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SYNOPSIS 

When high strength steel is used as reinforcement in lightweight concrete 

members, great economies can be achieved. However, because lightweight 

concrete has low tensile strength and modulus of elasticity, the working steel 

stresses hoped for may not be fully utilised due to the limit states of serviceability 

(cracking and deflection) not being satisfied. To control the amount of cracking 

and deflection in flexural concrete members, a new type of construction has been 

employed, whereby precast fibre reinforced cement (f. r. c) units in the form of 

thin channels are used as a surface reinforcement at the flexural tensile zone of 
the concrete members. The concrete in the tensile zone, confined by the f. r. c 

channel, will have a greater resistance to formation and extension of crack; 

consequently the rate of reduction in the flexural rigidity of the member will be 

decreased. 

A total of 27 ordinary reinforced and fibre reinforced cement composite 
lightweight concrete beams, 150mm wide, 300mm deep and 5m long were tested, 

18 under static load test, 5 under fatigue load test and 4 under sustained load test. 

The composite beams were similar to the ordinary beams in every respect, except 

that f. r. c. channels (150mm width, 60mm length of upstands and 6mm thickness) 

were incorporated as integral parts on their flexural tensile sides. The main 
parameters employed for both beams were the type and amount of steel provided 
for the tension reinforcement. The various types of reinforcement with the 

corresponding nominal yield, or 0.2% proof stress employed were mild steel 
(275 N/mm2), Unisteel 410 (410 N/mm2), Unisteel 550 (550 N/mm2), "Kam 60" 

(590 N/mm2) and "Kam 90" (875 N/mm2). 

The flexural behaviour of both types of beams under static, fatigue and 

sustained types of loading has been studied, great emphasis being placed upon the 
limit states of ultimate strength, cracking and deflection with particular reference 
to the contribution of the f. r. c. channels in the composite beams. 

From the results, it is concluded that a considerable reduction in the amount 

of deflection and cracking can be achieved by using f. r. c. channels at the flexural 

tensile zone of concrete members, thus allowing a more efficient use of the high- 

strength steel. 



OUTLINE OF THESIS 

In chapter one the structural and economic aspects of high strength steel 

and lightweight concrete when employed in concrete construction are discussed. 

Emphasis is placed on the structural aspects and application of fibre reinforced 

concrete and the techniques employed for mixing the fibres. The limitations of 

three-dimensional random distribution of fibres on controlling deflection and 

cracking are also presented. 

In chapter two the work carried out in the past using high strength steel in 

lightweight concrete is reviewed, and a general conclusion is drawn. The other 

part of the chapter is concerned with the origin, development and use of the proposed 

measures to reduce cracking and deflection in flexural concrete members. Tests 

carried out at the University of Salford and other places are also discussed. 

Chapter three covers the design of test beams and materials used in this 

research. Information given for the test beams includes their dimensions, 

parameters employed, condition of loading and analysis of the working and ultimate 

moments. Also included is the design of the f. r. c, units with regard to their 

properties and geometry. The mix proportions for the concrete and the properties 

of the steel used are also given. 
Chapter four deals with the proposed theoretical analysis developed in this 

research for the stresses in the concrete, f. r. c. channel and steel. The various 

relationships established together with the idealised curves are also presented. 
In chapter five the theoretical considerations regarding the proposed methods 

for the limit states of ultimate strength, cracking and deflection are also discussed. 

Chapter six covers the manufacture and methods of testing employed for the 

test beams and the control specimens for the concrete properties. 
The observations made and the behaviour of the beams tested under static 

loading are discussed in chapter seven. A comparison of the observed values 

with those predicted in accordance with chapters four and five is also presented. 
This chapter also includes a direct comparison of behaviour between ordinary and 

composite beams. 



In chapter eight the behaviour and the observations made for the beams 

tested under fatigue and sustained loading are discussed. A direct comparison 

of behaviour between ordinary and composite beams is also presented. 

Finally, in chapter nine, the conclusions of the research are drawn up, and 

suggestions are made for future work to be carried out in this field. 
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CODING REFERENCE FOR TEST BEAMS 

The coding reference below refers to ordinary and composite lightweight 

concrete beams. For each beam the coding reference was given in the following 

manner; two letters, number and a letter, e. g. ST4-0 

The first two letters refer to the type of loading employed. 

These are: - 

ST : Beams tested under static loading 

FA Beams tested under fatigue loading 

SU : Beams tested under sustained loading 

The number refers to the amount and type of reinforcements employed in 

the beams, e. g. 

1 2-16mm, mild steel 

2 2-16mm, Uni-steel 410 

3 2-16mm, Uni-steel 550 

The last letter refers to the type of the beam tested. 

These are: - 

0 Ordinary reinforced lightweight concrete beams 

C: Composite reinforced lightweight concrete beams 



CHAPTER ONE 

INTRODUCTION 

1.1 Summary 

When high strength steel is used as reinforcement in concrete members, 

great economies can be achieved. There are, however, certain limitations on 

its use; these are imposed mainly to satisfy the limit states of serviceability 

(cracking and deflection) at the working load conditions. When lightweight concrete 

is used cracking and deflection becomes even more critical, due to its low modulus 

of elasticity and tensile strength. 

Since the introduction of the conventional elastic theory, attempts have been 

made to rectify the limitations of concrete in tension, and also to reduce the amount 

of cracking and deflection taking place under load. This has been partly achieved 

by: - 
1) Fully or partially prestressing the concrete, basic techniques being 

employed to improve the structural performance of the members. 

2) Using fibre-reinforced concrete whereby certain improvements may be 

obtained in the flexural behaviour of the concrete by the addition of high 

modulus fibres. 

A new concept of fibre-reinforced cement composite concrete construction as 

a means of controlling cracking and deflection has been evolved at and patented by 

the University of Salford. 

" The present investigation was initiated to study the possibility of using high 

strength steel in flexural lightweight concrete members. The programme of 

investigation then was extended to employ a new concept of fibre composite 

construction as a means of controlling cracking and deflection for lightweight 

concrete members. In the present investigation the asbestos cement units were 

employed as surface reinforcement. 

In the following paragraphs the structural properties and economical aspects 

of lightweight aggregate concrete, high-strength steel and fibre-reinforced composite 

concrete are discussed. 

1 



- 1.2 High Strength Steel 

1.2.1 General 

In this investigation the general term high-strength steel denotes reinforcing 

bars having a yield or 0.2% proof stress of 410 N/mm2 or higher. 

High-strength steel bars have been produced and used in various parts of the 

world as a means of economy in reinforced concrete design. These reinforcing 

bars differ significantly in their ultimate strength, extent of surface deformation 

and method of manufacture. 

To control the distribution and width of cracks the steel bars should have surface 

characteristics enabling high stresses to be developed without any bond failure 

occurring. 

The effect of the manufacturing process on the tensile properties of the bars 

can be seen in fig. 1, where hot rolled bars have a definite yield point while cold 

worked bars yield gradually. 

The advantages claimed by many investigators (1) (2) (3) (4) on the use of 

high-strength steel in reinforced concrete may be summarized in the following 

1. When the full strength of the reinforcing bars is considered in the design, 

a significant reduction can be obtained in the amount of steel. The 

percentage saving in steel area compared with mild steel would be equal to 

(1 - fy/fy) 100, 

where fy = yield stress of mild steel 

fy = yield or 0.2% proof stress of high-strength steel used 

2. Ease and speed of construction due to a reduction of end hooks and also 

a possible reduction in the size of the structural member. 
3. Economy. This is discussed in detail in 1.2.2. 

There are certain limitations, however, on the use of high-strength steel 

in reinforced concrete members. These are mainly imposed to satisfy the safety 

requirements (cracking and deflection) at the working loading conditions. These 

limitations arise from the fact that high-strength steel bars have nearly the same 

modulus of elasticity as mild steel, so that when high working steel stresses are 

employed, greater strains result which lead to wider cracks and greater deflection. 

2 



The Code of Practice CP110 (5) permits the use of reinforcing bars with 

0". 2% proof or yield stress between (410 - 460 N/mm2), depending on the type 

and the nominal size of the reinforcement. On the continent (2), however, 

permissible stresses of up to 380 N/mm2 are being allowed under working load 

conditions. Considering a load factor of 1.8, this will permit 0.2% proof or yield 

stress of 685 N/mm2 to be used. 

In the past a considerable amount of research has been carried out in Britain 

and other parts of the world, investigating the behaviour of normal weight concrete 

beams reinforced with high-strength steel. There has been, however, only a 

limited amount of work carried out into the use of high strength steel in lightweight 

concrete members. Further investigation in this respect is, therefore, deemed 

to be necessary as the limit states of serviceability (cracking and deflection) at 

the working load conditions may be critical when lightweight concrete is used. 

This is discussed in 1.3.1. 

1.2.2. Economic Aspects 

Many researchers have established that by using high-strength steel in place 

of mild steel, a direct reduction can be made in the amount of reinforcement used 

(1) (2) (6). 

The American Iron and Steel Institute (7) has presented design analyses based 

on the A. C. I. code recommendations for beams and columns reinforced with 

high-strength steel. These analyses showed that when high-strength steel was 

used instead of mild steel a considerable saving in the amount of steel could be' 

made. 

For beams with balanced section it was suggested that by using Unisteel 550 

instead of Unisteel 410 savings of 25% could be obtained in the steel area with an 

overall saving of 4% in the total cost of the member (4). 

An analysis of a six-storeyed office building (3) indicated that a saving of 

28.5% in the amount of steel could be obtained when high-strength steel with a 

yield stress of 417 N/mm2 replaced mild steel of 255 N/mm2 yield stress. 

3 



1.3 Structural Lightweight Concrete 

1.3.1 General 

Because of the advantages lightweight concrete possesses, it has in the last 

two decades become an important structural material used in various types of 

construction. Among these advantages are its lower unit weight, greater fire 

resistance, improved thermal insulation and ease of construction (8) (9) (10). 

Lightweight concrete, however, has certain shortcomings, which include 

a low tensile strength and modulus of elasticity, with high values for shrinkage 

and creep. These considerations together with a lack of available data on its 

behaviour have limited its use to a minor role in concrete structures. 

When high-strength steel is used as a reinforcement in lightweight concrete 

beams and the various limit states are satisfied great economies can be achieved. 

These beams, however, tend to exhibit a considerable amount of cracking and 

deflection at working loads. It is for this reason that the use of this type of steel 

is limited. 

The maximum characteristic strength for steel bars which can be used in 

accordance with CP 110 for both normal weight and lightweight concrete ranges 

between 410 - 460 N/mm2. 

The code also specifies that the design should be based on lower values of 

steel stresses where necessary to satisfy the limit states of deflection and crack 

width. In addition the recommended span-depth ratio for normal weight concrete 

should be multiplied by a factor of 0.85 when lightweight concrete is used. It is 

believed that this takes into account the reduced flexural rigidity of the lightweight 

concrete members compared with normal-weight concrete. 

In the past there has been a considerable amount of research into the 

structural properties of lightweight concrete as a material (11) (12) (13). A limited 

amount of research, however, has been carried out into the flexural behaviour of 

full scale reinforced lightweight concrete members. Considering the shortcomings 

of lightweight concrete (low tensile strength and modulus of elasticity, and high 

values for shrinkage and creep) it was thought that the limit states of serviceability 

would not be fully satisfied; especially when fatigue or sustained types of loading 

-4 



were considered. It was for this reason thought necessary to study the 

flexural behaviour of reinforced lightweight concrete members under static, 

fatigue and sustained types of loading 

1.3.2 Economic Aspects 

It is rather difficult to assess the actual saving in cost brought about by using 

lightweight concrete instead of normal weight concrete. It may be true that freshly 

mixed lightweight concrete is more expensive than normal-weight concrete, but 

this should not form the only basis of comparison. To make a complete estimation 

of the savings all the relevant factors for the use of lightweight concrete should be 

considered; these include the lower total dead weight and the consequent use of 

lighter transportation and lifting equipment. 

An analysis of cost made on a typical multi-storey office building showed 

results slightly in favour of the use of lightweight concrete. Although it was 

concluded that no set rule could be drawn, the use of lightweight concrete was 

competitive when the circumstances were right. (14) 

Recently a working party of the Concrete Society was formed to study the 

economics of lightweight concrete construction. In this study suspended floor 

units were considered, and it was concluded that lightweight concrete was comparable, 

in cost to normal-weight concrete, and would even be cheaper if other factors, 

e. g., possible higher output and suitable plant, were taken into consideration (15) 

In the C. E. B. recommendations (10) the economies of lightweight concrete 

in relation to normal-weight concrete were divided into the following categories: - 

(i) Economies due to lower dead weight 

(ii) Economies due to other properties of lightweight concrete 

Considering the lower unit weight of lightweight concrete, the reduction of 

the total load will depend upon the density of the lightweight concrete and the ratio 

of the live load to dead load. The amount of reduction compared with normal weight 

concrete may be calculated as follows: - 
Considering: - 

P= live load KN/m2 

g= dead load (normal weight concrete) (KN/m2) 
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Y2 = density of lightweight concrete (Kg/m3) 

Y1 = density of normal weight concrete (Kg/m3) 

a1= P/g 

ßo Y2 /Y1 

The weight saving in relation to normal weight concrete being 

Y1 Y2 

I 
Y1 

I 

100% =(1- ßo) 100% 

The ratio of total load to dead load is p+g=1 

is 

+ a1 
g 

Then the reduction of the total load, when lightweight concrete is to be used 

1- ßo 
1+ al 

lUU%p 

A graph has been established correlating the reduction in total load and the 

different values of ßo and a1 as shown in fig. 2. In this figure, it can be 

seen that the reduction in total load increases as the ratios of live load to the 

dead load ( a1), and the density of the lightweight to normal weight concrete ( ¢o ) 

decreases. This was concluded to be the most important factor in the economic 

considerations. 

Other factors also considered to have a great influence on the economies are 

the cost reduction of formwork and scaffolding, savings in the cost of foundations, 

reduced column sizes, cheaper transport per unit volume and faster building. 

The other advantages, e. g., additional resistance to heat, frost and fire, 

were considered to cause an indirect reduction in building costs. 

1.4 Weakness of Concrete in Tension 

Concrete widely used as a building material has certain shortcomings, among 

these are its low tensile strength and limited extensibility. When the tensile 

strength of the concrete is reached, either due to applied tensile stress or shrinkage, 

the concrete will crack. This will lead to a greater rate of increase in the 

deflection of a flexural member with applied load. Wide cracks can also lead 

to corrosion of the steel, consequently the limit state of ultimate strength may 
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not be fully satisfied. 

Much has been done to improve the strength of concrete in compression. 

Concrete of more than 100 N/mm2 can now be produced (16). There has, however, 

been no significant improvement in the tensile strength of the concrete, which is 

only about 1/10 to 1/20-the value of its compressive strength. It is for this reason 

that the tensile strength of the concrete is ignored in most design considerations. 

In 1906 (17) the basic assumptions were formulated for the elastic theory 

of reinforced concrete, in which the tensile resistance of the concrete was to be 

ignored. This formed the basis of various codes of practices used by many 

different countries. 

In the load factor method introduced in C P114 (18) and the recent limit state 

theory of design in CP110, the structure being considered is analysed at its 

ultimate load condition. At this stage the concrete in tension is ignored in calculating 

the bending resistance of the beam, and only the steel is considered to carry the 

tensile stresses. 

In CP110 hypothetical values are given to include the stiffening effect of the 

concrete in tension for calculating the deflection and cracking. For calculating 

the deflection at the working load, a triangular stress distribution for the concrete 

in tension is assumed as 1 N/mm2 at the steel level and zero at the level of the 

neutral axis. This assumed tensile stress has in fact taken into consideration the 

average contribution of the concrete between the cracks in the tension zone to the 

stiffness of the concrete member. For the calculation of the crack width the 

stiffening effect of the concrete has also been considered. 

For concrete members reinforced with high-strength steel high stresses 

and strains are expected at the working load condition which will cause wider 

cracks and greater deflection. Hence there is an essential need to improve the 

structural performance of the concrete members. This may be achieved by 

improving the tensile strength of the concrete. 

Prestressing was introduced as a means to improve the structural performance 

of flexural members at working load conditions. In prestressed concrete class 1 

the concrete is assumed not to carry any tensile stress; this results in an absence 

-7- 



of cracking. As there is no loss of rigidity due to cracking the deflection would 

be considerably reduced. 

Partially prestressed concrete was then introduced as an economical 

improvement on fully prestressed concrete. This permitted tensile stresses and in 

some cases limited cracking to occur in the concrete at working load. 

In general prestressing could well be regarded as a forward step towards 

the improvement of performance of concrete members. 

Recently attempts have been made to improve the tensile strength of concrete 

by the introduction of fibres in the concrete mix. This is discussed in the following 

paragraph. 

1.5 Fibre-Reinforced Concrete 

The problem of the low tensile strength of concrete has occupied the attention 

of many engineers in the past. In 1910 (19) it was suggested that the characteristics 

of the concrete could be greatly improved by the addition of short pieces of steel 

mixed in the concrete matrix. Recent attempts in this field have incorporated 

different types of fibres in a cement or a concrete matrix. Indeed, fibre-reinforced 

cement and concrete has opened up a whole new field of concrete technology which 

could , result in new concepts of design for concrete structures. 

Generally, when fibres are incorporated in a cementatious matrix, certain 

improvements in the structural properties of the matrix can be achieved. These 

improvements however mainly depend upon: - 
1) The properties of the fibres with regard to their modulus of elasticity, 

" tensile strength, extensibility and bond efficiency. 

2) The volume content and uniformity of distribution of the fibres in the 

matrix. 

3) The degree of effectiveness of the fibres in the matrix; this depends upon 

the technique of mixing employed. These are: - 
a. Three-dimensional random distribution. 

b. Two-dimensional random distribution. 

c. Unidirectional distribution. 

In the following these are discussed at further length. 
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Three-dimensional random distribution techniques have been employed 
for some time incorporating various types of fibres in a cement or concrete matrix. 

When steel wires are used in a concrete matrix, a considerable improvement can 

be obtained in the impact, ductility and flexural strength (20) (21) (22) (23). 

There are certain points, however, which need to be considered when fibres are 

to be dispersed in three-dimensional random distribution in plain or reinforced 

concrete members. 

These are: - 
1) Difficulty of mixing and handling the fibres. In some instances a special 

technique may have to be adopted in their use (24) 

2) A good workability needs to be ensured for a better distribution of fibres 

and compaction of the matrix. This may be achieved by: - 
(a) Using a low fibre content and aspect ratio which may tend to 

reduce the strength of the matrix (21) (23) 

(b) By controlling the size and quantity of the coarse aggregate used 

in the concrete mix (23) 

(c) By the addition of liquid additives and a partial replacement of 

cement by pulverised fuel ash content (23) 

3) Flexural strength and crack control depends on the bond characteristics 

between the fibres and the concrete. In the case of steel fibres this may 

be relatively inefficient due to the smooth surface of their finish. 

4) The possible corrosion of the steel wires in the long term (22) (25). 

This may apply especially to those wires bridging crack widths in the 

concrete. 

5) The fibres will be dispersed in areas where they are not mostly needed, 

e. g., in the compression zone of the flexural member, i. e., full utilization 

of all the fibres would not be achieved. 

6) The cost of fibre-reinforced concrete, when incorporating 2% of steel wires. 
Is about five times that of plain concrete (22) (25) 

7) In three-dimensional random distribution of fibres in a matrix the fibres 

which effectively carry the stress in any given direction are between 

0-20% of the total volume included in the mix (25). 
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In reinforced concrete, where only the flexural strength of the concrete 

needs to be improved, three-dimensional random distribution of fibres may not be 

very efficient, and an economical design may not be achieved. This conclusion 

is based on the present state of Inlowledge. The material is still in the development 

stage, and a more efficient use of the material will result when there is a better 

understanding of the techniques in dealing with fibres. Recently. the Delft 

Conference (26) (27) has shown how much Engineers were enthusiastic about 

developing and processing this material. The future seems promising in this 

field of research, as work is being carried out in the United Kingdom and other 

parts of the world. 

In two-dimensional random distribution of fibres in one plane the efficiency 

of the fibres carrying stress in a given direction is between 30 - 37% of the total 

volume of the fibres compared with 0- 20% for the three-dimensional (25). When 

high-modulus fibres are dispersed in two-dimensional random distribution in a 

cement matrix, the composite has a better resistance to impact, fire and tensile 

stresses (28) (29). Two-dimensional distribution of fibres can not be employed in 

a concrete matrix, but has been used successfully for some time to produce high 

quality fibrous cement composite units. Glass or asbestos fibrous cement composite 

units are good examples of this. 

Unidirectional distribution of fibres in a matrix would appear to give the most 

effective use of the material, but it is not possible to employ this method with the 

existing techniques of mixing the fibres. It is possible that in the future this type 

of distribution may dominate the construction of fibre-reinforced concrete when a 

better technique of mixing is lnown. 

At the University of Salford a new technique in construction employing 

precast units of fibre-reinforced cement . as surface _ reinforcements to 

concrete members has been evolved by Dr. Dave. This type of fibre-reinforced 

cement composite concrete and its structural behaviour forms a major part of the 

work presented in this thesis. 
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1.6 The Need for this Investigation 

In carrying out this investigation the following points were considered: - 
1) It was realised that in the past only a limited amount of research had 

been conducted into the flexural behaviour of full-scale reinforced 
lightweight concrete members. A study in this respect, considering static, 
fatigue and sustained types of loading was deemed to be necessary. 

2) The maximum specified characteristic steel stress for reinforcing bars 

allowed in CP110 is 425 to 460 N/mm2, depending on the size and type 

of the bars used. However, it is believed that this limit can be increased 

without the limit states of ultimate strength and serviceability of the 

structure being reached. 

3) Since lightweight concrete has a low tensile strength and modulus of 

elasticity, a considerable amount of cracking and deflection when employing 

high working steel stresses in flexural members is expected. Means for 

controlling this deflection and cracking therefore seems necessary. In 

this respect a new form of construction is to be employed, in which 

precast fibre-reinforced cement units in the form of thin channels are used 

as a surface reinforcement at the tensile zone of the concrete members. 

4) Experimental data is necessary to ascertain values for constants that are 

to be used in proposed empirical relationships for various aspects of 
behaviour. 



CHAPTER TWO 

PREVIOUS INVESTIGATIONS 

2.1 Use of Iiigh-Strength Steel in Structural Lightweight Concrete 

2.1.1 General 

In the past mild steel has been usually employed as reinforcement in 

lightweight concrete members. Very limited tests have been carried out into 

the flexural behaviour of such members when reinforced with high strength steel 

especially under fatigue and sustained types of loading. 

In general most of the investigators have considered the behaviour of 

reinforced normal weight concrete as a basis of comparison for reinforced light- 

weight concrete. 

In the following paragraph a brief review of the available data from previous 

investigations is presented. This, however, covers only lightweight concrete 

made with various types of synthetic lightweight aggregate. 

2.1.2 Summary of Past Research 

Many researchers have been involved for some time investigating the physical 

and structural aspects of various types of lightweight aggregate concrete, which can 

be used in construction. It would be difficult to draw conclusions regarding the 

physical and structural properties of lightweight concrete due to the great variation 
t 

in the choice of produced lightweight aggregate. This is generally beyond the 

scope of the present investigation. However, the properties relevant to the present 

investigation are the modulus of elasticity, flexural strength, extensibility, 

shrinkage and creep. 

As regards the modulus of elasticity of lightweight concrete, many 

investigators have compared this value with that of normal weight concrete of 

similar strength. The following table is prepared to illustrate this difference. 



Reported by 
E (lightweight) x 100 Types of lightweight 

E (normal weight) aggregate 

J. J. Shideler, 1957 (11) 53 - 82 

J. A. Hanson, 1958 (30) and 
1961 (31) 

50-67 

A. Short, 1958 (8) 33.3- 67 

D. C. Teychenne, 1967 (9) 50 - 60 

G. B. Welch & B. J. F. Patten No specific value 
1964 (32) given 

R. H. Evans & T. R. Hardwick about 60 
1960 (33) 

Various types produced 
in U. S. A. 

Ditto 

Various types produced 
in U. K. 

Sintered expanded and 
sintered pulverised 
fuel ash. 

Sand - expanded shale. 

Sintered expanded clay 

One of the very early investigations on the structural behaviour of reinforced 

lightweight concrete members was carried out by Richart and Jensen in 1931 (34). 

They reported test results at the University of Illinois, for 32 lightweight and 

normal weight concrete beams reinforced with mild steel. These beams 

(152.4mm wide, x 304.8mm deep, with 2438.4mm span) were tested under short - 

term static loading. . The main variables in the investigation were the concrete 

compressive strength and the effect of replacing fine lightweight aggregate by 

natural sand. 

The experimental results showed that the compressive strength had little 

effect on the ultimate load of the beams. This was possibly due to the beams being 

under reinforced, where the ultimate strength depended mainly on the moment of 

resistance of the steel. 

In general the deflecticrisof lightweight concrete members are greater than 

those of the corresponding normal weight concrete. However, when the fine 

lightweight aggregate was replaced by natural sand, the difference between the 

deflection of the lightweight and normal weight concrete bemis was reduced. The 

concrete cylinder compressive strength of the beams considered ranged between 

(12 - 32.6) N/mm2. It was also concluded that, due to the lower modulus of 



elasticity of lightweight concrete, the neutral axis of such beams was lower than 

those of normal weight concrete. 

Hanson carried out a series of tests at the Portland Cement Association 

laboratories on the structural aspects of lightweight concrete. In 1958 (30) and 

1961 (31) he conducted shear investigations on a total of 57 reinforced lightweight 

and normal weight concrete beams in short-term static loading tests. The beams 

were tested using span lengths of 1981.2mm and 3048mm with a cross section 

of 152.4mm wide and 304.8mm deep. The yield stress of the steel reinforcement 

used was 334 N/mm2 for the lightweight concrete beams. 

The rmin variables in the investigation were the concrete compressive 

strength which ranged between (20.7 - 62 N/mm2), the steel area and the shearing 

span. 

The calculated deflection based on the "Cracked transformed cross section" 

method showed that the method could predict the actual deflection with reasonable 

accuracy. 

The deflections of lightweight concrete beams at loads where initial diagonal 

cracldng occurred were found to be 15% to 35% greater than those of normal weight 

concrete beams. The modulus of elasticity of the lightweight concrete, however, 

was between 50% to 66% of that for normal weight concrete. 

Short carried out an extensive research investigation at the Building Research 

Establishment on the physical. and structural properties of lightweight aggregate 

concrete. In 1959 (8). he reported results of tests carried out to study the flexural 

behaviour of reinforced lightweight concrete beams. A wide range of lightweight 

aggregates produced in the U. K. were covered, with different percentages of 

mild steel employed for the main reinforcement. Similar beams made of normal 

weight concrete were also tested so as to form a basis of comparison. 

In short-term static tests the deflections of lightweight concrete beams at 

the working load were found to be 10% to 50% greater than the deflections of normal 

weight concrete beams. The cracking for lightweight concrete beams was also 
found to be more severe than for similar normal weight concrete beams. 

In sustained loading tests the total permanent deflections due to shrinkage 

and creep, of some lightweight concrete beams were 15% to 45% greater than those 
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of normal weight concrete beams when measured under the same conditions of 

temperature and humidity. 

As regards the use of high strength steel, Short suggested that, this should 

be limited by the values of deflection and cracking, other wise, the values of 

span/depth ratios given in CP114 / 1957 for normal weight concrete should be 

multiplied by a factor of 0.75. 

Evans, also conducted an extensive amount of research at Leeds University 

on the behaviour of reinforced and prestressed lightweight concrete. 

In 1960 Evans and Hardwick (33) reported tests on 34 lightweight and normal 

weight concrete beams reinforced with mild steel. High strength steel was also 

used for normal weight concrete beams. It was mainly intended to study the 

ultimate strength, deflection and cracking characteristics of concrete beams made 

from sintered expanded clay aggregates. 

In short - term static loading tests the immediate deflections of reinforced 

lightweight concrete beams were 10% to 25% greater than those for corresponding 

normal weight concrete beams. It was also observed that the cracks in lightweight 

concrete beams were about 50% wider than those in normal weight concrete beams, 

and also that they were spaced about 60% closer. At a working steel stress of 

138 N/mm2 the average crack width and spacing in lightweight concrete beams 

was 0.07mm and 90mm respectively. 

They also concluded that the ultimate strength of lightweight concrete beams 

could be obtained with reasonable accuracy by using Whitney's theory. 

In 1964 Evans and Orangun (35). reported the results of short - term static 

loading tests on 28 sintered pulverised - fuel ash "(Lytag)" concrete beams. The 

beams were 229mm wide and 381mm deep with 2438mm span. 

Two types of steel were usedmild steel with a yield stress of about 275 N/mm2 

and high strength square twisted bars of about 410 N/mm2 yield stress, various 

percentages of steel and a wide range of concrete compressive strengths were 

adopted. 

They concluded that the immediate deflection at working load could be 

calculated by the conventional transformed cracked section method employing a 

modular ratio of 17, a modular ratio of 30 was suggested for the calculations of 
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deflection under sustained load. 

At a steel stress of about 205 N/mm2 the maximum crack widths in the 

beams reinforced with the largest size of the square twisted bars (31.75mm) did 

not exceed 0.254mm. To control deflection and cracking, a working steel stress 

of 186 N/mm2 was suggested. 

It was also concluded that the ultimate loads of "Lytag" concrete beams could 

be satisfactorily calculated by using Whitney's theory. The design by either the 

load factor method or the elastic method would ensure the required safety factor. 

In 1967 Evans and Paterson (36), presented a paper describing tests carried 

out to investigate the long term deformation characteristics of sintered pulverised 

fuel ash "(Lytag)" concrete members in both axial compression and bending. 

The creep in bending was investigated in two types of beams, the first being 

190.5mm wide and 416mm deep with 2438mm span reinforced with different 

percentages of high strength steel, the second had a cross sectional dimension of 

(101.6mm x 101.6mm) with 660.4mm span reinforced with a similar percentage of 

steel. The high strength steel used had a yield stress of about 410 I1/inm2. Normal 

weight concrete beams were also tested so as to form a basis of comparison. 

For the first type of beams it was observed that after 750 days, the ratio of 

final to initial deflection of lightweight concrete beams ranged between (2-2.33), 

this however was (2.34 - 3.09) for normal weight concrete. 

The maximum crack width at working load in lightweight concrete was found 

to be greater, but it did not exceed a value of 0.2mm recommended for normal 

weight concrete in an exposed condition (37). 

For the second type of beams a direct comparison for long term behaviour 

was made with normal weight concrete. The initial deformation of the lightweight 

concrete was 1.5 to 2.0 times that of normal weight concrete. This ratio dropped 

rapidly within 100 to 200 days, and then levelled off to a reasonable constant value 

after a period of 300 days, leaving the total deflection of lightweight concrete beams 

marginally higher than that of normal weight concrete. 

Generally the improvement in the long term deformation of lightweight concrete 

beams was mainly due to the following: - 



1) Greater improvement in the concrete compressive strength for light: 

weight concrete with time. 

2) The low value of the modulus of elasticity of lightweight concrete resulting 

in a lower neutral axis, consequently a lower average concrete stress for 

a given applied load. 

3) A slow rate of shrinkage which will enable the concrete to gain its full 

tensile strength, hence it will be more resistant to crack formations. 

Roberts, in 1962 (38), presented work carried out at Northampton College, 

investigating the bond and crack characteristics of reinforced sintered expanded 

clay aggregate concrete beams tested under short - term static loading tests. 

The beams were 190.5mm wide and 304.8mm deep; two types of reinforcement 

were used, mild steel with a yield stress of 275 N/mm2 and high strength steel 

with 0.2% proof stress of 410 N/mm2. 

It was concluded that steel embedded in lightweight concrete had adequate 

bond strength and therefore there was no need to provide end hooks with deformed 

bars. 

At the level of the working moment spacing of cracks in both lightweight and 

normal weight concrete beams was about 127mm when deformed bars were used, 

and 165mm when mild steel was used. The average crack width if deformed bars 

were used was about 0.1mm at a steel stress of 206.8 N/mm2. The same crack 

width was observed at a steel stress of 138 N/mm2 when mild steel was used. 

It was concluded, however, that deformed bars with a working stress of 

206.8 N/mm2 could be used in lightweight concrete beams. 

In 1968 Kanoh (39) presented results for a series of tests on long - term 

deflection of reinforced concrete beams employing artificial lightweight aggregate 

made in Japan. 

Thirty-one reinforced concrete beams were tested, incorporating various 

percentages and types of tension reinforcement. The concrete used had an average 

cylinder compressive strength of about 30 N/mm2 and a modulus of elasticity of 

about 13.8 KN/mm2. It was concluded that the general behaviour of the long - term 

deflection of lightweight aggregate concrete beams was similar to that of normal 

weight concrete beams. However, it was observed that the ratio of final to initial 



deflection for lightweight concrete beams was some what less than that for normal 

weight concrete beams. This conclusion agrees well with that stated previously 

by Evans (36). 

Swamy and Ibrahim, in 1974 (40), presented results of an investigation 

carried out to study the short and long - term deflection characteristics of 

reinforced and prestressed concrete beams made from expanded slate ("Solite", U. K. ) 

lightweight aggregate. 

The ordinary reinforced beams were 127mm wide with an effective depth 

equal to 156mm and 2286mm span. 

Of the ordinary reinforced beams, three were made with all lightweight 

aggregate and one was made with partial replacement of lightweight fines with 

natural sand. A beam made from normal weight concrete was also tested so as 

to form a basis of comparison. In these beams various percentages of steel 

reinforcement were employed; the steel bars used had a minimum yield stress of 

410 N/mm2. The design concrete cube strength at 28 days was 51 N/mm2. 

When a steel ratio of 3.16% was employed, the beams made from all 

lightweight concrete, concrete with partial replacement of lightweight fines with 

natural sand and normal weight concrete gave a span to deflection ratios of 434, 

317 and 378 respectively at the design load. This showed that lightweight concrete 

beams had adequate flexural rigidity compared with normal weight concrete. 

The maximum crack width at the design load in lightweight concrete beams 

was nearly equal to that in the corresponding normal weight concrete. At a 

working steel stress of 207 N/mm2, the maximum crack width did not exceed 

a value of 0.15mm. 

In long - term loading, after a period of 193 days, the ratio of final to 

initial deflection was 1.94 for a beam made from all lightweight concrete, and 

1.72 for a beam made with partial replacement of lightweight fines with natural 

sand. 

The investigators have shown that the short and long - term deflection 

of lightweight concrete beams could be calculated by employing CP110 and ACI 

318-71 standards. 



2.1.3. Conclusions From Past Research 

As stated before, due to the wide variation of the lightweight aggregate 

used, and also due to the limited amount of tests carried out using high strength 

steel as reinforcement in lightweight concrete members, it would be difficult to 

draw a definite conclusion regarding the flexural behaviour for these members. 

It has also been noticed that most of the previous investigators have presented 

their data in a form of comparison with normal weight concrete beams. 

However, the following points on the general behaviour of reinforced lightweight 

concrete members may be drawn: - 
1) The ultimate load of lightweight concrete members could well be predicted 

by the existing ultimate load theories. The design by either the elastic 

theory or the load factor method would ensure the required safety factor. 

2) The instantaneous deflection of lightweight concrete beam is greater than 

that of normal weight concrete; this however depends mainly on the modulus 

of elasticity for both normal and lightweight concrete. The deflection of 

lightweight concrete members can be calculated by the conventional 

transformed cross section method using a suitable modular ratio. 

