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. ABSTRACT 

Stressed skin design has now been developed into an import- 

ant tool for designing buildings. In developing stressed skin 

theory, it has been shown that the inherent inplane stiffness of 

the materials considered is of predominate importance in the 

distribution of lateral forces within a structure. The materials 

that have been incorporated in the theory so far are profiled 

steel and aluminium sheeting. 

Lately, work on multi-storey buildings has shown the advant- 

age of using infill panels in the vertical plane to control the 

sway deflection of the building. No account, however, has been 

taken of the horizontal floors acting as diaphragms. Incorporating 

the floor into the sway analysis would clearly model the building 

more realistically. A typical floor construction commonly 

adopted in steel framed buildings is the composite slab. This 

consists of trapezoidally profiled steel sheeting fastened to 

the structure and overlain by concrete. Design formulae are 

derived for the shear strength and flexibility of the above floor 

construction and verified by experimental work. 

In the basic stressed skin concept the shear distortional 

flexibility of profiled sheeting has been shown to be dependent 

on the overall dimensions of the diaphragm, the shape of the profile 

and the fastener arrangement. At present the analysis considers 

a typical corrugation to lie within a large "field or corrugations" 

and so edge effects are negl6cted. A Finite Strip program has 

been written to analyse these fields of corrugations under the 

action of a shear flow and to investigate the effect of edge 

members on the shear flexibility. 
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The large end distortions of the profiled sheeting, that 

arise as a result of the action of the shear flow on the profile, 

can cause failure of the sheeting and fasteners in this region. 

A study has been undertaken to investigate the possible failure 

modes, as a result of which three modes have been identified, 

namely, failure of the sheet / purlin fasteners, buckling of 

the profile web and a sideways collapse of the profile. Numerical 

expressions are developed for these failures and compared with 

experimental results. 



xiii 

ACKNOWLEDGMENTS 

I would like to thank my supervisor, Professor J. M. Davies, 

for his valuable advise and encouragement throughout the 

period of study, and to Professor E. R. Bryan for introducing 

me to this subject and his interest throughout the project. 

I also would like to express my thanks to 

- the Structure and Concrete Laboratory staff and 

inparticular Mr W. Deakin 

Mr C. Tivey for his preparation of the photographs 

Miss K. Edwards for typing the manuscript 

and to my parents for their continued support. 

I acknowledge with thanks Holorib and H. H. Robertson who 

supplied the sheeting for the composite diaphragm tests. 



xiv 

NOTATION 

a- width of diaphragm 

b- length of diaphragm 

bL, b7, bs - profile dimensions 

by - width of purlin 

c1.1, c1.2 - c3 - flexibility factors 

d- pitch of corrugations 

E- elastic modules 

F8, Fp, Fsc - failure load of fastener 

Fsc - longitudinal shear force 

FT - tension force 

of-1 - transerve shear force 
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gl'g2 
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K, KB 

k, kl, k2 

L1 - L8 

eeff 

m 

nsc 

np 

nsh 

nf 

modulus of rigidity 

force distribution coefficients 

height of profile 

product integrals for bending strip 

2nd moment of areas about the neutxal 
axis for a single corrugation 

shear distortion factors 

propping force factors 

product integrals for plain stress strip 

effective length (buckling of web) 

plastic moments 

number of sheet/shear connectors 

number of purlins 

number of sub panels 

number of fasteners per purlin 



ns 
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pa 

pb 

P 

Q 

`P 

q 

Sp 

Ssc 

Ss 

t 

O, 

0'c,, *t 

(reff 

-D 

Ds 

ýc 

? 7XY 

(f 

number of seam fasteners 

plastic load constant 

spacing of fasteners in the "a" direction 

spacing of fasteners in the "b" direction 

propping force 

diaphragm load 

plastic load 

shear flow 

slip of sheet/purlin fasteners 

slip of sheet/shear connectors 

slip of seam fasteners 

thickness of sheeting 

force coefficients for composite slab 

shear deflections 

yield stress 

critical stress 

effective stress 

poissons ratio 

poissons ratio for steel 

poissons ratio for concrete 

shear stress 

strain 



1 

t-ý 

1. Introduction 

Until recently, the stiffening effect of a building's 

cladding on its framework could not always be incorporated in the 

design. In the past full-scale tests carried out on complete 

buildings showed that actual deflections and stresses had a value= 

significantly less than the design values 
(1) 

, and designers 

therefore appreciated that the cladding could be sufficiently 

stiff against inplane forces to reduce the design deflections 

and stresses. However, this additional strength could not be 

incorporated into a design as no guidance could be formulated to 

determine the effect of the cladding on a building. 

With the advent of the modern computer, the mathematical 

problem of analysing structures with a high degree of indeterminacy 

could be undertaken with greater ease, and new techniques for 

solving structures rapidly developed. Consequently, new design 

philosophies followed. 

One of these design philosophies was the concept known as 

"Stressed Skin Design". The basis of this philosophy is that 

the material or cladding of the building will resist lateral 

forces applied in the plane of the cladding. The force resisted 

by the cladding is then redistributed to rigid end gables as 

shown in Fig. 1.1. The concept of. stressed skin design, applied 

to this particular structural element, is likened to the analogy 

of a deep plate girder. The sheeting of the element, usually 

trapezoidally profiled sheeting, acting as the web of the plate 

girders in resisting the shear forces, and the axial tensile 

and compressive forces in the flanges of the beam are carried by 

the framing member of the building. 
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" Over the past thirty years research has been carried out 

to determine the iriplane strength of trapezoidal sheeting fastened 

with adequately stiff connections to the framing members, such as 

with welded or mechanical fasteners. The first tests on diaphragms 

were carried out by Johnson 
(2) 

in California in 1947, and they 

consisted of applying forces laterally with cables on a full- 

scale building. This was followed shortly afterwards by a second 

programme of tests by S. B. Barnes using cellular type panels. 

This concept developed rapidly following the work of 

Nilson 
(3) 

at Cornell University who undertook a systematic testing 

programme with a wide range of profiles. In this programme a 

standard test was developed, that of the cantilever test rig, 

which is now associated with all testing of profiled steel 

diaphragms. 

Clearly, the testing of full-scale diaphragms is expensive 

and only economical when a "system" type of building is under 

consideration, as was the case on the CLASP and SEAC building 

systems 
(4) 

. Therefore a theoretical means of predicting the 

diaphragms strength and flexibility had to be found. This was 

the first undertaken by Bryan 
(5) 

and his team of researchers 

at Manchester University. They separated the diaphragm into its 

structural components and determined the overall strength and 

flexibility from the strength and'flexibility of each of the 

components. Bryan's expressions for both strength and flexibility 

have recently been modified by Davies 
(6) 

and Lawson 
(798) 

to 

accommodate certain irregularities in the theory. 

A third method of analysing profiled steel diaphragms has 

been developed in Australia 
(9) 

and North America 
(10) 

using 

finite element techniques. The approach in this case has been to 
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incorporate discrete elements for each of the structural components. 

This method'however has been found to be unsuitable for design 

purposes although it has given much useful information into the 

force distribution in the fasteners. 

Initially, the work in stressed skin design concentrated 

on profiled steel. diaphragms. However, as the theory developed, 

new applications have been considered, namely the use of internal 

diaphragms to restrict the lateral sway in multi-storey buildings 

and in frameless structures. The development of this concept 

in structural design has now opened the field to a wider range 

of materials, such as concrete, steel / concrete composite slabs, 

brickwork and blockwork. Recently, a large amount of work has 

been carried out to obtain. design recommendations for the inclusion 

of the effect of cladding in the analysis of multi-storey 

buildings(11) . Most of the work has been concerned with plane 

frames, but clearly, buildings do not act as plane frames and 

each frame should be considered to act as an integral part of the 

overall structure. In fact very few structures designed on a 

plane frame basis will behave in the manner designed. 

The floor construction is the prime distributor between 

the frames, but there can be many variations in floor construction. 

The work given in this thesis is concerned with just one type, 

that of composite slabs, which are a recent development in the 

European market. One notable example todate of this floor 

construction is the National Westminster Tower in London. The 

composite floor construction has one advantage over other floors 

in multi-storey construction, in that no temporary formwork need 

be considered. 

Part of the work given in this thesis has been concerned 
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with the diaphragm action of this floor construction, and which 

has recently been published 
(12) 

.A copy of this publication 

is given in Appendix 5. 

Certain limitations were found with Bryan's original theory, 

inparticular the prime component of flexibility, that of shear 

distortion of the profile. Recently much theoretical and 

experimental work on this subject, by Davies and Lawson 
(7,8) 

and 

Libove 
(13) 

, have shown the factors that influence this component. 

However, these analyses have been based on the idealisation that 

the sheeting between fasteners has a similar effect on the overall 

sheeting and no account of edge effects has been considered. 

With this in view a Finite Strip program has been written to 

analyse large diaphragms and to consider edge effects. Also all 

previous analyses lack generality in that only simple trapezoidal 

or arc and tangent profiles were considered; the Finite Strip 

solution gives a more general approach and can readily incorporate 

irregular profiles. 

