ANY TIME PROBABILISTIC SENSOR
VALIDATION

A THESIS SUBMITTED TO THE UNIVERSITY OF SALFORD

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

November 1997

By
Pablo Héctor Ibargliengoytia Gonzalez
Department of Computer & Mathematical Sciences
TIME Research Institute

University of Salford

Contents

Abstract

Acknowledgements

1 INTRODUCTION

1.1
1.2
1.3
1.4

Motivation
The Problem: Sensor Validation
Objective of the Thesis

Organization of the Thesis

2 PROBABILISTIC REASONING

2.1
2.2
2.3
2.4

2.5
2.6
2.7

Basic Concepts: Bayes Rule
Bayesian Networks
Propagation in Trees
Probability Propagation in Trees of Cliques

2.4.1 Treeof cliques.
2.4.2 Probability propagation
Probabilistic Causal Method
Learning Algorithm

SUMMATY « v v v v v e e e e e

3 PROBABILISTIC SENSOR VALIDATION

i

ix

x1

N N

3.1 Probabilistic Validation 0.
3.2 A Theory of the Sensor Validation Model
3.3 AnExample oo

3.4 Summary ...

ANY TIME SENSOR VALIDATION
4.1 Any Time Algorithms
4.2 Any Time Sensor Validation Algorithm
4.2.1 Initialization oo oo
4.2.2 Selection of next sensor: Use of information theory
4.2.3 Fault isolation oo
4.2.4 Quality measure. Lo
4.3 The Complete Algorithm

4.4 Summary e

EXPERIMENTAL RESULTS

5.1 Application Domain o000

5.2 Test Environment oL 0oL

5.3 Testing the Validation Model
5.3.1 Experimental method 000
5.3.2 Accuracy of the probabilistic validation phase
5.3.3 Accuracy of the fault isolation phase

5.4 Any Time Validation

5.5 Summary ... e

RELATED WORK
6.1 Traditional Approaches for Sensor Validation
6.2 Knowledge Based Approaches for Sensor Validation

6.3 Intelligent Diagnosis

11

55
56
39
60
61
66
72
74
78

80
81
86
88
88
91
94
96
99

6.4 Any Time Algorithms and Bayesian models

7 CONCLUSIONS AND FUTURE WORK
7.1 Conclusions

7.2 TFuture Work

A Partial Results

v

List of Tables

3.1
3.2

4.1

4.2

5.1
5.2
3.3

5.4

3.5
5.6

Extended Markov blankets for the simple turbine model.

Steps 3, 4 and 5 of the algorithm for the example of Fig. 3.1. . . .

Trajectories of validation in the case of single faults. The + rep-
resents the validation as correct while - represents a fault in the
SETISOT. © v v v e e e e e e e e e e e e

Example of the values of the probability vector Pp.

EMB of all sensors in the application example.
Different cases of the status of the hypothesis and decision taken.
Results of the experiments without simulating failures: average
number of type I errors and the percentage that they represent.

Results of the experiments simulating a single failure: average
number of type I and type II errors and the percentages that they
represent. L. oL L L L Lo e e e e e e e
Global performance measure of the first phase of the prototype . .
Final evaluation: number of errors and their percentage for severe

faults. . . .

33

91

List of Figures

1.1
1.2
1.3

Layered diagnosis architecture.. L. 5
Basic model of a sensor. Lo 5
Basic model of a sensor performance. (a) represents that V,, de-
pends on V;. (b) represents an enhanced model where V,,, depends
on V; and the state of the sensor S. (c) displays a model where S

can be inferred with the values of the measure V,, and the estim-

ated real value V..o L 6
2.1 A DAG for exemplifying d separation. 16
2.2 A simple Bayesian network. 0oL 18
2.3 Examples of Bayesian networks. (a) is a tree, (b) is singly connec-

ted and (c) is multiply connected. 19
2.4 A DAG typical exampleof atree. 20
2.5 A portion of the tree of Fig. 2.4 showing the message passing al-

gorithm. Lo 23
2.6 Procedure to convert a network in a tree of cliques. 25
2.7 Original multiply connected network. 25
2.8 Undirected moralized graph. 26
2.9 Triangulated and ordered undirected graph. 26
2.10 Resultant tree of cliques.o 28
2.11 A DAG representing a probabilistic causal model. 31

vi

2.12 Causal relation between hypotheses or causes, and manifestations.

32

2.13 Chow and Liu mazimum weight spanning tree algorithm [Pearl 1988]. 36

3.1 Simplified diagram of a gas turbine.
3.2 A reduced Bayesian network of a gas turbine.
3.3 Equivalent models (Markov blankets) for the variables in the re-

duced Bayesian network model of a gas turbine. (a) for m, (b) for

t, (c) for p, (d) for g and (e) fora..
3.4 Basic sensor validation algorithm.
3.5 Description of some possible results. The arrows indicate the in-

terval of the real value of a sensor.

4.1 Examples of performance profiles. (a) a standard or one shot al-
gorithm. (b) an ideal, exponential precision algorithm, and (c) a
more realistic profile for an any time algorithm in practice.

4.2 Top level of the any time sensor validation algorithm.

4.3 Entropy as a functionof p. o000

4.4 Partial decision tree. oo oL

4.5 A reduced Bayesian network of a gas turbine.

4.6 Binary tree indicating the order of validation given the response of
the validation step. Lo

4.7 Reduced decision tree. 0oL

4.8 Causal relation between real faults (R) and apparent (A) faults
represented as nodes. L.

4.9 Probabilistic causal model for fault isolation. R; represents a real
fault in sensor 2 while A; represents an apparent fault in sensor j.

4.10 Cliques obtained from the network in Fig. 4.9.

4.11 Tree of cliques obtained from the network in Fig. 4.9.

Vil

64

63
69
70

4.12

4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
3.3
5.4

3.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Performance profile describing the combination of certainty and
specificity in one parameter against time. (a) without failure, (b)
with a simulated failure in sensor ¢.
Format of a node of the pre compiled binary decision tree.
Complete version of the any time sensor validation algorithm.
Complete pre compilation procedure.
Reduced pre compilation procedure.
Description of the validation process.

Description of the isolation process.

Simplified schematic diagram of a gas turbine.
Bayesian network for this application.
Schematic diagram of the test environment.
Graphical comparison of the results of the different criteria for
severe faults. oL oL
Final criteria to declare correct and faulty sensors.
Quality response as a function of steps for the sensor C H2.
Quality response as a function of steps for the sensor C' H6.
Performance profile of the any time sensor validation algorithm

(time x 10728€c.). o o v v o

Example of a simple empirical relation.
Bayesian network including the analytical redundancy relations.
Parameters issued by the self validating sensor.

Three different uses of sensor related nodes in a overall process

Vil

98

Abstract

Many applications of computing, such as those in medicine and the control of
manufacturing and power plants, utilize sensors to obtain information. Unfortu-
nately, sensors are prone to failures. Even with the most sophisticated instru-
ments and control systems, a decision based on faulty data could lead to disaster.
This thesis develops a new approach to sensor validation. The thesis proposes a
layered approach to the use of sensor information where the lowest layer validates
sensors and provides information to the higher layers that model the process. The
approach begins with a Bayesian network that defines the dependencies between
the sensors in the process. Probabilistic propagation is used to estimate the value
of a sensor based on its related sensors. If this estimated value differs from the
actual value, then a potential fault is detected. The fault is only potential since
it may be that the estimated value was based on a faulty reading. This process
can be repeated for all the sensors resulting in a set of potentially faulty sensors.
The real faults are isolated from the apparent ones by using a lemma whose proof
is based on the properties of a Markov blanket. In order to perform in a real time
environment, an any time version of the algorithm has been developed. That is,
the quality of the answer returned by the algorithm improves continuously with
time. The approach is compared and contrasted with other methods of sensor val-
idation and an empirical evaluation of the sensor validation algorithm is carried
out. The empirical evaluation presents the results obtained when the algorithm
is applied to the validation of temperature sensors in a gas turbine of a power

plant.

X

DECLARATION

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

Partial results of this thesis have been presented jointly

with the supervisors in the following papers:

o A probabilistic model for sensor validation, Proc.
Twelfth Conference on Uncertainty in Artificial In-
telligence, UAI-96, Portland, Oregon, U.S.A., pp
332-339, 1996.

o Real time probabilistic reasoning for sensor valid-
ation, AAAI Fall Symposium - Flexible Computa-
tion in Intelligent Systems, Working Notes, M.I.T.,
Cambridge, MA., U.S.A., pp 100-105, 1996.

o A layered, any time approach to sensor validation,
Proc. European Conference on Symbolic and Qual-
itative Approaches to Reasoning and Uncertainty,
ECSQARU-97, Bad Honnef, Germany, pp 336-349,
1997.

Acknowledgements

The development of this thesis was supported by a grant from CONACYT and
ITE under the In-House ITE/SALFORD/CONACY'T doctoral programme.

Special thanks are due to my supervisor in México, Dr. Enrique Sucar and
my supervisor in Salford, Dr. Sunil Vadera.

[am grateful to Professor F.A. Holland and Dr. E. Wilde for their advice and
continuous help during the development of this thesis.

I wish to express my thanks to the Instituto de Investigaciones Eléctricas,
(IIE), for giving me the opportunity and for supporting my participation in the
programme, specially to Dr. Pablo Mulas del Pozo, Dr. Roberto Canales R. and
Dr. David Nieva.

[am grateful to Professor Tom Dean, from Brown University, U.5.A., for his
valuable advice in the research proposal.

I also wish to thank the members of the informatics module of the programme
for their continuous advice and encouragement, specially to Dr. Luis A. Pineda
and Dr. Eduardo Morales. Thanks are also due to Dr. Guillermo Rodriguez and
my fellow investigators Andrés Rodriguez, Pablo de Buen, and Sergio Santana.

Thanks are also due to Mrs. M.E. Calderon and to the late Fis. Andrés
Estebaranz for their untiring effects to make the In-House II1E/Salford CON-

ACYT programme increasingly successful.

xi

Chapter 1

INTRODUCTION

1.1 Motivation

The generator of a thermoelectric power plant starts rotating commanded by a
distributed control system. The microprocessor based control system monitors
the plant status through acquisition boards which are connected to the sensors.
The velocity sensor indicates a hundred, then a thousand, and then two thousand
revolutions per minute (rpm). The control system commands an increment of the
fuel and air supplies, taking care at the same time, of other important variables
like the temperature and pressure of the turbine. Eventually, after two hours
approximately, the velocity sensor indicates almost three thousand six hundred
rpm so the start up phase is about to finish. Consider the situation if suddenly,
the control system receives a signal indicating a zero velocity. Since the computer
program performs no additional reasoning, the control system increases the supply
of gas and air which increases the temperature and pressure.

Of course, a plant trip occurs and the system is shut down. The system is
reset, the plant is re initialized and started again after some hours. This results in
loss of time and money. When the shut down is analyzed, the engineers conclude

that the process was fine and it was only the velocity sensor that was faulty. Given

CHAPTER 1. INTRODUCTION 2

the readings of temperature, pressure and gas supply, a zero velocity reading was
highly unlikely. Consider now the case of the temperature sensors in a turbine.
The temperature is considered the most important parameter in the operation
of a turbine since it performs more optimally at higher temperatures. However,
a little increase in the temperature, over a permitted value, may cause severe
damage in the turbine itself and in the process. Now, imagine that one of the

sensors delivers an erratic measure. Two situations can occur:

1. The sensor indicates no change in the temperature even if it increases to

dangerous levels.
2. The sensor reports a dangerous situation even if it is normal.

The first situation may cause a disaster, with possible fatal consequences for the
whole plant, including human life. The cost of this type of failure can not be
easily calculated. The second situation, as described above, may cause a false
shut down, and loss of time and money. In this case, the cost can be calculated
based on the fuel spent and the cost of the energy not produced while the plant
is idle.

As the above situations suggest, the validation of sensors is an important
problem that requires the development of modern techniques. Specifically, this

problem represents a challenge to the areas of:
e uncertainty management,
e real time performance,
e continuous operations,
e inputs provided by sensors,

e temporal reasoning,

CHAPTER 1. INTRODUCTION 3

e decision theory.

Uncertainty arises because the information provided by the sensors may be unre-
liable. Real time performance is required since, a decision taken, based on faulty
data, could lead to a disaster. These decisions are generally made on a real time
basis. Finally, this problem contains the typical characteristics of an industrial
application, e.g., continuous operation, and inputs and outputs through sensors
and actuators respectively. That is, although the motivation for this research
project is based on a consideration of the difficulties that can arise in power
plants, it is a generic problem that has a wide range of applications. Example
are refineries, transportation (train lines), and fusion of sensors in intensive care

units.

1.2 The Problem: Sensor Validation

The validation of sensors has been a concern since automatic control has been
implemented in plants. One approach has been the hardware redundancy and
majority voting. The classical approach, called analytical redundancy, exploits
the static and dynamic relationship between measurements using a mathematical
model. This technique predicts a sensor’s value by using values from others in the
form of known or empirical derived relations among the sensor values. However,
hardware redundancy is not always possible since, for example, adding further
sensors might weaken the walls of pressure vessels. The analytical redundancy
approach becomes inefficient when the number of sensors increases, and when the
complexity of the model increases. Additionally, the validation of sensors using
analytical redundancy is adapted exclusively for each process. A slight modific-
ation is extremely expensive and demands an enormous amount of expertise.

Among all the fields of computer science, artificial intelligence (Al) contains

CHAPTER 1. INTRODUCTION 4

an extensive variety of techniques for dealing with these kinds of problems. Spe-
cifically, Al has been extensively used in diagnosis applications in several different
domains. For example, the TIGER project [Milne & Nicol 1996] utilizes model-
based reasoning for condition monitoring of gas turbines in chemical plants. That
is, TIGER possesses a mathematical model of the process and runs a simulator
in order to compare the observed output with that estimated by the simulator.
Another related research project is the automated decision analytic diagnosis of
thermal performance in gas turbines [Breese et al. 1992]. In this project, Breese
and co-workers described the utilization of probabilistic models for the diagnosis
of gas turbines for an auxiliary power unit of a commercial aircraft. They aimed to
model the whole process by using a belief network that includes sensor validation
as well as the fault diagnosis process.

Although both the above systems have been successfully installed in real ap-
plications, their main objective is to diagnose the whole process. In general, they
assume that the sensors are working properly, or that the sensors are modelled
as an integral part of the process. This way of modelling sensors, by integrating
them within a model of a process, results in a larger model that can be more
complex. More significantly, the sensor validation process is combined with the
diagnostic process, making it less generic.

This thesis therefore develops a sensor validation model which can be utilized
as a separate module that works together with other functions. In other words, it
is assumed that a layered scheme is used in which the lowest level concentrates on
validating the signals transmitted by the sensors as presented in Fig. 1.1 [Yung &
Clarke 1989]. Faults in the sensors are detected in a decentralised and hierarchical
approach, so that they can be easily isolated and repaired. Additionally, suppose
that the higher layers of the system represent other important and critical func-

tions, e.g., the fault diagnosis of a nuclear plant. The intermediate layer (loop

CHAPTER 1. INTRODUCTION 3

t
d?ggsn%%lls

A

< diagoBsis)

A

sensor
validation

Figure 1.1: Layered diagnosis architecture.

diagnosis) may be using model-based reasoning to diagnose a control loop in the
plant, whereas the system diagnosis layer may be utilizing a different approach.
In order to focus on the sensors validation layer of Fig. 1.1, a further description
of sensors is now given.

The input of a sensor is the value V, which is considered unknown and inac-
cessible, and the output is the measurement V;, (Fig. 1.2). A sensor is declared
faulty if the output measurement V,, gives an incorrect representation of the V;
[Yung & Clarke 1989]. A fault is detected when the output of a sensor V,, exceeds

some threshold, or deviates from a characteristic trend. But, what exactly is a

Sensor

Figure 1.2: Basic model of a sensor.

characteristic trend?

This question is being answered differently by many investigators. However,
in all the approaches, the central idea is to estimate the value that a sensor must

deliver based on its environment. Some examples of these environments are the

CHAPTER 1. INTRODUCTION 6

following:

o history of a single signal in time,
e history of the state of the process in time,

o state of all related signals at a specific point in time.

This estimation process is what makes the various validation approaches dif-
ferent. Given that there is uncertainty about the reliability characteristics of a
sensor, this thesis uses probabilistic methods for estimation based on all the re-
lated signals at specific time instants. Figure 1.3 shows some simplified models
that can be used to represent sensor information in a physical process. These
models are dependency models indicating causality. In (a), either the variable
state V; causes the variable measure V,,, or V,, depends on the value of V. This is

the most obvious and basic model of a single sensor. Figure 1.3(b) shows a model

C?@
(%) ()

(a) (b) (c)
Figure 1.3: Basic model of a sensor performance. (a) represents that V,,, depends
on V;. (b) represents an enhanced model where V,,, depends on V; and the state

of the sensor S. (c) displays a model where S can be inferred with the values of
the measure V,,, and the estimated real value V..

including three nodes: the measure V,, depends on the variable state V; and on
the sensor state 5, i.e., V,, displays a realistic representation of the variable state
if the sensor is working properly (S = correct). Finally, since V; is unknown and
inaccessible, it is replaced with its estimation V. in Fig. 1.3(c). Here, the inference

on the sensor state S is dependent on the measure and the estimation. In fact,

CHAPTER 1. INTRODUCTION 7

Fig. 1.3(c) represents the goal of this thesis, namely to obtain the state of the
sensor based on the reading and the estimated value. In other words, this model
makes explicit the conditional probability of a fault in a sensor, given the measure
and the estimation, i.e., P(S | V,,, V., d), where § represents previous knowledge
about the sensor. For example, § might represent the mean time between failures
reported by the manufacturer, the physical location of the sensor in the plant,

the time between the last maintenance, etc.

1.3 Objective of the Thesis

Given the above motivation, and the dependency model presented in Fig. 1.3(c),
it is reasonable to suggest that probabilistic reasoning has an important role in

sensor validation. Hence, the objective of this thesis can be stated as follows.

e Develop a theory for sensor validation using probabilistic

reasoning.

e Develop an algorithm for sensor validation, suitable for

use in a layered, real time process.

1.4 Organization of the Thesis

To accomplish the above objective, this thesis is organized as follows.

Chapter 2 describes an approach for dealing with uncertainty in artificial in-
telligence, namely Bayesian networks. It starts by describing the basis of
probability theory up to the definition of Bayes rule. Then, it formally
defines the knowledge representation and inference techniques implicit in
Bayesian networks. Two different mechanisms for propagation of probabil-

ities are described: propagation in trees and in multiply connected networks.

CHAPTER 1. INTRODUCTION 8

Chapter 2 also describes a basic algorithm for learning a probabilistic model

from data obtained from the process being modelled.

Chapter 3 develops a theory and a model for sensor validation based on the
probabilistic methods described in the previous chapter. Specifically, it
develops a validation algorithm that, based on probabilistic propagation
in Bayesian networks, detects the set of potentially faulty sensors. Then,
based on a dependency property of every variable, it develops a mechanism

that distinguishes between the real faults and the set of apparent faults.

Chapter 4 extends the algorithm developed in the previous chapter in order to
make it appropriate for performing in real time environments. To obtain
this behaviour, this thesis utilizes the any time algorithms mechanisms,
i.e., an algorithm that provides a response whenever required and whose
quality increases with time. It describes how the any time behaviour can

be obtained by deciding which sensor to validate next.

Chapter 5 presents an empirical evaluation of the sensor validation algorithm.
It starts by describing the application domain and the test environment
developed for the experiments. Then, it presents an evaluation of the dif-
ferent aspects of the model, the sensor validation algorithm and the any

time sensor validation algorithm.

Chapter 6 places this thesis in the context of other related work. First, it de-
scribes related approaches focusing on the sensor validation problem. Some
of these approaches have been applied in different application domains.
Second, it describes the related work that uses artificial intelligence for in-
dustrial applications, and specifically in gas turbines. Finally, it comments

some work in any time algorithms used in probabilistic reasoning.

CHAPTER 1. INTRODUCTION 9

Chapter 7 presents the conclusions of this thesis and describes the fields of
research that have arisen during the development of this theory. Also,

possible enhancements to the algorithm are briefly outlined.

This thesis is complemented with an appendix that explain the details of the

operation of the algorithm.

Chapter 2

PROBABILISTIC REASONING

The aim of artificial intelligence (Al) is to provide a computational model of intel-
ligent behaviour. The aim of probability theory is to provide a coherent account
of how belief should change in the light of partial or uncertain information [Pearl
1991]. This chapter presents one approach for the use of probability theory in
Al, namely Bayesian networks that is used in this thesis. Bayesian networks, also
known as probabilistic, causal or belief networks, are graphical representations
of the dependencies between random variables in a specific application domain.
This representation allows the codification of knowledge in the form of depend-
encies and independencies, and also allows inferences in the form of probabilistic
propagation based on a graphical representation.

This chapter explains the basic concepts which are utilized in this thesis.
Section 2.1 describes the definitions and basic concepts up to the definition of
Bayes rule, i.e., the heart of Bayesian reasoning. Section 2.2 formally defines the
Bayesian networks and section 2.3 describes the inference or probability propaga-
tion mechanism in simple networks called trees. Section 2.4 presents the algorithm
for probability propagation in more complex representation of networks. Next,

section 2.5 describes part of a more specialized Bayesian model commonly utilized

10

CHAPTER 2. PROBABILISTIC REASONING 11

in diagnosis problems, and which is used in this thesis. Finally, section 2.6 de-
scribes an algorithm for constructing or learning probabilistic models from data.

Much of the material presented in this chapter is based on the texts by Pearl
(1988), Neapolitan (1990), and the article by Pearl et al. (1990). Readers, who

are familiar with these concepts may omit the details of this chapter.

2.1 Basic Concepts: Bayes Rule

Probability is formally defined as follows [Neapolitan 1990].

Definition 2.1 Let € be the set of outcomes of an experiment, F a set of events
relative to Q, and P a function which assigns a unique real number to each A € F.

Suppose P satisfies the following azioms:

0<PA) <1
P(Q) =1
P(Aor B) = P(A)+ P(B) (2.1)

if A and B are disjoint subsets of F. Then the triple (Q,F ,P) is called a prob-

ability space and P is called a probability measure on F.
Now, since any event A can be written as
A=(A,B)or (A -B),

then, by the third axiom, P(A), i.e., the probability of these two joint events can

now be written as’

P(A)=P(A,B)+ P(A,-B) (2.2)
In general, if B has n different elements, equation 2.2 can be written as:

P(A) = ﬁ:P(A,BZ») (2.3)

'In the following, the notation A, B the conjunction of both events A and B.

CHAPTER 2. PROBABILISTIC REASONING 12

Conditional probability is defined with the following formula:

P(A, B)

P(A|B) = 2.4

LB =T (2.4)
with its equivalent for the probability of joint events A and B as:

P(A,B)=P(A| B)P(B) (2.5)

Now, from equation 2.3 and the definition of conditional probability (eq. 2.5),

the following formula is obtained:
P(A) = ZP(A | B;)P(B;) (2.6)

which provides the basis for hypothetical reasoning, i.e., the probability of an
event A is a weighted sum over the probabilities in all the distinct ways that A
might be realized.

Given a set of n events, the probability of a joint event (Fy, Fa, ..., E,) can

be written as a product of n conditional probabilities:
P(E1, Fyy ... Ey) = P(FE, | Fue1y. oo Eay Ey) oo P(Ey | Ey)P(FY) (2.7)

This is called the chain rule and can be derived by the repeated application of
equation 2.5.

Then, applying the chain rule to the joint probability P(A, B) (i.e., P(A, B) =
P(B | A)P(A)), and the definition of conditional probability (eq. 2.5):

P(A,B) = P(B | A)P(A) = P(A| B)P(B) (2.8)

so the formula called the Bayes rule is obtained as:

P(E | H)P(H)
P(E)

P(H | E) = (2.9)

which establishes that the probability of the hypothesis H given certain evidence
F is obtained by multiplying the conditional probability P(E£ | H) by P(H).

