stirrups. The stirrups were 6 mm diameter mild 

steel, spaced at 152 mm centre to centre. These were only provided in 

the shear spans. The reason for not providing stirrups in the mid-span 

of constant moment was simply to avoid the initiation of cracks due to 
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the uniformly spaced stirrups, which had been shown to be crack 
initiators. 

Four stirrup hangers were provided in each beam. These were 
6 mm diameter mild steel bars. The stirrups were tied to the main 
reinforcement and the hangers, in a vertical position. Details are 
shown in Figs. (3 - 4). 

6.2.3 Bond and Anchorage 

The anchorage and flexural bond of all beams were considered 

carefully to ensure a tension mode of failure (yielding of reinforcing 

steel). 

For the purpose of anchorage and prevention of slip, plain bars, 

wires and strands were supplied with hooks which were designed in 

accordance with the code recommendations. The hooks for mild steel 

were U- shaped, while those for the wires and strands were L- shaped. 

Deformed bars were not supplied with hooks, except those in 

the auxiliary beams, which were L- shaped. In order to ensure that 

no slip takes place between steel and concrete at any level of stress, 

an extra length of bar was either welded, in the case )f mild steel, 

or added, in the case of deformed bars, to the length of main reinforce- 

ment as shown in Fig. (3). The length protruding from each end of the 

beam was 50 mm only. This procedure was followed for nearly half the 

number of beams, and since there was no slip recorded it was abandoned 
for the rest of the beams. 

In order to study the difference in slip resistance and bond 

strength of two reinforcing bars of almost the same 0.2f proof stress, 
but different surface characteristics, some pull-out tests were carried 

out. The pull-out test design was in accordance with the recommendations 

given in 1957 by the Rilem Symposium. 
57 

The concrete prism, in which 

the steel bar was embedded concentrically and horizontally while casting, 

was 145 mm square in cross-section and 190 mm long. The longitudinal 

steel bars were 500 mm long with diameters of 19 mm and 16 mm for 

Unisteel 80 and Kam 60 respectively. The prism was reinforced with a 
helix, of 6 mm diameter plain mild steel at 25 mm pitch, with an 

outside diameter equal to the size of the prism. Each end of the helix 

was welded toy the next turn as recommended by CP114.176 The specimen 

and test apparatus are given in Fig. (5). 
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A total of six specimens, three of each type, were made from the 

same concrete mix, as will be described later, and given the same 

conditions of curing as the cube specimens and the test beams. 

6.3 Reinforcement 

Nine different types of reinforcement were used in the investigation. 

These were: 

a) Mild steel: plain round bars with a nominal yield stress 

of 276 N/mm2: - 19mm and 25 mm diameter sizes. 

b) Unisteel 60: deformed bars with deformation forming an oblique 

angle with the longitudinal axis of the bars, 

with a nominal yield stress of 414 N/mm2: - 
19 mm and 22 mm diameter sizes. 

c) Unisteel 80: deformed bars produced by cold stretching 

Unisteel 60 by 3%, with a nominal yield stress 

of 550 N/mm2: - 19 mm diameter size. 

d) Kam 60: deformed bars, manufactured in Sweden, hard 

alloy steel with a nominal yield stress of 

585 N/mm2 and a size of 16 mm diameter. The 

transverse ribs are perpendicular to the longi- 

tudinal axis of the bar. On opposite sides of 

the bar two longitudinal grooves extend parallel 

to the axis of the bar. 

e) Kam 90: deformed bars, produced by cold stretching Kam 60 

steel by almost 5%, with a nominal yield stress 

of 897 N/mm2, and sizes of 16 mm and 12 mm diameter* 

f) Prestressing wires: crimped wires with a nominal yield stress of 

1380 N/mm2: - 7mm diameter size. 

Plain wires with a nominal yield stress of 

1515 N/mm2: - 8 mm diameter size. 

g) Strands: prestressing, 7-ply, with a nominal yield stress 

of 1690 N/mm2 and 7.94 mm diameter size. 

"Bristrand 100 with a nominal yield stress of 

690 N/mm2 and 14 mm diameter size. 

Before use, all the bars were degreased with Acetone. 

Fig. (6), Plate (1) and Table (5) provide full details of the 

reinforcement modulus of elasticity, yield stress, ultimate strength and 

stress at fracture. 
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6.4 Concrete 

The mix proportions were chosen after a few trial mixes were 

prepared and tested. These proportions were 1: 2: 4, using rapid hardening 

cement. In the trial mixes the water/cement ratio was varied from 

0.40 to 0.60 in steps of 0.05. It was found that the most satisfactory 

ratio to attain the desired works cube strength of 41.4 N/mm2 at 
28 days was 0.55. The final mix adopted, therefore, was 1: 2: 4/0.55. 

The concrete used in each test specimen contained rapid hardening 

Portland cement, and Croxdon gravel 19 mm maximum size, and Croxdon 

sand 4.7 mm maximum size. 

Tests on the coarse and fine aggregates were made to determine 

the grading and water absorption factors of these dry aggregates. The 

absorption factor test was carried out after an immersion of the 

aggregates in water for a few hours. The absorption factors were 1.6% 

and 1.0`r% for fine and coarse aggregates respectively. The method 

followed was as described in the B. S. 812.177 

The grading of the coarse and fine aggregates in Fig. (7) was 

determined by the seive analysis described in B. S. 812.177 It was 

found that the grading of th:: fine aggregates with maximum size of 4.7 mm 

down was within zone 3 of the B. S. 882,178 while that of the coarse 

aggregates with maximum size of 19 mm down was almost within the B. S. 812 

limits. The discrepancy was within the 5-15% allowance for over sized 

aggregate. 

6.5 Control Specimens 

At each casting nine 100 mm cubes, two 300 mm high x 150 mm 

diameter cylinders, three 100 x 100 x 500 mm prisms were made. A set 

of three cubes were tested at the age of 7 and 28 days and on the last 

day of the test, to determine the crushing strength of concrete. The 

cylinders were tested to determine the modulus of elasticity of concrete 

and the ultimate crushing strength. The flexure test specimens (prisms) 

served to measure shrinkage strains that occurred before and during the 

tests, and to determine the modulus of rupture of concrete. 

6.6 Mixing, casting and curing 

The mix weights were prepared a day in advance using mix proportions 

of 1: 2: 40.55 by weight. The concrete was mixed for three minutes in a 



Liner Cum Flow horizontal pan mixer of 0.28 cubic metre capacity. The 

mix for each beam was made in two batches. From the first batch one half 

of the beam and the prism specimens were cast, and from the second batch 

the other half of the beam, the cubes ani cylinders were cast. 

Two types of moulds, wocden and steel, were used for the manufacture 

of the test beams. Steel moulds were used for all the control specimens. 

Compaction of the beam was achieved by three Sinex Clamp vibrators 

attached to the bed of the mould and a Thor 110 V poker vibrator 

inserted in the mould for each layer of concrete cast. Triton vibrating 

table was used for the compaction of the control. specimens. 

For each batch the slump and compacting factor tests were performed 

as specified in B. S. 1881.179 The values for the compacting factors 

and slump for all beams ranged between 0.85 to 0.95 and 25 mm to 112 mm 

respectively. 

The beams were covered with wet hessian three hours after casting. 

The next day the moulds were stripped and the beams were marked to indicate 

the position of the supports, the loading points and the location of the 

Demec locating discs 
180 

for strain measurements, as can be seen in 

Fig. (8). Demec locating discs were also fixed on the four faces of 

each control prism specimen for measurements of shrinkage, and the 

cylinders to measure the modulus of elasticity of the concrete. Araldite 

was used to fix the Demec discs on the concrete faces. The first set 

of measurements was made 24 hours after fixing the Demec discs, The 

wet hessians were replaced immediately after fixing the Demec discs 

on the beams and the control specimens. Curing under these conditions 

continued for six days. The test beams and the cont ml specimens 

were cured under the same conditions. 

6.7 Final Condition of Beams 

The beams had a fairly smooth finish on the three faces that were 

in contact with the mould, and in general a satisfactory finish on the 

fourth face. 
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CHAPTER 

Instrumentation, Test Arrangement and Test Procedures 

7.1 General 

The loading arrangement vase chosen to simulate a uniformly 

distributed loading. The loads veze applied tp the beam through a 

steel spreader beam at two points, equidistant from the centre of the 

beam, which produce a third point loading system. The deflections 

under this sytem of loading are greater than would occur under a uniform 

load of the same magnitude. If the deflections are compared under the 

same woment both corresponding deflections will be approximately of the 

same magnitude. 

In the following sections the description of the test arrangement 

and procedures, the test rigs and instrumentations is given. 

7.2 Design of Test Rigs 

Stztic Loading Tests 

The static loading tests were run in two different restraining frames: 

one was a simple frame transferring all the applied loads to the floor 

and the other a self-restraining frame. The two frames are shown in 

Plate (2). 

The simple frame, a pin base portal frame with a capacity of 

150 KN, was made of two round 150 mm diameter bright mild steel 

columns fixed to the floor, through two heavy footings with MacAlloy 

bars in strong floor sockets. At the top ends of the columns a large 

welded plate girder was fixed over a span of 3600 mm. The jack was 

attached to the middle of the bottom flange of the girder. Two different 

capacity hydraulic jacks were employed in the investigation, namely 

100 KN and 200 KN. 

The test beam was placed in a position perpendicular to the 

longitudinal direction of the girder, with its centre exactly under the 

centre of the jack. It was supported on rigid non-yielding supports, 

which were spaced 4570 mm apart as shown in Fig. (2) and Plate (2). 

The hydraulic jacks were operated by a Denison model T60 J Console 
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machine with a capacity of 1000 KN. A ball bearing and socket of the 

jack transmitted the load, through a spreader beam which was 150 

wide x 250 mm deep, 1800 mm long and stiffened at the locations of the 

point loads, to two 75 mm diameter 150 mm long rollers, resting on 
distribution plates 150 mm x 100 mm x 25 mm thick, which were plastered 
to the top of the beam. The weight of the spreader was 91 KN. All the 

applied loads were transmitted from the beam to the reaction supports 
through 38 mm diameter x 150 mm long rollers, sandwiched between two 

150 mm x 100 mm x 25 mm thick plates, one of which was stuck to the 

soffit of the beam and the other to the steel supports by means of 

Evostick. 

The loading arrangements, supports, conditions and the restraining 

simple frame which were used in the static tests were also used in the 

fatigue tests. 

Fatigue Loading Tests 

The fatigue tests were carried out using Losenhausenwerk Fatigue 

Testing Machines. These were of two types, SBE 120 and SBE-WE 80, the 

former having a maximum pump capacity of 120 c. c., and the latter 

having a capacity of 80 c. c. and an alternating device to operate two 

jacks at one time pushing in opposite directions. 

The loading jacks (EPZ) were of several capacities, ranging from 

40 KN to 600 KN, and could be operated by either machine. Only EPZ4 

and EPZ1O were used in the fatigue tests. 

The maximum dynamic load that could be applied was 80% of the 

static capacity of the jack. The minimum dynamic load was theoretically 

zero. 

The rate of cycling depended on the deflection of the beam at 

its range maximum limit, the volume of oil needed for the strokes, the 

size of the jack, the type of machine, SBE 120 or SHE WE 80, and the 

type of frequency required, 1: 1 or 2: 1.1, top speed of 100 cycles per 

ninute, and a low speed down to 5 cycles per minute were possible. 

Both machines were used for the fatigue tests in the investigation, 

with a range of speed of 60 cycles per minute to 100 cycles per minute, 

and with an average of 90 cycles per minute. The machines could also be 

used for static loading, using a load maintainer. Safety devices were 



available to enable the machine to switch off automatically in case of 
beam failure or excessive loading. 

Sustained Loading Tests 

Two types of sustained loading arrangements were designed. In 

one two beams were loaded simultaneously in a self-straining system, and 
in the other only one beam could be loaded, with the reaction from the 

loads being transferred to the floor. They both followed the leverage 

principle for loading. The leaverage ratio for beams B22, B24 and 
B25 was 10, and for beams B21 and B13 was 9 (see Fig. 9). 

The loads applied were by means of dead weights, some of which 

were round cast iron, and the others were hexagonal concrete flat 

blocks made in the concrete laboratory, each of which weighed about 

0.45 KN. 

Due to the lack of loading area to include all sustained loading 

tests, it was decided to load beam B22 in the Heavy Structures Laboratory 

employing the arrangement commonly used. The other four beams were 
loaded in pairs in the Concrete Laboratory in the self-straining sustained 

loading system. This sytem is principally the same as the first one, 

except that the reaction forces are transferred to a heavy Steel Universal 

beam, as can be seen in Fig. (9). 

The problems involved in the system of sustained loading were 

very few. Firstly, as the reinforced concrete beam deflected by a 

certain amount the end of the lever, where the weights were hanging, 

deflected 9 or 10 times as much, depending on the leverage ratio. This 

problem was overcome by tightening up the nut, bringing the free end 

of the lever on a level with the other end in a horizontal position, and 

this was checked with a spirit level. The effects of having a big 

deflection at the free end were the creation of a horizontal component 

of loading on the reinforced concrete beam, as well as the bending of the 

MacAlloy tie. Secondly, in the self-straining system, the cracks could 

only be checked on the outer side of the beam, and this was not in 

accordance with the static and fatigue tests in which both sides were 

checked. However, the results of the one-sided measurement were not 

significantly different from those obtained by measurement on both sides. 

Fig. (9) and Plate (3) show the sustained loading arrangements. 



Pull-out Tests 

The apparatus consisted of two mild steel plates, as shown in 

Fig. (5). The bottom plate, with 57 mm diameter hole at its centre, 

provided the base plate for the concrete specimen, and the top plate, 

with a 27 mm diameter hole at its centre, formed the reacting member. 
The two plates were connected by four MacAlloy ties. 

The top of the apparatus was anchored to the upper set of jaws 

of the machine through a MacAlloy bar tied to the centre of the top 

plate. The lower end of the rei! iforcing bar, passing through the hole 

in the bottom plate, was gripped by the lower set of jaws. A packing 

of 3.18 mm plywood was placed between the concrete and the base. 

The pulling 'load was applied to the lower end of the reinforcing 

bar by a 500 KN capacity Denison machine. 

The slip of the free end of the reinforcing bar at the top of the 

concrete specimen was measured with a simple apparatus. A dial gauge, 

with 25 mm travel and a least division of . 01 mm was attached to a 75mm 

diameter round base stand with a hole in the centre passing over the 

end of the bax and resting on the top of the concrete specimen. The 

spindle of the dial gauge was in contact with the top end of the bar, 

and exactly at its centre. 

Fig. (5) and Plate (4) show the pull-out test arrangement. 

7.3 Instrumentation 

For the measurement of deflection, three 50 mm travel dial gauges 

with magnetic bases were used. These gauges were fixed on a 1830 mm long 

universal beam, the centre line of which was exactly below the centre 

line of the reinforced concrete beam. Three square 50 mm x 50 mm x 

1.58 mm thick mild steel plates were fixed with Evostick to the soff it 

of the beam at the middle and at points of applied loads at 761.5 mm 

on either side of the centre of the beam, for the spindles of the 

deflection dial gauges to bear against. Near ultimate loads the dial 

gauges were remnved and replaced with a scale and a magnetic stand 

at the centre of the beam only to measure deflection at higher loads. 

On either end of the beam a 25 mm travel dial gauge was used to 

measure any movement of the steel relative to concrete, as explained 
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in Section 6.2.3. The spindles were bearing against 50 mm x 50 mm 

x 1.58 mm thick mild steel plates fixed to the concrete faces near the 

centres at the ends of the beam. 

The strains were measured on the concrete surface with a 200 mm 

Demountable Mechanical Strain Gauge 
180 known as a "Demec" gauge, and 

stainless steel locating discs, which were 6.3 mm in diameter with 

a central hole of 0.79 mm diameter. The least division in this 

gauge was . 99 x 10-5. Also a 50 no Demountable Strain Gauge with a 

least division of 1.248 x 10-5 was used for the determination of the 

modulus of elasticity of concrete. The gauge was always checked 

against a calibrating bar for temperature changes. 

For beams All and Bll strains on the reinforcing bars were also 

measured by electrical strain gauges. Two pairs of "6k" felt back 

paper gauges were used in each beam. The gauges were placed on the 

top and bottom surfaces of the reinforcing bar at the central section 

in each case. The gauges were fixed by Araldite, and were then water- 

proofed with a layer of fibreglass followed by epoxy resin. 

The detection and measurement of crack widths were made with a 

hand microscope of 40 magnifications illuminated from a6 volt battery 

cell. The least division of the inner scale of the microscope was 

0.01 mm, and it could read a crack width as fine as . 001 mm. 

Very bright lamps were used to facilitate the detection of the 

initial visible cracks on the sides of the beam. 

The distribution plates on the top of the beams were fixed with 

plaster of Paris. In the case of sustained loading tests the reaction 

supports were levelled by applying a layer of plaster of Paris between 

the supports and the floor. 

7.4 Test Procedures 

7.4.1 Static Loading Tests 

Fourteen beams were tested under static loading. All the beams 

were subjected to two cycles of loading before the final failure cycle, 

except beam B18 which was accidentally cracked, and was therefore tested 

for the final failure cycle only. The first and second cycles were up to 

design live load, and one and a third times the design live load. In 
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some cases the beams were loaded below or above these limits. 

On the first and second cycles deflection readings were taken at 

every increment of loading. On the third cycle the deflection readings 

were taken until the theoretical failure load of the beam was approached 

when the dial gauges were replaced with a 300 mm scale at the centre of 
the beam. The deflections were read more frequently before the cracking 
load was reached, and at bigger increments thereafter. 

In some beams, deflections were also read after unloading from 

a high overload near ultimate load. 

Strains were measured with a Demec gauge over a 200 mm gauge 

length on either face on the central section of the beam at various 

levels as shown in Fig. (8). In order to locate the neutral axis 

position accurately, more locating discs were used in the compression 

zone than in the tension zone. In only two beams, B16 and B17, strains 

were measured at the level of reinforcement and at the soffit over the 

entire mid-span. The strains in the reinforcement, over a 200 mm gauge 

length in the mid-span of the auxiliary beams, were directly measured 

with a Demec gauge. 

Strain measurements were taken during the cycles of loading and 

unloading at uniform and fewer intervals than was the case with 

deflection measurements. 

On the third cycle the strain measurements were stopped just before 

the calculated ultimate load was reached. 

The use of bright lights, the change in the shape of the load- 

deflection curve, and the change in strain reading gave a good indication 

of the initiation of cracking. 

With the aid of a hand microscope, frequent measurements were made 

of the width, number, depth and direction of penetration of the cracks. 

Different coloured marks were used for the three different loading cycles. 

At the end of the unloading cycle the widths of the cracks that remained 

open were recorded. 

After tho failure of each beam, the ultimate load and the mode of 

failure were recorded. The crack pattern was taken down on graph paper, 

including the spacings and lengths of all cracks. The cracks were marked 
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with a black marker, and the beam was photographed. 

7.4.2 Repeated. Loadirg Tests 

It was intended to test five beams in this series, but beam A35 

was not tested, therefore only four beams were tested under repeated 
loading. Beams A31, A32 and A33 were designed to c)ntain the same 

amount of steel, e. g. two 19 mm diameter bars, with different types 

and strengths of steel. Beam A34 was reinforced with two 16mm diameter 

bars. 

The load ranges of all four beams were chosen to reach a maximum 

load equal to the design load (applied load + self weight of beam) and 

a minimum load of half the design load. 

Firstly, the beams were subjected to a single static loading cycle 

up to the design load, during which measurements of cracks, deflection 

and strains were recorded in the same manner as in the static tests. 

After unloading on the first cycle the remaining deflections, strains 

and crack widths were recorded, and the fatigue test was started. In 

some cases the test was interrupted by mechanical failure of the machine, 

which lengthened the testing period. 

After every few hundred thousands of repetitions, the machine was 

stopped and the beam was subjected to another static load cycle up to 

design load. The strain, deflection, number, width and travel of 

cracks were recorded in the same way as in the static loading tests. 

At the end of fatigue loading after 2 to 4 million cycles, as given 

in Table (1), the beams were loaded statically up to failure, recording 

all the observations as in the static loading tests. 

After failure the beams were marked with a black marker and were 

photographed. 

7.4.3 Sustained Loading Tests 

Five beams were tested under sustained design load (live + dead 

loads) by applying the lever principle as described earlier. 

The ages at which the beams were loaded varied between 44 days 

and 100 days, as indicated in Table (1), depending on the availability 

of the apparatus and space. As mentioned earlier, it was possible to 
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load only one beam in the Structures Laboratory, in which the temperature 

and relative humidity were maintained. The other four beams were loaded 

in couples in the Concrete Laboratory, where there was a considerable 

variation of temperature and humidity. Seasonal and daily variations 
in temperature and relative humidity were noticed, and a daily record 

of these atmospheric conditions of both laboratories was maintained, 

as shown in Fig. (10) 

The sustained loading was maintained on beams B21 and B23 for 

a period of 623 days, on beams B24 and B25 for a period of 553 days 

and on beam B22 520 days, as shown in Table (1). 

After the beams were fixed into position, the spreader and the 

loading arrangement were carefully placed, causing a load on the beam 

which was sufficiently heavy to initiate cracking in some of the beams. 

One weight at a time was applied, causing a load on the beam of 

approximately 4.5 KN. The beams that were tested in pairs were loaded 

simultaneously. This procedure was continued up to the design load. 

Deflections, strains and cracking were recorded before and after 
the placing of the spreader beam and the loading arrangement, and at 

every increment of loading up to the design load. The deflection readings 

were taken every day for the first 4 to 7 months, and every week for the 

next nine months, and then every month for the rest of the test period. 

The strain readings were taken daily for the first week, weekly for the 

first two months and then monthly for the rest of the test period. The 

crack widths, the extent of travel of the cracks and the number of cracks 

were measured for the first year at the same intervals as for the strain 

measurements. 

The concrete shrinkage strain on the Demec locating disc, fixed on 

four faces of a 100 x 100 x 500 mm control prism, were also recorded 

each time strain measurements were taken. 

7.4.4 Control Tests 

With each beam tests were carried out to ascertain the compressive 

strength ( cube and cylinder), modulus of elasticity, modulus of rupture 

and shrinkage. 

7.4.4.1 Compressive Strength Tests 

Nine 100 mm cubes were cast, and tested in groups of three cubes after 

7 and 28 days and at the time of failure of the beam. They were tested 
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in a dry condition in axial compression in an 1800 KN Avery Compression 

Testing Machine at a rate of 13.8 N/mm2 per minute, in accordance with 

B. S. 1881,1952.179 

Two cylinders, 300 mm high x 150 mm diameter, were tested in 

compression in a 3000 KN Denison Compression and Transverse Testing 

Machine to determine the modulus of elasticity of concrete. The tests 

were carried out just after the failure of the test beam, at increments 

of loading of 50 KN. At each increment of loading the strains were 

measured over four sets of 50 mm Demec gauge points, which were fixed 

in such a way that they were parallel to the axis of the cylinder, 

symmetrical about the mid-height and spaced 900 apart, The cylinders 

were capped, three hours after casting, with a thin layer, 3.18 mm thick, 

of a mortar of high alumina cement and Leighton Buzzard sand. A plane 

surface was obtained by working down on oiled flat glass on top of the 

mortar. 
181 

Measurement of strain was stopped when there was a rapid 

change in the rate of strains. The cylinders were then taken to failure 

to determine the maximum compressive strength. 

The results are shown in Table (6). 

7.4.4.2 Modulus of Rupture of Concrete and Shrinkage Control Specimens 

Two 100 x 100 x 500 mm prisms were tested in flexure just after 

the first cracks appeared in the test beam. The third prism, on which 

Demec locating discs were fixed for shrinkage readings, were tested after 

the failure of the beam. The prisms were tested with a 150 KN Denison 

Transverse Testing Machine, at a rate of 1.78 N/mm2 per minute, in 

accordance with B. S. 1881,1952.179 

The results are given in Table (6). 

7.4.4.3 Bond Tests (Pull-outTests) 

Six 145 x 145 x 190 mm prisms were cast using a similar concrete 

mix as that used for the main investigation. Three were reinforced with 

19 mm diameter Unisteel 80 bars, and the other three with 16 mm Kam 60 

bars. They were all reinforced with spiral reinforcement. 

The loads were applied in increments of 5 KN in a 500 KN Denison 

Testing Machine. The slip at the free end was measured with a 25 mm travel 

dial gauge at every load increment up to failure. Plate (4) shows the 

test arrangement. 
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At the end of the test the mode of failure was noted, and the 

failed specimens were photographed as shown in Plate (4). 

Details of the test specimens are given in Table (7). 

7.4.4.4 Modulus of Elasticity and Ultimate Strength of Steel 

Three 450 mm long; specimens for each type and size of bar from 

the batches of deformed and mild steels used in the investigation were 

tested and the stress-strain curves were,. obtained. 

The tests were carried out in a 500 KN capacity Denison hydraulic 

testing machine, using a Huggenberger strain measuring gauge with a 

gauge length of 25 mm. The results are shown in Fig. (6) and Table (5). 

7.4.4.5 Temperature and Relative Humidity Measurement 

A daily record of the temperature and relative humidity of 

the Structures Laboratory and Concrete Laboratory was maintained 

during the first year of the sustained loading tests. The temperatures 

were recorded by a Zecol maximum-minimum temperature thermometer. The 

relative humidity was measured by a Gallenkamp humidity meter. The 

recorded values are shown in Fig. (10). 
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CHAPTER 8 

Analysis of Stresses in the Reinforcement 

8.1 General 

In reinforced concrete structures, the stresses in the 

reinforcement due to applied loads or forces are usually calculated 

on the basis of either untracked homogeneous section, or a fully 

cracked section. The transition zone between uncracked and fully 

cracked states is usually ignored in design. In this zone the neutral 

axis position changes gradually, with the applied load between the uncracked 

value and the fully cracked value. 

The centroid of the composite section in the unloaded state, and the 

position of the neutral axis in a fully cracked state can be predicted 

by the elastic theory using a specified modular ratio. The neutral 

axis position at failure can be predicted fairly accurately by the many 

suggested plastic theories. The method of determining the neutral 

axis depth at any loading stage in the transition zone will be given 
in this chapter. 

Once the neutral axis depth and the centroid of compression in 

the concrete are found, the stresses in the reinforcement can be found 

from the moment compatibility at any load level. 

8.2 Formulation for the Calculation of Stresses in the Reinforcement 

of a Simply Supported, Singly Reinforced Concrete Beam. 

The proposed method is based on experimental analysis of the position 

of the neutral axis. It is, therefore, a semi-empirical analysis whereby 

the neutral axis position is a function of the varying applied moment. 

The assumptions used in this formulation are as follows: 

1) Plane section remains plane after bending, i. e. a linear 

strain distribution is assumed in the concrete in compression at all 

stages of loading. 

2) The depths of the neutral axis of strain and stress may be 

derived from the assumption that the neutral axis depth is a linearly 

decreasing function of the moment from unc racked stage up to a value 

of K' x the ultimate moment, which represents fully cracked state. 
After this point, it is assumed to be constant until near failure, as 
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shown in Fig. (11). The calculations of the neutral axis depths 

for the uncracked as well as the fully cracked sections are based on 
the elastic theory. 

The uncracked neutral axis depth measured from the extreme top 
fibre is calculated from: (See Appendix A) 

d 
n unc =d- 

d/2 
+ (m - 1) P(d -'dl) 

............ (21) 1+(m-1) p 

and the cracked neutral axis depth from: (See Appendix A) 
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3) The distribution of compressive stresses in the concrete 
is assumed to be of the simplified shape considered in Fib;. (12). The 

strain at the maximum stress ( XU 
w) 

is equal to eo = 
Uw 

and the 
5000 

strain at failure in the uppermost top fibre in concrete is 0.35%. The 

position of the centroid of the resultant compressive force of can be 

found, by trial and error, from the strain and force compatibility: 
(See Fig. 12) 

for ee c" o 
°C = () "33 and 0 L, fcL Uw 

for ec > eo 

aý = 3eý - 3eeeo + e2 

6e2 - 3e 
o ec 

............ (25) 



-75- 

f 
s 

= M 

c ............ (26) 
X= 

ýs -(äi = 

eo d 
-n e c 

x+ya dn 

f 
fs As 

0 
(x12 +y )b 

and fc 6w 

............ (27) 

............ 
(28) 

............ (29) 

4) The stresses in the steel reinforcement are calculated from 

the equilibrium with applied moment 

f 
s 

a M 
dl - O<d ............ (26) 

The factor K, ' in assumption (2) § 8.2, is determined from the plot 

of the experimental results of the neutral axis depth with the moment. 

8.3 Calculation of Stresses in the Reinforcement using Experimental 

Results 

8.3.1 Static Loading Tests 

In the calculation of stresses in the steel reinforcement the position 

of the neutral axis, and the centroid of the compressive force in the 

concrete, were the main parameters, varying with the magnitude of the 

applied load. A computer programme was developed incorporating the 

following procedure for the calculation of stresses in the steel reinforce- 

ment. (Reference should be made to Fig. 13): 

1) The average neutral axis position of strains for each increment 

of loading is located by passing the best fit line through the experimental 

strain readings in the compression zone. 