3) The crack widths in lightweight concrete beams in general, are wider 

than those in normal weight concrete. This, however, is possibly due to 

the low tensile strength and the additional tensile stresses caused by 

shrinkage in lightweight concrete beams. 

4) In sustained load tests the total deformation of lightweight concrete 

" members may not be significantly greater than that of normal weight concrete. 

Thi; however, again depends on the shrinkage and creep characteristics as 

well as on the modulus of elasticity of the particular type of lightweight 

concrete under consideration. 

5) At this point of time there is not enough data available regarding the 

behaviour of reinforced lightweight concrete members under fatigue type 

of loading. 

The maximum steel strength used in the past was 410 N/mm2. This may 
follow that the above conclusions apply only to lightweight concrete members 



reinforced with steel bars of strength not greater than 410 N/mm2. 

2.2. Approaches Employed to Control Cracking and Deflection in Flexural 

Members Reinforced with High-Strength Steel 

2.2.1 General 

The problem of concrete weakness in tension is commonly overcome by the 

traditional use of reinforcing bars, or by prestressing the reinforcement in 

concrete; the latter method is rather costly. 

In flexural members the problem of concrete weakness in tension leads to 

a considerable amount of cracking and deflection, especially when high working steel 

stresses are employed. 

Recently various methods to try and overcome this deficiency of the 

concrete have been proposed by various investigators. In a direct approach to 

this problem methods of employing a closely spaced continuous wire reinforcement 

(41) and fibre reinforced concrete have been suggested (42) (20). Another method 

employing a steel channel placed at the soffit of a concrete member fixed and 

held in position by means of shear connectors has also been adopted (43). These 

methods are discussed in the following paragraphs: 

2.2.2. Closely Spaced Continuous Reinforcement 

In conventional reinforced concrete members cracks would form in the 

tensile zone at relatively low tensile stresses, for this reason the area of concrete 

in tension, which forms more than half of the total area is usually ignored for 

design purposes. Past research (44) (45) indicated that good control on the width 

and spacing of the cracks can be obtained by using smaller diameter reinforcing 
bars well distributed over the effective concrete area. This concept, however, 

has not led to a substantial improvement in the cracking mechanism for conventional 

types of reinforced concrete members. This is mainly due to the traditional 

limitations of size and spacing of reinforcing bars. 

An early suggestion for the use of a more fine and"closely spaced reinforcement 

was first made by Nervi (46). This was reported by Romualdi and Batson (41). 

This suggestion came out as a result of an experimental investigation 

carried out on the behaviour of a concrete slab reinforced with a closely 



spaced steel wire mesh. The spacing of the wires was about (10.16mm), and 

the cracks were not observed until the steel was stressed nearly to its yield 

point. Following this research, in the field of fracture mechanics, a study was 

made on the effect of riveted stiffeners placed perpendicular to the line of the 

projected crack extension; these acted as crack arresters in stressed plate 

structures. In this study Romualdi (47) indicated that: "for certain stiffener 

spacing and rivet sizes, a condition could be obtained whereby a crack is arrested, 

or prevented from enlarging at stresses larger than those required to extend the 

crack in the absence of stiffeners". 

It was thought, however, that this mechanism could be applied to reinforced 

concrete construction where the role of the riveted stiffeners in plate structures 

is similar to that of reinforcing bars in a concrete matrix. From this concept 

Romualdi and Batson (41) concluded that "at a reinforcement spacing less than 

a certain critical value, all potential cracks could be contained between adjacent 

groups of bars". 

Romualdi and Batson presented an experimental investigation on the flexural 

behaviour of reinforced concrete beams with a closely spaced continuous 

reinforcement (41). 

A total of 19 small scale beams were tested under short - term static loading 

tests. The reinforcements employed were steel wires of 1.59 and 0.89mm diameter 

with a yield stress of 634.5 N/mm2 and 758.6 N/mm2 respectively. The wire 

reinforcement was woven into a mesh to facilitate placing in the mould. The 

horizontal spacings employed between these wires were 12.7mm, 8.45mm and 

4.242mm. The vertical distance between the wires was varied according to the 

diameter of the wires used, for keeping the same percentage of steel. The concrete 

mix used was relatively wet, and the only aggregate used was sand. This was 

mainly to facilitate pouring the concrete. Two of the beams were reinforced with 

ordinary deformed bars of 9.5mm diameter and 275 N/mm2 yield stress employing 

a 1.47% of steel area; this percentage of steel was also employed for most of the 

wire reinforced beams. 

It was claimed that for a wire spacing of about 5.08 to 7.62mm, the ultimate 

strength of the beams was substantially increased; this increase in ultimate 

strength was about 50%. 



The beams did not exhibit any noticeable cracks until the very final stages 

of loading. The neutral axis was also observed to be lower than that for conventional 

reinforced concrete beams. 

It was concluded that for the failure mechanism obtained this technique 

could be used for a wide variety of structural applications. 

An important feature claimed for this type of construction was that the 

ultimate strength was much greater than that predicted by the ultimate strength 

theories. This increase in strength was dependent on the spacing of the reinforcement; 

the lower the spacing the higher was the ultimate load. 

On this point Broms and Shah (48) pointed out that to maintain the same 

percentage of reinforcement Romualdi and Batson used a small diameter 

reinforcement with high ultimate strength values. These values, however, were 

not used in their calculations. Broms and Shah recalculated the ultimate strength 

of the beams based on these higher values, and found that the effect caused by 

the spacing of the reinforcement wires on the ultimate strength was negligible. 

Abeles (49) on the same line, discussing the paper by Romualdi and Batson (41) j 

suggested that besides the spacing effect on the ultimate strength, the bond between 

the wires and the concrete should also be taken into consideration. The high 

efficiency of beams with closely spaced reinforcement may not be obtained, 

because the space between the wires hardly allows satisfactory insertion and 

compaction of the mortar around the wires. 

Furthermore the method has a restricted usefulness due to practical 

difficulties in casting and also has very little to offer in economical savings due 

to the high cost of material and labour involved (50). 

However, the concept of using this technique for reducing crack widths may 

well converge on an idea to employ a new type of construction (fibre reinforced 

concrete) which is discussed in the following paragraph. 

2.2.3 Fibre Reinforced Concrete 

The suggestion to use short pieces of steel to improve the properties of 

concrete was first made in 1910 by Porter (19) as reported by Hannant (22). 

This was then followed by Biryukovitch et al (42) and Romualdi and Mandel (20) 



when they initiated a more practical investigation in this field. 

In an early study (41) (51) it was suggested that by the use of closely spaced 

continuous wire reinforcement a substantial increase in the tensile cracking 

strength of concrete could be obtained. This was accomplished by arresting the 

growth of cracks which originate from internal flaws in the concrete. A 

theoretical study revealed that the tensile strength of concrete was proportional 

to the inverse square root of the wire spacing. 

To provide a more practical technique. Romualdi and Mandel (20) considered 

that the same concept of crack arrest mechanism could be achieved by adding 

short pieces of fine wires directly into the concrete mix. It was considered 

important that the percentage of wires added to the mix should be sufficient, so as 

to obtain an adequate average spacing of the wires. In their theoretical study. 

they derived an approximate expression for the effective wire spacing for a given 

percentage and size of fibres. The experimental part of their study included 

short - term static tests on sand-cement mortar beams. 

Most of the beams tested in bending were 44.45mm wide, 76.2 mm deep with 

905.2mm span length reinforced with various sizes and percentages of steel wires. 

Plain beams without any reinforcements were also tested so as to form a basis of 

comparison. 

The ratio for the flexural tensile strength for beams reinforced with fibres 

to plain beams varied between 1.2 to 2.52 depending on the aspect ratio and 

percentage of fibres used. 

A good agreement was obtained between the earlier theoretical prediction 

for the tensile cracking stresses and the observed values. It was concluded that 

the material had unique features which could be used in a wide variety of structural 

applications where fatigue, thermal shock and cracking are important considerations. 

Untraur and Works (52),. in their discussion on Romualdi and Mandel's paper] 

doubted the validity of the claim regarding the effectiveness of the addition of fibre 

reinforcement to the tensile cracking strength. The tensile cracking strength as 

defined by Romualdi and Mandel is the stress which corresponds to the first 

deviation from linearity of the load-deformation characteristic of the material. 



If this definition is to be applied, their results show little increase in the tensile 

cracking strength resulting from the addition of fibre reinforcement. They did, 

however, confirm Romualdi and Mandel's results that the addition of fibres 

substantially improved the tensile strength of the concrete. 

Abolitz (53), discussing the same paper, placed more emphasis on the stress 

carrying efficiency of fibres within the matrix. He suggested that the low 

effectiveness of randomly distributed wires would not be a favourable factor in 

economic considerations with regards to their use in reinforced concrete construction. 

Agbim (54), in discussion of the same paper, drew attention to the difficulty 

which he experienced in mixing the fibres. He also pointed out that improvements 

in the strength over plain concrete were mainly obtained in short - term tests. 

The time effect on these improvements should also be taken into consideration, as 

in some cases it was found that the improvements obtained may be reduced with 

time. 

Due to the conflicting conclusions drawn on fibre reinforced cement and concrete, 

many attempts have been made to study the mechanism of fibre reinforcement, and 

also to investigate the various properties of fibre reinforced cement and concrete. 

Shah and Rangamin 1971 (55), reported an investigation on the mechanical 

properties of fibre reinforced concrete and mortar. The intention was to study the 

reinforcing action of randomly distributed steel wires. 

In this investigation. various small fibrous reinforced concrete and mortar 

beams were tested to study the tensile, flexural and compressive strengths in 

relation to conventional reinforced concrete beams. 

The steel wires used for the majority of the specimens tested had a cross- 

sectional dimension of (0.254mm x 0.254mm) with a tensile strength of 828 N/mm2. 

The length of the wires varied between 6.4mm and 25.4mm. 

From the results obtained Shah and Rangan (55) concluded that the addition 

of wire reinforcement to concrete and mortar beams had a negligible effect on 

the load at which cracks initiate in the matrix. This effect was observed for 

specimens tested with a steel content up to 1.5%. Considering other investigator's 

results, Shah and Rangan also suggested that this could apply to specimens 

reinforced with up to 4% of steel wires. They also concluded, that the spacing had 



little effect on the ultimate tensile strength. 

The conclusions suggested by Shah and Rangan differ from that suggested 

earlier by Romualdi at al (20) (41) with regard- to the effect of addition of fibres 

and the effect of the spacing of the fibres on the tensile strength of the concrete. 

In a comparison between fibre reinforced concrete (incorporating three 

dimensional random distribution of fibres) and conventional reinforced concrete, 

Shah and Rangan observed that for a 1% reinforcement content beams with a 

conventional reinforcement gave a maximum flexural load of more than three times 

that of fibre reinforced concrete. 

Swamy and Lankard (56) recently presented a paper describing several practical 

applications of steel fibre reinforced concrete both in Britain and the U. S. A. 

Among the practical , pplications discussed were the use of steel fibrereinforced 

concrete in a slab deck of a car park, concrete pipes, pavements, overlays, 

marine structures and mining and tunnelling constructions. 

It was concluded that the ability of steel fibre reinforced concrete to resist 

cracks propogation and its resistance to thermal shock, fire and dynamic loads 

make fibrous concrete a unique new construction material. 

It is not in the scope of this research to cover investigations carried out in the 

field of fibre reinforced concrete; however, there are very few examples on the 

use of fibres in reinforced concrete flexural members. 

In 1972 Hannant (57) presented an investigation on the use of steel wires in 

reinforced lightweight concrete beams. A total of four beams (127mm wide and 230mm 

deep with 1.83m span) reinforced with 2-13mm diameter bars of 375 N/mm2 yield 

stress were tested. The steel wires used were of 0.38mm diameter x 25ram length, 

two percentages of fibres being employed; these were 1.2% and 1.6%a by volume. 

Conventionally reinforced normal and lightweight concrete beams with no 

fibre reinforcement were also tested to form a basis of comparison. 

The deflection of the lightweight concrete beams without fibres were between 

40% and 50% greater than those for normal weight concrete. With the addition of 
fibres to lightweight concrete beams, the deflection was similar to that of normal 

weight concrete. 



The cracking tensile stresses for the fibrous lightweight concrete beams were 

approximately twice that for the plain lightweight concrete beams; the crack widths 

observed were lower in the fibrous lightweight concrete beams. 

Hannant suggested that the saving in deflection and cracking may well lead to 

the use of high strength steel as a reinforcement in concrete beams. 

At the University of London. Samarrai and Elvery (58) have carried out investigation 

into the use of steel fibres in reinforced concrete members. It was mainly intended 

to study the effect of steel fibres on controlling crack widths in reinforced concrete 

members tested in uniaxial tension. The possibility of using high strength steel 

has also been studied. Variables that were also studied included type (plain or 

Duoform) size and quantity of fibre and type of main tension reinforcement. 

The experimental results showed that the addition of steel wires to reinforced 

concrete had substantially increased the stress in the main tension reinforcement 

before a particular crack width occurs. The improvements were also found to be 

greater when deformed high strength steel bars were used for the main tension 

reinforcement. 

2.2.4 Composite Concrete Construction Using Steel Channels 

The idea of employing this method of construction emerged from combining the 

material of the following types of construction 

(i) The use of high strength steel in flexural concrete members 

(ii) The composite construction with deep haunches, where a mild steel beam 

section is incorporated by shear connectors to the soffit of the concrete 
haunches. 

It was thought (43), for a deep haunch section, that by using a channel section 

instead of a beam section, the bursting or spalling of the concrete due to the low 

effective side cover to the shear connectors in the haunch could be prevented. The 

channel could. also provide an adequate rigidity to the section so that high strength 

steel could be used. 

On the application of this type of construction (59) a total of 9 beams were 
tested in short - term static loading tests. These beams were of 4572mm length 

incorporating different dimension and size of the concrete cross section and the steel 



channel. Various amounts of steel were used, the ultimate steel stresses employed 

ranging between 283 N/mm2 and 9GG N/mm2. 

The beams were designed so that at the working load condition, the maximum 

stress in the channel did not exceed about 90% of its yield stress. 

From the results obtained cracking and deflection at the working load were 

well below the limits specified in CP110. However, beams reinforced with mild 

steel and the shallow section beams showed a considerable amount of cracking and 

deflection respectively. 

It was concluded, however, that steel of 828 N/mm2 ultimate stress could be 

used while satisfying the limit states of serviceability at the working load conditions. 

This type of construction, indeeddhas new merits of potential importance in the 

field of concrete technology; however, there are certain shortcomings and doubts 

which should be carefully considered, these are: - 

(1) The construction has little resistance to fatigue; tests have showed that 

after about 500,000 cycles failure would occur. 

(2) The steel channel being exposed would offer little resistance to fire 

2.2.5 Work at Salford 

At the University of Salford an extensive amount of research has been 

conducted into the structural aspects of fibre reinforced cement and concrete. 

In 1971 (60). research was conducted on the use of chopped steel wires in a 

concrete matrix. The major part of the work was carried out using two sizes of 

fibres 0.5mm diameter x 38mm length and 0.38mm x 25mm length, the wires were 

plain and Duoform. The percentages of steel used varied between 1% and 3% by 

volume. 

Properties investigated were the cube crushing strength, flexural strength, 

direct and indirect tensile strengths. In carrying out the experimental investigation. 

difficulty of mixing and compacting the wires was experienced. It was also observed 

that the greater the aspect ratio of the wires the greater is the tendency for the wires 

to knit into balls. 

The results showed that certain improvements were obtained in the compressive 

and the flexural properties of the fibrous concrete. The peak of the improvement was 



at a spacing of about 4mm, below which the results obtained became erratic. 

Comparing the performance of fibrous concrete containing plain steel fibres at 4mm 

spacing with that of plain concrete, the improvements expressed as a percentage 

for the compressive, flexural, indirect and direct tensile strength were 11,83,57 

and 20 respectively. 

In 1972 (24) a research was carried out investigating the structural properties 

of normal and lightweight concrete and cement mortar reinforced with three dimensional 

random distribution of asbestos fibres. 

Various types and percentages of asbestos fibres by weight of cement were 

incorporated in the matrix . The workability of the mixes was observed to decrease 

as the amount of fibres increased. 

Certain improvements in the compressive, tensile and impact strengths of the 

cement mortar and concrete were also obtained. These improvements were fairly 

small and largely influenced by the volume content of fibres, the type of aggregate 

and the water cement ratio of the mix. 

Other reasons why the improvements in the properties of the fibrous matric as 

, 'ere low are as follows: 

(i) The low directional efficiency of three dimensional random distribution 

of fibres. 

(ii) The short length of the asbestos fibres used (less than 6mm) allowed little 

stress transfer from the matrix to the fibre. 

It was suggested in this investigation that ways of preferentially aligning the 

fibres should be found. 

Investigation has also been carried out into the flexural behaviour of full scale 

partially prestressed composite T-beams with three dimensional random distribution 

of steel fibres in their tensile zone (61). This investigation showed that steel fibre 

reinforcement can result in some improvement in cracking and deflection of partially 

prestressed composite T-beams. 

Conclusions drawn from previous investigations show that substantial improvements 

were obtained in the properties of the concrete when high modulus fibres were used. 

However, it is still doubtful to what extent these improvements could be utilized in 

reducing the cracking and deflection in reinforced concrete members. 



The material, is still in the development stage, and there are not enough 

data available regarding the effect of the fibres on the control of deflection and 

. cracking, especially under long term loading conditions. 

The initial work at Salford and other places has revealed that the addition of 

fibre reinforcement in three dimensional random distribution is not a practical or 

an economical proposition in reinforced concrete construction. A new concept has 

been developed at Salford which involves the use of precast units of fibre reinforced 

cement as surface reinforcement for concrete members with a view to controlling 

cracking and deflection (62) (63). 

This type of fibre reinforced cement composite concrete construction in which 

precast asbestos cement units are used as surface reinforcement forms the basis of 

work presented in this thesis. 



CHAPTER THREE 

MATERIALS USED AND DESIGN OF TEST BEAMS 

3.1 General 

The main aim of this investigation was to study the structural behaviour of 

ordinary and composite lightweight concrete members reinforced with high - strength 

steel. 

It was deemed necessary to provide experimental evidence regarding the cracldng 

and deflection behaviour of these members for a comparison to be made with the 

predicted values. Furthermore the experimental results would also help to ascertain 

values of constants in empirical relationships. 

The programme of investigation consisted of testing full-scale reinforced 

lightweight concrete beams, containing different types and percentages of steel bars 

for the main tension reinforcement. 

The size of beams was chosen to represent members commonly used in building 

construction and to enable the performance of such members to be critically examined. 

The beams adopted were 150mm wide, 300mm deep and 5m long. These were 

simply supported over a span of 4.5m. The loading arrangement of the beams is 

shown in Fig. 3. 

The composite beams were similar to the ordinary beams in every respect, 

except that the f. r. c. units were incorporated as integral parts at their tensile zones. 

Control specimens, e. g. cubes and prismswere also cast to ascertain the 

compressive and tensile strengths of the concrete. The design, manufacture and test 

procedures employed in this research were in accordance with the specifications 

given in CP110 and the various British Standards. 

In the following paragraphs the materials used and the design considerations 

for the f. r. c. units and the test beams are discussed. 

3.2 Design Considerations 

3.2.1 Ordinary Reinforced Lightweight Concrete Beams 

As mentioned in 3.1, the beams adopted were 150mm wide, 300mm deep with 
4.5m span and were designed as under reinforced beams. The nominal yield or 0.2% 



proof stresses of the reinforcing bars used were 275 N/mm2,410 N/mm2, 

550 , l/mm2,590 N/mm2 and 875 N/mm2; the steel ratios employed were 0.582%, 

1.044%, 1.483% and 1.643%. Details of the beams reinforcements are given in 

tables 1,2 and 3; these are also shown in Figs. 4 and 5. 

The designed characteristic cube strength of concrete was 50 N/mm2. The 

nominal concrete cover to the main reinforcements was 35mm, this being the 

minimum allowed for lightweight concrete members in severe conditions of exposure 

as per CP110. 

For calculating the design working moment of the various beams, the limit state 

of ultimate strength, as per CP110, was considered to be the main criterion for 

design. In this calculation a rectangular - parabolic stress distribution incorporating 

the partial safety factor for the concrete at the ultimate condition was used. The 

adopted stress-strain relationship for the lightweight concrete in compression is 

shown in Fig. 6. Fig. 7, shows the stress-strain curves as per CP110. 

The beams being under reinforced, their ultimate resistance moments would 

be those based on the yielding of the steel. 

The values of the ultimate moments can be calculated as follows: 

MU = As Z (3.1) 
Ym 

ym =partial safety factor for steel (1.15) 

where Z= dl -P fy As 

ayb fcu 
_m 

(3.2) 

The values of ß and a can be derived by considering a rectangular - parabolic 

stress distribution for the concrete in compression; this is shown in appendix B. 

The working moment was obtained by subtracting 1.4 times the moment due to dead 

load of the beam from the ultimate resistance moment, then dividing by (1.6), the 

values 1.4 and 1.6 being the partial safety factors for dead and live load respectively. 

The air dry density used in the calculation for the lightweight concrete was 1800 kg/m3. 

The details of the reinforcement and the calculated values of the ultimate and 

working moments for the various beams tested under static, fatigue and sustained types 

of loading are given in tables 1,2 and 3 respectively. A typical analysis of a beam 

is given in appendix C. 



For the shear reinforcements rectangular mild steel stirrups of 6mm diameter 

were provided for all the beams at a uniform spacing of 100mm. None, however, 

was provided in the constant moment zone, mainly to avoid any effect which the 

stirrups might have on the initiation and distribution of the cracks. This practice 

has also been adopted by previous investigators (35) (64) (65). The design of the 

stirrups was carried out in accordance with the ultimate shear stress requirements 

for lightweight concrete as given in CP110. It was necessary to ensure that the beams 

would not fail in shear, as the flexural behaviour of the beams up to failure was to be 

studied. 

The local and anchorage bond stresses for the various beams were calculated in 

accordance with CP11O. When mild steel was used for the main tension reinforcement, ' 

U-type hooks were provided; however, no hooks or any type of anchorage devices wer e 

provided for the deformed bars as it was not necessary. It was also intended to 

prevent bond failure at the ultimate load, since the ultimate flexural resistance moment 

based on yielding of the steel was to be observed. 

3.2.2 Composite Reinforced Lightweight Concrete Beams 

The parameters employed for the composite beams were the same as those for 

the ordinary beams. To allow a direct comparison to be made between the flexural 

behaviour of both types of beams, the composite beams were similar to the ordinary 

beams in every respect, except that the f. r. c. units were incorporated as integral 

parts at their tensile sides. 

For the various composite beams, the nominal yield or 0.2% proof stresses 

used for the reinforcements were 275 N/mmn2,410 N/mm2,550 N/mm2 and 590 N/mm2. 

The steel ratios employed were 0.582%, 0.874%, 1.044% and 1.643%. The details of 

the reinforcements are given in tables 1,2 and 3 and also are shown in Figs 4 and 5. 

In deriving the working moment, the limit state of ultimate strength was 

considered to be the main criterion for design, no account being taken of the 

contribution made by the f. r. c. units. The contribution made by the f. r. c. units, 
if any, was considered to be an additional factor of safety. 

The calculated values of the ultimate and working moments for the various 
beams tested under static, fatigue and sustained types of loading are given in 



tables 1,2 and 3 respectively. 

The properties and design considerations for the f. r. c units are discussed 

in detail in 3.2.3. 

3.2.3 Fibre Reinforced Cement Units (f. r. c. Units) 

3.2.3.1 Properties 

It was most important that the f. r. c. units to be used should have much higher 

tensile strength and greater extensibility compared with those of concrete. Properties 

also considered desirable for these units were the impact strength, thermal 

insulation, fire resistance, durability and resistance to the attack by alkalanity from 

the atmosphere. 

The choice of fibres was limited to those having a high modulus of elasticity 

and which could be easily incorporated into a cement matrix and be fabricated into 

sheet or channel forms. 

The types of fibres which in general fitted most of these requirements were 

glass and asbestos. 

Steel wires also have a high modulus, but they cannot be easily incorporated 

into a cement matrix and be fabricated into sheets or channel forms. 

As regard the E-glass fibres, there is a problem of long-term durability in 

the presence of an alkali environment. E-glass fibre when incorporated in ordinary 

portland cement would loose most of its strength due to the alkalanity of ordinary 

portland cement. This problem can be overcome to some extent by the use of alkali 

resistant glass fibre which can be incorporated in a cement matrix by a spray and 

suction technique, allowing f. r. c, sheets or channel forms to be fabricated. The 

durability of these f. r. c, units in long term application, however, is not known. 

Asbestos fibres being the cheapest form of high modulus fibres, and having 

a greater durability under moist conditions were considered to be the most favourable 

type that could be used in a cement matrix. The asbestos cement sheets are 

manufactured in layers. This process results in the ad estos fibres being distributed in 

predominantly two dimensional random fashion. 

For normal asbestos cement products the length of fibre used is 6mm and less, 

the fibre content normally being 10-12% by weight of cement, giving a product density 



of 1700 - 1900 Kg/m3 (GG) (67). 

To satisfy the requirements of this investigation for ease of construction 

and economy in cost per unit, the channels were manufactured as normal 

asbestos cement products. 

The mechanical properties of the fibre reinforced cement units used are 

given in table 4 with the tensile properties shown in Fig. 8. 

For the various composite beams, initial calculations were carried out, 

using the simple bending theory to obtain the amount of tensile stresses which 

could be developed in the f. r. c. units when placed at the soffits of the beams. 

These stresses were then checked against the tensile stress of the f. r. c. units. 

The important consideration in the use of the f. r. c. units was that they would 

not crack at the working load conditions. 

3.2.3.2 Geometry 

Throughout the investigation one type of fibre reinforced cement unit with 

similar properties and geometry was used. A channel section was chosen to 

provide a surface reinforcement on the area which was subjected to maximum 

flexural tensile stresses and strains. The length and width of a channel depended 

on the dimensions of the concrete beam. 

In choosing the thickness and height of the upstands, the following points 

were considered: - 
1) The thickness and height of the upstand should be such, that an adequate 

tensile strength is provided so as to avoid surface cracking at the working 

load conditions. 

2) Consideration was also given to eliminate cracking under design working 

load, at the soffit of the beams as well as at the level of the reinforcement 

to prevent the corrosion of the steel. The concrete cover to the main 

reinforcement was 35mm and the maximum size of bar used was 20mm; 

this gave an overall dimension of 55mm. For the purpose of this research 

the average height of upstand chosen was 60mm. 

Considering these points, the cross section chosen for the f. r. c. channels 

was 150mm wide, 6mm thickness with 60mm height of upstands, the length of the 

channel being 4900mm. 

The cross section of the f. r. c. channels is shown in Fig. 5. 



3.3. Materials 

3.3.1 Lightweight Aggregate Concrete 

The lightweight aggregate chosen was the sintered pulverised fuel ash 

commercially known as "Lytag". The choice of this type of aggregate was made 

mainly because previous investigations showed, that it had good prospects in 

structural applications (35). 

The constituents of the lightweight aggregate concrete used in the investigation 

were rapid-hardening cement, natural sand zone 3 as a fine aggregate and medium 

"lytag" 13 - 10mm as coarse aggregate. 

The use of natural sand as a fine aggregate was mainly intended to improve 

the structural pieperties of the concrete (12) (3). 

The intended 28 days cube strength was 50 N/mm2 with a concrete air dry 

density of 1700 - 1800 Kg/m3. When choosing the size and mix proportions of 

the aggregate, the recommendations of the manufacturers (68) and a previous 

research (69) were considered. The mix proportions finally adopted were 

1: 0.83: 1.64 by weight for rapid-hardening cement, natural sand and medium 

"Lytag" respectively. 

The grading of the aggregate used was checked according to the 

B. S. 3797: 1964 (70) for the lightweight aggregate and B. S. 882 and 1201: 1965 (71) 

for the natural aggregate; this is shown in Fig. 9. The sieve analysis tests 

were carried out according to B. S. 812 (72). 

Trial mixes for the concrete were carried out to fix the water cement 

ratio for the required workability and strength. The water cement ratio was 

found to be 0.59, which gave a medium workability for the mix. The air-dry 

density for the concrete varied between 1675 Kg/m3 and 1860 Kg/m3. 

To improve the workability of the mix without increasing the water cement 

ratio and to maintain the required cube strength the admixture "Febflow" standard 

grade was added to the mix. The amount of "Febflow" added was 140cm3 per 

50 Kg cement; this was according to the manufacturers' recommendations. 



3.3.2 Reinforcement 

The sizes and types of the various bars used in this research as main 

tension reinforcements were as follows: - 

1) mild steel; plain round bars with a nominal yield stress of 275 N/mm2. 

The sizes used were 12mm, 16mm and 20mm. 

2) Unisteel 410; hot rolled deformed bars with a nominal yield stress of 

410 N/mm2. The sizes used were 12mm, 16mm and 20mm. 

3) Unisteel 550; cold worked deformed bars, produced by cold stretching 

Unisteel 410, with a nominal 0.2% proof stress of 550 N/mm2. The sizes 

used were 16mm and 19.05mm. 

4) Kam 60; natural hard ribbed steel, manufactured in Sweden. The figure 

60 refers to the yield stress in Kg/mm2. The nominal yield stress adopted 

in this research was 590 N/mm2. The sizes used were 12mm and 16mm. 

5) Kam 90; cold worked steel, produced by cold stretching Kam 60 steel by 

5%. The number 90 refers to the 0.2% proof stress in Kg/mm2. The 

nominal 0.2% proof stress adopted in the research was 875 N/mm2. The 

size of the bars used was 16mm. 

6) Lancasteel 60; hot rolled heavily deformed steel bars, the number 60 refers 

to the yield stress in Ksi. The nominal yield stress adopted in this research 

was 410 N/mm2. The size of the bars used was 16mm. 

Typical stress-strain curves for the various types of reinforcement are shown 

in Fig. 1 their tensile properties are given in table 5. 



CHAPTER FOUR 

THEORETICAL BASIS OF ANALYSIS FOR STRESSES IN CONCRETE, STEEL 

AND f. r. c. CHANNELS 

4.1 Introduction 

In reinforced concrete flexural members the steel stress is an important 

factor when determining the width of the cracks and the curvature of the beam. 

When determining the steel stresses in composite beams the stresses in the f. r. c. 

channels are also an important consideration. 

The steel stresses for ordinary and composite beams are calculated by 

employing the general equation of compatibility of moments. In using this equation 

it is important that the level of the neutral axis and the geometric shape, centroid 

and area of the compressive stress distribution in the concrete are determined. 

For composite beams it is necessary to determine the stress distribution in the 

f. r. c. channels in order to calculate the position and magnitude of the tensile 

force. 

Relationships based on theoretical considerations and analysis of test results 

have been established with the applied moment for the neutral axis level, flexural 

compressive strain in concrete, area and centroid of the compressive stress 

distribution in concrete and stress in the f. r. c. channels. These relationships 

have been established to enable the stress in the tension reinforcement for both 

ordinary and composite beams to be calculated at any level of applied moment. 

4.2 Variations of the Neutral Axis Level 

The level of the neutral axis is an important factor when determining the 

steel stress and the curvature of reinforced concrete flexural members. In 

general, the position of the neutral axis depth at any level of applied moment 

depends upon the geometry of the section (this includes the percentage of steel), 

the properties of the materials and whether the member is cracked or not. Conditions 

of equilibrium for the member should also be satisfied. 



The depth of the neutral axis for a fully cracked or an untracked concrete 

section can be determined by employing the elastic theory approach. A fully 

cracked concrete section is that when most of flexural cracks have been developed 

and that the contribution of the concrete in the tensile zone has become negligible. 

At the stage between the untracked and fully cracked conditions the level of the 

neutral axis can be calculated by relationships based on experimental results. 

The variation of the neutral axis level in relation to the applied moment at this 

stage is primarily caused by the propagation of flexural cracks towards the 

compression face of the member. 

For the stage between the uncracked and fully cracked conditions of a concrete 

member a simplified straight line relationship has been suggested (73). However, 

analysis of the experimental results of previous investigations suggests that a 

curvilinear relationship could be used. (4) (74) (75). 

In this research a study is made regarding the variation of the neutral axis 

depth in relation to the applied moment up to failure. An idealised relationship 

is suggested between the level of the neutral axis and the ratio of the applied to 

ultimate moment as shown in Fig. 10 . 

The relationship can be divided into the following stages: - (The values of 

Co, C1 and C2 are discussed in 7.2) 

Untracked stage From 112/Alu =0 to M/Mu = Co 

At this stage it is assumed that the concrete is untracked and the neutral 

axis level can be determined by considering an untracked transformed section 

employing the elastic theory approach. The equations are: 

For ordinary beams: 

n= 
Xuo 

=2+2 (m - 1)p (4.1) 
dl 2 [A+ (m - 1) ]p 

For composite beams: 

Xuc 
n=d= 1 

0.5 X+ (m - 1)p + (ml - 1)pl T, 
2 

(4.2) 

X+ (m - 1)p + (m1 - 1)pi q 

Where A- d/d1,9 = d2/d1 



The derivation of equation 4.2 is shown in appendix D1, a similar approach 

can be employed for deriving equation 4.1 

For ordinary lightweight concrete beams the range of the untracked behaviour 

is very limited mainly because of the early formation of cracks in these members. 

This suggests that the value of Co in Fig. 10 can be taken as zero and that the 

neutral axis level would rise above the level of the calculated value for the untracked 

transformed section once loading has commenced. Experimental evidence, however, 

in this respect is necessary. 

Transition Stage From M/Mu = Co to M/1M = Cl 

At this stage the movement of the neutral axis as mentioned earlier is 

greatly influenced by the formation and extension of the flexural cracks. When 

cracking occurs, the steel will be strained considerably, mainly because of the 

sudden transfer of the tensile stresses from the concrete to the steel. This immediate 

increase in the steel strains can further raise the levelof the neutral axis towards 

the compression face of the member. 

Considering a gradual propagation of flexural cracks, the variation of the 

neutral axis with the applied moment can follow a curvilinear relationship. This 

behaviour as mentioned before can also be seen in results of previous investigations. 

It is therefore suggested that a parabolic curve may be used for the relationship at 
this stage between the neutral axis depth and the ratio of applied to ultimate moment. 
The assumptions used and the derivation of the equations can be seen in appendix D3. 

The equations are: - 

For ordinary beams: 

X= Xuc 
- Xcc 

C1 
(R2 -2 C1ß) + Xuc (4.3) 

For composite beams: 

X= Xuc - Xcc 

Co2 -2C 0C1 + C12 

( R2 -2 C1 R+ C12 )+ Xcc (4.4) 

For both equations R= M/Mu 



Fully Cracked Stage From M/Mu = C1 to 117/Mu = C2 

At this stage the concrete is assumed to be fully cracked, and the neutral 

axis depth can be determined by considering a cracked transformed section 

employing the elastic theory approach. The variation of the neutral axis at this 

stage is very small and can almost be neglected. 

The equations are: 

For ordinary beams: 

n= Xco = mp (ý+2- 1) (4.5) 
dl mp 

For composite beams: 

Xcc = (mp + 
dl 

2 
mlPi q 

1+ 
2 (mp+m1P1 

-1 (4.6) 
(mp+mlPl7 

The derivation of equation (4.6) is given in appendix (D2), a similar approach 

can also be employed for deriving equation (4.5) 

Non-elastic stage From M/Mu = C2 to M/Mu =1 

At this stage it is assumed that steel and/or concrete are in their non-elastic 

range of behaviour, and that. therefore the rate of strain due to the applied moment 

is considerably increased. This increase in the rate of strain, especially in the 

steel, can have a considerable effect on raising the neutral axis level towards 

the compression face of the member. Another factor which also may be considered 

is that the rate of increase in the steel stress at this stage is much lower than 

that at the elastic range of behaviour. The level of the neutral axis will therefore 

rise to provide a greater lever arm to the forces in the steel, thus satisfying the 

conditions of equilibrium. 