CHAPTER 2. PROBABILISTIC REASONING 13

Both these probabilities, the conditional probability P(£ | H) and the hypothesis
prior probability P(H) can be obtained from experts or from data based on the
previous knowledge. P(F) is a normalizing constant. In the following, P(H) is
called the prior probability, and P(H | E) is called the posterior probability. This
rule can be extended so that a recursive updating of the posterior probability
can be made, once new evidence has been obtained. This is calculated with the

formula:

PUH | En), B) = PO | By 2L

P(E E(n) (2.10)
(

where F/(n) denotes the evidence observed in the past, and P(H | E(n)) assumes
the role of prior probability in order to compute the new posterior P(H | E(n), E),
i.e., the probability of H given all the past evidence and the new data observed
E.

The generalization of Bayes rule of equation 2.9, for a set of n mutually

exclusive and exhaustive hypotheses { Hy, Hs, ..., H,} is referred to as the Bayes

theorem in the literature and expressed as:

PV)= S i e 24y

The Bayes theorem and formula (egs. 2.11 and 2.9) were very popular in the
first expert systems utilized for diagnosis [Gorry & Barnett 1968, de Dombal et
al. 1974]. However, two assumptions were made in order to keep the approach
practical: (i) all the hypothesis or diseases are mutually exclusive and exhaustive,
and (ii) all the pieces of evidence or manifestations are conditionally independent
from each other given a disease. These assumptions restricted the expressivity
of probabilistic reasoning for more realistic applications. In general, probabilistic
knowledge on propositions z1, xs,...,z, would require the definition of a joint
distribution function P(xq,x2,...,2,). To store this function requires a table

with 2" entries. The next section presents the Bayesian network mechanism that

CHAPTER 2. PROBABILISTIC REASONING 14

allows the representation of more realistic assumptions, i.e., dependencies and

independencies from which practical inference can be made.

2.2 Bayesian Networks

The main goal of Bayesian networks is to represent dependencies and independ-
encies employing a directed acyclic graph (DAG). First, this section presents the
set of axioms for the probabilistic relation: X is independent of Y given
7 where X,Y and Z can be single variables or sets of variables. Second, the
relation between probabilistic models and graphical representations of DAGs is
established. Finally, this section presents a formal description of the properties
of Bayesian networks.

First, an explanation of the notation followed in this thesis is given. Capital
letters, e.g., X, represent variables while lower case letters designate the values

that the variables may have, for example X =z and Y = .

Definition 2.2 Let U be a finite set of variables with discrete values. Let X,

Y, and Z be three disjoint subset of variables of U. X and Y are said to be

conditionally independent given Z if
Pz |y,z) = P(x | z) whenever P(y,z) >0 (2.12)
This independence will be denoted as 1(X,Z,Y). Thus,
I(X,Z2,Y)uff Pla |y,z) = Pz | 2) (2.13)

where x, y, and z are any assignment of values to the variables in the sets X, Y

and 7 respectively.

This definition holds in a numeric representation of the probability P. It

is interpreted as follows. Knowing the state of Z, the knowledge of Y does

CHAPTER 2. PROBABILISTIC REASONING 15

not change the belief already gained in X. Now, in order to characterize the
conditional independence relation as a logical condition, the following axioms are

required? [Pearl et al. 1990]:

Symmetry:
(X, 2,Y)= 1Y, Z,X) (2.14)
Decomposition:
(X, Z2,YUW)=1(X,2,Y) & I(X,Z,W) (2.15)
Weak union:
(X, Z,YUW)= I(X,ZUW,Y) (2.16)
Contraction:
(X, ZUY W) & I(X,Z,Y)= (X, Z,Y UW) (2.17)

Intersection (for P strictly positive):

(X, ZUW,Y) & [(X,ZUY,W) = [(X,Z,Y UW) (2.18)

These axioms allow the derivation of theorems that may not be obvious from the
numerical representation of probabilities. Now, the next step is to relate these
axioms with graphical representations.

A directed acyclic graph (DAG) D = (V, E) is characterized by a set of nodes
V and a set of edges F that connect certain pairs of nodes in V. Nodes in V
represent the random variables while the edges or arcs represent conditional de-
pendence relations between the nodes linked. A model M is said to be graphically
represented by D if there exists a direct correspondence between the elements in

the set of variables U of M and the set of vertices V of D such that the topology

?Normal logical operators are needed, e.g., = is the implication, and & is the conjunction.

CHAPTER 2. PROBABILISTIC REASONING 16

of D reflects the properties of M. The correspondence between I(X,7,Y) and a

DAG is made through a separability criterion called d separation defined next.

Definition 2.3 If X, Y, and Z are three disjoint subsets of nodes in a DAG D,
then 7 is said to d separate X from Y, denoted < X | Z | Y >p if along every
path between a node in X and a node in'Y there is a node W satisfying one of
the following two conditions: (i) W has converging arrows and none of W or its

descendants are in Z, or (ii) W does not have converging arrows and W is in 7.

For example, consider the DAG of Fig. 2.1. If X = {B} and Y = {C}, they
are d separated by Z = {A} but they are not by a Z = {A, E'}. In both cases,
there are two trajectories between B and (', namely through A and through D.
Consider the trajectory through A. It has no converging arrows so, according to
condition (ii), B and C are d separated since A € Z. Consider now the trajectory
through D. Since it has converging arrows, condition (i) is not satisfied if D’s
descendant £ is in Z. Thus, X and Y are d separated if Z = {A}, but they are
not if Z = {A, E}.

®)
Qf)
&)

Figure 2.1: A DAG for exemplifying d separation.

CHAPTER 2. PROBABILISTIC REASONING 17

The following definitions complete the formal description of Bayesian net-

works.

Definition 2.4 A DAG D is said to be an I map of a dependency model M
if every d separation condition displayed in D corresponds to a valid conditional

independence relationship in M, i.e., if for every three disjoint sets of nodes X,

Y, and Z, the following holds:

<X |Z|Y>p = I(X,Z,Y)u. (2.19)

A DAG is a minimal T map of M if none of its arrows can be deleted without

destroying its [mapness.

Definition 2.5 Given a probability distribution P on a set of variables V, a DAG
D = (V,E) is called o Bayesian network of P iff D is a minimal [map of P.

In other words, given a set of variables with a probabilistic model P, a
Bayesian network is a graphical representation which permits the representation
of the dependencies and independencies between the variables. The structure
of the network represents knowledge about the variables of the process. This
knowledge consists of two sets of probabilities: (i) conditional probabilities of
every node given all its parents, and (ii) prior probabilities of the root nodes.
Figure 2.2 presents an elementary Bayesian network and its relation with Bayes
rule (eq. 2.9). In this case, the hypothesis happens to be the root node, and the
evidence is represented by the leaf nodes but this is not a restriction in Bayesian
networks. In this case, prior probabilities P(H) are required in the roots of the
networks. The other nodes require an associated matrix of conditional probabil-
ities between each one of them and their parents (the upper extreme of the arcs).

Thus, the evidence nodes are observed, and the question is to infer the new value

CHAPTER 2. PROBABILISTIC REASONING 18

Hypothesis) P(H)

Ple | H)
(evidence

Figure 2.2: A simple Bayesian network.

of the probability of the hypothesis, i.e., P(H | ¢). Notice that the hypothesis
and evidence nodes can be any of the network. Different algorithms have been
developed to propagate these probabilities given new evidence.

Beyond the definitions, several theorems have been published in order to form-
alize the Bayesian networks (e.g. [Geiger & Pearl 1988], [Geiger et al. 1989]).
The following theorem, called Strong completeness [Geiger & Pearl 1988] includes
many of the previous theorems and legitimizes the use of DAGs as a language
for representing probabilistic dependencies. The complete proofs can be found in

the indicated reference.

Theorem 2.1 Strong completeness
For every DAG D, there exists a distribution P such that for every three

disjoint sets of variables X, Y, and Z the following holds:

<X|Z|Y>p iff I(X,2,Y)p (2.20)

Summarizing the formal definition of Bayesian networks. Definition 2.2 in-
troduces the notion of conditional independence and establishes the notation
I(X,Z7,Y). In graphical representations, definition 2.3 establishes a condition
that holds between nodes (or subsets of nodes) in a directed graph. Next, defini-
tion 2.4 relates the notion of conditional independence (X, Z,Y) in a model M

with the d separation property of directed graphs. Finally, definition 2.5 explains

CHAPTER 2. PROBABILISTIC REASONING 19

what a Bayesian network is. Finally, the theorem 2.1 offers a mathematical proof
of the properties of Bayesian networks as reasoning methodology.

It is important now to distinguish three kinds of Bayesian networks:

Tree: Thisis a DAG where any node can have at most one parent. Figure 2.3(a)

shows a typical network considered as a tree.

Singly connected (polytree): This is a DAG which contains one and only one
path between any pair of nodes in the network. An example is shown in

Fig. 2.3(b).

Multiply connected: This is a DAG without the restrictions of trees or poly-
trees. Figure 2.3(c) is multiply connected since there are two paths between

two nodes.

d?’% 8@% Qip\o

(@) (b) (©

Figure 2.3: Examples of Bayesian networks. (a) is a tree, (b) is singly connected
and (c) is multiply connected.

The multiply connected network is the most general and expressive when
modelling specific processes. However, propagation (and therefore, reasoning in
multiply connected networks) is known to be NP hard [Cooper 1990]. Trees and
singly connected networks are less expressive but the probability propagation is
more efficient.

Both trees and multiply connected Bayesian networks are utilized in this work

and their propagation mechanism is outlined below. Trees are utilized in the

CHAPTER 2. PROBABILISTIC REASONING 20

validation while multiply connected are utilized in the isolation of faults. The

following section describes the propagation in trees [Pearl 1988].

2.3 Propagation in Trees

Consider the node X from Fig. 2.4 which can take n discrete values z1, x5, ..., x,.
Suppose that some nodes have been instantiated, i.e., their values have been
observed. Let e = e} Ued denote the evidence, where ey stands for the evidence
contained in the subtree rooted at X, and e} represents the evidence from the rest
of the network. In Fig. 2.4, the subtree rooted at X is a portion of the network
containing only the nodes X, D and F. The rest of the network corresponds to

the structure formed by nodes A, B, and C.

|

) ©
OO

Figure 2.4: A DAG typical example of a tree.

Thus, the problem is to obtain P(z | €), i.e.,

BEL(z) = P(z|e)= Pz]ex,ek).
Using Bayes rule gives
Pley, ek | z)P(x)
Plex,ex)

since ey and e} are independent given x, this becomes

CHAPTER 2. PROBABILISTIC REASONING 21

Pley | z)P(ek | 2)P(x)
Plex,ex)
by Bayes rule again and the definition of conditional probability,
Pies | 0)Ple | h)P(eh)
Plex,e})
= aPlex |2)P(x | e}) (2.21)

where BFEL(x) represents the posterior probability of X = x given all the evid-
ence provided, and a = [P(ey | e%)]™' is a normalizing constant to obtain
>, BEL(x) =1.

Notice that this formula corresponds to a vector, with one element for each

possible value of X. Now, let the following functions be defined:
Ax) = Pley | x) (2.22)

and

m(x) = Pz | e%) (2.23)

Vector A(X) represents the diagnostic support that node X receives from its
descendants, while 7 (X') represents the causal support attributed by all non des-
cendants of X, and received through its parent. Then, the updated belief in

X = x can be obtained by fusing these two supports and equation 2.21 becomes:
BEL(x) = aA(x)n(x) (2.24)

Since A(x) represents the support that X receives from all its descendants, it
is necessary to fuse the support from each one of its descendants. For example
in Fig. 2.4, A(x) corresponds to the evidence provided by nodes D and E. Thus,

equation 2.22 can be rewritten as:

Aw) = Plex | z)
= Plep, e | @)

— P(ep | 2)P(ep | @) (2.25)

CHAPTER 2. PROBABILISTIC REASONING 22

since e, and ez are conditionally independent given x. Furthermore, renaming

these terms as:
Ap(z) = P(e | 2), Ap(z) = Pleg | z) (2.26)
then, equation 2.25 can be expressed as:
Mz) = Ap(2)\p(z) (2.27)

Similarly, the causal support that X receives from its parent A (eq. 2.23) can

be expressed as:

m(x) = Pz | ex)
= Plz|a)P(a]ex)
= ZP(:L' | a)mx(a) (2.28)

where P(x | a) is an element of the matrix obtained as previous knowledge,
and stored in the arc from A to X. 7x(a) = P(a | e}) is calculated in node A
and sent as causal support to X. Thus, substituting equations 2.27 and 2.28 in

equation 2.24, the following is obtained:
BEL(x) = alp(x)Ag(x) ZP(:L‘ | a)7x(a) (2.29)

Equation 2.29 summarizes Pearl’s algorithm for probability propagation. It
is best known as the message passing algorithm since Ap(z), Ag(x) and 7wx(a)
can be seen as messages that other nodes send to node X in order to update its
probability vector. Thus, this posterior probability can be calculated from the
previous knowledge P(x | a), the messages Ap(x), Ag(x) from its children and a
message Ty (a) from its parent A. Figure 2.5 shows a portion of Fig. 2.4 and the
message passing for calculating node X posterior probability.

Equation 2.29 can be generalized for singly connected networks as follows.

Consider a typical node X having m children, Y7,Y5,...,Y,,, and n parents,

CHAPTER 2. PROBABILISTIC REASONING 23

@é‘%@@@
O

Figure 2.5: A portion of the tree of Fig. 2.4 showing the message passing al-
gorithm.

Ui,Us,...,U,. The posterior probability of X given the evidence is:
BEL(x) = aA(x)n(x) (2.30)
where

Aw) = T, (o), (231)
m(x) = Z Pz | ul,uz,...,un)Hﬂ'X(ui) (2.32)

and « is a normalizing constant to obtain), BEL(x) = 1. The term Ay,(x)
represents the A message that the 7/ sends to node X, and 7y (u;) represents the
7 message sent by the ¢'* parent.

The detailed algorithm can be consulted in the book by Pearl (1988), and is
easily readable in the book by Neapolitan (1990). These textbooks also present
the algorithm for singly connected networks. In this later case, the main difference
is that any node can have more than one parent. But, since there is only one path
between any two nodes, the model and the propagation algorithm are similar, as

noted in equation 2.32.

2.4 Probability Propagation in Trees of Cliques

This section presents an approach for probability propagation in multiply con-

nected networks called propagation in trees of cliques [Lauritzen & Spiegelhalter

CHAPTER 2. PROBABILISTIC REASONING 24

1988]. Other algorithms for propagation in networks are given by Cooper (1984),
and by Horvitz et al. (1989). The propagation algorithm presented in this section
is used in Chapter 4. A reader already familiar with this propagation algorithm
may skip this section.

The basis of this method is the following formula®:

P(V) = K[(W) (2.33)

i=1

where V' designates a finite set of propositional variables, and P represents a joint
probability distribution on V. K represents a constant and let {W; such that
1 <7 < p} be a collection of subsets of V. Also, ¥ is a function which assigns a
unique real number to every combination of values of the propositional variables
in W;. Then ({W; such that 1 <7 < m},) is called a potential representation
of P, and W; are called cliques. A clique is defined as a subset of nodes in which
every pair of nodes of the clique is connected. Also, the subset must be maximal,
i.e., there is no other complete set which is a subset.

The algorithm developed by Lauritzen & Spiegelhalter (1988) indicates: (i)
how to obtain the collection W; of subsets of V, and (ii) how to compute the
functions ¢ (W;). In other words, this method modifies the original multiply
connected network in order to obtain a tree of cliques, from which probability
propagation can be made utilizing the functions (W;). This propagation is
similar to Pearl’s algorithm for trees described in section 2.3. The following

sections describe these two parts of the algorithm.

2.4.1 Tree of cliques

The cliques W; of equation 2.33 must follow a series of conditions. The procedure

of Fig. 2.6 obtains the set of cliques with the required properties.

3The material of this section was taken from the book by Neapolitan (1990).

CHAPTER 2. PROBABILISTIC REASONING 25

1. Delete the direction of the arcs, i.e., the DAG is
converted to an undirected graph.

2. Moralize the graph.
3. Triangulate the graph.

4. Order the nodes according to a criterion called the
maximum cardinality search.

5. Determine the cliques of the triangulated graph.

6. Order the cliques according to their highest labelled
vertices to obtain an ordering of the cliques with the
running intersection property.

Figure 2.6: Procedure to convert a network in a tree of cliques.

These steps are better explained with the aid of an example taken from the

book by Neapolitan (1990). Figure 2.7 presents the original Bayesian network.

Figure 2.7: Original multiply connected network.

Notice that it is multiply connected since there is more than one path between
node £ and H. This network requires, as all the Bayesian networks, the prior
probability of the roots and the conditional probability matrices of the other
nodes given their parents. The first step in the procedure of Fig. 2.6 is trivial,
i.e., only delete the direction of the arcs. The second step, the moralization, is

obtained when the pairs of parents of all nodes (if they exist) are married. This is

CHAPTER 2. PROBABILISTIC REASONING 26

done with the addition of an arc between these parent nodes. Figure 2.8 presents
the moral DAG which is obtained by adding the arc between nodes B and F

(parents of ('), and the arc between C' and G (parents of H).

Figure 2.8: Undirected moralized graph.

Next, the triangulation step takes place. An undirected graph is called trian-
gulated if every simple cycle of length strictly greater that 3 possesses a chord. In
the original network, after the moralization, the nodes [F, I/, C, G] form a simple
cycle of size 4. Thus, in order to triangularize the undirected graph, the arc

between F and G is added. Figure 2.9 shows the triangularized graph. This

Figure 2.9: Triangulated and ordered undirected graph.

figure also show the ordering step indicated in the procedure of Fig. 2.6 which
is now explained. An order of the nodes, according to a criterion known as the

maximum cardinality search, is obtained as follows. First, 1 is assigned to an

CHAPTER 2. PROBABILISTIC REASONING 27

arbitrary node. To number the next node, select a node that is adjacent to the
largest numbered node, breaking ties arbitrary. In Fig. 2.9, number 1 was as-
signed to node A. Number 2 must be assigned to node B since it is the only
adjacent node to A (two nodes are adjacent if there is an arc between them).
Now, number 3 has to be assigned to one of the adjacent nodes to B, i.e., C' or
E. Node E was chosen arbitrarily. Number 4 was assigned to node C' (could be
F), and so on until all the nodes are numbered. The next step, determining the
cliques of the triangulated graph, is now described. A clique is a subset of nodes
which is complete, i.e., every pair of nodes of the clique is adjacent. Also, the
subset must be maximal, i.e., there is no other complete set which is a subset.
In the triangulated graph of Fig. 2.9, the following cliques are found: {A, B},
{B,E,C}, {E,G,F}, {C,D}, {E,C,G}, and {C,G, H}. Notice that the sub-
set {C, F,G, H} is a complete subset but it is not maximal since {E£,C, G} is a
complete subset.
Finally, the ordering of the cliquesis required. Anordering [Clg, Clgs, ..., Clg,)

of the cliques has the running intersection property if for every j > 1 there exists
an ¢ < j such that

C;N(CLUC,U...UC;_y) C Ch (2.34)

In the example, an ordering of the cliques is the following: Clg¢; = {A,C},
Clg? = {CvaF}v Clq3 = {DvaF}v CZQ4 = {BvaE}v CZQ5 = {FvaH}v and

Clge = {F,G}. This ordering has the running intersection property. For example:

Clgs N (Clgr U Clga U Clgs cupClqy) ={F, F} C Clgs

Before defining the structure of the tree of cliques, two parameters need to be

CHAPTER 2. PROBABILISTIC REASONING 28

defined.

S;=Clg; N (Clgy U ClgaU ... U Clgi—q)
R, = Clg; — 5.

These parameters will be used in the propagation of probabilities and in the
definition of the structure. As an example, Sy = {E, F,G} N {A,B,C,E,G} =
{FE,G} and Ry = {FE, F.G} — Sy = {F'}.

Once the set of ordered cliques has been obtained, the next step is the defini-
tion of the structure of the tree of cliques. The first clique is the root of the tree.

Now, for the rest of the nodes, i.e., for each ¢ such that 2 < < p, there exists at

least one j < ¢ such that
Si=Clg; N (Clgr UClgaU ... U Clgi—y) C Clg,. (2.36)

Then Clg; is a parent of C'lg;. In case of more than one possible parent, the choice

is arbitrary. Figure 2.10 shows the final modification of the Bayesian network of

Figure 2.10: Resultant tree of cliques.

Fig. 2.7 into the tree of cliques. The next section briefly describes the algorithm

for probability propagation in this tree of cliques.

CHAPTER 2. PROBABILISTIC REASONING 29

2.4.2 Probability propagation

The cliques obtained in the previous section are the W; subsets indicated in

equation 2.33. The functions ¢ are defined by the following theorem.

Theorem 2.2 Let GG be the DAG representing a Bayesian network, G, the moral
graph relative to G, G, a graph formed by triangulating G, as discussed in the
previous section. Let {Clq; such that 1 < ¢ < p} be the cliques of G,. For each

node v € V, assign a unique clique Clg; such that
v U parents(v) C Clg,. (2.37)

This is always possible, since parents of the original graph are married and there-
fore {v} U parents(v) is a complete set in G, and thus in G.,. If a complete set
is a subset of more than one clique, choose one of them arbitrarily but keeping
each node v assigned to only one clique. Denoting as f(v) the clique assigned to
v, and for1 <1 <p,

W(Clg)=][] Plv|parents(v)). (2.38)

flv)=Clg;

where f(v) = Clg; represents only the nodes v that are represented in the clique

Clg;. If there is no v represented in the clique, it is assigned the value 1. Then
({Clg; such that 1 <i < p},) (2.39)
is a potential representation of P.

The complete proof can be found in the text by Neapolitan (1990). The function
parents(v) represents the set of nodes which are parents of node v in the original
network.

For example, assigning A and B to the clique {A, B}, C to the clique { B, £, C},
D to the clique {C, D}, E, F and G to the clique {E, G, F'}, and H to the clique

CHAPTER 2. PROBABILISTIC REASONING 30

{C,G,H}:

(A, B) = P(B|A)P(A)
(B, E,C) = P(C|B,FE)

(D) = P(D|C)
Y(E,GF) = P(E|F)P(G]F)P(F)
O»(C,G.H) = P(H|C,G)

(B,C,G) = L (2.40)

When the new tree is defined, it is ready to accept the instantiation of variables
as evidence, and to compute the posterior probability of all the nodes through
probability propagation in the tree of cliques. This is done in a similar way to
the message passing algorithm for trees and polytrees described in section 2.2.

The A message that a node sends to its parents is calculated with the formula:

Acig:(5) = Z#}(Clqz’) (2.41)

where the sum is made over all the possible values of the variables in the set R;
The m message that the nodes send to their children is computed as:
o, (S) = >, P'(Cly) (2.42)
Clg;—S;
where the sum is made over all the possible values of the variables in the set
Clg; — S;. The o function is updated when a clique Clg; receives a A message

from its child Clg; as:
P(Clg;) = MSi)p(Clg;) (2.43)

For the root clique, the posterior probability once all the A messages have been

received from its children is given by

P/(Clq’/’oot) = 77Z)7°0025(6YZQ7°0015) (244)

CHAPTER 2. PROBABILISTIC REASONING 31

Finally, the posterior probability of a single variable, when the probabilities of all
the cliques have been determined, is calculated with the formula:
P'(v)= > P(Clg). (2.45)
weClg;
w#Y

The complete algorithm can be consulted in Neapolitan (1990).

2.5 Probabilistic Causal Method

This thesis also uses a special kind of network that was first studied by Peng &
Reggia (1987), and then further developed by Pearl (1988) and by Neapolitan
(1990). It consists of a two level DAG where the roots are considered the causes
of the manifestations of the leaf nodes. Figure 2.11 shows a network known as

the probabilistic causal model.

=

Figure 2.11: A DAG representing a probabilistic causal model.

In this network, D = {d;,dy,d3} represents the set of diseases, and M =
{my,mq, ms, my} represents the set of manifestations* respectively. Notice that
there are two types of relationships between the nodes in Fig. 2.11. Figure 2.12(a)
shows a common relationship where one disease has many manifestations. However,
Fig. 2.12(b) shows a relation where one manifestation can be caused by several
diseases. For example, the high fever event in medicine is caused by many dif-

ferent diseases, e.g., influenza, tuberculosis, and kidney infection. Any of these

4the names are traditionally taken from the medical domain.