2) The neutral axis of stress is assumed to be coincident 

with the neutral axis of strain, neglecting the effect of shrinkage. 

3) The centre of compression is assumed to be a function of the 

load and thus a function of the compressive strains. 

ý) Assuming a parabolic distribution of stresses up to a strain 
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e0=w in the uppermost top fibre of the concrete, and a parabolic 
5000 

and rectangular distribution at loads producing strains higher than eo0 
the centroid of compression at any level of loading can be found from 

geometric consideration. 

5) The maximum strain in the concrete at failure is equal to 

0.35%. 

6) The total force in the reinforcement is calculated from the 

moment compatibility relationship at azy applied moment. Thus the stress 

in the steel is found by considering the amount of the reinforcement. 

8.3.2. Sustained and Repeated Loading Tests 

In the analysis of stresses, in these long term tests, the effects 

of creep and shrinkage on the distribution of strains in the central 

section are taken into account. With reference to Fig. (14) the 

following assumptions are made: 

1) Upon instantaneous loading the neutral axes of stress and 

strain coincide. 
2) Both neutral axis depths of stress and strain increase with 

time (under sustained and fatigue loading) and then remain constant. 

3) After a period of time the stress neutral axis and strain 

neutral axis do not coincide, due to shrinkage and effects of stresses 

in the concrete tensile zone. 

4) For the calculation of stresses, the stress neutral axis 

due to creep is equal to the strain neutral axis, obtained by deducting 

a uniform shrinkage strain from the measured over-all strain due to creep 

and shrinkage. 

5) The stress distribution in concrete in compression is assumed 

triangular (under sustained and fatigue design load) and from this and 

the position of the neutral axis, calculated in (4) above, the value of 

the steel stress is obtained. 

8.4 Experimental and Theoretical Steel Stresses under Short Term Statio 

Loading; 

It has been mentioned above that the determination of the neutral 

axis position at any moment level is required a priori for the calculation 

of steel stresses. The variation of the depth of the neutral axis with 
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increasing applied moment can be seen in Figs. 15-18. In these figures 

the ratio of the actual neutral axis depth to the effective depth is 

plotted against the ratio of the applied moment to the actual ultimate 

resistance moment of the beam. It can be seen from the results that 

a bilinear relationship can be fitted through the points in the 

manner descrioed in § 8.2, which will give a value of K'= 0.3. This 

value of K'can be used in the formulae given in § 8.2 to predict the 

stress in the steel reinforcement. 

Figs. (19) and (20) show the variation of the theoretically calculated 

steel stresses, with the total applied load (dead load + live load) 

superimposed on the experimental stresses, which are calculated-using 

actual experimental neutral axis depths. 

Fig. (21) shows the variation of the actual steel strains in the 

central section of the constant moment region, with the applied loading 

for the three cycles of loading. These strains were measured with 

electrical strain gauges. On the same graph, the load-strain curve, 

calculated using the measured neutral axis depths obtained from the 

strain distribution as shown in a typical graph in Fig. (22), is also 
included. 

In Fig. (23) another comparison is made, in the case of auxiliary 

beams, between calculated stresses based on the actual strain measurement 

on the surface of the reinforcement, and the calculated stresses based 

on the actual measured neutral axis depths. Only the results of beam 

Bstl are considered here, since the measured strains of beam Bst2 gave 

non-uniform results. 

From all the relationships and graphs listed above, the following 

general conclusions about the stress in reinforced concrete beams can 

be derived. 

1) The variation of the average neutral axis depth with load 

was independent cf the type (plain or deformed) of steel used, and thus 

the stiffening effect of concrete between cracks for all beams was almost 

of the same order, regardless of the various surface characteristics 

of the different steel reinforcing bars. Figs. (15) 
- (18) show that 

there is a transition zone between the uncracked and the cracked states, 

which can be estimated fairly accurately by a straight line which gives 

a K'value of 0.3. The line representing the fully cracked state of the 



beam can be taken as a lower bound in most of the beams. 

2) There was some scatter in the position of the neutral 

axis. This was because of the scatter in the, 4stimation of the line 

of best fit, which passed through the strain values at different 

locations through the compressive depth of the beam. Also in these 

figures it can be seen that in most cases the depth of the neutral 

axis increases slightly during the second and third cycles of loading. 

This might be attributed to the cumulative effect of creep. 

3) The neutral axis depth in the cracked state was found to 

depend mainly on the percentage of the steel, the modular ratio and 

the strength of concrete. The design strength of concrete was the 

same for all the beams, however there was a variation from the design 

value in some cases. The effect of the variation of strength is obvious 

in the cases of beams All, A12 and A13. Beam All showed a greater depth 

of the neutral axis than the other two beams, due to the lower concrete 

strength. 

4) The extent of cracking is another factor which can affect 

the average depth of the neutral axis. A study of the crack patterns 

of beams All, 1.12, A13, A14 and A15 indicated that the extent of cracking, 

the height of travel and the number of cracks within the 200 mm gauge 

length influenced the position of the neutral axis. 

Also the direction of movement of the cracks had a great bearing 

on the strain distribution. On increasing; the loading a crack may 

change direction and may become outside or inside the 200 mm gauge 

length. 

5) With reference to Figs. (19) and (20), the theoretical 

and experimental plots show a uniform and linear relationship between 

load and stress in the steel, which can be extended back to the origin. 

6) The theoretical and experimental curves agreed at all load 

stages up to and beyond the design load. There was a slight divergence 

at relatively high loads. At these loads the theoretical values of 

stresses were slightly lower than the experimental values. 

7) The actual rtresses measured, using electrical and mechanical 

strain gauges, as shown in Figs. (21) and (23), were always lower than 
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the stresses calculated in accordance with 0 8.3.1. In Fig. (21) 

the stiffening effect of concrete before cracking can be seen to 

affect the tensile steel strains. 

It was intended to calculate values of d (centroid of compressive 
force) in beams with exposed steel and one with electrical strain gauges. 
However, when using the measured steel strains the values of ücobtained 

were inconsistent. 

8) The magnitude of the maximum stress (K U) in the stress block 

depends on the position of the neutral axis, the rate and duration of 

loading and the quality of concrete. The values of ö' varied from 0.75 

to 0.90. 

9) Fig. (21) shows that when the load was removed the steel 

stress did not go back to zero, but some residual tensile stresses developed 

in the steel. On the second application of loading to a magnitude 

equal to or higher than that of the first application, the relationship 

wt3 again that of the virgin cycle. 

10) At the ultimate load condition the stress in steel in most 

of the beams exceeded the yield point or proof stress of the material. 

Column (14) in Table (8) gives the ratios of the calculated steel 

stresses at failure to the actual steel stresses as measured from 

tnesion specimens tested in air. The calculated steel stresses at 

failure were computed in accordance with the Draft Code of Practice23 

with the assumptions used in § 8.3 and Fig. (13), and a value of ii 

of 3. It can be seen from the values of these ratios that there is an 

enhancement in the steel stress over the yield stress of up to 27%, as 

in the case of beam B19. In beams reinforced with the prestressing 

wires and strand the ratios were based on the nominal strength of these 

steels. The range of increase in stress over the yield stress was 

from 0 to 16% for beams reinforced with mild steel bars, from 12 to 

20% for beams reinforced with Kam steels, and from 0.99 to 17% for 

beams with Unisteel bars, the low value being for the beam with 

exposed steel. In beam B16, which was reinforced with crimped 

prestressing wires, the increase waF 20%, which indicated that the bond 

between steel and concrete was maintained. However, in beam B17, 

with prestressing wires, the ratio of the failure stress to the yield 

strength was very low, which indicated that failure was not a tension 
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failure of steel, but probably a bond failure resulting in crushing 

of concrete. 

In general, the amount of steel for these under-reinforced beams 

did not show any particular trend as regards the hyperstrength of the 

beams. 

Therefore, neglecting the partial safety factors on the materials, 

The Draft Code method can be utilised in predicting the stresses in 

steel reinforcement at failure. It is suggested that this method can 

be used in conjunction with the proposed method in predicting the stresses 

in the reinforcement at any load level even at ultimate. 

The effects of long term loading (sustained and fatigue loading) 

on the stresses in the steel reinforcement will be discussed in 

Chapter (10). The initial steel stresses which are recorded in Tables 

(9) and (10) were calculated by assuming a triangular concrete stress 

distribution and using the experimental neutral axis depths. 
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C HAPTER 9 

Behaviour of Beams under Static Loading 

9.1 General 

Design procedures for predicting the behaviour of beams, in 

terms of cracking and deflection, under static loading are presented. 

The reliability of the procedures is indicated by comparisons between 

computed results and experimental data of this study for 12 beams 

reinforced with different types and percentages of steel. 

! 'detailed study is presented on the effects of static loading 

on. cracking, deflection,. ultimate- strength, steel stresses and -concrete 

strains. The effects of using. high. tensile steel (with different 

. strengths and surface characteristics) on the three limit states are 

also discussed. 

9.2 Limit State of Cracking 

9.. 2.1 General 

In 0 3.2 and § 3.4 limits on crack widths have been established 

following the recommendations given by the C. E. B. 
41 

and the Draft 

Unified Code 
23. 

for the different conditions of exposure. In this 

section formulae for the prediction of the maximum. crack. width on the. 

first and second cycles of loading are suggested': "A formula for the 

determination of the maximum remaining crack width is also given. These 

formulae are useful for the design of concrete members reinforced with 

different types, percentages and sizes of high tensile steel. 

In the light of these formulae the experimental rerul. ts are 

analysed and a detailed study of the crack formation and-crack width. 

under static load is presented. A somparison is made between the 

computed and experimental crack widths. The agreement between the. 

computed results and experimental data indicates the reliability of the 

proposed methods in predicting the crack widths of concrete members 

reinforced with high tensile steel. 

In the analysis of cracking, efigineering judgment rather than a 

statistical approach was adopted. However, regression lines were 

plotted to establish the linear relationships between the major 

variables which were included in the formulation. 



9.2.2 Proposed Crack Width Formulae 

In 9 4.2 the various parameters involved in the spacing and 

width of cracks were reduced into three major parameters: 

1) stress in the steel reinforcement 

2) concrete cover 

distribution of reinforcement within the 

effective concrete area 

In the present investigation the parameters which would directly 

affect the crack width are: 

1) the stress in the steel reinforcement (f 
s) 

2) the stiffening effect of concrete before 

cracking (Ys) 

p 

3) the percentage of steel reinforcement (p) 

4) the type of steel reinforcement (surface 

characteristics) (R) 

5) the effects of the loading cycles subsequent to 

the first cycle 
6) the concrete cover (C) 

The concrete cover was kept constant for all the beams. The 

value of the effective reinforcement ratio (Pe), the bar size and 

hence the ratio (D%Pe) were varied. 

9.2.2.1 Crack Width: First Cycle 

On the first cycle of loading the concrete cracks when the stress 

in the steel is equal to a certain magnitude (fso). The magnitude of 

this stress depends on the amount of tension steel in the beam. This 

sti4fening effect of the concrete before cracking has a great influence 

on the crack width and it can be suggested that the following expression 

can be used for predicting the maximum crack width on the first cycles 

W�.. = RC(fe-Ks)x10 -6 
to .......... 

c/ 
0/ 

'"Al 0 
p 

where Wmaxl - maximum crack width (mm) at the level of 

reinforcement on the first cycle 
R- coefficient depending on the surface character- 

istics of the reinforcing steel (1/N/ 2) 



C- concrete cover (mm) at the reinforcement level 

fs - stress in steel (N/mm2) calculated in accordance 

with 3 8.2. 

Ks - constant depending on the strength of concrete and 

related to the steel stress at cracking load (N). 

p- percentage of steel (percent) 

9.2.2.2 Remaining Crack Width 

In a reinforced concrete member, when the applied load exceeds 
the cracking load on unloading a certain number of cracks will not 

close. However, if the beam is severely cracked then most of the 

cracks will not close. The magnitude of the maximum remaining crack 

width depends on: 

1) the steel stress at the maximum load applied on 

the previous cycle 

2) the concrete cover 

It can be suggested that the maximum remaining crack width can 

be expressed as follows: 

0 max = k1 C(fsp - k2) x 10 6 
............ (31) 

where `, - maximum remaining crack width (mm) 
max 

k1- proportionality constant (h/N/mm2) 

C- concrete cover 

f 
sp 

k2 

permissible steel stress (1) (N%=2) 

design steel stress (N/mm2) under the 

effect of which all the remaining cracks 

will be closed. 

9.2.2.3 Crack Width: Second Cycle 

The stiffening effect (P$) of concrete in the tension zone, which 
influences the crack width on the first cycle is no longer available 
for the second cycle, and hence can be neglected. The cracks start 
increasing in width as soon as the load is applied. The crack width 
increases above that value which remains after unloading at the end 

of the first cycle. It is suggested, therefore, that the maximum crack 

width on the second cycle of loading can be expressed as the combination 

of equations (30) and (31), but neglecting the term (Is) as in the following: 
P 



w= max2 

where max 
2 

kl 

k2 

C Ifs (R + kl) - klk2i x lÖ b 
............ (32) 

maximum crack width (mm) at the level of 

reinforcement on the second cycle 

constant related to the maximum remaining 

crack width (l/N/mm2) 

design steel stress under the effect of which 

all the cracks will be closed (N/mm2) 

The other terms have the usual meanings. 

9.2.3. Determination of the Coefficient (R) from Test Results 

In equation (30) the influence of the bond characteristics of 

the reinforcement is included in the coefficient (R), which had 

different values for different surface characteristics. The surface 

characteristics tend to modify the influence of steel stress and 

concrete cover on cracking. 

The values of the coefficient (it) can be determined from the 

slopes of the best fit lines through the results correlating crack 

width at the level of reinforcement with steel stress for the three 

categories of beams as shown in Figs. (24) and (25) for the first 

cycle and in Figs. (26) and (27) for the second cycle. 

The values of R obtained were: 

Beam Category Values of (R) 

(Type of steel) First Cycle Second Cycle 

Deformed bar 16.0 12.9 

Plain bar 18.6 13.5 

Wire and Strand 25.0 24.2 

In the comparison of the results of the different types of bars, 

it was found that the maximum crack width for plain round bars was 

only 7 percent greater than that for deformed bars. The increase in 

width for the wires and strands over that of deformed bars was 67 percent. 

Snowdon43 reported 12 percent wider cracks for the plain bars, while the 

C. and C. A. 45 found the difference to be 13 percent, 

9.2.4 Determination of the Constants Ks,. 
_kl 

and k2 from Test Results 

The stiffening effect of the untracked concrete in the tension 

zone on the first cycle of loading can be obtained from the relation 



between the stress in steel at first cracking, and the percentage of 

steel. This relation for the present investigation is shown in 

Fig. (28). In this figure the stresses (f 
so) at cracking moment, 

as obtained from the deflection curves, are plotted against the 

percentage of steel reinforcement (p) for an-average concrete strength 

of 41.4 N/mm2. It can be seen that the stress at first cracking is 

inversely proportional to the steel percentage and the relationship 

is of the form: 

f=K 
so s 

p 

where Ks = 69.5 Nlmm2 for IIw = 41.4 NImm2 

The value of Ks depends on the tensile strength of the concrete 

which is related to the cube strength. 

Considering this effect, the steel stress at first cracking for 

each beam was deducted from the total steel stresses for loads higher 

than the cracking load. The results were plotted against the maximum 

crack widths and lines of best fit were passed through the points. 

Figs. (24) and (25) show the plots for the three categories of beams 

as designated by the type of steel viz. deformed bars, plain bars, 

and wires and strands. In these figures it can be seen that the 

relationship between the maximum crack width and the steel stress 

beyond the cracking load stress is linear, and it starts from the 

origin. 

The constants k1 and k2 can be obtained from the relationship 

between the maximum remaining crack width and the stress in the steel 

at design load as shown in Fig. (29). Even though a big scatter can 

be observed to occur, the trend was a direct proportionality between 

steel stress at design load and the remaining crack width. Best fit 

lines were passed through the experimental points and the following 

values for kl and k2 were obtained: 

Steel Level Bottom Edge 
k1 (11"N/Inm 2) 5.28 5.00 

k2 (NIMM 2) 138.00 41.40 

9.2.5 Relation between Crack Width and Concrete Cover 

The effect of concrete cover C (the distance from the point of 

measurement of cracks to the surface of the nearest reinforcing bar) 



on the crack width was studied as follows: 

The average concrete surface tensile strains (et) were extrapolated 
from the linear strain distribution diagram in the compression zone. 
The crack slopes(W/et) were obtained from the slopes of the regression 
lines of the plots of the maximum and average crack widths agairs t the 

average concrete tensile strains at the level of measurement of the 

cracks. Typical graphs of W v. s. et are shown in Fige. (30) and (31) 

for plain and deformed bars. 

The slopes of 
M/et 

were plotted against the cover (C) for all the 

beams. The effect of the distance (C) for both deformed and plain 

bars can be seen in Figs. (32) and (33). For the same value of (C) 

the results showed a big scatter in the values of 
W/et. However, 

the scatter fell within the scatter reported by the C. and C. A. 
45 

based on the results of 133 test beams, and the relationship between the 

crack width and concrete cover can be assumed to be linear. A similar 

conculsion has been reported by Hognestad36 and Broms1389139 by plotting 

the average and maximum crack widths against the concrete cover. 

9.2.6 Relation between Crack Width and Steel Stress 

9.2.6.1 Comparison between Theoretical and Experimental Results 

In Figs. (34-37) a comparison was made between the calculated and 

measured crack widths. The theoretical lines were superimposed on the 

experimental results for the first and second cycles of loading. The 

theoretical values agreed satisfactorily with the experimental ones 

for both cycles. In only three cases did the theory underestimate the 

maximum crack width on the first cycle. This resulted from experimental 

scatter in the magnitudes of the maximum crack widths. However, beam 

B17 was heavily cracked and failed due to bond slip. The same reasoning 

may be applied to the deviation observed between experimental and 

theoretical results on the second cycle. 

In Table (11) a comparison was made between tte maximum crack 

widths calculated using the Draft Code formula and those based on 

the proposed formula (Eqn. 30). It can be seen that the Draft Code 

formula under-estimated the measured maximum crack width in most cases, 

while the proposed formula showed a good agreement. Another comparison 

with the equation recommended in the Code reveals that the Code has 

recommended the use of plain and deformed bars and reinforcing wires, 

but it does not give any indication of the difference in the crack 



control characteristics of each type of reinforcement. The proposed 
formulae in 9 9.2.2. indicate that the crack control of the three 

types of reinforcement depends on the characteristics of the 

reinforcement. The different values of (R) in th- equations in 9 9.2.2 

account for the different surface characteristics of the reinforcement . 

In Table (11) the measured average and maximum remaining crack 

widths of the beams tested under static load are given. The maximum 

remaining crack widths calculated according to Eqn (31) are also 

given. It can be seen that the steel stress at design load has a 

great influence on the remaining crack width. It can also be seen that 

the values of the maximum crack width calculated according to Equ. (31) 

agreed fairly well with the measured ones. 

9.2.6.2 Behaviour of Test Beams 

Before any discussion of the results is undertaken it is 

necessary to define the maximum and the average crack width used 

in the analysis of the results. In this investigation the maximum 

crack width is that of the largest crack that occurs at any loading stage 

i. e. it need not necessarily be the same crack. The average crack width 

is the total widths of cracks divided by the total number of cracks 

at any loading stage. There are four values which should be considered 

in this investigation. These are the maximum and average crack widths 

at both the bottom edge and the steel level. 

The crack widths were measured for all the cycles of loading, but 

not while unloading. 

The graphs shown in Figs. (38-49) give the relationship between 

the measured crack width and the calculated steel stress for the virgin 

cycles (first cycleand loading stages of the second and third cycles above 

the maximum load of the first cycle) from near cracking load up to 

near failure. The sudden increase in the crack width as seen. on the 

graphs was due to the unloading and reloading effect. 

The steel stresses were calculated using the measured depths 

of the neutral axis (3 8.3). This was adopted to avoid the use of 

assumed values of the modular ratio, and allow the use of the proposed 

method (§5 8.2) in the calculation of the average steel stresses. These 

figures show the effects of the major variables used in this investigation 

on the crack widths. These variables are the type of steel, percentage 



and diameter of the reinforcing bars and the stress in the steel. 

Figs. (38) and (39) respectively give the relationship for the 

maximum crack width at the bottom edge and the level of steel in beams 

reinforced with equal amounts of steel. Beams All, A12 and A13 

have 1.44 percent of steel, and beams A14 and A15 have 1.01 percent 

of steel. The comparison is made on the basis of the type of steel 

used in these five beams. The behaviour showed a direct relationship 
between the maximum crack width and the steel stress beyond the 

cracking load stress, as has been predicted theoretically in § 9.2.4.1. 

The importance of steel stress on crack width has been observed by 

other investigators. 
36,41,45,146,149 

In comparing beam All, reinforced with plain round bars, with 

beams A12 and A13, containing deformed bars, it can be seen in 

Figs. (38) and (39) that the cracks uere of comparatively equal 

magnitude from stresses as low as those corresponding to initiation 

of cracking up to about 200 N/mm2. After this the maximum crack 

width in beam All increased more rapidly than in the case of the other 

two, reaching a maximum (at the bottom edge) of 0.3 mm at about 

220 N/mm2. Beams A12 and A13 reached the same value of crack width 

at steel stresses of 32cß N/mm2 and 300 N/mm2 respectively. 

Stresses in Stee N/punt) (For Crack Widths at Bottom Edge 

Beam Mark All A12 A13 A14 A15 

% Steel 1.44 1.44 1.44 1.01 1.01 

Type of Steel Plain Deformed Deformed Deformed Deformed 

Crack Width 

0.2 mm 
0.3 mm 

180 

220 
245 

320 
194 

300 
345 

510 
400 

1 483 

The steel stresses reached in beams All, A12 and A13 at a crack 

width of 0.2 mm at the bottom edge were about 180,245 and 194 N/mm2 

respectively (see the table above). Even though the strength of 

concrete in beam All was much below that of beams A12 and A13, 

the three beams showed similar behaviour, and the divergence at higher 

load levels was due to the typical behaviour of beams reinforced with 

plain round bars. At high loads, in beam All, the increase in width 

was concentrated in the maximum crack at the section at which the concrete 

eventually failed in compression as can be seen in Plate (5). 



-89- 
In beams 414 and A15 the reduction in the area of steel and 

bar size resulted in the n/Pe 
ratio and thus it was expected from 

the theoretical consideration in @ 4.2 to obtain higher crack widths 

than those for beams All, A12 and A13 at the same steel stress. 

However, the experiiaetal results from the present investigation showed 
lower values of maximum crack widths in beams with higher values of 

D/Pe. 

For a crack width of 0.2 mm, at the bottom edge level, the steel 

stresses for A14 and A15 were about 345 and 400 N/mm2 respectively. 

All the five beams (All - 115) developed similar cracking patterns with 

sensibly equal number of cracks, but the crack widths were smaller for 

lower percentages of steel. 

Thomas146 pointed out that the steel stress for zero crack width 
increased as the percentage of steel decreased, and hence this effect 
tended to keep the cracks small at working stresses for low percentages 

of steel. The same conclusion can be drawn from the results given by 

Clark149. These observations confirm the validity of the assumptions 

used in formulating equation (30). 

In the present investigation at the same stress levels smaller 

crack widths were observed in beams A14 and A15 (with Kam steel of 

1.01%) as compared with beams All (with mild steel of 1.44%), A12 

and A13, (with Unisteel of 1.440. The superiority of Kam steel bars in 

controlling crack widths may be further attributed to two probable 

reasons: the smaller bar diameter and good bond characteristics. Kam 

steel bars have surface deformation pattern with the transverse lugs 

perpendicular to the axis of the bar, whereas in Unisteel bars the lugs 

are oblique. Pull-out tests (Appendix B) on specimens containing two 

types of steel indicated the superiority of the steel with perpendicular 

lugs as far as initial slip and working stress range are concerned. 

According to the Draft Code23 two conditions must be fulfilled 

a) the maximum crack width for normal conditions of exposure is 

limited to 0.3 mm, b) the strain in the tension reinforcement, 

neglecting the stiffening effect of concrete in the tension zone, is 

limited to 0.7 f 
or 0.0015, whichever is the lesser. To comply 

with the first condition in this investigation it can be seen in 

Figs. (38-39), (42-43) and (46-47) that the range of stresses in the 



reinforcement (including all types) is between 250 - 511 N/mm2 at the 

bottom edge, and between 500 - 700 N/mm2 at the level of steel. With 

these ranges of stresses the strain in the reinforcement, assuming 
Es a 200 KN/mm2, ranged between 0.00125 to 0.00350 and in most of 

the beams exceeded the value (0.00150) given in (b) above. The value of 
0.0015 in the Code suggests that the maximum yield strength (fy) 

should be limited to about 400 N/mm2. However, the findings in this 

investigation suggest that steels with very high yield strengths 

can be used without violating the first condition of the Code. 

In practice most engineers are unwilling to accept cracks that 

are 0.3 mm wide permitted by the Draft Code23 for unprotected 

structures under normal conditions of exposure. However, the 

C. E. B. 41 
reoommends a limiting value of 0.2 mm for these types of 

structures which may be regarded as reasonable. 

In Figs. (40) and (41) the average of the crack widths are 

plotted against the stress in steel. It is obvious that the average 

crack widths at all stress levels for beams A14 and A15 were smaller 
than those for the other beams, and they also appeared to be increasing 

more uniformly. 

Figs. (42) and (43) show the maximum crack width at the bottom 

edge and steel levels, for beams reinforced with different types and 

percentages of steel. Beams Bll, B12, A13 and B19 have approximately 

the same design load, while beam B15 has a lower design load than the 

rest. In considering the results of beam Bli, B12 and A13, it can be 

seen that the type of bar (plain or deformed) and the percentage of 

steel did not have significant effects on the rate of increase of 

crack width. 

An objection might be raised that the conclusion regarding the 

percentage of steel is based on various sizes of bar diameters. However, 

the findings of C. & C. A. 45 
and Hognestad36 confirmed that even when 

the bar size is kept constant the amount of steel reinforcement does 

not affect the rate of increase of crack width. On the other hand, 

Thomas146 and Clark149 reported a higher rate of increase of crack 

width with lower percentages of steel. 

Beam B15, with Kam 90 steel deformed bars, showed lower crack 

widths, at the bottom edge level, than the other beams. Beam B19 

with Bristrand 100, had a better cracking control, when considering 



the crack width at the bottom edge, than Bil, B12 and 1113, and even 
better control than B15 when considering the crack widths at the steel 
level up to about 385 N/mm2. When the average crack widths were 

compared, Figs. (44) and (45), beam B15 was superior to all the other 
beams. Beam B19 also showed a good crack control. The superiority 

of these two beams (B15 and B19) to the rest of the beams (Bil, B12 

and A13) was due to the low percentage of steel which affected the 

steel stress at first cracking. The steel percentages for beans B15 and 
B19 were 0.564% and 1.09% respectively, and those for beams Bll, 

B12 and A13 were 2.58%, 1.96% and 1.44% respectively. 

Figs. (46) and (47) show a comparison of the maximum crack 

width of beams, reinforced with wire, strands and bars, and which 

have similar design ultimate loads. Fig. (46) reveals the superiority 

of the bar over other types of steel. Beam B16, with crimped prestressing 

wire, showed a better crack control than beam B19, which was reinforced 

with Bristrand 100. This may possibly be explained by the larger number 

of small wires used in this beam, and consequently the smaller area 

of concrete, in the tension zone, surrounding each bar. It may also be 

explained by the lower steel stress at first cracking, due to a 

smaller area of steel. Beam B17, with four 8 mm diameter plain 

prestressing wires, and beam B18, with four 7.94 mm diameter 

prestressing strand, showed much wider cracks than beam B15, B16 

and B19. This may be because of the fewer and widely spaced cracks 

that are likely to form with this type of steel due to less efficient 

bond (see Pig. 50). 

In the present investigation B17 and B18 showed similar crack 

widths up to a steel stress of 750 N/mm2. The great difference after 

this level was due to unloading and reloading in beam B17. Hajnal 

Konyi26 reported a crack width of 0.25 mm at an average steel stress 

of 550 N/mm2 in beams reinforced with 28-12 gaugewires, and a steel 

area of 154 mm2. At the same crack width the stress in this 

investigation was about 360 N/mm2 in beam B17, with a steel area of 
2 201 mm 

" Abeles182 found that the maximum crack widths were greater in 

a beam reinforced with rough surface wires than in the beam with 

strands. This was attributed to the smaller number of cracks due to 

the less satisfactory bond efficiency of prestressing wires. The 

cracks were much wider in a beam reinforced with very smooth surfaced 

wires. 



Figs. (48) and (49) show the average for beams with wires, 

strands and bars. Again the crimped prestressing wires (B16) showed 

a comparatively good control over cracking, while beam B15, with 
deformed bars, showed the best crack control. 

The relationship between the maximum and average crack widths 

with increasing steel stress over t1 , hole range of loading can be 

seen in Figs. (51) and (52) to vary essentially in a random manner. 

The average values of the ratio, maximum crack width/average crack 

width, were 1.96 and 1.86 for deformed and plain bars respectively. 