A third area of study has been concerned with the modes 

of failure of profiled steel diaphragms in the region of the 

sheet / purlin fasteners. The failures have for this study been 

termed as "End Failures", Design expressions are given for the 

three failure modes identified, namely failure of the sheet / purlin 

fasteners, the profile web buckling at outermost purlin and the 

lateral sway of the profile. 
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2. Composite Diaphragms 

2.1 Introduction 

0 

Composite floors, consisting of profiled steel sheeting 

acting in conjunction with aninsitu concrete topping have been 

popular in the United States of America for many years. With 

more overlapping of American and European design philosophies, 

the spread of technology between the two continents has brought 

the use of composite floors into the European market. Recently 

this trend has been extended by the preparation of a new 
(European 

design procedure for composite floors 
ý. 40 

The primary purpose of spanning between the supporting 

beams under the action of vertical load is efficiently under- 

taken by the composite floors. Together with the efficient 

bending action, the composite floors or roofs have a very 

high inplane stiffness and strength and, as with all diaphragms, 

it is obvious that they distribute lateral loads between the 

frames of the primary structure. As in the more familiar use 

of stressed skin principles in the prediction of the stiffening 

effect of light gauge steel cladding, the diaphragm action of 

the composite floors can be likened to the action of a deep beam. 

A consequence of the proportions of the beam, the influence 

of shear is likely to be more important than that of bending. 

Scant attention has been paid to the performance of composite 

decks acting as diaphragms and it is with this aspect that the 

present work is concerned. ' 

As a consequence of this study, two basic types of composite 

diaphragms have been identified, namely :- 

6 
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A. diaphragms in which the profiled steel sheeting is fastened 

to the supporting structure by mechanical fasteners or welds 

in such a way that there is no direct attachment of the 

concrete to the supporting structure. 

B. diaphragms incorporating shear connectors. These typically 

-take the form of studs welded through the sheeting to the 

supporting steelwork thereby fastening the sheeting to the 

steelwork and, at the same time providing a direct shear 

connection to the concrete. Such diaphragms are likely-to 

be significantly more efficient in resisting shear loads 

than those without direct connections. 

There are many different profiles used in composite 

construction and a selection is shown in Fig. 2.1 (a). These 

profiles can be divided into two distinct types, as shown in 

Fig. 2.1 (b). The profiles are termed "re-entrant" profiles 

and "trapezoidal" profiles and as there are certain significant 

differences in their behaviour under diaphragm shear loads it 

is necessary to distinguish between the two types of profile. 

In this study, both types of profile are considered but 

attention is confined to the first type of composite diaphragms 

only, namely, diaphragms with no direct attachment of the concrete 

to the supporting structure. At the present time there seems to 

be little work on the second type of diaphragm with shear 

connectors through to the concrete infill. One reason for this 

absence of work is that the high failure loads required of such 

diaphragms require much more expensive test facilities. 

2.2 Composite Slabs in Bending 

7 

Over the last fifty years labour and material costs for 



construction have been increasing rapidly. To minimise thiese 

costs, designers have turned to new building techniques in the 

hope that they would provide a means of reducing costs. Composite 

slabs were developed for this purpose, by eliminating the cost 

of floor formwork in multi-storey construction. The composite 

slab floor is supported by the steel sheeting until the "green" 

concrete has attained sufficient strength. The sheeting then 

acts as steel reinforcement as in a normal reinforced concrete 

slab. 

The primary purpose of the slab is to carry the floor 

loads acting on the slab, to the supporting frame. Most of the 

work to-date has been concerned with this bending action. Current 

design methods for this form of construction, however, were not 

advanced sufficiently to allow for both the strength of the 

steel and concrete to be fully utilised together in the design. 

This lack of knowledge has been rectified over the last decade 

and a number of design approaches have been formulated. The 

three most important are : - 

A. the European Recommendatuons for the Design of Composite Floors 

with Profiled Steel Sheeting (14) 

B. the Tentative Criteria for the Design and Construction of 
(15) Composite Steel Deck Slabs 

and 

C. the French "Bond Stress" Method(16) 

The European Recommendations are based on test slab results 

only and no extension of the test results to different slab 

dimensions are allowed. From the research carried out, two 

failure modes were identified, namely the "Shear / Bond" failure 

and the normal flexural failure of reinforced concrete slabs. 

8 



9 

The "Shear / Bond" failure is caused by inadequate shear 
resistance 

between the concrete and steel sheeting, causing a loss of bond. 

This loss of bond can be reduced by manufacturing embossments 

into the profile, see Fig. 2.1 (b), or by welding shear studs 

through the sheeting to the frames of the building. 

The main purpose of the recommendations-though has been to 

formulate a standard testing method so that the results from 

the different countries can be collectively studied. 

The American Code (15)also distinguishes between the two 

previously mentioned failure modes, but allows for the results 

to be extrapolated for other slab dimensions. The "Shear / Bond 
r, 71 

Regression Analysis" was developed by Schuster-'for for this 

extrapolation and is based on a number of test slabs. From the 

results, which must include variations of both span and thickness 

a graph is constructed using the plot of 

Ve, S _1o' 

b, d 'J/ L'J ý fý 
where Ve = Pe /2. bd 

Pe = Ultimate experimental load 

bd = Test span width 
b1 = Unit width (12 ins. ) 
i d= Effective depth of slab 

= Steel ratio = As / (bd d) 

L= Shear span 
fc1 = Characteristic concrete strength 
S= Spacing of embossments 



A regression analysis is then undertaken and an equation 

obtained of the form 

y= mx +k (2.1) 

From this equation, an expression for the shear bond 

capacity Vu is given by 

Vu( d1 ) 2. 
. b1 

+k. 
b. d. 

F 

8. I, 1 S 

. 
(2.2) 

Expressions are also given for the flexural capacity 

taking into account both the over-reinforced and under-reinforced 

conditions. 

The Shear / Bond failure is a result of the failure of the 

bond between the concrete and steel sheeting. Although it has 

been difficult to quantify the actual bond stress at failure, 

the French Bond Stress Method 
(16) 

developed by Fulop and Moum, 

is based on this failure stress. One of the main assumptions of 

the method is that the slip between the-concrete and the steel is 

zero, which in most cases is doubtful. However, the analysis 

does give an estimate of the actual bond stress, which is 

discussed in a later section. 

From the work carried out for the method, the "mean bond 

stress" 
Z"m 

was calculated for varying spans and thicknesses 

10 



where 

Fr 
m= 

Cx .b 

0 

(2.3) 

where Fr = critical interaction force = 0, M 
«2 

ix 
= shear span 

b= width 

aCý and C2 are coefficients depending on the 

properties of the slab 

and Mr = bending moment at the section. 

Roberts (18)extended the bond stress approach into a 

regression analysis incorporating the steel ratio ýo= As / b1 d, 

finding that the results compared more favourably than the method 

suggested by Fulop and Moum. Roberts method can quite easily 

be considered as a combined approach of the French Bond Stress 

Method and the American criteria for the shear / bond failure. 

2.3 Previous Tests on Composite Diaphragms 

The first reported shear tests on composite diaphragms were 

carried out by S. B. Barnes and Associates (19) They were only 

three in number and of these one used lightweight vermiculite 

fill and one was fabricated using a two skin box-section steel 

11 
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deck, so that only one test is directly relevant to the wörk 

carried out in this study. The diaphragms were of the type 

where there is no direct attachment of the concrete to the 

supporting structure and-the connections consisted of puddle 

welds, as is usual. in the United States practice. 

Each of the three tested diaphragms appears to have failed 

by cracking of the concrete topping. The directly relevant 

test was carried out on a trapezoidal profile steel deck of 

76.2mm. deep with a concrete topping of depth 63.5mm, *which at 

the time of testing had obtained a strength of 16.1 N/mm2. 

Tension cracking commenced at a shear load / unit width of 

31 kN /m and continued to increase until failure took place at 

a shear load of 86.4 kN / m, due to direct shear of the concrete 

over the crest of the profile. Prom the tests there was no 

indication of any slippage in the button-punched seams between 

adjacent sheets despite the fact that such seams are considerably 

more flexible than those seams with mechanical fasteners, such 

as blind rivets or self-tapping screws. 

The only other test series carried out on composite 

diaphragms, known to the author were undertaken by Luttrell (20) 

A total of nine diaphragms were tested, incorporating trapezoidal 

profiled steel sheeting of depth varying. from 9.5mm to 34.9mm" 

The fill was made of lightweight concrete of depth 63.5mm or 

76.2mm and having a mean strength of 1.01 N/mm2. He compared 

the stiffness and ultimate load of composite diaphragms with 

those of similar steel diaphragms. A considerable increase in 

both stiffness and strength was reported, though the failure 

modes were not identified. As the concrete topping was very 

weak Luttrell's tests are not of direct help in this study. 