CHAPTER 2. PROBABILISTIC REASONING 32

@@
@@)

(b)

Figure 2.12: Causal relation between hypotheses or causes, and manifestations.

diseases is likely to cause high fever, but the presence of two of these diseases is
only more likely to cause fever. This relation between a manifestation and several
causes 1s known as the noisy orsince it remains the or gate utilized in digital elec-
tronics. In the probabilistic case, the noisy or relation is used when any member
of a set of diseases is likely to cause a specific event, but this likelihood does not
significantly change when a patient suffers several of these diseases.

One of the problems in this kind of networks is the initialization of the network
with the prior and conditional probabilities. Normally, the conditional probability
for describing the arcs of the network in Fig. 2.12(b) contains 2" independent
parameters. It would be very difficult for a physician to estimate the probability
of high fever given influenza, no tuberculosis and infection, or the probability of no
influenza nor tuberculosis but with infection, and so on with the 8 combinations.
A method for computing the conditional probability matrix of a disease given a
set of manifestations is now explained. This method is based on the following

two assumptions:

Accountability. An event m; is false, P(m;) = 0, if all conditions listed as

causes of m; are false.

Exception independence. If an event m; is a consequence of two conditions d,
and dy, then the inhibition of the occurrence of m; under d; is independent

of the mechanisms of inhibition of m; under ds.

CHAPTER 2. PROBABILISTIC REASONING 33

Consider the example mentioned above. Influenza alone is a cause of high
fever unless an inhibitor is present. If tuberculosis alone also causes fever except
when another inhibitor is present, then the exception independence mechanism
assumes that both these inhibitors are independent. Then, let ¢;; denote the
probability that a manifestation m; is inhibited when only disease d; is present,

i.e., gij = P(—m; | d; alone). Then, by the exception independence assumption:

P(~m; | di,ds,...,dy) = P(=m; | d\)P(~m; | dy) ... P(~m; | dy)

= H%’j

t:d; =true
In general, let d be the set of assignments of the set of diseases, and let T; =
{1 :d; = true}, i.e., the set of all diseases actually present. Then, the conditional

probability matrix can be calculated with the following formula:

Plm; | dy = | et S (2.46)
1 —Tlier, i ifm;

For example, in the network of Fig. 2.11, the following are the formulas of equa-

tion 2.46:

P(—my | +di,+d2) = qriga
P(=my | +di,~dy) = ¢n
P(=my | ~dy,+dy) = ¢n

P(_'ml | _‘dl,_'dg) = 1.

The quantities for m; are 1 minus the conditional for —m;.
These equations will be utilized to obtain the parameters needed in the fault

isolation phase described in Chapter 4.

CHAPTER 2. PROBABILISTIC REASONING 34

2.6 Learning Algorithm

The previous section described Bayesian networks as a knowledge representation
and reasoning scheme. This knowledge was in principle, assumed to be provided
by an expert in the application domain. However, sometimes it can be difficult
for a human to recognize all the dependencies and independencies between the
variables in a process. For example, this thesis tests the developed model by
applying it to the validation of temperature sensors in a gas turbine. In this
problem, even for an expert in gas turbines of power plants, it may be difficult
to establish the dependencies between all the temperature sensors.

In this case, the structure of the network, and the previous knowledge have
to be discovered from the data. The techniques for making this discovery are
known in the literature as machine learning. Specifically for Bayesian networks,
the learning process can be divided into qualitative and quantitative learning. The
first corresponds to the discovery of the structure of the Bayesian network. That
is, once that all the variables (nodes) have been specified, the deduction of all
the arcs needs to be obtained. The second corresponds to parametric discovery.
That is, the prior and conditional probabilities have to be calculated from the
data and based on the structure.

This section presents a mechanism that, based on a complete set of data,
enables a tree and the prior and conditional probabilities to be obtained. This
technique was first developed by Chow & Liu (1968) and then, extended by the
machine learning and uncertainty communities [Fung & Crawford 1990], [Spiegel-
halter & Lauritzen 1990], [Dawid & Lauritzen 1993], [Cooper & Herskovitz 1992].

Given a probability distribution P from a set of n variablesx = { X7, Xy, ..., X, },
the idea is to design a tree dependent probability distribution P* that best ap-

proximates P. So, in order to evaluate a possible P’ the following formula is

CHAPTER 2. PROBABILISTIC REASONING 35

utilized:

Pi(x) = [T PX | Xy) (247)

=1

where Xj;) is the variable designated as the parent of X; in the proposed tree.
Thus, in order to evaluate how well P! represents P, a distance criterion between
the two distributions is utilized. Chow & Liu (1968) proposed the Kullback &

Leibler (1951) cross entropy measure defined as:

Px)
Pix)

This measure reaches 0 when P*(x) coincides with P(x).

distance(P, P') = ZP log (2.48)

Two tasks are required to find the optimum tree. The first is to find a structure
and second, to find the conditional probabilities P*(X; | X;) such that P! becomes
the best approximation of P. The second task is carried out with the following

formula:

PH(Xi | X)) = P(Xi | X)) (2.49)

where P}, is called the projection of P on the tree t.

The problem now is to find an optimal structure. Chow & Liu (1968) used
a technique called a mazimum weight spanning tree (MWST) which chooses the
best set of branches of the tree. This algorithm measures the weight of the
branches between all pairs of variables (nodes) utilizing the mutual information
measure defined as:

P(xiv l’]‘)

10X X = 3 Plaszy)log eSS

X, X

(2.50)

Chow & Liu (1968) showed that maximising the weights of the branches, min-
imizes the distance between both models. Figure 2.13 describes the complete
algorithm. It represents a minimization problem that can be solved in O(n?)

steps. A complete description of the algorithm together with an application can

CHAPTER 2. PROBABILISTIC REASONING 36

MWST learning algorithm.
Input: Set of r samples of the n variables.

Output: The optimal tree Bayesian network.

1. Compute the joint distributions P(X;, X;) for all
variable pairs.

2. Compute all n(n — 1)/2 branch weights using the
distributions of step 1, and order them by mag-
nitude.

3. Assign the largest two branches to the tree to be
constructed.

4. Examine the next largest branch, and add it to the
tree unless it forms a loop, in which case discard it
and examine the next largest branch.

5. Repeat step 4 until n — 1 branches have been selec-
ted, and a spanning tree has been constructed.

6. Compute PL(x) with eq. 2.49 by selecting an arbit-
rary root node. That is, once that the structure has
been decided, calculate the prior and conditional
probabilities.

Figure 2.13: Chow and Liu mazimum weight spanning tree algorithm [Pearl 1988].

CHAPTER 2. PROBABILISTIC REASONING 37

be found in the paper by Sucar et al. (1995). Chapter 5 describes the tree ob-
tained with this algorithm from a data set of the temperature sensors of a gas
turbine in a power plant.

General techniques for learning Bayesian networks, i.e., including multiply
connected networks, are being developed by several authors including Heckerman
et al. (1994), Heckerman & Geiger (1995), and Friedman & Goldszmidt (1996).
An extensive survey of recent work in this area can be found in the paper by

Buntine (1994).

2.7 Summary

This chapter presented the background knowledge required to follow the tech-
niques developed in this thesis. Section 2.1 presented the bases of probability
theory until the deduction of Bayes rule (eq. 2.9). The Bayes rule, and its utiliza-
tion in the first expert systems, provided the motivation for the development of a
Bayesian networks as described in section 2.2. This section presented the axioms
and theorems that allow the utilization of DAGs as a language for knowledge
representation and inference. Section 2.2 concluded with a brief description of
the propagation algorithms for trees and singly connected networks. Section 2.4
described the algorithm for probability propagation in multiply connected net-
works.

The propagation method for trees will be utilized in Chapter 3 where the
sensor validation model will be developed, and the more general propagation al-
gorithm will be utilized in Chapter 4 which describes the development of the any
time sensor validation algorithm. Section 2.5 described Peng & Reggia (1987)
technique for the computation of conditional probabilities in causal models util-
ized in diagnosis. This technique will also be used in Chapter 4.

Section 2.6 described an algorithm that, based on data from a specific process,

CHAPTER 2. PROBABILISTIC REASONING 38

is able to develop a tree to approximate the dependencies between the variables
in the process.

The next chapter presents the utilization of the techniques presented in this
chapter, for the development of a theory for sensor validation. Chapter 4 extends
this algorithm for real time environments, by utilizing the causal model presented

above.

Chapter 3

PROBABILISTIC SENSOR
VALIDATION

The previous chapters presented the motivation for this work, and introduced
probabilistic reasoning. This chapter develops the sensor validation model and
its associated theory. Section 3.1 develops the algorithm with the aid of an illus-
trative example taken from the validation of sensors in a power plant. Section 3.2
develops the supporting theory for the sensor validation model. Next, section 3.3
concludes and discusses the application of the developed algorithm in the example

considered throughout the chapter. Finally, section 3.4 summarizes the chapter.

3.1 Probabilistic Validation

In general, a sensor is considered to be faulty if it deviates from its expected
behaviour. Hence, all the approaches for sensor validation work by first estimating
a sensor’s expected behaviour and reporting a failure if the actual behaviour is
different. This thesis develops a model in which the relationships between sensors
are represented by a Bayesian network. This network is utilized to predict the

behaviour of the sensors and perform sensor validation as described with the aid

39

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 40

of the following simple example.

combustion
chamber generator

- t P m

9

Figure 3.1: Simplified diagram of a gas turbine.

Consider the problem of validating sensors in a gas turbine of a power plant.
Figure 3.1 shows a very simple diagram of a turbine. It consists fundamentally
of four main parts: the compressor, the combustion chamber, the turbine itself
and the generator. The compressor feeds air to the combustion chamber, where
the gas is also fed. Here, the combustion produces high pressure gases at high
temperature. The expansion of these gases in the turbine produces the turbine
rotation with a torque that is transmitted to the generator in order to produce
electric power as output. The air is regulated by means of the inlet guide vanes
(IGV) of the compressor, and a control valve does the same for the gas fuel in
the combustion chamber. The temperature at the blade path, which is the most
critical variable, is taken along the circumference of the turbine. Other important
variables, measured directly through sensors are the pressure in the combustion
chamber and the Megawatts generated by the turbine.

A Bayesian network can be used to relate the sensors as shown in Fig. 3.2
The node m represents the reading of the Megawatts generated. The temperature
is represented by a node ¢ and the pressure by p. Finally, ¢ and a represent the fuel
and air supplied to the combustion chamber respectively. The model in Fig. 3.2

represents the dependency of the temperature on the gas and air supplied. The

!This is a simplified model of the gas turbine. The directions of the arcs do not imply
causality.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 41

)
OO

Figure 3.2: A reduced Bayesian network of a gas turbine.

generation depends on the temperature and pressure in the combustion chamber.
The validation process starts by assuming that the sensors, one by one, are sus-
pect. By probabilistic propagation, the system decides if the reading of a sensor
is correct based on the values of the most related variables. For example, suppose
that the sensors a and ¢ indicate a normal supply of gas and air to produce good
combustion. Also suppose that the instruments show that the power generated
increases but the temperature sensor indicates the ambient temperature. This
extreme situation shows how other signals can be used to infer if a sensor is work-
ing properly. So, to see if the sensor t is correct, the other sensor readings can
be used to predict ¢. This is done by instantiating the other nodes in the model
and obtaining the posterior probability distribution of the value of ¢. From this
probability distribution, an estimation of ¢ is calculated. Thus, if the predicted
value is different from the observed value, then a fault is detected. The precise
detection criterion will be explained below. This process can be repeated for all
the sensors.

Now, consider the same example but suppose the sensor ¢ is damaged. If ¢ is
used to validate m, then the process will also indicate a fault in m even when it
is fine. The same happens with ¢ and a since they also utilize ¢ for calculating
its predicted value. Finally, the validation of p may indicate that it is working

properly. So, there is some confusion and an interesting problem:

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 42

which are the real and which are the apparent faults?

This question is answered by using a property based on what is known as a
Markov blanket of a node. The rest of this section explains and uses this property
to develop the sensor validation algorithm. The next section will develop the
property more formally.

A Markov blanket is defined as the set of variables that make a variable in-
dependent from the others. In a Bayesian network, the following three sets of
neighbours are sufficient to form a Markov blanket of a node: the set of direct
predecessors, direct successors, and the direct predecessors of the direct successors
(i.e. parents, children, and spouses). The set of variables that constitutes the
Markov blanket of a variable can be seen as a protection of this variable against
changes of variables outside the blanket. This means that, in order to analyze a
variable, only the variables in its blanket are needed. For example, the Markov
blankets of the model shown in Fig. 3.2 are shown in Fig. 3.3. In (a), the equi-
valent model of m is shown, where the absence of ¢ and @ indicates that these
variables are out of m’s Markov blanket. In (b), the Markov blanket of ¢ indicates

that changes in p do not affect £. The same goes for p, ¢ and « in (c), (d) and

(e).

()

) @
(a) (b) (c) (d) (e)

Figure 3.3: Equivalent models (Markov blankets) for the variables in the reduced
Bayesian network model of a gas turbine. (a) for m, (b) for ¢, (¢) for p, (d) for ¢
and (e) for a.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 43

Returning to the above question, notice that when ¢ fails, the list of apparently
faulty nodes is {m,t, ¢, a} which corresponds to the Markov blanket of ¢ plus the
variable itself. This is called the extended Markov blanket (EMB) of a variable.
Table 3.1 shows the EMBs for each variable. This observation can be generalized

to the following property (proved in section 3.2):

If a sensor is faulty, then the above validation process will report a

fault in all the sensors in its extended Markov blanket.

Table 3.1: Extended Markov blankets for the simple turbine model.

process variable Extended Markov Blanket

m {m,t,p}
t {m7t7g7 a}
p {m, p}

g {t, 9}

a {t,a}

This property can be used to distinguish between real and apparent faults as
follows. Given a set S of apparently faulty sensors obtained from the above valid-

ation process, there are four cases that can arise (proofs are given in section 3.2):

Single distinguishable fault: if S is equal to the EMB of a variable X, and
there is no other EMB which is a subset of S, then there is a single real

fault in X. For example, if S = {¢,a}, this corresponds exclusively to the
EMB(a).

Indistinguishable double fault: if a variable X’s EMB is a superset of an-
other variable Y’s EMB, then this mechanism does not distinguish between
a single failure in X, and a double failure in X and Y. In fact, this situ-
ation holds between the leaves and their parents in a Bayesian tree. For

example, consider the entries of Table 3.1. The EM B(m) = {m,t,p} while

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 44

EMB(p) = {m,p}, i.e., EMB(p) C EMB(m). If S = {m,t,p}, this mech-
anism can not distinguish between a failure in m and a double failure in m

and p since EMB(m) = FEMB(m)U EMB(p).

Multiple distinguishable faults: multiplefailures can be correctly distinguished
if there is a unique combination of the resultant union of KM Bs. That is,

the union of the EMBs does not include any other sensor’s EMBs.

Multiple indistinguishable faults: if S does not correspond to any of the situ-
ations mentioned before, then it signifies that there are multiple indistin-
guishable faults among the sensors. The indistinguishable double fault case
given earlier is a special case of this situation but is listed as a separate case

since it can be common.

These considerations lead to the sensor validation algorithm given in Fig. 3.4.

Step 4 of the algorithm, which decides if a value differs from its predicted
value (represented by the posterior distribution) requires some further explana-
tion. The problem is to map the observed value and the distribution to a binary
value: {correct, faulty}. For example, Fig. 3.5(a) shows a posterior probability
distribution, and Fig. 3.5(b) shows a wider distribution. In both cases, the ob-
served value is shown by an arrow. Intuitively, the first case can be mapped as
correct while the second can be taken as erroneous.

In general, this decision can be made in a number of ways including the

following.

1. Calculate the distance of the real value from the average or mean of the
distribution, and map it to faulty if it is beyond a specified distance and to

correct if it is less than a specified distance.

2. Assume that the sensor is working properly and establish a confidence level

at which this hypothesis can be rejected, in which case it can be considered

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION

. Obtain the model (i.e., the Bayesian network) of the application
process.

. Make a list of the variables to be validated (usually all) and build
a table of EMBs.

. Take each one of the variables to be checked as the hypothesis,
instantiate the variables that form the Markov blanket of the hy-
pothesis, and propagate the probabilities to obtain the posterior
probability distribution of the variable given the evidence.

. Compare the predicted value (the posterior probability) with the
current value of the variable and decide if an error exists.

. Repeat steps 3 and 4 until all the variables in the list have been
examined and the set of sensors with apparent faults (.5) is ob-
tained.

. Compare the set of apparently faulty sensors obtained in step 5,
with the table of the EMB for each variable:

(a) If S = ¢ there are no faults.

(b) If S is equal to the EMB of a variable X, and there is no
other EMB which is a subset of 5, then there is a single real
fault in X.

(c¢) If S is equal to the EMB of a variable X, and there are
one or more EMBs which are subsets of S, then there is a
real fault in X, and possibly, real faults in the sensors whose

EMBs are subsets of S.

(d) If S is equal to the union of several EMBs and the combina-
tion is unique, there are multiple distinguishable real faults
in all the sensors whose EMB are in S.

(e) If none of the above cases is satisfied, then there are multiple
faults but they can not be distinguished. All the sensors
whose EMBs are subsets of S could have a real fault.

Figure 3.4: Basic sensor validation algorithm.

45

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 46

Figure 3.5: Description of some possible results. The arrows indicate the interval
of the real value of a sensor.

faulty.

The first criterion can be implemented by estimating the mean p and standard
deviation o of the posterior probability of each sensor, i.e., the distribution that
results after the propagation. Then, a sensor can be assumed to be correct if
it is in the range u 4+ no, where n = 1,2,3 means that 68%, 95% or virtually
all the cases are included respectively. This criterion allows one to work with
wider distributions where the standard deviation is high and the real value is far
from the mean u value as shown in Fig. 3.5(b). However, this technique can have
problems when the highest probability is close to one, i.e., the standard deviation
is close to zero. In such situations, the real value must coincide with that interval.

The second criterion assumes as a null hypothesis that the sensor is working
properly. The probability of obtaining the observed value given this null hypo-
thesis is then calculated. If this value, known as the p wvalue [Cohen 1995], is
less than a specified level, then the hypothesis is rejected and the sensor con-
sidered faulty. Both criteria were evaluated experimentally and the results are
given in Chapter 5. Here, it is worth mentioning that using the p value with a

0.01 rejection level, works well.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 47

3.2 A Theory of the Sensor Validation Model

This section develops the theory that is the basis of the sensor validation al-
gorithm given in Fig. 3.4.

The probabilistic model for sensor validation consists of a Bayesian network as
defined by Pearl (1988) and described in Chapter 2. That is, given a probability
distribution P on a set of variables V., a DAG D is a Bayesian network if (¢
represents the dependency model M for a probability distribution P. For this
representation, it is assumed that the model M represents strong dependencies

between the sensors and from which the following assumptions can be made:
1. Observability: all the variables (sensors) can be measured directly 2.

2. Fault detection: if there is an error in sensor X it can always be detected.

This is a real fault denoted by Fr(X).

3. Fault propagation: if a sensor Y has a real fault Fr(Y'), and Y € M B(X),

a fault in X will be detected. This is called an apparent fault.

The previous section described the importance of a Markov blanket for the sensor
validation algorithm. A theory is now developed by first defining a Markov
blanket formally, and then presenting theorems that corresponds to steps 6(b)
to 6(e) of the algorithm given in Fig. 3.4.

A Markov blanket for any node X in a Bayesian network is a subset of V
which makes it independent from the other variables. More formally, the following

defines a Markov blanket of a variable.

Definition 3.1 A Markov blanket M B(X) of any variable X € V is a subset
S CV where X ¢ S for which

I(X,5,V—8—X).

ZA one to one correspondence between nodes, variables, and sensors is considered.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 48

For example, in Fig. 2.1 M B(B) can be the set {A,C, D} since it satisfies
I{B},{A,C,D},{E}). Imagine now an additional node in Fig. 2.1 which is a
parent of A, say K. In this case, the set {A,C,D,K} would also be considered a
valid M B(B). The following corollary [Pearl 1988] defines a Markov blanket that

can be used in Bayesian networks.

Corollary 3.1 In any Bayesian network, the union of the following three types
of neighbours is sufficient for forming a Markov blanket of a node X : the direct
parents, the direct successors of X, and all direct parents of X ’s direct successors

(i.e., spouses).

This follows from the axioms of conditional independence, the definition of d
separation, and the Strong completeness theorem [Geiger & Pearl 1988] presented
in Chapter 2. Although there may be other Markov blankets, only this type of
blanket is considered, and assumed in the theory below.

The extended Markov blanket EM B(X) is defined as the union between the
Markov blanket of a variable and the variable, i.e., EMB(X) = XU MB(X).

If a sensor (variable) X has a real fault and/or apparent fault then it is called
a potential fault Fp(X). The fault detection mechanism can only tell if a sensor
has a potential fault, but (without considering other sensors) it can not tell if
the fault is real or apparent. So the central problem is to develop a theory for
distinguishing real and apparent faults, considering that one or more sensors can
fail at the same time.

The following two lemmas are needed in the proof of the main theorems. The
proofs will use the notation PA(X) for the parents of X, SU(X) for the successors
of X, and SP(X) for the spouses of X.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 49

Lemma 3.1 (symmetry)

Let X be a node in a Bayesian network G = (V, E) with a Markov blanket®
MB(X), X e MB(Y)) iff Y; € MB(X), VY; € V. That is, X is in the Markov
blanket of all the variables that are in M B(X), and it is only in these Markov

blankets.

Proof:

First, the proof that if Y € MB(X) then X € MB(Y).

Given that MB(X) = PA(X) U SU(X) U SP(X), then ¥ € PA(X) or
Y e SUX)orY € SP(X),s0 X € SUY)or X € PAY) or X € SP(Y),
respectively. In any case, X € MB(Y).

Next, the proof that if Y ¢ MB(X) then X ¢ MB(Y).
By Definition 3.1, I(X, MB(X),V — MB(X) — X). By the Symmetry axiom
(eq. 2.14)

I(V - MB(X)— X,MB(X), X).

Now, if Y ¢ MB(X) and Y # X, then
Y eV - MB(X)—X.
Hence, by the Decomposition axiom (eq. 2.15)
[(Y, MB(X),X), VY€V - MB(X) — X.
Thus X is not in M B(Y).O

Lemma 3.2 [f there is an error in sensor X, it will produce a potential fault in

X, and all the sensors in M B(X), and no other sensor.

Proof:

From assumption 2, an error in X produces a potential fault in X.

3This lemma and the subsequent theorems apply to Markov blankets formed by the direct
parents, direct successors, and direct parents of the latter.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 50

From Lemma 3.1, X is an element of the MB of all sensors ¥; € M B(X).

So by assumption 3, an error in X produces potential faults in all sensors in
MB(X).

Finally, from Lemma 3.1 X is not an element of any other MB, so it will not

produce a potential fault in any other sensor.O

Corollary 3.2 [f there is an error in sensor X with EMB(X), and also an
error in Y with EMB(Y) they will produce potential faults in all nodes 7 €
EMB(X)UEMB(Y). In general, if there are errors in sensors X;, 1 = 1,...,m,
they will produce potential faults in all nodes 7 € EMB(X1)U...UEMB(X,,).

Corollary 3.2 follows directly from Lemma 3.2, assuming that two or more
errors will not cancel each other (i.e.,if 7 € MB(X) and Z € M B(Y') and both,
X and Y fail, a potential fault will still be detected in 7).

Given these two lemmas and corollary, the following main theorems can now

be proved (where S is the set of potentially faulty sensors).

Theorem 3.1 (Step 6(b) of algorithm)
If S = EMB(X), and there is no Y # X such that EMB(Y') C S, then there

is a single real fault in X.