These ratios, obtained at the level of steel, were greater than 

that at the bottom edge with a value of 1.7 for both types of steel, 

For the purpose of clarity only five beams were included in the figures. 

For beams reinforced with wires and strands, the average ratios over 

the whole range of loading for the steel level and the bottom edge 

were 1.7 and 1.6 respectively. 

The ratios reported by other investigators36,43,44,4591389139,119,183 

ranged between 1.5 and 2.0. 

9.2.7 Relation between Crack Width and Bar Diameter (D) and 

Effective Reinforcement Ratio (Pe) 

In the present tests the value of the bar diameter (D), the 

effective reinforcement ratio (Pe), and the ratio (D/Pe) were varied. 

In Fig. (53) a plot is shown of the ratio (D/Pe) with the measured 

maximum crack width. No significant trend can be observed of the effect 

of the ratio D/pe on the crack width. Similar observations have 

been reported by other investigators. 36 

The figure shows the suggested relationship of the C. E. B. theory36 

to be linear, and in comparison with test results it is far from 

true. The direct relation of crack widths with D1e ratio givezby 

the C. E. B. seems to over-estimate the effect of the diameter (D) 

and the effective reinforcement ratio (Pe). It can be concluded, 

therefore, that the ratio 
D/Pe is an insensitive variable as has been 

indicated in (§ 4.2.2). 

9.2.8 Relation between Crack Width and Crack Spacing 

The classical theory predicts the average crack widths from the 

assumption of all the slips that would occur between the steel and 

concrete over the average spacing. If this relationship is being 



sought from the results of the present investigation, a relationship 

pf the form given in Fig. (54) is obtained. It is apparent that there 

is no definite trend from the relationship. However, a linear direct 

relationship was assumed in the classical slip theory. The graph 

was plotted for a steel stress of 207 N/mm2, which was assumed to be 

the limit after which no more cracks formed. One important fact that 

could be deduced from this figure was that there was a significant 
bond between the cracks at this level of stz: as Rush and Rehm57 

pointed out that this relationship depended on the magnitude of 
the steel stress, the existence of secondary cracks and the 

concrete strength. 

Brmmsl38 has shown that the theoretical minimum spacing of 

cracks is equal to the concrete cover (the distance from the point 

of measurement to the centre of the bar). The theoretical average 

spacing is 1.5 times the theoretical minimum spacing. However, tests 

carried out by Broms showed that the average spacing was 2.0 times 

the minimum spacing. Assuming the latter to be true, the results 

of the present investigation gave different values from the calculated 

values when the plain and deformed bars only were considered (the 

level of measurement was at the bottom edge). The calculated average 

spacing was equal to 120 mm as compared to the experimental average 

value of 102 mm. (see Table 11), which was comprrable to the value 

of 1.5 x the minimum spacing, i. e. an average of 90 mm. In considering 
the results of these beams and beams B16, B17 and B18, reinforced with 

prestressing wires Q. nd strands, a factor, K, should be used, as has 

been suggested by ivlorita152, to take into account the different bond 

characteristics of the different types of steel. 

Crack widths and epanings are inherently subject to great 

experimental scatter36'5l'73'143,1S3 and the variability might be 

as high as 
± 50% from the average. 

36 Beams All, A31, B11 and B21 with 

plain round bars showed the greatest scatter at all the loading 

stages. This was so because of the variability of the formation of 

the secondary cracks, which were included in the evaluation of the 

average crack spacing. Due to the wider spacing of aracks in beam 

All (see Table il), the crack widths were observed to be relatively 

greater than in the other beams with the same type of steel. 

9.2.9 Cracking Pattern 

In the present tests cracks were usually detected when they 

had a width of about 0.015 to 0.02 mm, which was wide enough to be 



visible to the unaided eye of an experienced observer. Huwever, the 

cracking load was established by adopting a bilinear relationship 

of the load-deflection curves. On this basis cracks occurred at 

calculated steel stresses (based on experimental neutral axis depth) 

ranging from 20-100 NImm2 depending on the amount of reinforcement 

employed in the beam. The flexural tensile strength of concrete, 

based on the above, was found to vary from 2.0 to 4,0 N/mm2. 

For all the test beams, the development of the cracking pattern 

was recorded at several load stages. At the cracking load, as defined 

above, in a typical beam, a, munber of cracks occurred simultaneously 

at a spacing which averaged about 300 mm, though subject to a great 

variation. This spacing was reduced as the load was increased, and 

more cracks developed. There was a tendency for the moan spacing 

to reach a minimum value, and virtually no more cracks formed after 

a stress of 200-250 N/mm2 was reached. On increasing the load above 

this limit the cracks increased in width and in length. In most 

of the beams with deformed and plain bars, the mean spacing reached 

a minimum value of about 100mm, while in those beams with plain 

prestressing wires and prestressing strands the cracking patterns 

showed widely spaced cracks with an average spacing between 150- 

200 mm. The behaviour of the beam reinforced with Bristrand 100, 

Bl9, was similar to that of the beams reinforced with deformed or 

plain bars. 

The cracking patterns at failure, for beams reinforced with 

different types of steel, are shown in Figs. (55) and (56). It can 

be seen that in some of the beams with deformed bars, small cracks, 

usually called secondary cracks, were observed between the well 

established main cracks. These cracks extended just above the level 

of steel and were smaller in width than the primary ones. Some of 

these cracks formed at the steel level, and propagated upward towards 

the neutral axis. With increasing load all the : racks became wider 

and longer, reaching the level of the theoretical elastic neutral 

axis, based on cracked transformed section. In beams with deformed 

bars or prestressing wires or strands, most of the cracks extended 

beyond the elastic neutral axis level towards the theoretical plastic 

neutral axis. In beams with prestressirg wires or strands the cracks 

were seen to bifurcate as they approached the elastic neutral axis.. 

Generally, the cracking patterns shown in Pigs. -(55) and (56) 

did not show any significant difference between the plain round and 



deformed bars. However, the use of prestressing wires and strands 

resulted ina significant difference in the formation, number and 

width of cracks (see Table 11). Due to the presence of the 

indentation on the surface of the prestressing wires, beam B16 

showed relatively more craoke, clearly spaced, than beams B17 

and B18, even though B18 contained stranded wires. This behaviour 

is confirmed in Fig. (50) where the crack spacing was plotted against 

the steel stress. It can also be noticed that the use of a lower 

percentage of steel resulted in higher steel stresses at the formation 

of the first cracks. The spacings varied with the amount of steel and 

up to a stress level of about 200-250 N/mm2, after which the spacings 

in the case of deformed or plain steel bars became more or less the 

same. 

. y'i 

All the cracks that formed, whether primary or secondary, were 

included in the analysis of the results and in the construction of 

the graph discussed above. The variability of crack spacing was not 

taken into account, even though a scatter was found as regards crack 

widths and spacings for beams of similar design. This is because 

the sample of beams with similar design was very small. 

9.2.10 Effect of High Tensile Steel on Cracking 

In the present investigation it has been shown that the effect 

of reducing the area of steel was to increase the steel stress at 
first cracking. It has also been shown here and elsewhere 

36'45 
that 

the percentage of steel did not significantly influence the rate of 

increase of cracking. Therefore, a reduction in the steel area seems 
beneficial, since it tends to keep the cracks small at working stresses 
for low percentages of steel. Using high tensile steel, higher steel 

stresses are allowed, leading to decreased steel percentages. The 

crack widths will be increased as a result of increased stresses, but 

will be decreased as a result of decreased percentages of steel. 

Comparison of the results for beams with plain round mild steel 

bars, and those with high tensile deformed steel bars showed an average 

difference in the average and maximum crack widths of only 11% and 7% 

in favour of the-deformed bars. There was a considerable overlap 

between the results of the two types of steel. These results may not be 

considered as conclusive since the sample of beams with plain round 

mild steel bars was very small. Better results can be obtained by 

testing larger numbers of beams of similar design and using a statistical 



approach to deal with the variability that exists in the crack widths 

and spacings. However, the difference in behaviour between plain 

and deformed bars found in this investigation is in agreement with 
those found by Snowdon43 and the C. & C. A. 45 

of 12f and 13% respectively 

as mentioned earlier. 

If the allowable stress of mild steel, 150 N/mm 2, is taken as the 

basic stress to which the allowable stresses of different types of high 

tensile steel is related, a very useful relationship, for design 

purposes, can be obtained. For steel stresses, which are multiples 

of the basic stress, the behaviour of beams, as indicated in cracking 

and deflection, can be evaluated. 

Fig. (57) gives the effect on the width of cracks of using 

high tensile steel with higher permissible stresses. It gives a plot 

of the ratio between the allowable stress of high tensile steel 
(H. T. S. ) and that of mild steel (M. S. ) as against the ratio between 

the crack width, maximum or average, at the allowable stress of high 

tensile steel, and that at the allowable stress of mild steel. A 

linear relationship was obtained, which could be used in the design 
of a reinforced concrete beams, or in the case of replacement of 

mild steel by high tensile steel once the requisite steel stress is 

known. 

It can be seen from this graph that when the permissible steel 

stress is doubled or tripled, the maximum crack width becomes 

respectively about 1.8 and 2.5 times that for mild steel. The beams 

included in the construction of the graph in Fig. (57) were intended 

to be of the same design load. However, beams B12 and A13 had the 

same design load, but B11 was smaller and A15 was greater by about 
lo%. This is mainly beoause of the replacement of the mild steel 

bars by high tensile bars of areas relatively bigger than should 

be used for the same design load. 

It has been shown previously that the type of steel, deformed 

or plain round, has no significant effect on the crack spacing even 

at very high stresses, as can be seen in Fig. (50). 

9.3 Limit State of Deflection 

9.3.1 General 

In 9 3.4 the limitations on the allowable deflections and 

span/depth ratios have been discussed. It has been shown by many 



investigators that deflection may exceed the allowable limits and 

may constitute a criterion for design, when high steel stresses 

or shallow members are used. In this study formulae are suggested 
for the prediction of deflection on the first and secdnd cycles 

of loading. Comparison between computed results and experimental 

data of this study indicates that these formulae can be successfully 

used for concrete members reinforced with different types, percentages 

and sizes of high tensile steel. The experimental results are used 

to determine the constants which are included in the proposed formulae. 

The relationship between the span/depth ratio and the stress 

in the steel is also established. This relationship is useful in 

controlling the deflection of members with high steel stresses. 

In the light of the proposed formulae for deflection the 

relationships between deflection, stress and load are discussed 

and the effects of high tensile steel on deflection are studied. 

9.3.2 Proposed Deflection Formulae 

In 0 4.3 it has been emphasised that the stiffness as given by 

the term (EI) is an important and a major parameter in the formulation 

of deflection. 

In this study the parameters which would influence deflection 

are: 

1) The stiffness of the uncracked section (EI) and the 

stiffness of the cracked section (E Ic). 

2) The stiffening effect of concrete in the tension zone 

before cracking (the cracking moment Mc). 

3) The effect of cracking (Kl) 

4) The applied moment (M) 

5) The effects of the loading cycles subsequent to the 

first cycle 

6) The span (L). 

The beam span and depth were kept constant for all the beams. 

9.3.2.1 Deflection: First Cycle 

There are three distinct stages in the behaviour of the load- 

deflection curve history of reinforced concrete beams: 

i) Uncracked elastic stage: this represents the behaviour 



of the beam prior to cracking and deflections are 

predicted using the value of the second moment of 

area of the uncracked transformed section (Is) 

2) Cracked elastic stage: this represents the behaviour 

of the beam after cracking and deflections are predicted 

using the value of the second moment of area of the 

cracked transformed section (Ic) adjusted for the 

gradual deterioration of the tension stiffening 

capacity of the concrete. 

3) Yielding stage: this represents the behaviour of the 

beam after the yielding of the steel. This is the case 

in an under-reinforced beam. 

only the first two stages are of interest when considering the 

limit state of deflection, as has been pointed out in § 4.3. A 

bilinear relationship can, therefore, be suggested: 

Stage (1) 011 a! '' EMI 
L2 for M Mc 

c0 

Stage (2) /-'-\ 12 
M- rio Z2 for Mö 
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......... (33) 
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"...... .. 
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......... (36) 

ý' 
- deflection coefficient depending on the type of 

loading distribution and end conditions of the beam. 

M- applied moment (KN - mm) 

Ec - modulus of elasticity of concrete (KN/mm2) 

I- second moment of area of the uncracked transformed 
0 

section (mm4) 

L- span length (mm) 

- ratio of the stiffness of the beam to the 

stiffness of the cracked section 
IC - second moment of area of the cracked transforned 

section (mm') 

M0 - cracking moment (KN - mm) 

- total deflection (mm) on the first cycle 

ft - modulus of rupture of concrete (N/mm2) 



The terms E0 and ft can be expressed in terms of the cube 
strength (Uw in N/mm2) of concrete as in the following: 

ft ý if ý 
......... (37) 

03w.... ... 9. ( 38) 

where K2 and K3 are constants of proportionality as 
determined in 0 9.3.3. 

9.3.2.2 Remaining Deflection 

The remaining deflection, when unloading from a load above the 

first cracking load, depends on: 

1) the deflection at the maximum load of the previous cycle 
2) the extent of cracking at the maximum load and the number 

of the remaining cracks on unloading 

3) the ratio of the maximum load to the cracking load 

A meaningful and practical interpretation of the remaining deflection 

can be achieved when the latter is expressed in terms of the deflection 

at the maximum load of the previous cycle: 

a 
rem. ° K4a1 ......... (39 ) 

where K4 - the ratio of the remaining deflection 
to design load deflection 

9.3.2.3 Deflection: Second Cycle 

The stiffening effect of concrete in the tension zone which 

influences the deflection on the first cycle is no longer effective 

on the second cycle and hence the stiffness of the beam becomes less 

than that on the initial loading prior to first cracking. The increase 

of deflection with loading will be above that value of the remaining 

deflection and, therefore, the total deflection is expressed as 

&2 ý 
KSE 

M 

ýIc 
+ K461 See* ..... (4o) 

where A2- total deflection (mm) on the second cycle 
K5 - ratio of the stiffness of the beam on the second 

cycle to the stiffness of the cracked section 
K4q - remaining deflection (mm) 

The other terms have the usual nitanings. 



9.3.3 Determination of the Coefficients K2 and K from Test Results 

Since the Equation for the calculation of deflection (Eq. 35) 

was assumed to be bilinear, the point where the two straight lines 

meet should be determined. This point is the cracking moment (Mc) 

at which visible cracks are assumed to occur. Visible cracks 

appeared when the tensile force in the extreme fibre of the concrete 

in the tension zone reached the modulus of rupture of the concrete 
(ft). Fig. (58) gives the relationship between the cube strength 

and the modulus of rupture based on the measured cracking moments of 

the test beams. From this relationship the coefficient (K2) in 

(Eq. 37) was found to be equal to 0.458. 

The values of the modulus of elasticity (Ec) obtained from the 

consideration of the cracking moments of the test beams were plotted, 

in Fig. (59), against the cube strength (Uw) for all the beams. From 

this plot the coefficient (K3) in (Eq 
.. 38). was found to be equal to 

4.0. 

The results of the modulus of elasticity and modulus of rupture 

obtained from the control specimens were also included in Figs. (58) 

and (59). They were always higher than those obtained from the results 

of the test beams (based on the measured cracking moments of the test 

beams). 

9.3.4 Determination of the Coefficients K1 and K5 from Test Results 

The slopes taken from load-deflection curves have been used as 

a measure of the stiffness of the beam on the first and second cycles. 

The values of the coefficients K1 and K5 were obtained by dividing 

the measured stiffness (EI) (based on the slopes of the load-deflection 

curves) by the calculated stiffness (E010) of the cracked transformed 

pection. The average values of the coefficients K1 and K5 in Eqs . 
(34 and 40) were found to be equal to 0.9 and 1.3 respectively. The 

values of (Eo) used in the determination of the values of (Ic) were 

obtained from Eq . 
(38) with K3 = 4.0. 

9.3.5 Determination of the Coefficient K4 

Table (12) shows the deflections at the design loads and the 

remaining deflections at the end of the first cycle. The ratios 

of the remaining deflection to the design load deflection for all 



the beams tested under the first and second cycles are also given. 
The average of these ratios on the : irst cycle was found to be 

24% which was approximately-! -. The results of beam B17 were ignored, 

because of a bond slip failure. 

9.3.6 Relationship between Deflection and Load 

9.3.6.1 Comparison between Theoretical and Experimental Results 

Figs. (60-64) give the load-deflection curves for the three 

categories of beams. (beams with deformed or plain bars and beams 

with wires and strands. Only the curves for the first and second 

cycles of loading are given. The theoretical lines of deflection 

have been drawn for comparison with the experimental results. In 

all cases the deflections obtained using the proposed methods were 

on the safe side, except in beams A12, A13, A31 and B25, where the 

calculated deflections for both cycles were smaller than the actual 

values. This could be due to many reasons, such as the calculated 

values of the cracking moments in these four cases being higher 

than the actual ones. In beams A12 and A13 the underestimation 

may also be due to the overestimation of the stiffness (EI). The 

calculated deflections at the design load agreed reasonably well with 
the observed deflections and the average ratios of the observed to 
the calculated deflections for both cycles were 0.970 and 0.967 

respectively, as can be seen in Table (12). 

The proposed methods for the calculation of deflection can be 

safely employed even if very high strength steels are used. The 

good agreement between the theoretical and experimental values 
indicates the reliability of the proposed methods in predicting 
deflection for the four types of steel: deformed steel, plain mild 

steel, wires and strands. 

9.3.6.2 Behaviour of Test Beams 

It has been indicated previously (9.3.2.1) that the load-deflection 

behaviour of a reinforced concrete beam can be studied in three stages. 
In Figs. (65) and (66) the deflection characteristics are seen to 

consist of'these three stages: the first stage is before and up to 
first cracking, the second stage after first cracking to yielding, 

and the third stage at and after yielding. 
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Fig. (65) gives the relation between load and deflection for 

beams reinforced with equal amounts but different types of steel. 

Beams All, A12 and A13 showed exactly the same deflection 

characteristics over a substantial part of the curve. Beams A14 and 

A15 could have given the same deflection characteristics if the 

amount of steel and the cracking moments were of the same magnitude 

as that in the other beams. Beams with the same amount of steel 

and cracking moments had all the points lying almost exactly on the 

same straight line. Beams A14 and A15 had the same amount of steel 

but different cracking moments and thus, at any load level, beam A14, 

with greater cracking moment, showed smaller deflections than beam 

A15. The points did not fall on the same line but they fell on two 

lines which were almost parallel. If the cracking moments were made 

equal then the two lines would coincide. 

In Fig. (66) the deflections of beams reinforced with different 

types and amounts of steel are shown. Some of the beams had almost 

equal design loads. Beams B12 and A13 had the same design load 

(46.6 KN). However, the deflection was greater in the latter than 

in the former. The deflection of beam B12 at design load was 

greater than 
L/360 (12.7 mm), but less than L/250 (18.2 mm). Beam 

A13 showed a deflection greater than L/250. This was because of 

the smaller percentage of steel in A13 due to the use of steel of 

higher strength. 

Beams Bill B16, B17 and B19 have almost the same design loads but 

different steel types, viz. plain round bars, crimped and plain 

prestressing wires and Bristrand. Lgain, it can be seen that the 

increase in permissible stresses resulted in decreased steel area, giving 

increased deflection for the same design load. The least deflection 

of 
L/360 

was observed with beam Bill which had the lowest permissible 

steel stress. When beams A14 and B19 were considered, the two beams 

had almost the same percentage of steel, however, the deflection 

of beam B19 was much more than that of A14 at the same load level, 

The only reason for this difference lies in the magnitude of the 

moduli of elasticity of both types of steel. Beam B19 had a lower 

modulus of elasticity than A14 and thus the deflections of the two 

beams were different, since they deformed in a manner similar to 

the shape of the stress-strain curve of the steel. If all the beams 

with the same design load had the same (Es) value for steel, then the 



-103- 

deflections would be greater for beams with higher permissible 

steel stresses. 

Fig. (66) shows that there is no significant difference in 

the behaviour of beams reinforced with deformed bars and those with 

prestressing wires. The deflections of beam B16 with crimped 

prestressing wires were comparatively similar to those of beam B15 

with deformed bars, even at very high percentages of the ultimate 

load. Beam B17 with plain prestressing wires behaved differently 

as it contained less area of steel compared to beams B15 and B16 

and its failure mode was also different (it failed in band slip). 

The graphs in Fig. (66) indicated that up to the cracking load 

there was very little difference in the values of deflection for the 

different beams. After first cracking, the rate of deflection increased 

with decreasing percentage of steel. 

Figs. (60-64) show the load-deflection curves on the first and 

second cycles of loading. The remaining deflections arc also included. 

The deflections for the second cycle were drawn only up to the design 

load, which was of practical importance. The deflections at design 

load on the second cycle seemed to increase slightly in all beams, 

thus indicating the time-dependent effects due to creep during the 

test. 

It has been indicated in § 9.3.4 that the slopes of the load- 

deflection curves can be taken as a measure of the stiffness of the 

beam. In Figs. (60 - 64) it could be seen that the stiffnesses of 

the beams on the second cycles of loading were less than those on the 

initial loading in the untracked statte, while they were greater than 

those in the cracked stage. Similar observations have been reported 

elsewhere. 
579184,185 

It has been found by Soretz57 in his tests on 115 beams that the 

deflections on the initial loading (first cycle) in the cracked stage 

showed deviations of + 2Wo from the average, while those on the subsequent 

cycles showed deviations of 
± 50% from the average. In the repeated 

loading range too many factors were assumed to have affected the 

stiffnesses, and the remaining deflections, and it was observed that 

a deviation of 
± 20% is unavoidable. 



In Fig. (67) the idealized load-deflection curves for comparable 

beams of similar design are shown. It could be seen that the loads 

to produce first cracking in each pair of similar beams were different. 

This fact affected the deflection at design load; beams with lower 

cracking loads showed greater deflections at the same design load. 

The stiffnesses of the beams in each pair, on the first cycle, differed 

slightly, depending upon their relative concrete strengths. The cube 

strengths for beams All and A31 were 32.4 and 52.7 N/mm2, for beams 

A13 and A33 were 41.4 and 48.9 N/mm2, and for beams A14 and A34 were 

41.4 and 35.7 N/mm2 respectively. 

In comparing these beams the extent of cracking did not seem 

to influence the stiffness (which is proportional to the slope 

of the load deflection) of the beams, even though beams of similar 

design, e. g. All and A31, A13 and A33, had different crack 

distribution. However, the steel stress at first cracking and the 

extent of cracking appeared to affect the stiffness of the beams 

on the second cycle. Beams All, A12, A13 and A14, which had lower 

steel stress at first cracking than their companion beams, showed 

lower stiffness characteristics on the second cycle of loading. This 

could be explained by the fact that the ratio of the applied steel stress 

at design load to the steel stress at first cracking as comparatively 

high, and thus the beam stiffness was gradually reduced as cracking 

progressed. This phenomenon, that the ratio of applied stress to stress 

at first cracking has a significant influence on the stiffness of 

the beam on the reloading cycles, has been observed by Soretz57 and. 

Burns et al. 
155 

However, Kripanarayanan and Branson1,64 in a recent 

theoretical approach to the effective second moment of area on the 

reloading cycle suggested that an increase in the above ratio to a 

level where the beam was severely cracked increased the stiffness to 

a value of that of the gross section before cracking. The findings 

of the present investigation do not agree with Branson's findings, 

and support the opposite point of view; on the reloading cycles the 

stiffness of the beam decreasee and gradually approaches the value 

of that of a cracked section as the load increases. 

Soretz57 pointed out'that while the ratio of the applied steel 

stress to steel stress at first cracking had very little influence 

on the remaining deflection for the same beam, it. had significant 

influence on the relative magnitudes of the remaining deflections of 



the comparable beams with different values of steel stress at 
first cracking. In Fig. (67) beams All and A13 had a high ratio 

of design stress to stress at first cracking, and at the same time 

developed lower remaining deflection than their companion beams. 

It seemed that the remaining deflection depended on various other 

factors in addition to the ratio of applied stress to stress at first 

cracking considered by Soretz. These factors have been indicated 

in 9 9.3.2.2, and they include the number of cracks that do not close 
(remaining cracks) on removal of the load, the wedging action of the 

particles trapped between the crack faces and the crack formation 

and distribution. 

Another factor that affected the remaining deflection was the 

stiffness of the beam in the uncracked zone, and the modulus of 

elasticity of concrete in compression. This stiffness depended on 

the modulus of elasticity (E0) of concrete, which in turn depended 

on the strength of concrete, and on the second moment of area of the 

uncracked section. The graph in Fig. (67) shows some slight differences 

in the stiffnesses of the companion beams on the first loading in the 

uncracked stage. 

Table (12) gives the behaviour of the beams under the effects 

of loading and unloading on the first, second, and third cycles. It 

could be seen in columns (2) and (9) that reloading on the second 

cycle to a given design load level (PD) did not increase the magnitude 

of the deflection significantly, except for a small increase due to 

creep. 

A comparison of the figures in columns (5) and (6) show ed that 

the remaining deflection increased as the load increased to a level of 

about 3 above the design load. This increase in the remaining deflec- 

tion was due to the increased degree of cracking and the creep effects. 

However, comparison of columns (7) and (s) showed that when the load 

was increased there was a reduction in the ratio of remaining deflection 

to deflection at the maximum load of the previous loading cycle. These 

findings suggested that there was an increase in the recovery ratio 

as opposed to the findings of Kripanarayanan and Branson184, who 

reported a reduction in the recovery ratio with increasing load. 

From the results of beams unloaded from loads between 76 and 
89% of their maximum failure loads, the recovery of deflection 
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amounted to about 77% to 80. It was observed that the recovery 
decreased with decreasing steel area, and it was not affected by the 

type of steel (deformed or plain). For a beam reinforced with three 

10 mm diameter strands (Bristrand 100), Abeles16 found a recovery of 

about 60%, and reported the decrease of this recovery with decreasing 

steel area. 

The effect of the hysterisis loops can be observed in the 

difference of the values in columns (l0) and (11) of Table (12). 

The difference between these values is very small, and it is suggested 

that the effect of the hysterisis loop can be ignored, and that the 

deflection curves on unloading and reloading are assumed to coincide. 

Similar conclusions have been reported by Kripanarayanan and Branson. 
184 

9.3.7 Relation between Deflection and Steel Stress 

Fig. (68) shows the direct proportionality between the stress 

in the steel and the deflection. The deflection increased linearly 

with increasing steel stresses. ' It is clearly seen that the stress 

at cracking was much higher in beams reinforced with low percentages 

of steel and that the limits of 
L1360 

and 
L/250 

were reached at much 

higher stresses than those with normal or high percentages of steel. 

On the same graph the permissible stresses at 0.55 fy in the different 

types of steel are indicated. From this it is observed that for the same 

permissible steel stress the relative values of deflection decreased 

as the reinforcement percentage was decreased. Table (13) shows how 

this increase in the steel stress affected the span-deflection ratios, 
for a particular span and depth of beam, for all the beams concerned. 

Another factor of importance when dealing with the effect of 

stress on deflection is the modulus of elasticity of the steel. This 

is reflected in beam B19 (with Bristrand 100) in which the Es 

value is lower than those for the rest of the beams which have almost 

the same percentage of steel. The curve of B19 in Fig. (68) appeared 

to change at a higher rate than those of beams A14 and A15, with 

approximately equal steel percentage, thus emphasising the effect 

of the modulus of elasticity (Es) on deflection. 

In design, therefore, it is essential, when using high 

strength steel, to take account of the effect of high permissible 



stresses on deflection, either by limiting the span-depth ratio 

or by using sufficient camber. 

When a reinforced concrete member is designed with a limiting 

span /depc'i ratio the following factors should be considered: 

1) stress in steel (f 
s) 

2) allowable deflection (z) 

3) extent of cracking (K) 

4) time effects (F) 

The Draft Code has proposed a design procedure whereby the span/ 
depth ratios can be obtained by multiplying four different factors, 

inc? &. inb the effect of creep and shrinkage. In this study, in order 

to take account of the above factors, the proposed equation of the 

span/depth ratio is: 

Lýý1 Ef 11 d]. (1 - K) ........ (41) 
u LF fs 

where - allowable deflection (mm) 

f- calculated steel stress § 8.2 
S 

K- neutral axis depth coefficient, which takes into 

account the extent of cracking 9 8.2. 

F- creep and shrinkage factor which can be obtained 
from Fig. (101) 

The other terms have the usual meanings. 

When Eq . 
(41) is used the calculation of deflection will no 

longer be required. The results of this equation agreed fairly well 
1A1 

with the results of the cubic equation suggested by the A. C. I. Committee 

9.3.8 Effect of High Tensile Steel on Deflection 

In considering the effect of high tensile steel on the deflection 

of the reinforced concrete beams tested in this investigation, three 

factors must be discussed: i) the scatter that occurred in duplicate 

beams ii) the surface characteristics of the reinforcing bars, and 

iii) the increase in the permissible stresses with or without 

a decrease in the steel percentages. 