An attempt is made to correlate the neutral axis depth calculated by the 

strain compatibility method at the ultimate moment with the value of AT/Mu = 1. 

The behaviour described above is generally applicable to under reinforced beams. 



4.3 Analysis of Compressive Stresses in Concrete 

4.3.1 Stress-Strain Relationship of lightweight Concrete in Compression 

The rectangular - parabolic design stress-strain curve for concrete in 

compression given in CP110, and as shown in Fig. 7 incorporates the properties 

of normal weight concrete. This is shown by the initial tangent modulus drawn to 

the curve at zero strain given in terms of the modulus of elasticity for normal 

weight concrete, and also by the value of strain at the junction (e j). 

For lightweight concrete having a similar strength to that of normal weight 

concrete the modulus of elasticity would be lower. Assuming a similar stress-strain 

relationship in compression, the initial tangent modulus at zero strain for lightweight 

concrete will be lower. This will affect the value of strain at the junction (ej), which 

will be greater than that for normal weight concrete. Considering both concretes 

have the same maximum value of strain (0.0035), the area under the curve for 

lightweight concrete, at the same level of stressv. would be smaller than that of normal 

weight concrete. 

In this research the stress-strain curve for the lightweight concrete was 

derived, employing the initial modulus of elasticity for lightweight concrete as 

recommended by CP110. This is shown in appendix (A). The stress-strain 

relationship without incorporating the partial safety factor for the material is shown 

in Fig. 6a. The design relationship can be obtained by dividing the values of Fig. 6a 

by the partial safety factor (ym=1.5). 

4.3.2 Variations of the Flexural Compressive Strain in Concrete 

For determining the shape, centroid and area of the stress distribution across 

the depth of the compression zone it is important that the strain profile is lmown. 

The compressive strain profile is also important in the determination of the 

curvature of a flexural member. 

In this research it Is intended to study the variation of the flexural compressive 

strain in the concrete in relation to the applied moment up to failure. As shown in 

Fig. 11 aa simplified bilinear relationship is suggested between the ratio of the 

applied moment to ultimate moment and the maximum compressive strain in the 

concrete. This concept agrees well with experimental results of a previous 



investigation on normal weight concrete flexural members (4). The variation 

of the compressive strain in the concrete is assumed to have a straight line 

relationship with the applied moment up to a value of M/Mu = Cp (The value of 

Cp js discussed in 7.4). The values of the concrete strain at this stage can be 

predicted by employing the equation of compatibility of moments together with the 

assumption of a straight line strain distribution. For the composite beams the 

moment of the tension side also includesthe resisting moment of the f. r. c, channels. 

However, at the value M/Mu = Cp, the f. r. c. channels in the composite beams 

might have been cracked. If this was the case, the analysis of the composite beams 

should be carried out without considering the effect of the f. r. c. channels. 

In the non-elastic phase (From M/Mu = Cp to M/Mu = 1) it is assumed that the 

concrete and/or steel are in their non-elastic range of behaviour and that, 

therefore, the rate of strain in the concrete is considerably increased due to applied 

moment. What also may affect the values of the concrete strain is the considerable 

rise of the neutral axis and the consequent reduction in the area of the compression 

zone. In order to satisfy the conditions of equilibrium, higher stress values will be 

developed in the concrete, which will lead to a greater rate of strain up to failure. 

At the moment of failure (M/Mu = 1) the maximum strain in the concrete 

(emax) will be reached. The factors which may affect the maximum compressive 

strain in the concrete are discussed in 5.2.1 , As per CP110 the value of e, max 
is equal to 0.0035. The relationship at the non-elastic phase as shown in Fig. 1 1a 

is represented by a straight line between M/Mu = Cp at ec=ep and M/Mu =1 

at e. max = 0.0035. 

4.3.3. Variations- of the Area and Centroid of the Compressive Stress Distribution 

in Concrete 

The area and centroid of the compressive stress distribution in the concrete 

are important considerations when determining the steel stresses in flexural 

members. In CP110 the stress-strain relationship for concrete in compression is 

assumed to have a parabolic-rectangular distribution. The derived relationship for 

lightweight concrete is shown in Fig. 6a 



I 

ei 

For (1) when the compressive strain in concrete ec is less or equal than 

(0< ec <_ ej) 

ß 
4 ej - cc 

12 ej -4ec 

a= 
3 ej - cc 

ei - 3ec 

Values of coefficients for the centroid and area of the stress distribution 

diagram depend upon the magnitude of the compressive strain in the concrete. 

In flexural members this would depend upon the flexural compressive strain in 

the concrete at the extreme element of the compression zone. It is therefore deemed 

necessary to derive relationships between the concrete compressive strain and 

the centroid and area of the compressive stress distribution diagram in the concrete. 

From thcseit would then be possible to predict the values of ß for the centroid of 

the stress distribution diagram and a for the area of the stress distribution diagram 

at any level of moment once the maximum flexural strain in the concrete at that 

moment is known. Fig 12 b shows the variation of the values of ß and a in 

relation to the compressive strain in the concrete. The geometrical shape of the 

stress-strain relationship of the concrete as shown in Fig. 12 1 was considered in 

the derivation of the equations. This is shown in appendix E. 

) The equations are: (Reference can be made to Fig 12 

For (ii. ) (e; ec c ems) 

p 

ý- 

6 ee2 4 ee e, + e32 

12 eel _4 ee ej 

-3 cc - eý 
a 

3 ee 

ej a 0.00282 see appendix (A) Fig. 6 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

emax = 0.0035 (assumed compressive strain in concrete at failure) 



Values of ec which represent the maximum concrete compressive strain 

at the extreme element of the compression zone of flexural members can be 

determined at any level of applied moment either from experimental data or 

calculated as shown in 4.3.2. 

4.4 Analysis of Stresses in f. r. c. Channels 

Magnitude, distribution and centroid of tensile stresses in the f. r. c channels 

are important in determining the steel stresses for composite beams. The 

assumed distribution of tensile stress in the f. r. c, channels for the composite beams 

is shown in Fig. 13. 

Considering the basic assumptions as stated in 4.5.1 to calculate the steel 

stresses in composite beams (plane sections remain plane after bending and perfect 

bond between the f. r. c, channel and concrete), the composite section can be analysed 

by the simple bending theory. As shown in Fig. 11b, a bilinear concept is used for 

the relationship between the maximum stress in the f. r. c, channels and the applied 

moment, taking into consideration whether the concrete section is cracked or not. 

For the first stage the composite section is analysed assuming an untracked 

concrete section. Once the concrete has cracked (at Me) the composite section 

should then be treated as a cracked concrete section taking into consideration the 

initial untracked behaviour and an effective values for the second moment of area 

of a cracked section and modulus of elasticity for the f. r. c, channels and concrete. 

The mathematical expressions for the calculation of the maximum stresses in 

the f. r. c. channel at the two stages are given in the following: 

(i) For (M < Me) 

fab =M (d - Xuc) ml (4.11) 
Iuc 

Where Mc : is the cracking moment for the concrete at the interface. 

Mc = frc Iuc (4.12) d' Xuc 



(ii) For (Mc <M <_ Ma) 

At an applied moment Al (greater than the cracking moment of the concrete Me) 

as shown in Fig. 11b the stress at the soffit (fab) is equal to: 
Ii 

fab=fab+fab 

Where fab and fab are the stresses corresponding to the bending moment (Me) 

and \1 - Mc) respectively. 

Therefore: 

fab = Mc (d Xuc) m1 + (M - MZc) (d - Xcc) m1 (4.13) 
Iuc P, Ice 

Where ß, is a factor depending on an effective second moment of area for 

a cracked section (Icc) and the modular ratio (mi). 

The assumed cracking moment of the concrete in the composite beams is that 

when cracks are observed at the interface. This is mainly because cracks which 

may form in the confined concrete will have no significant effect on the flexural 

behaviour of the member due to the restraint action of the f. r. c units. 

Average values of the modulus of rupture for lightweight concrete are between 

2 and 2.5 N/mm2. This, however, can be increased to 3 N/mm2 for the composite 

section at the interface dae to the restraint action of the f. r. c. channels. 

Considering the straight line stress distribution for f. r. c. channel as shown 

in Fig. 13 the tensile stress at the top element of the upstand (fat) can be obtained 

as follows: - 
i fat =d-d-x fab (4.14) 

' d-x 

The tensile force in the f. r. c channel (Ta) can be determined from the following: - 
Ta = (fat + fab) (d - t)t + fab. b. t (4.15) 

To determine the effective depth d2 for the tensile force Ta, the centroid of 

the stress distribution should be determined. The distance (da) for the centroid 

of the stress distribution from the soffit can be obtained from the following 

expression: 

da = fat (d2 - t2) + (fab - fat) (d2 + td - 2t2) /3 + fab . b. t/2 (4.1G) 
(fat + fab) ( 'd - t) + fab .b 

This was obtained by taldng moments of area of the stress distribution in the f. r. c. 

channel shown in Fig. 13, about the soffit of the channel. 



Therefore d2 =d- da 

4.5 Calculation of Steel Stresses 

4.5.1 Assumptions 

The assumptions made for the calculation of the steel stresses for ordinary 

and composite beams are as follows: 

(1) Average strain distributions for concrete in compression, reinforcement 

and the f. r. c. channels are derived from the assumption that plane sections 

remain plane after bending, irrespective of whether the concrete section 

is cracked or not. 

(2) The stress-strain relationship for concrete in the compression zone of a 

beam follows a parabolic-rectangular distribution as shown in Fig. Ga 

(3) The contribution of the concrete in tension is ignored. 

(4) The variation of the neutral axis depth in relation to the ratio of applied 

to ultimate moment follows a parabolic straight line relationship as 

shown in Fig. 10. 

(5) The relationship between the flexural compressive strain and the applied 

moment is based on a bilinear concept as shown in Fig. 11 

Additional assumptions made for the composite beams are as follows: - 

(1) Stresses in the f. r. c. channels can be obtained either from the bilinear 

relationship between the stress and the applied moment suggested earlier 

or from the experimental stress-strain curve of the f. r. c. units as shown 

in Fig. 8 

(2) The stress gradient for the f. r. c. channels is a straight line which passes 

through the neutral axis Fig. 13. 

(3) The contribution of the f. r. c. channels on the tensile side is ignored once 

cracking occurs in them. 

(4) There is a perfect bond between the f. r. c. channels and the concrete 

enabling the units to be fully co-operative in the composite action. 

The mathematical procedure adopted for the calculation of the steel stress 

for the ordinary and composite beams is discussed in the following paragraphs. 



4.5.2 Ordinary Lightweight Concrete Beams 

The steel stress at any level of moment is calculated by employing the 

general equation of equilibrium for the applied moment and the internal moment 

of resistance based on steel. The equation is: 

M= As fs (d1 -ß x) (4.18) 

The values of the neutral axis depth (X) and the coefficient for the centroid 

of the compressive stress distribution (ß) can be determined at any level of 

moment as shown in the previous paragraphs. 

For X paragraph (4.2) 

For ß paragraph (4.3.3) 

The steel stress may also be checked by the equation of equilibrium for the 

tensile and compressive forces 

As fs =a fcb X (4.19) 

This, however, requires an accurate prediction of the value (fc) at any 

calculated or experimental value used for the strain in the concrete (ec) 

The stress-strain relationship assumed for the concrete in the compression 

zone of flexural members is shown in Fig. 6a. It should be noted that this 

relationship is based on direct compressive tests on concrete cylinders. 

The stress-strain relationship in flexure, as discussed in 5.2.2, - may be 

different from that assumed above. Therefore, the results obtained by using 

the idealised stress-strain relationship, Fig. 6a, may not be very accurate. 

4.5.3. Composite Lightweight Concrete Beams 

The steel stress in the composite beams is calculated by the following 

stages: 

(1) For applied moment up to the cracking moment of the f. r. c. channels 

(M S Ma). At this stage the contribution of the f. r. c. channels in 

tension is considered in the calculation. The equation employed is: 

M= fs. As (dl -ß X) + Ta (d2 -ß X) (4.20) 

The values of X and ß can be determined in a similar manner as that for 

the ordinary beams (explained in 4.2, and 4.3.3. ). The values of the tensile force 



in the f. r. c. units (Ta) is dependent upon the state of the composite section 

whether the concrete is cracked or not. 'Iltis is discussed in 4.4. The effective 

depth d2 can also be determined as shown in the same paragraph. 

(2) For an applied moment greater than the cracking moment of the f. r. c. 

channel (M >_ Ma). 

At this stage the contribution of the f. r. c. channels in tension is ignored and 

the section is analysed as that for ordinary beams. This is mainly because the 

maximum steel stress will occur in the vicinity of cracks where the restraint 

action of the f. r. c. channel is not effective. The equation employed is the same 

as that for the ordinary beams (e. g. equation 4.18 in 4.5.2) 

The values of 3 and X can be determined in similar manner as explained 

previously. 

4.5.4 Summary for the Theoretical Calculation of Steel Stresses 

(1) Calculate the ultimate moment of the member by a suitable plastic 

method. 

(2) For any level of moment calculate the neutral axis depth as shown in 

4.2 and Fig. 10. 

(3) For any level of moment calculate the maximum flexural compressive 

strain in the concrete as shown in 4.3.2 and Fig. 11a. 

(4) Calculate the values of ß and a for the centroid and the area of the 

compressive stress distribution in the concrete, as shown in 4.3.3. 

and Fig. 12. 

(5) For ordinary beams the stresses are calculated by equation (4.18) in' 

4.5.2. 

(6) For composite beams the magnitude and the centroid of the tensile 

force in the f. r. c. channels are calculated in accordance with 4.4. 

(7) Steel stresses for the composite beams are calculated in accordance 

with 4.5.3. 

4.6. Suggested Method for Calculation of Steel Stresses Based on Experimental 

Results 

In order to demonstrate the validity of the theoretical predictions for the 



steel stresses, calculations using the experimental results (Neutral axis depth, 

compressive strain in concrete and tensile strain in the f. r. c. channels) 

should be carried out. In these calculations the general equations for equilibrium 

(4.18) and (4.20) for the ordinary and composite beams respectively can be used. 



CHAPTER FIVE 

THEORETICAL CONSIDERATIONS FOR LIMIT STATES OF DESIGN 

FOR ORDINARY AND COMPOSITE BEAMS 

5.1 Introduction 

Until recently the design of an individual reinforced concrete member was 

based on either the elastic theory or the load factor method as recommended by 

CP114. 

The limit state theory recently adopted in CP110 has the concept for considering 

various limit states in design. In the assessment of these limit states partial 

safety factors are employed for the strength of the materials and magnitude of loads. 

The values of these partial safety factors are predicted from statistical data; they 

take into consideration the probable variation in the strength of the constructional 

materials and magnitude of the loads on the structure throughout its specified design 

life. 

The concept of limit state design, however, has been well explained by many 

investigators (64) (7G) (77) (78); hence it is considered nctnecessary to discuss this 

in more detail. 

The principal limit states considered in design as per CP110, which are 

relevant to this research are the following: - 
(1) Limit State of Ultimate Strength. 

(2) Limit states of serviceability 

(i) Deflection. 

(ii) Cracking. 

For the limit state of ultimate strength an adequate safety factor is provided 

for the working load condition by employing partial safety factors for the materials 

and loads. This will also ensure that the stress in the steel does not exceed its 

limit of proportionality. 

Apart from limiting the span - depth ratios and the spacings of the reinforcements, 

the code does not recommend any suitable method for the control of cracking and 
deflection. 



In general, methods of calculating the various limit states proposed in the 

past should be reviewed, and if possible modified to fit the requirements of fibre 

reinforced cement composite concrete construction. 

In appendix (F) methods for calculating the limit state of deflection proposed 

in the past are reviewed. 

In the following paragraphs proposed methods, behaviour and points associated 

with the prediction of ultimate strength, cracking and deflection for ordinary and 

composite lightweight concrete beams are discussed. 

5.2 Limit State of Ultimate Strength 

5.2.1 General Considerations and Assumptions 

The flexural failure of reinforced concrete members occurs when either 

the concrete or steel reaches its maximum strain capacity. Since steel usually 

has a higher strain capacity compared to that of concrete, failure often occurs 

by the concrete being crushed in the compression zone. 

In case of under reinforced beams failure starts by yielding of the steel which 

will be followed by the crushing of the concrete. The maximum compressive strain 

in concrete may vary between 0.19 to 0.52% depending on the shape of the compression 

zone for the beam, the position of the neutral axis, the quality of concrete and the 

rate of loading (37). The shape of the compressive stress distribution diagram for 

a flexural concrete member mainly depends upon the quality of the concrete and 

also on the rate of loading (37). 

For under reinforced beams, where the load-carrying capacity is determined 

almost entirely by the tensile force that the steel is capable of resisting, the shape 

of the compressive stress distribution would not significantly affect the ultimate 

resistance of the beams; at the most, it may slightly alter the lever arm of the 

internal forces. 

The basic assumptions for calculating the ultimate strength as per CP110 are 

as follows: 

(1) The strain distribution for concrete in compression and the strains in the 

reinforcement are derived from the assumption that plane sections remain 

plane after bending. 



(2) For the concrete in compression a rectangular-parabolic stress 

distribution is assumed. - An alternative to this is a simplified version 

using a rectangular stress block. The rectangular-parabolic design 

curve incorporating the partial safety factor for the concrete (Ym=1.5) 

as per CP110 is shown in Fig. 7a, the assumed maximum compressive 

strain in the concrete being 0.0035. 

(3) The concrete does not resist any tension. 

(4) A specified design stress-strain relationship for the steel is given 

incorporating a partial safety factor Ym=1.15. This is shown in 

Fig. 7b. 

From the above considerations at the ultimate load condition the depth of 

the neutral axis is adjusted by a trial and error procedure so that the compression 

forces balance the tensile forces across the section. With the attainment of 

equilibrium the ultimate design moment can be determined by taking moments for 

the tensile forces about the centroid of the compressive stress block. The working 

moment can then be obtained by dividing the design ultimate moment by the appropriate 

partial safety factors for the live and dead loads. 

5.2.2. Comments on the Basic Assumptions 

Considering the previous basic assumptions for predicting the ultimate strength 

of flexural members, the method as used in CP110 would give only a fairly accurate 

value for flexural members when the following points are considered: - 
(1) The assumption of a straight line strain distribution may not be valid at 

the ultimate condition according to the theory proposed by Baker (79), 

where he assumes that there is a slip between the steel and the concrete. 
(2) Partial safety factors for the materials and loads should not be used. 

(3) The maximum compressive strain in the concrete should be carefully 

assessed, taking into consideration the factors previously discussed in 

5.2.1. 

(4) The stress-strain relationship for the reinforcement should be that obtained 

from a direct tensile test. It should also be emphasised here that the 



(5) 

design stress-strain curve for the reinforcement suggested by CP11O 

Fig. 7b, does not allow for any strain hardening properties which some 

of the steel reinforcements are capable of exhibiting. It can also be seen 

that there is no proper distinction made between hot-rolled and cold- 

worked steels. The differences in their stress-strain characteristics 

are that the cold-worked steel barq in general, have no yield plateau, 

and are capable of exhibiting high stresses with rather low strains when 

compared with hot-rolled bars. The code, however, does allow a 12.2% 

increase in stress for a limited range of diameters. when cold-worked 

steel bars are used. 

The distribution of the concrete stress in the compression zone in flexure 

can be different from that obtained from compressive tests on cylinders. 

This is mainly due to the fact that in a flexural member the different levels 

of the compression zone undergo strain at different rates, which are 

proportional to their distance from the neutral axis. It would therefore 

be rather difficult to assess the true stress distribution for the compression 

zone. In this respect most of the previous theories depended on 

experimental data. However, since the shape of the stress distribution 

diagram would not significantly affect the ultimate strength of an under- 

reinforced beam, the rectangular-parabolic stress distribution diagram 

suggested by the code may be used. Additionally, CP110 does not give 

in particular the compressive stress-strain relationship for lightweight 

concrete which can be used in design. This relationship, however, can 

be derived from the assumptions stated by CP110 and the CEB (10) 

recommendations for the shape of curve and the value of initial tangent 

modulus of elasticity. This is discussed in 4.3.1. , and the derivation 

is given in appendix (A). 

5.2.3 Composite Beams 

An assessment of the ultimate strength for composite beams can be obtained 

by following a similar approach to that employed for the ordinary beams. By 

assuming a full interaction between the concrete and the f. r. c. channels, 



assumption (1) in 5.2.1. is still valid. This follows that the strain in the 

f. r. c. channels can be obtained from the assumption of a straight line strain 

distribution. However, at the ultimate load condition the tensile strain induced 

at the soffit of the composite beams will be greater than the tensile strain capacity 

of the f. r. c. units. Therefore, at this stage, and when only the ultimate strength 

of the beam is to be calculated, the contribution of the f. r. c. units can be ignored. 

The contribution of the f. r. c. channels, if any, can be considered as an additional 

factor of safety. 

5.3 Limit State of Deflection 

5.3.1. Introduction 

The limitations on the amount of deflection by various codes of practice are 

mainly based on the smallest deformation which neither impaires the appearance 

of the structure nor causes any damage to finishes or partitions. In research 

carried out in Germany (80). it was found that the deflection for the majority of 

structures which had given rise to complaint had a deflection more than span/250. 

It was suggested that this limit might vary according to the capacity of the 

partitions or finishes to absorb or resist strain, since the damage to these had 

often been the criterion for limiting the deflection (81). 

The design of concrete members using the limit state theory, while employing 

high strength materials has made it possible for the size of such members to be 

reduced when only the strength of the material is taken into consideration. Since 

the increase in strength of the material is not associated with a corresponding 

increase in the elastic modulus, the flexural rigidity of such members is 

considerably reduced, and this will result in a greater deflection for the members 

under the same applied load. In addition, by employing high working steel stresses, 

higher strains are expected leading to a greater curvature and possibly a greater 

width of cracks. Therefore, it would seem necessary in certain cases to carry 

out deflection calculations in order to assess the correct amount of deflection 

that would result under load. 



Various methods have been proposed for the calculation of deflection; 

these can predict the deflection for laboratory specimens within an accuracy of 

20% (81) (82). These methods are reviewed in appendix (F). 

In general, the deflection of a beam can be calculated if the magnitude and 

distribution of the curvature are known along the span of the beam. By employing 

the straight line theory the curvature of a homogeneous flexural member can be 

obtained from the following expression: - 

1= ee + et 
rb dl 

(5.1) 

Where ec and et are the maximum compressive and tensile strains in the concrete 

and steel respectively. 

The curvature of an untracked concrete section can also be expressed in the 

following form: - 

ý= NI 
Ec Iu 

(5.2) 

Iu : second moment of area for an untracked section. 

For a cracked section the assessment of the curvature becomes rather 

difficult. Once the concrete is cracked, a condition will be created where the 

distribution of the curvature along the span of the beam does not have a linear 

relationship with the moment. This is mainly due to the fact that the values of 

the steel strains which directly affect the curvature vary between a maximum value 

in the vicinity of the cracks and a minimum value at a point between two adjacent 

cracks. This variation for the steel strain is mainly caused by the restrained and 

non-restrained action of concrete at and between the cracks. Since the deflection 

depends more upon the curvature along the span of a beam than at a particular 

point, the assessment of the curvature should be based on the average strain 

values for the steel where the restrained action of the concrete in the tension zone 

is considered. I 
The restraint action of the concrete in the tensile zone has been considered 

in the calculation of the curvature by various existing theories in different ways; 

these are discussed in detail in appendix (F). 



In the following paragraphs the considerations, behaviour and proposed 

methods of calculation for the deflection of ordinary and composite lightweight 

concrete beams are discussed. 

5.3.2. Considerations for Ordinary and Composite Lightweight Concrete Beams 

Lightweight concrete, in general, is characterised by having a lower modulus 

of elasticity compared with normal weight concrete. This will to a certain extent 

affect the deflection behaviour of the structural member. However, the deflection 

depends upon the flexural rigidity, of the member, i. e, the modulus of elasticity 

(Ec) as well as the second moment of area (1). 

For the same geometrical concrete section analysed by the elastic theory, 

concrete of lower modulus of elasticity will lead to a greater neutral axis depth; 

consequently a greater moment of inertia i>, results. 

This indicates that the reduction in the flexural rigidity of the member due to the 

lower modulus of elasticity is partially compensated by an increase in the moment 

of inertia. To illustrate this point, a graph is established as shown in Fig. 14, 

for both ordinary and composite beams relating the ratio of the neutral axis depth 

to the effective depth (n =. I) to the modular ratio (m = Es/Ec) 
dl 

The equations used are based on the elastic theory approach for a cracked 

transformed section incorporating the properties of the test beams. The 

equations are discussed in 4.2 

For the ordinary beams 

n= Xco _ mp (I I+2- 1) § (4.5) 
d1 mp 

For the composite beams 

n= Xcc 
if-, 

_ (nip + mlplr) )(1+2 (mp + mLE1 i12)2 -1)5 (4.6) 
(mp + m1 pl q) 

The values of the parameters incorporated in these equations are: - 

p: As shown in the graph 

m1 : Ea = 0.7, p1 = Ach = 0.03628, Ti = d2 = 1.1 

Ec bd2 d1 



From the graph it can be seen that the greater the value of the modular 

ratio (i. e. lower concrete modulus of elasticity) the lower is the level of the 

neutral axis depth. 

In Fig. 14 a direct comparison can also be made between the level of the 

neutral axis depth of ordinary and composite beams. For a concrete section with 

a modular ratio of 12 and a steel percentage area of 0.582, the neutral axis depth 

of a composite beam is 16%o greater than that of an ordinary beam. The difference 

between the level of the neutral axis depth of ordinary and composite beams decreases 

when higher percentages of steel are employed; for a modular ratio of 12 and a steel 

percentage of 1.643 the difference is 6%. 

It can also be seen from the same graph that when lower values of the modular 

ratio. (m) are used (Le.,, high modulus of elasticity of concrete), the difference 

between the neutral axis level of the composite and ordinary beams becomes 

greater; this, however,, may be considered as an advantage for normal weight concrete 

composite construction. 

In general, a lower position of the neutral axis in concrete beams may result 

in the following advantages: - 

(1) Greater flexural rigidity for a cracked section. 

(2) A more efficient use of the material, that is by subjecting a larger area 

of concrete in compression. 

(3) A smaller concrete area in the tensile zone and reduction in cracking. 
Fig. 15 illustrates the effect of the ratio of the modulus of elasticity of the 

f. r. c. units to that of concrete on the level of the neutral axis depth. For this 

graph, equation 4.6 discussed earlier was used. 
From the graph it can be seen that the rate of change in the neutral axis 

(n = Xcc) with respect to the modular ratio (m1 = Ea/Ec) is very small. It 
-r- -Fl- 

can also be seen that the rate of change becomes smaller when high percentages 

of steel are employed. 

It must be emphasised here that the above considerations are limited to the 
type and shape of the f. r. c. channels employed in this research. 



5.3.3. Behaviour of Ordinary Lightweight Concrete Beams 

The load-deflection behaviour of the ordinary lightweight concrete beams 

is similar to that of normal weight concrete beams. However, with the existence 

of shrinkage cracks in the lightweight concrete, the load-deflection range 

within which the beam behave as an untracked member may be very limited. 

Furthermore, the contribution of the concrete in the tensile zone to the stiffness 

of the member may differ from that of normal weight concrete. 

To justify these arguments experimental results are necessary. 

5.3.4. Behaviour of Composite Lightweight Concrete Beams 

The load deflection curve of a composite beam in relation to that of an 

ordinary beam can be schematically represented as shown in Fig 16a. The load 

deflection behaviour of the composite beam can be divided into three main stages, 

these are: - 
(1) Uncracked stage (0 to 1. ) 

(ii) Partially cracked stage (1 to 3) 

(Concrete cracked but not the channel) 

(iii) Fully cracked stage (3 to 4) 

(both concrete and channel are cracked) 

The corresponding cross sections for each of these stages are shown in Fig. 17. 

These stages are discussed in the following: - 
(i) Uncracked stage, (section No. 1 in Fig. 17) 

The behaviour at this stage is based on the assumption that the section is 

untracked and that the materials are in their elastic range of behaviour. The 

relationship, therefore, is assumed to follow a straight line for the loading and 

unloading process. 

When a comparison is to be made between the flexural rigidities for ordinary 

and composite beams of similar properties and cross sections it must be realised 

that part of the concrete in the tensile zone of a composite beam is replaced by a 

material (f. r. c. units) with a relatively lower modulus of elasticity. This will 

result- in an overall reduction in the flexural rigidity (EI) for an untracked composite 

section. This may give the impression that the composite beams give a greater 



deflection at the untracked stage than the ordinary beams. However, this is not so 

because of the following: - 

(1) The second moment of area based on an untracked transformed section 

for the composite beams (Iuc) is only 1.67% and 2.1% less than that for 

the ordinary beams (Iuo) for steel percentages of 1.643 and 0.852 

respectively. Therefore, the overall difference in the flexural rigidity 

(EI) between ordinary and composite beams is minimal and will have 

little influence on the deflection. For the above values the area and modulus 

of elasticity of the f. r. c. units were taken into account for calculating 

the second moment of area for the composite beams. The neutral axis 

depths were calculated by employing equations 4.1 and 4.2 for the 

ordinary and composite beams respectively. 

(2) In the ordinary type of construction it is quite possible that cracks may 

initiate in flexural members once loading commences. Furthermore, 

the tensile strength of the concrete in the ordinary beams may not be 

fully utilized due to the existence of micro cracks in the concrete. 

In the composite beams a large area of the concrete in the tensile zone 

is confined by the f. r. c. channels. This will delay the formation of cracks 

and consequently the loading range within which the beam behave as an 

untracked member is increased. The cracking mechanism of composite 

beams is discussed in more detail in 5.4.2. 

(3) The formation of shrinkage cracks in flexural lightweight concrete members 

can significantly affect the deflection behaviour. The effect of these cracks, 

however, is normally ignored in ordinary reinforced beams. In composite 

beams the formation of shrinkage cracks will be delayed and their width 

reduced. This is probably due to a slow rate of shrinkage in the composite 

beams, thus allowing the concrete to have a greater strength and be more 

resistant to the induced tensile stresses. This is discussed in 5.4.2. 

Considering the above points, it is therefore reasonable to assume that 

the properties of concrete in tension will be fully utilized in composite 

beams and modified values for the tensile properties over those employed 

for ordinary beams can be considered in design. The above points may 



also suggest that for ordinary types of construction a fully untracked 

behaviour may not exist in reality especially for ordinary lightweight 

concrete construction. 

(ii) Partially cracked stage (sections Nos. 2 and 3 in Fig. 17) 

After the cracking load for the concrete is reached at point (1) in Fig. 16a, 

the slope of the curve will gradually change. The rate of this change will 

depend entirely on the rate of formation and propagation of the cracks 

in the tensile zone. The saving in deflection, therefore, will depend on the 

properties of the f. r. c. channels and on the amount of restraint action that 

these channels will exert on the width and extension of the cracks. It appears 

therefore that the contribution of the f. r. c. channels to the stiffness of the 

member is more pronounced at this stage. 

With the composite beams having a large area of concrete confined by the 

f. r. c. channels, the growth and propagation of the cracks will be more 

gradual and better controlled than with the ordinary beams. Therefore, 

the transition zone between the uncracked and fully cracked behaviour of the 

composite beams will be considerably longer than that for the ordinary 

reinforced beams. Comparison can be made between the transition zone for 

the ordinary beams (a - ä) and that for the composite beams (1 - 3), where 

the behaviour of the composite beams at this stage can be characterised by 

a curvilinear " relationship. 

Considering the curvilinear load-deflection relationship for composite beams, 

this stage can be divided for analytical purposes into two parts: 

(a) Partially cracked concrete (1 to 2) 

Where only part of the concrete in the tensile zone is assumed to be cracked. 
The corresponding cross section for this stage is No. 2 in Fig. 17. The 

uncracked concrete area in the tensile zone is equivalent to the confined 

concrete by the presence of the f. r. c. channel. The logic behind this 

assumption is that the f. r. c. channel is controlling the width and height of 
travel of the cracks. Therefore, the extension of the flexural cracks towards 

the neutral axis level is limited and will mainly be affected by the height of 

the upstands of the f. r. c. channel. 



(b) Fully cracked concrete (2 to 3). 

Where concrete in the tensile zone is assumed to be completely cracked 

and only the contribution of the f. r. c. channel is considered in the calculation 

of the flexural rigidity, the corresponding cross section for this stage is 

No. 3 in Fig. 17. The distribution of the curvature along the span of the 

composite beam can be lower and more uniform when compared with ordinary 

beams. 

(iii) Fully cracked stage (section No. 4 in Fig. 17) 

The behaviour at this stage is represented from points 3 to 4 on the curve 

shown in Fig. 16a. At point 3 it is assumed that the maximum tensile strength 

of the f. r. c. units is reached and cracks will form in the channels. 

At this stage the tensile stresses which are carried by the f. r. c. channels 

will be transferred to the steel at cracked concrete sections. This increase 

in the steel strain could affect the average curvature of the beam and a greater 

deflection is expected. 

However, the deflection behaviour at this stage can be affected by each, or 

a combination of the following factors: - 

(1) The degree of contribution of the f. r. c. channels to the flexural rigidity 

of the member. 

(2) The magnitude of the cracking load of the f. r. c. units in relation to the 

ultimate strength of the beam. 

(3) The effect of the fracture mechanism of the f. r. c. units, and the amount 

of flexibility that these channels exhibit before cracking. 

(4) The bond efficiency between the f. r. c. units and the concrete. 

At point 4 in Fig. 1Ga the deflection for both ordinary and composite beams 

is expected to be equal. This is especially so when the f. r. c. channels are 

severely cracked, and they are not making any more contribution to the 

flexural rigidity of the member. 



5.3.5. Methods of Calculation 

Approaches employed for predicting the short-term deflection for ordinary 

and composite lightweight concrete beams are discussed in the following: - 

Approach one - Existing Theories for Ordinary Beams 

To illustrate the extent of the existing theories in predicting the deflections 

for lightweight concrete beams, a comparison is to be made between the predicted 

values of deflections using these methods and those observed. The methods used 

are discussed in appendix (F). These are: - 
Based on a cracked section. 

CEB formula (37). 

Branson method (82). 

Yu and Winter method (83). 

Beeby and the Unified draft code method (81) (84). 

CP110 method (5). 

The calculated values obtained by employing the above methods are discussed 

in 7.7.2.4. 

Approach two - Empirical Method for Ordinary and Composite Beams 

In this approach the flexural strain distribution of the beam is to be used 

in the calculation of the average curvature. From the strain distribution the 

maximum compressive strain in the concrete at the top element of the compression 

zone, the strain at the level of the steel and the level of the neutral axis depth can 
be determined. From these values the experimental curvature (4 exp) can be 

obtained from the following expression: - 
' exp = ecexp (5.4) 

Xexp 

or 
ý exp = ec exp + etexp 

dl 
. 

Where 

(5.5) 

ecexp : experimental compressive strain in concrete at the extreme 

element of the compression zone. 



etexp : experimental steel strain 

Xexp : average experimental neutral axis depth 

The accuracy of this method in predicting the amount of deflection depends 

on the following points: - 

(1) The measured strain distribution across the depth of the beam represents 

the average values. 