Proof (by contradiction):
Suppose there is a Y # X such that Fr(Y).
Then, by Lemma 3.2, F'r(Z)VZ € EMB(Y). Here, since S contains all the

potential faults, there is a contradiction because there would be a Y such that

EMB(Y) C 5.0

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 51

Theorem 3.2 (Step 6(c) of algorithm)
If there is an error in sensor X with EMB(X), and Y € EMB(X) with
EMB(Y) C EMB(X), and multiple faults (more than one sensor can fail simul-

taneously) are considered, then there is no distinction between Fr(X) or Fr(X)A
Fr(Y).

Proof:

By Lemma 3.2, F'r(X) will produce apparent faults in EM B(X).

By Corollary 3.2, Fr(X)A Fr(Y) will produce apparent faults in FM B(X)U
EMB(Y).

So if EMB(Y) C EMB(X), then EMB(X)UEMB(Y) = EMB(X) so both

cases are indistinguishable.O

Theorem 3.3 (Step 6(d) of algorithm)
If there is a unique combination S = EMB(X1)UEMB(X3)U...UEMB(X,)
then Fr(X1) A Fr(Xa) A... A Fr(X,) can be identified.

Proof:

A unique combination means that VX, # X;, ¢ =1,...,n then
EMB(Xy)Z EMB(X1)UEMB(X2)U...UEMB(X,)

Thus, by definition, S = FMB(X;) U EMB(X3)U...U EMB(X,) so, an
additional faulty sensor Xy implies EM B(X)) C S, and there is a contradiction
of the uniqueness condition.

Now, assuming that one of the X; is not faulty, i.e., =X; where 1 < j < n,

then by Lemma 3.2, the potential faulty set will be
S = Uiz, EMB(X;).
Since the combination is unique,

EMB(X;) € Uiz; EMB(X;)

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 52

and EMB(X;) € S, which is a contradiction.O

Theorem 3.4 (Step 6(e) of algorithm)
If the set of nodes S with apparent faults in G is different from all EM B(X;),
VX; € G, there must be multiple (at least 2) real faults in G'. Only the sensors

X, such as EMB(X;) C S can have real faults.

Proof:

From Lemma 3.2, a real fault in X produces apparent faults in and only in
the set of sensors in KM B(X).

So a single fault can not produce a set S of potential faults different from all
EMB in G.

From Corollary 3.2, the sensors whose EMB is a subset of S can be in fault,

and by Lemma 3.2, only these sensors can be faulty.O

The above four theorems provide the basis of the algorithm given in sec-

tion 3.1. Later, in Chapter 4, the following theorem is also needed.

Theorem 3.5 If there is no potential fault in sensor X with Markov blanket

MB(X), then all sensors Y;, Y; € MB(X) have no real faults.

Proof: By contradiction.

Suppose a Y; is faulty. Then, by assumption 3, X will be reported faulty.O

This theorem, and indeed the above theory is dependent on assumption 3 and
further comment about this assumption is therefore necessary. The assumption
states that if a variable has an error, then it will have a significant effect on
predicting the variables that are dependent on it. This assumption is reasonable,
as mentioned before, only if the dependencies expressed in the Bayesian network
are strong. In applying the model, a user must therefore provide a Bayesian

network whose dependencies are indeed strong.

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 53

3.3 An Example

The example of the gas turbine of Fig. 3.1, whose probabilistic model is shown
in Fig. 3.2, was utilized to introduce the algorithm developed. This section now,
describes the application of the algorithm of Fig. 3.4 for that simple case from
step 2 onwards. Step 2 produces the EMB table given in Table 3.1. Suppose

steps 3 to 5 give the results shown in Table 3.2. Then, step 6 indicates that

Table 3.2: Steps 3, 4 and 5 of the algorithm for the example of Fig. 3.1.

validating result faults list .S

m fails ~ {m}
t correct {m}
I fails ~ {m,p}
g correct {m,p}
a correct {m,p}

S ={m,p} = EMB(p) so it can be concluded that the real fault is in sensor p.
Notice that there is no other EM B C S so according to step 6(b), it is a single
fault.

As another example, suppose that ¢ is faulty. In such a case, the potentially
faulty list would be S = {m,t,g,a} = EM B(t). Steps 6(c) therefore applies, i.e.,
there is a real fault in ¢ but possibly (and indistinguishable) real faults in sensors

g and a.

3.4 Summary

This chapter has presented a theory and an algorithm for probabilistic sensor
validation. A preliminary version was presented in the paper by Ibargiiengoytia
et al. (1996a). It starts by obtaining a probabilistic model which considers the de-

pendence relationships between the sensors. Then, by probabilistic propagation,

CHAPTER 3. PROBABILISTIC SENSOR VALIDATION 54

the value of a variable is estimated based on the readings of the related signals.
These related signals correspond to a Markov blanket defined for Bayesian net-
works. Then, by comparing the result of the probabilistic validation, with the
Markov blankets of all the sensors, it is possible to distinguish between real and
apparent faults as described in section 3.2.

However, notice that this algorithm returns an answer only after all the sensors

have been validated.

Chapter 4

ANY TIME SENSOR
VALIDATION

The previous chapter described the approach to sensor validation taken in this
thesis. Briefly, it works by modelling the relations among the sensors in a process
and estimating the value of each sensor by probabilistic propagation. Then, the
estimated and the real value are compared to detect a potential fault. Since this
comparison can not distinguish between real and apparent faults, a fault isolation
phase 1s used.

However, the sensor validation process described in Chapter 3 works in batch
mode, i.e., no intermediate results are available, and no attempt is made to
estimate the quality of the result. For a real time application, these characteristics
are inadequate. By definition, a real time system is one where the correctness
of a system depends not only on the logical result of the computation but also
on the time at which the results are produced [Stankovic 1988]. Usually, real
applications possess a time limit by which some actions must be performed.

This chapter describes how the algorithm developed in Chapter 3 is extended
so that it is more appropriate for real time applications. Section 4.1 provides

the context for this chapter by summarizing some previous work that combines

)

CHAPTER 4. ANY TIME SENSOR VALIDATION 56

AT with real time systems. Specifically, it introduces any time algorithms, the
technique used in this thesis for developing a more appropriate sensor validation
algorithm for real time applications. Next, section 4.2 develops the main parts
of the any time sensor validation algorithm. Finally, section 4.3 presents and
comments on the resultant any time sensor validation algorithm, and section 4.4

summarizes this chapter.

4.1 Any Time Algorithms

Real time and artificial intelligence techniques started to be combined in the
1980s. One of the first surveys exploring the consequences of this combination
was made by Laffey et al. (1988). They discussed the challenges of real time
expert systems and described the problems that needed to be solved, e.g., a
timely response, uncertainty management, continuous operation, interface to the
external environment via sensors and actuators, etc. More recently, Strosnider &
Paul (1994) presented their structured view of real time problem solving, struc-
turing the problem space and the search process to reduce the variations of the
problem in order to produce solutions within the time available. In another recent
study, Musliner et al. (1995) described their view of the challenges of real time
Al They considered the following three basic approaches: (i) embedding Al into
a real time system, (ii) embedding real time reactions into an Al system, and (iii)
coupling AT and real time subsystems in a cooperative environment. Examples

of applications in these categories include the following.

A real time multi tasking knowledge based system. This fully integrated
real time multi tasking KBS approach [Grelinger & Morizet-Mahoudeaux
1992] adds expert system capabilities to a real time multi tasking kernel

in a way that aims to achieve two main goals: (i) maintain the power of

CHAPTER 4. ANY TIME SENSOR VALIDATION 57

knowledge representation schemes, and (ii) maintain the efficiency of real

time software.

CROPSS5. Concurrent real time OPS5H [Paul et al. 1991] architecture is a modi-
fication of Carnegie Mellon’s rule based system OPS5 that enables real time
reactions to be handled. It provides predictable low variance primitives for
problem solving, and provides features which facilitate easy integration into

real time operating environments.

CIRCA. This is a cooperative intelligent real time control architecture [Musliner
et al. 1993]. This architecture separates an Al subsystem and a real time
subsystem (RTS). The Al subsystem reasons about task level problems that
require its powerful but unpredictable reasoning methods. The RTS uses its
predictable performance characteristics to deal with control level problems

that require guaranteed response times.

By their very nature, embedded approaches are closely tied to the application
in which they reside. Hence, since this thesis aims to develop a more generic
approach, the coupling architecture is more appropriate.

Given any of the above approaches, the main problem in a real time system
is to return an answer in time for it to be used. One direction of work that aims
to achieve this goal is the development of any time algorithms. This term was
initially used by Dean in his research about time dependent planning [Dean &
Boddy 1988]. At the same time, Horvitz (1987) proposed the name of flexible
computation for this any time mechanism. Any time algorithms are those that
can be interrupted at any point during computation, and return an answer whose
value increases as it is allocated additional time [Boddy & Dean 1994]. However,
how can this value be measured in a specific application? The literature contains
descriptions of different dimensions that have been proposed as metrics [Stros-

nider & Paul 1994, Zilberstein & Russell 1996]:

CHAPTER 4. ANY TIME SENSOR VALIDATION 58

Certainty. This metric reflects the degree of certainty in the results of the al-
gorithm. This metric can be expressed as the probability of the result being

correct.

Accuracy. This metric reflects the degree of accuracy in the results of the al-
gorithm. This metric can be used when the exact solution is known, and
the difference from the exact solution can be calculated. This error should

decrease as the computation time increases.

Specificity. This metric reflects the level of detail in the solution. In this case,
an any time algorithm always produces correct results, but the level of detail

is increased over time.

Performance profiles represent the expected value of these metrics for a given
procedure as a function of time. In other words, performance profiles characterize
the quality of an algorithm’s output as a function of computation time. Figure 4.1
illustrates three cases of performance profiles [Zilberstein & Russell 1996], [Dean
& Boddy 1988]:

T t
@ (b) (c)

Figure 4.1: Examples of performance profiles. (a) a standard or one shot al-
gorithm. (b) an ideal, exponential precision algorithm, and (c) a more realistic
profile for an any time algorithm in practice.

Figure 4.1(a) shows a standard or one shot algorithm where the system pro-
duces no answer until a certain time, and then produces the answer with a
bounded precision. Figure 4.1(b) shows an ideal any time algorithm whose an-
swer has exponential and increasing precision. Finally, Fig. 4.1(c) presents a

more realistic profile for an any time algorithm in practice. Clearly, all these

CHAPTER 4. ANY TIME SENSOR VALIDATION 59

types of performance profiles are special cases of a superclass that can be defined
as monotonic improvement, i.e., the quality of its intermediate results does not
decrease as more time is spent to produce the result. Chapter 6 presents a more
extensive description of the current use of any time algorithms in the real time
artificial intelligence community and specifically in probabilistic reasoning. The

next section develops the any time algorithm for the sensor validation problem.

4.2 Any Time Sensor Validation Algorithm

Any time sensor validation implies that the knowledge about the state of the
sensors (faulty or correct) becomes more certain and complete as time progresses.
Certainty about the state of a sensor refers to the degree of belief in the correctness
of a sensor, and completeness is characterized by the number of sensors from which
the state is known. Thus, it is required to be able to monitor the state of the
sensors during all the validation process. This is done through a vector whose
elements Ps(s;) represent the probabilities of failure for the sensors s;. Given that
the any time validation process needs to be cyclic, the top level of the algorithm

can take the form shown in Fig. 4.2.

1. Initialize Ps(s;) for all sensors s;.
2. While there are unvalidated sensors do:

a) choose the next sensor to validate

(

(b
(c
(d

validate it
update the probability of failure vector Py

measure the quality of the partial response

)
)
)
)

Figure 4.2: Top level of the any time sensor validation algorithm.

This algorithm contains five main steps or functions: (i) initialization, (ii)

CHAPTER 4. ANY TIME SENSOR VALIDATION 60

choosing the next sensor to validate, (iii) validating a single sensor, (iv) isolating
the failure, i.e., updating the probability of failures, and (v) measuring the quality
of the partial response. Step (iii), validating a single sensor, was already presented
and discussed in Chapter 3.

Before describing the other steps, it is worth mentioning the author’s previous
attempt from which the any time sensor validation algorithm presented below has
evolved [Ibargiiengoytia et al. 19960, Ibargiiengoytia et al. 1997]. The intuition
that the sensor with the largest Markov blanket provides more information was
used to decide which sensor to select next. Also, potentially faulty sensors were
preferred over other sensors in order to isolate the fault as soon as possible.
Although the empirical results obtained in these earlier attempts were fairly good,
the lack of a theoretical basis for the heuristics prompted the development of the

algorithm whose steps are described below.

4.2.1 Initialization

The probability of failure of a new sensor is small. As it becomes older and de-
pending on the manufacturing process, the probability of failure may increase.
The inclusion of these aspects in order to initialize the model would complicate
the generation of the model and its utilization. So, in a trade off between ex-
pressivity and efficiency, the mechanism proposed here considers the execution
of this algorithm as an independent cycle. A cycle is defined as the validation of
all sensors in the system independently of previous cycles of the history of the
process. Future extensions of the work could aim to utilize the extra knowledge
provided by the sensor’s manufacturers (see Chapter 7). Thus, for a given cycle,
the initialization is based on the assumption of ignorance [Neapolitan 1990] about

the chances of failure of all the sensors, i.e., Ps(s;) = % fore=1,...,n.

CHAPTER 4. ANY TIME SENSOR VALIDATION 61

4.2.2 Selection of next sensor: Use of information theory

This section develops a mathematical model for choosing the best sensor to valid-
ate given the history of the validation process and the current state of the system.
Also, the model proposed here will be used for measuring the quality of the re-
sponse in order to obtain the performance profile of the validation algorithm.
The central idea is that the validation of a sensor provides some information and
also, extra information can be inferred. Therefore, a measure of the information
that a single validation produces is required. A definition of the expected amount
of information that an event produces was first proposed by Shannon and used
in communication theory [Shannon & Weaver 1949], and then utilized in applic-
ations like machine learning [Quinlan 1986]. Shannon proposed the following

definitions.
Definition 4.1 Given a finite probability distribution

pi >0 for(i=1,...,n), and Y"p;, =1
Shannon’s entropy measure is defined as

H, = H,(p1,....pa) = —>_ pilogap; (4.1)

=1

Thus, the entropy measures the related number of bits required to store the
information. For example, in a coin tossing experiment, the entropy is defined

as:
H(p(head), p(tail)) = H(%, %) = —Ylog,t — Liog,l =1

This means that only one bit of information is enough for storing all the inform-
ation of the experiment: head/tail.
Since the validation of a sensor s has two possible outcomes, as in the coin

tossing experiment, the entropy function H(s) is then defined as:

0 Hp=0orp=1
His) = P P (4.2)

—ploga(p) — (1 — p)log2(1 — p) otherwise

CHAPTER 4. ANY TIME SENSOR VALIDATION 62

where p represents the probability of failure of the sensor. Notice that the ex-
pression ploga(p) = 0 when p = 1 but it is undefined when p = 0. However, since
plogz(p) tends to zero as p tends to zero, the values defined in equation 4.2 can
be safely assumed. Figure 4.3 shows the behaviour of the function [Pratt 1994].
Notice that it has its maximum when p = %, i.e., when the ignorance is maximum,
and it is zero when either p = 0 or p = 1, i.e., when the information is maximum

and ignorance is minimum. This function can be considered either as a measure

=
-
-
ul

0.5

Figure 4.3: Entropy as a function of p.

of the information provided by an experiment, or as a measure of the uncertainty
in the experiment’s outcome. Thus, considering each single sensor validation as
an experiment, this function can be used to measure the amount of information
provided by that validation. Then, the average amount of information for the

system can be defined as follows:

ENT(s1,...,8,) = gZ_:H(SZ) (4.3)
= —% in(sz')logsz(Si) + (1 = Py(si))loga(1 — Py(s:))
= —% Zj: Py (s:)loga Py (s:) (4.4)

where n is the number of sensors in the system S, and P¢(s;) represents the
current probability of failure value assigned to sensor s;. Notice that the vector
whose elements are Pf(s;) provides a measure of the certainty in the validation

while the sum of n individual entropies provides a specificity measure of the result.

CHAPTER 4. ANY TIME SENSOR VALIDATION 63

Given this measure, the any time sensor validation algorithm needs to select
a sensor that gives the best improvement in the average entropy of the system.

Hence the following conditional version of equation 4.3 can be written

ENT(S| X)=ENT(S |« =correct) + ENT(S | x = faulty)

B % (Z H(s; | @ = correct) + Y H(s; |z = fGU“?J)) - (45)

This function can be evaluated for each sensor and the one which gives the most
information (the minimum ENT(S | X)) can be selected as the next sensor to
be validated.

The computation suggested by the above formulae could be too expensive for
a real time sensor validation process. To overcome this problem, this thesis pre
compiles the sensor selection mechanism as follows. The above formulae are used
to select the sensor, s, which gives the most information. This selected sensor
forms the root of a binary decision tree. A fault is simulated in this sensor and
the formulae are again used to select the next sensor s,_. Then, the root s, is
assumed to be correct, and the formulae are used to select the sensor s,; in this

case. This results in the partial decision tree shown in Fig. 4.4. This process is

Figure 4.4: Partial decision tree.

repeated recursively on the nodes s,_ and s,; to obtain a complete decision tree,
so that each path in the tree includes all the sensors.
As an example, consider the network shown in Fig. 4.5. This process results

in the decision tree shown in Fig. 4.6.

CHAPTER 4. ANY TIME SENSOR VALIDATION 64

R
@R@@

Figure 4.5: A reduced Bayesian network of a gas turbine.

\
/

3
3

\.
\.

)
c
o

@/

&
&
Vs
Vs

(w)le)
@x(»)
(oo
SO
(@xl=)!
(©x(@)
axlo)
(w(a)

Figure 4.6: Binary tree indicating the order of validation given the response of
the validation step.

CHAPTER 4. ANY TIME SENSOR VALIDATION 65

This decision tree can be used to select the next sensor more efficiently in
real time than by performing the calculations. Thus, the selection step of the
algorithm of Fig. 4.2 consists of simply traversing the tree one level after every
single sensor validation. The cycle starts at the root, and the decision tree points
to the next node in the tree according to the result of validating the current
sensor. Notice that the binary tree for n sensors contains n levels and up to 27!
nodes'. Then, if a system has 21 sensors, the binary tree would require 1,048,575
nodes, and assuming 10 bytes per node this tree requires more than 10 Mbytes
of memory. This is a typical example of a trade off between the computing time
and memory usage in a real time system.

To accommodate situations when memory is short, and only single faults are
considered, this thesis proposes an alternative approach to the pre compilation of
the decision tree. This considers the sequence of validations when single faults are
simulated in all the sensors of the system. Of course, the case of no faults at all
must also be considered. Table 4.1 presents the valid trajectories followed in the
case of failures (first column) of the example of Fig 4.5. The plus sign represents
the correct validations while the minus sign represents a faulty condition in the
sensor. The first sensor to validate is always ¢ since it has the lowest conditional

Table 4.1: Trajectories of validation in the case of single faults. The + represents
the validation as correct while - represents a fault in the sensor.

case first second third fourth fifth
no fault | t+ m+ p+ g+ a+
m t— m— p— g+ a-+

t t— m— p+ g— a—

p t+ m- g+ p— at

g l— m+ g— at pt

a t— m-+ g+ p+ a—

entropy. The first row indicates the case of no failures. The second row presents

!The exact number is (27 — 1) — 27~2.

CHAPTER 4. ANY TIME SENSOR VALIDATION 66

the sequence of validation when m is simulated as faulty. Here, all m’sE/M B will
be faulty. Representing the information of Table 4.1 in a decision tree results in
a pruned tree with n levels and at most n x (n 4 1) nodes as shown in Fig. 4.7.
This is because only the rows in Table 4.1 would be trajectories in the tree from

the root to the leaves.

@+
\

- +

\@%
)
@

Figure 4.7: Reduced decision tree.

N
2
-

AN
<y
AN
K

H@
&@
@
&>®
R

Notice the sequence of validations when no fault is found, i.e. ¢, m, p, ¢
and a, which corresponds specifically to the right hand branch in Fig. 4.7. This
trajectory is considered as default when an invalid sequence is found. For example,
suppose that the sequence is: t correct, and m faulty. According to Fig. 4.7 the
next sensor to validate is ¢ but the tree only considers a valid trajectory when g¢
is correct. If ¢ is faulty, then the default trajectory would be followed (p would

be the next node in this example).

4.2.3 Fault i1solation

Chapter 3 presented an algorithm for the isolation of one or more failures in
the sensors. Briefly, a comparison is made between the set of potentially faulty

sensors with the table of extended Markov blankets of all the sensors. When

a match is found, a real fault is determined. However, the set of potentially

CHAPTER 4. ANY TIME SENSOR VALIDATION 67

faulty sensors is obtained after all the sensors have been validated. Therefore, in
order to extend that algorithm for any time behaviour, a different mechanism for
distinguishing real faults from apparent ones is required. This new mechanism
provides, as the output of the isolation phase, a vector with the probability of a
real fault in all the sensors. This vector is refined incrementally in time, so the
any time behaviour can be achieved.

The any time fault isolation process is based on the relationship between real
and apparent faults. There are two situations that arise: (i) the existence of a
real fault causes an apparent fault (as shown in Fig. 4.8(a)), and (ii) one apparent

fault is the manifestation of several possible real faults (as shown in Fig. 4.8(b)).

@@
@@)

(b)

Figure 4.8: Causal relation between real faults (R) and apparent (A) faults rep-
resented as nodes.

In both figures, the relation between root nodes and leaf nodes is the same as
the extended Markov blanket (EMB) of a sensor. Considering all the sensors, a
causal model relating the real and apparent faults can therefore be obtained from
the Bayesian network (in fact, the EMB table is sufficient to build this network).
In the first level (roots), the nodes represent the events of real failure in every
sensor. Then, the second level (leaves) is formed by nodes representing apparent
failures in all the sensors. Arcs are included between every root node, and the
corresponding nodes of the extended Markov blanket. For example, the causal

network shown in Fig. 4.9 can be obtained directly from the Bayesian network

CHAPTER 4. ANY TIME SENSOR VALIDATION 68

of the gas turbine given in Fig. 4.5. Thus, the consequences of observing an

Figure 4.9: Probabilistic causal model for fault isolation. R; represents a real
fault in sensor 7 while A; represents an apparent fault in sensor j.

apparent fault can be propagated in the causal network in order to obtain the
probabilities of a real fault in all the sensors.

The network of Fig. 4.9 is multiply connected since several root nodes share
leaf nodes. This would produce loops in the propagation algorithm of singly con-
nected networks. Hence, the propagation method of trees of cliques presented in
Chapter 2 is utilized. The adoption of this technique requires: (i) the specific-
ation of the prior and conditional probabilities, and (ii) the specification of the
tree of cliques.

In general, O(2") conditional probabilities would be required (for a node with
n parents). However, the Peng & Reggia (1987) causal model can be adopted
here. As described in Chapter 2, two assumptions need to hold in order to use

this model.

1. No apparent fault occurs without being caused by some real fault (account-

ability).

2. If an apparent fault A; is a consequence of two real faults [y and Rs,
then the inhibition of the occurrence of A; under R; is independent of the

mechanisms of inhibition of A; under Rs (exception independence).

The accountability assumption holds by the way the model is constructed,

i.e., a sensor is apparently faulty only if there is a fault in its MB. The exception

CHAPTER 4. ANY TIME SENSOR VALIDATION 69

independence assumption is concerned about a rare situation for this particular
model. The relationship between the real and apparent faults is obtained from a
Bayesian network in which the dependencies are assumed to be strong. Hence, the
probability of a real fault not resulting in an apparent fault is small. Further, the
mechanism by which a real fault in one sensor does not result in an apparent fault
is even less likely to be dependent on another real fault. Hence, given that these
assumptions are reasonable, the conditional probability matrix can be calculated

by utilizing equation 2.46. That is, the only parameter required is defined as:
cij =1 —qi; = P(A; | Ri only).

In the case of the sensor validation problem, in an ideal case, all the parameters
¢;j = 1. Of course, these values can be obtained by simulation from the data if
the problem is expected to depart from this ideal case. That is, according to
the theory developed in Chapter 3, when a real fault R, is present, it will always
cause the apparent fault A; (assuming that there is an arc from R; to A;).