The first of these factors, the scatter in duplicate beams, 

can easily be seen in Fig. (67). These beams, of the same design and 

type of steel, showed a significant difference in the deflection at 

all levels of loading. It is essential, therefore, to compare beams 

that have exactly the same cracking load and similar in all respects 

except in the type of steel. In Fig. (67) it can be seen that beams 

All, A12 and A13 can be chosen to serve this purpose since they have 

almost the same cracking load, moduli of elasticity (Es) for the steel, 

and similar design except for the type of steel employed. Beam All 

contains plain round mild steel bars, and beams A12 and A13 contain 

deformed Unisteel 60 and 80 respectively. They all contain the same 

amount of steel, 1.44. A comparison of these beams in Fig. (65) 

shows that the three beams give the same deflection characteristics 

rel"ardless of the type of steel used. It is, therefore, concluded that 

the surface characteristics of the reinforcing bars, as long as bond is 

not lost, have no significant effect on the deflection of a reinforced 

concrete beam. In this case the only variable to be considered should 

be the strength of the steel, and the permissible stresses that can be 

used without jeopordizing the stiffness of the beam at working load. 

A beam designed to include two plain round mild steel bars can be used 

to carry higher design loads by replacing the bars with the same size 

of steel of 'higher strength, provided the limiting declection is not 

exceeded. The effect of replacing mild steel with a smaller size of 

high tensile steel to give the same design load is two-fold: i) the 

increased steel stress at working load ii) the decrease in the stiff- 

ness owing to a smaller steel percentage. 

Two beams can be designed with different types and percentages of 

steel to carry the same amount of loading. Looking back at Pig. (66) 

beams B12 and A13 have almost the same ultimate load, but they contained 

different amounts of steel, and hence they gave different deflections 

for the same applied load. Beam A13, with a steel percentage of 1.44% 

gave greater deflection than beam B12, with a steel percentage of 

1.96%, at all load levels. The same logic can be applied to beams 

Bill B16, B17 and B19, except that in beam B19, due to the low 

modulus of elasticity of the Bristrand, bigger deflection was attained, 

even though it contained a higher percentage of steel. 

A relationship can be established between the ratio of the 

allowable steel stress of high tensile steel (H. T. S'. ) to that of 
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mild steel (M. S. ) and the ratio of their respective deflections. 

Fig. (69) shows such a relationship for beams of almost the same 
design loads. From this figure the value of deflection at any allowable 

stress can be attained by multiplying the ratio of deflections by the 

basic deflection of mild steel. 

Beams B19 and A15, with Bristrand 100 and Kam 90 respectively, 

appeared to deviate from the straight line in Fig. (69). These were 

marked points (1) and (2) on the graph. The reason that point (1) 

lies outside the straight line is due to the fact discussed above, 

concerning the low value of the modulus of elasticity of this type 

of steel. The deviation of point (2) is believed to be due to a 

relatively high percentage of steel. Similar observations have been 

reported by Mathey and Watstein. 
38 

one of the advantages of using high tensile steel can be clearly 

seen in Figs. 65 and 66. As discussed later, beams All, A12, Bll 

and B12, reinforced with steel having a definite yield point, showed 

a difference in behaviour, from the rest of the beams at near 

collapse. In these beams collapse occurred suddenly after the yield 

point was reached. There was not enough warning before failure. 

The beams with high tensile steel with an indefinite yield point 
(with gradual yield), e. g. A13 and 'A15, continued to undergo large 

deflections before collapse and thus gave enough warning before 

failure. 

9.4 Limit State of Collapse (Ultimate Strength) 

9.4.1 Ultimate Strength 

All the beams tested in this investigation were designed in 

accordance with the Draft Unified B. S. Code of Practice. 
23 

The 

formulae given in this code were used in defining the ultimate moment 

from which the design moment, based on nominal strengths of materials, 

was obtained by applying the factors for dead and live loads for the 

limit state of collapse as explained in 3 3.4. However, it was 

decided to use a factor of 1.6 by assuming the total load acting as 

superimposed load. The ultimate strengths of the beams, employing 

the actual values of steel and concrete strengths without 

incorporating the material partial safety factors were also determined. 
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The compressive stress distribution in concrete was assumed to be 

rectangular-parabolic as recommended in the Draft Code. 

Table (8) gives the details of tin experimental maximum moments 

and the moments calculated by the methods given. above. In each 

case, except in beam B17, the experimental value was greater than the 

calculated value. This can be seen in column (11) of the table, where 

the ratio of the experimental to calculated ultimate loads is greater 

than unity.. In the case of beam B17, the ratio was 0.76. The reason 

for this low ratio was the formation of a vertical hinge, in the vicinity 

of the point load outside the constant moment zone. This crack 

initiated on the first cycle at a load lower than the design load 

and remained widely open after removal of the load. This was 
believed to be a bond failure, caused by slip between steel and 

concrete which was followed by the crushing of the concrete at 

the top of the hinge. However, the maximum flexural bond stress 

that occurred at that section was only 1.4 N/mm2, as against the 

permissible bond stress, in the Draft Code, of 3.1 N/mm2. The 

anchorage bond stress was found to be about 1.45 N/mm2 as against 

the permissible value of 1.7. Therefore, the failure was not due 

to critical shear stress or insufficient embedment length. It could 

be a slip failure due to accidental contact of the wires with grease. 

Failure at the support nearer to the failure crack was also observed. 

The concrete was seen to have disintegrated. 

It can also be noticed from column 11 of Table (8) that the 

ratios are highest for the beam reinforced with Bristrand 100. 

The enhancement for this beam was 22%. 

The steel stresses at failure were calculated from the actual 

bending moments at which the beam collapsed, using a rectangular- 

parabolic concrete stress distribution, and assuming a maximum 

concrete stress at the top fibre of 
2/3 times the nominal strength 

of concrete. These stresses are shown in column (13) of Table (8). 

A comparison of these stresses with the actual yield stresses obtained 
from bars tested in the air are given in column (14) in the form 

of ratios. It can be noticed that in all but two beams, A31 

and Bst2, the steel stresses exceeded the yield stresses. Beam B19 

showed the highest ratio of 1.27. 
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Most of the beams subjected to repeated loading prior to 

static loading up to failure showed higher strengths at failure than 

their companion beams. The reasons for this increase will be given 
in the next chapter. 

In column (12) of Table (8), the ratioscf the experimental 

maximum moments to design moments are given. It can be observed 
that the ratios are greater than 2. The calculated design moment 

was based on the nominal concrete strength of 41.4 N/mm2, and the 

nominal steel stress, with the inclusion of the material partial 

safety factors. The ratios ranged from a maximum of 2.52 to a 

minimum of 2.05. The reason for this fluctuation may partly be 

due to the use of the nominal values of the strengths of the 

materials. 

In Table (6) the average cube strengths at failure are given 
for all beams tested to failure. It can be seen that using an 

average strength of 41.4 N/mm2 in calculating the design moments 

seems justifiable, since the variation from the mean in the strength 

of concrete in these under-reinforced beams did not affect the ultimate 

strength significantly, and also because nominal strengths are usually 

employed in design. 

9.4.2 Effect of High Tensile Steel on Ultimate Strength of Beams 

For a balanced or over-reinforced design, the ultimate strength 

of a reinforced concrete beam is limited by the magnitude of the 

plastic strain in the extreme fibre of the concrete in the compression 

zone. This strain is usually given a value of 0.0035" For an under- 

reinforced design the crushing of concrete is a secondary failure 

after steel yielding. Theoretically, in order to produce a high 

stress in the tensile steel, there must be a high elastic strain of 
the material which will, for the same value of concrete strain at 
failure, reduce the depth of the neutral axis. This will result 
in smaller area of concrete subjected to the compressive stress 
loading to premature failure of concrete in compression. 

In this investigation the beams were under-reinforced and the 

crushing of concrete was only a secondary failure. In none of the 
beams was the primary failure due to strain in the concrete reaching 
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the plastic failure strain. Table (14) gives the measured concrete 
strain at the extreme compressive fibre, the neutral axis depth 
and the strain in the steel at yield or 0.2% proof stress. It can 
be observed that the strain in the concrete fibre increased with 
higher grade of steel. In beam B16, reinforced with crimped 
prestressing wires, the strain was 278 x 105 at 90/c of the ultimate 
load. The corresponding figure for beam Bll with mild steel was 
189.5 x 10-5, the yield strain for prestressing wire being 0.887% 

against 0.16% for the mild steel. 

Two groups of beams must be considered; beams with the same 
percentage of steel but different types of steel (Group A in the table) 

and beams of the same ultimate strength but with different types and 
percentages of steel (Group B in the table). 

In group (A) in Table (14) beams All, A12 A13, A14 and A15 
had steel strains at their respective yield strengths of 0.16%, 0.22%, 

0.53%, 0.29% and 0.63% respectively. The increase in the steel strains 
did not affect their neutral axis depth, even at loads of very high 

percenta,; es of the ultimate load. The difference in the neutral 

axis depths was due to the difference in the cube strengths. The 

strain in the concrete extreme fibre increased with increasing 

working load, and at loads of very high percentage of the ultimate 
loads, the strains increased with increasing steel strain at the 

yield strength of the steel. 

In comparing beams of group (B), it can be observed from 

Table (14) that the neutral axis depth decreased with an increase 

in the grade of steel. This rise in the neutral axis was due to the 

smaller area of steel employed. For the same working load the concrete 

strain increased with an increase in the steel strain at its yield, 

and corresponding decrease in steel area. At loads near failure the 

steel strain reached values many times that of mild steel, and yet the 

concrete strain has not reached the plastic failure strain. 

It can be concluded, therefore, that in under-reinforced beams 
high tensile steel provides better utilisation of the concrete' strength 
in compression, and produces no rise in the neutral axis owing to the 
increased strains in the steel in beams using the same or different 

areas of steel. It has no effect, therefore, on the ultimate strength 



of under-reinforced concrete beams. This conclusion has also been 

reached by Clark and 4astwood46'47 and Hajnal Konyi. 
186 

9.5 Flexural Strain 

9.5.1 Flexural Strain Distribution 

The flexural strains on the surface of the beam were measured 

over a gauge length of 200 mm across the depth on both sides of the 

beam. The average values of the strains on both sides of the beam 

were plotted. 

The strain distribution obtained for the compression zone of 
the beam was almost linear, but not so for the tension zone. The 

over-all strain may not be continuously linear. 

The reason for the non-linearity in the tension zone of the beam 

was the presence of tensile cracks within the length of measurement. 
An attempt was made at measuring the strains at two levels, near the 

bottom edge and at the level of the bottom layer of the steel, for 

the entire constant moment zone of beams B16 and B17. This procedure 
involved a lot of time abd labour. The results obtainedwere averaged 

and compared with the average strain measured over the middle gauge 
length, which was usually adopted for the other beams. The difference 

between the two in beam B17 was only 14.20 and 15.2%, while in beam 

B16 it was 52% and 37ö for the steel level, and the bottom edge 

respectively. This was so because in the former only a few cracks 
formed, one within each gauge length, while in the latter in two 

of the gauge lengths two cracks formed and in each of the other 

gauge lengths only one crack formed. 

The average tensile strain obtained for the entire constant 

moment zone was also compared with the average tensile strain obtained 
from the extension of the strain profile in the compression zone. 
They appeared to compare reasonably well. Therefore, it was decided 

to use this procedure in determining the average tensile strain at the 

steel level and at the bottom edge of the beam for the analysis 

of the cracks. 

The neutral axis position was located by fitting a straight line 

through the points of strain measurements in the compression zone. 
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This depth can be assumed to pe the average neutral axis depth 

and was used, as described earlier, in the calculation of the stresses 
in the steel. The neutral axis depth seemed to change with the 

magnitude of the load up to about 30% of the ultimate value, after 

which it remained almost constant, as can be seen in Fig. (11) 

and as discussed in Chapter (8). 

The strain distribution in the compression zone remained 
linear as the load increased, -while the concrete stresses redistributed 

themselves in such a way as to maintain equilibrium with the forces 

in the steel. 

9.5.2 Remaining Compression Strain 

Remaining compression strain is defined as the compressive strain 

remaining immediately after the removal of the load. It is not the 

permanent strain which remains even after a rest period when the 

beam is unloaded. 

The beams tested in this investigation showed remaining compress- 

ive strains on unloading after they had been loaded to design load. 

The remaining strains did not increase significantly after the 

second cycle of loading. 

The remaining strain is characteristic of the plastic nature 

of the concrete under compression, and the extent of cracking in a 

cracked reinforced concrete. The stress-strain diagram for concrete 

in compression is never a straight line, and owing to the rate of 

loading of these beams, plastic strain in the concrete must be present. 

Some of the remaining compressive strains were seen to diminish 

when the beams were left in the unloaded condition after the first 

cycle. 

9.5.3 Effect of High Tensile Steel on Strains 

The effect of high tensile steel on strains must be studied 

under two aspects. Firstly, the effect of increasing the steel 

stresses keeping the percentage of steel constant, and secondly the 

effect of increasing the steel stresses while decreasing the steel 

percentage to attain the same ultimate moment capcity. Fig. (70) 

considers the latter aspect. For teams with the same ultimate 

capacity the effect of increasing the stress in steel, relative 
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to that of mild steel, on the compressive strains in concrete is 

shown. The points on the graph that axe seen to deviate from the 

curve are those for beam B19 with Bristxand 100, having a low modulus 

of elasticity, which affected the stiffness of the beam, and thus 

gave a bigger deformation. 

This diagram is very useful in estimating the amount of strain 
increase that will occur when the allowable steel stress exceeds 

or is a multiple of that of mild steel. As far as the ultimate 

capacity of an under-reinforced beam is concerned, it has been 

shown in § 9.4.1. that there is no significant effect. Only deflection 

and cracking are very much affected by the increase in the steel strains. 

Table (14) gives the effect of increasing the steel strains on 
the compressive strains in the concrete by increasing the steel grade 

or strength. In beams of Group (A) when the steel area was kept 

the same, the concrete strain increased with increasing working 
load due to the higher grade of steel. In beams of Group (B) when 
the working load was kept constant the concrete strain increased 

with higher grade of steel. 

The increase in tensile strain in the steel, when using high 

tensile steel will bring about an increase in the crack widths in 

the concrete tension zone. The increase was more pronounced when 
the crack pattern was well developed. Most of the tensile strain 

will be taken by the steel reinforcement at the cracks, and thus 

the cracks will increase in width. 

It can be seen that the effect of using high tensile steel on 

concrete strains is another way of describing its effect on the 

serviceability, viz. deflection and cracking. This effect must be 

closely considered in the design of beams which are stressed to very 
high strains. 

9.6 General Behaviour of Beams 

On the first application of the load the beams behaved elastically 

up to the cracking load, which ranged between about 10 KN sad 15 KN. 

These values were obtained from the observations of the change of 

slopes of the load-deflection curves and from the first visible 

cracks, as can be seen in Figs. (60-64). At the cracking load the 



width of the visible cracks were, generally, of the order of 0.015 mm 

and the deflections ranged between 1.3 mm to 2.6 mm (see Figs. 60-64), 

depending on the cracking load and the stiffness (EI) of tIn section in 

the uncracked state. 

As the load was increased above the cracking load the deflection 

increased more rapidly due to the change of the stiffness of the section. 

The deflection at the design moment in some instances exceeded even 

the one calculated on the basis of fully cracked section. In all beams 

except B17, the increase in deflection, in the cracked state, was 

uniform and was almost linear. At loads approaching the yield of the 

steel reinforcement the load-deflection curve followed the slope 

of the stress-strain curve of the reinforcement. 

On each side of the beam, at the initiation of cracking, a number 

of cracks (primary cracks) appeared simultaneously at a steel stress 

depending on the percentage of steel in the beam. As the load increased 

the spacings between the primary cracks were reduced by the formation 

of secondary cracksi The crack widths increased to values depending 

on the magnitude of the stress in the tension steel. The length of 

the cracks was also noticed to increase with loading. At the design 

load a fully developed pattern formed and a stabilised condition 

was reached as far as the number and, in some cases, the length of the 

cracks was concerned. 

On unloading the shape of the deflection curve was concave 

towards the load axis. At zero load the remaining deflection 

(recoverable and irrecoverable) formed an appreciable part of the total 

design load deflection. The remaining deflection consisted mostly 

of residual deflection, which was irrecoverable. It was observed 

that the rest period in the state of unloading had some influence 

on the recovery of deflection. 

The widths of all the cracks were measured on the removal of the 

applied loads. In most beams it was found that most of the cracks 

remained open and the rest closed completely. The width of the maximum 

remaining crack varied depending on the magnitude of the stress in 

the steel at the design load. 

On reloading the stiffness of the beam was greater than the 

stiffness in the cracked condition when loaded initially. The 
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transition zone that was clearly noticed in the initial loading 

between the uncracked and the cracked elastic states could be faintly 

recognised on the second circle. The deflections observed on the 

reloading cycles were slightly smaller than those on the previous 

unloading cycles. 

At the design load the deflection on the second cycle of loading 

was greater than that on the first cycle; the increase ranged between 

0.07 mm and 2.00 mm, as can be seen in Figs. (60-64). At higher 

loads the deflection curve followed the extrapolated first cycle 
(virgin cycle). 

The crack widths were also noticed to increase slightly at 
the same level of load previously applied. This increase ranged 
between 0 and 0.05 mm, as can be seen in Figs. (38-49). 

When unloading from a load about 3(A above the design load there 

was an increase in the remaining deflection. The remaining crack 

widths were not affected very much. 

When reloading, on the third cycle, the stiffness of the beam 

was noticed to have reduced significantly. The increase in deflection 

at the design load was also significant. The crack widths appeared 

wider in some cases, and remained unchanged in other cases, when the 

design load was applied. 

At loads higher than previously applied on the second cycle 
the deflection curve took the shape of the steel stress-strain 

curve. The slope of the deflection curve, in the case of steel with 

an indefinite yield point, changed gradually and the deflection 

increased more rapidly and the cracks became excessive. In the case 

of beams with steel having a definite yield point, the deflection 

increased suddenly as the yield point was reached, resulting in the 

crushing of concrete. Before collapse, beams with gradually 

yielding steels gave good warning, as indicated in both the excessive 

crack width and deflection. In this respect cold worked bars, 
(with an indefinite yield point) were superior to hot-rolled bars 
(with a definite yield point). However, when the latter has good 
bond and high strength, as in the case of Unisteel 60 and Kam 60 

steel, sufficient warning can be obtained. 



Failure, in all beams except 1317, occurred in the constant 

moment zone. Concrete crushing occurred at the weakest section in 

beams with steel having indefinite yield point, and at tfr. e section 

where there were two or three prominent maximum cracks in beams 

with plain mild steel bars. Plate (5) shows the final condition 

of beam All, reinforced with two 19 mm plain mild steel bars. It 

is apparent that after the bars have yielded the crushing of the 

concrete occurred at the top of three widest cracks, which happened 

to be near the point of loading. This type of failure was also reported 

by Hajnal Konyi28 and Lewis33, and it can be taken as typical of plain 

mild steel bars. 

The mode of failure was typical of that of under-reinforced 

beams; the steel yielded first, as a primary failure, as expected, and 

then it was followed by crushing of the concrete with a loud noise, 

as a secondary failure. Plate (6) shows the final condition of beams.. 

Two types of failure could be distinguished: a) yielding with a sudden 

increase of the deformation and b) gradual yielding and deformation 

with increasing load. 

The first type of failure is characteristic of concrete beams 

reinforced with steel having a definite yield point: mild steel, 

Unisteel 60, Kam 60, and the second type (gradual failure) is 

characteristic Df crncrete beams reinforced with cold worked barst 

Unisteel 80, Kim 90, prestressing wires and strands and Bristrand 100. 

The short yield plateau and the excellent bond of Kam 60 

caused the tensile zone of the central portion, in Beam A34, to 

completely disintegrate. The mode of failure was similar to that of 

beam All, in that the beam failed at a maximum crack by concrete 

crushing, as can be seen in Plate (5). However, there were some 

important differences: there were a few wide cracks on either side 

of the failure crack, and a horizontal crack extending along the 

entire length of the constant moment zone at the steel level where 

the concrete was found to be broken into very small pieces. The 

adhesion between the steel and the concrete was seen to be broken. 

The loss of adhesion and the formation of the horizontal crack with 

small pieces of chipped concrete indicated thepressuro exerted 

by the interlocking of the transverse lugs of the reinforcing bars 
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and the : surrounding concrete due to high bond stresses and wedging 

action developing at failure . 

Beams reinforced with Unisteel 60 bars showed a pattern of failure 

similar to that of beams with Kam 60 steel, even though the two 

steels had different deformation patterns. This can be seen in beam 

B12 in Plate (5). 

In beams reinforced with steel having an indefinite yield point, 

the distribution of cracks near failure was uniform and crushing of 

concrete occurred at the weakest section. Two horizontal cracks 

formed in beam A15, with Kam 90 steel, one at the top and one at the 

bottom parallel to the reinforcing bars. The top crack ran along 

the ends of the cracks causing a big block of concrete in the top zone 

to be displaced from the rest of the beam. The bottom crack caused 

complete dißintegration of the tensile zone of the central portion, 

and covered almost the entire constant moment zone. The concrete at 

the steel-concrete interface was ground like powder. In both beams 

A15 and A34 the horizontal crack joined the crushed zone by a diagonal 

crack. Similar failure patterns were observed in beams with Unisteel 

80 and Bristrand 100. Beaus A13 (Unisteel 80) and B19 (Bristrand 100) 

are shown in Plate (5). 

In general, failure in beams with deformed bars of both types 

of yield was of a similar pattern. This mode of failure has been 

studied theoretically by Broms. 
1369137 

Beams with wires and strands gave very good warning and were 

safer than the beams reinforced with steel having a definite yield 

point, e. g. mild steel. The mode of failure was differentf'rom those 

of beams with mild steel or deformed bars, crushing of concrete and 

disintegration of concrete on the tension side occuring only in a limited 

zone of failure. Beam B17 with plain wires failed as a result of bond 

slip just outside the constant moment zone. A hinge appeared and 

increased in width and length, pushing the neutral axis towards 

the compression face until crushing occurred over a very small area. 

By way of conclusion, the serviceability of the test beams 

depended mainly on the magnitude of the steel stress. The higher the 

allowable stress, the bigger are the deflections and crack widths. 
The safety of a structural member depended on the amount of warning 
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that it could give to the occupants before failure, and the mode 

in which it failed. Beams reinforced with steel with a definite 

yield point, e. g. mild steel, might not give sufficient warning 

before failure, due to the sudden collapse that would occur after 

the steel yield is reached, while in beams reinforced with steel 

with an indefinite yield point, e. . Unisteel 80, Kam 90 steel,, 

strands and wires, the deflection and crack widthswere sufficient 

to cause alarm before the collapse occured. 

9.7 Conclusions 

The foregoing paragraphs summarise the actual behaviour under 

static loading of the reinforced concrete beams. From the present 

investigation conclusions regarding the three limit states of cracking, 

deflection and collapse can be drawn as follows. 

9.7.1 Limit State of Cracking 

1. At the initiation of cracking a number of cracks formed 

simultaneously at greatly varying specings with an average spacing of 

300 mm- 

2. Under increasing load the number of cracks increased and hence 

the crack spacing decreased until a stabilised condition was reached 

at a steel stress of 200-250 N/mm2 

3. The cracking pattern was not significantly affected by the 

surface characteristics of steel, viz. deformed or plain round bars. 

An average crack spacing of 100 mm was obtained. 

4. The cracking pattern in beams with prestressing wires and 

strands showed relatively wider crack spacings than in beams with 

deformed or plain bars. An average spacing of 150-200 mm was attained. 

Crimped prestressing wires were superior to the plain wires and the 

strands. 

5. The beams with the three wire strand (Bristrand 100) showed 

a cracking pattern similar to those in beams with deformed and plain 

bars. 

6. The average crack spacing, in beams with deformed ahd plain 

bars, was equal to about 1.5 x the concrete cover. 
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7. The proportionality between crack width and crack spacings as 

suggested by the C. E. B. did not appear to exist. 

8. In all beams initially the cracks increased in length with 

increasing load, reaching the level of the theoretical elastic 

neutral axis. In beams with deformed bars and prestressing wires 

and strands the cracks extended beyond the elastic neutral axis. 

9. The steel stress for zero crack width increased as the 

percentage of steel decreased. This effect tended to keep the 

average and maximum cracks smaller at working stresses for lower 

percentages of steel. The stress in steel at first cracking can be 

predicted from: fso _ Ks 
p 

10. The maximum crack width on the first cycle of loading was 

proportional to the stress increase in the steel reinforcement above 

its value at initial cracking, and to the concrete cover. 

11. For the second cycle of loading the maximum crack width 

beyond the remaining crack width was proportional to the steel stress 

and the concrete cover. 

12. The maximum remaining crack width was proportional to the 

stress in the steel reinforcement at design load and the concrete cover. 

13. Th3 parameter 
D%P0 had no significant effect on the width of 

cracks, while the C. E. B. formula over-emphasises the effects of the 

bar diameter (D) and the effective reinforcement ratio (Pe 

14. Over the whole range of loading the ratio of maximum to average 

crack widths varied essentially in a random manner with increasing 

steel stress. The average values of the ratio were 1.96 for deformed 

bars, 1.86 for plain bars and 1.7 for wires and strands. 

15. In beams with equal or different percentages of reinforcement 

the surface characteristics of the reinforcing bars had no significant 

effect on cracking for a substantial portion of the loading ranges. 

The difference in the maximum crack width between plain round and 

deformed bars was only 7% in favour of the latter. 

16. In beams with similar designed ultimate loads the bar was 

superior to the wires and strands in controlling cracking. Prestressing 
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crimped wires and Bristrand 100 showed good crack control over the 

plain prestressing wires and the prestressing strands. The increase in 

the maximum crack width for the wires and strands over that of deformed 

bars was 67%. 

17. At a crack width of 0.2 mm at the reinforcement level the stresses 

in the reinforcement were 400-510 N/mm2 for Kam steel deformed bars, 

300-360 N/mm2 for Unisteel deformed bars, and 275-385 N/mm2 for prestressing 

wires and reinforcing and prestressing strands. 

18. At a crack width of 0.2 mm at the bottom edge level the stresses 

in the reinforcement were 325 to 400 N/mm2 for Kam steel deformed bars, 

180 to 230 N/mm2 for plain round mild steel, 194 to 245 N/=2 for 
'Unisteel 

deformed bars, and 255 to 275 N/mm2 for the prestressing wires and the 

reinforcing and prestressing strands. 

19. The crack width at the bottom edge of the beam was not directly 

related to the crack width at the level of reinforcement. 

20. In beams having the same design load, but reinforced with 

different grades, types and percentages of steel as the permissible 

stresses doubled or tripled the crack widths became 1.8 or 2.5 times 

that for the beam reinforced with mild steel. 

9.7.2 Limit State of Deflection 

1. For the first cycle of loading the deflection varied with the 

magnitude of the applied and cracking moments, the stiffness of the 

section in the untracked and cracked states. 

2. For the second cycle of loading the deflection beyond the remaining 

deflection varied with the applied moment and the stiffness of the section 

neglecting the stiffening effect of concrete in tension before cracking. 

3. The stiffness of the beam on the reloading cycle was smaller than the 

stiffness on the first loading in the uncracked state, but greater than 

the stiffness on the first cycle in the cracked state. 
4. The deflection after cracking was greatly affected by the 

magnitude of the cracking load. The smaller the cracking load the bigger 

the deflection, and vice versa. 

5. At low values of applied moment (in the uncracked state) the 

stiffness (EI) exceeded that calculated on the basis of the uncracked 

transformed section. 
6. After cracking the stiffness of the beam decreased with increasing 

bending moment to a value very near to that calculated on the basis of a 

cracked transformed section. 
7. The stiffness on the reloading cycle was greatly affected by the 

ratio of applied steel stress to stress at first cracking on the previous 



loading and the extent of cracking. An increase in the ratio caused 

a reduction in the stiffness. 

8. The remaining deflection was influenced by the applied load 

and the extent of cracking. 

9. The average ratio of the remaining deflection at the end of 
the first cycle to the deflection at the design load may be taken as 
10. The ratio of the remaining deflection to the deflection at the 

maximum load of the previous loading cycle decreased as the load was 
increased, i. e. the recovery ratio increased with increasing load. 

11. The reloading curves were approximately linear (due to the little 

effect of the hysterisis loops) up to the previous maximum load, after 

which the curve bent sharply along the initial load-deflection curve 
(virgin cycles). 

12. On unloading from a value of 76 to 89% of the maximum load the 

recovery in deflection amounted to 77 to 88% for the deformed and 

plain bars. The recovery decreased with decreasing steel area. 
13. The span to depth ratio varied directly with the allowable 
deflection and inversely with the stress in the reinforcement,. 
14. In beams with the same percentage but different types of steel 

the surface characteristics of the reinforcing bars had no significant 

effect on deflection, even at loads as high as the first yield of the 

material. The deflection was greatly influenced by the magnitude of 

the stress in the reinforcement. 

15. In beams with different amounts and types of steel reinforcement, 

the deflection was greatly influenced by the magnitude of the steel 

stress and the amount of the reinforcement. 

16. In beams with the same design loads, but with different grades, 
types and percentages of steel the deflection increased with decreasing 

area and the decreasing modulus of elasticity of the reinforcement. 