12 
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2.4 Test Programme on Composite Slabs 0 

The tests so far described have only identified some of the 

primary failure modes of composite diaphragms. The work on 

profiled steel diaphragm behaviour was developed more recently 

and so further tests were instigated to relate composite slabs 

into the stressed skin theory (. 22) A test rig was therefore 

constructed so that cantilever diaphragms of size 3.5m X 3.5m 

could be subjected to shear loads up to 150 M. A cantilever 

diaphragm was eventually constructed instead of a simply 

supported diaphragm as the recent work in the stressed skin 

theory showed that the characteristics of the two forms of 

diaphragm were similar, but that the cantilever was more cost 

effective. A general arrangement of the diaphragm is shown in 

Fig. 2.2 and 2.3. The connections between the edge member and 

the main beams were pinned so that the stiffness of the test 

frame was then negligible. 

The steel decking was either of Type A or B as shown in 

Fig. 2.1 (b) and was fastened to the supporting structure on 

four sides using 6mm diameter Teks self-drilling, self-tapping 

screws. In all the tests the seams between the sheeting was 

fastened with 4.8mm diameter Monel Pop rivets at 152mm centres. 

Four tests were carried out in the programme, the fastener 

spacings etc., are shown in Table 2.1 
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With the exception of test 4, the procedure for each test 

was to first attach the sheeting to the frame, then to obtain- 

the stiffness of the steel diaphragm by applying the load"in 

the elastic range. The extent of the elastic range was-dependent 

on the buckling load of the-diaphragm. In order to predict 

this limit, Easley's formula (21)for buckling of corrugated 

sheeting was used, where 

V,;;, t = 

where Dx = 

ý3 
36 

ý 
DX 4"ý4 

b 

E. t3 .d 

12(1 -a 
2) 

u 

Dy =E. Iy 
d 

(2.4) 

6= length of diaphragm 

u= perimeter length of a single corrugation 

Iy = 2nd moment of area about the neutral 

axis for a single corrugation. 

Having obtained the stiffness of the steel sheeting the 

concrete topping was then placed. In all of the tests the 
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concrete teed 9.5= aggregate and was designed to have a strength 

of 25 N/mm2 at 28 days. A typical diaphragm, ready for testing 

is shown in Fig. 2.5. I 

The composite slab was then tested by loading in increments 

up to failure. In the case of three of the four tested 

diaphragms at a load of between one half and three quarters of 

the expected failure load, the diaphragms were unloaded and 

subsequently reloaded before continuing the test to failure. 

The load-deflection curves for each diaphragm are given in 

Fig. 2.6 - 2.9. 

The shear deflection (t ) plotted was in each case obtained 

from the reading of the four dial gauges shown in Fig. 2.4 as 

L3 
LIb g3 + (z S) 

Q 

In the "Barnes" series of tests, failure occured by tension 

cracks and a loss of bond between the steel and concrete. To 

determine the concrete strains and slip between the steel and 

concrete "Demec" gauges and dial gauges were attached to 

Diaphragm 1. At no time though during the test did the measured 

strains approach the tensile strain capacity of the concrete, 

nor was there any measurable slip between the steel deck and 

concrete topping. For these reasons the above measurements were 
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discontinued for subsequent tests. 0 

For Diaphragm Test 4, the tested Diaphragm 3 was re- 

instated by carefully breaking away the perimeter concrete to 

a width of about 150mm in order to expose the failed fasteners. 

They were then removed and the diaphragm re-fixed with fresh 

fasteners at the required pitch, shown in Table 2.1. The concrete 

slab was then made good by replacing the concrete that had been 

removed. 

This procedure was adopted not only for reasons of economy 

but also to investigate the shape of the load deflection curve 

as will be discussed later. 

Table 2.2 shows the concrete properties for each of the 

diaphragms tested. 

TEST 

No. 

CUBE STRENGTH 

N/mm2 

TENSILE STRENGTH 

N/mm2 

"E" VALUE 

N/mm2 

1 25.5 4.82 21.5 

2 24.3 4.57 24.2 

3 27.7 26.2 

4 28.0 26.5 

Table 2.2 Characteristics of Concrete 



2.5 Ultimate Load of Composite Diaphragms 

2.5.1 Failure Mechanisms 

0 

In the analysis of composite diaphragms the work of Barnes 

and Luttrell were not influenced by the more recent work. in the 

field of light gauge steel diaphragms. Luttre11(ý-0), in fact, 

offers a simple empirical treatment, which is only applicable 

to the diaphragms that he tested. No suggestions on any overall 

failure mechanisms are given. Barnes does give a more 

comprehensive theoretical treatment which is an extension of 

his work on light gauge steel diaphragms. However, his expressions 

are complex and include empirical constants derived for welded 

diaphragms only. Therefore none of the previous work can be 

applied to obtain practical failure mechanisms of the slabs. 

From the tests carried out by the author three failure 

mechanisms were identified, namely : - 

1. failure of the fasteners only, Fig. 2.10. At failure 

a parallelogram like movement of the frame below 

the comparatively rigid slab resulting in a failure 

of the fasteners about the centre line, as shown in 

Fig. 2.12. This mode was only associated with the 

re-entrant profiles, Type A. 

2. failure of the fasteners again, but with a rotation 

of the slab relative to the frame, as shown in Fig. 2.13 

No actual failure occurred of this failure mechanism. 

3. The final mode of failure was a result of a combined 

failure of the profile sheeting and of the fasteners. 

The slab and frame rotating relative to each other 

causing the fasteners to fail on two sides and the 

profile to collapse on the third side as in Fig. 2.14. 
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2.5.2. Analysis of Mechanism 1 It 

As stated previously, failure occurred in the self-drilling 

self-tapping perimeter fasteners, the actual deformations being 

very much as shown in Fig. 2.12. In the analyses that follows 

a -number of alternative assumptions for the fastener forces 

are made, namely 

1. the main beam perimeter fasteners all reach their 

ultimate load, further load applied to the diaphragm 

is distributed to the edge member fasteners. 

and 2. a distribution of the force in the fasteners along the 

edge member. Three specific cases are considered and 

will be termed the fully plastic, quadratic and linear. 

The actual force distribution is difficult to obtain 

experimentally as it is dependant on a number of 

factors, chiefly the bending of the edge member. 

Considering the internal and external work done in Fig. 2.12 

and assuming that all the fasteners fail simultaneously, that is 

to say the "fully plastic" condition. Then the deflection Ai 

of a typical fastener t is given by 

di ; p, t 
/? a 

Jere 
lIA 

Pa 

(z. 6) 

19 

The above expression is only concerned with the distribution 
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of fasteners that include a fastener on the centre line of the' 

edge member. 

Including the corner fastener with the edge fasteners, 

the work equation for the complete diaphragm at failure is 

therefore given by 

no/2 i 
P. ý =2 (nb-1)F- + 

a 
i=1 

so P= (nb - 1) F+ 
(nQ + 2) F 

2 

= 
(nbý; )P (2.7) 

Similarly if the total number of fasteners along the 

edge member is even, so that there is no fastener on the centre 

line, then 

P= nb + na +1F 
22n. 

(2.8) 
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which gives very similar results to the previous equation, 

unless no is small. 

The fully plastic distribution of the edge fastener forces 

does not truly represent the actual failure condition of the 

diaphragm. Edge beam fasteners that are away from the region 

of the main beam would in practice not obtain the ultimate load 

of the fastener before failure of the diaphragm has occurred. 

So that a realistic estimate of the failure load can be obtained 

alternative linear and quadratic distribution of fastener forces 

are now considered. 

Considering a linear distribution of the fastener forces, 

then the force in the ith fastener is 

Fi = 
2. i. P 

nQ 

and the work equation is given by 

(2.9) 

na/2 

P. Q= 2 (nb - 1) F ý+ 4ý (! \(\ d ?ýF 

2 i=1 na noý 

. .. 
(2.10) 

eliminating Li we obtain 
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0 

P= (nb +ts) F..... (2.11) 

where 
,8= 

1 

Similarily the analysis for an even number of fasteners 

in the edge member lead to 

na +1 
2 

ý=8 

2 
i -ý 

no 
1 

...... 
(2.12) 

For the quadratic distribution of the fastener forces, the 

force in the ith fastener is 

Fi 
2i 2 

=1-1-- 
na 

P... 
.. 

(2.13) 
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0 

this leads to 

P= (nb 
. +, 8) F 

n/2 

where R=4 
-n4) 

1 

21 
na (i - 

. (2.14) 

2 
-1 

(2.15) 

for an odd number of edge member fasteners 

floh +1 

and =2 
i=1 

2i-1 
(2i 

12 
11 11 

nQ 

.. 
(2.16) 

for an even number of edge member fasteners. 