The second problem, that of specifying the tree of cliques is addressed as
follows. In general, following the procedure of Fig. 2.6 will provide a valid tree
of cliques representing the original network. However, in the case of the causal
network shown in Fig. 4.9, the cliques can be deduced directly. Figure 4.10 shows

Ro—(R) Rn—{R) Ro—Re) (R—Ry) (R—Ry

\/
%M%ww
A) (A

Figure 4.10: Cliques obtained from the network in Fig. 4.9.

cliques can be formed by relating each one of the leaves with all its parents. This

CHAPTER 4. ANY TIME SENSOR VALIDATION 70

condition always holds in this kind of network, i.e., two level causal networks?.
Now, numerating the nodes (as described in Chapter 2) from the left of Fig. 4.9,

i.e., starting with node R,,, produces the following clique numbering:

Clgpn = {Rs, Ry, Ay}

Clgy = {Rm, Rs, Ry, Ro, At}
Clgs = { Ry, Ray A}

Clgs = {Rm, R, Ry, A}
Clgs = {Rm, Ry, Ay}

(4.6)

This ordering produces the tree of cliques shown in Fig. 4.11. The root is Cl¢,

Figure 4.11: Tree of cliques obtained from the network in Fig. 4.9.

and obviously Clgs follows as a child. To decide the location of Clgs to Clgs,

equation 2.36 is applied as follows:

Clq3 N {RvathngavAthg} - 0192

Clga OV { R, Ry, Ry, Ra, Asy Ay, Ay} € Clgs

ZSince the moralization process relate all the parents of a leave node, this clique becomes
complete and maximal as established in the definition of cliques of Chapter 2.

CHAPTER 4. ANY TIME SENSOR VALIDATION 71

Clgs N { Ry, Be, Ry, Ry, Ruy A, A, Ay, AuY C Clay

(4.7)

Finally, the cliques are initialized with the information of the original network.
That is, the prior probability of all the root nodes in the original model is 0.5
(the ignorance assumption of section 4.2.1) and the parameters ¢;; = 0.99 for all
1 <, 7 <number of nodes.

Having described how real and apparent faults can be related, the fault isol-
ation model can now be summarized. It receives as an input, a validated sensor
with its detected state (faulty or correct) and updates the probability of failure
of all the sensors. It does this by instantiating the value of the corresponding
apparent node and using a propagation algorithm to obtain the posterior prob-
abilities of the real faulty nodes. A vector P; of these posterior probabilities
represents the current state of knowledge about the sensors, and can be viewed
as the output of the system at any time. For example, assuming a fault in ¢ in
the network of Fig. 4.5, produces the sequence of values of the probability vector
as shown in Table 4.2.

Table 4.2: Example of the values of the probability vector P;.

Step Py(m) Ps(t) Py(p) Pylg) Pya)
t = faulty | 0.534 0.534 0.5 0534 0.534
m = correct | 0.013 0.013 0.009 0.663 0.663
g = faulty | 0.009 0.019 0.009 0.99 0.502
a = correct | 0.009 0.0 0.009 0.999 0.009
p = correct 0.0 0.0 0.0 0.999 0.009

A more complete example of the case study can be found in Appendix A.

CHAPTER 4. ANY TIME SENSOR VALIDATION 72

4.2.4 Quality measure

Section 4.1 presented the proposed dimensions in which the quality of an answer
can be specified: certainty, accuracy, and specificity. The question now is, are all
these measures applicable to the sensor validation algorithm? and if so, how are
they interpreted? In a previous attempt at developing an any time sensor val-
idation algorithm [Ibargiiengoytia et al. 1997], the following measure was used.
Suppose there are four lists: a list /'L with the number of real, detected faulty
sensors; a list ('L with the real correct sensors, and lists PF' L, PCL for poten-
tially faulty and correct sensors respectively. Thus, a quality function ¢ may take

the following form:
q(F,C,PF.PC)=aFL+ pCL+~PFL+6PCL (4.8)

where «, 3,7, § are weights given to the number of sensors in each one of the lists
F,C,PF, PC. For example, a function with, (e, 7,7,d) = (10,10,2,2) assigns five
times more quality to an answer with more sensors in the F' and C lists than in
the potential lists. Another application may give greater weight to the real faults
and utilize (o, 8,7,90) = (20,5,1,1). That is, such a measure requires deciding the
weights depending on the application.

A better measure that is independent of the application and that naturally
combines the measures described in section 4.1 is the average entropy of the

sensors given in equation 4.3. That is, if the current quality measure is:

Q81,0 8n) =

n 4

1 n
—=>_ Ps(si)loga Py(si) + (1 — Py(si))loga(1 — Pr(si)) (4.9)
=1
then, the reported quality function is calculated with the formula:

Qmax - chrrent
Qmax

where)4, 1s the maximum value of the quality measure (i.e., n, the number

Q

(4.10)

of nodes). Notice that this measure captures both the certainty and specificity

CHAPTER 4. ANY TIME SENSOR VALIDATION 73

measures of any time algorithms. It captures certainty since the probabilities of
the sensors are used, and specificity since all the sensors are combined to give
an average. Figure 4.12 shows the performance profile obtained with this quality

measure for the example of Fig 4.5.

4

1.07 _I—:—’_ 1.07 4,_,_,—

time time

(a) (b)

Figure 4.12: Performance profile describing the combination of certainty and
specificity in one parameter against time. (a) without failure, (b) with a simulated
failure in sensor g¢.

Again, since it is expensive to compute this quality function) at every step
of the validation, and since this entropy average can be calculated in the off
line mode, a node of the decision tree of Fig. 4.6 includes the quality measured
until the corresponding validation step. Additionally, since the entropy and the
quality values require the computation of the probability of failure, then these
probabilities are also stored in a node of the pre compiled binary decision tree.
Thus, the binary tree performs: the selection of the next sensor, the current
probability of failure vector, and provides the current quality provided by the
algorithm. Figure 4.13 describes the fields of information in one node of the
binary decision tree where ptr OK represents the pointer to the next node when
the current sensor is correct, and ptr FL to the next when faulty. This allows the
algorithm to perform in a time appropriate for real time applications. The next
section summarizes and comments on the resultant any time sensor validation

algorithm.

CHAPTER 4. ANY TIME SENSOR VALIDATION 74

(current sensor)

(Quality Value)
Pf(Sl)vpf(‘S?)v"'vpf(Sn)

(ptr OKXptr FL)

Figure 4.13: Format of a node of the pre compiled binary decision tree.

4.3 The Complete Algorithm

The above section described the basis of the steps of the any time sensor validation
algorithm in some detail. This section brings together the above material and
presents the whole algorithm in one place. Figure 4.14 presents the top level of
the algorithm.

The initialization step is carried out off line, i.e., these are calculations that
can last as long as they need. Their function is to keep the in line process running

on an any time basis. This step obtains:
e the binary tree for the selection of the next sensor to validate, and
e the current quality measure.

With this information, and according to the layered structure presented in
Chapter 1, this algorithm can be interrupted at any time yielding a partial res-
ult. This result is qualified by the quality function so that an operator or the
higher layers may decide whether to stop the process and take urgent action. For
example, if the algorithm indicates the presence of a fault, and the quality func-
tion reaches 80 %, it signifies that enough certainty and specificity are available
in order to start corrective action, i.e., to notify the control system to ignore a
faulty sensor.

Notice that, unlike the algorithm presented in Chapter 3, the algorithm of

CHAPTER 4. ANY TIME SENSOR VALIDATION

Any time sensor validation algorithm.
Input: The Bayesian network.

Output: The vector of probabilities of failure and the
quality measure, visible at any time.

e Initialization

— Obtain the EMB table from the Bayesian net-
work.

— Construct the causal model relating the real
and apparent faults by using the Bayesian net-
work.

— Pre compile the selection criteria to obtain the
decision tree.

e Do continuously

— Initialize the prior probabilities of failure.
— While there exist unvalidated sensors do

1. Select the next sensor using the decision
tree.
2. Validate it.

3. Update the vector that records the prob-
ability of failure and quality function.

Figure 4.14: Complete version of the any time sensor validation algorithm.

CHAPTER 4. ANY TIME SENSOR VALIDATION 76

Fig 4.14 can be combined with the real time higher layers under a real time
operating system.

Figures 4.15 and 4.16, give the pre compilation process that provides the
decision tree for selecting the next sensor. Figure 4.15 presents the algorithm
for producing the complete binary tree (as in Fig. 4.6), and Fig. 4.16 gives the

algorithm that produces the pruned decision tree (as in Fig. 4.7).

Pre compilation procedure (complete version).
Input: The set of unvalidated sensors 5.

Output: The decision tree DT

o If S is empty, return the empty tree.

o Select a sensors s; from S that gives the most in-
formation.

e Set the apparent node for s; in the causal model to
a fault.

e Propagate the probabilities.

o Let DTleft be the decision tree obtained recurs-
ively for the sensors S — {s;}.

e Set the apparent node for s; in the causal model as
correct.

e Propagate the probabilities.

o Let DT'right be the decision tree obtained recurs-
ively for the sensors S — {s;}.

e Return a decision tree DT whose left subtree
is DTleft, whose right subtree is DTright, and

whose root is s;.

Figure 4.15: Complete pre compilation procedure.

The in line process runs continuously in a cyclic manner. Figures 4.17 and

CHAPTER 4. ANY TIME SENSOR VALIDATION

Pre compilation procedure (reduced version).

Input: The set S of sensors, and the EMB table of all

the sensors.

Output: The decision tree DT'r.

o If S is empty, return the empty tree.
o Let table be a sequence that is initially empty.

e Repeat for every single failure in sensor s; and for
no failures.

— While there exists unvalidated sensors do:
* Select the sensors s; from S that gives the

most information.

« If s; is in the FM B(s;) then consider it

as faulty, otherwise consider it correct.

+ Add s; and its state to the 7% entry of the
table.

e For all the sequences in the table do

— While there are sensors in the sequence
* Follow the decision tree DTr until a null
pointer in the tree is found.

* Create a new node with the current sensor
(as shown in Fig. 4.13) in DTr and sub-
stitute the found null pointer with the
pointer to the new node.

e Return a decision tree DTr.

Figure 4.16: Reduced pre compilation procedure.

77

CHAPTER 4. ANY TIME SENSOR VALIDATION 78

4.18 describe the validation and isolation functions in more detail.

Function validate.
Input: A node a.

Output: Either correct or faulty.

e Instantiate all nodes except a.

e Propagate probabilities and obtain a posterior
probability distribution of a.

e Read real value of sensor represented by a.

o If P(real value) > p value then return(correct),
where p value is a specified threshold.

e Else return(faulty).

Figure 4.17: Description of the validation process.

4.4 Summary

This chapter has presented the development of the any time sensor validation
algorithm. First, it introduced the any time algorithms as the technique utilized
in this thesis for making the sensor validation algorithm appropriate for real
time applications. Summarizing, the any time algorithm consists of the following

operations (Fig. 4.2):
1. choose the next sensor to validate,
2. validate it,
3. update the probability of failure vector Py, and

4. measure the quality of the partial response.

CHAPTER 4. ANY TIME SENSOR VALIDATION 79

Function isolate
Input: A sensor n and the state of sensor n.

Output: The vector Ps(sensors).

o Instantiate the apparent fault node corresponding
to n with the indicated state.

e Propagate probabilities and obtain the posterior
probabilities of all the Real fault nodes.

e Update vector Ps(sensors).

Figure 4.18: Description of the zsolation process.

The selection of the next sensor to validate, and the quality function, utilize
Shannon’s entropy function for calculating the amount of information that every
validation provides. The validation utilizes probability propagation in trees, while
updating the vector Py uses propagation in a probabilistic causal model.
Finally, this chapter has presented the complete sensor validation algorithm.
The algorithm has been implemented in C. The results of the experiments with
real data from the temperature sensors of a thermoelectrical power plant are

presented in the next chapter.

Chapter 5

EXPERIMENTAL RESULTS

Chapter 3 developed the theory for probabilistic sensor validation based on a
Markov blanket property. That chapter also developed an algorithm that com-
pares the list of apparent faults against the extended Markov blanket (EMB) in
order to distinguish the real and the apparent faults. In applying the model,
practice may deviate from the ideal theory and practical considerations could
affect the accuracy of the results. In particular, the following points should be

noted:

1. It may not be possible to obtain a dependency model that is complete and

very accurate.

2. The criteria for mapping from the expected value and the actual reading to
{correct, faulty} (described in section 3.1) could affect the accuracy of the
results. For instance, if a sensor is only considered to be faulty if it deviates
a long way from its expected behaviour, then almost all sensors detected as
faulty will really be faulty but there will also be many faulty sensors that

are not detected.

Another significant part of the thesis is the development of the any time sensor

validation algorithm in Chapter 4. An important part of the any time algorithm

80

CHAPTER 5. EXPERIMENTAL RESULTS 81

was the development of the theory that selects the next sensor that maximised

the information gained. A fair question is:

does this selection policy result in a better quality answer more quickly

in practice?

This chapter carries out an empirical evaluation of the core model and the any

time algorithm. The chapter is organized as follows.

e Section 5.1 explains the application domain. That is, where the sensors
to be validated are located, how they provide information and how that
information is processed from raw data to obtain the probabilistic model

expressed as a Bayesian tree.

e Section 5.2 describes the architecture of the implemented system and test

environment.

e Section 5.3 presents the results of evaluating the accuracy of the model and

the effect of the criteria for deciding if a sensor is faulty.

e Section 5.4 presents an evaluation of the any time sensor validation al-

gorithm and presents the resultant performance profile of the system

5.1 Application Domain

The sensor validation algorithm was evaluated by applying it to the validation
of temperature sensors of the gas turbine at the Gomez Palacio power plant in
México. This is an interesting application of these techniques for many reasons.
For example, since a functional model of the temperatures of a turbine is difficult
to obtain, it is a good candidate for probabilistic methods. Also, the size of this

problem makes it ideal for testing the development of the theory and algorithm.

CHAPTER 5. EXPERIMENTAL RESULTS 82

blade path
X AX1 X EM1
\ X|CH1 xCH2 xCH3 xCH4 xCH5 xCH6 generator
X EM2
X AX2
combustion chamber x EM3

Figure 5.1: Simplified schematic diagram of a gas turbine.

Figure 5.1 shows a simplified diagram of a gas turbine. The combustion chamber
receives air and gas in a specific proportion to produce high pressure gases at high
temperature. These gases produce the rotation that moves the generator. Thus,
the temperature is considered the most important parameter in the operation of
the turbine since it performs more optimally at higher temperatures. However,
a little increase in the temperature, over a permitted value, may cause severe
damage. The distributed control system that governs the plant is continuously
monitoring these signals in order to correct any deviation of the process. In the
case of an illegal increase of a temperature parameter, the plant is stopped and
taken to a safe state. Conversely, an error in a sensor’s measure may cause an
unnoticed increase of the temperature, or may result in an unnecessary shut down.
The consequences of the former can be severe damage to the equipment and even
human fatalities, and the latter could result in loss of time and fuel. Figure 5.1
shows the physical location of some of the temperature sensors used in the turbine.
It shows six sensors across the beadings of the shaft (CH1,CH2,...,CHG6), three
sensors on the turbine blades (EM1, EM2 and EM3), and two sensors of the
temperature of the exciter air (AX1 and AX2). The experiments were carried
out over a set of 21 sensors (though not all are shown in Fig. 5.1). These sensors

can be grouped into the following sets of measurements:
e 6 beadings (CHI1 - CH6),

o 7 disk cavities (CA1 - CAT),

CHAPTER 5. EXPERIMENTAL RESULTS 83

1 cavities air cooling (AEF),

2 exciter air (AX1 - AX2),
e 3 blade paths (EM1 - EM3), and
e 2 lub oil (ALI - AL2).

The instrumentation of the plant provides the readings of all the sensors every
second. The data set utilized in the experiments corresponds to the temperature
readings taken during approximately the first 15 minutes after the start of the
combustion. That corresponds to the start up phase of the plant, where the
thermodynamic conditions change considerably. Therefore, the data set consists
of 21 variables and 870 instances of the readings.

The first step in using the sensor validation algorithm is to provide a depend-
ency model. A dependency model for the temperatures was obtained by utilizing
an automatic learning program that uses the algorithm described in Chapter 2

[Sucar et al. 1995]. Figure 5.2 shows the tree obtained with this data set. Notice

G) 9 9 9 @) @ @9 9 @9

@ () @ @9
CACRORC RIS

Figure 5.2: Bayesian network for this application.

that the dependencies can be explained as the propagation of heat from the centre

CHAPTER 5. EXPERIMENTAL RESULTS 84

of the turbine (CH4) to the extremes. CH4 is the measure of the beading tem-
perature which is closer to the combustion chamber, and can be modelled as
the tree’s root, i.e., the variable which causes the other variable’s heating. This
explanation is an intuitive interpretation of the resultant probabilistic model in
terms of causality.

Table 5.1 shows the extended Markov blankets of all the sensors correspond-
ing to the model of Fig. 5.2. Notice (in Table 5.1) that all the extended Markov

Table 5.1: EMB of all sensors in the application example.

CH4 | {CH4,CHL,CH3,CA6,CH6,EMI,EM2,EM3,CA4,AX2]}
CH1 | {CH4,CH1}

CH3 | {CH4,CH3,CH2}

CH2 | {CH3,CH2}

CH6 | {CH4,CH6,CH5,CAT,ALLAL2}
CH5 | {CH6,CH5}

CA4 | {CH4,CA4,AEF,CA3,CA5}
AEF | {CA4,AEF,CA2,AX1)}
CA2 | {AEF,CA2,CAL}

CAL | {CA2,CA1}

CA3 | {CA4,CA3}

CA5 | {CA4,CA5)}

CA6 | {CH4,CA6}

CAT | {CH6,CAT}

AX1 | {AEF,AX1}

AX2 | {CH4,AX2}

EMI | {CH4,EM1}

EM2 | {CH4,EM2}

EM3 | {CH4,EM3)}

ALL | {CH6,AL1}

AL2 | {CH6,AL2}

blankets are different. This implies that all the single failures can be distinguished
according to the theory of Chapter 3. The exception to this rule is the undistin-
guishable single fault or double fault between the leaves and their parents. For

example, a fault in C H3 and a double fault in C H3 and C'H2 produces the same

CHAPTER 5. EXPERIMENTAL RESULTS 89

set of apparent faults.

According to section 2.6, in addition to the structure of a tree ¢, the model
also requires the prior probability of the root ¢'H4 and the conditional probabil-
ities of the other nodes given their parents. However, the propagation techniques
described in Chapter 2 apply only to discrete valued variables, but the temper-
ature signals are continuous values. Hence, a discretization process is required.
This discretization is achieved by simply dividing the range of values of a sensor

into a fixed number of intervals:

mazximum value — mintmum value

(5.1)

number of intervals

More sophisticated approaches are available [Dougherty et al. 1995] according
to the precision required and depending on the computational cost that is ac-
ceptable. Additionally, some work is being done on the utilization of continuous
variables as nodes in Bayesian networks when the application strongly requires
it [Driver & Morrell 1995]. For simplicity, the experiments are carried out with
10 intervals for the discretization. This number produces a matrix of conditional
probabilities of 100 parameters per dependency, so a discretization with more in-
tervals would result in an exponential increase in the space and computing power
required.

As a more detailed note, it might be worth mentioning that in order to fa-
cilitate the operations of the discretized values, the minimum, maximum values,
and the number of intervals were adjusted so that the division in equation 5.1
results in an integer. For example, the extreme values for sensor C'H4 are 73.04
and 124.47, but they are adjusted to 71 and 126 in order to have 11 intervals of

5 degrees wide (instead of 10 intervals of 5.14).

CHAPTER 5. EXPERIMENTAL RESULTS 86

5.2 Test Environment

In order to evaluate the sensor validation model, a test environment was designed
and implemented. The environment was written in C++4 and compiled in Mi-
crosoft Visual C++, version 2.0. It utilized the QuickWin application platform
under Windows 3.11. The hardware consists of a Pentium 120MHz PC with
16Mbytes of RAM memory. Figure 5.3 gives a block diagram of the implemented
test environment. The initial input (at the left) is the data set obtained from the
power plant. With this data set, the automatic learning program provides the
structure of the network in a file.str. Specifically, that program executed steps 1
to 5 of the learning algorithm described in section 2.6. The file.str provides the
nodes and the arcs that form the Bayesian tree. This file also includes the ex-

treme values of each variable, and the number of intervals for discretization. The

Automatic
—> learning
program
| J— —
M A
Data set > fileemb > Scheduler > filesch
(870X21) file.str
N -
l >
—>filemod
L S status vector
> Off Line —> — [[]
<D InLine
 — v -
Ly fiteins | — | -
A filestp
Y
M A
> filetst

Figure 5.3: Schematic diagram of the test environment.

main modules of the test environment are the off line and the in line modules.

The off line module has three main functions.

CHAPTER 5. EXPERIMENTAL RESULTS 87

1. It separates the original data set into two random subsets: the training data
set (fule.tst) and the instantiation data set (file.ins). The training data
set is utilized for calculating the prior and conditional probabilities of the
initial probabilistic model. The instantiation data set is utilized to simulate

the process of the gas turbine.

2. It generates a table with the extended Markov blankets of all the sensors
(file.emb as illustrated in Table 5.1).

3. It generates the complete probabilistic model in file.mod. This is a file
with the structure of the tree and the prior and conditional probabilities,

i.e., P} in the notation of section 2.6.

The scheduler module implements the pre compilation procedure described in
Fig. 4.15 or 4.16. Based on the EMB table, and depending on the memory
available in the system, this module designs a complete decision tree as in Fig. 4.6,
or a reduced decision tree as in Fig. 4.7. Since the model consists of 21 sensors,
the reduced decision tree was used for the experiments below. The in line module
is an implementation of the any time sensor validation algorithm described in the

continuous loop of Fig. 4.14. Specifically, it performs the following two functions:

1. the validation step as presented in Fig. 4.17, and

2. the isolation step as presented in Fig. 4.18.

As indicated in Chapter 4, the isolation module continuously updates the vector
of probability of failure of all the sensors. This vector is shown to the external user
as the current status of the sensors. Future extensions to this prototype would
include a graphical interface which indicates the status of the sensors with differ-
ent colours depending on the states, e.g., normal, warning, or faulty. Finally, the
file.stp is provided on request for debugging purposes, including partial results

of the validation process.

CHAPTER 5. EXPERIMENTAL RESULTS 88

5.3 Testing the Validation Model

This section presents the empirical evaluation of the algorithm presented in
Chapter 3 by applying it to the application domain described above and by using
the test environment just explained. First, section 5.3.1 classifies the kind of er-
rors that can occur when using the system. Then, it describes the experimental
method utilized in the evaluation. Second, section 5.3.2 presents the results of
evaluating the accuracy of the model and the effect of the criteria for detecting
faulty sensors. This is done by evaluating the probabilistic phase of the system,
i.e., the accuracy of the system for detecting faults. Then, section 5.3.3 presents
the results of evaluating the two phases of the model: the detection and isolation

of real faults.

5.3.1 Experimental method

The test environment receives as its input, a data set from the process. Then, the
off line module partitions the data set in two subsets: one partition for training
the network, and the other partition for testing. The training/testing partition
used was 70-30 % of the original data set, i.e., 610 instances for training the
model (calculating the prior and conditional probabilities), and 260 instances for
testing.

Theoretically, the system should always detect and isolate single faults cor-
rectly. However, as mentioned earlier, in reality, some errors may occur since in
practice it is unlikely that the dependency model will be perfect. Consequently,
two types of errors could occur: a correct reading might be considered faulty, and
a real fault might not be detected. These two possible errors are called type I

and type II errors in the literature, and defined as follows [Cohen 1995]:

type I: rejection of the null hypothesis when it is true, and

CHAPTER 5. EXPERIMENTAL RESULTS 89

type II: acceptance of the null hypothesis when it is actually false.

The null hypothesis used (defined in Chapter 3) refers to the hypothesis that a
sensor is working properly. Thus, in other words, type I errors occur when a
correct sensor is reported as faulty while type II errors occur when faulty sensors

are not detected. Table 5.2 presents the four possible cases.