9.7.3 Limit State of Collapse (Ultimate Strength) 

1. The ratio of the actual maximum moment to the calculated ultimate 

moment was always greater than unity. The beam with Bristrand 100 

showed the greatest ratio of 1.22. 

2. The theoretical ultimate moments (calculated in accordance 

with the Draft Code, neglecting the partial safety factors on the 

materials) were in good agreement with the experimental values. 
3. The ratios of the experimental maximum moments to design moments 
(calculated according to the Draft Code with a global load factor of 
1.8) were greater than 2. The maximum ratio was 2.52. 

4. The actual steel stresses at failure exceeded the yield strength 

of the reinforcement. The beam with Bristrand 100 showed the greatest 
increase of 27%. 



5. In under-reinforced concrete beams, high tensile steel 

provides better utilisation of the concrete strength in compression. 

6. In under-reinforced concrete beams the stress-strain character- 

istics of the reinforcement have no effect on their ultimate strength. 

7. Cold worked steels were superior to hot rolled steels as 

regards the warning before collapse. However, hot rolled steel 

with high yield strength and good bond characteristics were 

superior to mild steel.. 

9.7.4 Flexural Strains 

1. The strain distribution in the concrete compression zone 

was almost linear, while that for the tension parts of the beam 

might not be linear. 

2.. Some recovery in the compressive strain occurs when the 

beams are left in the unloaded condition after previous loading 

cycle. 

3. The effect of increasing the permissible stress in the 

reinforcement for beams with equal or different percentages of steel 

was to increase the compressive and nominal tensile s trains occurring 

in concrete. 

4. The type (plain or deformed) of the reinforcing bars had 

no effect on the concrete strains. 



CHAPTER 10 

The Effect of Long-Term Loading 

on the Behaviour of Beams 

10.1 General 

The behaviour of nine beams reinforced with different 

types and percentages of steel was studied under the action of 

sustained and fatigue loading. Five beams were kept under sustained 

design load for the durations noted in Table (1). Four beams were 

subjected to repeated loading between full and half the design load. 

The number of cycles each beam was subjected to is given in 

Table (1). 

The behaviour of the beams with time was examined in relation 

to cracking, deflection, stresses and strains.. The change in the 

serviceability and safety characteristics were examined very closely 

at frequent stages. 

A detailed study of the long-term behaviour of beams is 

reported. Practical considerations of the prediction of the 

behaviour (cracking and deflection) under sustained and fatigue 

loading are presented. The effects of the long-term behaviour on 

the economic use of high tensile steel are discussed. 

10.2 Limit State of Cracking 

10.2.1 Repeated Loading Tests 

In the beams tested statically in this investigation the stresses 

in steel at the first cracking of concrete varied between one third 

to one eighth of the design load steel stresses, with an average of 

one fifth., At the static design load before the fatigue loading, 

the crack widths were of certain magnitude, as shown in Figs. (71) 

and (72). 

In these figures the crack widths can be seen to increase with 

the number of repetitions of loading. In all beams most of the 

increase seemed to have occurred during the first million 

repetitions. After two million repetitions the maximum crack 

widths stopped increasing, while the average crack widths continued 

to increase. Considering the maximum crack width at the bottom edge 
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of the beam, the increase was not uniform, and as the repetitions 
increased there were some changes in the slope of the curves. 
The maximum crack width at the steel level and the average crack 
widths at both levels increased more uniformly. At some stages 
there appeared to be a decrease rather than an increase in the total 

and average widths of cracks in the constant moment zone. This may 
be due to the formation of new cracks, which tended to extend at 
the expense of the neighbouring cracks. The new cracks formed 

either in the constant moment zone or in the shear spans. Only 

the cracks in the constant moment zone were recorded. Most of the 

increase in the number of cracks took place within the first few 

thousand repetitions, as can be seen in Fig. (73). In beam A32 the 

increase continued until approximately two million repetitions occurred, 

while in beam A33 a new crack formed at the last static load cycle 

after about 3.3 million repetitions. 

In Figs. (71) and (72) and in column (7) of Table (15) it is 

observed that after 3.5 million repetitions the maximum crack width 

at the level of steel, under design load, did not exceed the permissible 

crack width (0.2 mm) for normal coalitions, as suggested by the C. E. B. 41 

The crack width at the bottom edge level, further away from the 

surface of the reinforcing bar may exceed the permissible crack width 

as in the case of beam A34, in which the maximum crack width was- 

about 0.235 mm. The initial stress in steel in this beam was 326 N/mm2. 

Column (9) in Table (15) gives the ratio at design load of the 

crack width extrapolated for 3.5 million repetitions (see Fig. 74) to 

the crack width at the first cycle. It can be observed that the ratios 

did not exceed 1.5. This suggests that a value of 1.5 for the ratio 

of final to instantaneous width of cracks for fatigue loading seems 

to be reasonable. An initial crack width at the reinforcement level 

of 0.12 mm under a design steel stress for static loading of 320 N/mm2 

can be adopted without any danger of corrosion to be expected in 

normal conditions of exposure. 

In Fig. (75A) increases in crack width due to repeated loading 

are given for all types of steel. It can be noticed that the increase 
for mild steel was bigger than the average of those for deformed 
bars. This conclusion was based on only one beam, and is therefore 
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of limited validity. In beam A34, where the stress in steel was 

as high as 326 N/mm2, the increase approached that of mild steel. 

After 0.33 x 106 repetitions an increase in crack width of 

25% at design load steel stress ranging between 138-380 N/mm2, has 

been reported43 for beams with different types of steel, including 

plain round, deformed, square twisted and strands. An increase as 

low as 8% has also been reported44 for the same number of repetitions 

for a steel stress of 345 N/mm2. In the present investigation (ref. 

Fig. 75A) the increases were 37.5,15,7.8 and 40% for beams with 

plain round bars (A31), deformed Unisteel 60 bars (1132), deformed 

Unisteel 80 bars (A33) and deformed Kam 60 bars (1: 34). Nakayama7l 

found that the increase in crack widths for beams with plain bars 

was the sa n as that for beams with deformed bars when a greater 

number of small sized bars were used. When the beam contained only 

one plain bar the crack width was 1.5 times as large as that using a 

deformed bar of the same diameter, and this ratio became 1.8 as the 

load was repeated. For deformed bars an increase of 0 to 20% was 

observed at a steel stress of 220 N/mm2 after 105 repetitions. 

Hajnal Konyi57 observed that the crack width in the beam with 

mild steel increased by 167%, while that with deformed bars remained 

constant after two million repetitions, even though in the latter the 

stress in the steel was 210 N/mm2.. The number of the maximum cracks 

seemed to have increased in beams with deformed bars. For the same 

number of repetitions, increases in crack width of 15%, 17.5% and 

50% have been reported by other investigators44'71'75 for maximum 

steel stresses of 173 N/m2' 345 N/mm 
2 

and 330 N/mm2 respectively. 

In the present investigation the increases in the maximum crack width 

after two million repetitions were 5(%, 38%, 25% and 501- for beams 

A31, Ä32,1L33 and A34 respectively. 

The increase in crack width for beams with mild steel was-more 
likely to be due to loss of bond between steel and concrete in the 

vicinity of the cracks, owing to its surface characteristics. The 

increase in beams with deformed bars might be caused by a) the 
increase in steel stresses between the cracks due to creep of concrete 
in tension and b) the increase and formation of internal cracks 

at the steel level at high values of stresses in steel. This was 
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shown to be true by Lutz. 
90 

On the removal of the live load, most of the cracks remained 

open with certain-widths. After repetitions of load some of the 

remaining crack widths increased. Remaining crack widths are shown 
in Fig. (74). The biggest remaining crack width was in beam A34 with 

a value of . 08 mm at the steel level after 3.5 million cycles. In 

beam A31 the remaining crack width after 3.5 million repetitions 

was . 05 mm. For beams A32 and A33 the respective maximum remaining 

crack widths after 3.5 million cycles were 0.03 and 0.035. These 

were well within the accepted figure of 0.2 mm. 

Throughout the stages of fatigue loading the crack formation 

and the increases in crack widths were recorded for several increments 

of loading up to design load. At the last static test the measure- 

ments were recorded up to failure. Figs. (76) and (77) show the 

effect of previous repeated loading on the manner in which the 

crack widths changed with the load. It can be seen that in team 

A31 there was a big increase in crack width at design load after 

about 2 million cycles, while in the other beams it was less severe. 

Also the remaining crack widths and the changes in the slopes can 

be noticed. However, when a comparison is made between beams tested 

statically (e. g. All) and those with previous repeated loading (e. gi 

A31) as in Figs. (76) and (77) no definite conclusions can be drawn 

as regards the effect of repeated loading on crack width. This is 

because of the random nature of the crack widths on the first application 

of the load. In most of the static beams the crack widths were 

greater than those of the fatigue beams in the first cycle. This 

behaviour was observed until failure. In beam A34 the crack width 

on first application of the load was greater than that in beam A14 

and it seemed to have increased relatively under the effect of repeated 

loading at the design and at near failure loads. 

The cracking patterns at failure on one side of each of two 

typical fatigue test beams are shown in Fig. (78). This figure 

shows the initial spacings of cracks at first application of load, 
the height of travel of cracks at various increments of loading, 

at design load and at near failure load. The changes in the cracking 
patterns and crack formations due to repeated loading can be seen 
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from the development of new cracks and the increase in the height 

of travel of the initial cracks. In only one beam, A34, after 

over three million repetitions of loading was it noticeable that 

the cracks decreased in length, i. e. the tops of most of the cracks 

were seen to have closed. At the last static test to failure, one 

crack in beam A31 and two cracks in beam A33 formed at very high 

loads. They travelled from the bottom edge to the mid-depth of the 

beam. 

10.2.2. Sustained Loading Tests 

The increase in crack width and crack propagation were studied 

under the effect of sustained design load, which was the design live 

load plus the self-weight of the beam. 

Figs. (79) and (80) show the initial values of the maximum 

and average crack widths at both the steel level and the bottom 

edge of the beam. The major increase in these crack widths took 

place within the first 3 to 4 months after which the maximum crack 

width attained a sensibly stable condition. The . average crack widths 

continued to increase at an ever decreasing rate until a stable 

condition was reached after about a year. A decrease in the average 

crack widths can be seen in beams B21, B22 and B23 after a period 

of six months. This decrease may be due to the formation of new 

cracks during this period of time, as can be seen in Fig. (81). 

Most of the new cracks initiated at the level of steel, on the surface 

of the concrete, and travelled downwards and upwards and in some 

cases did not reach the bottom edge. In beams B21 and B25 most of 

the new cracks formed in this manner. There were more'new-cracks 
in these two beams compared to other beams. 

Lutz et a190 found that the major portion of the crack width 

increase occurred in the first 3 to 4 weeks after loading, after which 
the cracks increased at a much slower and continuously decreasing 

rate. Soretz57 reported that a state of equilibrium in the widths 

and number of cracks of floor slabs was reached after 2 months. In 

other tests on bridges86987 he reported that 90% of the final number 

of cracks was reached after one year, and that complete stability 

was reached after three years. Corely and Sozen89 noticed that the 

number and length of the cracks increased during the first 60 days. 



All the beams showed a well developed pattern of cracking and 
beam B21, reinforced with mild steel, showed a larger number of 

cracks at the level o1 the centroid of steel than the rest of the 

beams. 

Table (15) shows the values of crack widths at the steel level 

extrapolated for 1000 days of sustained loading. This extrapolation 

was deduced from Fig. (82) in which the crack widths were plotted on 

a semi-logarithmic scale. It can be observed from column (5) in 

Table (15) that the maximum value occurred in beam B25. A value of 

0.29 mm was recorded. This was because of the very high steel stress 
(460.5 N/mm2) at the design load, which caused the initial value of 

the crack width to be of a high value (0.22 mm). However, the ratio 

of the final to the initial crack widths, from column (8) in Table (15), 

was highest in beam B21, and lowest in beam B22. These ratios were 

1.67 and 1.22 respectively. The ratio reported by Lutz et al90 

was 1.4, while others42'l46 reported a ratio of 1.5 

In Fig. (75B) the average increase in the maximum crack widths 

of all the beams with deformed bars were smaller than that for the 

beam reinforced with mild steel, even though the design steel stresses 

in the case of deformed bars were much higher than that in the case 

of mild steel bars. The initial applied steel stresses, as shown 

, in Table (10) ranged from 175 N/mm2, for mild steel, to 460.5 N/mm 
2 

for Kam 90 steel. A difference of only lof in the final values of the 

crack width has been observed by Soretz86,87 when the steel stress 

under sustained loading was increased from 2400 kg/cm2 to 3500 kg/cm2. 

At the maximum value of the stress (460.5 N/mm2) the crack 

width exceeded that which is permissible by the C. E. B. 
41 

This 

limit has been superimposed on the graphs of the variation of 

maximum crack width with time. As regards the maximum crack widths 

at the bottom edge of the beam, the limit of 0.2 mm -was 

exceeded in three beams, B21, B23 and B25, as shown in Fig. 79. 

These beams developed final values of 0.22mm, 0.22 mm and 0.38 mm 

respectively., In the other two beams, B22 and B24, the final values 

were 0.20 mm and 0,19 mm respectively. These values, alon� with 

the ratios of the final to initial crack widths depended greatly on 
the initial values, which in turn depended on the random probability 
of the formation of the cracks, 



There are three main reasons for the increase of crack width 

under sustained loading: a) the increase in steel stresses due to 

progressive breakdown of the concrete in tension at sections between 

cracks, resulting in an increase in width and number of internal 

cracks, b) the increase in steel stresses due to the creep of concrete 

in compression and the subsequent lowering of the neutral axis c) creep 
in bond between steel and concrete, causing increased slip of concrete 

over the steel. Similar observationshave been noted by Lutz 
90 

and 

Thomas. 
146 

One single side of each of two typical beams under sustained 

loading is shown in Fig. (83). The cracking patterns are shown for 

the first application of loading. The height of travel of the cracks 

were marked at various increments of loading and up to design load. 

In these same figures the effect of sustained design load for a duration 

of one year is shown. It can be seen that some of the cracks increased 

in length within the first few days, after which, due to the effect 

of creep in the concrete, they tended to close at their tops. Due to 

the same effect, the heights of the cracks became more uniform, 

throughout the constant moment zone. A similar observation of 

closing of the tops of cracks after a period of 60 days has also 

been reported by Corely and Sozen. 
89 

10.3 Limit State of Deflection 

10.3.1 Repeated Loading Tests 

When a reinforced concrete beam is cracked it exhibits a change 

of stiffness with increasirg load. The stiffness decreases, causing 

an increase in rotation and thus an increase in deflection. The 

same beam will behave in a similar manner under the influence of 

repeated design load, with the stiffness deteriorating with an 

increase in the number of repetitions of loading. However, when 

the applied repeated loads stay the same in magnitude a state of 

stability in the change of stiffness may be reached, after a certain 

amount of fatigue loading. 

Fig. (84) shows the increase in deflections during the repeated 
loading test. These deflections at design and zero live loads were 

measured during the static load cycles carried out after every few 



hundred thousands of repetitions during the fatigue loading tests. 
It can be noticed that the maximum increase in deflection took 

place during the first few thousand repetitions. There was a rapid 
increase during the first 400,000 - 500,000 cycles, after which 
the rate of increase in deflection was decreasing. With a maximum 

permissible stress in steel of 168 N/mm2 in beam 1; 31, and a span- 

depth ratio (L/dl) of 17.6, the maximum deflection at the end of 

the repeated loading test did not reach the value of L. In beam 

x, 32, in which the steel stress was 229 N/mm2, the maxi6um deflection 

exceeded the value of L, but never reached the value L. Beam 
360 250 

A33 had a deflection greater than L at a steel stress of 259 N/mm2 
360 

on first application of the load. The maximum deflection approached 
the value of L. In beam A34 at a steel stress of 326 N/mm2, the 

250 
value of L was reached in the first 200,000 cycles, after which 

250 
it was exceeded as the number of repetitions increased. 

Again in Fig. (84) it can be observed that the increase in the 

total deflection at design load, after one million cycles or more, 

was mainly due to the increase in the remaining deflection at zero 

live load. This effect can also be seen in Fig. (65) which includes 

typical load-deflection curves for static load cycles applied at 

frequent intervals during the repeated loading test. The load- 

deflection relationships for all the beams were recorded and the typical 

behaviour is shown in Fig. (85). On the first application of the load 

the curve was not a straight line. It was slightly concave towards 

the deflection axis. When it was unloaded the curve became concave 

towards the load axis, with a remaining deflection at zero live load. 

The beam was then subjected to repeated loading, and after about 
679,000 cycles the relationship became straight lines for both loading 

and unloading conditions, as can be seen in the figure. The deflections 

at both zero and design live loads increased due to increasing elastic 

and remaining deflections. Further repetitions of loading affected 

the remaining deflection only while the elastic deflection became 

stabilized. The remaining deflection tended to stabilize just after 
two million cycles. The loading curve did not coincide with the 

unloading curve, even at a very high number of repetitions. In Fig. 
(85) the two curves started from almost the same point and then they 

diverged up to a load which represented about 6(flo of initial cracking 
load, after which they changed slope and moved towards almost the same 



point, forming a hysterisis loop. The loop did not appear to 

diminish even after more than three million cycles. 

The remaining deflection at zero live load, after the first 

application of loading, was higher in the case of beam A31 than that 

of . 132, in spite of the fact that the working steel stress in the 

former was lower. However, the remaining deflections became the 

same for both beams after the first 800,000 repetitions, and 
they remained approximately equal until over two million repetitions 

at which the test of beam A31 was stopped. It seemed that the extent 

of cracking was responsible for such behaviour. On the first 

application of loading the cracking pattern of beam , 132 was not fully 

developed, so within the first few thousand repetitions more cracks 

formed, and thus more remaining deflection occurred. This can be 

clearly seen in Fig. (87) where the load-deflection curve on 

the first application of the load was not linear, but the stiffness 

was gradually decreasing, thus indicating the incomplete development 

of the cracking during the first cycle of loading. 

In Figs. (86-89) a comparison is made between beams of similar 

design which were tested statically to failure. The companion 

beam in each pair has been subjected to previous repeated loading. 

In the figures beams with lower cracking loads showed bigger 

deflection at the static design load than their companion beams. 

However, it can be clearly seen that repetitions at design load 

tended to increase the stiffness of all the beams regardless of the 

type of steel. When a static load higher than the maximum repeated 

loading was applied the elastic deflection of the beam under. 

this load was less than that for the companion beam subjected to the 

same load without previous repetitions of loading. It may also be 

seen in the figures that a clear discontinuity in the load-deflection 

curves marks the limit of the earlier repeated loading. It can be 

concluded, therefore, that the damage occurring under repeated 

loading is that which under static loading would occur at higher 

load, and that less further damage occurs in beams with prior 

repetitions of loading when loaded statically beyond the upper 

limit of the loading range. Consequently, the maximum deflection 

at failure was not significantly affected by previous repetitions. 
Similar behaviour has also been reported by Saliger, 'ý 68 59 Bate 
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and Russell et al. 
75 

Table (16) summarises the value of the deflections under the 

design load at the first application of loading, and at the static 

loading cycle at the end of 3.5 million repetitions. In beams 

A33 and A34 the value of L was exceeded even before the repeated 

loading was applied (Fig. 390- 
84). After 3.5 million repetitions of 

loading the value of L was exceeded in beam A32, while the value 

of L was exceeded in A34 only. 
250 

The ratios of final to initial deflections are given for all 
the beams, the maximum value being 1.33 for A31, reinforced with 
plain round mild steel bars, and the lowest being 1.22 for A33 
with deformed bars. Fig. (90) shows the effect of repeated loading 
on the increase of deflection, the average being taken for the 
beams reinforced with deformed bars. It can be seen that the 
increases in the remaining deflections at zero live load were greater 
than those for the deflection at design loads. 

Bate68 found an increase in the total deflection of not more 
than 201 for any number of repetitions within the working range 
between half and full design load. Similar increases of 10 - 201 after 
2 to 3x 106 repetitions was found by Hajnal Konyi. 58 Russell et a175 
found an increase of 50 to 60, after 2x 106 repetitions. It was 

44 
recently reported that the deflection continued to increase with 
repetitions, and an increase of 43% after 10 x 106 was obtained. 

Soretz74 reported that the total and residual deflections 
increased by an average of 70% during 2x 106 repetitions, and 
that the residual deflection was finally about half of the total 

deflection. Other investigators 43'71 
reported increases in the 

total deflection of 5 to 25% regardless of the type of steel used. 

10.3.2. Sustained Loading Tests 

it is well known that when c, inorete is subjected to a constant 

sustained stress it will creep. Initially, these creep deformations 

increase rapidly, and then they increase at an ever-decreasing rate 

as time elapses. The same phenomenon of creep occurs in reinforced 
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concrete beams subjected to any level of sustained load. The beams 

in the present investigation were subjected to their design loads 

producing a range of stresses in the steel from 175 N/mm2 for beam 

B21, with plain round mild steel bars, to 460.5 N/mm2 for B25, with 
deformed Kam 90 steel bars. The properties of the beams and the 

stress ranges are shown in Table (10). 

The time dependent deflections, including creep and shrinkage, 

are plotted, in Fig. (91), on ordinary scale, and in Fig. (92) on 

semi-logarithmic scale, in which they were extrapolated to one thousand 

days. Fig. (91) sh': ws typical creep deflection curves, with an 

increase in deflection at a decreasing rate for a very long time. 

The instantaneous deflections, for all beams, were above the value of 

L and in the case of beam B25 it was even above the value of 360 
L due to very high steel stress. In beams B21, B22, B23 and B24 

250 L the value of 250 was exceeded within the first four weeks of the 

application of load. Therefore all the beams became unserviceable 

from the point of view of limit state of deflection. Fig. (93) 

shows the deflections of the five beams after one year of sustained 

loading. The limits of L and L are indicated on this curve. 
360 250 

It is clearly seen how these limits are exceeded under sustained 

loading. 

In order to study the difference in the behaviour under 

sustained loading of beams reinforced with different types of steel 

bars, namely plain round and deformed steel bars, Fig. (91) has 

been reproduced as Pig. (94) for only the first 67 days. It can 

be seen that the instantaneous deflections of the beams increased 

with an increase in the permissible steel stress, and a decrease in 

the steel percentage. The increase in the inelastic deflection with 

time seems to be less in beams reinforced with deformed high tensile 

steel (H. T. S. ) bars than that reinforced with plain round mild steel 
(M. S. ) bars. The ratios of the deflection of the beams with deformed 

bars to those with plain bars are indicated in Table (17) for 

durations of six months and one year. It is apparent from these 

ratios that after one year of sustained loading the ratios of total 

deflection of deformed bars to total deflection of mild steel are 

0.969,1.060,0.917 and 1.247 for beams B22, B23, B24 and B25, as against 
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the ratios (1.09,1.27,1.12 and 1.72 resVectively) for the instantaneous 

deflections of deformed bars to mild steel. Hajnal Konyi88 found 

that the average ratio of maximum deflection between high strength 

steel and mild steel decreased from 1.24 to 1.14 after a period of 
4 years. 

In Fig. (94) the time deflection curves of beam B24 crossed 

that of beam B21 at about 33 days, and its deflection continued to 

increase at a lower rate. The curve of beam B22 crossed that of 

beam B21 at about 43 days and continued at the same rate of increase 

as that of B21. Therefore, the curves of the beams with high tensile 

steel showed smaller increases in the deflection than that with 

mild steel during the whole period of sustained loading. This indicates 

the advantage of high tensile steel in controlling time dependent 

deflection. 

This phenomenon can be explained with the following reasoning: 

the increase in the neutral axis depth with time (due to creep) 

was greater for beams with high tensile steel (H. T. S. ) (with less 

area of steel) than that with mild steel (M. S. ), as can be seen in 

Figs. (95-100). The percentage increases after three weeks of 

sustained loading for beam B21 with M. S. bars and beams B22, B23, 

B24 and B25 with H. T. S., were 12%, 20%, 14%, 25% and 25% respectively. 

After a period of one year the increases were 30%, 41%, 37%, 53% and 

58% respectively. As a result of this movement of the neutral axis 

a redistribution of stresses in the concrete occurred and this 

reduced the rate of creep, causing a lower rate of creep deformation 

and deflection. The biggest increase in the neutral axis depth was 

in beam B25, in spite of the formation of a new crack within the 

gauge length of strain measurement. The increases in the average 

crack widths for beams with deformed bars, after seven weeks of 

sustained loading were 36%, 26%, 50% and 26% for beams B22, B23, 

B24, and B25 respectively. These percentages are bigger than the 

increase in beam B21 with plain round bars, which was only 77%. 

Therefore, the differences in the increase of deflection cannot be 

due to cracking. It cannot be due to the age differences of the 

beams. The age of beam B21 when first loaded was 97 days, the other 
beams were loaded at ages varying between 44 to 100 days. 
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From the above reasoning, therefore, the differences in the 

rate of creep of concrete, for the different types of steels, was 
due to the effect of different stress redistributions resulting 
from the lowering of the neutral axis. This will, therefore, account 
for the difference in the increase of the time dependent deflections 

for beams with different types of steel; the increase was lower for 

beams with : 1igher cteel atrecscs and correb-ponding smaller steal area. 

Hollington187 found that beams containing high tensile 

reinforcement (414 N/mm2 yield point) have a greater rate of 

deflection during the first few months after loading than those 

with mild steel, but subsequently the deflection curves become 

very similar. He attributed the cause of the different ratios of 

deflections at early ages to the breakdown of the tension stiffening 

effect in the concrete, which is bigger in beams with high tensile 

steel due to less steel area. However, Corely and Sozen89 did 

not find any escalation in deflection due to the use of higher 

permissible steel stresses. 

Table (16) shows the final deflection extrapolated from Fig. 

(92) for one thousand days duration. The last measurements were taken 

after 623,520,623,553,553 days for beams B21 to B25 respectively. 

Column (8) in the Table (16) shows the ratio of the deflection at 

the end of 1000 days to the instantaneous deflection. These ratios 

decreased with an increase in the applied steel stress, being highest 

(2.22) for beam B21 with a permissible stress in the steel of 175 N/mm2 

and lowest (1.57) for beam B25 with a permissible stress of-46U-5 NIMM. 

Additional deflections for different permissible stresses sustained 

for long periods of time, are given in Fig. (101). The maximum, 

additional deflection was 122%. This was much lower than the value 

given by Yu and Winter. 78 
Therefore, the factors suggested by Yu 

and Winter cannot be applied when using very high tensile steel, as 

can be seen in Fig. (101). Also the beams tested by Yu and Winter 

were loaded at ages different from the ages reported in this 

investigation. 

Because of the different span-depth ratios, different applied 

steel stresses, and different ages at loading , values of the ratio 
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between the final deflection and the instantaneous deflection 

of 3 to 4 for a period of about five years have been reported 
by different investigators. 77'7898 0,88 Lutz et al observed90 

a total deflection of 2.15 times the instantaneous deflection 

after five months of sustained loading. For a duration of 182 days 

it has been reported that an increase of 38% in deflection was 
found in a beam with Bristrand 100 for a steel stress of 290 NImm2 

and a steel percentage of 1.51. In this investigation the irr; rease 

was found to be 56% for the same steel stress but different type 
(deformed) and percentage of steel (1.01%). 

To take into account the influence of long term loading, including 

creep and shrinkage, it is therefore important to knew about the 

level of stress to which the reinforcing steel is being subjected. 
Given that part of the load which is considered to be of a long duratic- 

the stress in the steel can be found and consequently, using Fig. (101), 

a multiplier (F) for additional deflection due to creep and shrinkage 

can be obtained. 

This 'factor (F) may be incorporated in the denominator of the 

expression, developed in 0 9.3.6. for the L/d ratio, which can be 

used in the design of a reinforced concrete member, to give a total 

deflection (instantaneous + creep + shrinkage) not'exceedirg a 

permissible limiting value. r 

The factor of age at loading should also be included, as has 

been suggested by the Draft Code. 
23 

At an age of loading of 14 days 

a factor of 2.0 for additional deflection is recommended. At an age 

of 90 days a factor of 1.5 is recommended. In the present investigation 

beam B21 was loaded at an age of 97 days, and the factor for additional 

deflection due to creep and shrinkage obtained was 1.22. Beams B24 

and B25 were loaded at 85 and 100 days respectively, and the factors 

for additional deflection were 0.78 and 0.57 respectively. These 

values for B24 and B25 are much lower than the Code's value, and this, 

as above, is due to the higher permissible steel stresses and ccnresponding 

smaller steel areas. 

Inthe present investigation, as mentioned earlier, the beams 

under sustained design loads were intended to be designed to 

contain steel percentages and permissible stresses which will give the 
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same design load. So the above conclusions apply to beams with 

equal design loads but different percentages and working stresses 

of steel. However, more information can be gained if in addition 
beams with equal amounts of steel and different degrees of permissible 

stresses were tested under sustained design load. 