-1 

The values of )R for the three distributions are given in 

no nQ 

Table 2.3. 
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n 
Plastic Quadratic Linear 

2 1.0 1.0 1.0 

3 1.67 1.37 1.22 

4 2.0 1.75 1.5 

5 2.6 2.15 1.8 

6 3.0 2.56 2.11 

7 3.57 2.97 2.43 

8 4.0 3.38 2.75 

9 4.56 3.78 3.07 

10 5.0 4.2 3.4 

11 5.55 4.61 3.73 

0 

Table 2.3 Values of B in expressions for failure load 

2.5.3 Analysis of Mechanism 2 

For an isolated cantilever diaphragm, as tested, there is 

an alternative failure mode. This involves bodily rotation 

of the concrete slab as well as parallelogram-like deformation 

of the supporting structure leading to fastener failure on all 

four sides. The deformed failure mode is shown in Fig. 2.13. 

In contrast to the previous analysis, it is assumed that 

the edge fasteners, instead of the main beam fasteners, reach 
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ultimate load then distribute further load to the main beam 

fasteners. 

Comparing the Mechanisms 1 and 2, the work equations are 

found to be similar, so that for a linear distribution of the 

fastener forces 

P. A= 2-1) (net F" ý+4 

2 

nb/2 

i= 
f1 /\ Ll 

nb 
=-ý 

nb 

.... 
(2.17) 

where 
Al 

= A. b 

a 

giving P 
b (na + B) P 
a 

(2.18) 

F 

Equations 2.14 and 2.18 are similar except that B is 

now dependent on the number of fasteners nb to the main beam. 

2.5.4 Analysis of Mechanism 3 

In Diaphragm Test 2, failure. again took place with relative 

movement between the slab and the supporting frame with no 

noticeable deformation of the concrete. However, the relative 

movement took place partly by failure of the fasteners, as in 

the previous mechanism, and partly by the collapse of the profile 
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adjacent to the fixed rafter, as shown in Fig. 2.11 For the 

collapse of the profile to occur at failure compatibility of 

movement between the edge beam fasteners and the deflections 

of the profile at B in Fig. 2. -14 must occur, so for compatibility 

b. &= failure slip of the edge beam fasteners (2.19) 

where b= diaphragm width 

&= rotation of the diaphragm 

For this mechanism, the entire slab rotated about the line 

of the edge beam fasteners leading to the displacement pattern 

shown in Fig. 2.14. This mechanism will be termed Mode 3. 

Considering the collapse of the profile at a distance x 

along-the profile the deformation is as-shown-in Fig. 2.16. 

Assuming that this deformation arises as-a result of plastic 

hinges at P and Q and, neglecting-the small amount of 

twisting implied, the work done in a short length Gx is 

2 
t cry . 

6'. 
x. 6x 

(2.20) 

26 

2h 



.' 

and the total work done along the complete corrugation is , 

b 

0 

t2 b2 cry l`7 

4h 

(2.21) 

In the analysis only the fully plastic and linear force 

distributions will be considered for the main beam fasteners. 

Incorporating equation 2.21 and the fully plastic force 

distribution the work equation is-- 

P. a. 
ý. 

= na.. F. b. + 

2h 

nb^j 

: ýE (-). b. 13. + 
i=1 

t2 b2 c5- yý 

2 dx t . Q'y. 
. x. 

27 

4h 
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b 
a 

0 

giving P= 

1 

riaF+ 

i ="1 

-1 
t2 b Cry 

4h 

.... 
(2.22) 

and if ß1 = 

then P=b 
a 

nb. i 
ý 

i=1 

(n 
a+ . 

81 

-i 
n6 

) F+t2. ý. 
h 

Q". V 
.. 

(2.23) 

Comparing the values of ý1 and, 8-for the fully plastic 

condition, it can be shown that 

ß1 _ ,B-ý 

Similarly the linear force distribution gives 

1 
I 4L 

(2.24) 

(2.25) 
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nb_, 2 

where = --- nb 
i=1 

The above expressions are conservative in that the work 

done for the collapse of the profile shown in Fig. 2.16 requires 

the weight of concrete topping to be lifted a small distance 

and the resistance due to the head of the fastener being 

embedded in the concrete to be removed. 

2.5.5 Modified Analysis of Mechanism 3 

The previous analysis'takes no account of the possibility 

that the point of rotation occurs at some other position than 

the top right hand corner in Fig. 2.14" In practice, because- 

other small relative movements are possible, the composite 

slab probably rotates about some other point between A and B, 

resulting in a lower failure load. 

In the analysis that follows, in order to determine the 

variations of the ultimate load as the centre of rotation moves 

towards B, two cases of fastener positions. have to be considered, 

namely 

a) No fasteners between the centre of rotation and the 

corner A. 

b) Fasteners between the centre of rotation and corner A. 

As the centre of rotation moves towards B the concrete 

has the effect of restraining the profile between A and the 
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point of rotation. This reduces the length in which plasCic 

moments can form. 

Considering the fully plastic force distribution for the 

main beam fasteners and no fasteners between the hinge and 

position A, then the fastener deformations are as shown in 

Fig. 2.15 (a). 

The work done by the collapse of the profile is reduced 

to 

11 

t2 (b-j. Pa )2 °"Y 

4h 

and so the work equation for the slab is given by 

(2.26) 

P. a. °U. 
=(b-J. Pa ) ef"na. F+j Pa. 

ý. 
na. F + 

nb_. 
ýn" ý+ ý 

t2 ýb-J Pa ý2 ýY. ý 

, iC. 
- 

6--1 L. i -r 

nA 
i=1t,. 

b 
where i=n (i -j) 



31 

P= 

So that 

b 

a 

[na 
F + 

21d-1 
ý 

i= 1 

..... . 
(2.27) 

For the linear force distribution of the main beam 

0 

fasteners the force diagram is shown in Fig. 2.15 (b) and the 

force in the ith fastener is 

FL 
(i - j)F 

nb 

by 

(2.28) 

The expression for the failure load P is then given 

'., ý: 

(2.29) 
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The analysis is now extended to consider case (b) for 

fasteners between the hinge line and position A. From Fig. 

2.17 the expressions for deformations and forces, for the 

linear distribution are given by 

Qk 

Fk 

i b 
-nb 

(j -i 

_ 
S1 - i) F 

nb 

) 

. (2.30) 

Expressions 2.27 and 2.29 are now modified to take 

account of the additional work, so 

P= b 
a 

ý [na. 
F+s 

i=1 
lj-i 

nb i=nj +1 nb 

t2 b (1 - 
J/nb )2 C1" 

+ (2.31) 
4h 

for the fully plastic force distribution 
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0 

where nj is the truncated value of j 

rib_I 2 

P= a 
n, ý F+ý 

in 
F+ t2 b (1 - 

3/nb)? 

i=1 4h 

..... 
(2.32) 

for the linear distribution. 

A plot of the variation of the ultimate load P for 

varying values of j are shown in Fig. 2.18, the two curves 

show the variation for the fully plastic and linear force 

distributions. The results show that a change in position of 

the centre of rotation can cause a considerable reduction in 

the predicted failure load. 

2.6. Flexibility of Composite Diaphragms 

The flexibility of a corrugated sheet diaphragm was first 

shown by Bryan (22)to be the sum of the individual flexibilities 

of the components of the diaphragm, namely 

C1.1 = flexibility due"to distortion of profiled sheeting 

"C1.2 = flexibility due to shear strain in the sheeting 

C2.1 = flexibility due to slip in sheet to purlin fasteners 

C2.2 = flexibility due to slip in seam fasteners 

C2.3 = flexibility due to slip in connection to rafters 

C3 = flexibility due to axial strain in purlins 
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Some of the expressions used in the evaluation of the 
6,, 7 ) 

above components have subsequently been modified , but 

the basic principle remains valid and will be dealt in more 

depth in Chapter 4. 

For the analysis of composite diaphragms the above approach 

may readily be extended, if the following reasonable assumptions 

are made : - 

a) the confining effect of the concrete eliminates 

distortion of the steel profile, so that C1.1 may 

be ignored. 

b) at seams between adjacent steel sheets, the concrete 

carries almost all of the shegr force and C2.2 may 

be ignored. 

c) the expressions for C2.10C2.3 and C3 are, unchanged 

and d) the shear force is shared between the steel and 

concrete according to the requirements for strain 

compatibility and C1.2 requires modification. 

In order to derive the modified expression for C1.2, the 

shear strain of the composite slab, the notation of Fig. 2.19 

will be used. 

Considering a single corrugation subject to a unit shear 

load and a shear deflection C1.21 let the load carried by the 

steel be Ps and the load carried by the concrete Pc. 

Then Pa + Pc =1 (2.33) 

From the accepted expression (9) for shear strain in the 

steel. 
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C1.2 - 
Es. ts 

,b 
... 

(2.34) 

where I) s and Es are Poisson's Ratio and the Elastic 

Modulus respectively for steel. 

For shear strain in the concrete, and assuming an 

equivalent thickness of concrete, to 

Pc. d 

so C1.2 

2(1+9s) (d+2h) Ps 

Go = 
b. to. C1.2 

2( 1+ a c) d. Pc 
Ec. tc. b 

(2.35) 

where Got Ec and 
ac are the Shear Modulus, Elastic 

Modulus and Poisson's ratio for concrete. 