Table 5.2: Different cases of the status of the hypothesis and decision taken.

Choice hypothesis true hypothesis false
acceptance correct type II error
rejection type I error correct

As described in the introduction of this chapter, the criteria for deciding if a
reading is faulty or not can result in a trade off between these two types of errors.

At the end of Chapter 3, the following two criteria were mentioned:

1. Calculate the distance of the real value from the expected value, and map
it to faulty if it is beyond a specified threshold and to correct if it is less

than a specified threshold.

2. Assume that the sensor is working properly and establish a confidence level
at which this hypothesis can be rejected, in which case it can be considered

faulty. This confidence level is known as the p value.

The accuracy of the model, i.e., the proportion of type I and Il errors, is evaluated
by varying the possible thresholds for each of these criteria.

A testing session includes the following steps:
1. Obtain a random partition of the data set.
2. Run the off line module.

3. Run the scheduler module.

CHAPTER 5. EXPERIMENTAL RESULTS 90

4. Run the in line module utilizing the instantiation data set. This test cor-

responds to a simulation with no errors.

5. Modify the instantiation data set to insert a single failure in one sensor, in

every one of the 260 lines of the file.
6. Run the in line module again.

7. Compare the results obtained with the expected results, and generate a

results table.

Step 5 introduces the simulated failures and requires further explanation. A
single line of the testing file includes the readings of all the sensors considered.
In every line, one sensor is modified in order to represent an erroneous reading.
The first line modifies the first sensor. The second modifies the second, and so
on, until all the sensors have been modified. This operation is repeated, until all
the lines, starting with the first sensor, have been edited. Two different faults

were simulated:

Severe. The value modified is the most distant extreme value, i.e., if (maximum
value - real value) is greater than (real value - minimum value) then the real

value is substituted by the maximum value, and by the minimum otherwise.

Mild. The real value is replaced by one which differs by 25 %.
This test procedure was used to evaluate:

e the accuracy of the validation phase, and

e the accuracy of the isolation phase.

The validation phase is an intermediate phase of the model that determines if a
sensor is potentially faulty. It is therefore important to test its accuracy as well
as the accuracy of the isolation phase. The following two subsections present the

results of these two evaluations.

CHAPTER 5. EXPERIMENTAL RESULTS 91

5.3.2 Accuracy of the probabilistic validation phase

To evaluate the accuracy of the validation phase, two experiments were carried
out. First, a process with no faulty sensors was simulated and the number of
faulty sensors incorrectly found (i.e., type I errors) was determined. Second,

single failures were simulated as described in the test procedure in section 5.3.1,

and the number of type I and II errors determined.

First experiment: no faulty sensors

The first of these experiments was carried out as follows. A single run consists

of:
260 instances x 21 sensors = 5,460 single validations.

This was repeated 25 times, with random partitions of the data set with 70 %
for training and 30 % for testing. Table 5.3 presents the average of the 25 runs
for each criterion utilizing the testing data set without failures. For example, the

Table 5.3: Results of the experiments without simulating failures: average number
of type I errors and the percentage that they represent.

Criteria 20 2.50 3o p=0.05 p=0.01
TYPET | 51.2+124 | 134 £8.1 | 7.74+6.0 | 64.4 +£11.2 | 21.1 £9.2
0.93 % 0.24 % 0.14 % 1.17 % 0.38 %

first column reports that when the p 4 20 criterion is used, 51.2 out of the 5,430
validations were incorrect on average. For instance, the p £ 20 criterion states

that the model has a type I of 0.93 %, when all the sensors are working properly.

Second experiment: when failures are simulated

The second experiment was carried out as follows. A single fault was inserted in

each one of the 260 instances as described in section 5.3.1. One set of experiments

CHAPTER 5. EXPERIMENTAL RESULTS 92

was made with severe faults, and then repeated with a mild faults. For each single
failure, and according to the theory previously presented in Chapter 3, several
apparent failures are detected depending on the size of the extended Markov
blanket. The sum of all the sizes of all the sensors’s EMB is 61, i.e., the number
of apparent faults that would ideally be detected in a validation cycle of all the
21 sensors. If 260 failures were simulated, then every one of the 21 sensors was
simulated as faulty at least 12 times (12.6 times). In total, in every run of the
system, a total of 769 apparent faults must be detected. Table 5.4 presents the
average of the results for 25 runs with a 70/30 training/testing split for both mild

and severe faults. The first column indicates that, from the 769 errors that the

Table 5.4: Results of the experiments simulating a single failure: average number
of type I and type II errors and the percentages that they represent.

Criteria ‘ 20 ‘ 2.50 ‘ 3o ‘ p=0.05 ‘ p=0.01
Severe fault

TYPET |[454+£11.1 |11.6 £7.1 | 6.4 4+4.8 | 50.8£9.7 | 15.5+ 7.3

5.9 % 1.51 % 0.83 % 6.61 % 2.0 %

TYPEIT | 81+£22 |10.1£+23|11.7£3.1| 5.1£2.1 | 5.2+£2.3

1.06 % 1.32 % 1.52 % 0.66 % 0.68 %

Mild fault
TYPET [4544111 |11.6+7.1] 64+4.8 |50.84+9.7| 15.5+7.3
5.9 % 1.51 % 0.83 % 6.61 % 2.0 %

TYPEII | 45.6 £6.2 | 57.6 =5.5 | 77.6 £5.7 | 225 £4.0 | 19.8 + 4.2
5.92 % 7.49 % 10.1 % 2.9 % 2.57 %

experiments should find, 45.4 false errors (type I) and 8.1 undetected errors (type
IT) resulted, on average for severe errors. Also, 45.4 type [and 45.6 type Il errors
were found for mild faults. Figure 5.4 presents this information of severe faults
of Table 5.4 graphically.

When examining the results for type I errors, both Tables 5.3 and 5.4 confirm
that as the threshold for accepting normal behaviour increases, the number of

type I error reduces. This is not too surprising. However, more significantly,

CHAPTER 5. EXPERIMENTAL RESULTS 93

% error

20 p=0.05 p_001

. Type I D Type I1

Figure 5.4: Graphical comparison of the results of the different criteria for severe
faults.
increasing the threshold for normal behaviour does not result in a significant
increment in the number of type II errors. For example, notice that when moving
from p = 0.05 to the p = 0.01, the incidence of type I errors decreases significantly
but type II errors remain very similar. The same situation holds for the 20 to the
3o criteria. Thus, choosing a criterion with a better type I error performance,
does not sacrifice type Il performance in these experiments.

Table 5.5 presents a global error rate for all the criteria analyzed, and for both
intensities of errors. These numbers are obtained by taking the average of the

two types and two intensities errors.

Table 5.5: Global performance measure of the first phase of the prototype

20 2.50 30 | p=0.05]p=0.01
47 %129 % 33 % | 42% 1.8 %

In general, the trade off between type I and II errors can be considered ap-
plication dependent, i.e., some applications will want to avoid type I errors at all
costs, whereas others may want to detect all real faults even if they obtain many
false alarms. For example, for equipment in an intensive care unit of a hospital,

it is important to warn the nurses about failures in the sensors even if there are

CHAPTER 5. EXPERIMENTAL RESULTS 94

some false alarms. In contrast, if a chemical process can not proceed in the pres-
ence of a failure, the validation needs to be very strict in the alarms that it issues
since frequent shut downs would be expensive. Additionally, an application may
also consider differently the kind of faults that are important, i.e., severe or mild.
For example, for soft and slow failures, the system may require stricter criteria

in order to detect small deviations from the normal trend of a signal.

5.3.3 Accuracy of the fault isolation phase

The results presented in this subsection correspond to the evaluation of the valida-
tion and isolation phases. That is, the results correspond to the output produced
by the probabilistic causal model described in Chapter 4. The propagation of
probabilities in this model produces a probability close to one for those sensors
whose extended Markov blanket is contained in the potential faulty list. Also, it
produces probabilities close to zero for those sensors whose EMB’s are not in the
potentially faulty list.

Since the results obtained in this phase are probabilities, a mapping of the
range of values between 0 and 1, to {correct,faulty} is required. The criterion

for this mapping is presented in Fig. 5.5. The parameter Hmain represents the

Probability
1
FAULT
Hman
Lmax
0 CORRECT

Figure 5.5: Final criteria to declare correct and faulty sensors.

minimum value for a high probability to be considered as a fault, while Lmax

CHAPTER 5. EXPERIMENTAL RESULTS 95

represents the maximum value for a low probability to be considered as cor-
rect. These parameters were necessary for obtaining the numbers presented in
Table 5.6. That is, type I errors were those whose value of probability was greater
that Hman, while type Il errors were the ones with lower values than Lmax. The
values in the zone in between do not produce errors. These values can be applic-
ation dependent and can be fixed through empirical evaluation. In this thesis,
Hmin was fixed at 0.75 while Lmax was fixed at 0.25. Notice that, in practice,
only the value corresponding to Hmin is required to consider a fault detected
and isolated.

Table 5.6 presents the final evaluation of the prototype with the percentage of
type I and II errors for severe errors. Lack of time has meant the results for mild
errors are left for future experiments. However, given the results in Table 5.4,

the errors for mild faults can be expected to have a similar pattern.

Table 5.6: Final evaluation: number of errors and their percentage for severe
faults.

20 2.50 3o p=20.05 | p=0.01

typel |45.0£11 | 1254+ 7.1 | 7.7T£5.0 | 37.8+8.2 | 7.T£5.6
17.3 % 4.8 % 2.9 % 14.5 % 2.9 %

typell | 1.3£1.2 | 25+£1.8 |244+1.8] 1.94+1.4 | 1.24+1.1
0.5 % 0.1 % 0.9 % 0.7 % 0.4 %

Type I errors imply that most of the sensors in a EMB present apparent
type I errors. This is more common as it can be seen in Table 5.6. That is,
there are cases where the existence of an invalid apparent fault, together with
the valid ones, completes the EMB of a misdiagnosed sensor. Hence, a type |
error is produced. On the contrary, type Il errors are detected at this stage when
most of the sensors of a EMB present misdiagnosed apparent faults. This is very
improbable as the results of Table 5.6 confirms. The percentages are obtained

comparing the average number of errors, with the total number of experiments.

CHAPTER 5. EXPERIMENTAL RESULTS 96

In this case, the total number is 260, i.e., the number of different cycles where a
single fault was simulated.

Before finishing this section, it is worth noting that the experiments were
carried out by simulating single failures only. The theory presented in Chapter 3
shows that multiple failures can be distinguished, except in the cases explicitly
mentioned in the theory. These cases were not considered in the results presented
in Table 5.6 (they were not considered type I errors). Hence, although lack of
time has prevented it here, an empirical evaluation of the behaviour of the sensor
validation model with respect to multiple failures could be carried out in the
future. The next section presents the results of the experiments when time is

considered, i.e., the performance profile of the any time validation algorithm.

5.4 Any Time Validation

Chapter 4 developed an any time sensor validation algorithm that utilizes an en-
tropy function as a criterion for selecting the next sensor to validate. This entropy
function calculates the amount of information that any single validation provides
for diagnosing all the sensors. Hence, to evaluate this criterion, this section com-
pares the performance profile of the any time sensor validation algorithm as a
function of time when the entropy based measure is used, and when a random
selection scheme is used.

Figures 5.6 and 5.7 show the quality response obtained as a function of the
number of validation steps for two sensors, C'H2 and C'H6. The entropy graph
represents the resultant quality with the entropy based scheme. The random
graph represents the experiment with a random selection scheme.

As these figures show the profile, in individual cases will, of course, vary. In
Fig. 5.6, the entropy based selection scheme takes around 3 steps before its quality

exceeds 80 % while the random criterion takes 8 steps. In Fig. 5.7, the quality

CHAPTER 5. EXPERIMENTAL RESULTS 97

'I _ S R ——
x—x—x~x~x,x’r;‘:ﬁ:i:i:i7-—i —a—u

09 + X/x

£
]
=)
g
| | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2]
Steps
— X~ Entropy — % Random

Figure 5.6: Quality response as a function of steps for the sensor C'H2

Quality

8 9 10 11 12 13 14 156 16 17 18 19 20 21

Steps

—>X—— Entropy — % Random

Figure 5.7: Quality response as a function of steps for the sensor C'H6

CHAPTER 5. EXPERIMENTAL RESULTS 98

of the entropy based scheme takes 15 steps before its quality exceeds 80 % while
the random scheme takes almost the 21 steps.

In these cases, this behaviour occurs since ¢'H2 has only one other sensor
that influences its diagnosis, and this is selected quite early. In the case of C'H6,
both criteria take longer to select all the sensors that influence the diagnosis of
C H6.

Figure 5.8 shows the resultant performance profile of the any time sensor

validation algorithm. That is, the quality of the response as a function of time.

1+
0.9 + X x—X—X
0.8
07 t
s 06 T
0.5
04 t

XX

Qualit

10.32 218.38
Time

—®— Random — X~ Entropy

Figure 5.8: Performance profile of the any time sensor validation algorithm
(time x 107 2sec.).

The experiments were repeated for the 260 instances of the testing file. Thus,
every one of the 21 sensors was simulated as faulty at least 12 times (12.6 times).
The entropy graph represents the average of the resultant quality with the entropy
based scheme for the 21 sensors. The random graph represents the average of
the same experiment with a random selection scheme. The time measurements
consider delays inserted in the execution, so a comparison between the two graphs

1

can be done'. That is, the time axis is a qualitative comparison rather than

IThis is due to the lowest resolution of time measurements in MsDos of 10772 sec.

CHAPTER 5. EXPERIMENTAL RESULTS 99

quantitative.
Alternatively, the results can also be evaluated by comparing the time required
to reach different levels of quality. For example in Fig. 5.8, when the random

criterion reaches 60 % of quality, the entropy criterion has already reached more

than 80 %.

5.5 Summary

This chapter presented the empirical evaluation of the theory and algorithm de-
veloped in this thesis. This evaluation was carried out on a problem whose
dependency model was not necessarily perfect. First, the origin of the data was
described, and how this data was utilized to obtain the probabilistic model. No-
tice that a tree was utilized here for simplicity. That is, in this application,
the results show that the precision that a tree provides is good enough. Other
applications may need more complex models. The testing environment was also
described in section 5.2. Experiments were carried out to evaluate: (i) the valida-
tion phase alone, (ii) the validation and isolation phases, and (iii) the performance
of the any time algorithm.

The results for the accuracy of the model were reported in terms of the type
I and type II errors and with respect to detecting severe and mild faults. The
results showed, that for this particular test application, more stringent criteria
for detecting failures reduced type I errors but did not significantly increase type
IT errors.

The results of the evaluation of the validation and isolation phases together
are shown in Table 5.6. Again, with a p value of 0.01, there are 2.9 % of type
I errors, and 0.4 % type Il errors. Notice that, in general, the sensor validation
algorithm performs almost perfectly with respect to undetected faulty sensors,

i.e., all the faults are detected. At the same time, the rate of incorrect detection

CHAPTER 5. EXPERIMENTAL RESULTS 100

faults 1s satisfactory for most of the criteria analyzed.

This chapter also evaluates the any time behaviour of the algorithm presen-
ted in Chapter 4. That was done by carrying out experiments to obtain the
performance profile of the entropy based selection scheme and comparing it with
a random selection scheme.

Of course, the profiles will differ in other applications and the extent to which

it affects an application will depend on the particular requirements.

Chapter 6

RELATED WORK

The thesis has developed a sensor validation algorithm that was evaluated, and
the results presented in the previous chapter. This chapter places this work
in the context of other related research. First, in section 6.1, the traditional
approaches of physical and analytical redundancy for dealing with the sensor
validation problem are reviewed. Their limitations are outlined and provide some
motivation for the use of artificial intelligence techniques. Second, section 6.2
describes some approaches to sensor validation that use Al techniques in different
application domains. Next, section 6.3 comments on related projects that have
a wider objective. These are projects for intelligent monitoring and diagnosis in
gas turbines. Finally, section 6.4 directs the reader to related research on any

time algorithms and Bayesian networks.

6.1 Traditional Approaches for Sensor Valida-
tion

The validation of sensors has been a concern ever since automatic control has

been implemented in plants. Since then, several approaches have been proposed

101

CHAPTER 6. RELATED WORK 102

including [Willsky 1976], [Fox et al. 1983], [Bacchus et al. 1995], and [Brooks &
Iyengar 1996]. The survey papers by [Basseville 1988], [Yung & Clarke 1989],
and [Frank 1990] give an overview of the main approaches and provide further
references.

The most traditional method for sensor validation has been to use physical
redundancy, i.e., the inclusion of several instruments that measure the same para-
meter of the process. Thus, the validation comes from simple majority voting
logic. However, this approach is prohibitive for many chemical plants where, for
example, adding more sensors might weaken the walls of the pressure vessels.
In addition, further techniques for fusing of information between the sensors is
required.

Another technique, used in the last two decades, is based on the use of analyt-
ical rather than physical redundancy. This technique is inspired by the inherent
redundancy contained in the static and dynamic relationships among the system
inputs and measured outputs. Specifically, the analytical redundancy approach
is based on the fact that the existing redundancy leads to relationships that can
simply be evaluated by information processing under fault free conditions, in the
control room. The idea is that faults of a dynamic system are reflected in the
physical parameters as, for example, friction, mass, viscosity, etc. These para-
meters are modelled with differential equations, and state estimation techniques
used to predict the physical parameters. The deviations from the nominal values
are computed to obtain the residuals, and the faults detected if the residuals are
not zero. Of course, more than one relationship may be violated in which case a
model to diagnose the faults is required.

The analytical redundancy technique has been widely used for fault diagnosis
in complete dynamic systems. However, there are several problems in using this

approach including [Frank 1990]:

CHAPTER 6. RELATED WORK 103

e The relationships between the process variables needs to be identified, and
represented with differential equations. This can be difficult, and sometimes

impossible.

e The approach is very sensitive to modelling errors. That is, the effects of
modelling errors obscures the effects of faults and is therefore a source of

false alarms.
o [t requires the development of a domain dependent fault diagnosis process.

These problems have encouraged the development of alternative approaches
to sensor validation. In particular, several researchers have applied Al techniques

in an attempt to solve the sensor validation problem.

6.2 Knowledge Based Approaches for Sensor Val-
idation

This section reviews some of the approaches for sensor validation that have util-
ized knowledge based techniques. There are several studies that have aimed to
adopt knowledge based techniques for sensor validation (e.g. [Dean & Wellman
1991], [Bacchus et al. 1995], [Brooks & Iyengar 1996]). The systems described in
this section were selected to be representative of a wide range of approaches and

more recent systems were preferred to other systems. The systems selected are:

e Sensor validation in space rockets [Bickmore 1993]. This was selected be-
cause it utilizes a combination of traditional and knowledge based tech-

niques to perform real time sensor validation.

e Sensor validation using neural networks [Khadem et al. 1992]. This was

selected since it uses the different technology of neural networks.

CHAPTER 6. RELATED WORK 104

e Self validation of sensors (SEVA) [Henry 1995]. This was selected primarily
because it takes a different approach from this thesis and the above ap-
proaches in that it proposes self diagnosing sensors. Its inclusion therefore

provides greater contrast and wider context.

In order to make it easier to contrast and compare the different approaches,

the review is structured with respect to the following characteristics:

e model utilized,

detection of faults,

fault isolation,

response time, and

application domain.

Sensor validation in space rockets

This project was developed by the NASA Lewis Research Center for detecting
sensor failures on liquid rocket engines [Bickmore 1993]. The approach has been
tested in the laboratory and will be installed in the main engine of the Space
Shuttle.

Model utilized. Previous studies carried out by Bickmore (1993) indicated
that no single algorithmic method is enough for the validation of sensors. He
concluded that several methods should be used and the results integrated or
fused into a final conclusion. For this reason, the project utilized two different
models: analytical redundancy and Bayesian networks. Figure 6.1 shows a linear
equation of the simplest form of the empirical relations used in this project.

The relations are integrated in a Bayesian network as shown in Fig. 6.2. There

is one node for every sensor and the other nodes represent relations that hold

CHAPTER 6. RELATED WORK 105

e

Figure 6.1: Example of a simple empirical relation.

between pairs of sensors.

R2

R4 (holds or not)
(holds or not) v
R1 S3
(holds or not) valid or invalid
A

A
valid or invalid

R3
(holds or not)

Figure 6.2: Bayesian network including the analytical redundancy relations.

All the nodes are binary, i.e., they can have only two values: node sensors can
be valid or invalid, while the relation nodes hold or do not hold. For example, a
failure in sensor S1 would influence the expected probability distribution of the
status of relation R1.

Fault detection. The basic method for detecting faults is the estimation
of a value using the relations of the analytical model. The difference between a
value predicted and the directly sensed value is called a residual. A validation
cycle is carried out by sampling the values of all the sensors and determining if
each of the relations hold or not by thresholding the residuals (for example by
three standard deviations).

Fault isolation. Once the residuals of all relations have been calculated,
the Bayesian network is instantiated. Then, a probability propagation algorithm

is utilized to evaluate the probability of each sensor being correct based on the

CHAPTER 6. RELATED WORK 106

status of the relations in the network. For example, from Fig 6.2,

P(S1, R1, R2, R4)
P(R1, R2, RA4)

P(S1| R1,R2, R4) =

The prior probability of the root nodes (the sensor’s status) is defined using the
mean time between failures (MTBF) parameter given by the sensor manufacturer.

Response time. The sensor validation process in this application is in real
time, i.e., the status of all the sensors is given faster than the sampling ratio.
This is achieved through a pre compilation of the probabilities that participate in
the propagation. For example, the probability of a binary relation holding given

that one of the sensors has failed is given by the formula

2 x 3 x standard deviation

range of the sensor

Application domain. As mentioned before, the purpose of this project
is the validation of sensors on the space shuttle’s main engine. The goal is to
prevent the controller, or safety system from making critical decisions, such as
the decision to shut an engine down, on the basis of data from faulty sensors.

Discussion. The approach presented in the report by Bickmore (1993) has
some characteristics in common with the one developed in this thesis. Both
utilize Bayesian networks and both are based on relationships between sensors.
However, the nature of the relationships is quite different. In Bickmore’s ap-
proach, the relationships are viewed as invariants that must hold between two
sensors if the sensors are working properly. In the approach in this thesis, the
relationships between sensors are defined by dependency relationships which need
not be binary. The way these relationships are obtained is also quite different.
The NASA approach uses experts’ knowledge and empirical experimentation for
obtaining the binary relationships, while this thesis utilizes a learning algorithm

that provides the dependency relations between all the sensors in the process.

CHAPTER 6. RELATED WORK 107

Sensor validation using neural networks

The nuclear industry has been very active in the development of techniques for
sensor validation [Upadhyaya & Eryurek 1992]. The work by Khadem et al.
(1992) utilized neural networks and was installed in a nuclear power plant in the
U.S.A.

Model utilized. This project utilized artificial neural networks to detect
faults in two sensors’ readings. The network consists of seven input nodes, one
hidden layer with four nodes, and two output nodes. The output of the network
represents the sensors that are being validated and the inputs correspond to
related variables. In order to decide which variables are the most related, this
project utilizes differential equations that describe the dynamics of the system.
With these equations, a linear approximation of the system was obtained to
establish the degree to which a set of variables are related to the target sensors.
A back propagation algorithm is used to learn the relationships between the input
variables and the sensor readings represented in the output layer.

Fault detection. The network is trained utilizing valid data from the process.
After the training process, new information is entered to the network inputs and
propagated to the output nodes to estimate the expected values of the sensors.
The real and the estimated values are compared and, if the difference is greater
than a specific threshold, a fault is identified. The paper mentioned error rates
below 2 % in both outputs.

Fault isolation. The technique proposed in this work was applied to just two
sensors of a subsystem of a nuclear power plant, so fault isolation was not con-
sidered. Additionally, the related sensors used as inputs are implicitly considered
as always correct.

Response time. The use of neural networks require a training period but

this is done off line. The application of this technique in line is almost immediate,

CHAPTER 6. RELATED WORK 108

with the advantage that it can be processed in parallel for more speed.