(2) The general accuracy of the readings taken regarding strain measurements, 

deflection and the determination of the position of the neutral axis level. 

This method also proves that a logical approach can be made to calculate 

the average curvature of the beam from the observed values of the flexural strains 

and the neutral axis depth. 

Approach three - Proposed Method 

(a) - Ordinary Beams 

In this approach the average curvature of flexural members is calcualted 

by considering an average value for the steel stress. This average steel stress, 

is calculated by considering the restraint action of the concrete between the cracks 

in the tensile zone. As stated earlier in 5.3.1. , the steel stress is maximum in 

the vicinity of a crack and minimum at a point mid-way between two adjacent cracks. 

This is represented in a diagram shown in Fig. 18. 

To simplify the derivation of the average steel stress, the average contribution 

of the concrete in the tensile zone is represented in section 2.. 2 of Fig. 18. 

It is assumed that the average steel stress can be obtained by deducting the average 

stresses resistedby the concrete between the cracks from the maximum steel stress 

i. e. (save = fs - fs 

Hence the average curvature can be calculated from the following expression: - 
ýave=fs -fs 

Es (dl - X) 

it can also be expressed by 
e 11 

ý ave = (fs - fs) /Es + fc/Ec 

dl 

f 

.1 
(5.6) 

(5.7) 
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Where fs : maximum steel stress 

fs : average tensile stress resisted by concrete between cracks 

X: neutral axis depth for a cracked section 

fc : compressive stress in concrete at top element of the compression 

zone calculated by considering the contribution of concrete in tension 

Ec : modulus of elasticity of concrete 

To obtain the value of fs, the following procedure is adopted: considering Fig. 18; 

the tensile force Tc for the concrete in tension is equal to To = koAeft 

Where ko : constant depends on the distribution of the stress and bond efficiency 

of the steel 

Ae : effective concrete area in tension 

ft : average tensile strength of concrete 

By expressing 

Ae = K1 bd1 

ft - k2 fr (fr : modulus of rupture) 

The equation of the tensile force in the concrete becomes 

Tc = KO Kl K2 bdi fr = K3 bdl fr (5.8) 

The moment of resistance due to the force T. is Tc lc, le being the lever arm 

of the force Tc. 

The stress due to the contribution of concrete in tension (fs) is equal to: 

fs = Te 1e 

As(dl - ßX) 

By assuming 1c = dl -Px 

fs = K3 bdl fr/As 

a K3 fr/P 

Where p= As/bdl 

The average curvature as given in equation (5.6) is 4ave = (fs - fs) 
Es (dl - x) 

By substituting the value of fs in equation (5.6) 

(5.9) 

(5.10) 

ý ave = fs - 1c3 fr/p (5.11) 
Es (dl -x) 



ave Es (d1 - x) = fs - K3 fr/P (5.12) 

K3 = p/fr { fs - $' ave E. (d1 - x) 
} 

(5.13) 

From this equation with the experimental values of ave, X, fr and fs the value 

of K3 can be determined. 

It must be emphasised here that the assumption given in the CEB recommendations 

with regard to the calculation for the average steel stresses is similarly adopted 

in this method. The average curvature (as the CEB recommended (79), can be 

calculated from the following expression: - 

ý_ ec + et (5.14) 

dl 

et = et - et (5.15) 

Where cc : compressive strain in concrete 

et : strain in steel at a cracked section 

et`' : reduction of that strain including the contribution of the tension zone 

of the concrete. 

The sequence employed in the derivation of equation (5.11) (i. e.., some of the 

minor assumptions) is also influenced by a method suggested in the journal of 

the A. C. I. (85) for calculating the average curvature of flexural members. 

(b) Composite Beams 

The load deflection behaviour of the composite beams has been fully discussed 

in 5.3.4' . According to that, an idealised trilinear moment deflection relationship 

up to the level of the cracking moment of the f. r. c. channels (Ma) is assumed. 
This is shown in Fig. 16b. The corresponding cross sections for analysis are 

shown in Fig. 17. For a given moment (M) the curvature of a beam can be 

calculated as in the following: For reference see 5.3.4. 

(I) Uncracked stage 

For M <_ Me ; from 0 to 1 in Fig. 16b, and cross section No. 1 in Fig. 17. 
4=M (5.16) 

Ec 10 



Where Mc : cracking moment of concrete which can be calculated as 

shown in 4.4. 

Io : second moment of area based on an untracked concrete 

section 

Ec : initial modulus of elasticity of concrete 
/ 

(ii) Partially Cracked Stage 

(a) Partially cracked concrete 

For Me > M! 5 Mp, from 1 to 2 in Fig. 16b and cross section No. 2 in Fig. 17. 

Mc M- Mc 
Ec io 

+K 
Ec IP 

MP = Ma + Mc 

(5.17) 

(5.18) 

2 

Ip : is the second moment of area based on a partially cracked section, 

cross section No. 2 in Fig. 17. 

The neutral axis depth (dip) and the second moment of area (Ip) can be 

calculated by considering an untracked area of concrete equal to that confined by 

the presence of the f. r. c. channel in the tensile zone as shown in section No. 2 

Fig. 17. This is discussed in 5.3.4 for the partially cracked stage of the load- 

deflection behaviour. The assumptions and derivations of the equations are given 

in appendix H. 

(b) Fully Cracked Concrete 

For MpC M' Ma: from 2 to 3 in Fig. 16b, and cross section No. 3 in 

Fig. 17. 

Mc 
Ec Io + 

Mp Mc 

K Ec Ip K Ec Icc 
(5.19) 

Where 

(5.20) 



Ma : cracldng moment of the f. r. c. channel 

K, K: 
constants depending on an effective flexural rigidity for the section 

at the stage in consideration 

Values for constants K, K can be determined by applying the equation to 

experimental results. Using the foregoing relationship, it will be possible to 

calculate the curvature at any section along the member, consequently the deflection 

can be found by normal integration procedure. 

5.4 Limit State of Cracling 

5.4.1 Introduction 

The limitations on the width of cracks in reinforced concrete members are 

mainly intended to prevent corrosion of the reinforcement, and also to preserve 

the aesthetic appearance of the structure. A reduction in the width and length of 

travel of the cracks will also improve the flexural rigidity of the member. 

CP110 recommends that the surface crack width in general should not exceed 

0.3mm. For members exposed to certain categories of environments, the allowable 

crack widths should not exceed 0.004 times the nominal concrete cover as given 

in the code for that particular category. 

In general, the width of flexural cracks in ordinary reinforced concrete 

members depend upon the magnitude of the tensile strain in the steel and concrete. 

Thus the use of high working steel stresses, while not associated with a 

corresponding increase in the modulus of elasticity would result in greater steel 

strains and consequently greater width of cracks. The limited tensile strain of 

the concrete presented further difficulties regarding the control of crack widths. 

The limit state of cracking, therefore, became more critical especially for 

members reinforced with high strength steel. In flexural concrete members cracks 

can be formed by shrinkage and/or applied flexural tensile stresses. 

Si) Shrinkage cracks 

These cracks form due to the stresses that are set up by the varying rates 

of contraction of the cement matrix during the hydration and curing period. This 



is mainly caused by the drying shrinkage that takes place in the concrete 

matrix. 

In order to control the drying shrinkage the most effective way found was 

to reduce the water content of the concrete. This, however, may present certain 

difficulties in the mixing and compaction of the concrete. Other methods that 

could also be utilized are the use of a larger size of aggregate or the application 

of a special surface coating to the concrete (86). 

(ii) Flexural cracks 

Flexural cracks form initially at the soffit of the member once the tensile 

strength of the concrete is reached. When the applied stresses are increased, 

these cracks become wider and propagate towards the compression zone of the 

flexural member. 

The incompatibility of tensile strain between the steel and concrete is a major 

factor which affects the formation and width of these cracks. It has been suggested 

that the state of incompatibility can be reached at a steel stress lower than 

62 N/mm2, at which microcracking can develop (86) (87). 

The analysis and mechanism of flexural cracking in ordinary reinforced 

beams has been well studied in the past. In this research it is thought only 

necessary to discuss the cracking mechanism in the composite beams with special 

reference to the contribution of the f. r. c. channels. This is discussed in the 

following paragraph. 

5.4.2 Cracking Mechanism in Composite Lightweight Concrete Beams 

(a) Shrinkage Cracks 

The formation of shrinkage cracks in flexural members depends mainly on 
the amount and rate of drying shrinkage that takes place in the concrete. 

In composite beams a large volume of the concrete in the tensile zone is 

confined by the f. r. c. channels. This permits a reduction in the rate and amount 

of shrinkage that takes place, thus allowing the concrete to reach its full tensile 

properties and be more resistant to cracks formation. 

Furthermore, the surface shrinkage strains maybe distributed through 

bond stresses along the length and area of the f. r. c. channels which enable more 

fine cracks to occur instead of a few wide cracks. 



(b) Flexural Cracks 

To improve the flexural tensile strength of concrete, flexural cracks should 

be prevented from forming and extending. To illustrate the theoretical improvements 

in the tensile resistance of the concrete due to the restraint action of the f. r. c. 

units a simple example is considered where a concrete prism is confined by 

f. r. c. units and subjects to a direct tension, as shown in Fig. 19. The example 

is mainly intended to simulate the restraint action of the f. r. c. channels in the 

flexural composite beams. 

The direct tensile stresses acting on the concrete will be transferred by 

means of bond to the f. r. c. units. By assuming a perfect bond relationship between 

the concrete and the f. r. c. units the strain in the concrete and the units are 

expected to be equal at any level of applied stress. The corresponding stress 

in the'f. r. c. units, therefore, depends upon the modular ration. m1 = Ea/Ec 

(the ratio of the modulus of elasticity for the f. r. c. units to that of the concrete). 

The formation of cracks due to applied tensile stresses and the corresponding 

action of the f. r. c. units is discussed in the following: 

(1) At rather low applied stresses (lower than the tensile strength of the 

concrete), microcracks can form at the weak sections in the concrete, 

an increase in width and extension of these cracks may lead to a complete 

concrete failure. Nicrocracks which originate either from the outer 

surface or the inside mass of the concrete can be controlled to a great 

extent by the restraint action of the f. r. c. units. For cracks originating 
from the outer surface of the concrete (cracks (a) in Fig. 19), the f. r. c. 

units will arrest them from further width increase, hence their extension 

will be controlled. For the cracks that originate from the inside concrete 

mass (cracks (b) in Fig. 19), their extension towards the outer surface 

of the concrete will be limited, mainly because the elements near the 

outer surface of the concrete, due to the restraint action of the f. r. c. 

units, will have a greater resistance to crack propagation. The restraint 

action of the f. r, c. units, therefore, allows greater tensile stresses in 

concrete, thus allowing values nearer the full tensile strength to be achieved. 



(2) When the theoretical tensile strength of the concrete is reached tensile 

cracks form in the concrete and local bond failure between the concrete 

and the f. r. c. units may occur in the vicinity of these cracks. This, 

however, will not lead to a complete failure of the concrete prism since 

the restraint action exerted by the f. r. c. units help in arresting the 

growth and the width of these cracks. 

(3) 

The restraint action of the f. r. c. units at this stage mainly depends on 

the bond efficiency of the f. r. c. units and the capacity of absorbing the 

strain produced by the formation of the cracks. 

For effective crack control. the f. r. c. units compared with the concrete 

should have: - 
(a) A higher tensile strength. 

(b) A greater extensibility. 

An increase in the modulus of elasticity of the f. r. c. units will further 

help in arresting the phenomenon of cracking. When the concrete cracks, 

the tensile stresses in concrete will be transferred to the f. r. c. units. 

Fibre reinforced cement units of a low modulus of elasticity will have 

a greater local strain compared with those of a high modulus. This may 

result in a reduction of the restraint action and the effectiveness of f. r. c. 

units in controlling the cracks. 

At the point where the concrete is heavily cracked, as shown in (4) of 

Fig. 19, the applied tensile stresses will be completely resisted by the 

f. r. c. units, When the units reach their maximum tensile strength or 

extensibility cracks will occur. This can be at the vicinity of a crack 

that has already occurred in the concrete. At this stage a complete 

failure of the prism would be expected. 

It can be seen from this example, that the possible advantages that can 

be obtained from incorporating f. r. c. units are: - 
(a) The full utilisation of the tensile strength of the concrete. 

(b) Additional tensile strength. 

In flexural members, the flexural rigidity will be reduced mainly by cracks 

which originate from the outer tension face of the beam. The rate of reduction in 



the flexural rigidity depends mainly on the rate of formation and propagation of the 

flexural cracks. In general, the flexural cracks have their maximum width at 

the outer tension surface of the concrete (soffit of the beam in flexural members) 

and gradually diminish in size as the crack extends throughout its length. It 

would then follow that the f. r. c. units should be placed at the tensile zone of the 

member. The restraint action exerted by the f. r. c. units in arresting the cracks 

will be effectively utilised at this position. 

The flexural rigidity of a member can also be affected by the cracks which 

originate from internal flaws. These cracks can be controlled in similar manner 

as previously explained. 

The restraint action of the f. r. c. units, therefore, ban increase the loading 

range within which the beam would behave as an untracked member. This range 

could be adjusted by the design of the f. r. c. units so that no surface cracking 

would occur up to the design working load. 

Although the modulus of elasticity of these units is slightly lower than that 

of the concrete, the stiffness of the member at the untracked stage is not severely 

affected. This is discussed in 5.3.4. 

When the concrete reaches its full tensile strength cracks will occur. The 

action of the f. r. c. units as explained earlier will be to prevent these cracks from 

opening excessively; hence their extension towards the compression zone will. be 

in a gradual manner. The role of the f. r. c. units at this stage is important for 

diminishing the rate of reduction in the flexural rigidity of the member. Furthermore, 

the reduction in crack widths will also diminish the risk of corrosion to the steel 

and preserve the aesthetic appearance of the concrete member. 

The final stage is when the f. r. c. units reach their maximum tensile strength 

or extensibility and cracking occurs.. However, the composite action may not 

be completely lost at the formation of the first crack. Provided that there is a 

good bond between the f. r. c. units and the concrete the f. r. c. units will still be 

effective for the rest of the beam in arresting flexural cracks. 

5.4.3 Methods of Calculation (Ordinary Beams) 

Crack widths for ordinary lightweight concrete beams can be calculated 



employing the methods suggested in C and CA (88) and CP110 

The CP110 formula is: 
w 
w=3 air em 

1+2 (acr - c) 

d-x 

Where 

em = e1-1.2bd(a-x) x10 
3 

(5.21) 

(5.22) 
As (d-x) fy 

el : is the strain at the level considered, calculated ignoring the stiffening 

effect of the concrete in the tension zone. 

The C and CA formula for the maximum crack width is: - 

w= 3.3.; fs (d - x) 
Es (dl - x) 

(5.23) 

The term d-x reduces the 1.0 when crack width at the steel level is sought 
dl -x 

The calculated values obtained by employing the above methods are discussed 

in 7.73.3 



CIIAPrER SIX 

MANUFACTURE AND METHODS OF TESTING 

G. 1 General 

A total of 27 ordinary and composite beams were tested. The loading 

configuration and types of tests employed were mainly adopted to simulate 

conditions met in practice. 

All the beams tested were simply supported, and the loading was applied 

through two symmetrical points acting at one-third the span length of the beam. 

This provided a constant moment zone for the middle third region of the beam. 

With this system of loading the central deflection is 2.04% greater than 

that produced by a uniformly distributed load for the same applied moment. 

Static, fatigue and sustained loading tests were carried out under the same 

configuration of loading. In the following paragraphs the manufacture of beams 

and specimens and the tests employed are discussed. 

6.2 Manufacture 

6.2.1 Ordinary Reinforced Lightweight Concrete Beams 

The beams were cast in the concrete laboratory where a horizontal pan 

type mixer with a capacity of 0.25 m3 was used. The cement and air dried 

aggregate were first mixed dry for two minutes, then the water was added and 

the total time for mixing was about five minutes. 

The concrete mix was carried out for each beam in two batches. For each 

batch the workability was measured by the compacting factor apparatus and the 

slump test. These tests were carried out in accordance with B. S. 1881 

Values obtained for the compacting factor and slump tests for all the beams 

varied between 0.8 - 0.95, and between 20 - 40mm respectively. 

The mould used for the test beams consisted of two steel channels, which 

formed the sides of the beam. These channels were 150mm apart fixed to a 

steel table. 

Cover to the main reinforcement at the soffit of the beam was obtained by 



temporarily lifting the reinforcement cage to the desired height by wires fixed 

to the top of the mould. Pieces of timber 35mm thickness were then placed 

between the steel channels and the reinforcement to fix the appropriate side 

cover. The wires and timbers were then withdrawn during the process of 

casting. This method was adopted to avoid the use of reinforcement spacers, 

as it was thought that their use might affect the initiation and distribution of the 

cracks. 

Compaction of the concrete was achieved by the use of three vibrators 

clamped to the bed of the mould and also by the use of a 25mm diameter poker 

vibrator. When the concrete had been fully compacted the top face of the beam 

was carefully levelled off. The beams were then left to cure after casting, 

covered with wet hessian and polythene sheeting. 

After 24 hours. the sides of the mould were stripped and the beam was 

kept on the steel table for a further three to four days, after which it was then 

marked for positions of support and load. At the middle of the span "Demec" 

discs were placed in position over the depth of the beam. This is shown in Fig. 20. 

These Demec discs were affixed by an'Araldite" glue over a gauge length of 

200mm. Demec locating discs were also fixed on the sides of one small prism 

and three cylinders so that shrinkage measurements and the modulus of elasticity 

for the concrete could be obtained. 

6.2.2 Composite Reinforced Lightweight Concrete Beams 

The manufacturing process of the composite beams was nearly the same 

as that for the ordinary beams, the difference being that fibre reinforced channels 

were placed at the soffit of the mould before the reinforcement cage was fixed. 

Before casting of the beams commenced the channels were wetted with 

plenty of water. This prevented water being absorbed from the freshly mixed 

concrete. 

6.2.3 Control Specimens for Concrete 

From the first batch of concrete which formed the lower half of the beam 

the following control specimens were cast: - 



(i) Six beams of 100 mx 100mm x 500mm for flexural and direct tensile 

tests 

(ii) Three 100mm cubes for the concrete compressive tests. These were 

only for a comparison with the strength of the concrete in the upper half. 

From the second batch of concrete which formed the upper half of the beam 

the following control specimens were cast: - 

(i) Six 100mm cubes for the concrete compressive strength tests 

(ii) Three cylinders of 150mm diameter and 300mm long for the static modulus 

of elasticity and the concrete compressive strength tests. 

6.2.4 Fibre Reinforced Cement Channels (f. r. c. channels) 

The process employed for manufacturing the f. r. c. channels was basically the 

same as that applied for normal asbestos cement products. 

The f. r. c channels were first manufactured in the form of thin sheets to the 

required length, total width and thickness. While still wet, the sheets were placed 

on a wooden mould and formed into shape. In the bending process employed to form 

the upstands of the channel longitudinal cracks occasionally wcurred at the corners. 

6.3 Static Loading Tests 

6.3.1 Arrangements and Conditions of Loading 

The static tests for most of the beams were carried out in the concrete 
laboratory with the loading arrangement as shown in Fig. 3, and plate (1). 

The rig used for testing the beams ccausisted of a steel portal frame whose columns 

were made of steel channel section, bolted to the sides and floor of a 1.27 m width 
trench. The end supports were Universal steel section beams (165mm wide x 310mm 
deep x2m long). These were placed, fixed and supported across the trench, their 

centres being symmetrically placed 4.5 m apart from the centre line of the portal 
frame. 

At each support the beam was rested on a 25mm diameter steel roller 
sandwiched by two steel plates of 25mm thickness. The lower steel plate was 
glued with "Evostick" to the support, while the upper one was fixed likewise to 
the soffit of the beam. 



At one of the supports the roller was welded to the lower plate, and at the 

other support the roller was allowed free rotation to accommodate the longitudinal 

movement when the beam deflected under load. 

Load was applied by a hydraulic jack which reacted against the beam of the 

portal frame. The hydraulic jack was operated by a "Denison" model T GO J 

Console machine. The jack load was transferred to the beam by means of a steel 

spreader beam, which was stiffened by steel plates welded at the load point 

positions. 

The spreader beam was placed on two 75mm diameter steel rollers resting 

on steel plates. One of the rollers was fixed to the plate while the other rested 

freely. The plates were bedded on to the beam with plaster, which allowed a fair 

level face to be achieved so that the plates were in correct alignment. 

The static tests carried out in the Fitton Structures Laboratory had a similar 

arrangement to those previously described, except that stools were used as supports 

instead of Universal steel beams. 

6.3.2 Testing Procedure 

A total of 18 beams were tested under a static type of loading. Before testing 

commenced the sides of the beams in the region of the constant moment zone were 

marked in a grid pattern of 100mm squares to facilitate tracing of the cracks as 

and when they occurred.. The beams were also examined for shrinkage cracks if 

any, and their width was measured. 

All static tests were carried out in three cycles of loading as follows: 

(1) Up to the working load. As defined in 3.2 and then to zero. 

(2) Up to 1.5 times the working load and then to zero. 

(3) Up to the calculated ultimate loads of the beams and then on to failure. 

In the first cycle the load was applied by increment of 2KN for all the beams, 

except for beams ST 5-0 and ST 9-0, for which the increments were 4KN. At every 

increment deflection readings were taken, while strains and cracks were generally 

measured at every alternate increment. 

The deflection readings were taken at the centre line of the beam and at the 

third point along the span length. Flexural strains were measured over the depth 

of the beam on both sides at mid span. The formation and extension of cracks on 



both sides of the beam in the constant moment zone were carefully observed. 

The width of cracks for the ordinary beams were measured at the level of the 

steel and at the bottom edge of the beams. For composite beams the cracks 

in the concrete were measured at the interface (top of the upstands of the channels) 

and at the soffit of the channel as and when they formed. Cracks that formed in 

the shearing zone were also observed, and their widths checked to see whether 

they exceeded crack widths that had formed in the constant moment zone. 

In the unloading process the decrements were twice the order of the increments, 

with readings for deflections and strains being taken in a similar manner as 

employed in the loading process, measurements for width of cracks however, were 

only taken at zero load. 

In the second cycle a similar approach to that employed in the first cycle 

for loading and unloading the beam was followed. 

In the third cycle the beams were loaded by increments of 4KN up to 1.5 times 

the working load, after which the increments were then reduced to 2KN up to 

failure load. For beams ST 5-0 and ST 9-0 the first increments were 8KN and 

thereafter reduced to 4KN. All the measurements for strains, crack widths and 

deflections were taken in a similar manner as employed in cycles one and two. 

At the very final stages of loading, when warning of approaching failure was 

clearly imminent by the increased rate of deflection and crack widths, the dial 

gauges were removed and replaced by a vertical scale rule fixed and placed at the 

mid span of the beam. so as to enable the final amount of deflection to be observed. 

For some beams an attempt was made to measure the compressive strains 

in the concrete as near as possible to failure. Final readings were taken at 0.95 and 

0.97 of the failure load for beams ST 10-0 and ST 2-C respectively. 

6.4 Fatigue Loading Tests 

6.4.1 Arrangements and Conditions of Loading 

The arrangements and conditions of loading used for static tests were similarly 

adopted for fatigue tests. The difference was that the load was applied through a 
hydraulic jack, connected to either an S. B. E. 120, or an S. B. E. 80 Losenhausen 

fatigue tests machine. 



The range of loading cycles consisted of an upper limit equal to the applied 

working load and a lower limit equal to half the applied working load. The rate 

of cycling employed was dependent on the maximum deflection of the beams at 

the upper and lower limits. For the beams tested the rate of load employed varied 

between 60 and 100 cycles per minute. 

6.4.2 Testing Procedure 

A total of five beams were tested under fatigue loading conditions. These 

beams initially were subjected to a static test similar to the first cycle as previously 

explained in 6.3.2. 

After the completion of the first static test the beams were subjected to a 

cyclic loading. A total of three million repetitions was applied to the beams tested 

under fatigue loading. The sequence of cycling was stopped at intervals of about 

every half million, so that a static loading test could be carried out with all the 

relevant data being obtained as was the procedure previously mentioned. 

On completion of the total number of cycles the beams were subjected to a 

static loading test up to failure. The test was carried out in three cycles similar 

to that explained in 6.3.2. 

Occasional stoppages due to mechanical failure of the machine occurred 

during the test, but apart from the time being lengthened for the test the testing 

procedure was satisfactory. Table (6) shows the number of cycles and age of the 

various beams tested. 

6.5 Sustained Loading Tests 

6.5.1 Arrangements and Conditions of Loading 

The sustained loading tests were carried out by setting two beams (ordinary 

and composite) back to back; the load was applied by means of tension springs 

acting at the end supports of the beams, as shown in Plate (5). The two beams 

(ordinary and composite) had the same working moment, and were separated 
by spacing units which were positioned 1.5 m apart. 

The two beams were supported on two steel trestles; the distance between 

each support and the mid span point was calculated so as to produce a similar 



moment at the mid point of the beams. In calculating this distance the dead 

weight of the beams and the weights of the spring assembly acting at the end 

supports of the top beam was taken into consideration. See appendix Q. 

Since the deflection of the beams at the mid point was measured relative to 

the spacing units, it can be shown that for the loading configuration adopted the 

total deflection of the beam is equal to 7.7 times the deflection at the mid point 

relative to the spacing units. See appendix (G). 

After the supporting trestles had been positioned and levelled the lower 

beam was placed on these supports. At each support the beam was rested on a 

roller which was sandwiched between two steel plates. For one of these rollers 

movement was restricted by V shaped grooves machined in the plates, at the other 

support the roller was free to rotate, thus compensating for anylengitudinal movement 

of the beam. 

The spacing units separating the two concrete beams consisted of a square 

steel bar sandwiched between two pieces of square steel block with aV shaped 

incision. These blocks allowed free rotation and were fixed to the concrete beam 

with a plaster mix. The upper beam was placed in position with its compressive 

face resting on the spacing units. 
At each end of the beams two tension springs each of 35X N capacity were 

connected to steel plates by means of riveted shackles. The applied load was 
transmitted to the beams through a steel ball and plate assembly. 

When load was applied to the beam, demountable loading plates as shown in 

plate (5) were attached by steel rods to the springs. The load was then applied 
rM 

by the use of a calibrated EPCO hydraulic jack which was placed between the 

plate at the spring connection and the demountable plate. When the required 
load was reached by the jack it was held in position by means of screws that 

were part of the spring assembly. 

Each time measurements were taken the load was brought up to its 
initial value (applied working load). This was necessary as the load could be 

reduced due to creep despite the compensating effect of the springs. 



6.5.2 Testing Procedure 

For each pair of beams a static test was carried out, in which the load 

was applied by increments of 2KN up to their working load. At each increment 

deflection readings were taken by means of dial gauges positioned at the level of the 

spacing units, deflection measurements were also taken at the supports and one-third 

the span length of the lower beam.. Strains and cracks measurements were also 

taken. 

The applied working load was then sustained on the beams, with further 

readings for strains, deflections and crack width being taken at periodic intervals. 

These were more frequent in the early stages of the sustained loading period. 

6.6 Instrumentation 

(a) Deflection Measurements 

The deflections of the test beams were measured by setting three dial gauges, 

one at the mid span and one at each of the one-third span loading points. The dial 

gauges of 50mm travel with 0.01mm scale divisions were fixed by means of a 

stand with a magnetic base. The spindles of the gauges came into contact with 

thin steel plates glued to the soffit of the beams. For the sustained loading system 

the dial gauges used were of 25mm travel with 0.01mm scale divisions, the gauges 

at the mid span being fastened to light steel channels fixed to the spacing units. 

(b) Strain Measurements 

The flexural strains across the depth of the beam were measured by means 

of demountable mechanical "Demec" strain gauge of 200mm length with scale 

divisions indicating a strain of (0.82 x 10-5). The same "Demec" gauge was used 

to measure strains due to shrinkage, creep and also for tests to find the modulus 

of elasticity. 

(c) Crack Measurements 

For measuring the width of the cracks a small illuminated hand microscope 

with scale divisions of 0.1mm was used. 



6.7 Other Tests 

6.7.1 Control Tests on Concrete 

All the control specimens for the concrete properties were tested according 

to the B. S 1881: 1970 (89). These control tests were carried out to investigate the 

structural properties of the concrete used, and also to ensure the uniformity of 

the concrete for all the beams tested. The average values of these properties are 

presented in table (6). The tests employed are: - 

(a) Cube Compressive Strength 

From the second batch of concrete which formed the upper half of the beam 

six 100mm cubes were cast as control specimens. Of these, three were tested at 

an age of 7 days and three were tested at the time of testing the beams. The cubes 

were tested in an Avery hydraulic testing machine with a maximum loading range of 

1800121. 

(b) Modulus of Elasticity and Cylinder Compressive Strength 

Three cylinders of concrete size 150mm diameter x 300mm length were 

tested from the batch of concrete placed in the upper half of the beam. 

The cylinders were marked out at 900 intervals, at which positions strain 

measurements were taken. Before testing, the cylinders were capped with high 

alumina cement mortar and then were tested in a Denison Universal testing machine 

of 3000KN capacity. At each 5KN increment, strain measurements were taken at 

the four positions on the cylinder, after an adequate number of readings had been 

taken the cylinders were then tested to failure and their maximum load recorded, 

the total testing time was about (15 minutes). 

A typical experimental stress-strain curve of the lightweight concrete is shown 

in Fig. 6b. Values obtained for the initial modulus of elasticity from the experiment, - 

curves for the various beams are given in table (6). 

(c) Direct Tensile Strength 

To obtain values for the tensile strength of the concrete three prisms 

100mm x 100mm x 500mm were tested in a "Denison T. 42. B4 machine" of 500KN 



capacity. To avoid eccentricity of loading during the testing of the prisms special 

jaws were used. The values obtained for the various beams are given in table (G) 

(d) Modulus of Rupture 

To obtain values for the modulus of rupture at the time of testing the beams 

three 100mm x 100mm x 500mm prisms were tested in flexure in a "Denison 

Universal testing machines" of 500KN capacity by which the load was applied at 

one-third the span length. 

(e) Shrinkage 

Values for shrinkage were obtained by means of a "Demec" strain gauge 

200mm length with readings being taken on four sides of a prism (100mm x 100mm x 

500mm). These prisms were kept in the concrete laboratory under similar 

conditions of exposure as the full scale beams. The maximum values of the free 

shrinkage strain measured on these prisms were 0.0005 and 0.00066 after a period 

of about 30 days and 60 days respectively. 

For beams tested under sustained loading. the shrinkage strains were also 

measured on the sides of the beams near their end supports. The total length of 

a beam was 5m and the span length adopted was 4.5mm. This left a 250mm length 

unloaded at each end, at which the measurements of shrinkage were made. The 

values obtained are discussed in 8.3.1. 

6.7.2 Tensile Tests on Steel 

To obtain the tensile properties of the various steel reinforcement used 

in this Investigation, samples 500mm long were tested in direct tension using 

a "Denison T42. C2 testing machine" with a capacity of 200KN. The strain 

measurements were made by using a "Lindley" extcn meter of 50.8mm gauge 

length and maximum extension of 2.54mm, with scale divisions indicating a strain 

of2.5x10-5. 

The mechanical properties of the steel bars used are given in table (5) 

Typical stress-strain curves for the various types of bars used are shown in Fig. 1 

The yield or 0.2% proof stress of the various bars tested, in general, differed 

Uy + 5%. 



6.7.3 Tests on f. r. c. Units 

In order to investigate the tensile and bending properties of the f. r. c-. units 

used in this investigation, various samples were tested in. direct tension ' 

and bending. These samples were obtained either by cutting from the channels 

used or from sheets aipplied especially for this. purpose. The mechanical 

properties of the various samples tested are given in table (4); the load 

deformation characteristics in direct tension and bending are shown in Fig. 8 

The testscarried out are: - 

(i) Direct Tensile Test 

Samples of 50mm width, 5mm thickness and 250mm long were tested in a 

"Denison T. 42 machine" of (65KN) capacity. The samples were fixed by an epoxy 

resin mortar to special clamps, so as to avoid any eccentricity during the process 

of loading. 

Strains in the direction of the applied stress were measured at increments 

of 0.5KN by means of a "Demec" gauge of 50.8mm length with scale division of 

. 2.48 x 10-5. 

The tensile properties of the various samples tested are shown in Fig. 8a 

(ii) Bending Test 

Samples of 30mm width, 6mm thickness and 240mm span were tested in 

bending. The samples were supported on steel trestles where the load was applied 

manually in kgs. The load was transferred to two points at one-third the span 

length. At each increment, which was 1 Kg, the central deflection was measured 

with a dial gauge of 50.8mm travel and a scale division of 0.01mm. The 

deflection near failure and the failure load were recorded. A typical load 

deflection curve is shown in Fig. 8b. 

Values of the initial modulus of elasticity obtained from these tests are 

, given in table (4). 



CHAPTER SEVEN 

DISCUSSION OF TEST RESULTS AND COMPARISON OF TEST BEHAVIOUR W IThI 

THEORETICAL PREDICTION FOR ORDINARY AND COMPOSITE BEAMS 

7.1 Introduction 

This chapter discusses the actual behaviour of the test beams, and compares the 

various aspects of behaviour with the theoretical predictions in accordance with 

chapters four and five. This includes the variation with the applied moment for the 

neutral axis depth, flexural compressive strains in the concrete, stresses in the 

f. r. c. channels and the stresses in the steel. Emphasis is placed upon the limit 

states of ultimate strength, cracking and deflection. 

A direct comparison is also made between the flexural behaviour of ordinary 

and composite beams. 

7.2 Variations of the Neutral Axis Level 

The level of the neutral axis depth for ordinary and composite beams at any 

level of applied moment was obtained from average values of strains measured on 

both sides of a beam. The "Demec" points used for measuring the values of strains 

for ordinary and composite beams are shown in Fig. 20. 

The theoretical prediction for the level of the neutral axis depth in relation to 

the applied moment has been explained in 4.2 and the idealised relationships for 

ordinary and composite beams are shown in Fig. 10. To facilitate the determination 

of values Co, C1 and C2 shown in Fig. 10, the results of beams with a similar 

percentage of steel are plotted on one graph, irrespective of the type of steel used. 

These are shown in Figs 21 to 25. 

From an examination of the experimental results it was found suitable to assume 

values of 0.1,0.6 and 0.8 for Co, C1 and C2 respectively. For ordinary beams, 

however, the value of Co was assumed to be zero. 

(a) Ordinary Beams 

In Figs. 21 and 22 are plotted the theoretical and experimental values of the 

neutral axis depth versus the ratio of applied moment to the observed ultimate moment. 



The values of the observed ultimate moments used in the graphs are given in 

col. 9 of table (7). The theoretical values of the neutral axis depths were obtained 

in accordance with 4.2 by employing equations 4.1,4.3 and 4.5. These equations 

are: 

For the uncracked stage 

n= Xuo = A2 +2m- 1) p 
dl 2X+ (m - 1) p] 

For the transition stage 

S-YC- XCC 

C12 

(R2 -2 Cl R) + Xuc 

where R= M/Mu 

For the fully cracked stage 

(4.1) § 

(4.3) 

n= Xco = mp ( 
J1 

+2 (4.5) 

rý, mn -ri mp 

The values of the parameters incorporated in these equations were as follows: 

p and d1 are as given in table (1), A= d/dl = 300/d1 and m= 12. 

From Figs. 21 and 22 it can be seen that the level of the neutral axis rises 

at an early stage of loading to a level higher than that calculated for an untracked 

section. This clearly shows that the neutral axis depth does not have a stable position 

at the initial stage of loading. This behaviour as suggested in 4.2 is possibly due 

to an early formation of cracks in the ordinary reinforced lightweight concrete beams. 