Substituting equations 2.33,2.34 and 2.35 we obtain 

C1.2 . Es. ts. d C1.2 . Ec. tc. b 
1 

2(1+as) (d+2h) 
+ 

2(1+Jc) d 

where d is the pitch of the profile 

and h is the height of the profile 
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Rearranging 

" 2( 1+ (1 + ýc ) (d + 2h d 

., 1.2 {Es. is (1 + ýc) -d+ Ec. tc -(1 +a s) (d + 2h) 1b 

For the overall diaphragm, then 

2 (1 + )s') (1 +)c) (a + 2h) 
c 1.2 rEs. is (1 +ac ) d'+ Ec. tc (1 +ýs) (d + 2h) 1 

(2- 36) 

The theoretical value of "C" of a composite diaphragm 

is then calculated as 

C= C1.2 + C2.1 + C2"3 + C3 (2.37) 

2a. Sp. p 
where C2.1 = 

b2 

2. Ssc 
c2.3 = Ylsc 

. n2 a3 
and c3 

6' E A_b2,;. _: 
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Values for Sp and Ssc, the slip-of the fasteners, 

are obtained by actual load / slip test results. 

2.7 Discussion of Theoretical and Experimental Results 

Before the results of the theoretical and experimental 

work could be compared shear tests on the actual fasteners and 

sheeting used were undertaken. The tests were carried out in 

accordance with the European Recommendations 
(23) 

using the 

standard shear test comprising of a single lap joint with two 

fasteners per lap. Values for the average ultimate load and 

flexibility are shown in Table 2.4. 

Fastener Sheeting No. of Ultimate Flexibility 
Tests Load 

(mm) (kN) (mm, /kN) 

6mm Tek Holorib (0.9) 3 6.15 0.017 

6mm Tek Robertson (1.5) 4 10.38 0.058 

Table 2.4 Average Experimental Fastener Characteristics 

The above values were then used in the failure expressions, 

previously developed, to give a comparison between the 

theoretical and experimental ultimate load, details of which 

are given in Table 2.5. 

From the table, the fully plastic force distribution for 
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the failure of the fasteners in Tests 1,3 and 4 are found to 

be unsafe and therefore must be rejected. The actual 

distribution appears to lie between the quadratic and linear 

cases, though it would seem to lie closer to the linear 

condition. For practical diaphragms a linear distribution would 

therefore be the most suitable. 

For Test 2, in which failure is in a mode including profile 

collapse, even the linear case is unconservative. This is 

probably inherent in the assumption of the centre of rotation and 

as developed in the modified analysis shows that movement of the 

hinge line causes a reduction in the theoretical failure load. 

Fig. 2.18 considers both the linear and fully plastic force 

distributions, with the linear case giving a reasonable result. 

The value of j, for the linear condition, equal to the actual 

failure load is 1.075, which is a hinge line position of 629mm 

from position A. 

This mode of failure does require further investigation, 

though it must be admitted that both failure modes 2 and 3 are 

of a limited relevance to practical diaphragms. The main reason 

for this is that the slab has to rotate in the failure mechanism. 

For most practical panels the structural actions is that of a 

simply supported beam and not of a cantilever. In such 

circumstances, rotation of the composite slab is prevented by 

the adjacent slabs and, of the modes investigated, only mode 1 

is possible. 

Barnes 
(19 reported 

failure in the concrete topping 

whereas in the present tests no distress of the topping was 

observed. However, the highest shear per unit length in the 

present tests were 28.6 kN/m, whereas in the Barnes tests 
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cracking did not commence until a load of 31.0 kN/m had been 

reached and failure was delayed until the load carried was 

86.4 kN/m. The difference in behaviour is clearly a consequence 

of the relatively high strength of welded connections to the 

perimeter structure. 

The behaviour of the slabs prior to failure is described 

in the load / deflection curves, Fig. 2.6 - 2.9. In each case 

the predicted stiffness is shown as a broken line both through 

the origin and also alongside the relevant part of the load 

deflection curve. 

In the initial stages of loading in Tests 1,2 and 3 the 

response is dominated by a large non-linear movement. The 

movement, though does not appear on unloading and re-loading. 

This is probably due to initial freedom of movement between the 

steel and concrete before full composite action takes place. 

Shrinkage of the concrete is the most likely cause of the 

initial movement. Roberts (18)has 
recorded that the shrinkage 

occurs away from the ribs so reducing the bond between the steel 

and concrete, Fig. 2.20. This separation causes the concrete 

and steel to "jam" against each other after some load has been 

applied, so producing the non-linear movement. 

Test 4 shows that the initial non-linear movement has been 

eliminated and is confirmation of the shrinkage cause of the 

movement. As described previously the construction of Test 4 

was different to the other tests to minimise this initial 

movement, as the concrete would have already "jammed" against 

the steel sheeting during Test 3. 
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2.8 A further note on composite slabs 

In the test programme there were, no cases of loss of bond 

between the steel and concrete. "-Barnes (-19)does 
state that a 

failure due to the loss of-bond-was possible. This could be 

critical in combination with a shear / bond failure due to the 

bending action. The combined failure would occur in the region 

of the main beam fasteners where the transfer of the shear -force, 

due to the diaphragm action, from the concrete to the fasteners 

interacts with the bond stress from the shear / bond failure. 

A check would be the mose convenient means of avoiding- 

this failure in the region of the first corrugation, so that 

Fbsr = Fbsb + Fbss (2.38) 

where Fbsc = combined bond stress 

Fbsb = bond stress due to bending action 

Fbsc = bond stress due to diaphragm action 

At the present time, though, some doubt occurs over the 

validity of the bond stress due to bending action. Here the 

French Bond Stress method could be a means of evaluating this 

stress. However, the other methods do not give any means for 

determining the bond stress due to the bending action. 

2.9 Composite Slabs acting as Horizontal Diaphragms 

In the previous sections of this chapter, expressions 
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for the strength and flexibility of composite slabs in shear 

have been developed and verified experimentally. It would now 

seem appropriate to investigate the characteristics of the slabs 

acting as floors in multi-storey buildings. At present a 

number of methods of analysis are available 
(24) (25) 

but these 

consider rigid floor movement or do not investigate the effect 

of the distribution of the shear force in the floors. In practice 

there are a number of simplified design approaches depending 

on the size and layout of the buildings, a survey of the methods 

has been undertaken by Davies 
ý11ý. 

For all the design methods 

the floor slabs are assumed to be of infinite stiffness. The 

test results, presented previously, have been shown that this 

assumption to be invalid. In order to investigate the effect of 

non-rigid slabs a full three dimensional building has been 

analysed. 

For this analysis a simple means of analysing the structure 

was sort. Davies 
(26) 

has suggested a possible method for 

determining the lateral and vertical loading distribution in 

complex multi-bay industrial buildings, which is easily adopted 

to multi-storey buildings. The method consists of using a 

standard two dimensional plane frame computer program with each 

frame assumed to be moved coincidence with each other frame. 

Elastic springs in the same plane connect the frames to each 

other, to idealise the corrugated sheeting as shown in Fig. -2.21. 

Davies developed an expression for the area of the springs from 

the flexibility as 

42 



I 

Area of spring = 
L 

C. E 
(2.39) 

where L= Length of the sheeting 

E= Elastic cons&�4 of the sheeting 

C= Flexibility of the sheeting 

\ 

The structure analysed in the study was designed by 

Bates(27) in 1963. Modifications to the structure are only 

required to the floor construction, where precast concrete floor 

units are replaced by the composite floors under consideration. 

A typical floor level is illustrated in Fig. 2.22. The building 

consists of a central tower block 21.3m wide by 41.8m long, 11 

storeys in height and at the base of the tower the floor width is 

increased to 39.58m for the two lower floors. At each end of 

the building there are lift shafts and stairs that act as shear 

walls. A layout of the building is shown in Fig. 2.23- 

A plane frame computer program developed by Dr. J. M. Davies 

has been modified to analyse the structure. As the storage 

requirements of the three dimensional structure is large the 

program adopts the "partitioning" technique for solving the 

stiffness matrix. 

In the study three different configurations were analysed, 

namely 

43 

(a) a plane frame analysis of the single frame. 
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(b) the three dimensional structure without the shear walls. 

and (c) the three dimensional structure with the shear walls 

included. 

For configurations (b) and'(c) the composite slabs were 

assumed to be of similar construction depth to that of Diaphragm 

Test 2. 

The deflection profiles at frame 8 are given in Fig. 2.24, 

through the deflections for configuration (c) are small compared 

with the other configerations. 

From the results, analysing a three dimensional structure 

without shear walls produces a reduction of 13% in the maximum 

deflection compared with the plane frame structure. This is 

explained by the fact that the end frames are only loaded by 

half the internal frame loads. For this case the effect of the 

composite slab is of limited value. 