Table (18) shows the calculated and measured deflections after one 

year of sustained design loading. The calculated deflection has been 

obtained using an "effective" modulus of elasticity for concrete and 

the equations provided by Pauw and Meyers, 
101 

as has been shown in 

Chapter (2). The calculated deflections were found to be less than 

the measured ones. In Fig. (91)a deflection curve has been superimposed 

on the experimental curve for beam B21. Again it could be observed 

that the calculated deflections were always less than the measured 

ones; the difference between the two curves increased with time until 

about 140 days after which it became nearly constant. This increase 

can be attributed to the formation of additional cracks, mainly 

internal cracks; between the surface cracks, which made the steel 

strains greater and more uniform in that region than existed initially, 

and hence larger deflections occurred. The increased internal 

cracking is produced by (1) the increase in steel strains due to the 

lowering of the neutral axis caused by creep, and (2) theprobable 

decrease in the tensile strength of concrete under sustained loading. 

Similar observations have been reported by Lutz et al, 
9o 

In Table (18) the time-dependent deflections calculated on the 

basis of the proposed rre thod in § 9.3.2.1., and the percentage increase 

given in Fig. (101)are compared with the measured deflections. ' It can 

be seen that the two deflections agreed satisfactorily and in all 

beams the proposed method over-estimated the measured ones. The 

proposed method accounted for the increase in deflection due to the 

increase in cracking. 

Only three beams were unloaded and their deflection recoveries 

were recorded. The load was removed from beam B22 after 520 days 

and from B24 and B25 after 553 days of sustained loading. Table (19) 

gives the recoveries of deflection that were measured over a period 
determined by the limited availability of test area. It can also 
be seen from the table that additional recoveries after one day and 
28 days were respectively 0.27 mm and 0.84 mm for beam B24, and 
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0.29 mm and 1.08 mm for beam B25. The additional recovery observed 

by Hollington187 was the same after 1 day and 40 days. The residual 

deflection in this investigation was about half of the final deflection, 

while Hollington found an average residual deflection of 75% of the 

final deflection. From the figures in the table it can be observed 

that the grade of steel did not have any effects on the recovery of 

deflection. 

10.4 Limit State of Collapse (ultimate strength) 

10.4.1 Repeated Loading Tests 

All beams, except A31, were subjected to more than three million 

repetitions between full and half the design load. Under this 

range of loading the stresses in the steel reinforcement as a percentage 

of the yield stress were 53%, 50%, 40% and 53.8% for the upper limit 

and 38%, 24.8%, 22% and 27.4% for the lower limit for beams A31 to 

A34 respectively. The percentages based on the ultimate strength 

were 35%, 37%, 37.5% and 35% for the upper limit and 18.5%, 18.5%, 

20.8% and 18% for the lower limit respectively. The stresses in 

the concrete compression zone as a percentage of the cube strength 

were respectively 25%, 40%, 4&$ and 54% at the upper limit of loading 

and 11.7%, 17%, 25% and 22% at the lower limit. It was expected 

that fatigue failure would not occur and that the ultimate static 

strength would not be significantly affected after this number of 

loading repetitions, since these limiting ranges of stresses were 

well within the limiting failure stress ranges of the modified 

Goodman diagrams for the component materials, i. e. steel and concrete. 

At the end of the fatigue test, the static strengths were found t 

be very nearly the same or slightly higher than the static strengths 

of the corresponding beams, which were not previously subjected to 

repeated loading, The ratios of the experimental to calculated 

ultimate strengtrs are given in column (11) of Table (8). It can 

be seen that there is a good agreement between experimental and 

theoretical values of the ultimate strength of beams. 

Beam A33 could sustain higher loads than that indicated in 

Table (8). The test was stopped because the capacity of the loading 

jack used was not big enough to destroy the beam, The reason for the 
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increase in the strength of the beam under fatigue loading, over 
that of the companion static beam, may be due to the ageing of concrete 

with time, and may also be due to the compacting effect on the 

concrete under compression. Similar observations have been given by 

Saliger, 
59'60 

Pate, 
67,68 

Verna and Stelson66 and Probst. 56 
From 

results of tests carried out on prestressed concrete beams similar 

observations have been reported by Abeles, 
1889189 

Dave, 
l9() 

and Rimmer. 
191 

In general, fatigue failure of a reinforced concrete beam can occur 

either as a fatigue failure of the reinforcing bars or a failure in 

the concrete in compression. The latter mode of failure depends 

on the magnitude of loading, and can be either flexural failure or 

bond and shear failure, which may induce a crushing failure of 

concrete in compression. According to Chang and Kesler, 
63 

and 

Verna and Stel son, 
' when 

a reinforced concrete beam fails in flexural 

tension, as is the case with the static beams in this investigation, 

it can either fail in tension or shear under fatigue loading, tLapendizg 

on the magnitude of the applied repeated loading. ' If the upper limit 

of the repeated loadings was low, the failure will be flexural, and 

if it was high the failure will be in shear. Whenihe failure is a 

fatigue fracture of the reinforcing bar, then the minimum stress 

becomes an important factor which influences the fatigue resistance 

of the beam. 

Since the static ultimate strength of the concrete be am with 

low and normal percentages of steel reinforcement is conditioned by 

the behaviour of the steel, the properties of the reinforcing steel 

may, therefore, be expected to have a considerable influence on the 

behaviour of reinforced concrete members under repeated loading. The 

mode of failure under static loading with normal percentage of steel 

is first yielding of the reinforcement, and then crushing of the concrete. 

The mode of failure under repeated loading is likely to be the same 

in beams reinforced with mild steel, with a reduction in ultimate 

strength. The beams with high tensile steel may fail at the value 

of the stress in the steel appreciably less than that of a beam 

subjected to static loading only. This value of stress in steel also 

depends upon the range of loading. 

In this investigation none of the beams failed under repeated 
loading. Since the range of loading and the number of repetitions 
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were comparatively low to cause such failure. 

10.4.2 Sustained Loading Tests 

There is an abundant evidence on the effect of sustained loading 

on. the ultimate strength of the structure. Many investigators 

reported 
57,76,81,82,83,84,85 

no significant change in the static ultimate 

strength of the beams subjected to previous sustained design loading, 

and in some cases even sustained over-loads. A reference can also be 

made to prestressed concrete beams subjected to sustained design loading 

and over-load. Dave, 
190 

and Cottingham, Fluck and Washa192 confirmed 

that there is no reduction in strength, vhile Rimer 
191 

and Gadre193 

reported losses in ultimate strengths of 5.57% for over-loaded beams, 

and 8.5 to 17% for composite beams under design load for a period of 

six months. 

Experimental evidence, therefore, suggests that the ultimate static 

strength of reinforced concrete beams is not affected even after very 

long periods of sustained design load. 

10.5 Flexural Strains and Stresses 

10.5.1 Repeated Loading Tests 

Figs. (102) and (103) give typical history of the flexural strain 

distribution of the beams subjected to repeated loading, ranging between 

full and half the design load. Beam A31, reinforced with plain round 

mild steel bars was subjected to just over two million repetitions. 

The stress range in the concrete in the compression zone was between 

6.17 and 13.1 N/mm2, with an average of 9.63 N/mm2. The compression 

strain in the concrete top fibre increased from 38 x 10"5 to_65 x 10-D 

for the upper limit of the loading range, and from 15 x 10-5 to 45.5 x 10 -5 

for the lower limit. The variation of tthe compressive strain can also 

be seen in Fig. (104) as related to the number of repetitions. The 

strains increased rapidly during the first few thousand repetitions and 

then they increased at a decreasing rate. Both the elastic and the 

remaining strains increased with the number of repetitions, the remaining 

strain at a faster rate, and they both would attain a stable state 

eventually. 

In the beams with high tensile deformed bars, the initial 

compressive strains at the first application of the loads were 
higher than those for beam A31. They increased with the 
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increase in the concrete stress caused by the increased permissible 

steel stresses. The ranges of concrete stresses to which the beams 

were subjected were (7.3 - 17.0 N/mm2), (12.5 - 22.6 N/mm2) and 
(7.93 - 19.2 N/mm2) for beams A32, A33 and A34 respectively. The 

initial strains at the corresponding levels of stress were (15 x 10-5 - 
47.5 x 10 -5), (32 x 10-5 - 63.5 x 1o-5) and (24.5 x 10-5 - 68.5 x 10-5), 

for beams A32, A33 and A34 respectively. At the end of the fatigue 

testing the compressive strains measured were (41.5 x 10-5 - 68.5 

x 1o-5), (48.5 x 10-5 - 76. o x 1o-5) and (73 x 10-5 - 112.5 x 10-5) 

at their corresponding stress levels. 

From these figures it can be noticed that after the final cycle 

the increases in concrete compressive strains due to creep were not 

dependent on the magnitude of the stresses in the steel. Shrinkage 

strain being a fraction of the total strain, the increase in strain 

(creep + shrinkage) in A33 was only 19.7%, which was the lowest, 

while for beam A31 the percentage increase was 71%, which was the 

highest. For beams A32 and A34 the percentage increases were 44.4% 

and 64.5 % respectively. It can be concluded that the increase 

in compressive strains is likely to be affected by the level of stress 

in the concrete, the strength of concrete and the age of concrete at 

loading. In this study the cube strengths of the concrete at failure 

were 52.7,42.7,48.9 and 35.7 N/n2, and the ages at loading were 

60,140,200 and 139 for beams A31, A32, A33 and A34 respectively. 

The increase in compressive strains in the concrete can be due 

to either a) fatigue creep or b) movement of the neutral axis. The 

former is more likely to be the reason, because the neutral axis dropped 

as the number of repetitions increased. The behaviour of the four 

beams under repeated loading indicated a drop in the neutral axis 

and thus a redistribution of stresses occurred, which tended to reduce 

the rate of creep. 

A careful study of Figs. (102) and (103) reveals the behaviour of 

the lower portion of the beam in tension at both the bottom edge and 

the steel level. This behaviour is greatly influenced by the extent 

of cracking and to a lesser degree by fatigue. creep of concrete in 

tension. The concrete in the tension side between the cracks is 

restrained by the steel reinforcing bars, and thus the rate of creep 

of concrete at the level of steel is usually less than that at the 
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top fibre in compression. This causes the neutral axis to 

drop slightly. At the same time the cracks already existing tend 

to travel towards the compression face at a different rate, which 

causes the neutral axis at the crack to rise, so the net movement, 

as seen in Figs. (102) and (103) is the lowering of the neutral 

axis and an increase in the nominal tensile strains at the steel 
level. Under repeated loading, in some cases, the increase in the 

nominal tensile strains due to crack widening and creep of the concrete 

exceeded the compressive strains for the same number of cycles. In 

beam A32, for example, at design load, the increase in the nominal 

tensile strains at the steel level after 761,092 cycles was 22.5 

x 10-5 as compared to 10.0 x 10-5 increase in compressive strains. 

This is because the neutral axis remained constant over the first 

761,092 cycles, as seen in Fig. (105). The increase was due to the 

widening of cracks, creep of concrete and breakdown of tension 

stiffening effect. 

In beam A33 after 679,250 cycles, a new crack formed within the 

200 gauge length of the strain measurement. The neutral axis did 

not change its position and there was an increase' in the nominal 

tensile strains greater in magnitude than the increase in the compressive 

strains at the top fibre. The increase in tensile strains was 6.0 x 

10-5 as compared to 4.0 x 10-5 in compression. 

In beam A34 again the increase in tensile strains was 16.5 x 

10-5 after 1,914,143 cycles, which was higher than the increase in the 

compressive strains of 9x 10-5. This was because of the formation 

of a new crack. 

The general behaviour was a rapid increase in the nominal 

concrete tensile strains in the initial stages of load repetitions. 

This increase depended on the extent of cracking and fatigue creep 

in both the compression and tension zones of the beam. Generally 

the rate of increase of strains decreased with increasing number of 

load repetitions, unless new cracks formed. 

Fig. (106) shows that after two million repetitions of loading, 

there was either a rise in the curve of the tensile strain as in 

beam 131 or a decline as in beams A32 and ! 33. The reason for this 

is that the depth of the neutral axis in the former case decreased, 

while in the latter it increased at a higher rate than usual. 



In order to find whether a component of the increase in the 

tensile strains is due to slip between steel and concrete, a study 

of the crack pattern. of beam A33 was made. Initially, there was 

one crack, on side B, within the Demec gauge length. 
. 

fter 679,250 

repetitions the increase in the measured nominal tensile strains 

at the steel level was 9.0 x 10-5, while the increase in the crack 

width was 5.0 x 10-5. 

On side B of beam A31 the increase in the nominal tensile 

strains was 8.0 x 10-5 after 350,000 repetitions, while the increase 

in crack width was 15.0 x 10-5. This discrepancy might be due to 

a) the pr esence of compressive strains between the tension cracks 

and their increase with load repetitions, and b) the possible 

forking of the crack at the steel level, and the width indicated 

above being where the tort cracks meet. 

Due to the limitations of the measurements and the variation 
in the readings of cracks, it cannot be inferred that the slip between 

steel and concrete has occurred. A value of 0.01 mm crack width 

is equivalent to 5x 10-5 strain, and there is always a 
*O. 01mm 

difference in the reading of the cracks, which the observer cannot 

avoid. Even so, it is believed that slip due to repeated loading 

has occurred in beam A31, in which plain round mild steel bars 

were used. 

Fig. (107) shows the variation of the maximum stress in steel 

under repeated design load for all the four beams. The stress ranges 

to which beams A31, A32, t'. 33 and A34 were subjected are given in 

Table (9). 

It can be seen from this figure that the initial stresses at the 

design load increased with the grade of steel. The increase in steel 

stresses with repetitions depended on the movement of the neutral 

axis. If the neutral axis moves upward with repeated loading a decrease 

in stress is expected. This is so because the lever arm increases 

and thus the stress in the steel decreases. If the neutral axis moves 

downward the situation reverses and there will be an increase in steel 

stress. 

In all the beams except A31, the neutral axis depth remained - 

constant during the first few thousand cycles, and then it started 
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moving downwards with increasing number of repetitions until it 

became practically constant, as can be seen in Fig. (105). The neutral 

axis position depended onthe rate of creep and the rate of travel 

of the cracks. It may be noted that the strains were measured across 

a 200 mm gauge length within which the number of cracks varied randomly. 

At the end of fatig a loading the increases in the steel s tresses 

due to the lowering of the neutral axis were 2.56%, 1.75%, 1.1w and 

3.4% for beams A31, A32, A33 and A34 respectively. These increases 

are very small and hence it can be concluded that there is no substantial 

change in the stress in steel due to fatigue loading. 

Comparing the beams reinforced with different grades of steel, 

it can be emphasised that the differences in the increases in the steel 

stress did not bear any relation to the type of steel used or to the 

level of stress at which the repetitions were taking place. 

In repeated loading the effects of the type of steel and the 

increased permissible steel stresses, (with constant steel area) on 

the deformation of reinforced concrete beams can only be related to 

the extent of cracking, the bond characteristics between steel and 

concrete and creep of concrete. No distinct trend in the tensile 

strain development can be traced to the differences in the types of 

steel used. 

10.5.2 Sustained Loading Tests 

Figs. (95-99) show the history of the flexural strain distribution 

of beams B21, B22, B23, B24 and B25 under sustained design load, 

These graphs have been drawn for a duration of one year. 

The initial stresses in concrete and steel under the sustained 

design load are shown in Table (10). The concrete compressive 

stresses varied between 19.0 N/mm2 and 22.4 N/mm2, the average being 

20.7 N/mm2. 

Fig. (108) shows the increase in the compressive strains in all 

the beams. Theincrease is attributed to two factors a) shrinkage 

of the concrete (without any applied stress) and b) creep of the 

concrete (under applied stress)., from the figure it is apparent 

that the more severe effect is that of the creep. The factors affecting 
creep and shrinkage have been outlined in Chapter (2), so suffice 
it to point out here that the beams were loaded at an age of 44 days, 
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while beams B21, B24 and B25 were loaded at 97 days, 85 days and 100 
days respectively. The younger the concrete, as measured by the 
degree of hydration, the higher the creep. 

The initial compressive strains, under the sustained design 
load, for beams-B21, B22, B23, B24 and B25 were 82.5 x 10-5,68.5'x 
10-5,77.5 x 10-5,60.5 x 10 -5 and 68 x 10-5 respectively. The 

variation in the initial strains in the beams was as high as 
22 x 10-5, even though the applied compressive stresses, as given 

above, were nearly equal for all the beams... The variation in the 

concrete strains cannot be due to the difference in the concrete 

cube strengths, because the results did not bear any direct 

relationship to the differences that occurred in the strengths 

of concrete inthe different beams. The variation in strengths between 

the beams was quite small. The variation in the compressive strains, 
therefore, should be attributed to the random nature of the concrete. 
This has been observed previously in the case of the static tests 

on beams of similar design. 

Fig. (108) shows the increase in the compressive strains with 

time. During the first few days of sustained loading, there was a 

rapid increase in the strains. With time the curves changed and 

tended to take a flatter shape with a diminishing rate of increase in 

strains. The strains were ever increasing up to the last day of 

measurement. Similar behaviour has been reported from tests on 

sustained uniaxial compressive stress on plain concrete specimena? 
3 

The increase in the compressive strains for all the beams during 

a period of one year was 149 x 10-5,110 x 10-5,113 x 10-5,93 x 

10-5 and 88.5 x 10-5 for B21, B22, B23, B24 and B25 respectively. 

It is apparent that the increase in strains decreases with increasing 

permissible steel stress, i. e. creep depends on the steel stress 

and percentage as well as on the concrete stress. 

In Pig. (108) it can be seen that the change of stress with 
time is not uniform, i. e. the curves are not smooth. There are 

some curious changes in the shapes of the curves. This is so 
because there was a variation in temperature and relative humidity 

in the test area, as can be seen in Fig. (10). Beams B24 and B25 

particularly were situated near the exit, which was keptopen during 
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the day, so the controlled conditions (20°C and 5CY R. H. ) could not 

be maintained. 

The increase in the nominal tensile strains depended greatly 

on the downward shift in the neutral axis, the rate of increase of 

crack width and length, the rate of creep of concrete in tension, and 

the creep in bond and slip between steel and concrete. From Figs. 

(95-99) it is apparent that there was a rapid increase in the nominal 

tensile strains during the first few days, after which they increased 

at a diminishing rate untile a practically stable condition was reached. 

The increase in nominal tensile strains at the reinforcement level 

after one year of sustained design loading for beams B21 to B25 were 

18 x 10-5,11.5 x 10-5,21.5 x "10-5,22.5 x 10-5 and 29 x 10-5 

respectively. 'these increases were found to be less than the corresponding 

increases in the compressive strains for the same period of time, The 

biggest increase, which was in beam B25 with Kam 90 steel, was due to 

the formation of a new crack. The smallest increase, in beam B22, was 

due to the existence of only. one primary crack within the 200 mm gauge 

length. 

Comparing beams B21, B23 and B25, it can be seen thatthe increases 

in the nominal tensile strain were not much different, but the increases 

in the compressive strains varied greatly with different grades of steel, 

being lowest for the highest grade and corresponding lowest steel area. 

This suggests that good bond characteristics exist between steel and 

concrete, and a bigger stress redistribution occurs in the beams with 

high tensile deformed bars with less steel areas than with plain mild 

steel bars which reduces the rate of creep. As can be seen in Fig. (iU0), 

the neutral axis depths have increased by 12%, 20%, 14Y, 25% and 25% 

for beams B21 to B25 respectively after three weeks of sustained design 

load. After one year the increases were 30%, 41%, 37"I, 53 and 5e% 

respectively. A bigger area of concrete will, therefore, be under 

compression, and thus for the same applied moment the average and 

maximum stresses in the concrete become smaller, which result in 

a smaller rate of creep. 

The neasured strains at the level of steel reinforcement were much 

larger than those due to the increased steel stress caused by the 

lowering of the neutral axis. Similar observations have been reported 

by Hollington. 
187 
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A comparison, therefore, between beams reinforced with mild 

steel bars with those reinforced with high tensile steel bars with 
lower percentages of steel, suggests that the former has a higher 

rate of increase in compressive strains than the latter. This is 

so in the initial stage when the neutral axis was increasing in depth 

and in the final stage when the neutral axis remained practically 

constant.. 

For all the types of steel and throughout the sustained loading 

tests, the flexural strain distribution in the compression zone 

remained sensibly linear. The strain distribution in the tension zone 

was less uniform. This general pattern of time dependent strain 

distribution in the compression zone has been reported by Hajnal 

Konyi, 
88 

Corely and Sozen89 and Hollington, 
187 

and has been predicted 

theoretically by Sackman and Nickell. 
lo6 

Figs. (109) and (110) show the variation of the stress in the 

steel reinforcement under sustained design load. The change in stress 

seems to be higher than that in stress during the first few days. 

As the time elapsed, there was a decrease in the rate of increase 

until a practically stable state was reached. The increases in the 

steel stress were brought about by the lowering of the neutral axis 

as seen in Figs. (95 - 100), This effect reduces. the lever arm 

resulting in an increase in steel stress, which will increase the crack 

width and the height of travel of the cracks. The steel stress 

between cracks will also increase due to the creep of concrete in 

tension and the formation of internal cracks at the surface of the 

steel bars. It is important, therefore, to note that there was a 

general trend in the increase of stress in the steel reinforcement: 

the higher the applied steel stress, the bigger was the increase in 

stress. The increase in beam B21, with a permissible stress of. 

175 N/mm2, was 11 N/mm2, and in beam B25, with a permissible stress of 

460.5 N/mm2 was 22.5 N/mm2. However the percentage increase in the 

steel stress was lower for higher applied steel stress. The percentage 

increases for B21 and B25 were 6. Yo and 4.88% respectively. 

10.6 Comparison between Sustained and Repeated Loadings 

10.6.1 Limit State of Cracking 

Table (15) should be considered in comparing the effect of 
sustained and repeated loading on the maximum crack widths. 

r 
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Columns (8) and (9) give the ratios of the final to the instantaneous 

maximum crack widths at the level of steel for the sustained and 
repeated loading respectively. Both types of loading seem to have 

similar effects on the crack width, giving average ratios, after 
3.5 million cycles and 1000 days, of 1.43 and 1.46 respectively. 
Therefore, in the consideration of the limit state of cracking, both 
types of loading are equally critical. 

When considering the maximum crack width at the bottom edge 

of the beam, it was found that the ratios for sustained loading were 
1.29,1.54,1.10,1.72, and 1.36, with an average of 1.44, as against 
1.64,1.03,1.06 and 1.19, with an average of 1.23 for repeated loading 

tests. The effects of sustained loading on cracking seem to be more 

critical. 

The ratios of the average crack widths were higher at the steel 
level than at the bottom edge for the two types of loading. The ratios 

obtained at the steel level were 1.5 and 1.73 and at the bottom edge 

were 1.40 and 1.24 for repeated and sustained loading respectively. 

The number of cracks was affected by repeated loading more than by 

sustained loading. In most of the fatigue beams the number of cracks 

increased, particularly at t1e level of steel. Whereas in the sustained 

loading beams the increase was insignificant except in beams B21 and 

B25. 

The height of travel of the cracks in most of the fatigue beams 

increased, and only in beam A34 the cracks, after extending towards 

the compression face, closed within very short lengths at their tops. 

In the sustained loading beams some of the cracks extended towards 

the compression face during the first few days. After a period of 

one year the cracks were noticed to have shortened in length. 

10.6.2. Limit State of Deflection 

In comparing the effects of the two types of loading, repeated 

and sustained, Table (16) should be referred to. It can be observed 
from the ratios given in Columns (8) and (9) for the sustained and 
repeated loadings respectively, that the ratios in Column (8) are 
higher than those in column (9), indicating that the effects of 
sustained loading are more severe than those of repeated-loading. 
The sustained loading effects, therefore, are more critical than 
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the repeated loading in the consideration of the limit state of 

excessive deflection. The magnitude of the allowable steel stress 

has a great influence on the long-term deflection in the case of 

sustained loading. Thus the grade of steel must be considered 

in the design, when considering the effects of sustained loading 

on deflection a value of the factor for additional deflection can 

be obtained from Fig. (101). 

10.6.3 Limit State of Collapse 

Only the repeated loading test to ams were loaded to failure 

at the end of the tests. Three of the sustained loading beams 

were unloaded, but not loaded to failure. 

From the present and past findirgs these types of loading 

do not affect the static ultimate strength of a beam significantly. 

However, the present tests have shown an increase in the ultimate 

strength for some of the beams subjected to previous repeated 

loading, over their companion static beams. 

10.7 Economic Considerations 

In the previous sections the behaviour of the beams reinforced 

with high tensile steel under static, sustained and repeated loading 

has been discussed. The increase in crack width and deflection 

with steel stress and with time has been emphasised. In this 

section an attempt is made, using these results, to find out what 

strength of steel can justifiably be used as reinforcement for 

concrete, and how much saving in cost can be achieved by utilising 

such a type of steel. 

The choice of higher strength steel in preference to mild steel 

is controlled by cracking and deflection considerations. 

The deflection of a member depends on the span/depth ratio, 

steel stress and area, and the strength of concrete, so the magnitude 

of deflection is not controlled only by the magnitude of the stress 

in the steel. As a emaller area of higher strength steel is used 

the corresponding moment of inertia is reduced and deflections will 

be correspondingly greater. In Fig. (69) at working load a reduction 

of 27.6% in the steel area corresponding to an increase in steel 
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strength from 414 to 550 N/mm2, i. e. 306, would produce an increase 

in deflection of 13%. The deflection at the working load for 

550 N/mm2 steel was L which is above the permissible value of L 
M"T 250 

as recommended in the Draft Code. The deflections for steel with 

strengths higher than above are considerably greater (e. g. Kam 90). 

In order to use steels of higher strength in design, a balance 

should be found between the span/depth ratio and the magnitude of stress 

and area of steel, as recommended in the Draft Code. A smaller deflection 

under short term static design load could have been obtained in this 

investigation for 550 N/mm2 steel if, for the same steel area, a smaller 

span-depth ratio had been used. Another factor which is extremely 

important is the type of loading. When the member is subjected to 

sustained design loading, the deflection increases in amounts depending 

on the level of steel stress at working load. (Ref. Fig. 101) 

The relationship between the permissible maximum crack width 

and the possibilities of using high strength steels depends on the 

conditions of exposure and the type of loading. If well protected 

internal members are used very high strengths of steels can be used., 

However, for unprotected members exposed to severe atmosphere and loaded 

for along time under sustained or repeated design loading the 

possibilities of using steels of high strengths are very limited. 

In the present investigation the maximum crack width for each 

:. beam on the second cycle of loading is plotted against the steel 

stress at several loading stages, as can be seen in Figs. (26) and 

(27). The maximum crack width, as has been discussed earlier, 

increased linearly with increasing steel stress. From § 9.2.2. ", 

Eq . 
(32), derived from Figs. (26) and (27), can be used to calculate 

the steel stresses corresponding to the permissible maximum crack 

widths for the three conditions of exposure suggested by the C. E. B. 

(3.2) Eq. (32) predicts the maximum crack width under a short term 

static loading. To include the effects of sustained or repeated 

loading a reduction factor of 1.5 is applied to t1n permissible 

maximum crack width. Combining all these effects and using Eq. (32) 

the maximum allowable steel stresses that can be used are as follows: 

Maximum crack width Maximum steel stress 
(mm) (N/mm2) 

0.20 250 (36200 p. s. i. ) 

0.25 303 (44000 p. s. i. ) 
0.30 355 (51500 p. s. i. ) 
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When the working load steel stress is 118 of the yield or 

proof stress, it can be seen from above that for beams reinforced 

with 550 N/mm2 (80000 p. s. i) steel the maximum crack width is 

0.25 mm. The cracks could possibly be reduced by using a smaller 

amount of concrete cover. 

It can be concluded that the maximum crack width at the working 
load will probably limit the possibilities of using steel of strengths 
higher than 550 N/mm2 when the concrete cover is 35 mm. 

For the same section, when mild steel is replaced by 550 N/mm2 

steel, there is a saving of 51% in the steel area and 45.1% in the 

steel cost. When the steel strength is increased from 414 N/mm2 

to 550 N/mm2 there is a saving of 27.6% in the steel area and 

25.42% in the steel cost. In determining the cost of steel it is 

estimated that 414 N/mm2 steel will cost £5 per tton more than mild 

steel and 550 N/mm2 steel will cost £2 per ton47 more than 414 N/mm2 

steel. In Appendix (A) an illustrative example is given showing 

the percentage saving when mild steel bars are replaced by steel bars 

with yield stress of 550 N/mm2. 

10.8 Conclusions 

In the foregoing the effects of sustained and fatigue loading 

on serviceability and strength have been studied. The following 

conclusions as regards the behaviour of reinfcrced concrete beams 

of the type considered in this investigation and under such types of 

loading can be drawn: 

10.8.1 Limit State of Cracking 

A. Repeated Loading 

1. The crack widths increased with the number of repetitions and 

after about two million repetitions a stabilised condition in the 

width of the maximum crack was reached, while the average crack width 

continued to increase. 

2. The number and length of cracks increased with the number of 

repetitions and most of the increase occurred within the first few 

thousand repetitions, after which they stabilised. 

3. The increase in the maximum crack width at the level of 

reinforcement was about 50%, and in no case did it reach the limiting 

value (0.2 mm). 
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4. The increase in the maximum crack width in the beam with mild 

steel was greater than the average increase for beams with deformed 

bars. 