The theoretical graphs at the transition and cracked stages (i. e. up to M/Mu 

0.8) agree well with the experimental values. 

" For values between M/Mu = 0.8 and M/Mu = 1, some scatter in the results 

was observed. This could be mainly due to an error involved in the determination 

of the neutral axis level at the ultimate load conditions (at M/Mu = 1), where the 

neutral axis depth was calculated by the strain compatibility method using the 

actual values of strength for concrete and steel. However, a definite conclusion 

on the behaviour of the neutral axis level at values of M/Mu greater than 0.8 cannot 

be drawn because of the limited number of observations made at this stage and also 

because of the variation of the non-elastic strain of the materials accompanied by 

creep under high stresses. 



(b) Composite Beams 

In Figs. 23,24 and 25 are plotted the theoretical and experimental values 

of the neutral axis depth versus the ratio of applied moment to the observed 

ultimate moment. The values of the observed ultimate moment used in these graphs 

are given in col, 9 of table (7). The theoretical values of the neutral axis depth 

were obtained in accordance with 4.2 by employing equations (4.2) (4.4) and (4.6). 

These equations are: - 
For the uncracked stage 

n= Xcu = 0.5 A2 + (m - 1) p+ (m1 - 1)pl 92§ (4.2) 
-3- ul A+ (m - 1)p + (ml - 1)pl 71 

(R2_2clR+c12)ýxCC § (4.4) 

For the transition stage 

X= Xuc -Xcc 
Co - 2C C+C 011 

For the fully cracked stage 

n= XCC = (mp 1+ 2(mp + m1pi T12) 1 4. G 
-d1 (mp + mip1T) )2 

The values of parameters incorporated in these equations for the beams were 

as follows: p and dl as given in table (1), m= 12, X= d/d1 = 300/dl 

P1 = Ach/bdl where Ach = 1548mm2, ml = Ea/Ec = 0.7 and 

T1= d2/d1 = 284/d1. 

It can be seen that the level of the neutral axis depth does not rise higher than 

that calculated for an untracked section at the early stage of loading. This clearly 

shows the distinct behaviour for an untracked composite beam. 

From the graphs it can be seen that good agreement is obtained between the 

theoretical and experimental values for the uncracked, transition and cracked stages 

(i. e. up to M/Mu = 0.8). In the non-elastic stage (when M/Mu > 0.8) some scatter 

in the results was observed, the behaviour being similar to that for ordinary beams. 

The arguments suggested earlier for the ordinary beams can be similarly applied 

to the composite beams. 



(c) Comparison Between Ordinary and Composite Beams 

For both ordinary and composite beams a good correlation was obtained 

between the theoretical and experimental values of the neutral axis depth. In 

most cases the experimental values of the neutral axis depth were greater than 

the theoretical ones. 

In general, the neutral axis depths for the composite beams were greater 

than those of the corresponding ordinary beams as long as the f. r. c. channels did 

not crack. The ratios of the experimental neutral axis depths for composite beams 

to those of corresponding ordinary beams, at applied working load, varied between 

1.09 and 1.213 depending on the percentage of steel employed. The exception to 

this was beam ST 4-C which had a neutral axis depth. at the working moment slightly 

less than that of the corresponding ordinary beam ST 4-0. This was mainly due to 

the f. r. c. channel of beam ST 4 -C cracking at a level lower than the working moment. 

The behaviour therefore agrees well with the theoretical predictions as suggested in 

5.3.2. 

7.3 Flexural Strain Distribution 

The values of the flexural strains across the depth of the members were obtained 

from the "Demec" readings at the mid span of the member as shown in Fig. 20. 

(a) Ordinary Beams 

A typical flexural strain distribution for an ordinary beam is shown in 

Fig. 26. For this it can be seen that the distribution of strains agrees with the 

assumption of a straight line distribution. Erratic results, however, were observed 

for strains in the flexural tensile zone when cracks started to form. The distribution 

of these strains then depended on the disposition and propagation of cracks within and 

outside the "Demec gauge length". The linearity of the compressive strains in the 

concrete was maintained up to the failure load. 

Values for strain at the level of the working moment were not significantly 

affected by the second and third cycles of loading. Similarly the values of strain 

at 1.5 times the working moment (the highest level at the second cycle) were nearly 

the same in the second and third cycles of loading. 



(b) Composite Beams 

In Fig. 27 a typical strain distribution for a composite beam is shown. 

The linearity of the compressive strains in the concrete and the tensile strains 

in the f. r. c. channels was well maintained up to the cracking moment of the f. r. c. 

channel, irrespective of whether the concrete was cracked or not. This is important 

in justifying the assumption of a straight line strain distribution used in the calculation 

of stresses for the f. r. c. channels as discussed in 4.4. 

The disposition of cracks in the flexural tensile zone of the concrete in the 

portion between the top of upstands of the f. r. c. channels and the neutral axis 

level caused some erratic results for strains measured in this region. When the 

cracking moment of the f. r. c. channel was reached, as can be seen in Fig. 27, 

erratic results for the tensile strains in the f. r. c. channel were observed 

(e. g. at 113 KN). Provided that the f. r. c. channel did not show any signs of cracking, 

the second cycle of loading had a negligible effect on the strain values. 

(c) Comparison Between Ordinary and Composite Beams 

The strain distribution for composite beams in general was more uniform than 

for ordinary beams. The composite beams also showed lower values of strain and 

greater values for the neutral axis depth up to the cracking moment of the f. r. c. 

channels. 

For the same cycle of loading the remaining strains, in the composite beams 

were lower compared with those of the corresponding ordinary beams. The 

remaining strains after the first cycle of loading in beams ST 3-0 and ST 3-C 

are shown in Figs 26 and 27 respectively. At the outer element of the compression 

zone beam ST 3-C had a remaining strain equal to 0.0083% compared with 0.0133% 

for beam ST 3-0. 

This shows that the remaining strains in the ordinary beams are usually much 

greater than those in the composite beams. The cracking moment of the f. r. c. 

channels in some beams had a considerable effect on the values of the compressive 

strain in the concrete. This is discussed in 7.4 

7.4 Variations of the Flexural Compressive Strain in Concrete 

The variation of the maximum compressive strain in the concrete with applied 



moment is explained in 4.3.2; the idealised relations ips of the ordinary and 

composite beams are shown in Fig. lla. From an examination of the experimental 

results it was found suitable to assume a value of 0.8 for Cp (shown in Fig. lla). 

This agreed well with experimental results obtained in a previous investigation 

carried out on normal weight concrete beams (4). 

(a) Ordinary Beams 

The calculated and experimental values of the maximum flexural compressive 

strain in concrete are plotted against the ratio of applied moment to the observed ultimate 

moment as shown in rigs. 28 and 29. 

The theoretical values were obtained in accordance with 4.3.2. by employing 

the equation of compatibility of moments and the assumption of a straight line 

strain distribution. 

The equation employed is: 

M= fs As (d1 -ß x) §= (4.18) 

The values of ec (compressive strain in the concrete) can be obtained from: 

ec=fs X 
Es (dl - x) 

Values of the parameters employed in the equation (up to the level of 

M/11 = 0.8) were as follows :x= the calculated value of neutral axis depth 

for cracked transformed section given in Figs. 21 and 22, Es = 200 N/mm2, 

P=0.345. The value of ß used was an average value where the measured 

maximum compressive strains in the concrete up to M/Mu = 0.8 were considered. 

The relation between the value of ß and the compressive strain in the concrete 

is explained in 4.3.3. 

From the graphs it can be seen that a good agreement is obtained between 

the predicted and the experimental values. However, above. the value of M/Mu = 0.8 

some scatter in the results was observed. This could be due to the difference 

between the assumed and actual values for the maximum compressive strain in the 

concrete at failure. The values of the measured maximum compressive strain for 

the test beams are discussed in section C below. 



(b) Composite Beams 

In Figs. 30 and 31 are shown the experimental and the theoretical values 

for the maximum compressive strain in the concrete versus the ratio of applied 

moment to the observed ultimate moment. 

The theoretical values were calculated in accordance with 4.3.2, the equations 

employed being the same as for the ordinary beams. This was mainly due to the 

formation of cracks in the f. r. c. channels at values lower than M/Mu = 0.8, and 

the behaviour of the members was regarded as similar to that of the ordinary beams. 

It can be seen in Figs. 30 and 31 that the theoretical values are slightly greater 

than the experimental ones obtained at the initial stages of loading. This was mainly 

because the contribution of the f. r. c. channels : was not included in the calculation. 

Thereafter a good agreement is obtained between the theoretical and the experimental 

values. 

Similar to the behaviour of ordinary beams, some scatter in the results was 

observed at the stage between M/MU = 0.8 and M/Mu = 1. The compressive 

strains in the concrete for the composite beams can be greatly affected by the 

formation of cracks in the f. r. c. channels. Typical examples are beams ST 7-C, 

ST 10 - C, ST 11 -C and ST 12 -C as shown in Fig. 31, where they show a 

considerable amount of strain at the stage between M/Mu = 0.8 and M/Mu = 1. 

(c) Comparison Between Ordinary and Composite Beams 

As mentioned earlier in section (a), the scatter of the results in the non-elastic 

phase of behaviour (i. e. at values between M/Mu = 0.8 and M/Mu = 1) could be 

caused by the difference between the assumed and the actual values of the maximum 

compressive strain in the concrete at failure. For both types of beams strain 

values greater than 0.0035 (assumed in CP110) were obtained. 
The last readings taken for the maximum compressive strain in the concrete 

with the corresponding levels of moments are given in cols. 11 and 12 of table (7). 

At levels between 0.9 and 0.97 of the observed ultimate moment the values of strains 

ranged between 0.00217 and 0.00395. 

A previous investigation (90), reported values for the maximum compressive 

strains ranging between 0.003 and 0.0055 at 90% to 100% of the observed ultimate 



moment. The values of the maximum compressive strain in the concrete at 
failure as suggested in 5.2.1 depends upon various factors such as the shape of 
the compressive zone, the type and strength of the concrete, the rate of loading 

and the percentage of steel employed. Therefore, the values obtained in this work 

are only applicable to beams of similar conditions to those tested in this investigation. 

A definite conclusion therefore on this point can not be made. 

The experimental results of the present investigation showed that the values 

of compressive strain in the concrete for the composite beams at the initial stages 

of loading were lower than those for the ordinary beams. However, when the cracking 

moment of the f. r. c. channel was reached the strain values of the composite beams 

became greater than those for the corresponding ordinary beams. This could be 

mainly due to the following reasons: 

(a) When cracks form in the f. r. c. channel the tensile stresses resisted by 

the channel will be transferred to the steel; this will cause an increase in 

the tensile strain of the steel. Considering the assumption of a straight 

line strain distribution, the increase in the tensile strain in the steel can 

lead to a corresponding increase in the maximum flexural compressive 

strain in the concrete. 

(b) When cracks form in the f. r. c. channel more cracks will propagate in the 

concrete. Consequently the neutral axis level will rise and this will confine 
the compressive zone to a smaller area. Due to a higher concentration of 

compressive stresses, greater compressive strains can be expected. 

7.5 Stresses in the f. r. c. Channels 

In Figs. 32 and 33 are plotted the theoretical and experimental values of the 

tensile stresses in the f. r. c. channels against the applied moment. The experimental 

values were obtained by correlating the measuredstrains in the f. r. c. channels 

with the experimental stress strain relationship of the f. r. c. units shown in Fig. 8. 

The theoretical values of the stresses in the f. r. c. channels were obtained in 

accordance with 4.4. The equations employed are: 
For M< Me 

fab =M (d - Xuc) 
m1 Iuc 



Mc = frc Iuc 

d- ýd 
- XIc 

For M.: 29 M< Ma 

fab = Mc (d - Xvc) 

Iuc ml + Q1T - Mc) (d - Xcc) 
ri1 

ý1 
1 

icc 

ý (4.12) 

§ (4.13) 

The parameters employed in these equations are as follows: frc =3 N/mm2 1=0.9 

m= 12, ml = 0.7. The values of Xcc are given in Figs. 23,24 and 25. 

In Figs. 32 and 33 it can be seen that a good agreement is obtained between 

the theoretical and experimental values up to the cracking moment of the f. r. c. 

channel (Ma). The stresses due to the self weight of the beams are shown in the 

same figures and also given in col. 6 of table (8). 

The observed values of strains at the soffits of the f. r. c. channels with the 

corresponding values of stresses, at levels just before the channels cracked, are 

given in cols. 4 and 5 of table (8). The values of strains varied from 800 to 1700 x 10 

the corresponding tensile stresses varied between 8 and 14.5 N/mm2. The maximum 

tensile strains obtained from testing the f. r. c. units in direct tension varied between 

1250 and 1800 x 10-6; the corresponding tensile stresses varied between 14.5 and 

18.4 N/mm2. These are already given in table (4). A comparison between these 

values and those measured at the soffits of the f. r. c. channels would seem to indicate 

that the tensile properties of the f. r. c. units had not been fully utilized. This, 

however, could not be the case for the following reasons: 

(1) The strain measurements for the f. r. c. channels were obtained over a 
"Demec" gauge length of 200mm Fig. 20, the values, therefore, represent 

average surface strains over this region. The maximum local strain in 

the f. r. c. channel just before cracking could only be measured if the 

initial crack in the f. r. c. channel had formed within the "Demec" gauge 
length. 

What also made it difficult to measure the actual and local strain in the 
f. r. c. channel was that the maximum strain might occur on the inside 

face of the channel and transference to the outer surface might not have 

occurred due to a possible slip or shear within the layers of the f. r. c. 

channels. 



(2) The existence of some weak sections along the length of the f. r. c. 

channels. This could be due to the presence of longitudinal cracks along 

the corner of the f. r. c. channels which might have formed at the time of 

manufacture during the process of forming the upstands. 

Another factor which may be considered is the probable variation of 

strength through the length of the f. r. c. channel due to a non-uniform 

distribution of fibres. 

The f. r. c. channels for all the beams cracked in the second cycle of loading 

at values greater than the working moment, the exception being beam ST 4-C 

reinforced with Kam 60 steel where t1i charnel cracked during the first cycle of 

loading (below the working moment level), The ratios of the cracking moments of 

the f. r. c. channels to the corresponding working moments for the test beams are 

given in col. 8 of table (8). The ratios for the beams excluding beam ST 4-C 

ranged between 1.14 and 1.81. 

It may be pointed out here that the f. r. c. channels for the beams tested under 

fatigue and sustained loading. also did not crack during the first cycle of loading. 

7.6 Stresses in the Steel Reinforcement 

(a) Ordinary Beams 

In Figs. 34 and 35 the theoretical graphs of the steel stresses calculated 

in accordance with 4.5 are superimposed on the experimental values obtained in 

accordance with 4.6. The equation employed is: 

M=Asfs (d1 -ß x) 9 (4.18) 

It can be seen that full agreement Is obtained between the theoretical and 

experimental values. The variation of the steel stress in relation to the applied 

moment can almost be represented by a straight line. The values of the working 

steel stresses based on experimental results are given in col. 3 of table (7). 

These values are compared with the stresses in the composite beams in section c. 

(b) Composite Beams 

In Figs. 36 and 37 the theoretical graphs for the stresses calculated in accordance 

with 4.5 are superimposed on the experimental values obtained in accordance with 4.6. 



The equations employed in calculating the steel stresses are: 

M_ AS fs (dl -ß x) + Ta (d2 -ß x) 

M= As fs (dl -ß X) 

ý3 

§ 

(4.20) 

(4.18) 

The various stages at which the stresses were calculated in each beam are 

as follows (Reference can be made to Figs. 36 and 37. ): 

(1) At the cracking moment of the concrete where the contribution of the 

f. r. c. channel is considered (equation 4.20) 

(2) At a level of moment just before the cracking moment of the f. r. c. 

channel, where the contribution of the f. r. c. channel is considered 

(equation 4.20). 

(3) At a level of moment just after the cracking moment of the f. r. c. channel, 

where the contribution of the f. r. c. channel is not considered (equation 4.18) 

(4) At a level greater than the cracking moment of the f. r. c. channel (at about 

0.8 times the ultimate moment), where the contribution of the f. r. c. 

channel is not considered (equation 4.18). 

From Figs. 36 and 37 it can be seen that good agreement is obtained between 

the theoretical and experimental values of the steel stresses. 

(c) Comparison Between Ordinary and Composite Beams 

The values of the steel stresses at the level of the working moments for both 

ordinary and composite beams are given in col. 3 of table (7). Col. 4 of table (7) 

shows the reduction in the steel stress due to the contribution of the f. r. c. channels 

in the composite beams ranging between 9% and 16.7% of the stresses in the 

corresponding ordinary beams. The amount of reduction depends mainly on the type 

and percentage of the steel employed. Beam ST 10 -C reinforced with 0.582% of 

Kam 60 steel showed the highest level of reduction in the steel stress. No reduction 

was obtained in the working steel stress of beam ST 4 -C. This was due to the 

f. r. c. channel being cracked at a stage earlier than the level of the working moment. 

The moments at which the composite beams attained the same working steel 

stress for the ordinary beams varied between 1.12 and 1.2 times the working 

moment of the beams. 



The reduction in the steel stress in the composite beams became even more 

at levels greater than the working moment. At the levels just before the cracking 

moments of the f. r. c. channels the steel stresses in the composite beams were 

between 10.7% and 18.4% lower than those in the corresponding ordinary beams. 

The values of the steel stresses and the amounts of reduction are given in cols. 5 

and 6 of table (7). This reduction in the steel stress was a major factor in reducing 

the width of the cracks and deflection of the composite beams. 

7.7 Limit States of Desi 'n 

7.7.1 Limit State of Ultimate Strength 

The mechanism of failure for the test beams was initially started by yielding 

of the steel, which was followed by the crushing of the concrete in the compression 

zone. This was mainly due to the beams being under-reinforced. Beams near to 

the failurestage can be seen in plate 2. In plate 3a typical failure for the beams 

tested is shown. 

The yielding of the steel for the various beams was observed by a greater 

rate of increase in crack widths and deflections. 

At loads near to the failure stage crack widths of 2mm with deflections of 

100mm (giving span to deflection ratio of 45) were observed, thus a good warning 

of impending failure was obtained (sec plate 2). 

In the following sections the observed and calculated values of the ultimate 

moment for the test beams are discussed. 

(a) Ordinary Beams 

The ultimate strength of the members was calculated by employing two 

approaches, the first one was in accordance with the recommendations of CP110 

employing partial safety factors for materials and using nominal design strengths 

for concrete and steel. This is discussed is 3.2.1. Values of the ultimate strengths 

for the test beams employing this approach are given in col. 7 of table (7). 

The second approach was based on the strain compatibility method, using the 

actual values of strength for the materials without the partial safety factors as 

described in 5.2.1. The stress strain relationship for the reinforcement shown in 



Fig. 1 and for the concrete shown in Fig. Ga were used. The concrete cube strengths 

used were those obtained at the time of testing the beams as given in table (6). 

The values of the ultimate strength of the various beams employing this approach 

are given in col. 8 of table (7). 

A comparison between the observed and calculated values of the ultimate 

moments cols. 7,8 and 9 in table (7), shows that the approach based on the actual 

values of strengths described in 5.2.1. gives a better agreement than that based on 

CP110 recommendations. It can also be seen that the approach based on the actual 

strengths described in 5.2.1. underestimates the observed values of ultimate 

strength for all the beams except ST 3-0,, where the values are nearly equal. 

The ratios of the observed values of ultimate moments to those calculated using 

the actual values of strength for the ordinary beams (given in col. 10, table (7)) varied 

between 0.98 and 1.39. Values ranging between 1.05 and 1.25 for the ratio of the 

observed to calculated ultimate moments have been reported earlier (90). It has 

been suggested (90) that this variation in the ultimate strength could be due to the 

difference between the values of the actual steel stresses at failure and those used 

in the calculation. 

It is of interest to mention here that steel bars embedded in concrete can 

exhibit an ultimate strength or yield stress greater than that obtained from a 

conventional tensile test (91). 

However, the increase in the ultimate strength is difficult to predict and 

therefore can not be used in design but should be considered as an additional safety 

factor. 

(b) Composite Beams 

The analysis employed for the composite beams was similar to that for the 

ordinary beams explained in section (a), that is, by neglecting the contribution of 
the f. r. c. channels at the ultimate load conditions. 

Calculated values of ultimate strength employing the CP110 method (nominal 

values of strength with the partial safety factors) are given in col. 7 of table (7). 

This shows that the CP110 method considerably underestimates the observed values 

of the ultimate strength. 



The strain compatibility method described in 5.2.1. (based on the actual 

values of strengths without partial safety factors) gave a better agreement with 

the observed values. The observed and calculated values are given in cols. 8 and 

9 of table (7). 

It can be seen that the observed values are greater than the calculated ones 

for six out of the eight beams tested. The ratios of the observed to calculated values 

of the ultimate moments for the composite beams ranged between 0.95 and 1.38. 

The arguments discussed earlier in section (a) with regard to the increase in 

the ultimate strengths of the ordinary beams are also applicable to the composite 

beams. 

Considering the observed values of ultimate moments, a factor of safety of 

more than 2 was ensured for the worldng moment against collapse. This may suggest 

that an increase in the working moment may be utilised provided that the limit 

states of cracking and deflection are satisfied. 

(c) Comparison Between Ordinary and Composite Beams 

The observed values of the ultimate strengths of the composite beams did not 

differ significantly from those of the corresponding ordinary beams. This can be 

seen in cols. 9 of table (7). 

However, an increase in the ultimate strength was obtained for beams reinforced 

with a low percentage of steel, e. g. beam ST 10 -C reinforced with 0.582% of 

Kam 60 had an ultimate strength equal to 17% greater than that of the corresponding 

beam ST 10 - 0. This may suggest that the f. r. c. channels makes a greater 

contribution to beams reinforced with a low percentage of steel. A definite 

conclusion, however, in this respect can not be drawn due to the limited amount 

of test results. 

7.7.2 Limit State of Deflection 

7.7.2.1. Behaviour of Ordinary Beams 

(a) General 

In theory the load deflection curve of an ordinary beam, when first loaded, 

has two initial phases of behaviour. These represent an untracked and a cracked 



section. The idealised relationship for ordinary beams is represented 

by the dotted line shown in Fig. 16. 

The observed load deflection curves for the test beams are shown 

in Figs. 38,39 and 40. In these the flexural rigidity of an untracked 

section (Eclo) is indicated by the tangent 01 shown on the same 

figures. 

When the tensile strenth of the concrete is reached and the first 

crack appears, the load deflection curve will deviate from linearity. 

With increasing load, further cracks form until a stable crack pattern 

is achieved. When this point is reached very little change occurs in the 

gradient of the load deflection curve until the yield point of the steel 

is reached. At this stage the flexural rigidity of a cracked section 

(kEcIc; k is a constant for an effective flexural rigidity) is indicated 

2. To be consistent these tangents are drawn at by the tangent 0 

levels corresponding to the working moments as shown in the figures. 

It may be noted, however, that all the beams cracked long before the 

level of the working moment. 

Examination of Figs. 38,39 and 40 shows that the difference 

between the flexural rigidity of an untracked section ( 01) and that 

of a cracked section (0 2) is more pronounced for beams reinforced 

with a low percentage of steel; e. g, for Beams ST 7-0 and ST 8-0 

reinforced with a steel ratio of 1.643%o and beam ST 9-0 reinforced 

with a steel ratio of 1.483% the ratios O 1/ 02 were 1.17,1.25 

and 1.08 respectively, whereas for beams containing 1.044% of steel 

the ratio varied between 1.48 and 2.02. 

In general, this behaviour is mainly due to the difference between 

the flexural rigidities of cracked (kEclc) and untracked (EcIu) sections 

being lower for members reinforced with high percentages of steel. 

To illustrate this point the relative ratios EcIu for beams ST 10 -0 
kEclc 



(0.584%), ST 1-0 (1.044%), ST 9-0 (1.483%) and ST 7-0 (1.643%) 

are 3.28,2.27,1.9 and 1.8 respectively. A modular ratio of 12 

was employed in these calculations. 

Other factors which might have also affected this behaviour 

was the amount of shrinkage that took place in the beams. Cracks 

which form due to shrinkage tend to reduce the flexural rigidities 

of concrete members. 

It can also be seen that the range of an uncracked section in the 

load deflection curves is small. This indicated an early formation of 

which could be due to the effect of greater shrinkage and the lower 

tensile strength of lightweight concrete. 

As mentioned in 7.7.1 the beams showed a significant amount 

of deflection at the final stages of loading, giving a good warning of 

approaching failure. In plate 2a an ordinary beam near the failure 

stage is shown. 

cracks 

(b) Working Moment Condition 

The observed deflections at the worldng moments for the test 

beams (given in col. 2 of table (9)) varied between 7.6mm and 27.2mm9 

which gave a corresponding span to deflection ratios of 592 and 165 respectively. 

The beams which gave a span to deflection ratio lower than 250 were 

ST 5-0, ST9 -0 and ST 3-0. The values are given in col. 7 of 

table (9). Beam ST 5-0 was reinforced with Kam 90 steel, the 

highest grade of steel employed in the present investigation, gave a 

span to deflection ratio of 165, which was the lowest value. Beams 

ST 9-0 and ST 5-0 reinforced with 1.483% and 1.044% of Unisteel 

550 gave a span to deflection ratios of 212 and 245 respectively. It 

can therefore be assumed that if a lower percentage of Unisteel 550 

is employed, a span to deflection ratio greater than 250 can be expected. 



For the sake of comparison, a reference is made to beam 

ST 10 -0 reinforced with 0.582% of Kam 60 steel, which gave a 

span to deflection ratio of 317 under working load. Similarly 

beam ST 4-0 containing Kam 60 steel gave a span to deflection 

ratio greater than that of beam ST 3-0 reinforced with a similar 

amount of Unisteel 550 . The span to deflection ratio for beams 

ST 4-0 and ST 3-0 were 256 and 245 respectively. The improved 

flexural rigidity for beam ST 4-0 could mainly be due to the surface 

deformation of Kam 60 steel having a better control on the crack widths. 

In a previous investigation (35) beams with a span to depth ratio 

of 7.6. reinforced with steel of 410 N/mm2 nominal yield strength and 

percentages of steel varying between 1 and 4.2 gave a span to deflection 

ratio ranging between 1010 and 461. Another investigation (4g employing 

a greater span to depth ratio of 14.6 with percentages of steel varying 

between 1.14 and 3.16 of Unisteel 410 gave a span to deflection ratio 

between 291 and 434. The concrete cube strength for both investigations 

varied between 44 N/mm2 and 59.6 N/mm2. 

A direct comparison between the values obtained in previous 

investigations and those obtained in this research can not be made 

mainly due to the difference in the span to depth ratio employed. 

Other factors, e. g.., the type and amount of steel employed, concrete 

strength and the level of the steel stress at which the deflection was 

measured could also affect the values of the span to deflection ratios. 

For each beam tested in the present investigation the deflection 

at the working moment was nearly the same at the first and second 

cycles of loading. Similarly the deflection at 1.5 times the working 

moment was nearly equal at the second and third cycles of loading. 



(c) Relationship With Steel Stress 

For various percentages of steel a relationship between the experimental 

steel stresses and the observed deflection can be established as shown in Fig. 41 

in which three percentages of steel were considered. From this figure it can be 

seen that the deflection of a span/250 was reached at steel stresses of 400 N/mm2, 

312 N/mm2 and 280 N/mm2 corresponding to steel percentages at 0.582 (Kam 60), 

1.044 (Unisteel 550), and 1.643 (Unisteel 410) respectively. 

(d) Remaining Deflection 

The remaining deflections for the test beams after the first cycle are given in 

col. 3 of table (9). The recovery in the amount of deflection ranged between 74% 

and 87% of the respective deflection at the working moment. 

Previous investigations indicated that recoveries of about 80% for lightweight 

concrete (40) and between 62% and 83% for normal weight concrete (92) of the 

respective working deflection at the first cycle were obtained. 

7.7.2.2. Behaviour of Composite Beams 

S) General 

The load deflection behaviour for the composite beams based on theoretical 

considerations is discussed in 5.3.4., consequently an idealised relationship is 

established, as shown in Fig. 1Gb. 

The observed load deflection curves for test beams are shown in Figs. 42 

and 43. In these figures the beams show a steeper gradient for the load-deflection 

behaviour at the initial stages of loading. When the concrete cracks the gradient 

of the load deflection behaviour changes in a gradual manner; this indicates a 

reduction in the flexural rigidity of the members. 

The curvilinear behaviour between the levels of the cracking moments of the 

concrete (Mc) and the cracking moments of the f. r. c. channels (Ma) is mainly due 

to the control of the f. r. c. channels on the width and extension of the cracks. This 

is discussed in 5.3.4. 

When the f. r. c. channels cracked some scatter in the load-deflection behaviour 



was observed, e. g., beams ST 1-C, ST 7-C, ST 10 -C and ST 12 -C showed 

a noticeable reduction in their flexural rigidity. The factors which might have 

affected the load deflection behaviour at levels greater than the cracking moment of 

the f. r. c. channels are discussed in 5.3.4. 

For beams with a similar percentage of steel the load deflection behaviour was 

nearly the same up to the level of the cracking moment of the f. r. c. channels. 

Thereafter the behaviour of the beams slightly differed depending upon the effect 

that the formation of cracks in the f. r. c. channels had on the behaviour of the 

individual beams. 

An example of this is that due to the cracking of the f. r. c. channel, the 

deflection- of beam ST 1-C containing mild steel increased at a greater rate than 

those of beams ST 2-C and ST 3-C which were reinforced with Unisteel 410 and 

Unisteel 550 respectively. This behaviour can be seen by comparing the load - 

deflection curves of the beams at levels greater than the cracking moments of the 

f. r. c. channel (Ma) as shown in Fig. 42, where the deflection of beam ST 1-C 

increased at a greater rate than those of beam ST 2-C and ST 3-C. This could 

be due to the greater effect that the formation of cracks in the f. r. c. channels had 

on the cracks in the concrete of beam ST 1-C. Reference can be made to Figs. 51 

and 52, where the maximum crack width in the concrete of beam ST 1-C was 

increased considerably greater than those in beams ST 2-C and ST 3-C due to 

the formation of a crack in the f. r. c. channel. 

Similar to the behaviour of ordinary beams, the composite beams showed a 

significant amount of deflection at the final stages of loading, which gave a good 

warning of impending failure. A composite beam near the failure stage can be seen 

in plate 2b. 

(b) Working Moment Condition 

The observed deflections at the working moments for the test beams varied 

between 4.2mm and 18.4mm, which gave a corresponding span to deflection ratios 

ranging between 1071 and 245. The values for the various beams are given in cols. 

2 and 7 of table (9). The lowest value for the span to : deflection ratio obtained was 

for beam ST 4-C reinforced with Kam 60 steel, where the f. r. c. channel cracked 



at a stage before the working moment of the beam. 

Considering the recommended span to deflection ratio of 250 the composite 

beams except beam ST 4-C showed an adequate degree of stiffness at the level 

of the working moment. 

For each beam tested the deflection at working moment in the second loading 

cycle was nearly the same as that obtained in the first loading cycle. Similarly the 

deflections at 1.5 times the working moment in the second and third cycle were the 

same. For both cases, when the cracking moment of the f. r. c. channel was 

reached some scatter in the results was observed. 

(c) Remaining Deflection 

The remaining deflections for test beams after the first cycle are given in 

col. 3 of table (9). The deflection recovery after the first cycle ranged between 

77.4% and 86% of the respective deflection at the working moment. 

7.7.2.3 Comparison Between the Behaviour of Ordinary and Composite Beams 

The load deflection behaviour of a composite beam in relation to that of an 

ordinary beam is explained in 5.3.4. Typical and idealised relationships for both 

types of beam are shoven in Fig. 16. 

In Figs. 44,45 and 46, arc plotted the observed values of deflections for the 

ordinary and composite beams, so that a direct comparison of behaviour can be 

made. In these the composite beams show a greater degree of stiffness than the 

ordinary beams up to and well above the working moment. 

The greatest saving in deflection was obtained at the level of the working 

moment of the beams. This could be due to the ordinary beams being completely 

cracked, whereas the cracks in the composite beams are effectively controlled by 

the restraint action of the f. r. c. channels. 

The ratios of the deflections for the composite beams to those of the ordinary 

beams at the level of the working moment, varied between 0.96 and 1.54. The 

lowest value was obtained for beam ST 4-C containing Kam 60 steel, where the f. r. c. 

channel cracked at a value lower than the working moment of the beam. It can 

also be seen that when a higher percentage of steel was employed the saving in 



the amount of deflection was reduced, e. g., beam ST 7-C reinforced with 

1.643% gave the least amount of saving. 

The moments at which the composite beams attained the same working 

deflection for the corresponding ordinary beams were at 1.2,1.17,1.15,1.22 

and 1.03 times the working moment for beams ST 1-C, ST 2-C, ST 3-C, 

ST 10 -C and ST 7-C respectively. These values are important when an 

increase in the working moment of a composite beam is to be considered. 

The saving in deflections for the composite beams was maintained up to the 

level of the cracking moment of the f. r. c. channels. Thereafter the flexural 

rigidity of the composite beams gradually decreased. When more cracks were formed 

in the f. r. c. channel the rate of reduction in the flexural rigidity increased and 

finally a stage was reached where the ordinary and composite beam had the same 

flexural rigidity. This stage was reached at steel stresses of 230 N/mm2 and 

220 N/mm2 for beams containing mild steel with steel ratios of 1.044% and 1.643%. 

respectively. For the beams that were reinforced with deformed bars (except beam 

ST 4- C) this stage was reached at steel stresses with the corresponding ratio and 

type of steel of 405 N/mm2 (1.044% Uni steel 410), 460 N/mm2 (1.044% Uni steel 550) 

and 560 N, fnm2 (0.582% Kam 60). 

At the levels well above the cracking moments of the f. r. c. channels some of 

the composite beams showed a slightly lower flexural rigidity than the corresponding 

ordinary beams, e. g., beams ST 1-C, ST 4-C, ST 7-C and ST 10 -C shown 

in Figs. 44,45 and 46. This was mainly due to. the formation of cracks in the 

f. r. c. channels and the sudden transfer of tensile stresses from the f. r. c. channels 

to the steel, which consequently increased the curvature of the members. 

In general, the saving in deflection when employing the same type of f. r. c. 

channel depends upon the following factors: - 

(1) condition of the flexural member; whether the concrete of the member is 

cracked or not. 

(2) the percentage of steel employed. 

(3) the level of the cracking moment of the f. r. c. channels, 

(4) the level of steel stress. 



7.7.2.4. Comparison With Theory 

The central deflection for the test beams was calculated by employing the 

approaches suggested in 5.3.5. In these calculations the values of the various 

parameters employed were as follows; fr =2 N/mm2, Ec = 17 kN/mm2, 

Es = 200 kN/mm2, Ea = 12 kN/mm2, m2 = 0.7, frc =3 N/mm2 and 

Ma = as given in col. 3 of table (8). 

The approaches employed are as follows: 

Approach One : Existing Theories (Ordinary Beams) 

The calculated deflections at the working moments of the ordinary beams 

obtained by employing the various existing theories reviewed in appendix (F) 

are plotted against the observed values as shown in Fig. 47. It can be seen that 

the existing theories can predict the actual amount of deflection to within an 

accuracy of + 20%. 