Inclusion of the shear walls causes the maximum deflection 

to be reduced to 1.3mm, a considerable reduction on 133mm for 

the bare frame. In this configuration the composite slab 

distributes a large proportion of the lateral load to the shear 

walls. So, as aie would expect, the composite slab is acting 

as a deep beam and the relatively flexible frames are taking 

none of the lateral load. 

The value of "C", the shear flexibility, for the composite 

slab has been obtained from only the linear portion of the load 

deflection curve. Some small additional movement could be 

accounted for if a non-linear analysis was undertaken, but at 

the present time this facility is not included in the program. 
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Fig 2.10 Failure of Mechanism 1 
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3. Finite Strip Analysis of Structures 

3.1 Introduction 

The Finite Element Method (28) is a"powerful tool for the 

researcher and designer in the analysis of structural problems. 

However, the method can be time consuming, in both the preparation 

of the data and the running of the program. Where structures 

have regular geometry, material properties and simple boundary 

conditions the Finite Strip Method is a more suitable tool. For 

these types of structures, such as bridge decks, using the Finite 

Element Method the size of the stiffness matrix may be too large 

for a particular computer or the analysis too expensive, whereas 

with the Finite Strip Method the size of the stiffness matrix 

is reduced and so the problem is more economically solvable. 

The Finite Strip Method was developed from the Finite 

Element Method by Cheung(? 9) as the cost of solutions to 

problems with two or more dimensions increased. Cheung's method 

was to simplify a three-dimensional problem into a two-dimensional 

problem by analysing a number of two dimensional problems. A 

simple example is the case of a prismatic bar, shown in Fig. 3.1. 

The problem is three-dimensional and three components of 

displacement U, V and W are considered. The bar is restrained 

at g=0 and g=b such that the displacements in the x-y 

plane are restrained, but displacement in the g- direction 

is unrestrained. 

Dividing the x-y. plane into triangles, for the 

particular case, the mth displacement function in the x- 

direction is given by 
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0 

, ý, --Mn, .. fU3"[N 
UT, N2, N3 (3 

.1ý 
ý 

Similarly in the y- direction 

N2, 
mm ly 

v (3.2) 

ý 

where N1, N21 N3 etc., are the shape functions 

for the element considered, which in this case are 

triangles and YZm is given by 

Sin rn7rr 
b 

From the above functions the stresses and strains can be-related 

to the nodal displacements. Applying the principle of minimum 

potential energy the parameters mU and Vm can be determined 

for an applied load. The actual displacements are then obtained 

by the theory of superposition from the summation of all terms in 

U or V at the position 9 along the axis, so 

r 
II = : EE: II ýY (3.3) 

ýý M" 

_c 
ý_ l 

__ m V=C 
M=l M 

(3.4) 



The development of the, analysis of the, total potential, 

energy, as will be described later, shows that the terms in the 

stiffness matrix are uncoupled so that the individual strip 

stiffness matrices can be generated and solved separately. This, 

of course, reduces the working core necessary for the analysis. 

3.2 Philosophy of the Finite Strip Method 

3.2.1 Original Theory 

Cheung(ýO developed the Finite Strip Method to reduce the 

numerical computations in the computer by analysing a number of 

similar structures simultaneously. Unlike the Finite Element 

Method, which has polynomial displacement functions in all 

directions, the Finite Strip Method's displacement function 

. 
66, 

is the product of two displacement functions; a simple polynomial 

function in one direction and a continuous differentiable smooth 

series function in the other direction, Fig. 3.2. The smooth 

series function must satisfy the specific boundary conditions 

at the ends of the strip. 

The first strip element developed by Cheung(; ý9) 
was the 

simply supported bending strip, shown in Fig. 3.2 (b). 

Considering each harmonic individually, there are four degrees 

of freedom, namely 

WM= 
(3.5) 
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The shape functions for the strip were derived so that there 

was compatibility between adjacent strips of displacement and 

slope, Loo("later developed a similar strip but included 

an additional compatibility of curvature between the-strips. 

Cheung's displacement function is given as 

r 3x3 2x3 2x2 x3 
w=ý (1_ 2+ -" ý+ x--- +2 

M-1. a, a3aa m =1 . ý-,,, - 

(3x2 
2x3 

+--- 2 
6 a3 ) x3 

2- 
a 

+ 

2 
x 

a, 

m 
Sin mT 

3 

... .. _ 
(3.6) 

Applying the "Principle of Minimum Potential Energy" to 

the stress and strain matrices, which can be derived from equation 

(3.6), a stiffness matrix is formed from the integral. 

ff FB7 
00 

ED] CB3 dx dy (3"7) 

where 
[B] is the strain matrix 

and 
CD 

S is the property matrix 
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The bending stiffness matrix derived by Cheung 
C31)is 

given in 

Appendix 1. From the integration five product integrals are 

obtained, namely 

bAb 

Iý _ý Ym Yn dy 12=f Ym11 Yn dy 
0 

b 

0 

13 =f Ym Yn11 dy 14 =f Ym11 Yn11 dy 
00 

b 

15 =J Ym1 Yn1 dy 
0 

where Ymý and Yn are the displacement functions in 

the y- direction and for the simply supported strip 

are Sin 
71- y 
b 

Ym11, n Yn1, n are the derivates for the 

displacement function. 

Convergence of the harmonics, for a particular solution, ' 

was found by Cheung to be within the first five harmonics of the 

function, Sin 3n V yy 
. These solutions included simply 

supported beams and plates of various boundary conditions. 

Two methods were available for increasing the accuracy of 



the problems. The simplest is by increasing the number of'strips 

in the problem. Another method was to develop higher order 

strips. The incorporation of curvature compatibility between 

the strips was one method that was successfully adopted. A 

second group of higher order strips were again developed by 

Loo(30) in which an internal node was introduced into the. 
I- 

rectangular strip. This is an extension of the developments in 

the Finite Element Method, where internal nodes were introduced 

to increase the accuracy of the elements. 

At present, only strips which are simply supported at the 

ends have been considered. For varying end conditions the beam 

differential equation was used to derive further displacement 

functions. The'beam differential equation is 

Y1111 = 14 

\C4 

(3.8) 

where b is the length of the strip 

tl is a parameter (in this case the harmonic 

considered) 

Y is the basic form of the displacement function 

and Y1191 is the fourth derivative of Y. 

The displacement function of Y in the above equation, for 

the possible end conditions, have been derived in the literature(32). 
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A later development was the simply supported plane stress 

matrix) which was combined with the simply supported bending 

matrix assuming small displacement theory, to form a folded plate 

stiffness matrix. The displacement function for the plane 

stress matrix was developed with only a compatability of 

displacement between the adjacent strips. The displacement 

functions for a typical strip shown in Fig. 3.3. are 

ur 

m= v lv 

r 
(1-X) Ym 0X Ym 0 

0 (1-xý 
-- Y1 0 

xbY1 
Jl/m mpmm J ý 

where x= x/ a (3.9) 

For both the plane stress and bending strips so far developed 

the member coordinate and the global coordinates are coincident 

with the mid-surface of the strip. -However, for the folded plate 

strip the member coordinates have to be transformed to the global 

coordinate system so that the equilibrium of the nodal forces and 

compatibility of the displacements can be achieved. The notation 

for the two coordinate axes is given in Fig. 3.4. From the 

diagram, it can be seen that the y and y' axes are coincident 

with each other, whereas the other axes have to be transformed. 

The transformation of the forces and displacements-between 

the two sets of coordinate systems are given by 

ý 

=< 

m=1 

fF3m 
= 

[R7 JFIIM (3.10) 
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and ßd3. Cal°tslm 0 (3.11) 

in which the transformation matrix 
rR)7 is given by an 8X8 matrix 

fRJ 

and where 

C=] C07 

CO-S0 

OýOO 

SOCO 

OOO1 
C7= 

ro 
J= null matrix 

c= cos 
(Beta) 

s= sin 
(Beta) 

Beta = angle between x and x' axes (clockwise 
tve) 

So applying equations (3.10) and (3.11) to the member force 

deflection equation we can obtain the global stiffness matrix 

fS S1 in the terms of the member stiffness matrix 
[SS'] 

and 
7 

the transformation matrix 
jR 1 as 
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11 
T 

[s3=1 
_ 

LRJ [s'] 
mn 

ýRý 
..., 

(3"12) 

Analysis of profiled sheeting under the action of a shear 

flow requires that the folded plate is not simply supported at 

the ends. The actual distortion of a profile, fixed in every 

corrugation, from energy methods 
(17) 

and experimental work is 

shown in Fig. 3.5. This condition requires that a free end 

displacement function for a folded plate be developed. The 

definition of a free end being that the displacements u, v, w 

and ß' are all assumed to be free to move at the ends of the 

strip and that the shear stress at the ends be zero. Whereas for 

the simply supported strip u, w and 0 are all restrained at 

the ends. Cheung and Cheung(33) developed a function for a 

bending strip with both ends free, so-that 

W/0 at y=0 and y=b. 