5. The remaining maximum crack width increased with repetitions, and 

a maximum value of 0.08 mm at the level of reinforcement was reached 

which was within the accepted limit (0.2 mm) 

B. Sustained Loading 

1. The major increase in the maximum crack width occurred in the 

first three to four months, after which it attained a reasonably 

stable condition, while the average crack width continued to increase 

until a stable condition after about one year was reached. 

2. The number and length of cracks increased with time, and most 

of the increase occurred during the first few days, after which they 

stabilised. The cracks closdd at their tops at a later date, due to 

the compressive creep of concrete. 

3. The increase in the maximum crack width at the level of reinforce- 

ment was about 5C F/-, regardless of the type of steel. 
4. The average increase with time in the maximum crack width in 

beams with deformed bars was smaller than that for the beam with mild 

steel. 
5. With an initial steel stress of up to 300 N/mm2 the maximum 

crack widths at both the reinforcement level and bottom edge level, 

even after a long period of sustained design load, were within the 

accepted limit (0.2 mm). With an initial steel stress of 460#5 II/mm 
2 

the maximum crack width at the level of reinforcement exceeded the 

accepted limits within the first few days. 

10.8.2. Limit State of Deflection 

A. Repeated Loading 

1. The deflections increased rapidly during the first 400,000 to 

500,000 repetitions, after which they increased at a much lower rate. 

The maximum increase in deflection took place during the first few 

thousands of repetitions. 

2. The maximum increase in the total deflection at design load 

after 3.5 million repetitions was 33%. 

3. After one million repetitions the increase in the total 

deflection at design load was mainly due'to the increase in the 
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remaining deflection at zero live load. 

4. At a static load higher than the maximum limit of the repeated 
loading range, the elastic deflection was less than that for the 

companion beam subjected to-the same load, but without previous 

repetitions of loading. 

B. Sustained Loading 

1. Creep deflection increased rapidly during the first few days, 

after which it increased with time at an ever-decreasing rate. 

2. Throughout the sustained loading period the increase in 

deflection was more rapid in beams with mild steel than those with 

high tensile steel (with less steel area). i. e. the rate of increase 

diminished with higher grade of steel and corresponding lower steel 

area. 
3. The difference in the increase of deflection of the beams with 

two types of steel was not due to the difference in the cracking or age 

of concrete at loading, but was due to the different concrete stress 

redistributions, owing to the different movements of the neutral axes 

of the beams with time. 

4. The maximum increase in the total deflection after 1,000 days 

of sustained design load was 122% in the beam with mild steel with 

an initial steel stress of 175 N/mm2, and steel area of 2.58%. The 

lowest increase was 57% in the case of the beam with Kam 90 steel, 

with an initial steel stress of 460.5 N/mm2, and steel area of 0.564%. 

The age at first loading was about 100 days in both cases. 

5. The average increase in deflection after six months was 66% 

and after one year was 83% of the 10(x1 day value. 
6. The calculated time dependent deflections based on an "effective" 

modulus were less than the measured ones. 

7. The recoveries of deflection after unloading from sustained 

design loading were independent of the grade of steel and the major 

portion of the recovery occurred immediately after unloading, and it 

was about (on average) 83% of the elastic deflection. The residual 

deflection was half the final deflection. 

10.8.3. Limit State of Collapse (Ultimate Strength) 

1. The ultimate static strength was retained even after many 

millions of repetitions of design load. 

2. The ultimate static strength was retained even after a very long 

period of sustained design load. 
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10.8.4. Flexural Strains and Stresses 

A. Repeated Loading 

1. The compressive strains increased rapidly during the first few 

thousarxis of repetitions, then they increased at a decreasing rate 

until they nearly stabilised. 
2. The increase in thecompressive strains depends on the age at 
loading, the level of stress in the concrete, and the strength of the 

concrete, all of which affect the creep of concrete. 

3. The increase in the concrete compressive strains varied greatly 

between 19.7%o to 71%. This was independent of the grade of steel. 

4. The remaining compressive strains increased with repetitions 

at a faster rate than the elastic ones. 

5. The increase in the nominal concrete tensile strains was due to 

many factors, e. g. the lowering of the neutral axis, creep of concrete 

in tension, cracking and break-down of the tension stiffening effect 

of concrete. 
6. The nominal concrete tensile strains increased rapidly in the 

initial stages of load repetitions, and then they increased with time 

at a much lower rate. In some cases the increase in the nominal 

tensile strains was greater than the increase in compressive strains. 

7. The stress inthe steel remained practically constant even after 

many repetitions of loading. 

B. Sustained Loading 

1. During the first few days the compressive concrete strains 

increased rapidly then they continued to increase with time at a much 

lower rate. 

2. The increase in the concrete compressive strains decreased with 

higher grade and corresponding lower percentages of steel reinforcement. 

3. The increase in compressive strains after one year was 180. 

in the beam with mild steel with an initial steel stress of 175 N/mm2 

and steel area of 2.58%. In the beam with Kam 90 with an initial 

stress of 460.5 N/mm2 and steel area of 0.564 % the increase was 
130%. 

4. The strain distribution in the compressive zone remained 

reasonably linear throughout the sustained loading period. 

5. During the first few days the nominal concrete tensile strains 
increased rapidly and they then increased at a lower rate until 
they nearly stabilised. 
6. After one year the greatest increase in the neutral axis depth 

of stress was 58%. This increase was greater for higher grade and 



corresponding lower percentage of steel reinforcement. 
7. The stresses in the steel increased rapidly during the first 

few days and then they increased at a lower rate until stability 

was reached. 
8. The percentage increase in steel stress with time was lower 

for higher grades and corresponding lower percentages of steel. 

10.8.5. Economic Considerations 

1. The maximum crack width at working load, including the effects 

of sustained or repeated design loading will probably limit the yield 

strength of steel to 550 N/mm2. 

2. The possibilities of using higher strengths of steel are also 

limited by the deflection which in turn is limited by the span-depth 

ratio and the steel stress and percentage. 

3. For the same section, when the steel strength is increased from 

276 N/mm2 (mild steel) to 550 N/mm2, there is a saving in steel area 

of 51% and steel cost of 45.1%. When the steel strength is increased 

from 414 N/mm2 to 550 N/mm2, the savings are 27.6% and 25.42` " 
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CHAPTER 11 

Summary and Conclusions 

11.1 Conclusions from the Present Investigation 

These. conclusions have been derived from the results of the 

present investigation on singly reinforced, simply supported 

rectangular concrete beams. 

11.1.1 Neutral Axis 

1. Under short-term static loading the neutral axis depth can be 

predicted from: 

dn = dn - 
dn 

unc - dn 
er m 

unc ý_- 

where: 

dn =d- unc 

0.3 Mu 

d/2 
+ (m-1) p(d-di) 

1+(m-1)p 

for M%Mu 
0.3 

do = dncr = dl mp+ 2mp - mpol 

......... 
§ 8.2 

......... 
§ 8.2 

2. The neutral axis depths of both stress and strain increased 

with time (under sustained or repeated loading) and then 

stabilised. After a period of time they did not coincide due 

to shrinkage and stress effects in the concrete tensile zone. 

11.1.2. Stresses in the Reinforcement 

1. Under short-term static loading the stresses in the steel 

reinforcement depend primarily on the applied moment, the amount of 

steel and the position of the neutral axis, at any loading stage. 

2. The stresses in the steel reinforcement can be predicted from: 

fM........ 9 8.2 
8 As dl - oCdn 

The value of p{ can be obtained from: 

vC = 3eý - 3eeeo + e2 
......... 

§ 8.2 
6eo - 3eoec 



3. The experimental and theoretical steel stresses increased 

linearly under short term, static loading: from small loads around 

zero to very high percentages of the ultimate load. 

4. Due to the stiffening effect of concrete in the tension zone, 
before cracking, the actual measured steel stresses were lower than those 

calculated on the basis of the measured compressive strains and the 

position of the neutral axis. 

5. Under the effects of repeated design loading, the maximum 

variation in the steel stress took place during the first few 

thousand repetitions. The maximum increase was 3.4%. 

6. Under the effects of sustained design loading the maximum 

variation in the steel stress took place during the first few days. 

The maximum increase was 6.7%. 

7. In most beams the steel stresses under the short-term static 

failure loads exceeded the yield strength of the reinforcement. 

11.1.3 strains 

1. The strain distribution in the concrete compressive zone is 

almost linear, while that for the tension parts of the beam may not 

be linear. 

2. Under the effects of sustained and repeated design loading the 

concrete compressive strains at design load increased rapidly during 

the first few days and the first few thousands of repetitions. After 

two million repetitions the maximum increase was 27 x 10-5 (71%). 

_c The maximum increase after one year of sustained loading was 149 x 10 

(181%). 

3. Under the effects of repeated design loading the remaining 

concrete compressive strains at zero live load increased rapidly 

during the first few thousand repetitions. The maximum increases after 

about two million repetitions and one year of sustained loading 

were 25 x 10-5 (23%) and 29 x 10-5 (16.5%) respectively. 

11.1.4 Ultimate Strength 

1. The safety factor against collapse under short-term static 

loading exceeded a factor of 2 against a global load factor of 1.8 

as recommended in the Draft Code. 

2. Sustained and repeated design loads had no appreciable effect 

on the ultimate strength of reinforced concrete beams. In some cases 

repeated design load caused an increase in the ultimate strength. 



11.1.5 Deflection 

1. The deflection is influenced by the magnitude of the cracking 
and applied moments, the span and the flexural rigidity. The deflection 

can be predicted for the first cycle from: 

A, ý2M- Mc L2 1= 
ý 

ECIo L +ý LEI ....... 
ý 9.3.2. 

Co 

and for the subsequent cycles 

2 lý 
14 

cc 
L2 + K4ý1 

where Kl = 0.9 

K4 = 0.25 

K5 a1.30 

....... 9 9.3.2. 

2. The span-depth ratio can be evaluated from: 

L/d =A1 Es 1 (1 - K) ....... 
0 9.3-7- 

LF fs Ad 

3. The remaining deflection was influenced by the extent of 

cracking and the ratio of the applied steel stress to steel stress at 

first cracking. 

4. The average ratio of the remaining deflection at the end-of the 

first cycle to the deflection at the design load may be taken as 4. 

5. The recovery of deflection on unloading of a beam loaded to 

a very high percentage of the ultimate load, decreased with decreasing 

area of steel reinforcement. 
6. Under the effects of repeated design loading most of the increase 

in deflection occurred during the first four to five hundred thousand 

repetitions. After 3.5 million repetitions the ratios of the final 

to initial deflections ranged between 1.22 and 1-33- 

7- Under the effects of sustained design load the deflection 

increased rapidly during the first few days. After 1000 days the 

ratios of the final to initial deflections varied between 1.57 

to 2.22, the age at first loading varying between 44 and 100 days. 

8. The average increases in deflection after six months and one 
year of sustained design loading were 66% and 83% respectively of the 
increase after 1000 days. 

9. The stiffnesses of the beams at loads higher than the upper 
range of repeated loading increased after previous repeated design 
loading. 



10. The major portion of the recovery of deflection after 

unloading from sustained design loading occurred immediately after 

unloading and it was about (on average) 83% of the elastic deflection. 

The residual deflection was about half the final deflection. 

11.1.6 Cracking 

1. The crack width is controlled by the level of the stress in 

the reinforcement, the distance from the point of measurement to 

the surface of the bar, the percentage of reinforcement as affecting 

the steel s tress at first cracking, and the surface characteristics 

of the bars. 

2. The maximum crack width at the level of reinforcement in 

static load tests can be predicted from the following equations: 

max = RC (fs - Ks) x 1Ö 
6 

1p 

where R= 18.6 plain round bar 

= 16.0 deformed bar 

= 25.0 wire and strand 

Ks = 69.5 N/mm2 

for the subsequent cycle of loading: 

i...... § 9.2.2. 

11 

6":...: 3 9.2: 2 W 
max =c 

If 
s 

(R + k1) - iclk2 x 107 
2 

where It 12.9 plain round bar 

13.5 deformed bar 

24.2 wire and strand 
kl = 5.28 1/N/2 k2 = 138 N/mm2 

3. Under short-term'static loading, a fully developed cracking 

pattern was reached at stresses between 200 - 250 N/mm2. 

4. The average crack spacing in beams with deformed and plain 

bars was approximately equal to 1.5 x the concrete cover. 

5. At a crack width of 0.2 mm at the reinforcement level, the 

stresses in the reinforcement were: 400 - 510 N/mm2 for Kam steel 

deformed bars, 300 - 360 N/mm2 for Unisteel deformed bars, and 

275 - 385 N/ 
2 

mm for prestressing"wires, and reinforcing and prestressing 

strands. 

6. At a crack width of 0.2 mm at the bottom edge of the beam, the 

stresses in the reinforcement were: 325 - 400 N/mm2 for Kam steel 
deformed bars, 180 - 230 N/mm2 for plain round mild steel bars, 194 - 
245 N/mm2 for Unisteel deformed bars, and 255 - 275 N/mm2 for 



-162- 

prestressing wires and reinforcing and prestressing strands. 
7. The ratio of the maximum to average crack width varied greatly 

with the level of reinforcement stress. 
8. Under the effects of repeated design loading, most of tie 

increase in the maximum and average crack wiZths and the height of 
travel of cracks occurred during the first million repetitions 

After 3.5 million repetitions the maximum crack width at the bottom 

edge slightly exceeded the permissible value (0.2 i)when the initial 

design steel stress was 326 N/mm2. The ratio of the final to 

instantaneous crack widths can be taken as 1-5- 

9.1 The maximum remaining crack width increased with load 

repetitions. 
10. Under the effects of sustained design loading, most of the 

increase in the maximum and average crack widths occurred during the 

first 3 to 4 months. After a period of 1000 days and an initial 

st : al stress of yp to 300 N/mm2 the maximum crack widths at the 

reinforcement level were much lower than the permissible value (0.2 mm). 

While those at the bottom edge were about equal to the permissible 

value. However, when the initial steel stress was 460.5 N/mm2, the 

maximum crack widths at the steel and bottom edge levels were 0.29 mm 

and 0.38 mm respectively. The ratio of the final to the initial 

maximum crack width can be taken as 1-5- 

11. Most of the increase in number and length of cracks was 

during the first few days of sustained design loading. However, 

due to the effect of creep, these cracks closed within short 

distancesfrom the top. 

11.1.7. Type and Grade of Steel Reinforcement 

1. The average neutral axis depth under short-term static loading 

was not affected by the surface characteristics (deformed or plain) 

of the reinforcement. 
2. Under the effects of sustained design loading the percentage 

increase in the neutral axis depth and the increase in the steel 

stress were greater for higher design steel stress and corresponding 

lower steel percentage. 
3. Under the effects of repeated design loading, when the steel 

percentage was constant, the increase in the steel stress did not 

depend on the type or grade of the steel reinforcement. 
4. Under short-term static loading the concrete compressive strains 

were not affected by the surface characteristics (deformed or plain) 

of the reinforcement, but they increased with higher design steel 
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stress and corresponding lower steel percentage. 

5. Under the effects of repeated design loading, when the steel 

percentage was constant, the increase in the concrete compressive 

strains did not depend on the surface characteristics and the 

magnitude of the design steel stress. 
6. Under the effects of sustained design loading the increase 

in the concrete compressive strains was lower for higher design 

steel stress and corresponding lower steel percentage. . When the 

initial steel stresses were 175 N/mm2 and 460.5 N/mm2 the increases 

in concrete compressive strains after one year were 149 x 10-5 

and 88.5 x 10-5 respectively. 
7. The ultimate strength was not affected by the surface 

characteristics or quality of steel reinfcr cement, however, the 

strength of concrete was much better utilised when high tensile steel 

was used. 

8. The mode of failure and the amount of warning before failure 

were affected by the surface characteristics and the type of the 

steel reinforcement. Cold worked steels (with indefinite yield 

point) were superior toy hot rolled steels (with definite yield 

point, and hot rolled steels with high yield strength and good 

bond characteristics were superior to mild steel, in that they 

gave better warning before collapse. 

9. Under short-term static loading, when the section properties 

were constant, the deflection was not affected by the surface 

characteristics of steel. However, the deflection was greatly 

influenced by the magnitude of the design steel stress. When the 

design stresses were double or triple the deflections were 1.74 

and 2.48 times that of mild steel respectively. 

10. Under the effects of sustained design loading the creep 

deflection and the ratio of final to initial deflection decreased 

with higher design steel stress and corresponding lower steel 

percentage. 

11. The percentage recovery in deflection after unloading from 

sustained design load was very little affected by the magnitude 

of the design steel stress. 

12. Under short-term static loading the crack spacingswere not 

significantly different for beams with deformed or plain round bars, 

but they were bigger for beams with prestressing wires and strands. 

13. The average difference in the maximum crack width between 

beams reinforced with plain round and deformed bars was only 7f 

in favour of the latter, while the difference in crack width for 

beams with prestressing wires and strands and the deformed bars 
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was 67% in favour of the latter. 

14. The maximum crack width at working load (1/1.8 of the 

yield or proof stress) including the effects of sustained or 
repeated design loading, will probably limit the possibilities of 
using steels of strengths higher than 550 N/mm2 proof stress. The 

reduction of concrete cover could raise the limit of permissible 

stresses higher than in the above case. 
15. The possibilities of using higher strengths of steel 

are limited by deflection which in turn is limited by the span- 
depth ratio and the steel stress and percentage. 
16. Providing the section and the ultimate design load are 

constant, there is a 51% saving in steel area and 45.1% saving 
in the cost of steel when mild steel (276 N/mm2 yield point) is 

replaced by steel with yield of 550 N/mm2. There is a 27.6 % 

saving in steel area and 25.42% saving in cost of steel when 
22 414 N/mm steel is replaced by 550 N/mm steel. 

11.2 Design Recommendations for Reinforced Concrete Members 

11.2.1. General 

The aim of this thesis is to arrive at simple design rules 

for concrete beams reinforced with high tensile steel. These 

rules can be applied when the type and distribution of loading 

and forces on the structure are determined. The major step in 

applying these design rules is to satisfy the ultimate limit state 

of collapse by designing a safe structure. The grade of steel and 
the magnitudes of the permissible stresses to be used, however, 

will be controlled by the limit states of deflection and cracking,., 
the type (sustained or repeated) and the conditions (normal or 

severe exposure) of loading. 

The methods recommended in the thesis are confirmed by the 

results of the investigation carried out on a small number of 
beams of particular size and shape. Therefore, the design methods 

are applicable to the type of member studied in the present 
investigation. In Appendix (A), the methods recommended are used 

and a comparison is made between the behaviour of beams calculated 
on these principles, and the actual behaviour of the test beams. 

In the following, the major steps in the design of a reinforced 
concrete member, complying with the limit states of collapse, 
deflection and local damage (cracking) are described. Methods of 
determining steel stresses, ultimate strength, deflection and crack 
width are recommended. 



11.2.2. Recommendations for the Calculation of the Limit State 

of Collapse 

The section properties of the beam may be obtained in accordance 

with the Draft Unified B. S. Code of Practice recommendations. From 

the knowledge of the magnitude and distribution of the characteristic 
loads, the design loads can be obtained by incorporating certain 

partial load factors. From the design load acting on the member, 

the width and depth of the section and the percentage reinforcement 

can be determined by using the formulae and tables given in the Code. 

It is essential to take account of the characteristic and design 

values of the strength of the materials by using certain appropriate 

partial safety factors. After the section has been fixed, the 

stresses at any stage of loading can be determined and the limit states 

of cracking and deflection can be examined as given in the following 

sections. 

11.2.3. Recommendations for the Calculation of the Stresses in the 

Steel Reinforcement 

1. From the section properties, the neutral axis depth of the 

uncracked section can be determined according to equation (21). 

2. The neutral axis depth of the cracked section can be obtained 

from equation (22). 

3. From equation (23) the transition neutral axis depth can be 

determined Ref. Fig. (il). 

4. For M 
: &K use the neutral axis depth determined in (3). 

6. 

>K use the neutral axis depth determined in (2). 5. For M9U- 

A rectangular-triangular concrete compressive stress distribution 

can be assumed. Ref. Fig. (12). 

7. The position (v() of the resultant compressive force in the 

concrete zone is determined as follows: if the strain (ec) in 

the extreme fibre is less than eo = 5W 
then the stress 

distribution is triangular and c= 1/3. If ec is greater than e0 

then the stress distribution is rectangular-triangular, and o can 

be determined from equation (25) from the stress and strain 

compatability. 

8. The stress block coefficient (Ö) can be assumed to be 0.8. 

9. The stresses in the reinforcement are obtained from the 

compatability with the applied moment from equation (26). 

11.2.4. Recommendations for the Calculation of the Limit State of 
Deflection 

The limit state of deflection will not be required to be considered 
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if the beam is designed with a span-depth ratio 
L/d in accordance 

with the following: 

LId=L/4Ffs (1 - K) ...... 
( 41 ý 

The increase in deflection due to sustained loading may be obtained 

from Fig. (101). The reduction factor (F) in the above equation can 

then be found by adding a unity to the value obtained from Fig. (101). 

The values of the allowable deflection are given in the Draft Code. 
L 

When the calculation of deflection is required for a given applied 

moment, equation (35) or (40) can be used. However, when it is required 

to determine the maximum steel stress as limited by the allowable 

deflection, the following procedure can be applied: - 

1. The allowable deflection can be established. 
2. A reduction factor (F) due to sustained loading is assumed and 

applied to the allowable deflection. 

3. Using equations (36) and (37) the cracking moment and the modulus 

of rupture can be determined. 

4. From equation (35) the working moment can be determined. 

5. The stress in the steel reinforcement may be determined from the 

procedure recommended in § 11.2-3- 

6. With the steel stress found in (5), Fig. (101) can be used to 

determine a new value of F. If this F is different from the one 

assumed in (2) repeat steps 2,4, and 5 until the correct permissible 

steel stress and the value of F are found. 

11.2.5. Recommendatiors for the Calculation of the Limit State of Cracking 

When the calculation of the maximum crack width is required in design 

for a given applied stress, equation (30) or (32) can be used. However, 

if the maximum steel stresses corresponding to an allavable crack width 

is being sought, the following procedure can be applied: 

1. The maximum permissible crack width appropriate for the conditions 

in which the member is considered can be established Ref. 9 3.2. 

2. A reduction factor of 1.5 for the long term effects (sustained or 

fatigue loading) is applied to the permissible crack width. 

3. The steel stresses corresponding to the permissible crack width can 
be determined from equation (30). The value of R to be adopted depends 

on the type of steel. 



CHAPTER 12 

Suggestions for Future Research 

1. Sustained and Repeated Loading Tests 

In this investigation only one beam with round plain mild steel 
bars was tested under sustained loading, and another under repeated 
loading. Therefore, the findings from these beams are of limited 

validity. A few beams should be made with each type of reinforcing 

bar. 

The beams tested under repeated loading had the same amount of 

steel reinforcement. While the beams tested under sustained loading 

had different amounts of steel, some had similar design loads. The 

effects of these two aspects should be studied under both types of 
loading. It can, therefore, be suggested that an investigation 

be carried out under sustained and repeated loading on beams 
(a) with equal amounts of steel, and (b) with similar design load 
(with different amounts of steel). 

2. Lightweight Concrete 

In the present investigation normal concrete was used in the 

design and manufacture of the test specimens. The dead weight was 

only a fraction of the design load. In practice the weight of 

the structure may constitute a major problem as far as serviceability 

and handling are concerned. Lightweight concrete can, therefore, 

be used with advantage in reducing the dead weights, which will help 

in increasing the span. On the other hand, lightweight concrete will 

induce bigger deflection and crack width, due to the lower value of the 

modulus of elasticity of concrete, the cracking load and the bond 

characteristics. It would, therefore, be interesting to study the 

over-all effects that are produced if lightweight concrete is used 

in place of the normal concrete. 

The type of loading, i. e. static, sustained or repeated, must 

also be considered, since the effect of creep with such concrete is 

of great importance. 

In using this type of concrete along with high tensile steel, 
the economic advantages must be fully considered. 



3. Fibre Reinforced Concrete 

The effect of the tensile strength'öf concrete on cracking and 

deflection is greatly dependent on the value of the load at which 
the concrete cracks. By increasing the tensile strength and 

extensibility of concrete, the amounts of cracking and deflection can 

be reduced. 

Using fibre reinforced concrete in place of normal concrete in 

the tension zone of the beam may lead to an increase in the tensile 

strength of concrete and hence an increase in the cracking load, which 

will reduce cracking and deflection of the beam. It would therefore 

be possible to increase the permissible stresses in the steel 

reinforcement to very high values. 

The use may be suggested of the fibre reinforcement either in 

the form of chopped fibres, or in the form of a layer of mesh 

placed at a certain level of the tensile zone to act as a crack 

arrester and prevent cracks from reaching the reinforcement. 

4. Other Shapes of Section 

The beams used in this investigation had a rectangular cross- 

section, and the results are valid only for such a type of section. 

Similar investigations should, therefore, be carried out on beams with 

different shapes of section, in particular those which are commonly 

used in practice, i. e. T-section. 
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TABLE 1 

Test Programme 
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Beam 
Mark 

Type of 
Loading 

All I Static 

ý 

I 
{ 
ý 

I 
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A12 

A13 

A14 

A15 

B11 

B12 

B15 
B16 

B17 

B18 

B19 

Bstl 

Bst 2 

of 

If 

to 
11 

to 

it 

11 

of 

of 
it 

11 

it 

to 

131 1 Fatigue 
A32 

A33 
A34 

11 

it 

it 

B21 F Sustained 

B22 

B23 

B24 

B25 

of 
11 

of 

it 

P1 I Pull-out 

P2 
P3 
P4 
P5 

of 

to 

it 

of 

P6 I of 

No. of Cycles 
or 

Duration of 
Sustained Loading 

3 cycles 
ei 

it 

11 

of 

to 
If 

it 

of 

it 

1 cycle 
3 cycles 

il 

º+ 

2,108,000 cycles 

3,597,000 
3,326,000 
3,250,000 

623 days 
520 ., 
623 

553 
55 3 ! 

l 

ý+ 
I 

4 

It 

It 

of 

it 

01 

11 

Ago at Loading 
(days) 

Test Failure 

28 30 
30 32 
30 32 
30 32 
30 32 
60 62 
35 37 
30 32 
75 77 

110 112 
120 120 

45 47 

28 30 

21 28 
60 151 

140 176 
200 243 
139 243 
97 

44 

44 

85 

100 

35 35 
of 
to 

,n 

II 

ýn 
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TABIE (3) 

Properties of Test BeamsX (Repeated Loading Tests) 

i ý 
I Beam 

Mark 
No. & 

d dl Size of 
fBars (mm 

Steel Reinforcement 

Steel 
Area 
(sq. umi 

Field Point 
or0.2f 

jProof Stress 
N/mm2 

! 
ý 

A31 
A32 
A33 
A34 

Beam Size 
mm 

152 305 
152305 
15 2' 305 
1521305 

260 2-19 

26o 2-19 

260 2-19 

262 2-16 

570 
570 
570 
401 

Calculated IAadw 
(N) 

Design 
PD 

IIltimatei 
Pr 

25.0 
37.2 
46.6 
37.2 

T11BIEW 

276 
414 
550 
585 

Properties of Test Beamsx (Sustained Loading Tests)_ 

Beam 
Mark 

B21 

B22 

B23 

B24 

B25 

Beam Size 
(mm) 

bd dl 

152 305 257 
152; 3051259 
1527305 260 
1521305 1262 
1521305; 264 

I 

Steel Reinforcement 

Yield Point 
No. &+ Steel ; Type of ! or 0.2%o 

Size of Area Steel Proof Stress 
Bars(mm) (sq. mm)j N/mm2 

t 

Type of 
Steel 

; Mild Steel 
tunisteel 60j! 

! Unisteel 801 
j 

Kam 60 
I 

2-25 1020 Mild Steel 276 

2-22 774 
fUnisteel 

60 414 

2-19 570 Unisteel 80 550 

2-16 401 Kam '60 585 

2-12 
! 

226 1 Kam 90 897 

Calculated Loads; 
(KN) 

Design' Ultimate, 
PD 

40 .o 
59.5 
? 4.5 
59.5 

Pr 
r { 

42.0 
46.6 
46.6 
37.2 
33.2 

67.0 
74.5 
74.5 
59.5 
53.0 

x Same notations as Table (2) 



TABLE 

Properties of Steel Reinforcement 

Mark Size 
(mm) 

Type of 
Reinforce 

ment 

Yield Point 
or . 2% 

Proof Stress 

N/mn 
2 

Ultimate 
Tensile Fracture 

Stress Stress 

N/mm2 N/mm2 

Modulus 
of 

Elasticity 
E 

KN7m2 

A 
F 

19 Mild Steel 317 482 372 210 

A 25 317 484 378 215 

B 19 Unisteel60 420 620 500 205 

B 22 " 438 620 490 198 

B 19 nisteel80 650 690 506 200 

C 16 Kam 60 605 924 1131 205 

C 12 Kam 90 845 945 788 202 

C 16 of 870 924 1225 207 

D 14' ristrand 744 927 - 190 
100 

E 7.94 P. S. S': 1690 1940 - 196.5 

F 8 P. P. S. V 1515 1600 - 218 

G 7 C. P. S. W 1380 1690 - 201 

x See Table (2) for notations 



TABLE (6) 

I1 Cube 
Beam Strengt 

i N/gym 
i mdrx 

t 

i 

Al]. 