Approach Two : Empirical Method (Ordinary and Composite Beams) 

In this approach the deflection was calculated by employing the empirical 

method discussed in 5.3.5. In this calculation the curvature was obtained from 

the experimental values of flexural strains and the neutral axis as in the following: 

ýexp = ecexp ý (5.4) 

XeXP 

Where ecexp : experimental maximum flexural compressive strain in concrete 

Xexp : experimental neutral axis depth 

The values for 0cexp and Xexp used were those obtained from the experimental 

results. 

The calculated and observed load deflection curves for the ordinary beams 

are shown in Figs. 38,39 and 40. 

Good agreement is obtained between the calculated and the observed values. 

Similar calculations were carried out for the composite beams. and a good 

agreement has also been obtained with the observed values. In col. 4 of table (9) 

the predicted values at the level of the working moment are shown. The ratios 



of the calculated to the observed values of deflections for the test beams varied 

between 0.96 and 1.15 with an average value equal to 1.06. The good agreement 

obtained between the calculated and the observed deflections as discussed in 5.3.5 

indicates the following points: 

(1) The measured strain distribution across the depth of the beam represents 

the average values. 

(2) The readings taken with regard to strain measurements, deflection and 

the determination of the neutral axis depth at the central point of the beams 

were sufficiently accurate. 

(3) The average curvature of a flexural member can be calculated from the 

observed values of the flexural strains across the depth of the beam and 

the neutral axis depth. The occasional scatter in the results could be due 

to the formation of cracks within the "Demec" gauge length. 

Approach Three : Proposed Methods 

Ordinary Beams 

The deflection at the worldng mcments of the beams was calculated in accordance 

with 5.3.5, where the average curvature was obtained from the following: - 

fs - k3 fr/P 
0§ (5.11) 

ave = Es(d1 -x) 

From the experimental values obtained, it was found that a suitable value for 

k3 was 0.3. The steel stresses (f5) employed for the beams were calculated in 

accordance with 4.5.2 and are shown in Figs. 34 and 35. The value of the neutral 

axis depth used was that calculated for a cracked transformed section by employing 

equation 4.5. 

The theoretical and observed values for the deflections at the level of working 

moments are given in cols. 2 and 5 of table (9). The ratios of the calculated to 

the observed values of deflections are given in col. 6 of table (9). These varied 

between 0.94 and 1.06 with an average value of 1.01. This clearly indicates the 

reliability of the proposed method in predicting the actual amount of deflection 

for lightweight concrete beams. 



_(b) 
Composite Beams 

The central deflections for the composite beams were calculated throughout 

the loading stages and up to the level of the cracking moment of the f. r. c. channels 

by employing the proposed method suggested in 5.3.5. The idealised relationship 

is shown in Fig. 1Gb. In this method the curvature of a beam can be calculated by 

three stages as in the following: 

(1) For mC Me, cross section No. 1 in Fig. 17. 

ý_ Al 
EcIo 

(2) For Mc-Z-- R'I7: 5: 1LIp, cross section No. 2 in Fig. 17. 

ý_ M+ bi - Mc 

EcIo k LcIn 

where mp 
Ma + Mc 

P2 

(3) For Alp :cM Ma, cross section No. 3 in Fig. 17. 

ý° 

Ip : 

mc 
ECIo 

+MP 
- MC Al -lip 

+ý 

k EeIp k Ec Tcc 

can be calculated as shown in appendix H 

§ (5.16) 

§ (5.17) 

ý (5.19) 

From an examination of the experimental results obtained it was found 

suitable to use values of 0.75 and 0.7 for k and k respectively. 

In Figs. 42 and 43 are plotted the theoretical values for the deflections obtained 

by employing this method together with the observed values. A good agreement has 

been obtained between the experimental and the theoretical values. It can also be 

seen that the experimental load deflection behaviour of the composite beams is well 

represented by the trilinear concept suggested for this method. 

The calculated deflections at the level of the working moments are given in 

col. 5 of table (9). The ratios of the calculated to observed values of the deflections, 

as given in col. 6 of table (9), varied between 0.98 and 1.05 with an average value of 
1.02. 

It can be observed that the proposed method is quite reliable in predicting the 

actual amount of deflection for composite beams. 



7.7.3 Limit State of Cracking 

7.7.3.1 Behaviour of Ordinary Beams 

(a) General 

The mechanism of cracks formation in reinforced concrete members and the 

limitations put on theiAvidth are discussed in 5.4.1. In general the surface crack 

width under normal conditions of exposure should not exceed 0.3mm. 

In this research the width of the cracks at the level of the steel reinforcement 

as well as at the bottom edge of the beams was measured. 

Some of the beams showed surface cracking after a period of three to four 

weeks after casting. This could mainly be due to the shrinkage strain which 

occurred in the concrete members. The maximum values of shrinkage strain 

obtained after four weeks from casting were 0.0005 in the small concrete prisms 

(100mm x 100mm x 500mm). The maximum crack width observed was 0.08mm 

with an average value of 0.04mm. In a previous investigation a maximum crack 

width of 0.05mm was observed due to shrinkage for lightweight concrete members (90). 

The early formation of cracks in some of the test beams made it difficult to 

observe the load at which flexural cracking occurs. 

The values of the direct tensile strength given in table (6) ranged between 

0.94 N/mm2 and 3.5 N/mm2 with an average value of 2.02 N/mm2. The values 

of the modulus of rupture varied from 1.6 N/mm2 to 4.2 N/mm2 with an average 

value of 2.8 N/mm2. The average ratio of the direct tensile strength to the 

modulus of rupture obtained was equal to 0.7. 

The low values obtained for the tensile strength and the modulus of rupture 
for the concrete could mainly be due to the formation of shrinkage cracks in the 

concrete prisms. 

In the calculation of the cracking moment of the concrete the average value of the 

direct tensile strength (2 N/mm2) was used. This gave a good agreement between 

the calculated and the observed values of cracking moments. These are given in 

cols. 2 and 3 of table (10). 



(b) Worldng Moment Condition 

The observed crack widths at the steel level as well as at the bottom edge of 

the beams at the working moment level are given in table (10). The maximum 

crack widths varied between 0.13mm and 0.2mm at the level of the steel, and 
between 0.15mm and 0.3mm at the bottom edge of the beams. The average crack 

widths ranged between 0.05mm and 0.14mm at the steel level and between 0.09mm 

and 0.22mm at the bottom edge of the beams. This indicated that the crack widths 

at the level of the working moment did not exceed a value of 0.3mm. It can therefore 

be assumed that the limit state of cracking under static loading was satisfied for 

the beams tested. 

The ratios of maximum to average crack widths at the level of the steel for 

the test beams varied between 1.1 and 2.4 with an average value pf 1.68; the ratios 

for the crack widths at the bottom edge of the beams varied between 1.22 and 1.67 

with an average value of 1.52. 

The cracks observed in the region of the constant moment zone gave average 

spacings of 129mm and 145mm at' he bottom edge of the beams and at the level of 

the steel respectively. 

With regard to the effect of surface deformation of the bars, beam ST 4-0 

reinforced with Kam 60 steel showed smaller crack widths compared with beam 

ST 3-0 reinforced with Unisteel 550. This could be due to the surface deformation 

of Kam 60 steel having a better control on the crack widths. The values of the 

crack widths are given in table (10). 

The crack widths at the level of the working moment at the first cycle did 

not differ from that at the second cycle by more thin 0.02mm. Similarly the 

crack widths at 1.5 times the working moment were nearly equal at the second and 
third cycles of loading. 

(c) Steel Stress 

The variation of the maximum crack width at the steel level in relation to the 

steel stress can be seen in Figs. 48,49, and 50. These figures clearly show 
the effect that the steel stress has on the width of the cracks. The values of the 

steel stresses were calculated in accordance with 4.6, and shown in Figs. 34 and 35. 



The observed maximum crack widths at the bottom edge of the beams with 

the corresponding steel stresses in the test beams were as follows: 

Beam mark p%o 
Type of 

Steel stress (N/mm2) at a 
crack width of 

steel 0.2mm 0.3mm 

ST 1-0 1.044 M. S. 235 305 

ST2-0, ST3-0, 
ST4-0, ST5-0 
ST6-0 1.044 Deformed bars 240 - 325 360 - 440 

ST 7-0 1.643 M. S. 160 296 

ST8-0 1.643 Deformed bars 230 - 
ST9-0 1.583 Deformed bars 220 384 

ST10-0 0.582 Deformed bars 240 472 

From the results it can be seen that the deformed bars showed better control 

on the width of the cracks than did the mild steel bars. 

In a previous investigation (35) an average maximum crack widths of 0.2mm 

with mild steel and 0.18mm with square twisted bars were observed at a steel 

stress of 207 N/mm2. The percentages of steel employed ranged between 

0.99% and 4.62%. A direct comparison, however, with the values obtained in this 

research can not be made mainly oavmg to the variation in type and percentage of steel 

and the type of concrete used. The amount of concrete cover to the main tension 

reinforcement is archer factor which should be considered. 

(c) Remaining Crack Width 

The maximum remaining crack widths in the test beams after the first 

cycle of loading varied between 0.05mm and 0.09mm at the level of the steel, 

and between 0.06mm and 0.1mm at the bottom edge of the beams. 

Valued ranging between 0.02mm and 0.05mm for the remaining crack widths 

were reported in a previous investigation (35). 



7.7.3.2 Behaviour of Composite Beams 

(a) General 

The mechanism of cracks formation in the composite beams and the role 

of the f. r. c. channels in arresting these cracks are discussed in 5.4.2. 

The cracks in the composite beams were initially observed at the interface 

(top of the upstands of the f. r. c. channels). Cracks at the soffits of the beams 

were only observed after the f. r. c. channels cracked. 

As mentioned in 7.7.3.1., the average values of the tensile strength and the 

modulus of rupture were 2.02 N/mm2 and 2.84 N/mm2 respectively. For the 

calculation of the cracking moment of the concrete by employing equation 4.2, a 

value of 3 N/mm2 for the tensile strength of the concrete at the level of the interface 

was used. This gave a good agreement between the calculated and the observed values 

of the cracking moment of the concrete as can be seen in cols. 2 and 3 of table (10). 

With increasing load (greater than the cracking load of the concrete) further 

cracks were formed in the concrete, and an increase in width and length of the 

cracks were also observed. A stage, then, was reached where the f. r. c. channel 

cracked. The cracking of the f. r. c. channel normally occurred by the formation of 

one crack at a position where there was a crack already formed in the concrete. 

This could be due to the tensile stress in the f. r. c. channel being maximum in the 

vicinity of an existing crack in the concrete (at a cracked concrete section) and 

minimum at a point between two adjacent crack (at an uncracked concrete section). 

Furthermore the cracks which might have formed in the confined concrete 
by the presence of the f. r. c. channels could have induced additional local tensile 

strains in the f. r. c. channels. This might have contributed to the development of 

cracks in the f. r. c. channels at positions of existing cracks in the confined concrete. 
Another factor is that the neutral axis depth at a cracked concrete section is 

less than that at an untracked concrete section. Considering a straight line strain 
distribution, a greater tensile strain in the f. r. c. channels would be expected at 
the cracked section. 

The maximum surface crack width measured on the f. r. c. channels when 
first cracked ranged between 0.1mm and 0.4mm depending on the level of the 

cracking moment of the f. r. c. channels. The corresponding cracks in the confined 



concrete, however, might be smaller. This is discussed in section (d). 

At higher levels of loads more cracks were formed in the f. r. c. channel. 

This indicated that the composite action was not completely lost by the formation 

of the first crack in the f. r. c. channel and also that the f. r. c. channel was still 

carrying tensile stresses at the untracked sections. It also indicated that there 

was still a good bond between the f. r. c. channels and the concrete which enabled 

the f. r. c. channels to carry the tensile stresses. 

The cracking behaviour of the beams can be seen in Figs 51,52,53 and 54, 

where the observed maximum crack widths at the interface (level of the steel) are 

plotted against the applied moment. The figures show that the width of the cracks 

up to and well beyond the level of the working moments are well within the 

recommended limits. However, when the cracking moments of the f. r. c. channels 

were reached the width of the cracks suddenly increased. This increase in the 

crack widths could mainly be due to the sudden transfer of the tensile stresses from 

the f. r. c. channels to the steel, which increased the tensile strain in the steel, 

resulting in a greater crack width. 

(b) Working Moment Conditions 

The observed crack widths at the level of the working moment for the test 

beams are given in table (10). The beams did not show any visible cracks at their 

soffits, the exception being beam ST 4-C. This was mainly because the f. r. c. 

channels did not crack up to levels greater than their respective values of working 

moments, the exception being beam ST 4-C containing Kam 60 steel, where the 

f. r. c. channel cracked at a level lower than the working moment. 

The maximum crack width at the level of the steel (measured at the interface) 

ranged from 0 to 0.1mm, whilst the average crack widths varied between 0 and 

0.08mm. The average ratio of the maximum to the average crack widths for the 

various beams was 1.5. 

It may be concluded, therefore, that the composite beams skived a considerable 

reduction in the amount of cracking in concrete at the levels of the working moments. 

(c) Remaining Crack Width 

The remaining maximum crack width at the steel level for the test beams 



after the first cycle of loading are given in col. 10 of table (10). These values 

varied between 0 and 0.04mm. Only beam ST 4-C had a maximum residual 

crack width of 0.1mm at the bottom edge of the beam. 

(d) Cracks in the Confined Concrete 

To study the formation of the cracks in the confined concrete parts of the 

f. r. c. channel of a composite beam which had been subjected to the first and 

second cycles of loading were cut and removed while the beam was unloaded. 

The removed parts were 50mm to 100mm on either side of existing cracks in 

the concrete (observed at the interface) and also in the f. r. c. channel. 

One of the interesting points observed at zero load was that at positions 

where cracks had formed in the channel the crack widths in the confined concrete 

were smaller than those measured on the surface of the channel. After reloading 

the beam similar behaviour was observed at the level of the working moment. A 

crack in the confined concrete observed at a position where the f. r. c. channel had 

been cracked can be seen in, plate 4b. This was observed at the level of the 

working moment of the beam. 

Another interesting point was that in the areas where there were no cracks 

in the f. r. c. channel the confined concrete did not show visä: ble cracks. This was 

observed at zero load as well as at the level of the working moment. This behaviour 

at the level of the working moment can be seen in plate 4a. 

7.7.3.3 Comparison Between Ordinary and Composite Beams 

For a comparison between the cracking behaviour of the ordinary and composite 
beams, the following points were observed. 

(1) Shrinkage cracks did not appear on the composite beams, whereas a maximum 

crack width of 0.08mm was observed due to shrinkage in the ordinary beams. 

(2) An increase in the apparent cracking moment of concrete at which cracks 

were observed at the interface was obtained. The ratios of the cracking 
moments of concrete for the composite beams to those for corresponding 
ordinary beams varied between 2.2 and 4. This clearly indicated the 

contribution of the f. r. c. channel in controlling flexural cracks in the 

composite beams. 



(3) At the working moment conditions the widths of the cracks in the 

composite beams were much smaller than those in the corresponding 

ordinary beams Figs. 51,52,53 and 54. The ratios of the maximum 

crack widths at the level of the steel in the ordinary beams to those in 

the composite beams, except beam ST 4-C, varied between 2 and 6. 

At the soffits of the beams no cracks were observed in the composite 

beams, whereas the maximum crack widths in the corresponding ordinary 

beams ranged between 0.15mm and 0.26mm. 

(4) When the f. r. c. channel cracked, some of the composite beams showed 

slightly greater crack widths at the interface than those in the corresponding 

ordinary beams, e. g. beams ST 1-C, ST "4 -C and ST 7-C (Figs. 51, 

52 and 53). The maximum surface crack widths measured on the surface 

of the f. r. c. channels at the soffits of the composite beams were greater 

than those in the corresponding ordinary beams. 

(5) The number of visible cracks in the composite beams was less than that 

in the ordinary beams. This can be seen in col. 6 of table (10), where 

in some beams the number of visible cracks in the composite beams at 
1. 

(6) 

the level of the working moment was nearly half of that in the ordinary beams. 

The average spacings of cracks were 250mm and 145mm for the composite 

and the ordinary beams respectively. 

The length of the cracks in the composite beams was limited due to the 

restraint action of the f. r. c. channels. A direct comparison between the 

length of the cracks in ordinary and composite beams can be seen in 

Fig. 55. 

7.7.3.4 Comparison With Theory 

Ordinary Beams 

As mentioned in 5.4.3., the crack widths for the ordinary beams were 

calculated by employing the proposed method in CP110 and also by employing the 

C. and C. A. formula. 

The C P110 formula is: 

3 acr em 
w= 1+2 (acr - C) 

d-x 

§ (5.21) 

Wherem 
= el - 

1.2 bd (ä - x) x 1U-3 e (5.22) 
AS (d - x) fy 



In this formula the neutral axis depth and the steel stresses obtained from 

the experimental results were used. 

The method underestimated the maximum crack widths at the steel level and 

at the bottom edge of the beams for seven out of the ten beams tested. The calculated 

values of the crack widths are given in cols. 12 and 13 and the observed values are 

given in cols. 4 and 7 of table (10). 

Calculations were also carried out using the C and C. A. formula (88). The 

equation for the maximum crack width at the bottom edge of the beam is 

W=3.3c fs (d - x) (5.23) 

Es dl -x 

c: cover the main reinforcement 

The term d- x/dl -x reduces to 1.0 when crack width at the steel is sought. 

The calculated values obtained by employing this method for the maximum 

crack width at the steel level together with the observed values for the test beams 

are plotted against the applied moment as shown in Figs. 48,49 and 50. These 

figures show that a good agreement is obtained between the calculated and the observed 

values. The calculated values of the crack widths at the steel level and at the 

bottom edge of the beams at the level of the working moment are given in cols. 14 

and 15 of table (10). 

The ratios of the calculated to observed values of the maximum crack widths 

at the steel level ranged between 0.7 and 1.1 with an average value of 0.98, the 

ratios at the bottom edge of the beams ranged between 0.9 and 1.8 with an average 

value of 1.3. 



CHAPTER EIGHT 

EFFECTS OF LONG TERM LOADING ON TEST BEHAVIOUR FOR ORDINARY 

AND COMPOSITE BEAMS 

8.1 Introduction 

This chapter discusses the effect that long-term loading had on the behaviour 

of the ordinary and the composite beams. 

A total of nine beams were tested, five beams under fatigue and four beams 

under sustained loading tests. The properties of the various beams tested are 

given in tables (2) and (3). The methods of testing employed are explained in 

Chapter Six. Beams tested under fatigue loading were initially tested under static 
loading test. Thereafter they were subjected to a cyclic loading with an upper 
limit equal to the working moment of the beam and a lower limit equal to half the 

working moment. The number of repetitions applied to each of the test beams 

was about three million cycles. 

Beams tested under sustained loading - were initially tested under static 

loading up to the working moment. The beams then were kept under sustained 

loading for a minimum period of 500 days. The discussion of the test behaviour 

includes the effect of long term loading on the neutral axis depth, flexural compressive 

strain in the concrete and the stresses in the steel and the f. r. c. channels. More 

emphasis is placed on the limit states of ultimate strength, cracking and deflection. 

A direct comparison between the flexural behaviour of the ordinary and the 

composite beams is also presented. 

8.2 Fatigue Loading Tests 

8.2.1 Variations of the Neutral Axis Depth 

(a) Ordinary Beams 

There are two major factors which can affect the position of the neutral axis 
depth of flexural members subjected to fatigue loading. These are: - 

(1) An increase in width and height of travel of the cracks due to repeated 
loading can result in raising the neutral axis level towards the compression 
face. 



(2) The increase in the flexural compressive strain in concrete due to 

repeated loading can lower the position of the neutral axis depth. 

However, by referring to Fig. 56, it can be seen that cyclic loading had no 

appreciable effect on the level of the neutral axis depth for the beams tested in 

this investigation. At the levels of the working moments the ratios of the neutral 

axis depths measured after three million cycles to those obtained at the first 

cycle were 0.98,1.05 and 1.17 for beams FA 1-0 (1.044% mild steel), 
FA 2-0 (1.044 Unisteel 410) and FA 4-0 (1.044% Kam 60) respectively. 

It can be seen that the higher the level of the working moment the greater is 

the ratio of the final to initial neutral axis depth. This was mainly due to the fact 

that the initial values of the neutral axis depth were greater at low levels of working 

moments. Additionally, with higher levels of repeated working load a greater 

increase was observed in the flexural compressive strain in the concrete. This 

consequently increased the neutral axis depth. The effect of repeated loading on 

the flexural compressive strain in the concrete is explained in 8.2.2. 

(b) Composite Beams 

In Fig. 56 are plotted the experimental values of the neutral axis depth at 

the level of the working moment against the number of load repetitions. 

In the early stages of the repeated loading process, beam FA 1-C reinforced 

with mild steel showed a noticeable reduction in the neutral axis depth. Thereafter 

no practical change in the neutral axis depth was observed. Beam FA 2-C, 

however, showed a slight increase in the neutral axis depth. 

At the levels of the working moments the ratios of the neutral axis depths 

measured after three million cycles to those obtained at the first cycle were 0.84 

and 1.1 for beams FA 1-C and FA 2-C respectively. 
The factors which might have affected the position of the neutral axis in the 

ordinary beams, as discussed in section (a), also have a similar effect on the 

composite beams. Additionally, the formation of cracks in the f. r. c. channels 
due to repeated loading could result in reducing the neutral axis depth. This is 

mainly due to the reduction in the tension stiffening effect of the f. r. c. channels 
and also due to the propagation of the cracks towards the compression face once 
cracking occurs in these channels. 



For beam FA 1-C, the cracking of the f. r. c. channel had considerably 

reduced the neutral axis depth. This can be seen in Fig. 56, where most of 

the reduction in the neutral axis depth occurred in the early stages of the repeated 

loading, the f. r. c. channel being cracked after 450,000 cycles of loading. This 

resulted in a lower ratio for the final to initial neutral axis depth for beam FA 1-0. 

The neutral axis depth of beam FA 2-C, however, was not greatly affected 

by the cracking of the f. r. c. channels which occurred after 300,000 repetitions. 

The relatively higher level of moment of beam FA 2-C had led to a greater rate 

of increase in the flexural compression strain in the concrete, consequently the 

neutral axis depth was increased. This resulted in a greater ratio for the final 

to initial neutral axis depth for beam FA 2 -C. 

(c) Comparison Between Ordinary and Composite Beams 

At the first static test the composite beams showed a greater neutral axis 

depth than the corresponding ordinary beams. After three million cycles the 

ratios of the neutral axis depths of the ordinary beams to those of the corresponding 

composite beams were 1.04 for beams FA 1-0 and FA 1-C and 0.83 for beams 

FA 2-0 and FA 2-C. This indicated that only in one case did a composite beam 

show a greater neutral axis depth than that of a corresponding ordinary beam. 

8.2.2 Variations of the Maximum Flexural Compressive Strain in Concrete 

(a) Ordinary Beams 

In Fig. 57 are plotted the observed values of the maximum flexural compressive 

strain at the level of the working moment versus the number of load repetitions. 

In general, repeated loading caused an increase in the compressive strain 

in the concrete; most of the increase, however, occurred during the first 600,000 

cycles for beams FA 1-0 and FA 2-0 and 1.5 million cycles for beam FA 4-0. 

Thereafter no practical change was observed. 

The ratios of the maximum flexural compressive strain in the concrete at 

the working moment measured after three million cycles to that measured at the 

first cycle were 1.18 for beam FA 1-0 (1.044% mild steel), 125 for beam FA 2-0 

(1.044% Unisteel 410) and 1.4 for beam FA 4-0 (1.044% Kam 60). The initial 

values of stresses in the concrete at the upper limit of the cyclic loading were 



23% (beam FA 1- 0), 30% (beam FA 2- 0) and 34% (beam FA 4- 0) of the 

respective cylinder compressive strength. The stresses at the lower limit 

were equal to nearly half those at the upper limit. 

These stresses were obtained by correlating the measured maximum 

compressive strains in concrete with the corresponding experimental stress- 

strain relationship of concrete in compression. This indicated that the greater 

the level of stress at the upper limit of the loading cycles, the greater is the 

rate of increase in the flexural compressive strains in the concrete. Similar 

behaviour was also observed in a previous, investigation on normal weight 

concrete members (93). 

fib) Composite Beams 

The experimental values of the maximum flexural compressive strain in 

the concrete at the level of the working moment are plotted against number of 

load repetitions in Fig. 57. 

This shows that repeated design load increased the compressive strain in 

the concrete. However, after about 1.5 million repetitions no practical change 

was observed. 

The ratios of the maximum flexural compressive strain in the concrete at 

the working moment measured after three million cycles to that obtained at the 

first cycle were 1.78 and 1.8 for beams FA 1-C and FA 2-C respectively. 

These ratios are considerably greater than those obtained for the corresponding 

ordinary beams discussed in section (a). This is mainly because the f. r. c. 

channel did not crack at the first cycle which resulted in lower initial values 

for the flexural compressive strain in the concrete. In addition, cracks were 

formed in the f. r. c. channels during the process of repeated loading. This 

considerably increased the values of the flexural compressive strains in the 

concrete. This behaviour is explained in 7.4 (c). 

(c) Comparison Between Ordinary and Composite Beams 

The composite beams, at the first static test, showed lower values for the 

flexural compressive strains in the concrete than those in the corresponding 

ordinary beams. This was mainly due to the contribution of the f. r. c. channels 

which did not crack at the first cycle of loading. After three million cycles the 



ratios of the maximum flexural compressive strains in concrete in the ordinary 
beams to those in the corresponding composite beams were 0.7 and for beams 

FA 1-0 and FA 1-C (1.044%mild steel) and 0.87 for buns FA 2-0 and FA 2-C 

(1.044% Unisteel 410). This indicated that the composite beams had greater 

flexural compressive strains in the concrete than the corresponding ordinary 

beams. This was mainly due to the formation of cracks in the f. r. c. channel 

during the process of repeated loading which consequently led to an increase in 

the flexural compressive strains. 

8.2.3. Stresses in the f. r. c. Channels 

The stresses in the f. r. c. channels were obtained by correlating the values 

of strains measured on these channels with their experimental stress-strain 

relationship shown in Fig. 8. 

At the first cycle of loading the stresses in the f. r. c. channels for beams 

FA 1-C and FA 2-C which were subjected to fatigue loading were nearly the 

same as those for the corresponding beams ST 1-C and ST 2-C. At the level 

of the working moments (upper limit of the loading cycles) the maximum stresses 

in the f. r. c. channels for beams FA 1-C and FA 2- C were 5.83 N/mm2 and 

8.93 N/mm2 respectively. The stresses in the f. r. c. channels of the corresponding 

beams ST 1-C and ST 2-C were 5.33 N/mm2 and 9.13 N/mm2 respectively. 

The initial maximum stresses in the f. r. c. channels in the composite beams 

subjected to fatigue loading ranged between (2.3 - 5.83 N/mm2) for beam FA 1 -C 

and between (3.2 - 8.93 N/mm2) for beam FA 2-C. These values expressed as 

percentages of a nominal tensile strength equal to 15 N/mm2 for the f. r. c. units 
(see Fig. 8) are between 15.3 - 38.9% for beam FA 1-C and between 21.3 - 59.5% 

for beam FA 2-C. 

The behaviour of the f. r. c. channels in the composite beams tested under 
fatigue loading could be mainly affected by the level of stresses at the lower and 

upper limits of the loading cycles. 

It is worth pointing out that the increase in the strain of the f. r. c. channels 

under the stresses at the lower limit was mainly due to creep, as the channels 

were subjected to these stresses continuously for the period of repeated loading. 

Referring to Fig. 8, it can be seen that the stresses at the lower limit (2.3 N/mm2 



and 3.2 N/mm2) are low and may be considered to be within the elastic range 

of the behaviour of the f. r. c. units. Thus the effect of these stresses on the 

behaviour of the f. r. c. channels may not be considerable. 

It is most likely, therefore, that the increase in strain and the consequent 
formation of cracks in the f. r. c. channels was mainly due, to the effect of repeated 
loading. 

The formation of cracks in the f. r. c. channels was observed after 450,000 

cycles and 300,000 cycles for beams FA 1-C and FA 2-C respectively. This 

indicated that the range of stresses in the f. r. c. channels between the lower and 

upper limit of the loading cycles which were 2.3 - 5.83 N/mm2 for beam FA 1-C 

and 3.2 - 8.93 N/mm2 for beam FA 2-C directly affected the number of cycles 

at which cracks were formed (i. e., the higher the range of applied stresses the 

lower is the number of repetitions at which the channel crack). 

One of the important features in the behaviour of the f. r. c. channels under 

the effects of repeated loading was the good bond maintained between these channels 

and the concrete throughout the process of the fatigue test. No separation occurred 

between the concrete and the f. r. c. channel even when the beams were finally 

tested to destruction after the application of three million cycles. 

8.2.4. Variations of the Steel Stresses 

(a) Ordinary Beams 

The main factor which might have affected the values of the steel stresses 

" in beams subjected to fatigue loading was the variation of the neutral axis depth, 

which alter the lever arm of the steel. 

The working steel stresses calculated in accordance with 4.6 for the beams 

at the first cycle (initial values) and after three million cycles (final values) are 

given in cols. 3 and 4 of table (11). 

In this calculation equation (4.18) was used, where the only variable was the 

neutral axis depth. The value of ß corresponded to the stress distribution of the 

concrete in compression at the first cycle of loading. 

The ratios of the final to initial values of the steel stresses, as given in 

col. 5 of table (11), were 0.99,1.02 and 1.03 for beams FA 1-0, FA 2-0 and 



FA 4-0 respectively. This, however, indicated that repeated loading did not 

affect significantly the values of the steel stresses. 

(b) Composite Beams 

The initial and final values of the steel stresses calculated in accordance 

with 4.6 are given in cols. 3 and 4 of table (11). In this calculation equation 4.20 

was used, the contribution of the f. r. c. units, however, was only considered in 

the calculation of the initial values, since the channels for both beams cracked 

during the process of repeated loading. The ratios of final to initial values of 

the steel stresses, as given in col. 5 of table (11), were 1.17 and 1.22 for beams 

FA 1-C and FA 2-C respectively. It can be seen that these ratios are greater 

than those for corresponding ordinary beams as discussed in section (a). 

This is mainly due to the following: 

i) The initial values of the steel stresses in the composite beams were 

lower than those in the corresponding ordinary beams. This was due 

to the contribution of the f. r. c. channels which did not crack at the first 

cycle of loading. 

ii) The formation of cracks in the f. r. c. channels during the process of 

repeated loading. When the channels cracked the tensile stresses which 

were carried by the f. r. c. channels were transferred to the tension 

reinforcement of the member at cracked sections. 

Another factor which might have affected the values of the steel stresses 

was the variation of the neutral axis depth due to repeated loading and the 

consequent change in the lever arm of the tension reinforcement in the member. 

(c) Comparison Between Ordinary and Composite Beams 

Col. 3 of table (11) shows that, at the first cycle of loading, the steel 

stresses in the composite beams are lower than those in the corresponding 

ordinary beams. This, as explained in section (a) earlier, was due to the 

contribution of the f. r. c. channel which did not crack at the first cycle. After 

three million cycles the values of the ratio of steel stress in the ordinary beams 

to that in the corresponding composite beams, as given in col. 4 of table (11), 

were 1.022 for beams (FA 1-0 and FA 1- C) and 0.96 for beams (FA 2-0 and 
FA 2- C). This indicated that the steel stresses in the composite beams did not 



differ significantly from those in. the corresponding ordinary beams even after 

three million cycles and : hi spite of the formation of cracks in the f. r. c. channels. 

8.2.5. Principal Limit States 

8.2.5.1. Limit State of Ultimate Strength 

(a) Ordinary Beams 

At the end of the fatigue loading test all the beams were tested up to failure 

under static loading, as none of the beams tested failed under fatigue loading. 

Beam FA 1-0 failed at an ultimate moment equal to 36.125 kN. m.; the ultimate 

moment of the corresponding beam ST 1-0 was 39 M. nl. Beams FA 2-0 and 

FA 4-0 exhibited nearly the same ultimate strength as for the corresponding 

beams ST 2-0 and ST 4-0 respectively. Previous investigations on prestressed 

and reinforced normal weight concrete beams showed that repeated design worldng 

load did not have an appreciable effect on the ultimate strength of the members 

(64), (94), (95). In some cases, however, it was found that repeated design 

working load caused an increase in the ultimate strength of the members (73), (96). 

The behaviour of the beams with regard to the failure mechanism was similar 

to that observed for the beams which were tested under static loading as explained 

in 7.6.1. 

Col. 6 of table (11) gives the calculated ultimate moments of the beams 

using the strain compatibility method explained in 5.2.1. In this method the 

actual strength values of concrete and steel, without the partial safety factors 

of the material, were used. 
The ratios of observed to calculated values of the ultimate moment, as 

given in col. 8 of table (11), were 1.13 , 1.15 and 1.12 for beams FA 1-0, 

FA 2-0 and FA 4-0 respectively. This shows that the observed values of the 

ultimate 'moments were greater than the calculated ones. The factors which might 
have affected this behaviour are discussed in 7.7.1. 

(b) Composite Beams 

The composite beams tested did not fail under fatigue loading. An excellent 
bond between the f. r. c. channels and the concrete was maintained throughout the 



process of repeated loading. 

When the beams were finally tested to destruction, beam FA 1-C failed 

at an ultimate moment of 38.375 M. m; the corresponding beam ST 1-C failed 

at 40.5 kN. m. Beam FA 2-C had an ultimate strength equal to 50.5 kN. m 

compared with 46.5 M. m for the corresponding beam ST 2-C. It may be 

concluded, therefore, that fatigue loading did not have an appreciable effect 

on the ultimate strength of the composite beams. 

The failure mechanism was similar to that for the beams tested under 

static loading only as explained in 7.6.1. 

The calculated ultimate moments of the beams, using the strain compatibility 

method and incorporating the actual values of strengths for concrete and steel 

without the partial safety factors of materials are given in col. 6 of table (11). 

The ratios of observed to calculated ultimate moments as given in col. 8 of table (11) 

were 1.18 for beams FA 1-C and 1.28 for beam FA 2-C. The factors which 

could have influenced the observed values of the ultimate moments are the same 

as those for the ordinary beams as explained in 7.6.1. 

Comna. risonBetween Ordina and Composite Beams 

The observed values of the ultimate moments for the ordinary and composite 

beams are given in col. 7 of table (11). This shows that the observed ultimate 

moments of the compositebeanis were slightly greater than those of the corresponding 

ordinary beams. This may indicate that the f. r. c. channels contributed to the 

ultimate strength of the composite beams. However, it must be emphasised that 

at the end of fatigue loading the channels were cracked at many sections and that 

the contribution of the f. r. c. channels if any would be negligible. 

8.2.5.2. Limit State of Deflection 

(a) Ordinary Beams 

The remaining and working load deflections for beams FA 1-0, FA 2-0 

and FA 4-0 at the first cycle (given in cols. 2 and 3 of table (12)) agree well with 

those observed for the corresponding beams ST 1-0, ST 2-0 and ST 3-0 

(given in cols. 2 and 3 of table (9)). However, the maximum difference was that 

beam FA 2-0 had a working deflection 10% greater than that observed for the 



corresponding beam ST 2-0. Typical load deflection curves for static loading 

tests carried out at frequent intervals during the repeated loading test are shown 

in Fig. 58. 

This shows that the difference between the values of deflection at the loading 

and unloading stages diminishes with an increase in number of repetitions. 

Typical load-deflection behaviour for the loading and unloading stages when 

the beams were finally tested to failure is shown in Fig. 59. The behaviour in 

general was similar to that observed for the beams tested under static loading 

only. 