This strip has been successfully applied to bending and 

vibrational problems. No free end plane stress displacement 

function has been possible with the functions so far developed, as 

the requirement of u and v not equal to zero and the shear 

stress to be equal to zero at y=0 and y=b 

is difficult to obtain. The problem has been overcome by the 

work of Siddiqi and Girija Vallabham 
(3+-935) 

. They extended 
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the simply supported displacement function to allow for the, 

relative movement of the nodes. 

3.2.2. Extended Theory 

The extended theory was developed by Siddigi(3 6) 
so that 

folded plates other than simply supported end conditions could 

be analysed. The method consists of separating the displacement 

function in the . y- direction into two specific parts. The 

first part consists of movements of the longitudinal node lines 

and the second part of displacements of a simply supported strip, 

previously developed. 

The displacement function for the plane stress strip are 

now written as 

: 
in which Ym and Xm are the displacement function in the y- 

direction, Fig. 3.6. In numerical form 

Ym = 1,1 -=, Sin --fir , Sin L7ry 
, Sin 

LM-2) 7' 
y bbbb 

with m=3,4,5 etc., 

and Xm =1-Y: f1 
b 

IT a vv0 _9 vvo --/ vvN -- � 

"b"b"b 
Cos . Cos 2 -ý 

, Co. 
(m-2) 7r 

with m= 39 49 5 etc. 
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11 The bending action can also be separated into two parts, 

this displacement function is given-by 

W32+ 2x 3) 
x 

(1 
- 27c + x2) 

(3x2 
- 27c3) 

m=1 

.... 
(3.16) 

The only change in this displacement function compared with 

(3.6) is in, the form of Ym. 

The first two terms of Ym and Xm represent the first part 

of the displacement, while the remaining terms represent the 

second part of the displacement. The series is no longer 

orthogonal and exhibits coupling between the first two terms and 

all the other terms in the stiffness matrix. This does reduce 

the efficiency of the Finite Strip Method in terms of working 

core in the computer; but does allow greater freedon of structures 

analysed. 

Siddiqi and Girija Vallabham have not compared the 
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displacement functions of the extended Finite Strip Method'to any 

theoretical or experimental results. Cheungýýlýis also uncertain 

whether the criteria 
2xy 

=0 at the ends of the strip can be 

satisfied. But as will be shown, a good comparison occurs 

between the Finite Element Energy Methods and the Finite Strip 

solutions of a corrugated profile, and it may be that the 

ýýy 
=0 criteria does not need to be adhered to as one would 

imagine. 

3.3 Development of Stiffness Matrix 

In the previous section the form of the extended Finite 

Strip displacement function have been enumerated. This function 

can be expressed in the form 

ff =' : 

where 
INI 

m 
is the displacement function for the 

mth harmonic 

and M 

r 

m 
for the nodal displacement 

(3.17) 

Once the displacement function is formed the strains can 

be related to the nodal displacements thus 

r 

ff3= ý Cam is3a (3"1e) 
uIA 
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where fez is termed the strain matrix for the 

mth harmonic. 

For the case of a bending strip the strains are 

... -. 
(3.19) 

and the strains can be related to the displacements by the 

appropriate differentiations. 

The plane stress strip can be related to the nodal 

displacement by the following differentiations 

fE3 = 

L13, 

v/a F- -- 

ýLC 

fi 0V 
a\ 

ý, uý tlx 
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By utilising the property matrix 
ED 

a relationship 

between the nodal displacements and the stresses may be obtained 

for each harmonic as 

ýýý = CD J ýB7 ýEj 
.mm 

where 

Dx Dý 0 

CD= Dý 0 

ý0 DxyJ 

and 

Dx = 
Ex t3 

12 (1 - ý2) 

t3 E 
Dy = '--v 

12(1-ý) 

Dý _ ý. Dx 

Gt3 
Dxy = 

12 
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The strain matrix 
fBJ 

m 
for the folded plate is'given 

in Appendix 1. 

Having obtained expressions for the strains and stresses 

in terms of the nodal displacements, the stiffness matrix can 

be. obtained using the Principle of Minimization of Total 

Potential Energy. The principle states that : - 

"the rate of change of the stored strain energy in the 

body and the potential energy of the loads is zero. " 

The strain energy of an elastic body is given by 

Es =ý JfE]1fo-3 J(/) 

..... 
(3.22) 

substituting expressions (3.18) and (3.21) into (3.22) we 

obtain 

Es = if UB] [D] IB] 
d (vol) (3.23) 

The potential energy of the external loads can be written 

as 
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EP - 
fff3,, fq (area) 

where q is the external load matrix 

substituting expression (3.17) into (3.24) we obtain 

Ep 
7f 

q3 

or 

(3.24) 

d (area) (3.25) 

The total potential energy ETp is then given by 

E rp -_ . Ex +. - Ep 

- fEc? fNJf43 

d (vol) 

(area) (3.26) 

Applying the principle of minimum total potential energy to the 

= ifcBJ71DJ LB] fýý 

expression we obtain 



8o 

0 

fgý 
JEB]Jfel{rýa(ý, ) -fix]{43, (ý. ) 

03 (3.27) 

or fslfs7- {F} = {o} (3.28) 

'7 
where fs7 is the stiffness matrix J[i jT[][B 

Jd (vol) 

r '77 
and 

EPI 
is' the force matrix LNJqd (area) 

In equation (3.27) there is a large amount of integration 

to be carried out over the strip. Applying this equation to 

both the bending and plane stress strips their respective matrices 

are obtained, which are given in Appendix 1. Prom the matrices 

a number of product integrals are formed, -for the bending strips 

these have already been given, but for the plane stress strip 

the integrals are 
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0 

L, = 
f'YmYndY L2 = 

L3 

Z5 = 

b 
[ 

b- 
f Ym Xn I dy 
0 

11 

Ymt Xn dy L4 =f Ym' Yn' dy 
0 

b 
f XmI Yn dy 
0". 

Z6 rý 
J 

0 
Xm YnI dy 

b 
L7 =f Xm' Xn' dy L8 Xm Xn dy 

0 

An additional three product integrals are required compared 

with the bending strip as there are-two displacement series in 

the y- direction, namely Ym and Xm. 

The values of I. 
7- -and L, --r L8 -- have been 

determined explicitly in Appendix 2. 

3.4 Computer Program 

3.4.1 Formation of Global Stiffness Matrix-- 

A computer program has been written using the matrices 

developed previously, an annotated listing of the program is- 

given in Appendix 3. The program is written in Fortran, and 

associated flow chart given-in Fig. 3.7 

The program computes the individual stiffness matrix for 

each term of the displacement function, which is then transformed 

from its local coordinate system to the global system by the 



transformation matrix (3.12). In the case of the folded plate 

stiffness matrix each term consists of an 8 8'stiffness matrix 

given in Appendix 1. 

After transformation of the individual matrix. it is then 

placed in the strip stiffness matrix, its position depending on 

the terms of the harmonic m and n. This is best shown in 

Fig. 3.8, where for a particular 8*8 matrix the position of 

the elements are. given by 

SS(NI, NJý = BO (I, Jý 

where NI = 8* (M-1)+I 

NJ =8*(N-1 )---+ J 
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When all the terms of the strip matrix have been fully 

developed the matrix is rearranged so that the displacement 

matrix 161 are ordered in a nodal sequence and not as previously 

in a harmonic sequence. An example of the change in the sequence 

is shown below. 
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Having obtained the strip stiffness matrix the appropriate 

boundary conditions can now be introduced. Unlike the original 

Finite Strip displacement functions which formed a non-singular 

matrix the new displacement function form a singular matrix. 

Therefore boundary conditions must be applied before any solution 

of the equations can be undertaken. In the program this is 

carried out in the usual way by increasing the value of the 

leading diagonal term of the nodal displacement parameter to be 

restrained. 

3.4.2 Solution of the Stiffness Matrix 

The method of solution for the overall stiffness matrix 

is by use of the partitioning, technique(N)". As each strip 

stiffness matrix is formed the previous node is eliminated from 

the preceding strip before the next matrix-Is formed. -The method 

is best illustrated. by. reference to-Fig- 3.9; which represents a 

problem with. n -_1 numbers-of strips. 

The overall stiffness matrix can be written as 

Il� kýs 
7 

KA Ký. 2 
T ý. 

23 

0 

K3 9 

0 
K34- 

ýf 

(I 

1ý 

kn 
; n-. 2 0 

k. 7-, 
a 
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where K11, K12 etc., are the submatrices of the overall stiffness 

matrix. 

The first two equations can be written as 

P1 - g11 ý1+ K12 
F 

2 (3.29) 

C` C' .. p2 = K12 . o1 
" 

+- K22 °2+ 1(23 d3 (3.30) 

On eliminating 
f1 

in equation (3.30) we obtain 

P2 22 + ý23 

where P2 = P2 -K 12 
T K11 -1 P1 

and 1(22 = K22 - K12 K11 -1 g12 

The procedure is repeated for each -_- until the modified row 

becomes- 

P' _ý inn 

(3.31) 

(3.32) 

from which 
Fn 

can be obtained by direct inversion. 