A12 

A13 

A14 

1115 

A31 

A32 

A33 

A34 

Bll 

B12 

B15 

B16 

B17 

B18 

B19 

B2] 

B22 

B23 

B24 

B25 

Bsti 

Bat2 

Properties of Concrete 

Strength of Concrete at Time of Test 
N/mm2 

iI 
jf Modulus Modulus 

II fc ft Ec 

ý . -t ._ -__. __ _ _____. __ý _. __ _-- _-"_ 

32.4 21.2 2.44 21.8 

46.0 28.8 3.76 28.8 

41.4 28.8 3.24 30.2 

41.4 28.2 3.28 32.1 

42.7 27.0 2.84 33.4 

52.7 31.9 4.14 29.2 

28 1 Cube Cylinder of of 
Clays ý Strength Strength Rupture Elasticity 

4.2.7 1 28.3 1 3.42 1 36.6 
48.9 31.8 3.76 31.8 

35.7 - 5.30 - 
47.5 32.3 4.14 30.7 

35.5 25.9 3.94 27.3 

36.5 28.4 2.70 28.5 

37.6 29.7 5.10 31.0 

37.6 33.7 4.20 32.2 

41.4 37.4 3.80 32.4 

37.2 1 38.3 1 3.63 1 29.0 
1 2.96 1- 

--3.79 - 
--3.79 - 

-- 3.00 ,-ý 
3.72 - ! 'º 

32.4 
40.4 
41.9 
40.0 
34.4 
41.0 
35.0 
41.0 
36.8 
38.0 
31.0 
35.5 
33.6 
39.3 
41.4 
35.8 
41.9 
47.3 
35.5 
38.7 
42.6 

-: 39.1 - ýj 3.13 - 

- - 41.6 -ý3.85 ý 
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TABLE (8) 

Summary of Test Results 

(Static, Repeated and Sustained Loading Tests) 

Yield Type Mean Calculated Loads Test Calculated Moments Test Ratio of Steel 
Beam Point 

of or 0.2% 
Cube (KN) 

Strength - 
Max. 
Load 

2 KN-mm x 10 Max. Ultimate Load Factor 
of 

Stress Ratio Mode 
Mark 

1 
Steel Proof 

( s 
of 

C t 
esi gn 
P 

Ultimate P 
( 

Design Ultimate 
Moment 

2 Mt x 10 
to Estimated 

Static Strength Safety 13 at ; /3 
Failure? 

of 
Failure ý2 r2 e D 

ü K) MD M 
u 

(I4T-mm) 7/6 7/5 
N/mm2 N N/ ! I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 75 

Jul Mild Steel 317 32.4 25.0 55.4 63-0'0 190 422 480 1.14 2.52 367 
11.16 Tension 

A31X to 317 52,7 25.0 58.6 62.00 190 446 470 1. o6 2.48 317 

A12 Unisteel 60 420 
j 

46.0 1 37.2 72.8 77.65 282 555 590 1.07 2.09 456-, -- I: 09 

A32x to 420 42.7 1 37.2 73.2 83.35 282 558 634 1.14 2.24 492 1j17 

A13 Unisteel 80 650 
1 

41.4 46.6 105.3 110.85 354 804 843 1.05 2.38 696 1'47 

A33X of 650 48.9 46.6 108.7 104.85{ 354 705 796+ - 2.25 _ 
j... it 

A14 Kam 60 605 41.4 37.2 74.4 84.40 282 566 641 1.13 2.27 704 y1.16 

A34x 605 35.7 37.2 73.2 84.85 282 554 645 1.16 2.28 725 1.20 
1 A15 Kam 90 870 42.7 51.0 101.8 110.85 387 775 843 1.09 2.18 983 1.12' " 

B11 Mild Steel 317 47.5 42.0 94.5 104.85 319 720 796 1.11 2.50 359 1_13 
B21+ 11 317 42.0 319 - !--i " 

B12 Unisteel 60 438 35.5 
1 46.6 94.3 104.00 354 719 790 1.10 2.23 514 1.17 1 1 } 

B223 438 - 46.6 - - 354 

B23+ Unisteel 80 650 _ 46.6 - - 354 

B24+ Kam 60 605 - 37.2 - - 282 - -_-_- _+ 

B15 Kam 90 8 45 36.5 33.2 59.9 68.00 252 456 + 516 1.14 2.05 973 ? 1.15 

B25+ 845 - 33.2 - - 252 - -{---- t 

B16 C. P. S. W. 1380 37.6 42.5 88.5 94.85 323 675 721 1.07 2.24 1665 11.20 

B17 P. S. W. 1515 37.6 41.4 84.8 6 4.0u 14 3 646 486 t 0.76 1.55 1080 ! 0.71 Bond 

B18 P. S. Strand 1690 41.4 38.0 73.9 81.45 296 562 623 I 1.10 2-14 1760 
11.04 

Tension 

B19 Brist 
744 37.2 40.0 ! 83.0 100.85 304 632 766 1.22 2.52 948 ! 1.27 of 

B 
100 

Kam 60 605 39.1 62.0 
V 

123.0 126.00 282 562 576 
: 02 2.03 627 1.04 to 

stl ' 

B Unisteel 80 650 41.6 62.0 134.0 1 130-. 00 282 602 595 t;. 97 ' 2.10 642 10.99 
st2 

x Repeated Loading T Sustained Loading 

+ Test stopped, beam sustains hider loads 

MD and PD calculated in accordance with Draft Code. 

Mu and Pu calculated based on actual strength of materials. 



TABLE 

Summary of Test Results 

(Repeated Loading Tests) 

Type 
Be of 
Mar Steel 

A31 Mild 
Steel 

A32 Uni- 
Steel 60 

A331 IIni- 
Stee1 80, 

A34jKam 60 

t 
; 
! 

317 

89 

39 113 

i 45 1 143.5 
116 

TABLE lo) 

Summary of Test Results 
(Sustained Loading Tests 

Beam 
Mark 

Yield 
Stress 

or 
0.2% 
Proof 

Stress 
N/mm2 

317 

420 

650 
605 

i Yield Mean 
Stress ; Cube 

or ; Strength 
0. eo of 

Proof Concrete 
Stress' N/mm2 
N/mm2; 28 days 

Type of I 

Steel 

i 
B 21 Mild 

Steel 

B22 I 
ni- 1 11 1 I 

ste601 
B23 Uni- 

steel 801 

B24 Kam 6o 
J 

B25 Kam 90 

Mean 
Cube 

Strength 
of 

Concrete 
N/mm2 

lit At 
28 Test 

days 

41.0 
36.8 

T 

ý 

52.7 

42.7 

Steel Stress Load Range Range (KN) ( 
N/Mm2 

Mini- 
mum 

Ma. xi. - 
II1LIIT1 

Mini- 
mum 

Maxi- 
mum 

19 

48.9! 25 
35.7'20 

42.0. 

438 47.4 

650 35.5 

605 38.8 
1i 

845 

Sus- 
tained 

Loadx 
(KN) 

51.0 

51,0 

49.0 

37.2 

33.5 

ý 

168 

229 

259 
326 

No. 
of 

Cycles 
x lu6 

2.108 

3.597 

3.326 
3.250 

Load 
for 

Failure 
in 

Subsequent 
Static 

Test 

(KN) 
58-38 

79.50 

101.00+ 
81.00 

Initial Stress 
N/mm 2 

Steel ! Concrete 

175 19.0 

224 

289 

301 

460.5 

22.2 

21.0 

19.0 

22.4 

Duration 
(days) 

6 23 

520 

623 

553 

553 

x Applied Load + Self Weight 

+ Sustains higher load 
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TABLE 12 

Beam Mark 

Design 
Load 
PD 

(KN) 

Effect of Loading Cycles on Deflection 

Deflec- 
tion 

at 
PD 

(mm) 

11 2 

All 25 9"80 

A31 f5 8.85 

Bil 42 12.00 

A12 37 14.80 

A32 37 11.75 

B12 46 15.20 

A13 46 19.25 

A33 46 17.25 

A14 37 16.25 

A34 37 17.20 

A15 51 24.20 

B15 
= 

33 24.30 

B16 42 35.50 

B17 42 45.00 

B19 40 23.25 

2nd 
cycle 
Maxi- 
mum 

Load 
P 

s 
(KN) 

Deflec- 
tion 
at 
P 

s 
ýý) 

12.95 

49 14.25 
` 
I 

48 20.16 
I. 

1 
60 20.00 

60 25.60 

-- 

56 26.20 
º 

-- 
66 34.89 

38 29.75 

55 48.00 

55 73.00 

50 31.25 

i 

Remain- I Remain- 
ing ing 

Deflec- 
I 

Deflec- 
tion tion 

at the at the 
end of end of 

ist 2nd 
cycle cycle 

mm)- 

5 

2.24 

6 

2.66 

3.04 

2.70 

3.57 

2.26 

3.41 

3.79 

3.45 

3.71 

4.08 

4.62 

6.29 

8.68 

16.98 

6.50 

2.92 

4.60 

4.19 

4.70 

Ratio 
5/2 

x 100 

22.8 

34.3 

22.7 

25.4 

19.2 

22.4 

19.7 

20.0 

Ratio 
6/4 

x 100 

8 

2u. 6 

2U"5 

22.8 

21.0 

18.4 

5.08 22.8 19.4 

- 23.7 

6.47 19.1 18.6 

7.21 25.8 24.0 

10.24 24.21.4 5 

21.21 37.7" 29.0 

8.00 28.0 25.6 

Deflec- 
tion 

at PD 

at 2nd 
cycle 
(ascend 

ing) 
(mm) 

9 

10.04 

11.59 

15.19 

15.27 

1954 

I- 

16. x51 

24.70 

25.25 

36.42 

48.42 

25.25 

Deflec- 
tion 

at PD 

at 2nd 
cycle 

(descend- 
ing) 
mm 

Deflec- 
tion 

at PD 

at 3 
cycle 
(ascend- 

ing) 
(mm) 

10 1 11 

10.60 

12.52 

15.89 

10.92 

12.33 

15.79 

17.01 

21.32 

16.66 

21.49 

19.34 1 19.14 

28.46 

28.46 

28.09 

27.73 

28.58 1 27 . 10 

Total Deflection 
at Design Load+ (mm) 

Calculated Observed 

ist 
Cycle 

12 

10.20 

8.90 

14.85 

13.76 

17.70 

16.59 

17.23 

20"77 

16.93 

18.18 

26.09 

26.19 

37.40 

2nd 
Cycle 

13 

11.41 

15.99 

14.90 

16.98 

18.04 

18.25 

27.15 

29.40 

40.27 

38.63 41.37 

24.61; 36.10 
I 
I 

ist 12nd 
Cycle {Cycle 

4 

10.40 

9.45 

12.50 

15.32 

12.25 

15.68 

19.74 

17.70 

16.93 

17.98 

24.80 

24.90 

36.00 

45.55 

23.75 

5 

10.64 

12.59 

15.71 

15.75 

20.03 

17.19 

25-30 

25.85 

36.92 

48.97 

25.75 

Ratio 

14, 
12 

16 

1.02 

1.06 

0.84 

1.11 

0.69 

0.94 

1.14 

0.85 

1.00 

0.99 

0.95 

0.95 

0.96 

1.16 

0.96 

Ratio 
15/ 

13 

17 

0.93 

0.79 

1.05 

0.93 

1.12 

0.94 

0.93 

0.88 

o. 92 

1.19 

_ ,,,. U. yy 
f 
, 

x Bond slip failure + Includes deflection under dead weight 



1 TABLE 

Steel 
Stress 

N/mm2 

50 

100 

200 

300 

400 

500 

600 

700 

800 

goo 

All 

1830 

730 

3 24 

Effect of Steel Stress on Deflection 

A12 1113 

2170 2030 

780 748 

338 333 

217 214 

154 

Span/Deflection Ratio 

A14 

3800 

1560 

490 

290 

205 

159 

A15 

3800 

1430 

475 

285 

199 

156 

123 

B11 

1450 

6 

280 

B12 

1830 

7a 

300 

191 

B15 

5700 

1760 

520 

304 

216 

166 

130 

B16 

5700 

3040 

530 

292 

204 

156 

127 

104 

86 

75 

B19 

5700 

1520 

400 

235 

158 

121 

96 

78 

I 
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TABLE (15 ) 

Comparison of Crack Width at the Level of the Reinforcement 

Under Static, Sustained and Repeated Design Load (mm) 

Beam 
Mark 

Steel 
Type 

`Comparable 
Static 

Tests 
Instant- 
aneous 

3 

A31 Mild Steel 

B21 to 

A32 Unisteel 

B22 

A33 Unisteel 8 

B23 is 

A34 Kam 60 

B24 

B25, Kam90 

0.10 
0.06 

0.11 

0.11 

0.12 

0.12 

0.11 

0.11 

0.23 

Sustained Load Repeated Load 

Instant-; Fina1+ 
arneo us 

4 

0.06 

0.09 

0.10 

0.08 

0.20 

Instant- 

aneous 

6 

0.08 

Final 

7 

o. i2ý 

Ratio Ratio 
5/4 7/6 

8 9 

1.50 

o. io 

0.11 
0.08 

0.09 

1.67 

0.11 

0.12, 

0.16 

0.11 
0.29 

TABLE 16 

0.12 

1.22 

U. 18, 

Comparison of Deflection under Static, Sustained and 
Repeated Design Load 

1.60 

1.37 
1.45 

1.38 

1.33 

Deflection (m) 

Static Sustained Load Repeated Load 
Beam Steel Load Ratio Ratio 

Mark Type 
Instant- Instant- + Instant- 5/4 7/6 aneous Final 

aneous aneous 
Final 

1 2 .3 4 5 6 7 8 9 

A31 Mild Steel 10.22 ý 8.82 11.70X 1.33 

B 27. to 11.06 13.54 30.00 2.22 

A32 Unisteel 60 ý 14.78 10.68 14.07 1.32 

B22 It 15.53 14.78 28.50 1.93 
A33 Unisteel 80 19.40 14.80 18.00X 1.22 

B23 ft 19.40 17.25 30.90 1.79 I 

A34 Kam 60 17.11 17.48 21.50X} 1.231 

B24 17.11 º 15.17 27.00 1.78 

B25 Kam 90 21.17 23.33 36.60 1.57 

+x Values extrapolated for 1000 days duration for sustained loading 
and 3.5 million repetitions in the case of repeated load tests 
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FIG. (I) MECHANISM OF CRACKING. 
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APPENDIX A 

Ultimate Strength Design Using High Tensile 

Reinforcing Bars in Reinforced Concrete Beams 

It has been pointed out that the ultimate strength design concept 

when coupled with the use of high tensile reinforcement, permits the 

design of more economical structures than can be obtained by working 

stress methods using mild steel reinforcement. However, more restrictive 

requirements must be added. Concrete strength requirements are more 

restrictive, deflections and cracking are limited. To illustrate the 

effects of the limited deflection and crack width on the choice of 

using high tensile steel, a detailed design of a typical 'e, am is 

presented in the following: 

Design of Rectangular Beam 

Spans 4570 mm Third point loading system , 
152 

Cube Strength: 41.4 N/mm2 
14- mm 

r 

Load: Live: 41.75 KN Iº 

Dead: Beam 0.11 KN/m 3.77 KN 
j-261 

mm 

Weights 1.08 
(spreader) 

steel e. g. 
Total dead load = 4.85KN 

_L 

_1: 
44 mm 

Working load 46.6 KN r29+6+12'1 
2. 

Design Loads: 

W=1.4 D. L. + 1.6 L. L. (For load factors reference should be made 
to the Draft Code23) 

w=1.4 (4.65) + 1.6 (41.75) = 73.6 KN 
M= "IL_ (73.6) (4570) = 56600 KN - mm A6 

Steel required: 

Ir = 0.87 '. qU wbdi 
(1 - l. lq) j 

56600 = 0.87 (41.4)(152)(261)2 g(1 - 1.1qý 

q=0.195 a As fy 

bd1 Uý 

A. = (0.195) (41.4) (152) (261) = 583 mm 
550 

p= 583 x 100 = 1.47f 
261 x 152 

Use 2- 19 mm deformed Unisteel 80 bars 

As = 570 Nýmm2 and p=1.44% 

'L 
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Deflections 

1.0 for Dead and Live load (see Draft Code) 

rx = 1.0 for steel and concrete 

Eo =4=4 41.4 = 25.7 KNI] 2 
2 ft = 0.458 /=0.458 41.4 2.95 N/mm 

Mc = ftIo = 2.95 x 406 x 106 = 8700 KN - mm 
d- do 305 - 162 

..... § 9.3.2. 

..... 9 9.3.2. 
. 

On the first cycle of loading: 

1» .. 

1; Mc 

!', Ec Ia 
i,,. _ 

+M- 
Mo I 

L2 ..... ý 9.3.2. 

0.9 EcIq I 

_ 23 j 8700 6t 35500 -8 700 6 45702 216 xx. x 25.168 x ý__ 
.. 

= 17.3 mm 

The stress in the steel, at which this deflection occurred can 

be calculated as follows: 

M= 355oo x 100 = 54.5% --- 3cr/- 
ü 65000 

dn 
or 

use a fully cracked'section based on a modular ratio of 

200 
25.7 

..... 
9 8.2 

= d1 /M2 2+ 2mp - mpd1 ..... 
% 8.2 

dncr a 261/82 x . 01442 +2x8x . 0144 -8x . 0144 x 261 - 98 mm 

eo =ýw-_ ýýý = 129 x 10-5 

5000 5000 

assume oc = 0.33 fs = 

fs As a fa Ac 

2 

35500 = 27 2 D(/mm2 
570 261 - 0.33 x 9e 

f2x 272 x 570 20.8 X/=2,4.0. G 
98 x 152 

x 41.4 a 33.1 N/mm2 

, ", a <e0 
. use triangular stress distribution with 0.33 (see Pig. 12) 

fs = 272 N/mm2 

When the whole of the live load is sustained for a peri. id of 
1000 days: 

AT= Fd L1 = 1.85 x 17.3 = 32 mm>: 
L, 

360 - 12.7 mm 

Where (Fd) is obtained from Fig. (101) for a steel stress of 272 N/mm2 

and adding a Unity. 
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When the structural member is cracked before the application 

of the load, the deflection at design load can be obtained from: 

PM21 
2 lý'ý ( 

1.3E0 1c 
ýL+411 

_ 23 35500 
6) x 21 x 106+4 x 17.3 

216 1.3 x 25.7 x 168 x 10 

= 14.18 + 4.30 = 18.48 mm 

...... 
ý 9.3.2. 

When the whole live load is sustained for a period of 1000 days: 

QT = Fd112 = 1.85 x 18.48 = 34.2 mmýý' 12.7 mm 

Therefore under such a high steel stress of 272 N/mm2 the section 

depth and the beam span must be altered. The use of camber is recommended, 

Cracking: 

1.0 for dead and live load (see Draft Code) 

1.0 for steel and concrete 

fs 272 N/mm2 

On the first application of the load, the maximum crack width 

can be calculated as follows: 

W(max)= RC (fs - Ks )x 1Ö 
6 

1P 

Where R= 16.0 for deformed bar 

Ks = 
69.5 N/mm2 

'W= 16 x 35 (f -ý x 10-6 (ý"ý1 s 1.44 
= 560 (272 - 6}. x 1o-6 

1.44 

= 0.125 mm at the level of reinforcement 

...... 0 9.2.2. 

When the live load is sustained for 1000 days: 

W(max)T = FcW(max)1 = 1.41 x 0.125 = 0.176 mm 

Where PC is obtained from Fig. (75) 

Allowable maximum crack width (under normal conditions of exposure) 

= 0.2 rin> 0.176 mm 

% en the structural member is cracked before the application of 

loading, the crack width at design load can be obtained from: 

W() =Cf (K + kl) k1k21 x 10 
6 

...... 
9 9.2.2. 

2 
35; ~ 272 (12.9 + 5.28)- 5.28 x 1381 x 10-6 0.148 mm at the 

level of reinforcement 
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When the whole live load is sustained for 1000 days: 

W(max)T - Fcw (max)2 = 1.41 x 0.148 = 0.209 mm = 0.200 mm 

Comparison between Measured and Calculated Behaviour of Beams: 

Short-Term Long-Term 
Af tEr 1000 days 

Beam Neutral Steel Crack Crack 
Behaviour Axis 1 Stre2s ection De#'l Width Deflection Width 

(mm) N/mm le J (mm) 
Ist 2nd 1st 2n 

cycle cycle cycle cycle 
Calculated 

11.2 98 272 17.30 18.48 0.125 0.148 32.00 0.176 

Measured 95 272 16.12 17.00 0.100 0.130 30.90 0.160 
I 

__j 
I 

E4onomic Consideration 

When mild steel bars are replaced by Unisteel 80 bars the saving 

in steel area and steel cost is calculated as follows: 

Assumptions: The section size is kept constant: b= 152 umi, d= 305 

The strength of concrete is kept constant: UW = 41.4 N/mm2 

The ultimate strength of beams is kept constant: W= 73.6 KN 

Mr = 0.87 qUw bdi (1 
- 1.1q) 

For mild steel bars (fy = 276 N/mm2) 

56600 = 0.87 (41.4) (152) (256)2q(1 
- 1. lq) 

56600 = 35.8 x 107 q (1 - 1.1 q) 

q(1 - l. lq) = 56600 = 0.158 
35.8 x 107 

q=0.20 

A= (0.20) () (152)(256) = 1160 mm2 
8 

176 

As has been shown earlier in this Appendix for Unisteel 80 bars 
(fy = 550 N/m2) As = 570 mm2 

Saving in steel area = 1160 - 570 x 100 = 51% 
1160 

Unisteel 80 bars cost 1eo more than mild steel bars 

Increase in steel area due to increase in cost - 0.12 x 570 - 68.5 mm 
Reduction in saving = 68. x 100 - 5.9 % 

1160 
Net saving = 45.1 % 
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j"l 

_ 550 x 570 = 2.38 N/mm2'- 3.26 N/mm2 

She ar 

Q= ý600 = 36800 
2 

q _Q= 63 800 = 0.94 N/mm2 > q, c _ .. 
0.916 N/mm2 

bd1 152 x 261 

Stirrups must be supplied. 

0.4 Ii/mm 
2G (0.87 fyq) Asq q-0.8go (see Draft Code) 

bs 

0.4 = (0.87) (276) (56.6) 

152 S 
S 13580 = 224 mm . 196 mm = U. 75d1 (see Draft Code) 

152 x 0.4 

use 6 mm vertical stirrups at 196 mm spacing 

In the present investigation 24 -6 mm diameter vertical stirrups 

spaced at 152 mm were used. (In the shear spans only) 

Bond 

II f 
(flexural) =Q= 36600 = 1.49 NImm2.;, 5.07 Nýmm2 

ý 119.4 x 206 

Ua (anchorage) fSS 
(see Draft Code) 

119.4 x 1523 
(See Draft Code) 

Derivation of Equations 

The derivation of equations (21) and (22) is based on the elastio 

theory: 

The neutral axis depth for the uncracked section (Eqn.. 21) 

bd (d/2) + (m - 1) As (d - dl) - 
[ba + As] y 

+ (m - 1) 
b 

(d-dl) 

Y 

bd+ (m - 1) l, 
s 

= 
d12+(m-1) ý(ddl) 

i+(m-1)ý 
° 

d/2 d1) g=P 
1+m- 1) g 

d 2+ m- 1 d- d 
1+m-1p 

do 
ucr = d-y =d- 

d/2+( 
m-1)p (d -d, ) 

1+ (m-i) p 
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The neutral axis depth for the 4racked section (Eqn. 22) 

bdncr (dncr mAs (dl - dncr) 
2 

dncr + 
2mA$ dncr 

- 2ri As dl =0 
b 

P =A S 
bdl 

dnýr + 2mpdncrdl - 2mdi =022 

ýar +ý'pýcrd1 +m2p2 di 2-m2p2 di - 2mdip 0 

)(dncr + mpd12 m2p2d1 
2 

+ ändiP 

do 
or =d1 m2p2 + 2mp - mpol 

; 
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APPENDIX B 

Bond Tests 

In the present investi,. -°ation it was observed that beams reinforced 

with Kam steel bars showed better crack control than beams with Unisteel 

bars. Kam 60 steel and Unisteel 80 had similar yield strengths, but 

different surface deformation characteristics, as can be seen in Plate (1). 

They were both provided with lateral ribs on their surfaces, which wore 

of different shapes, face angles and inclinations to the bar axis. So 

it was decided to carry out pull-out tests, for the purpose of comparison 

only, between the two types of reinforcement from the standpoint of 

bond characteristics and slip resistance. 

As stated in § 7.4.4.3., six pull-out specimens were made; three 

for each type of steel. Fig. (5) and Table (7) show the details of 

the specimen which was made with the same type of concrete used in the 

main beams. Fig. (111) shows the load-slip curves for both types of 

steel. The average of 3 is reported. The average was taken because 

there was a large variation in the results of the specimens of the 

same type. The differences can be explained by the presence of a 

great many variables affecting the behaviour of the pull-out specimen 

viz. the random nature of concrete, compaction, the degree of chemical 

adhesion between the steel and concrete etc. 

Bond can be defined as the shearing stress or force between the 

bar and the surrounding concrete, and it can be assumed to be made up 

of (a) chemical adhesion, (b) friction and (c) mechanical interlocking 

between the steel and concrete. Deformed bars depend primarily upon 

the mechanical interlocking for their bond properties, which are superior 

to those of plain bars; the chemical adhesion and friction can be considered 

as secondary components. The slip in the case of deformed bars may occur 

either by the rib pushing the concrete away from the bar (wedging action) 

or the rib crushing the concrete in front of it, depending on the face 

angle of the rib. Detailed investigation of the mechanics of bond and 

slip of deformed bars has been reported by Lutz 
194 

Initially, chemical adhesion combined with mechanical interlocking 

prevents slip. lifter the adhesion is broken and slip occurs the rib 

of a bar restrains this movement by bearing against the concrete between 
the ribs (concrete key). Hence the rib face angle and the rib orientation 



relative to the bar axis are the determining factors in the bond 

characteristics and bond failure of deformed bars. 194 

In the present investigation, if the load does not exceed 27 KN 

the bond characteristics of both types of steel shows no marked 
difference. With a load of 27 KN (2.38 N/mm2 average bond stress) 
the first relative movement of Unisteel bar occurred while the 

adhesion of the Kam steel was unaffected, in spite of the fact that 

the latter had a smaller bar diameter. With a load of 52 KN (5.44 

ram2 average bond stress) the adhesion-bond strength of the Kam 

steel came into play, while the Unisteel showed a slip of . 045 mm. 
After this the high shear bond and the interlocking characteristics 

of both types of steel prevented excessive slip. However, the rate 

of slip with Unisteel 80 was higher than that with Kam 60. In the 

latter the increase in slip was very rapid after a load of about 

120 KN until failure, while in the former the slip continued to 

increase gradually with increasing load until a load of about 

155 KN, after which slipping occurred with no change of load until 

failure. 

Therefore, it can be observed from Fig. (111) that Kam 60 had 

higher slip resistance and higher average bond stresses than Unisteel 

80, but the average bond strength at pull-out was slightly higher in 

the lattar. This can be explained by the fact that Unisteel 80 bar 

had a bigger diameter than the Kam boo bar. Similar behaviour has been 

reported by Lutz. 
194 

In both cases slip occurred almost entirely 

by crushing of the concrete in front of the rib, as can be observed 

in the compacted powder lodged in front of the rib when the bar was 

pulled out. However, the difference in the face angles and the 

orientation of the ribs relative to the bar axis resulted in different 

wedge action, and different resistance to slip. Table (7) shows that 

the average bond stresses at 0.025 mm and 0.25 mm slips are greater 

for Kam 60 than for Unisteel 80. Similar observations have been 

reported by Lutz. 
1949195 

All the specimens failed in bond. Bond failure is defined as 

a failure accompanied by excessive slip at the free end of the bar. 

Excessive slip is associated with a rapid increase in the movement of 

the free end of the bar with only a slight increase in the applied 
load. The mode of failure is shown in Plate (4B). 

In all cases the bar was stressed to its yield strength at the 
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maximum load, but the failure was classified as bond failure 

because of large slip at the free end of the bar. 

Due to the circumferential stresses in the concrete, fine 

longitudinal splitting cracks appeared on the surface of the specimens. 
These cracks did not progress any further, but they remained constant. 
The progress of these cracks was inhibited by the presence of adequate 

confinement provided by the transverse reinforcement, permitting the 

increased bond strength. Similar observations have been reported by 

Lutz . 
194,195 

By way of conclusion, Kam steel had higher bond stress and slip 

resistance than Unisteel at the same load level. The reason for the 

difference is due to the difference in the resistance to slip brought 

about by the difference in the rib orientation and wedge action. 

Kam steel, which had ribs perpendicular to the bar axis, offered more 

resistance to slip than Unisteel, which had ribs orientated at an 

angle to the bar axis. 
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