For each beam the deflection at the level of the working moment was nearly 

the same at the first and second cycles of loading. Similarly the deflection at 

1.5 times the working moment was nearly equal at the second and third cycles of 

loading. The variations in the remaining deflection and the deflection at the working 

moment with number of repetitions for beams FA 1-0, FA 2-0 and FA 4-0 are 

shown in Fig. 60. It can be seen that most of the increase in the remaining 

deflection and the deflection at the working moment occurred during the first six 

hundred thousand repetitions. It is important to emphasise here that the first static 

test carried out during the process of fatigue loading was after about 500,000 cycles 

of loading. Hence the greater rate of increase in deflection might well have 

occurred during the first few thousand repetitions. Thereafter no practical 

increase in the amount of deflections was observed. 

The ratios of the deflection at the working moment after three million cycles 

to that at the first cycleeas given in col. G of table (12), were 1.55 for beam 

FA 1-0 (mild steel), 1.31 for beam FA 2-0 (Unisteel 410) and 1.22 for beam 

FA 4-0 (Kam 60 steel). This indicates that when high working steel stresses 

were employed with the same percentage of steel a lower rate of increase in the 

amount of diflection with number of repetitions resulted. This was mainly because 

when high working steel stresses were employed with the same percentage of steel. 

a greater deflection resulted at the first cycle of loading. Additionally, flexural 

members with high working steel stresses had greater width and height of travel 

of cracks at the first cycle of loading. In a previous investigation on normal weight 

concrete members. an increase between 20 and 25% in the amount of deflection was 

observed in the early stage of repeated loading (97). Col. 4 of table (12) shows that 



the deflection at the working moment after three million cycles did not exceed 

the recommended limit of span/250 (i. e. 18mm) in beams reinforced with either mild 

steel or uni steel 410. This indicates that beams FA 1-0 and FA 2-0 satisfied 

the limit state of deflection even alter three million cycles of loading. 

(b) Composite Beams 

The working and remaining deflection at the first static test for beams 

FA 1-C and FA 2-C (given in cols. 2 and 3 of table (12)) agree well with those 

observed for the corresponding beams ST 1-C and ST 2-C (given in cols. 2 

and 3 of table (9)). However, the maximum difference was that beam FA 2-C 

had a working deflection 8% lower than that observed for the corresponding beam 

ST2 - C. 

Fig. 58 shows a typical load deflection curve obtained from static tests 

carried out at frequent intervals during the repeated loading test. The behaviour 

was similar to that of the ordinary beams, where the difference between the values 

of deflection at the loading and unloading ranges diminishes with an increase in 

number of repetitions. A typical load-deflection behaviour for the beams when 

finally tested to failure is shown in Fig. 59. For each beam tested the deflection 

at the level of the working moment was nearly the same in the first and second 

cycles of loading. Similarly the deflection at 1.5 times the working moment was 

the same in the second and the third cycle of loading. 

The variations in the remaining deflections and deflections at the working 

moments with the number of repetitions for beams FA 1-C and FA 2-C are 

shown in Figs. 60. It can be seen that the rate of increase in both deflections was 

more pronounced during the first 1.5 million cycles. Thereafter no practical 

change in the deflection was observed. 

A major factor which could have influenced the rate of increase in the 

deflection was the formation of cracks in the f. r. c.. channels during the process of 

repeated loading. However, examination of Figs. 60 shows that the formation 

of cracks in the f. r. c. channels did not cauae a. sudden increase in the deflection 

of the members. This could be due to the fact that the channels cracked at the 

level of the working moment where the stresses in the f. r. c. channel were 

relatively low. It may follow from this that the transference of the stresses from 



the f. r. c. channels to the steel did not affect significantly the curvature of the 

member. 

The values of the remaining deflections and deflections at the working 

moment at the first and after three million cycles are given in table (12). 

The values of the ratios of final to initial deflection at the working moment 

were 1.97 for beam FA 1- C and 1.87 for beam FA 2-C. These ratios were 

greater than those observed for the ordinary beams. This was mainly due to the 

f. r. c. channels did not crack at the first cycle which resulted in lower initial 

values for deflection. In addition, the cracking of the f. r. c. channels during the 

process of repeated loading caused in increase - in the amount of deflection. 

For both beams the recommended limit span/250 (i. e. 18mm) was not 

exceeded even after the application of three million cycles. Therefore, the 

composite beams FA 1-C and FA 2-C were considered to be serviceable with 

regard to the limit state of deflection under fatigue loading. 

(c) Comparison between Ordinary and Composite Beams 

The deflection behaviour in relation to the number of repetitions for the 

ordinary and composite beams is shown in Fig. G0. 

In the first static tests the composite beams showed considerable saving 

in the deflections at the working moment and also in the remaining deflections. 

The ratios of the deflection at the working moment for the ordinary beams to 

that of the corresponding composite beams were 1.3 for beams FA 1-0 and 

FA 1-C (mild steel), and 1.53 for beams FA 2-0 and FA 2-C (Unisteel 410). 

The ratios of the remaining deflection for the ordinary beams to that of the 

corresponding composite beams were 1.29 for beam FA 1-0 and FA 1-C, and 
1.53 for beams FA2-OandFA2-C. 

From the examination of Fig. 60 it can be seen that at the levels of the 

working moment the composite beams showed a greater stiffness than the 

corresponding ordinary beams within a range of 1.5 million repetitions. 
Thereafter beam FA 1-C exhibited nearly the same stiffness as for beam FA 1 -0, 
whereas beam FA 2-C maintained a greater stiffness than beam FA 2-0 up 
to three million cycles. 

The values of deflection observed after three million cycles for ordinary 

and composite beams are given in col. 4 of table (12). The ratios of the deflection 



at the working moment of the ordinary beams to that of the composite beams were 

1.02 for beams FA 1-0 and FA 1-C, and 1.07 for beams FA 2-0 and FA 2-C. 

From the same figures it can also be seen that the remaining deflections of 

the composite beams were lower than those of the corresponding ordinary beams 

up to 1.4 million cycles. Thereafter the remaining deflections of the composite 

beams did not differ significantly from those of the corresponding ordinary beams. 

After three million cycles the ratios of the remaining deflection of the ordinary 

beams to that of the corresponding composite beams were 1.15 for beams FA 1-0 and 

FA 1-C, and 0.93 for beams FA2-OandFA2-C. 

8.2.5.3. Limit State of Cracking 

(a) Ordinary Beams 

The maximum and average crack widths at the working moment for beams 

FA 1-0, FA 2-0 and FA 4-0 at the first cycle are given in table (13). These 

values fairly agree with those observed for the corresponding beams ST 1 -0, 
ST 2-0 and ST 4-0, the values of which are given in table (10). 

The effect of repeated loading on the maximum and average crack widths 

at the steel level can be seen in Figs. 61 and 62 for beams FA 1-0, FA 2-0 

and FA 4-0. These figures show that the crack widths increased with the number 

of load repetitions. 

However, a stabilised condition was reached within one million cycles for 

beam FA 1-0,1.7 million cycles for beam FA 2-0 and six hundred thousand 

cycles for beam FA 4-0. 

An examination of Figs. 61 and 62 shows that, in some cases, a reduction 
in the crack width was observed. This could be due to the formation of new cracks 

which tended to reduce the width of adjacent cracks. 

Col. 6 of table (13) shows that even after three million repetitions of load 

the maximum crack width at the steel level did not exceed 0.2mm. However, the 

maximum crack widths at the bottom edge of the beams, as given in col. 8 of 
table (13), were 0.2mm in beam FA 1-0,0.28niin in, b¬ nFA 2-0 and 0.24mm in 
beam FA 4-0. 

The average crack width, as can be seen in cols 7 and 9 of table (13), did 

not exceed a value of 0.2mm. Cols. 10 and 11 of table (13) show that the ratios 
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of the maximum crack width at the working moment after three million repetitions 

to that at the first cycle of loading ranged between 1.25 and 1.43 for the cracks 

at the steellevel and between 1.2 and 1.43 for the cracks at the bottom edge of the 

beams. In a previous investigation increases in crack width ranged between 20 

and 25% in normal weight concrete members tested under fatigue loading were 

observed (97). 

At the level of the working moment, the maximum crack width in the ordinary 

beams after three million cycles did not exceed a value of 0.3mm. This may 

indicate that the beams had satisfied the limit state of cracking even after three 

million cycles of loading. 

V2) Composite Beams 

When the beams were first loaded up to their working moment no cracks 

were observed at their soffits. This was mainly because the f. r. c. channels 

did not crack in the first cycle of loading. At the interface (level of the steel) 

beam FA 1-C did not show any crack whereas beam FA 2-C had a maximum 

crack width of 0.04mm under the working moment. 

Figs. Gl and 62 show the variation in the maximum and average crack 

widths in relation to the number of load repetitions for beams FA 1-C and 

FA 2-C. For both beams most of the increase in the crack widths occurred 

within 1.5 million repetitions. It is worth pointing out here that most of the 

increase in the deflection as mentioned in 8.2.5.2. also occurred within the same 

number of repetitions. This indicated a direct relation between the deflection and 

cracking behaviour in composite beams subjected to fatigue loading. 

One of the major factors which could have affected the crack widths in the 

concrete was the formation of cracks in the f. r. c. channels during the process 

of repeated loading. This effect, however, was not significant compared with 
that observed in beams tested under static test only. It can be seen in Figs. 61 

and 62 that when the channels cracked the crack width in concrete did not 
increase excessively. This could be as mentioned in 8.2.5.2. due to the fact 

that the f. r. c. channels cracked at the level of the working moment where the 

stresses in the f. r. c. channels were relatively low. The maximum crack width 

observed at the time when cracks formed did not exceed a value of 0.2mm. 



Examination of Figs. 61 and 62 shows that at some stages a reduction 
in the crack width was observed. This as explained in case of the ordinary beams 

could also be due to the formation of new cracks which tended to reduce the width 

of adjacent cracks. 

Col. 6 of table (13) shows that the values of the maximum crack widths at the 

steel level after three million cycles were 0.15mm in beam FA 1-C and 0.18 

in beam FA 2-C. The values for the average crack widths given in col. 7 of table 

(13) were 0.06 in beam FA 1-C and 0.1 in beam FA 2-C. This clearly indicates 

that the widths of the cracks measured at the steel level even after three millions of 

cycles were not excessive but well within the recommended limits. 

Cracks at the bottom edge of the beams (on the f. r. c. channels) observed 

after three million cycles' had a maximum value of 0.32mm in beam FA 1-C and 

0.38mm in beam FA 2-C; the average value were 0.27mm in beam FA 1-C and 

0.26mm in beam FA 2-C. The remaining crack widths at the bottom edge of beams 

FA 1-C and FA 2-C as given in col. 12 of table (13) were 0.1mm and 0.14mm 

respectively. 

To study the crack formation in the confined concrete a similar exercise to 

that carried out for the composite beams tested only under static loading as 

explained in 7.7.3.2. was carried out for the composite beam FA 2-C. This was 

carried out after the beam FA 2-C had been subjected to three million cycles. 

The observations and results obtained were similar to those explained in 7.7.3.2 (d) 

(c) Comparison Between Ordinary and Composite Beams 

At the first cycle of loading the composite beams FA 1-C and FA 2-C 

did not show any cracks at their soffits, while the corresponding ordinary beams 

FA 1-0 and FA 2-0 had maximum crack widths, at the working momentequal 
to 0.14mm and 0.22mm respectively. Similarly cracks at the level of the steel 

were much greater in the ordinary beams compared with those in the composite 
beams. 

Figs. 61 and 62 show the cracking behaviour of the ordinary and compcsite 
beams which were tested under fatigue loading. Examination of these figures 

shows that the composite beams had smaller crack widths at the level of the steel 

within a range of 1.5 million cycles. Thereafter beam FA 1-C showed a slightly 



greater maximum crack width than that in the corresponding beam FA 1-0, 

whereas beam FA 2-C showed a lower maximum crack width than the 

corresponding beam FA 2-0 up to three million cycles. The average crack 

widths in the composite beams were lower than those in the corresponding ordinary 

beam up to three million cycles. 

The crack widths observed at the bottom edge of the composite beams, 

after the f. r. c. channel had cracked, were greater than those in the corresponding 

ordinary beams. (see cols. 8 and 9 of table (13)). However, the actual crack widths 

in the confined concrete could be lower than those measured on the f. r. c. channel 

as explained in 7.7.3.2(d) 

The remaining crack widths after three million cycles as given in col. 12 

of table (13) in the composite beams did not differ significantly from those observed 

in the corresponding ordinary beams. 

8.3 Sustained Loading Tests 

The sustained load for the test beams was maintained for a minimum period 

of 500 days. The periods of sustained loading for the various beams are given in 

table (6). 

8.3.1. Time-dependent Flexural Strain Distribution 

(a) Ordinary Beams 

The flexural compressive strains in concrete in the beams tested under 

sustained loading increased at a much higher rate than the tensile strain in the 

steel. This resulted in an increase in the neutral axis depth with the passage 

of time. At a later stage in the sustained loading period a slight reduction in 

the tensile strains at the level of the steel was observed. 

Another explanation for the variation of the neutral axis depth given was that 

due to plastic flow of concrete, the compressive stresses in the concrete reduced. 
This necessitates that the neutral axis depth should increase in order to provide 

a greater area of concrete in compression (98). 

A typical flexural strain distribution for a beam tested under sustained 
loading is shown in Fig. 63. A similar pattern for the time-dependent strain 
distribution for conventionally reinforced and prestressed concrete beams has also 
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been reported by many investigators (64) (73) (96) (99). 

The initial (at the first cycle) and final (at the end of sustained loading) 

values of the maximum flexural compressive strain in concrete at the working 

moment are given in cols. 3 and 4 of table (14). The ratios of the final to initial 

values (as given in col. 5 of table (14)) were 3.5 for beam SU 1-0 and 2.34 for 

beam SU 2-0. The ratio for beam SU 1- 0 was greater than that of beam SU 2-0; 

this was mainly due to the lower initial value of beam SU 1-0 and also to the 

fact that the increase in the compressive strain in concrete did not differ 

significantly from that of beam SU 2-0. The increases in the maximum flexural 

compressive strain in the concrete are given in col. 6 of table (14). 

The shrinkage strains measured on the sides of the beams (as explained in 6.7.1 

(e)) after 500 days of loading were 410 x 10- 6 for beam SU 1-0 and 350 x 10-6 

for beam SU 2-0. This indicated that the shrinkage strains formed 45% and 37% 

of the respective increase in the flexural compressive concrete strains in beams 

SU 1-0 and SU 2-0 respectively. The values are given in cols. 6,7 and 8 of 

table (14). 

Fig. 63 shows the increase in the neutral axis depth with the passage of time. 

After 500 days of loading the neutral axis depths were 62% and 58% greater than 

the initial values in beams SU 1-0 and SU 2-0 respectively. The values of the 

neutral axis depth for beam SU 2-0 can be seen in Fig. 63. 

(b) Composite Beams 

The behaviour of the composite beams under sustained loading was basically 

similar to that of the ordinary beams. 

A typical time-dependent flexural strain distribution for a composite beam 

is shown in Fig. 64, where it can be seen that the compressive strains in the 

concrete and the neutral axis depth were increased with the passage of time. The 

variation of the tensile strain in the f. r. c. channels with the passage of time is 

discussed in 8.3.2. 

The values of the maximum flexural compressive strains in the concrete 

are given in cols. 3 and 4 of table (14). The ratios of the final to initial values 

were 3.55 and 2.82 for beams SU 1-C and SU 2-C respectively. The ratio for 

beam SU 1-C was greater than that of beam SU 2-C; this was mainly due to the 



relatively lower initial value of beam SU 1-0. 

The shrinkage strain in concrete measured on the sides of the beams 

(as explained in 6.7.1(e) after 500 days are given in col. 7 of table (14). This 

indicates that the shrinkage strains formed 41% and 42% of the respective increase 

in the flexural compressive strains in beams SU 1-C and SU 2-C respectively. 

The values can be seen in cols. 6,7 and 8 of table (14). 

As regards the neutral axis depth the final values were 28% and 48% greater 

than the initial values for beams SU 1-C and SU 2-C respectively. The lower 

percentage for beam SU 1-C was mainly due to its greater initial value of the 

neutral axis depth. 

A major factor which might have affected the flexural strain distribution in 

beam SU 2-C was the formation of a crack in the f. r. c. channel. When the 

channel cracked the neutral axis depth decreased, consequently the strain values 

were affected. This can be seen in the case of beam SU 2-C, where the increase 

in the maximum flexural compressive strain in beam SU 2-C was greater than 

that of beam SU 1-C. The values are given in col. 6 of table (14). 

(c) Comparison Between Ordinary and Composite Beams 

When the beams were first loaded, the composite beams showed lower 

flexural compressive strains in the concrete and greater values for the neutral 

axis depths than those observed in the corresponding ordinary beams. The values 

of the initial maximum flexural compressive strains are given in col. 3 of table (14). 

After 500 days of sustained loading, beam SU 1-C maintained a lower value 
for the maximum compressive strain in the concrete than the corresponding 

ordinary beam SU 1-0, whereas beam SU 2-C had a slightly greater value than 

the corresponding ordinary beam SU 2-0, the values can be seen in col. 4 of 
table (14). This could be mainly due to the shrinkage strain of beam SU 2-C 

was greater than that of beam SU 2-0 (col. 7 of table (14)). Additionally the 

formation of a crack in the f. r. c. channel of beam SU 2-C might also have 

contributed to the increase in the flexural compressive strain. 
The values of the neutral axis depth for the ordinary and composite beams 

after 500 days were found to be nearly the same. The final values of the neutral 

axis depths were 178mm and 182mm for beams SU 1-0 and SU 2-0 respectively; 



for beams SU 2-0 and SU 2-C the final values are given in Figs. 63 and 

64. These are 174mm and 178mm for beams SU 2-0 and SU 2-C respectively. 

8.3.2 Vari %tions of Tensile Strains in the f. r. c. Channels 

When the beams were first loaded the total maximum tensile stresses 

induced in the f. r. c. channels including the stress due to selfweight of the beam 

at the level of the working moment were 4.3 N/mm2 and 10.2 N/mm2 for beams 

SU 1-C and SU 2-C respectively. The corresponding values of strains in the 

f. r. c. channels were 311 x 10-G and 940 x 10-6. These values agree well with 

those obtained at the first static test in the f. r. c. channels for the corresponding 

beams FA 1-C and FA 2-C which were tested under fatigue loading as discussed 

in 8.2.3. 

The initial maximum tensile stresses in the f. r. c. channels expressed as 

percentages of a nominal tensile strength equal to 15 N/mm2 were 29% and 68ß'o in 

beams SU 1-C and SU 2-C respectively. 

The variations in the maximum tensile strain in the f. r. c. channels with 

the passage of time for beams SU I-C and SU 2-C are shown in Fig. 65. 

It can be seen that the tensile strains in the f. r. c. channels increased at a 

diminishing rate as time elapsed. Most of the increase in the tensile strains 

occurred during the first 100 days of loading, after which the change was not 

appreciable. A slight reduction, however, was observed in the tensile strains 

after a period of one year. This could be due to the increase in the neutral 

axis depth caused by the creep and shrinkage ad discussed earlier. 

After eight months of sustained loading a fine crack of 0.16mm width was 

observed in the f. r. c. channel of beam SU 2-C. The maximum measured tensile 

strain in the f. r. c. channel at the time of cracking was 1300 x 10-6. This, however, 

is lower than the maximum tensile strain (1800 x 10-6) of the f. r. c. channel 

as measured by direct tensile test (see Fig. 8). 1he reasons which might have 

caused the channel to crack before reaching its maximum tensile strain are 

discussed in 7.5. No more cracks appeared in the f. r. c. channel even after 

a period of 500 days of sustained loading. This behaviour may be explained by 

the fact that most of the increase in the tensile strain occurred during the first 

100 days as mentioned earlier. Beam SU 1-C did not show any crack on the 



f. r. c. channel for the period of the sustained loading test. 

The formation of a crack in the f. r. c. channel of beam SU 2-C was 

mainly due to the high initial tensile stress which was equal to 68% of the tensile 

strength of the channel. In addition the shrinkage strain which occurred in the 

concrete might have also contributed to the development of cracking in the f. r. c. 

channel. 

8.3.3 Variations of the Steel Stresses 

(a) Ordinary Beams 

The steel stresses in beams tested under sustained loading could mainly be 

affected by the movement of the neutral axis depth. Due to creep of the concrete 

the neutral axis depth dropped, and consequently the lever arm of the steel was 

reduced. This resulted in an increase in the steel stresses for the same level of 

moment. Fig. GG shows the increase in the steel stress as time elapsed. The values 

in this graph were calculated using the equation of compatibility for moments 

(equation 4.18) based on the experimental results obtained as explained in 4.5.2. 

The value ß for centroid of the compression stress distribution was based on the 

initial stress distribution for the beams when first loaded to their working moment. 

The relationship between P and the maximum compressive strain in the concrete 

is explained in 4.3.3. The only variable used in the equation was the neutral axis 

depth. From the figure it can be seen that the steel stresses increased at a 

diminishing rate with the passage of time. 

The initial and final values for the steel stresses are given in cols. 9 and 10 

of table (14). This shows that the increases in the steel stress after 500 days of 

sustained loading are 11.8% and 11.4% of the initial values for beams SU 1-0 and 
SU 2-0 respectively. 

Sb) Composite Beams 

The effect of sustained loading on the steel stresses in the composite beams 

is basically similar to that in the ordinary beams discussed earlier. Furthermore 

the formation of cracks in the f. r. c. channel could also increase the local tensile 

steel stresses in the vicinity of these cracks. In Fig. 66 It can be seen that the 

stresses in the steel increased with the passage of time. In calculating the steel 



stresses equation 4.20 for the compatibility of moment was used taking into 

consideration the experimental results obtained as explained in 4.6. The values 

used for the centroid of the compressive stress distribution and the tensile 

stresses in the f. r. c. channel were those obtained when the beams were first 

loaded to their working moments. 

In cols. 9 and 10 of table (14) the initial and final values of the steel stresses 

are given. This shows that the increases in the steel stresses after 500 days of 

loading are 8% and 12.4% of the initial values for beams SU 1-C and SU 2-C 

respectively. It is important to point out that the contribution of the f. r. c. channel 

was included in the calculation of the steel stresses at all the stages. As mentioned 

earlier beam SU 2-C had the f. r. c. channel cracked after eight months of 

sustained loading. Without considering the contribution of the f. r. c. channel 

the increase in the steel stress of beam SU 2-C would be equal to 33% of the 

initial values. 

(c) Comparison Between Ordinary and Composite Beams 

From Fig. 66 it can be seen that during the period of sustained loading 

the steel stresses in the composite beams are lower than those in the corresponding 

ordinary beams. After 500 days of loading, beam SU 1- C had a steel stress 

8.8% lower than that in the corresponding beam SU 1-0; beam SU 2-C had a 

steel stress 15.7% lower than that in the corresponding beam SU 2-0. If the 

contribution of the f. r. c. channel is not considered in the calculation, e. g. for 

beam SU 2-C where the channel cracked, the stresses in the ordinary and 

composite beams will be equal. 

8.3.4. Limit States of Serviceability 

8.3.4.1. Limit State of Deflection 

(a) Ordinary Beams 

Deflection under sustained loading is mainly affected by the variation taking 

place with the passage of time in the flexural compressive strain and the neutral 

axis depth. 

The increase in deflection under sustained loading for beams SU 1-0 and 
SU 2-0 is shown in Fig. 67. For both beams it can be seen that with the passage 



of time the deflection increases at a diminishing rate. The initial and final 

values of deflection are given in cols. 12 and 13 of table (15). It should be 

remembered that the total deflection for a beam is equal to 7.7 times the value 

given in table (15). This is explained in 6.5.1, also see appendix (G). 

The ratios of final to initial deflection for beams SU 1-0 and SU 2-0 as 

given in col. 15 of table (15) were 2.4 and 1.42 respectively. The greater ratio 

of beam SU 1-0 was mainly due to its greater rate of increase in the flexural 

compressive strain in concrete, which consequently led to a greater rate of deflection. 

In a previous investigation (36) it was found that after 25 months of sustained 

working load the ratios of final to initial deflection ranged between (2 - 2.33) for 

lightweight concrete beams and between (2.34 - 3.09) for normal weight concrete 

beams. In other Investigations ratios for final to initial deflection for various 

periods of sustained loading for normal weight concrete were reported as follows: - 
3 for a period of two years (99), 3.14 to 3.94 for a period of about five 

years (100), 2.15 for a period of five months (101). 

Factors which could have affected these ratios were the level of steel stress, 

percentage of steel and the surrounding temperature and humidity for the beams 

tested. 

After 500 days of sustained loading the beams were unloaded and the 

immediate remaining deflections at zero load were measured. These values are 

given in col. 14 of table (15). The immediate recoveries were 18% and 50% of the 

corresponding final deflection at the working moment for beams SU 1-0 and 
SU 2-0 respectively. 

Col. 13 of table (15) shows that the deflection of beam SU 1-0 did not reach 
the limit L/ 250 which for the test beam equal to 18 a 2.34mmBeam SU 2-0 

-. 7.7 

however marginally exceeded this value. 

This indicates that the beams had satisfied the limit state of deflection even 

after 500 days of sustained loading. 

(b) Composite Beams 

The time-dependent deflections for the composite beams are shown in rig. 67. 

Similar to the behaviour of the ordinary beams the deflection of the composite beams 



increased at a decreasing rate with the passage of time. One of the major 
factors which could have affected the increase in deflection of beam SU 2-C 

was the formation of a crack in the f. r. c. channel after eight months of sustained 

loading. However, it can be seen from Fig. 67 that the formation of a crack 

in the f. r. c. channel did not have an immediate effect on the deflection behaviour. 

This was probably due to the fact that the channel cracked at the level of the working 

moment where the stresses in the channel were relatively low and that the crack 

width in the f. r. c. channel was very small (0.16mm). 

The values of deflection at the level of the working moment obtained at the 

first test and after 500 days of sustained loading are given in col. 12 and 13 of table 

(15). The ratios of final to initial deflection for beams SU 1-C and SU 2-C 

were 3.5 and 2.0 respectively. The greater ratio of beam SU 1. -C could be due 

to its greater rate of increase in the flexural compressive strain in the concrete 

which led to a consequent increase in deflection (see col. 5 of table (14)). 

When the beams were unloaded after the sustained loading period the remaining 

deflections indicated recoveries of 25% and 50% of the respective final deflection 

for beams SU 1-C and SU 2-C respectively. The final deflectionsof the composite 

beams (as given in col. 13 of table (15)) when compared with the recommended limit 

L/250 (i. e. 2.34mm) indicated that the composite beams had satisfied the limit 

state of deflection even after 500 days of sustained loading. 

(c) Comparison Between Ordinary and Composite Beams 

The deflections at the level of the working moment when the beams were first 

loaded are given in col. 12 of table (15). The ratios of the deflection for the 

ordinary beams to that of the corresponding composite beams were 1.78 for beams 

SU1-0andSU1-C, and 1.46 for beams SU2-OandSU2-C. 

A direct comparison can be seen in Fig. 67 between the time-dependent 

deflection for ordinary and composite beams. This figure shows that the composite 
beams had a greater stiffness in the early stages of sustained loading. This 

behaviour was maintained. by beam SU 1-C compared with beam SU 1-0 up to the 

end of the sustained loading period. However, the greater stiffness for beam SU 2- 



in relation to beam SU 2-0 gradually diminished with the passage of time. The 

main factors which could have contributed to this behaviour were the cracldng 

of the f. r. c. channel and the greater shrinkage of beam SU 2-C compared with 
beam SU 2-0. The shrinkage strain for beam SU 2-C as given in col. 7 of 

table (14) was 1.4 times that for beam SU 2-0. 

Another factor which contributed to the diminishing of the greater flexural 

rigidity of the composite beams in relation to the ordinary beams was the greater 

rate of reduction in the tension stiffening effect of the concrete with time in the 

composite beams. When the composite beams are first loaded the height of 

travel of the cracks is limited, hence the area of concrete between the neutral 

axis level and the level of the tips of the cracks forms a major part in the tension 

stiffening effect of the concrete. With the passage of time- the neutral axis 
drops, resulting in a decrease in the untracked concrete area in the tensile zone. 

This will lead to a reduction in the tension stiffening effect of the concrete. 

The tension stiffening effect resulting from the concrete between flexural 

cracks may be of the same magnitude in the ordinary and composite beams. 

After 500 days of loading the ratios of deflection of the ordinary beams to 

that of the corresponding composite beams were 1.22 for beams SU 1-0 and 

SU 1-C, and 1.03 for beams SU 2-0 and SU 2-C. 

8.3.4.2. Limit State of Cracl ing 

(a) Ordinary Beams 

Many investigators reported that crack widths in prestressed and conventionally 

reinforced concrete beams tested under sustained loading were increased initially 

with the passage of time, thereafter a stabilised condition could be reached (64) 

(73) (102). A similar behaviour for the variation of the crack widths with the 

passage of time is also observed in the present investigation. This is shown in 

Figs. 68 and 69, where the maximum and average crack widths at the steel level 

are plotted against time. The initial and final values of the crack widths are given 
in table (15). 

From the figures it can be seen that most of the increase in the crack widths 
occurred during a period of 200 days, thereafter no appreciable change was 



observed. At some stages a slight reduction in the crack widths was observed. 

This could be due to the formation of new cracks which tended to reduce the 

width of adjacent cracks. 

However, it was observed that 90% of the total number of cracks was formed 

during the first month of loading. 

The ratios of final to initial maximum crack widthat the steel level were 2 and 

2.2 for beams SU 1-0 and SU 2-0 respectively. The ratios of final to initial 

maximum crack width at the bottom edge of the beams were 1.83 and 1.4 for beams 

SU 1-0 and SU 2-0 respectively. 

The maximum crack width for both beams after 500 days of loading, as given 

in col. 8 of table (15), did not exceed 0.22mm. This value is lower than a 

recommended maximum crack width of 0.3mm by CP110. This indicated that the 

beams had satisfied the limit state of cracking under sustained loading. 

(b) Composite Beams 

The composite beams when first loaded to their working moment showed no 

signs of cracking at their soffits. 

The concrete at the level of the interface (at the steel level) did not crack in 

beam SU 1-C whereas a maximum crack width of 0.08 was observed in beam 

SU2-C. 

Similar to the behaviour of the ordinary beams the width of cracks increased 

with the passage of time for a period of about 240 days, after which no practical 

change was observed; this is shown in Figs. 68 and 69. 

After 500 days of sustained loading the maximum crack width observed at the 

interface was 0.1mm for beam SU 1-C which originally had no cracks when first 

loaded. Beam SU 2-C, however, had an initial crack width of 0.08mm, which 

then increased to 0.14mm after 500 days of sustained loading. 

The maximum and average crack widths are given in table (15). As previously 

mentioned in 8.3.2, after eight months of sustained loading the f. r. c. channel of 
beam SU 2-C cracked. The width of the crack in the f. r. c. channel when first 

observed was 0.16mm; after 500 days of sustained loading the crack width reached 
0.2mm. This increase could be due to an increase in the crack width of the 

confined concrete and also due to the increase in the curvature of the member. 



Again the important consideration as previously mentioned in 8.3.2 is that 

the cracking of the f. r. c. channel did not significantly affect the cracks in the 

concrete as it did in beams tested under static load only. 

The composite beams after a period of 500 days of loading did not become 

unserviceable with regard to the limit state of cracking. This was due to the fact 

that no cracks formed at the soffit of beam SU 1-C whereas the maximum crack 

width observed in the f. r. c. channel of beam SU 2-C was 0.2. mm. 

Similar to the behaviour of ordinary beams, 90% of the final number of the 

cracks were formed within the first month of loading. 

(c) Comparison Between Ordinary and Composite Beams 

The maximum and average crack widths as can be seen in Figs. 68 and 69 in the 

composite beams are considerably less than those in the corresponding ordinary 

beams. This behaviour was maintained during the 500 days of the sustained loading 

period. 

After 500 days of loading the ratios of the maximum crack width at steel 

level in the ordinary beams to that in the corresponding composite beams were 2 

for beams SU 1-0 and SU 1-C, and 1.6 for beams SU 2-0 and SU 2-C. 

The ratios of the average crack width in the ordinary beams to that in the 

corresponding composite beams were 1.7 for beams SU 1-0 and SU 1-C, and 

1.9 for beams SU 2-0 and SU 2-C. When the beams were unloaded after 500 

days of sustained loading the remaining maximum crack widths in the composite 

beams were much smaller than those in the corresponding ordinary beams. 

The values are given in cols. 10 and 11 of table (15). 

In Fig. 70 a typical cracks pattern for ordinary and composite beams 

subjected to sustained loading is shown. This shows that the height of travel 

of the cracks in the composite beam was lower than that in the ordinary beams. 

This behaviour for the composite beams is of great value since it reduces the 

cracked concrete area in the tensile zone. 



CHAPTER NINE 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

9.1 Conclusions 

The Conclusions drawn from the present investigations are as follows: 

(1) The prediction of the stresses in the steel and the f. r. c.. channels, 

ultimate strengths, deflections and width of cracks can be made to a 

sufficient degree of accuracy by the methods suggested in this thesis. 

(2) The bond between the f. r. c. channels and the concrete was very good 

(3) The f. r. c. channels did not crack up to and well above the level of the 

working moments, the exception being one beam containing "Kam 60" 

steel. 

(4) Adequate warning of impending failure was obtained for all the beams 

tested. 

(5) There was a considerable reduction in width of cracks and deflections 

of composite beams tested under short term, fatigue and sustained loading 

as long as the f. r. c. channels did not crack. 

(6) Deformed steel bars had a better control on flexural cracking than did 

mild steel bars. 

(7) There was no significant change in the steel stresses for ordinary beams 

subjected to fatigue loading, whereas a maximum increase of 22% was 
obtained in the composite beams after the application of 3x 106 cycles. 

(8) There were no significant increases in the steel stresses for the beams 
tested under sustained loading fora period of 500 days. 

(9) Fatigue loading did not greatly affect the ultimate strength of the beams 
tested. 

(10) Fatigue loading rather than sustained loading was a critical condition for 
the cracking of the f. r. c. channels. 



(11) Sustained loading rather than fatigue loading was a critical condition 
for the limit state of deflection,. 

(12) Deflection under short-term, fatigue and sustained loading was found 

to be a critical factor in the design of the beams. 

9.2 Advantages of Using f. r. c. Channels at the Tensile Sides of Flexural 

Concrete Members 

The use of f. r. c. channels in the composite beams resulted in the following 

advantages: 

(1) Full utilization of the tensile properties of concrete. 

(2) Better control on shrinkage cracks. 

(3) Lower flexural compressive strains in concrete and greater neutral 

axis depth. 

(4) A reduction in the steel stresses for the same level of load. 

(5) A considerable reduction'in deflection and crack width, thus allowing 

a more efficient use of the high-strength steel. 

9.3 Suggestions for Future Work 

(1) 

4b. r 

The present investigation used a span to depth ratio of 17 (maximum 

permitted in CP110 for simply supported lightweight concrete members 

reinforced with 1% of a steel of 410 N/mm2 nominal yield stress and no 

compressive steel. 

It was found that for some beams containing high strength steel the 
limit state of deflection L/250 was exceeded. 

It is therefore suggested that beams with a span to depth ratio lower than 
17 should be investigated. This would result in a lower amount of 
deflection under load, thus allowing better use of the high strength steel. 

(2) The present investigation was carried out using rectangular shaped beams. 

It is therefore suggested that the effect of the geometrical shape on the 

structural behaviour should be investigated. 