Application domain. This project was applied to the feed water flow meters
in two feed water flow loops of a nuclear power plant. The training data was
obtained from a plant simulator in the steady state of the plant at three different
power levels.

Discussion. Artificial neural networks have proved to be an appropriate
mechanism for the validation of a small set of sensors. The use of neural networks
offers an interesting way of predicting the expected value of a sensor that appears
to work in this application. However, when multiple sensors are involved, there
appears no obvious method for isolating faults. Further, the assumption that the
input nodes represent correct sensors is at odds with the overall aim of sensor
validation. In contrast, in this thesis, the relationships between sensors have
been used to isolate the faults. The use of neural networks for sensor validation
is nevertheless worth considering if it is possible to develop additional neural

networks to perform fault isolation.

Self validating sensors

The SEVA (SEnsor VAlidation) project is a collaboration between Oxford Uni-
versity, Foxboro GB Ltd and ICI, which began in 1989. It is a collaboration
between academia, sensor manufacturers and sensor users [Henry & Clarke 1993].
This project addresses the sensor validation problem from the perspective of tech-
nological advances in two fields: the construction of the sensor itself, and the com-
munication media between the sensor and the control room. Both fields utilize
digital technology based on microprocessors.

Model utilized. This project takes the validation of a sensor to inside the
sensor. Figure 6.3 [Henry 1995] presents their approach, namely, the construction

of a sensor (for one or several measurements) that can communicate with the

CHAPTER 6. RELATED WORK 109

control room through a digital communication channel called a Fieldbus.

)

The self

validated measurement value

validated uncertainty

validating

SE1nsor

N

measurement value status

Figure 6.3: Parameters issued by the self validating sensor.

A sensor provides the following information via the fieldbus:

VU: validated uncertainty. This is a measure used to quantify the error when
tracing the calibration of an individual instrument. It is a concept! applied

in numerous international standard documents, e.g., [ANSI 1985].

VMYV: validated measurement value. This signal is used to provide the best
estimate of the measurement signal. Under normal conditions, it is the
transducer measurement with some possible enhancements like expressed
directly in engineering units. Under minor faults, a correction can be ap-
plied using the techniques available in the sensor. If a severe fault is de-
tected, this signal provides an estimate based on historical data and the

knowledge embedded in a sensor’s hardware.

MYVS: measurement value status. This signal indicates the detected status
of the measurement. FEven if the VMV provides a good estimate, the MVS

reports that it is only an estimate, or it indicates that the signal is validated

Do not confuse this engineering term with the AI concept of uncertainty.

CHAPTER 6. RELATED WORK 110

and free of errors. It has four status values: no fault, mild fault, severe fault

and severe temporal fault.

These three signals indicate the detection of a fault, and the severity of it, so the
control system may take a corrective action.

Fault detection. Faults are detected with self diagnosis routines that are
carried out within the sensor. These multi signal sensors utilize additional sig-
nals other than process measurements. For example, information provided by
the manufacturer (e.g., physical and electric properties, spectral analysis of the
signals, etc.) is included in the sensor and is used to monitor the health of the
device. This knowledge can be used to estimate the value that a signal may
have in the presence of a fault. In general, as Henry (1995) mentioned, the de-
tection method in every sensor depends on the characteristics of the sensor and
on the application that it is designed for. There can be analytical redundan-
cies and/or knowledge based techniques involved. Notice that these techniques
are used within the sensor, in the microprocessor, and utilize a small number
of signals and parameters for the detection of faults between a small number of
measurements.

Fault isolation. Since each sensor looks after itself, the problem of fault
isolation does not occur.

Response time. Since the validation is carried out inside the sensors using
microprocessors and digital electronic devices, response time is very quick.

Application domain. These types of sensors have a wide range of potential
applications, specially in the chemical industry. However, they are still under
development and have yet to be validated.

Discussion. This approach is very different from the other approaches. In
concentrating on the self validation of sensors, information from other sensors

is not utilized nor needed. The problem of fault isolation does not occur. The

CHAPTER 6. RELATED WORK 111

problem of deciding if the sensor is faulty using its own knowledge is based on
analytical redundancy. The main disadvantage of this approach is that the sensor
itself becomes more complex, and presumably more expensive to manufacturer.
Further, even if this approach is validated, traditional sensors will still be in

operation for many years.

6.3 Intelligent Diagnosis

This section briefly describes two projects that apply artificial intelligence tech-
niques for the diagnosis of gas turbines. Their focus is on the diagnosis of the
performance of a turbine where the validation of sensors is not the main focus.
They are described here since they can be considered as the higher layers de-
scribed in Chapter 1 and therefore provide better context for the work carried

out in this thesis.

Diagnosis of thermal performance

This project was developed for diagnosis of gas turbines for an auxiliary power
unit of a commercial aircraft [Breese et al. 1992]. The aim of this project was
to model the whole process by using a Bayesian network that includes sensor
validation as well as the fault diagnosis process. A Bayesian network was used to
represent the model of the whole process and contained small sections devoted to
the validation of sensors. Thus, the kind of models first described in Chapter 1
and shown in Fig. 6.4 (Fig. 3.3) can be found as part of the whole model. The
figure shows three cases. In (a), they utilise directly the value V,, as the unique
source of information. In (b), they use a simplified model where V; and S cause
V. Finally, in Fig. 6.4(c) they use a sensor state S that must obtain its value

correct, false}t) from another source (human or computerised).
) p

CHAPTER 6. RELATED WORK 112

OENOBRONNGO
) @5
(a) (b) (©)

Figure 6.4: Three different uses of sensor related nodes in a overall process model.

Summarizing, this project requires the validation of only a subset of the
sensors in the gas turbine. In other cases, they make an implicit assumption
that the signals utilized in other aspects of the diagnosis model, are correct. For
example, in the Fig. 6.4(a) the value of the variable is considered correct, while
in (b) the status S of the sensor is supposed to be available. Thus, this approach
can be viewed as one of the higher layers of the proposed model in Chapter 1,

where the validation of all the sensors is not the main concern.

The TIGER project

TIGER is a knowledge based gas turbine condition monitoring system [Milne &
Nicol 1996]. Its goal is to monitor the turbine on a regular basis in order to
establish when maintenance actions need to be performed. It has been in use at
Exxon Chemicals Ltd. in Scotland. TIGER consists of three systems that run

independently and which are coordinated by a fault manager. These systems are:

e KHEOPS: This is a high speed rule based system utilized for limit checking
and other related functions. For example, checking for different limits on

different operating regimes of the turbine.

o [xTeT: This monitors the dynamic reaction of the gas turbine. It is basically

a language to specify sequences of events that can encode causal relations

CHAPTER 6. RELATED WORK 113

between the elements of the process. It is also an interpreter that can trace

the operations of the turbine in order to detect deviations.

e CA-EN: This is a model based supervision system. It is based on two levels
of knowledge representation mechanisms: (i) analytical, which represents
differential equations, and (ii) causal graphs, which represent the flow of

events caused by a perturbation.

The TIGER system covers the most common and expected faults in the following

areas:
o fuel system and fuel valves,
e combustion problems,
e compressor and turbines,
e second stage nozzles,
e inlet guide vanes,

e steam injection and helper turbine.

Summarizing, the TIGER system is a complete monitoring system already
installed in a plant. It utilizes several knowledge representation mechanisms as
well as different reasoning methods (e.g., rule based, model based, analytical
based). It assumes that the information provided by the sensors is accurate,
unless an abnormal situation is found. That is, TIGER first looks for faults in

the process and then, it may deduce that the fault is in a sensor.

6.4 Any Time Algorithms and Bayesian models

This thesis has developed a sensor validation algorithm utilizing Bayesian models

and which has an any time behaviour. This section therefore gives an indication

CHAPTER 6. RELATED WORK 114

of related work in these areas.

The work on any time algorithms was first introduced in the studies by Horvitz
(1987) and Dean & Boddy (1988) in which they tackled the basic problem of
returning an answer whose quality improves with time. More recently, Zilberstein
[Zilberstein & Russell 1995, Zilberstein 1993, Zilberstein & Russell 1996] described
an approach in which several sequential any time modules of a system are compiled
and a composite quality measure is obtained. In all these studies, the measure
of quality is not specified except to state that it can be defined in terms of the
certainty, accuracy, and specificity of the answer. In this thesis, this measure
had to be defined and a measure that combines both certainty and specificity
was used. Such a combined measure may have wider applications to other any
time algorithms. In particular, it may be easier to visualize and optimize the
performance of an any time algorithm with this information theoretic composite
measure than with the three separate measures.

Another important area of research on any time algorithms is work on in-
telligent planning [Boddy & Dean 1994]. They addressed the problem faced by
complex intelligent systems in which the time spent in decision making affects
the quality of the responses generated by the system. Their approach is called
deliberation scheduling in which the intelligent system is capable of taking its own
computational resources into consideration during planning and problem solving.

Also, research has been conducted in time dependent utility, as in time critical
contexts, where the utility of the system’s outcomes diminish significantly with
delays in taking appropriate action [Horvitz & Rutledge 1991], [D’Ambrosio 1992],
[Horvitz & Barry 1995].

Given a sensor validation algorithm like the one developed in this thesis, the
above work can be utilized to develop the higher layers of a process model.

Any time algorithms have also been used in probabilistic reasoning. The idea

CHAPTER 6. RELATED WORK 115

is to obtain any time behaviour in the computation for propagating probabilit-
ies. One approach is a modification of the original Bayesian network to a form
in which propagation can be performed faster. For example, Wellman & Liu
(1994) proposed a state space abstraction in which the states of selected nodes
are merged. Another example of this network modification is proposed by Jitnah
& Nicholson (1997). They eliminate some variables that have less influence on
the corresponding query node. So, in these approaches, fast results are obtained
and, if more time is available, further modifications closer to the original network
are conducted to incrementally increase the precision of the answers.

Other approaches for any time probabilistic reasoning consist of bounding the
probability values within certain intervals. This is achieved by taking a subset
of the information needed to specify the complete Bayesian network [Ramoni
1995],[D’Ambrosio 1993]. Practical experiments comparing several approaches is

reported in the paper by D’Ambrosio & Burgess (1996).

Chapter 7

CONCLUSIONS AND FUTURE
WORK

The primary objective of this thesis was to develop a theory and an algorithm
for sensor validation that could be used as part of a layered model of a real time
process.

This chapter summarizes the main contributions of this thesis and future
work. First, section 7.1 describes the key aspects of the developed theory and
sensor validation algorithm. Then, it summarizes the results of evaluating the
algorithm, and discusses the relationship with other work. Finally, section 7.2

presents the future work.

7.1 Conclusions

Sensor validation is an important problem whose solution would make a significant
contribution to the use of real time systems where information is obtained via
sensors. Since there is uncertainty in the readings obtained from sensors, this
thesis has proposed the use of Bayesian networks as a basis for sensor validation.

A Bayesian network is used to model the relationships between the variables in

116

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 117

a process. Probabilistic propagation is used to obtain the posterior distribution
of a variable given its related variables. If the observed value differs from the
expected behaviour, the sensor is considered to be potentially faulty. The isolation
of real faults from potential ones is based on a property of a Markov blanket. The
property states that if a sensor is faulty, it will produce potential faults in all the
sensors in its Markov blanket. The theory developed shows how this property can
be used to isolate single failures from the set of sensors identified as potentially
faulty. The theory also shows that multiple failures can be distinguished provided
that the set of potentially faulty sensors can be obtained by forming a unique
combination of the sensors’ extended Markov blankets. When this is not possible,
higher layers of a process model are provided with a list of sensors whose extended
Markov blankets are a subset of the potentially faulty sensors. This list will
normally be smaller than the set of potentially faulty sensors and could be used
by the higher layers to perform diagnosis.

The developed theory results in a sensor validation algorithm that operates in
batch mode but which is inappropriate for use in real time processes. Hence, this
thesis developed an any time version of the sensor validation algorithm. The first
problem faced was to convert the batch mode operation, where all the sensors
were validated before the results can be presented, to one where the results can
be presented at any time. This was done by adopting a cyclic process whose
output is the probability of failure of each sensor. Within each cycle, a sensor is
selected, validated, and its effect on the probability of failure of all the sensors is

revised. To achieve this, the following problems had to be addressed:

e How can the effect of a potentially faulty sensor on the other sensors be

calculated?

e How can the next sensor be selected so as to improve the performance of

the any time algorithm?

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 118

The effect of detecting potentially faulty sensors was modelled by adopting a
Bayesian network with two layers in which one layer consisted of nodes represent-
ing real faults and a second layer which consisted of nodes representing potential
faults. The dependencies between the real and potential faults, namely that the
real faults result in potential faults, were obtained from the extended Markov
blankets of the sensors. Then, when a sensor is detected as faulty, probabilistic
propagation can be used to update the probability of failure of all the sensors.

The problem of selecting the next sensor was addressed by noticing that Shan-
non’s entropy measure could be used to represent the information provided by
the state of the probabilities of failure. The amount of information that would
be gained by validating each sensor can be calculated and the sensor which gives
the most information is selected as the next sensor. The amount of information
also provides a suitable measure for the quality of the answer given by the sensor
validation algorithm.

The theory and the algorithm were evaluated by applying it to the validation
of temperature sensors of a gas turbine at the Goémez Palacio power plant in
México. The accuracy of the theory and the model was evaluated by carrying out
experiments to determine the number of sensors incorrectly reported as faulty or
working. First, a learning algorithm was used to obtain the dependencies between
the variables. Then, in each experiment 70 % of the data was used for training
the network and 30 % was used for testing by simulating single faults. Results
were obtained for the number of incorrect classifications both for severe and mild
sensor faults. In both cases, the threshold criteria for accepting normal behaviour

was also varied. The main findings were as follows.

e The model works well for this application. The best results for the fault
detection phase were obtained with a p wvalue criterion of 0.01 in which

2 % of the correct sensors, and less than 1 % of the faulty sensors were

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 119

misdiagnosed. The poorest results were obtained when a 20 criterion was
used, in which case, almost 6 % of the correct sensors, and 1 % of the fault

sensors were misdiagnosed.

o As expected, when the type of faults become less severe, it is harder to
detect faulty sensors. However, the results obtained for mild faults are still
reasonably good. Thus, with the p value criterion of 0.01, less than 3 % of

the faulty sensors were not detected.

o As the criteria for accepting normal behaviour becomes less stringent, the
number of working sensors incorrectly diagnosed as faulty reduces. This
however, does not result in an equivalent increase in the number of faulty
sensors misdiagnosed. For example, with the 2o criterion, 5.9 % of the
correct sensors, and 1.1 % of the faulty sensors were misdiagnosed. When
this criterion is loosened to 3o, 0.8 % of the correct sensors, and 1.5 % of

the faulty sensors were misdiagnosed.

To evaluate the any time version of the algorithm, experiments were carried
out to determine the performance profile of the algorithm. The experiments
were run with the entropy based selection scheme and with a random selection
scheme. The results of the experiments were presented as profiles in which the
quality increases with time. The results show that on average, the entropy based
selection scheme performs significantly (16 %) better than the random selection
scheme.

The developed algorithm has been compared to several other approaches to
sensor validation. The comparison was carried out with respect to the model util-
ized, the way faults are detected, the fault isolation scheme used, the response
time and the domain of application. To achieve fault detection, most of the ap-
proaches rely on analytical model of the process. Such models are not easy to

obtain and represent. In contrast, the approach developed in this thesis utilizes

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 120

existing work on learning Bayesian models to obtain the relationships between the
variables in the process. The other approaches either ignore or have weak mech-
anisms for fault isolation. An exception is the work of Bickmore (1993) in which
fault isolation is achieved by calculating the probability of a faulty sensor given
the status of relationships that should hold if the sensors are working properly.
However, unlike the approach developed in this thesis, the dependencies between
the sensors and the relationships are binary. This means that the number of rela-
tionships that need to be manually identified increases exponentially. In terms of
the response time, the reviewed systems all have good real time performance. For
example, the system developed by Khadem et al. (1992) achieves good perform-
ance by utilizing neural networks in which propagation is quick once the network
has been trained. In this thesis however, the use of Bayesian propagation has
meant that pre compilation and any time techniques had to be utilized in order
to achieve good performance. In terms of the domain of application of the re-
viewed systems, it is interesting to note that sensor validation is being applied to
a wide range of domains including space rockets, nuclear power plants, and the
chemical industry.

The thesis also mentions related work on any time algorithms and Bayesian
networks. Within the field of any time algorithms, separate measures of quality,
namely certainty, accuracy and specificity, have been proposed and used. In this
thesis, an entropy based measure was utilized that combined both the certainty
and specificity measures, making it easier to present performance profiles. This
measure may have wider application to other any time algorithms. The way this
thesis utilizes research on Bayesian networks is novel. Bayesian networks origin-
ated as a way of modelling diagnosis problems in which some of the information is
known and propagation is used to calculate the probabilities of unknown events.

In contrast, for the sensor validation model developed in this thesis, the values of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 121

all the events are known, and the aim is to detect deviations from predicted val-
ues. This could have wider applications to problems where information needs to
be validated, for example, to check for consistency or to identify false information.

To conclude, the main contributions of this thesis are the development of a
theory of sensor validation using Bayesian networks, the development of a sensor
validation algorithm, and the development of an any time sensor validation al-
gorithm. The theory should provide a good basis for further work on sensor
validation and the any time algorithm could be developed into a system that is

of great practical value.

7.2 Future Work

There are a number of possible enhancements to the algorithm and the theory de-
veloped in this thesis that could lead to further research. This section summarizes

some of these problems and gives preliminary directions for solving them.

Failures in the process

When the operator or the control system receives an alarm, sometimes a question
remains: what is faulty, the sensor or the process? Since a failure in the process
may result in abnormal readings from the sensors, the developed algorithm may
report a faulty sensor. The use of a higher layer in the diagnostic system must
consider this situation. By using an appropriate model of the whole process,
this higher layer can take the alarm from the sensor validation layer as extra

information in order to deduce a fault in the process.

Multiple indistinguishable failures

Chapter 3 discusses the problem of identifying multiple failures. In its present

form, the theory only enables the identification of the real faults when a unique

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 122

combination of the sensor’s Markov blankets results in the set of potentially
faulty sensors. Extending the theory so that it could go further in isolating
multiple faults would be interesting. However, the most likely solution is to use
additional domain knowledge about the process. For example, in the validation of
temperature sensors there can be other signals that may confirm the state of some
temperature sensors. If a blade path temperature sensor reading is low together
with a very high temperature in two of the beadings (i.e., undistinguishable double
fault), then consulting the generation sensor and the speed of the turbine may
give more information about the state of these sensors (parameters related to
each of these temperature sensors).

One possible solution to the two problems stated above that is worth in-
vestigating, is to use probabilistic temporal networks [Nicholson & Brady 1994,
Kanazawa 1991, Berzuini 1990, Dean & Kanazawa 1988, Hanks 1988].

Ignorance assumption

At the beginning of this thesis, in Fig. 1.3(¢), a basic model of the sensor diagnosis
was given. That is, the state S of a sensor can be inferred with the values of the
measure and the estimated real value. In practice, in Fig. 4.8 shows the model for
fault isolation where the roots of that model represent the state of the sensors.
The prior probability of these nodes was assumed to be 0.5, representing ignorance
about the chances of failure of the sensor. That assumption was taken as an
approximation in order to keep the model simple. Some applications may require
and support the inclusion of additional knowledge about the failure behaviour
of a specific sensor. For example, the manufacturer of the sensors may provide
some parameters like the mean time between failures (MTBE). Other important
information that can be used include the location of the sensor in the plant, the

importance of the signal in the control of the process, etc.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 123

Changing models problem

The developed theory and algorithm assumes that the Bayesian network repres-
enting the process does not change. In practice, the model may change as the
process moves into a new phase. For example, the probabilistic model obtained
in Fig. 5.2 is valid only during the start up phase of the turbine. In this phase,
the variables measured by the sensors maintain a relationship based on the dy-
namics of the process. However, once the generator reaches the required speed,
and the generator is synchronised with the transmission network, a steady state
phase continues. This steady state phase requires only to maintain the speed and
to respond to the load changes. Also, the stopping phase of the plant requires a
different model. Thus, different relations hold between the same set of variables
during the phases of the process. If, as in this application, there are fixed points
at which these transitions occur, then separate Bayesian networks could be de-
veloped and the approach developed in this thesis could be used. However, if this

not the case, then a more elaborate solution needs to be found.

Appendix A

Partial Results

In order to provide a better understanding of the calculations proposed in Chapter 4,

a sample of the results are included.

Assume the model presented in Fig 5.2. This appendix presents the results of a
validation cycle when there is a simulated fault in sensor C'H6. Fach entry in the
table consists of four parts. The first part indicates the sensor being validated and
its posterior probability distribution. This part shows the probability assigned to

all the intervals in which the variable has been discretized. For example:
Posteriors(CH4): 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

describes the posterior distribution of sensor ('H4 after the propagation. Notice
that the propagation indicates that the real value read by the sensor is not possible
in any interval. So there is definitely a fault. The second part shows the real value

read by the sensor and the probability of its interval. For example:
P(85.42) = 0.00

indicates that sensor C'H4 has a value of 85.42 which is not possible in this stage
of the process, so a probability of 0.0 is obtained. The third part indicates the

content of the 21 elements of the probability of failure vector Py. For example:

124

APPENDIX A. PARTIAL RESULTS 125

Probability of failure vector:
[0] 0.50 [1] 0.50 [2] 0.50 [3] 0.50 [4] 0.50 [5] 0.50 [6] 0.50
[7] 0.50 [8] 0.50 [9] 0.50 [10] 0.50 [11] 0.50 [12] 0.50 [13] 0.50

[14] 0.50 [15] 0.50 [16] 0.50 [17] 0.50 [18] 0.50 [19] 0.50 [20] 0.50

describes the 21 values of the vector. Notice that, since the numbers are indicated
with only two decimal digits, the probabilities shown seem to be unchanged from
their initial value. Finally, the fourth part presents the normalized quality value

obtained in the indicated validation step using equation 4.3. For example:
Quality step 0: 0.00

On the following page, the first entry indicates the validation of C'H4. It
indicates that the real value measured by the sensor, and the estimated value
differ completely. In comparison, the validation of C H1 (10 entry) produces a
wider probability distribution.

Notice that the validation cycle reports apparent faults in the sensors C'H4,
CH6, CH5, CAT, AL1, and AL2. These corresponds to the EM B(C H6).

The quality function starts with zero and increases after the third step. This
function reaches 75 % after the step 15 when it reaches close to its final value.
After this step, the validation of the remaining sensors provides no more informa-
tion about the state of the system. Now, the vector Py, is initialized to 0.50 in all
its elements. Then, the validation of C'H4 in the first step makes no significant
change given the influence of C'H4 on the system. Next, the validation of C' H6
as faulty produces no significant changes in Py. In the fourth step, after the val-
idation of C'A4 and AEF as correct, P;/(CH4,C A4, AEF,CA2,C A3,C Ab) goes
close to zero, i.e., the system indicates that these sensors are correct. The final
state of the P vector indicates certain failure in C'H6, and some probability of
failure in CH5,C AT, ALl and AL2. That is, a failure in C'H6 and in its four

sons (see chapter 3).

APPENDIX A. PARTIAL RESULTS

Posteriors(CH4): 0.00 0.00 0.00 0.00

P(85.42) = 0.00

Probability of failure vector:
[0] 0.50 [1] 0.50 [2] 0.50
[7] 0.50 [8] 0.50 [9] 0.50
[14] 0.50 [15] 0.50 [16] 0.50

Quality step 0: 0.00

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CH8): 0.00 0.48 0.52 0.00

P(141.00) = 0.00

Probability of failure vector:
[o0] 0.510 [1] 0.50 [2] 0.50
[7] 0.50 [8] 0.50 [9] 0.50
[14] 0.50 [15] 0.50 [16] 0.50

Quality step 1: 0.00

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA4): 0.00 0.00 1.00 0.00

P(313.76) = 1.00

Probability of failure vector:
[0] 0.53 [1] 0.50 [2] 0.50
[7] 0.52 [8] 0.50 [9] 0.50
[14] 0.50 [15] 0.50 [16] 0.50

Quality step 2: 0.31

[3] 0.
[10] ©.