In this respect, a composite lightweight concrete T beams with normal 

weight concrete flange can be used. The use of normal weight concrete 

flange will help to a great extent in reducing the amount of deflection 

under load. 

At this point it would be interesting to use f. r. c. channels on the 

lightweight concrete web. The good bond achieved between the f. r. c. 

channel and the lightweight concrete will ensure the restraint action 

of the f. r. c. channels, thus enabling high-strength steel to be used. 

(3) The present investigation has shown that composite beams exhibited a 

stiffness greater than that of ordinary beams for levels lower than the 

cracking moments of the f. r. c. channels. 

One of the factors which might have contributed to the cracking of the 

f. r. c. channel was the formation of cracks in the confined concrete. 

These cracks make an important contribution to the reduction in the 

flexural rigidity of the composite beams. 

A study is therefore suggested regarding the formation of the cracks in 

the confined concrete. 

(4) In the fatigue loading tests of the present investigation, the f. r. c. channels 

cracked after a few hundred thousand load repetitions. A study is therefore 

required into the effect of fatigue loading on f. r. c. units with various 

ranges of applied tensile stresses. A relationship should be established 

between the number of repetitions and applied tensile stresses at which 

cracking occurs. 

Similarly the tensile creep and the consequent formation of cracks in the 

f. r. c. units, employing various levels of 'stressýshould also be investigated. 

Following this, fatigue and sustained loading tests should be carried out on 

composite beams. The effect of long-term weathering and shrinkage should also 
be examined. 
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TABLE (1) DETAILS OF ORDINARY AND COMPOSITE BEAMS (STATIC TESTS) 

Steel Reinforcement 

Nominal 
yield or Efective Applied Applied 

Beam 
Type 

Number 
Percentage 0.2% proof depth working ultimate 

mark and size moment moment stress 
N/mm2 

mm KN. m KN. m 

ST 1-0 Mild 2-16mm 1.044 275 257 12.8 20.5 
ST1-C Steel diameter 

ST2-0 UNI 2-16mm. 1.044 410 257 19.31 30.9 
ST2-C 410 diameter 

ST3-0 UNI 2-16mm. 1.044 550 257 25.61 40.97 
ST3-C 550 diameter 

ST4-0 KAM 2-16mm. 1.044 590 257 27.31 43.7 
ST4-C 60 diameter 

ST5-0 KAM 2-16mm. 1.044 875 257 38.43 61.48 
90 diameter 

ST6-0 Lanes 2-16mm. 1.044 410 257 19.31 30.9 
60 diameter 

ST7-0 Mild 2-20mm. 1.643 275 255 20.04 32.07 
ST7-C Steel diameter 

ST8-0 UNI 2-20mm. 1.643 410 255 29.15 46.64 
410 diameter 

ST9-0 UNI 2-19.05mm 1.483 550 255.5 34.68 55.48 
550 diameter 

ST10-0 KAM 2-12mm. 0.582 590 259 15.75 25.2 
ST10-C 60 diameter 

ST11-C Mild 3-12mm. 0.874 275 259 10.75 17.2 
Steel diameter 

ST12-C UNI 3-12mm. 0.874 410 259 16.44 26.3 
410 diameter 

Concrete Section: 150mm width x 300mm depth. 

Nominal Concrete Cube Strength = 50 N/mm2 

Cover to main reinforcements = 35mm 



TABLE (2) DETAILS OF ORDINARY AND COMPOSITE BEAMS (FATIGUE LOADING 

TESTS) 

Steel Reinforcement 

Nominal 
yield or Effective Applied Applied 

Beam Type 
Number 

Percentage proof depth- working ultimate 
mark and size 

Str 
moment moment ess 

N/mm2 KN. m KN. m 

FA1-0 Mild 2-16mm. 1.044 275 . 257 12.8 20.5 
FA1-C Steel diameter 

FA2-0 UNI 2-16mm. 1.044 410 257 19.31 30.9 
FA2-C 410 diameter 

FA4-0 KAM 2-16mm. 1.044 590 257 25.61 40.97 
60 diameter 

TABLE (3) DETAILS OF ORDINARY AND COMPOSITE BEAMS (SUSTAINED LOADING 

TESTS) 

Steel Reinforcement 

Nominal 
yield or Effective Working Ultimate Beam Type Number Percentage 0.2% proof depth moment moment mark and size stress mm KN. m KN. m 
N/mm2 

SU1-0 Mild 2-16mm. 1.044 275 257 14.95 23.3 
SU1-C Steel diameter 

SU2-0 UNI 2-16mm. 1.044 410 257 21.45 33.7 
SU2-C 

1 
410 diameter 

*includesself. weight of beam 

Concrete Section: 150mm width x 300mm depth 

Nominal Concrete Cube Strength = 50 N/mm2 



TABLE (4) MECHANICAL PROPERTIES OF f. r. c. UNITS (TENSILE AND 

BENDING TESTS) 

Direct tensile tests Bending tests 

Sample size of sample (250 x 50 x 6) mm size of sample (240 x 30 x 6) mm 
No. 

Initial 
tangent Maximum Maximum Initial* Modulus Maximum 

modulus of 
tensile measured modulus of of measured 

elasticity stress extensibility 
6 

elasticity 2 rupture deflection 
N/mm2 x 10- KN/mm N/mm2 mm KN/mm 

1 11.75 18.40 1860 14.47 37.00 7 

2 12.00 16.66 1760 12.24 29.40 7 

3 13.50 16.12 1760 11.13 29.40 8.1 

4 10.75 15.60 1700 17.23 35.80 6.2 

"5 11.25 14.93 1300 14.65 33.70 8.15 

6 11.80 14.50 1250 18.10 33.70 6.15 

*Obtained from the equation, deflection = 23 M L2 
216 EI 



TABLE (5) TENSILE PROPERTIES OF STEEL BARS USED 

Size of bars is 16mm diameter 

Type of 
Nominal yield Observed Ultimate Fracture Modulus of 

steel or 0.2% proof yield or tensile stress elasticity 
stress N/mm2 0.2% proof stress N/mm2 KN/mm 2 

stress N/mm 2 N/mm 

Mild 
steel 

275 280 465 360 200 

Uni 
410 425 - 581 476 210 410 

Uni 
550 590 712 515 225 550 

Kam 590 655 925 911 200 60 

Kam 
90 875 870 915 " 890 225 



TABLE (6) PROPERTIES OF CONCRETE 

Pro rties at Testing Time 

. 
Beam 7 Days Age of Cube Cylinder Modulus of Direct Modulus of ---Ar-dry um rof 
mark cube beams at strength 

2 
strength 

2 
elasticity 

2 
tensile rupture 

2 
density cycles or 

strength testing N/mm N/mm KN/mm strength N/mm Kg/m3 days 
N/mm2 time N/mm2 

Days 

ST 1-0 45.6 71 53.1 43.0 18.5 2.8 3.00 1760 3 cycles 
ST1-C 45.6 34 54.2 47.5 17.4 1.70 2.50 1820 3 it 

ST2-0 43.2 35 52.0 42.0 16.2 2.66 2.36 1820 3 if 
ST2-C 43.3 34 52.0 40.5 17.6 3.00 4.20 1780 3 if 

ST3-0 42.0 75 50.2 37.8 17.2 1.40 1.72 1750 3 it 
ST3-C 46.2 35 52.7 40.8 18.3 2.80 3.36 1840 3 it 

ST4-0 42.7 60 47.0 39.0 16.8 2.46 3.24 1700 3 it 
ST4-C 44.4 41 54.6 45.0 18.2 1.81 2.80 1820 3 It 

ST 5-0 43.0 53 50.7 40.0 17.7 2.80 3.50 1750 3 it 

ST6-0 46.6 35 47.0 42.0 15.2 2.70 2.55 1730 2 it 

ST7-0 45.0 60 46.7 40.0 14.0 2.40 3.16 1680 3 It 

ST 7-C 51.0 37 54.2 - - 1.13 1.4 1800 3 to 

ST8-0 44.6 43 48.6 42.0 16.2 3.20 4.00 1760 3 it 

ST9-0 43.0 68 47.5 32.0 - 1.8 3.74 1750 3 is 

ST 10-0 42.5 43 51.0 45.0 18.8 2.72 4.00 1780 3n 
ST10-C 53.0 35 58.5 48.6 18 0.84 2.0 1820 3 

ST11-C 48.4 45 53.0 44.3 19 2.34 2.15 1780 3 

ST12-C 46.2 44 48.2 - - 2.50 3.5 1860 3 

FA1-0 45.3 40 49.1 38.6 16.8 2.2 3.56 1790 2.96 x 106 
FA1-C 44.7 41 53 40.8 17.2 2.1 3.30 1780 3.0 x 106 

FA2-0 46.6 48 51.2 53.0 20.0 2.20 - 1675 3.0 x 106 
FA2-C 45.4 30 54.6 43.6 18.8 0.98 2.28 1826 3.02 x 106 

FA4-0 41.2 37 50.9 38.2 17.5 2.00 2.66 1800 3.04 x 106 1' 

5U1-0 44.1 31 59 46 19.2 1.14 1.60 1780 543 Days 
SUI-C - 37 58.0 44.8 19 1.06 2.22 1840 543 " 

SU2-0 - 42 57.0 42 18.4 0.94 1.90 1860 528 " 
SU2-C - 35 53.0 41.5 17.4 0.96 1.78 1825 528 " 
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TABLE (9) SUMMARY OF DEFLECTIONS (STATIC TESTS) 

Observed deflection 
(mm) 

Calculated deflection 
at working moment 

(mm) 

At Remaining Based on 
l 

Proposed 
eti th l Col 5 

S pan 
d ti fl Beam 

mark 
working 
moment 

after first 
cycle 

experimenta 
curvature 

eor ca 
method 

Col. (2) e ec on 
(working 
moment) 

1 2 3 4 5 6 7 

ST1-0 

. ST 1-C 

7.6 

5.4 

2 

1.22 

6.8 

5.5 

7.93 

5.6 

1.04 

1.04 

592 

833 

ST2-0 

ST2-C 

12.2 

9.6 

2.39 

1.82 

13.2 

9.65 

12.53 

10 

1.03 

1.04 

369 

469 

ST3-0 

ST 3-C 

18.4 

15.0 

2.92 

2.55 

20 

14.4 

17.33 

15.2 

0.94 

1.01 

245 

300 

ST4-0 

ST4-C 

17.6 

18.4 

2.88 

4.1 

18 

21 

18.7 

18.0 

1.06 

0.98 

256 

245 

ST5-0 27.2 3.95 23.6 27.42 1.00 165 

ST6-0 12 . 2.39 12 12.53 1.04 375 

ST 7-0 

ST 7-C 

9.6 

9.0 

1.83 

1.42 

9.6 

9.7 

10.04 

9.2 

1.05 

1.02 

469 

500 

ST8-0 15.2 2.52 14.4 15.15 1.00 296 

ST9-0 21.2 2.85 20.4 19.84 0.94 212 

ST10-0 

ST10-C 

14.2 

9.2 

3.24 

1.76 

15.2 

10.1 

14.4 

9.2 

1.01 

1.00 

317 

489 

-ST11-C 4.2 0.8 4.2 4.4 1.05 1071 

ST 12-C 8.4 1.2 9.7 8.8 1.05 536 
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TABLE (11) STEEL STRESSES AND ULTIMATE MOMENTS (FATIGUE LOADING 

TESTS) 

Steel stress at Ultimate moment 
working moment KN. m 

N/mm2 

Type and first 3x 106 (Calculated) 
Col. 4 l l 

Beam ' percentage cycle cycle 3 Col actua wi ues Col. 7 
of steel 2 N/mm . of strength (Observed) C l6 mark without 

o 

partial 
safety 
factors 

1 2 3 4 5 6 7 8 

FA1-0 M. S 173.4 172.2 0.99 31.92 36.125 1.13 

FA1-C 1.044 143.96 168.36 1.17 32.44 38.375 1.18 

FA2-0 UNI 410 240.7 245.2 . 1.02 39.02 44. -7 1.15 

FA2-C 1.044 208 254.18 1.22 39.56 50.5 1.28 

FA4-0 KAM 60 . 332.97 343.9 1.03 58.81 65.625 1.12 

1.044 

TABLE (12) SUMMARY OF DEFLECTIONS (FATIGUE LOADING TESTS) 

Deflection (mm) 

" first cycle 3x 106 cycles 

Beam At At Col. 4 

mark working Remaining working Remaining Col. 2 2 
moment moment 

1 2 3 4 5 6 

FA1-0 7.52 1.42 11.66 5.3 1.55 

FA1- . 5.78 1.1 11.4 4.6 1.97 

FA2-0 13.48 2.87 17.64 5.2 1.31 

FA2-C 8.82 0.8 16.47 5.6 1.87 

FA4-0 18.46 3.2 22.55 5.4 1.22 
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(a) Ordinary reinforced beam (sTIo-o) 

(b) Composite beam (STII-C) 

PLATE 2 CONDITIONS OF BEAMS 
JUST BEFORE FAILURE 



(a) Ordinary reinforced beam (sT3-o) 

b Composite beam (STII-C) 

PLATE 3 CONDITIONS OF BEAMS 
AFTER FAILURE 
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APPENDIX (A) 

Derivation of stress-strain relationship of lightweight concrete 

The equation of a parabolic curve Fig. 6a for 0< ec ej is 

ac=aec2+bee+c 

Where a, b, and c are constants 

At ac = 0, ec =0 and c=0 

At eC = ei, dar 
dec 

Therefore 

dvc =02 ae, +b ( 

dec ec =e 

Therefore 

C 
daý 

dzý cc =0 

Atee= 0 

0 

aQc 
ac 

Ec 

=Ec=b 

From the above equations 
b=Ec 

Ee 
2ej 

Therefore : 
= Ec cc - Ec ec2 = EC (ec - e2c ) 

2eß 

By substituting in this equation ac = vo and ec = ej 

Ec = 2ßo 
ej 

The equation of ac can be written as 

aC ° 
2Qo sec - etc ) 
ej 2eß 



The value of ei therefore can be obtained from the equation 

_2 
co 

eý 
Ec 

As per CP110 

or = 
0.67 feu 

w Ym 

lieu Dc 
Ec = 5502300 

2 

Substituting the values of ao and Ec as given in CP110.. 

ej 
2x0.67 feu 

_. 
1 

Ym x 55004, fýu 

Ym 

1.29 x 103 f cu 

Dc 
2 Ym 

for feu = 50 N/mm2 

ej = 0.0023 

De 4100 De 
2300 2300 

feu 
Ym 

1 fcu 
=ýfsý 

(for Do = 1800 Kg/m3 ý 

2510 Ym 3075 and Ym = 1.5). 

Without incorporating the partial safety factor see Fig. 6a 

eý = 

D2 

For feu = 50 N/mm2 

2x0.67 
. 
fcu 

55 00 fcu Dc 
2300 2300 

1.29 x 103 fcu -3 
= 

fcu 

4100( Dc 
2300 

2 

=f cu (for Dc = 1800 Kg/m3) 
2510 

ej = 0.00282 



APPENDIX (B) 

Derivation of P and a Factors of the Ultimate Load Conditions 

Assume Dc (density of concrete) = 1800 Kg/m3 

(a) Incorporating the materials partial safety factors Ym (1.5 for concrete and 

1.15 for steel). 
r 

Refering to Fig. 6a The strain and stress 'distribution of the ultimate condition 
i, 

across the depth of the beam would be as follows: 

jE 

d 

b 

As 
L1 

Cross Section 

I 
Ix 

1 
ýfeu 

2510 Ym 

em =0.0035 

et 
Strain distribution at 
ultimate condition 

_Z' S 

Stress distribution at 
ultimate condition 

From strain distribution y=X fcu /10.76 

Total compressive force C=0.45 fcu. b. X -3x0.45 b. X. fcu" fcu /10.76 

= (0.45 - 0.45 cu /10.76) b. X. fcu. 
3 

=a. b. X, fcu 

Taking moments of area of the stress block about the neutral axis: 

a X. fcuY X= (0.45. X. X fcu - 0.45 y. 
. 

fcu). 
234 

Substituting by y and take X out 
aY=0.45 - 0.45 fcu 

2 

F 

12 (10- . 76)2 

O. 67 f cu = 0.45 fcu 
m 

694 - fcu 
3087 a 



For the ultimate moment based on steel; 

to obtain the neutral axis depth, equate the internal forces 

C= Ts 
f 

a b. X. fcu =y As Ym 

X fyAs 

YmQb. fcu 

1-Y 

z (lever arm) = d1 - ßX = d1 -p fy As = d1 (1 - p1 yp) 
a Ym b. fcu aYmfcu 

The ultimate resistance moment based on steel; 

Therefore Mu = As d1 (1 -ßp) 
Ym aym f cu 

For fcu = 50 N/mm2 in the equation of the total compressive force 

a=0.351 

Hence: 

Y=0.594 

3= 1-Y = 1- 0.594 = 0.406 

Substituting the values of 3 and Y and (Ym 

ultimate resistance moment based on steel: 
fy 

Mu = As d1 (1-fý, p ) 
1.15 fcu 

1.15) in the equation of the 

The ultimate resistance moment based on the concrete would be equal to: 

(assume X=ý. 
2 

Mu =ab dl fcu (dl - ßý 

= 0.14 feu bd12 

22 

0.351 x1 dig fcu (1 - 0.406) 
22 

(b) Without incorporating the material partial safety factors: 

The stress-strain relationship of the concrete is shown in Fig. 

With the same method of analysis for fcu = 50 N/mm2 

Ga 



a=0.49 
Y=0.61 

P=0.39 

Therefore, the ultimate resistance moment based on steel is: 

Mu = fy As d1 (1- 0.793fyp) 

fcu 

the ultimate resistance moment based on the concrete would be equal to: 

(assume X= dl ) 
2 

Mu = 0.197 feu b dig 



APPENDIX (C) 

Working and Ultimate Moments of Test Beams 

Beam ST 3-0 and ST 3-C 

Based on nominal strength 

bxd= 150mm x 300mm 

fy = 550 N/mm2 

fcu = 50 N/mm2 

As = 402.286 mm2 

d1 = 257mm 

p=1.044% 

L=4.5m 

Dc = 1800 Kg/m3 

Limit State of Ultimate Strength 

Incorporating the partial safety factors of the materials the ultimate design 

moment of the section is: - 

Mu = 
_! 

y AS dl (1 -ß fy p 
Ym a Ymfcu 

For feu = 50 N/mm2 

a=0.351 

P=0.406 
Mu = 550 x 402.286 x 257 (1 - 550 x 1.044) x 10-6 

1.15 50 

= 43.77 KN. m 

The moment due to the dead weight of the simply supported beam is 

= 1800 x 0.15 x 0.3 x (4.5)2 x 10 = 2.05 KN. m (say 2KN. m) 
8 1000 

w12 
8 

The partial safety factor ( yZ ) due to dead load = 1.4, therefore, the 

ultimate design moment due to dead load moment =2x1.4 = 2.8 IM m 



The applied ultimate design moment for the beam (live load) i's 43.77 - 

2.8 = 40.97 KN. m. 

The partial safety factor ( Yt ,) 
for live load is 1.6, therefore, the applied working 

design moment of the beam (Mdiv) is 40.97 = 25.61 KN. m 
1.6 

The working load (W) is 

Wx1.5 = 25.61 
2 

W= 34.15 KN. 

Shear resistance 

Reference should be made to 3.3.6.1 in CP110, equation 8. 

v=V 
bd1 

The ultimate resistance moment of the beam is 43.77 KN. m (appendix C ), 

therefore, with a simply supported beam of 4.5m span loaded at 1/3 the span length, 

V_ 43.77 = 58.36 KN (Ultimate load) 
0.75 

v 150 x 257 = 1.514 N/mm2 

The value of vc = 0.6 N/mm2 for p= 1% and concrete grade of 40 or more 

(3.12.4 in CP110) 

v> vc therefore shear reinforcement are needed. Mild steel stirrups of 6mm 

diameters are to be used. 

Asv 
>v- vb 

sv _. 87 fyv 
(3.3.6.1 CP110) 

56.6 
= 

150 (1.514 - 0.6) 
Sv 0.87 x 275 

SV = 98.77mm 

The spacing provided was 100mm. 



Bond stress 

Reference should be made to paragraph (3.11.6 in CP110) 

Local bond 

(3.11. G. 1 in CP110) 

aDS 
V 

Fusdl 

V-= 58.3GKN 

us =2x 16 x 22 = 100.57mm 
7 

dl = 257 

fbs = 58360 = 2.258 N/mm2 
100.57 x 257 

The ultimate local bond stress allowed in CP110 for grade 50 lightweight concrete 

for deformed bars is 0.8 x 3.4 = 2.72 N/mm 2. (3.11.6.1 and 3.12.11 in CP110) 

Anchorage bond 

(3.11.6.2 in CP110) 

The force in the bar = 
f___ As 
Ym 

= 550 x 201.143 = 96.2 
1.15 

Anchorage length = 1.5m 

effective perimeter of bars = 16 x 22 = 50.28mm 
7 

Anchorage bond stress = 
96.2 x 103 

= 1.276 N/mm2 
1500 x 50.28 

The ultimate anchorage bond stress for grade 50 N/mm2 lightweight concrete for 

deformed bar in tension is 2.6 N/mm2 

1.275 < 2.6 O. K. (3-12.6.2 and 3.12.11 in CP110) 



APPENDIX (D) 

Derivation of Equations for the Neutral Axis Depth 

D1_ Neutral axis depth for untracked composite section (Xuc) 

Uncracked stage for 0< M/Mu < Co 

Take moments of area about the top edge 

of the section considering an untracked 

transformed section: 

ý_b ý 

bd(d/2) + (m - 1)Asdi + (ml - 1)Ach d2 [bd 
+ (m - 1)As + (ml - 1)Achl Xuc 

From this equation and by substituting p= As/bdl, pl = Ach/bd2, A= d/d1 

and 9= d2/d1 

n= 
2 

Xuc 
_ 

0.5 X2+ (m - 1)p + (ml - 1)pl n 

dl X+ (in - 1)p + (ml - 1)p1 Tl 

D2_Neutral axis depth for cracked composite section (Xcc) 

Cracked stage for Cl < M/Mu < C2 

Take moments of area about the neutral 

axis level considering a cracked 

transformed section. 
d 

b 
K =_ 

ý ;N 

dl d2 

I 

b Xcc (Xcc/2) =mA. (d1 - Xcc) + ml Ach (d2 - Xcc) 

For this equation and by substituting p= As/bd1, pl = Ach/bd2,11 = d2/dl 

ý 

n= Xcc 
= imp + ml Pi 11 )ý1+2 imp + ml P1T1 

2) 1 

_ 1) d1 (mp + ml piýl ) 



D3 Neutral axis depth at the transition stage 

Transition stage For Co < MIM: 5 Cl (Composite beams) 

Reference can be made to Fig. 10 

The equation of the assumed parabolic curve is 

X= aR2+bR+C (1) 

Where: R= M/Mu and a, b and c are constants 

The boundry conditions are: 

X= XuC at R= Co (a) 

X= XCC at R= Cl (b) 

dx/dR =0 at R= C1 (c) 

Substituting boundry condition (a) in equation 1 

Xuc = aCo2 + bCo +C 

Substituting boundry condition (b) 

Xcc =a C12 +b C1 +C 

C= Xce -aC12 = bC1 

(2) 

(3) 

(4) 

Differentiate equation (1) and substitute boundry condition (c) 

dx/dR = 2aR +b (5) 

0= 2aC1 +b (6) 

b =-2aC1 (7) 

Substitute equation (7) and equation (4) in equation (2) 

Xuc =a Co2 - 2aC1Co+ X, ý -a C12 + 2aC12 (8) 

a= 
xuc - Xcc 

_ (9) 
Co2 - 2C1Co + C12 

Xuc - xcc 
c 

1 b=-2 
Co - 2C1C0 + C12 (10) 

From equation (1): 

X= aR2 + bR + Xcc - aC12 - bC1 (11) 

Xue - X"ý 
X= 

C 2- 2C1 2 R2 - 2C1R + C12 J+ Xcc 
01 Co + C1 



APPENDIX (E) 

Derivation of the coefficients P and a to determine the centroid and area 

of the compressive stress distribution diagram in concrete. Reference can be 

made to Fig. 12 

(a) Determination of ß 

(i) When ec S ej 
The equation of the parabola is : 

ac =2 
ao (ec - ec ) See appendix (A) 

eý 2eß 

The centrold of the area from the y-axis which can also represent the neutral axis 

depth in flexural member, at any value of ec can be obtained from the following: 

cc ec 

e° ac dec _f ec dec . (e° is the distance for the centroid 
0 o of the area from the y-axis). 

Co 

CC 
eo 2 Qo (ec - e. 

2) 
deý _ 

o 
ej 2ej I 

2334 
ec - ec 

_ 
ec - ec 

2 6eý 3 8e, 

From this equation: 

eo = 8ec ej - 3ec 
2 

12 ej - 9. ee 
By substituting co =Y ec 

ý 8ej - 3ee 

12 ej - 4ec 

vo (ec - cc 
2) 

cc dec . 
ej 2eß 

The value of to calculate the distance of the centroid relative to the value ej 

is equal to1 -Y 
Therefore ß=1- 8eß - 3ec 

_ 
4eß - ec 

12eß - 4ec 12eß - 4ec 



(ii) When ej < ec c emax 

Taking moments of area about the vertical line at ec which also represent strain 

at the extreme element of the compression zone of a flexural member. 

ha0 (ec - ej) +3 ao ej (3ec = vo (ec - ej)2 /2+3 a0 ej 
8 

ej + ec - ej) 

From this equation the value of the coefficient ß at any value of ec is equal to 

6ec2 - 4ec e" + e2 
12ec - 4ec ej 

(b) Determination of a 

(i) When e, < ej 

The area at any value of cc is assumed to be equal to a ae e. 

Considering the equation of the parabola given in appendix (A) 

a ac ee =2 ao 
fee 

- eC 
2) 

dee 
ej 2ej 

Substituting the value of Qo and integrate 

2 Qo a iec _ ý- ý eý _2 vo 
I eý2 ^ eý3 I 

ej 2ej ei L2 Gej j 

From this equation: 

3e4- eo 
Cl 

6ej - 3eo 

(ii) When ej . ec emax 
The area at any value of ec is assumed to be equal to a 

Therefore 

aßo ec Qo ej + ao (ec - ej) 

From this equation: 

CFO ec 

3ec - eý 
3ec 



APPENDIX (F) 

THEORIES FOR THE CALCULATION OF DEFLECTION 

F1_ General 

In order to calculate the deflection of a flexural member, the distribution 

of the curvature along the, span of the beam should be known. The differential 

equation of flexural is given in the following expression: - 

d2a (Al) 
rb ds2 

where a: Vertical deflection 

s: Distance measured along the beam 

rb : Radius of curvature 

For beams in which the moment curvature relationship is linear, the equation 

can be integrated to obtain the following expression : - 

a=k$ 12 (A2) 

To calculate the curvature of a beam, it is important to classify whether the 

section is in a cracked or uncracked condition. The curvature of an untracked 

member can be calculated using the conventional method based on a homogeneous 

concrete section as discussed in 5.3.1. For a cracked section, it is important 

to consider the contribution of the concrete in the tensile zone in calculating the 

curvature of the member. This, however, has been thought of in the past and 

the contribution of the concrete in tension was considered in different ways. 

In the following, the various methods proposed are discussed. 

F2_ Assessment of the curvature for a cracked reinforced concrete member 

In the past, the analysis of a cracked member was carried out assuming 

a completly cracked section where the concrete in the tensile zone being ignored. 

The curvature was obtained from the following equation: - 
M 

ECIC 

or 
e. 

dl - XC 

(A3) 

(A4) 

es = Strain in the steel reinforcement calculated without considering the 

contribution of the concrete in tension. 



It was realised, however, that this approach considerably over estimated 

the amount of deflection. This was mainly due to the contribution of the concrete in 

tension was not considered. 

The contribution of the cracked concrete in the tensile zone of flexural members 

was taken into consideration in the subsequent methods proposed by various 

investigators in different approaches. 

YU and Winter (84) proposed a method where the curvature of the beam under 

working load can be calculated based on an average second moment of area (Iave) 

of the beam. The contribution of the concrete between the cracks in the tensile 

zone is considered in calculating the average second moment of area as follows: 

Iave =1 
IMdw (A5) 

In which "M 
= 0.1 (fc) 3 bd (d - Xc) 

Consequently the curvature of the beam is calculated from 

Mdw 

Ec Iave 
(A6) 

fc _ Cylinder compressive strength of concrete. 

The derivation of the equation of 
M followed an elastic theory approach. A 

triangular stress distribution of the concrete in the tensile zone was assumed by 

the stress being equal to the modulus of rupture at the soffit of the beam and zero 

at the level of the neutral axis. The factor 0.1, however, was obtained empirically 

based on normal concrete beams data. 

In the CEB (79) recommendations, a method was suggested to calculate the 

curvature by considering a bi-linear relationship for the load-deflection response, 

I. e. taking into account the initial uncracked behaviour. For a moment (M) greater 

than the cracking moment of concrete (Mcr), the curvature can be obtained from 

the following expression: - 

ý_ Mer +M" Mcr 

ErIo 0.75 ESAS d1 (1 - 2q) (1 - 2/31 
(A7) 

For q<0.25 only 



In which 

AS f 
ý 

bdl ýfý 

The derivation of the equaticn followed an elastic theory approach. 

Branson (83) presented an empirical expression of an average effective 

second moment of area (Leff) over the entire length of a simply supported uniformly 

loaded beam. The expression is given in the following form: - 
3 

Ieff Mcr Io 

m 
+1 

3 
Mcr Icr 

kM 
(A8) 

The equation would only apply when M is greater than or equal to Mcr+ 

otherwise Ieff = Io" It was'suggested that the second moment of area (Io) based 

on an untracked transformed section might be more accurately used instead of the 

gorss section especially when high percentages of steel were employed. The method 

does allow for the contribution of the concrete along the span length of the beam. 

Beeby (85) derived an expression for the curvature taking into consideration 

a bi-linear relationship for the load deflection response and the variation in the 

modulus of elasticity of concrete at the untracked and cracked conditions. Tests 

on normal weight concrete beams showed that a modified modulus of elasticity (Ec) 

equal to 0.57 Ec should be used. This however was simplified and the expression 

for the curvature was given in the form 

b'Ic 

Ec Io 

-ý M- Me 

0.85 Ec Icr 
(A9) 

In CP110 it is suggested that the curvature at mid span of a cracked flexural 

member ca n be estimated following the elastic theory approach, using the modulus 

of elasticity for the materials as recommended by the code. A triangular stress 

distribution for the concrete in tension is assumed, having a value of 1 N/mm2 

at the level of the tension reinforcement and zero at the level of the neutral axis. 

This would allow the average stresses in concrete and steel to be calculated. 

The curvature consequently can be calculated from the following :- 



ý= fca 
=f sa (A10) 

XEC (d1 - X) ES 

Where: fca and fsa are the average stresses in concrete and steel as calculated. 

The method requires a trial and error approach to determin the neutral axis 

depth under the working moment while the tension forces balance the compressive 

forces in the section. 



APPENDIX (G) 

Sustained-Load System 

(i) Calculation of the distance between the centre line of the beams and the 

supporting trestle to produce similar moment at mid span of the beams. 

.ý 

F: Force due to weight of 

the spring assembly 

= 1.6 KN. 

w: Weight of the beam per 

unit length. 

GýL 

[ 
I 

F 

vvL=1800x0.15x0.3x 10. x4.5x103=3.6KN. 

Upper beam 

L= 4500 

ýKý 

ý 

A 

Arrangement 

/ + L/3ý F 

ý 

wL+F WL+F 
22 

Upper beam 

WZ 
The bending moment 11 at 

r 
=+F +F 

mid span. 
11 

M=FL+wL2- (wL+F) L 

2826 wL +F wL +F 

FL + wL2 
3 24 

Lower beam 

Lower beam 

The bending moment at mid span should be equal to that obtained for the 

upper beam. Assume the distance between the centre line of the beams and the 

trestle is X. The value of X can be obtained from the following equation: 

wL2 - (WL + F) L+ (wL + F) X_ FL + wL2 
826 

From this equation: 

X= L C2F+wL 4F+ wL 

3' 24 



Considering F=1.6 KN and wL = 3.6 KN. 

4.5 2x1.6 + 3.6 )=1.47m 
4 1.6 + 3.6 

The bending moment due to dead weights at mid span of the beams is: 

M =1.6 3 
4.5 + 3.6 244.5 

= 3.077KN. m 

The ultimate design moment the to dead load is 3.077 x 1.4 = 4.3 KN. m 

Lid) Deflection calculation: 

(Macauley's Method) 

Upper beam 

EI d2a 
dx2 

T- 
The differential equation to calculate the deflection is: 

j .ýý 

ý- __ -, atý 
- -. ,. 

- 

cv 
ý 

M 

d 2a ww 
EI 

d--ý- =2x-2 

EI : flexural rigidity 

X: distance along the beam 

a: deflection 

w: total applied load 

X 
2 (X- . S) 

By integrating the above equation: 

EI da 
2- rW (X -L )2 

+C 
dx 4L4311 J 

At g_L, aa = o, therefore C1 WL2 
2 

dx` 2 

d. < 18 

EI da 
_ 

WX2 -W (X -L )2 - WL2 
dx 43 18 

Integrating again gives 
TT _ VvrX3 
r. t a= 

JfiX3 -W (X -L)3- 
12 12 3] 

C 

w 
F L/3 , L/3 

.I 

WL2 X+ C2 
18 

.1ý 

W 

L/3 2 

ý 



At X3, a=0, therefore C2 = 5WL3 
324 

Hence 

EI a= 
WX3 -W (X - Lý3 - WL2 X- 5WL3 
12 12 3 18 324 

The deflection a1 at X=0 is: 

EI a1 = 4WL3 Since M= WL 
324 6 

therefore al =5M L2 
54 EI 

The deflection a2 at X=L is: 
2 

a2 =1. M L2 
72 EI 

The total deflection (a1 + a2) is equal to 7.7 times the central deflection a2 measured 

relative to the supports. This is shown in the following: 

a2+a1 
1+5 

72 54 23 
1 216 

x 72 = 7.7 
a2 

Lower beam 

72 

Similar approach can be employed for the lower beam. 

The boundry conditions are 

At X= L/2 da 
dx 

At X= L/3 

=o 

a =0 

Hence, the values of the coefficients to calculate the deflections are the same 

as those for the upper beams. 



APPENDIX (H) 

Partially Cracked Composite Section 

HI-Neutral Axis Depth Xp 

In the calculation of the neutral axis depth for a 

partially cracked concrete section, the elastic theory 

approach is used. 

An assumption is made by considering an 

uncracked concrete area, which is equivalent to 

the confined concrete by the presence of the f. r. c. 

channel, below the neutral axis level. This is 

discussed in 5.3.4. 

Taking moments of area about the neutral 

axis level: 

bXp " 4P- 
=mA. (dl - Xp) + ml Ach (d2 - )>p) + bd d/2 

For this equation and by substituting 

As pl = Ach rl = d2/dl, ý1 = d/dl p= , _, Dal pat 

d1 (m. P+ ml Pl ý1 )1 

b 

\ý. 

XP 

-t 
dl d2 ýd 

x- 

Cross Section 

2 ,2 2 (m p+ mi Pi T1 Ti 
(m p+ mi Pi Tl )2 

,ý I12_ Second Moment of Area (IP) 

The second moment of area for a partially cracked composite section can 
be obtained from the following: 

ü- 

Ip = 
býp) 

+m AS (dl - Xn)2 + ml Ach (d2 - Xp) 2+ bid3 
3 