[17]1 0.

Posteriors(AEF): 0.66 0.34 0.00 0.00

P(117.05) = 0.66
Probability of failure vector:
[0] 0.00 [1] 0.50 [2] 0.50

L 71 0.00 [8] 0.01 [9] 0.50

[3] 0.

[10] ©.

0.00 0.00

50 [4] o.
50 [11] 0.

50 [18] 0.

0.00 0.00

50 [4] o.
50 [11] 0.

50 [18] 0.

0.00 0.00

50 [4] o.
52 [11] 0.

50 [18] 0.

0.00 0.00

50 [4] o.

01 [11] 0.

0.00 0.00

50 [5] 0.
50 [12] 0.

50 [19] 0.

0.00 0.00

51 [5] 0.
50 [12] 0.

50 [19] 0.

0.00 0.00

51 [5] 0.
52 [12] 0.

50 [19] 0.

0.00 0.00

52 [5] 0.

01 [12] 0.

126

0.00 0.00 0.00

50 [6] 0.50
50 [13] 0.50

50 [20] 0.50

0.00 0.00 0.00

51 [6] 0.50
50 [13] 0.51

51 [20] 0.51

0.00

51 [6] 0.52
50 [13] 0.51

51 [20] 0.51

0.00

52 [6] 0.00

50 [13] 0.52

APPENDIX A. PARTIAL RESULTS

[14] 0.01 [15] 0.50 [16] 0.50

Quality step 3: 0.40

[17]1 0.

Posteriors(CH3): 0.00 0.00 0.93 0.07

P(123.37) = 0.93

Probability of failure vector:

L o] 0.o00 [1] 0.50 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 4: 0.41

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CH5): 0.00 0.00 0.00 0.00

P(77.07) = 0.00

Probability of failure vector:

L o] 0.o00 [1] 0.50 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 5: 0.42

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA7): 0.00 0.00 0.00 0.00

P(108.92) = 0.00

Probability of failure vector:

L o] 0.o00 [1] 0.50 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 6: 0.43

[3] 0.
[10] ©.

[17]1 0.

Posteriors(AL1): 0.00 0.00 0.00 0.00

P(62.64) = 0.00

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

50 [19] 0.

0.00 0.00

52 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

67 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

80 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

52 [20] ©.

0.00 0.00

52 [6] 0.
50 [13] ©.

52 [20] ©.

0.00

67 [6] O.
50 [13] ©.

50 [20] ©.

0.00 0.00

60 [6] 0.
50 [13] ©.

50 [20] ©.

0.00 0.00

127

0.00

0.00

0.00

APPENDIX A. PARTIAL RESULTS

Probability of failure vector:

L o] 0.o00 [1] 0.50 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 7: 0.43

[3] 0.
[10] ©.

[17]1 0.

Posteriors(AL2): 0.00 0.00 0.00 0.00

P(65.20) = 0.00

Probability of failure vector:

L o] 0.o00 [1] 0.50 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 8: 0.48

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CH1): 0.00 0.00 0.00 0.00

P(95.75) = 0.33

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 9: 0.52

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA8): 0.27 0.40 0.33 0.00

P(281.67) = 0.33

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.50 [16] 0.50

Quality step 10: 0.57

[3] 0.
[10] ©.

[17]1 0.

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

0.47 0.33

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

89 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

94 [5] 0.
01 [12] 0.

50 [19] 0.

0.20 0.00

94 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

95 [5] 0.
01 [12] 0.

50 [19] 0.

56 [6] 0.
50 [13] ©.

56 [20] O.

0.00 0.00

53 [6] 0.
50 [13] ©.

53 [20] O.

0.00

53 [6] 0.
50 [13] ©.

53 [20] O.

0.00 0.00

53 [6] 0.
01 [13] ©.

53 [20] O.

128

0.00

0.00

APPENDIX A. PARTIAL RESULTS

Posteriors(AX2): 0.03 0.97 0.00 0.00

P(27.49) = 0.97

Probability of failure vector:
[0] 0.00 [1] 0.01 [2] 0.01
[7] 0.o0 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.01 [16] 0.50

Quality step 11: 0.61

[3] 0.
[10] ©.

[17]1 0.

Posteriors(EM1): 0.00 0.00 0.00 0.00

P(974.42) = 0.74

Probability of failure vector:
[0] 0.00 [1] 0.01 [2] 0.01
[7] 0.o0 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.01 [16] 0.01

Quality step 12: 0.66

[3] 0.
[10] ©.

[17]1 0.

Posteriors(EM2): 0.00 0.00 0.00 0.00

P(974.42) = 0.96

Probability of failure vector:
[0] 0.00 [1] 0.01 [2] 0.01
[7] 0.o0 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.01 [16] 0.01

Quality step 13: 0.71

[3] 0.
[10] ©.

[17]1 0.

Posteriors(EM3): 0.00 0.00 0.00 0.00

P(994.64) = 0.79
Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01

[3] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

50 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

51 [18] 0.

0.00 0.00

01 [4] o.
01 [11] 0.

01 [18] 0.

0.00 0.00

01 [4] 1.

0.00 0.00

95 [5] 0.
01 [12] 0.

50 [19] 0.

0.00 0.00

96 [5] 0.
01 [12] 0.

51 [19] 0.

0.00 0.00

97 [5] 0.
01 [12] 0.

52 [19] 0.

0.00 0.00

00 [5] 0.

129

0.00

53 [6] 0.00
01 [13] 0.53

53 [20] 0.53

0.74 0.26 0.00

52 [6] 0.00
01 [13] 0.52

52 [20] 0.52

0.96 0.04 0.00

52 [6] 0.00
01 [13] 0.52

52 [20] 0.52

0.79 0.21 0.00

50 [6] 0.00

APPENDIX A. PARTIAL RESULTS

L 71 0.00 [8] 0.01 [9] 0.50
[14] 0.01 [15] 0.01 [16] 0.01

Quality step 14: 0.76

[10] ©.

[17]1 0.

Posteriors(CA1): 0.94 0.06 0.00 0.00

P(254.42) 0.94

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
[71 0.00 [8] 0.00 [9] 0.01
[14] 0.01 [15] 0.01 [16] 0.01

Quality step 15: 0.76

[3] 0.
[10] ©.

[17]1 0.

Posteriors(AX1): 1.00 0.00 0.00 0.00

P(23.91) 1.00

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
[71 0.00 [8] 0.00 [9] 0.01
[14] 0.00 [15] 0.01 [16] 0.01

Quality step 16: 0.76

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA2): 0.99 0.01 0.00 0.00

P(253.54) 0.99

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
L 71 0.00 [8] 0.00 [9] 0.00
[14] 0.00 [15] 0.01 [16] 0.01

Quality step 17: 0.77

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA3): 0.13 0.08 0.10 0.15

01 [11] 0.

01 [18] 0.

0.00 0.00

01 [4] 1.
01 [11] 0.

01 [18] 0.

0.00 0.00

01 [4] 1.
01 [11] 0.

01 [18] 0.

0.00 0.00

01 [4] 1.
01 [11] 0.

01 [18] 0.

0.38 0.15

01 [12] 0.

01 [19] 0.

0.00 0.00

00 [5] 0.
01 [12] 0.

01 [19] 0.

0.

00

00 [5] 0.
01 [12] 0.

01 [19] 0.

0.00 0.00

00 [5] 0.
01 [12] 0.

01 [19] 0.

0.00 0.00

130

01 [13] 0.50

50 [20] 0.50

0.00

50 [6] 0.00
01 [13] 0.50

50 [20] 0.50

50 [6] 0.00
01 [13] 0.50

50 [20] 0.50

0.

00

50 [6] 0.00
01 [13] 0.50

50 [20] 0.50

0.00 0.00 0.00

APPENDIX A. PARTIAL RESULTS

P(164.75) = 0.15

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
L 71 0.00 [8] 0.00 [9] 0.00
[14] 0.00 [15] 0.01 [16] 0.01

Quality step 18: 0.77

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CA5): 0.00 0.00 0.33 0.36

P(290.02) = 0.36

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.01
L 71 0.00 [8] 0.00 [9] 0.00
[14] 0.00 [15] 0.01 [16] 0.01

Quality step 19: 0.78

[3] 0.
[10] ©.

[17]1 0.

Posteriors(CH2): 0.00 0.00 0.00 0.00

P(124.69) = 0.47

Probability of failure vector:

L o] 0.00 [1] 0.01 [2] 0.00
L 71 0.00 [8] 0.00 [9] 0.00
[14] 0.00 [15] 0.01 [16] 0.01

Quality step 20: 0.78

[3] 0.
[10] ©.

[17]1 0.

01 [4] 1.
00 [11] 0.

01 [18] 0.

0.31 0.00

01 [4] 1.
00 [11] 0.

01 [18] 0.

0.00 0.53

00 [4] 1.
00 [11] 0.

01 [18] 0.

00 [5] 0.
01 [12] 0.

01 [19] 0.

0.00 0.00

00 [5] 0.
00 [12] 0.

01 [19] 0.

0.47 0.00

00 [5] 0.
00 [12] 0.

01 [19] 0.

50 [6] 0.
01 [13] ©.

50 [20] ©.

0.00 0.00

50 [6] 0.
01 [13] ©.

50 [20] ©.

0.00 0.00

50 [6] 0.
01 [13] ©.

50 [20] ©.

131

0.00

0.00

Bibliography

ANSI (1985), Measurement uncertainty, Technical Report 19.1-1985,
ANSI/ASME.

Bacchus, F., Halpern, J. & Levesque, H. (1995), Reasoning about noisy sensors
in the situation calculus, in ‘Proc. International Joint Conf. on Artificial

Intelligence’, IJCAI, Montreal, Canada, pp. 1933-1940.

Basseville, M. (1988), ‘Detecting changes in signals and systems’, Automatica
24(3), 309-326.

Berzuini, C. (1990), Representing time in causal probabilistic networks, in ‘Proc.

Sixth Conference on Uncertainty in Artificial Intelligence’, Cambridge, Mass,

U.S.A., pp. 15-28.

Bickmore, T. (1993), Real time sensor data validation, Technical Report NAS
3-25883, NASA Lewis Research Center, U.S.A.

Boddy, M. & Dean, T. (1994), ‘Decision theoretic deliberation schedulling for
problem solving in time-constrained environments’, Artificial Intelligence

67(2), 245-286.

Breese, J., Horvitz, E., Peot, M., Gay, R. & Quentin, G. (1992), Automated de-

cision analytic diagnosis of thermal performance in gas turbines, in ‘Proc.

132

BIBLIOGRAPHY 133

Intl. Gas Turbine and Aeroengine Congress and Exposition’, Cologne, Ger-

many, pp. 1-9.

Brooks, R. & Iyengar, S. (1996), ‘Robust distributed computing and sensing
algorithm’, Computer 29(6), 53-60.

Buntine, W. (1994), ‘Operations for learning with graphical models’, Journal of
Artificial Intelligence Research 2, 159-225.

Chow, C. & Liu, C. (1968), ‘Approximating discrete probability distributions
with dependence trees.”, IEFE Trans. on Info. Theory pp. 462-467.

Cohen, P. (1995), Empirical methods for artificial intelligence, MIT press, Cam-
bridge, Mass., U.S.A.

Cooper, G. (1984), NESTOR: A computer-based medical diagnostic aid that
integrate causal and probabilistic knowledge, PhD thesis, Computer Science

Dept., Stanford Univ., U.S.A. Rep. No. STAN-CS-84-48.

Cooper, G. (1990), ‘The computational complexity of probabilistic inference using

bayesian networks’, Artificial Intelligence 42, 393-405.

Cooper, G. & Herskovitz, E. (1992), ‘A bayesian method for the induction of

probabilistic networks from data.’, Machine Learning 9(4), 309-348.

D’Ambrosio, B. (1992), Value-driven real time diagnosis, in ‘Proceedings of the

Third International workshop on the principles of diagnosis’.

D’Ambrosio, B. (1993), Incremental probabilistic inference, in ‘Proceedings of

the Ninth Conference on Uncertainty in Artificial Intelligence’, Washington,
D.C., U.S.A.

D’Ambrosio, B. & Burgess, S. (1996), Some experiments with real-time de-

cision algorithms, in ‘Proceedings of the Twelfth Annual Conference on

BIBLIOGRAPHY 134

Uncertainty in Artificial Intelligence (UAI-96)’, Portland, Oregon, U.S.A.,
pp. 194-202.

Dawid, A. P. & Lauritzen, S. L. (1993), ‘Hyper Markov laws in the statistical
analysis of decomposable graphical models’, Annals of Statistics 21, 1272—
1317.

de Dombal, F., Leaper, D., Horrocks, J., J.Staniland & McCann, A. (1974),
‘Human and computer aided diagnosis of abdominal pain: Further report

with enphasis on performance’, British Medical Journal 1, 376-380.

Dean, T. & Boddy, M. (1988), An analysis of time dependent planning, in ‘Proc.
Seventh Natl. Conf. on Al’; St. Paul, MN, U.S.A.

Dean, T. & Kanazawa, K. (1988), Probabilistic temporal reasoning, in
M. Kaufmann, ed., ‘Proc. Seventh National Conf. on Artificial Intelligence’,

AAAI St. Paul, MN, U.S.A., pp. 524-528.

Dean, T. & Wellman, M. (1991), Planning and control, Morgan Kaufmann, Palo
Alto, Calif., U.S.A.

Dougherty, J., Kohavi, R. & Sahami, M. (1995), Supervised and unsupervised
discretization of continuous features, in A. Prieditis & S. Russell, eds, ‘Ma-
chine Learning, Proceedings of the Twelfth International Conference’, Mor-

gan Kaufmann, San Francisco, CA, U.S.A.

Driver, E. & Morrell, D. (1995), Implementation of continuous bayesian networks
using sums of weighted gaussians, in ‘Proc. Eleventh Conference on Uncer-

tainty in Artificial Intelligence’, Montreal, Quebec, Canada.

Fox, M., Lowenfeld, S. & Kleinosky, P. (1983), Techniques for sensor based dia-
gnosis, in ‘Proc. eigth International Joint Conf. on Artificial Intelligence’,

[JCAI, Karlsruhe, West Germany, pp. 158-163.

BIBLIOGRAPHY 135

Frank, P. (1990), ‘Fault diagnosis in dynamic systems using analytical and
knowledge based redundancy- a survey and some new results’, Automatica

26, 159-470.

Friedman, N. & Goldszmidt, M. (1996), Learning Bayesian networks with local
structure, in ‘Proceedings of the Twelfth Annual Conference on Uncertainty

in Artificial Intelligence (UAI-96), Portland, Oregon, U.S.A., pp. 252-262.

Fung, R. & Crawford, S. (1990), Constructor: a system for induction of probabil-
istic models, in ‘Proceedings of the Eighth National Conference on Artificial
Intelligence (AAAI-90)’, Vol. 2, MIT Press, Boston, Massachusetts, pp. 762—
779.

Geiger, D. & Pearl, J. (1988), On the logic of causal models, in ‘Proc. Fourth
Workshop on Uncertainty in AT, St. Paul, Minn, U.S.A., pp. 136-147.

Geiger, D., Verma, T. & Pearl, J. (1989), Identifying independence in bayesian
networks, Technical Report R-116, UCLA Cognitive Systems Laboratory,
U.S.A.

Gorry, G. & Barnett, G. (1968), ‘Experience with a model of sequential diagnosis’,
Computers and Biomedical Research 1, 490-507.

Grelinger, G. & Morizet-Mahoudeaux, P. (1992), A fully integrated real time
multi tasking knowledge based system: application to an on board diagnostic
system, in ‘Proc. IEEE Eighth Conference on Artificial Intelligence for Ap-

plications’, pp. 310-316.

Hanks, S. (1988), Representing and computing temporally scoped beliefs, in
M. Kaufmann, ed., ‘Proc. Seventh National Conf. on Artificial Intelligence’,

AAAL St. Paul, MN, U.S.A.. pp. 501-505.

BIBLIOGRAPHY 136

Heckerman, D. & Geiger, D. (1995), Learning Bayesian networks: A unification
for discrete and Gaussian domains, in ‘Proceedings of the Eleventh Annual
Conference on Uncertainty in Artificial Intelligence (UAI-95)", Montreal,
Quebec, Canada, pp. 285-295.

Heckerman, D., Geiger, D. & Chickering, D. (1994), Learning Bayesian networks:
The combination of knowledge and statistical data, in ‘Proceedings of the
Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94)’,
Seattle, WA, pp. 293-301.

Henry, M. (1995), ‘Sensor validation and fieldbus’, Computing and Control En-

gineering Journal pp. 263-269.

Henry, M. & Clarke, D. (1993), ‘The self-validating sensor: rationale, definitions

and examples’, Control Engineering Practice 1(4), 585-610.

Horvitz, E. (1987), Reasoning about beliefs and actions under computational
resource constraints, in ‘Proc. Third Conference on Uncertainty in Artificial

Intelligence’, Seatle, WA, U.S.A., pp. 301-324.

Horvitz, E. & Barry, M. (1995), Display of information for time-critical decision
making, in ‘Proc. Eleventh Conference on Uncertainty in Artificial Intelli-

gence’, Montreal, Quebec, Canada, pp. 296-305.

Horvitz, E. & Rutledge, G. (1991), Time dependent utility and action under
uncertainty, in ‘Proceedings of the Seventh Conference on Uncertainty in

Artificial Intelligence’, Los Angeles, Calif, U.S.A., pp. 151-158.

Horvitz, E. J., Suermondt, H. J. & Cooper, G. F. (1989), Bounded conditioning:
Flexible inference for decisions under scarce resources, in ‘Proceedings of the
Fifth Conference on Uncertainty in Artificial Intelligence (UAI-89)’, Morgan

Kaufmann, Windsor, Ontario, pp. 182-193.

BIBLIOGRAPHY 137

Ibargliengoytia, P., Sucar, L. & Vadera, S. (1996a), A probabilistic model for
sensor validation, in ‘Proc. Twelfth Conference on Uncertainty in Artificial

Intelligence’, Portland, Oregon, U.S.A., pp. 332-339.

Ibargliengoytia, P., Sucar, L. & Vadera, S. (19960), Real time sensor validation
with probabilistic reasoning, in ‘Proc. Congreso Iberoamericano de Inteli-

gencia Artificial, IBERAMIA’96’, Cholula, Puebla, México, pp. 468-468.

Ibargliengoytia, P., Vadera, S. & Sucar, L. (1997), A layered, any time approach
to sensor validation, in ‘European Conference on Symbolic and Qualitat-
ive Approaches to Reasoning and Uncertainty ECSQARU-97’, Bad Honnef,
Germany, pp. 336-349.

Jitnah, N. & Nicholson, A. (1997), treenets: A framework for anytime evaluation
of belief networks, in ‘European Conference on Symbolic and Qualitative Ap-
proaches to Reasoning and Uncertainty ECSQARU-97, Bad Honnetf, Ger-

many, pp. 350-364.

Kanazawa, K. (1991), A logic and time nets for probabilistic inference, in ‘Proc.
Ninth National Conf. on Artificial Intelligence’, AAAI, Academic Press,
pp. 360-365.

Khadem, M., Alexandro, F. & Colley, R. (1992), Sensor validation in power plants
using neural networks, in D. Sobajic, ed., ‘Proc. Inss summer workshop’,

Stanford, Calif. U.S.A., pp. 51-54.

Kullback, S. & Leibler, R. (1951), ‘Information and sufficiency’, Ann. Math. Stat-
isties 22, 79-86.

Laffey, T., Cox, P., Schmidt, J., Kao, S. & Read, J. (1988), ‘Real time knowledge
based systems’, AI Magazine 9(1), 27-45.

BIBLIOGRAPHY 138

Lauritzen, S. & Spiegelhalter, D. J. (1988), ‘Local computations with probabilities
on graphical structures and their application to expert systems’, Journal of

the Royal Statistical Society series B 50(2), 157-224.

Milne, R. & Nicol, C. (1996), ‘TIGER: knowledge based gas turbine condition

monitoring’, Al Communications 9, 92-108.

Musliner, D., Durfee, E. & Shin, K. (1993), ‘Circa: A cooperative intelligent real
time control architecture’, IEFE Trans. on Systems, Man, and Cybernetics

23(6), 1561-1574.

Musliner, D., Hendler, J., Agrawala, A., Durfee, E., Strosnider, J. & Paul, C.
(1995), ‘The challenges of real time ai’, Computer 28(1), 58-66.

Neapolitan, R. (1990), Probabilistic resoning in expert systems, John Wiley &
Sons, New York, New York, U.S.A.

Nicholson, A. & Brady, J. (1994), ‘Dynamic belief networks for discrete monitor-
ing’, IEEE Trans. on Systems, Man, and Cybernetics 24(11), 1593-1610.

Paul, C., Acharya, A., Black, B. & Strosnider, J. (1991), ‘Reducing problem
solving variance to improve predictability’, Communications of the ACM

34(8), 81-93.

Pearl, J. (1988), Probabilistic reasoning in intelligent systems: networks of plaus-

ible inference, Morgan Kautmann, Palo Alto, Calif., U.S.A.

Pearl, J. (1991), Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, Morgan Kaufmann. (Revised 2nd Edition).

Pearl, J., Geiger, D. & Verma, T. (1990), Conditional independence and its rep-
resentation, in G. Shafer & J. Pearl, eds, ‘Readings in Uncertain Reasoning’,

Morgan Kaufmann, San Mateo, California, U.S.A., pp. 55-60.

BIBLIOGRAPHY 139

Peng, Y. & Reggia, J. (1987), ‘A probabilistic causal model for diagnostic problem
solving-parts i and ii’, [EFE Transactions on Systems, Man, and Cybernetics

SMC-17(2,3), 395406,146-162.
Pratt, L. (1994), Artificial intelligence, Macmillan, London, U.K.
Quinlan, J. (1986), ‘Induction of decision trees’, Machine Learning 1(1), 81-106.

Ramoni, M. (1995), Anytime influence diagrams, in ‘IJCAI-95 Workshop on Any-

time Algorithms and Deliberation Scheduling’, Montreal, Canada.

Shannon, C. & Weaver, W. (1949), The mathematical theory of communication,

University of Illinois press, Urbana, Ill., U.S.A.

Spiegelhalter, D. J. & Lauritzen, S. L. (1990), ‘Sequential updating of conditional

probabilities on directed graphical structures’, Networks 20, 579-605.

Stankovic, J. (1988), ‘Misconceptions about real time computing: a serious prob-

lem for next generation systems’, Computer 21(10), 10-19.

Strosnider, J. & Paul, C. (1994), ‘A structured view of real time problem solving’,
Al Magazine pp. 45—66.

Sucar, L., Pérez-Brito, J. & Ruiz-Suarez, J. (1995), Induction of dependence
structures from data and its application to ozone prediction, in G. Forsyth
& M. Ali, eds, ‘Procedings Eight International Conference on Industrial

and Engineering Applications of Artificial Intelligence and Expert Systems
(IEA/AIE)’, DSTO:Australia, pp. 57-63.

Upadhyaya, B. & Eryurek, E. (1992), ‘Application of neural networks for sensor

validation and plant monitoring’, Nuclear Technology.

BIBLIOGRAPHY 140

Wellman, M. P. & Liu, C.-L. (1994), State-space abstraction for anytime evalu-
ation of probabilistic networks, in ‘Proceedings of the Tenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-94)’, Seattle, WA, U.S.A.,
pp- H67-574.

Willsky, A. (1976), ‘A survey of design methods for fault detection in dynamics

systems’, Automatica 12(6), 601-611.

Yung, S. & Clarke, D. (1989), ‘Local sensor validation’, Measurement & Control
22(3), 132-141.

Zilberstein, S. (1993), Operational rationality through compilation of Any time
algorithms, PhD dissertation, University of California, Berkeley, Berkeley,
California, U.S.A.

Zilberstein, S. & Russell, S. (1995), Approzimate reasoning using anytime al-
gorithms, Imprecise and Approximate Computation, Kluwer Academic Pub-

lishers, U.S.A., chapter 1.

Zilberstein, S. & Russell, S. (1996), ‘Optimal composition of real-time systems’,
Artificial Intelligence 82(1-2), 181-213.