A back substitution is now carried out to obtain the unknown 

ýs. 

The computer program's positioning routine stores the matrices 

iýi, l ; it/,, etc., on magnetic tape for future use in the 

back substitution routine. This allows large problems of many 

strips to be handled by the computer, which would otherwise be 

impossible to consider. 



3.5 Verification of Finite Strip Programe against Standard 

Solutions 

3.5.1 Plane Stress Problems 

85 1 

A number of test problems were analysed to verify the 

matrices developed. For verification of the plane stress matrix 

two problems are given, the simply supported deep beam and the 

deep cantilever. 

The simply supported deep beam shown in Fig. 3.10, consists 

of an isotropic beam supported'at the ends to vertical movement. 

A uniform load is applied to the surface BC of intensity 

175 N/mm. Verification of the results is undertaken by means 

of a flat rectangular finite element which was supplied to the 

author in a program written by Dr. J. M. Davies. The total 

number of elements in the example was sixty four. For the 

problem five strips-were used with seven harmonics in the 

displacement function. -, 

The results,, given in Table -3.1, show that there 3s a 

good comparison between the results and further convergence 

could be achieved if more elements or strips were introduced. 

The second problem deals with the analysis of an isotropic 

deep cantilever under the action of a uniform shear stress at 

the free end Fig. 3.11. The total value of the shear stress is 

unity. At the fixed end the cantilever is restrained along CD 

to movement in the x- and y- directions. 

The problem exhibits a combination of inplane bending and 

shear distortion that is also found in the distortional analysis 

of corrugated profiles. 

Three variations of strips were analysed, namely 6,10 

and 15 strips. The node lines are in the x- direction, so as 
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to allow the restraints to be consistent along each node line. 

A solution for this problem is given by Timoshenki(A`ý 

and is 
N 

Ax = 
12 x3 / 2x p 

- -- _{+f+0.325 a2 
d3 623 

where 
ý= 

length of cantilever 

d= depth of cantilever 

and x= distance from free end 

... (3.33) 

The deflection curves are given in Fig. 3.12 showing the 

Timoshenki solution and the-three strip combinations. 

Table 3.2 compares the deflection of the cantilever and 

the free end for the Timoshenki solution and the three strip 

combinations together with a number of Finite Element results 

undertaken by Young (39). The results show that there is some 

agreement with the results though for the Finite Strip and Finite 

Element there is considerable agreement. 



3.5.2' Cylindrical Shell 

The cylindrical shell is loaded uniformily under its own 

self-weight in such a way that only symetrical displacements and 

stresses are obtained: This problem combines both bending and 

membrane stresses and has been used as a test case by many 

Finite Element investigators. The geometry and properties of 

the shell are given in Fig. 3.13. The straight edges of the 

shell are allowed to remain free to deform, while the curved 

edges are supported by rigid diaphragms. These diaphragms are 

assumed infinitely rigid in their plane and infinitely flexible, 

out of plane, in the V- direction. A solution has been given 
(401) by Scordelis and Lo ý 

and a Finite Element solution by 

Young('), using flat rectangular elements. 

The performance of an eight and sixteen strip arrangement 

was analysed using the Finite Strip program. The results are 

given-in Fig. 3.14, for vertical displacements-at the centre. - 
the inplane displacements at the support,:. the longitudinal 

bending moment -My and the transverse bending moment Mx at 

the centre. 

Figs. 3.14 (a) and (b), show that the deflections have 

good agreement with the previous work and that increasing the 

number of strips has not influenced the accuracy of the results. 

Whereas in the longitudinal bending moment the sixteen strip- 

arrangement has increased the accuracy and it would require 

durther strips to converge onto acceptable values. 

3.5.3 Further Examples 

Further examples of the verification of the matrices are 

given in the following chapter where. the analysis of profiled 

sheeting by the Finite Strip Method is compared with Energy and 
Finite Element Solutions. 
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S. S. 

Fig. 3.3 Plane Stress Strip 
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System 
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shear flow distorted shape 

\I/// 
ý 

Fig 3.5 Distortion of a Profile 
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Fig 3.8 Position of 8x8 Matrix in Overall 

Stiffness Matrix 
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FLOW CHART FOR FINITE STRIP 

PROGRAMME 

CSTART 

M= 1, N= 
(HARMONICS) 

FORM 8x8 STIFFNESS 

MATRIX (BO) FOR M AND N 

t 
INSERT INTO STRIP 

STIFFNESS MATRIX (SS) 

N=N+1 NO 

YES 

M=M+1 I"=`ý 

= MM 

=1 

REARRANGE STRIP 

STIFFNESS MATRIX (SS) 

FROM RARMINIC BASE 

TO NODAL BASE (SK) 

MM = No. of Harmonics 
in analysis 

YES 

Fig. 3.7 Flo,; Chart'' 
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ELIMINATE NODE 

OF PREVIOUS STRIP 
(PARTITIONING TECH. ) 

ý 

BACK SUBSTITUTE 

TO OBTAIN NODAL 

DISPLACEMENTS 

IS PROP 

INCLUDED 

OBTAIN PROPPING 

FORCE FROM 

FLEXIBILITY METHOD 
See 4. 
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I 
2 
3 
1 

n-2 
n-1 
n 

Fig 3.9 A Structure divided into strips 

ýiiftf*f*ijtf#4 

Fig 3.10 Plane stress simple supported deep beam 

Deflection Vertical Deflection 
Point Finite Strip Finite Element 

1 0.3072 0.2902 

'2 0.5841 0.5797 

3 0.6705 0.6539 

4 06785 0 6464 

Table 3.1 Comparison of Finite Strip and 
Finite Element for a Deep Beam 
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1=900 
-101 

T 

d=300 

1 =0.34 E=1 kN/mm2 

t= 1mm 

Fig 3.11 Dimension of deep cantilever 

Finite Strip AG 

6 strips 103.2 

10 strips 109.2 
15 strips 112.1. 

Timoshenki 
(38) 

119.7 

Finite Element(? ) 

Macleod element 115.5 
Argyis element 110,1 

Cheung element 112.0 

ecl ra/IO of 

ona JOr eler, "en/s 

Table 3.2 Deflection of a deep cantilever (E0) 
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Self weight = 4.3 kNIm2 

E= 20: 69 kN/mm2 
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Fig 3.13 Layout of Cylindrical Shell 

\-b 

Fig 3.14a Vertical Displacement at centre of span 
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Fig 3.14 b Lateral Displacement at Support 
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Fig 3.14c Long. Bending Moment at centre 
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FS 16 strips 
o F. S. 8 strips 
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Fig 3.1Id Transverse Bending Moment at centre 
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4. Finite Strip Analysis of Profiled Sheeting under the 

Action of a Shear Flow 

4.1 Introduction 

In the previous chapter, the development of a Finite Strip 

Program was described and verified for problems that have 

standard solutions as determined by both the Theory of Elasticity 

and the Finite Element Method. The main purpose of the development 

however, was to analyse profiled sheeting under the action of a 

shear flow. This has previously been undertaken by a number of 

researchers, their work to be described later, but, due to the 

methods employed and the scope of the computer, only a small 

number of corrugations within a large diaphragm could be considered. 

Since work first started on the use of profiled steel sheeting 

acting as a diaphragm in resisting lateral loads, researchers 

have undertaken work to determine the flexibility of a corrugated 

panel. Until the'early 1960's, the only method of obtaining the 

value of this flexibility was from actual test results 
M. 

Clearly 

this is far to expensive for most practical applications. 

Work on the theoretical analysis of profiled panels was 

undertaken by Brysi 
(22) 

and was later modified 
(6) 

. Bry is 

analysis identified the possible components of the flexibility 

of the diaphragm as 

1. the distortion of the profile under the action of a 

shear flow, C1.1 

2. the shear strain of the material, C1.2 

3. the slip of the sheet / purlin fasteners, C2.1 

4. the slip of the seam fasteners, C2.2 
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5. the slip of the sheet / shear connectors, C2.3 

and 6. the axial strain of the supporting structure, C3 

I 

It has been found, from test results and theoretical investigations, 

that the Cß. 1 component for the shear distortion of the profile 

is of paramount importance for practical diaphragms. A large 

proportion of the work predicting the flexibility has therefore 

been concerned with obtaining realistic methods of analysing the 

distortional shear movement of the profile. 

4.2 Review of Work on the Distortion of Profiles 

The distortion of a corrugated profile is the resultant 

deformation that occurs when the centre of shear resistance of 

the profile is different from the plane of application of the 

force - in this case the fastener force. The profile is 

twisted out of shape by the resulting shear flow, which causes 

the individual plates to rotate and bend inplane, producing 

longitudinal warping and thus the shear displacement. 

Bryan and his fellow workers obtained an expression for the 

distortion C1.1 of a single corrugation, Fig. 4.1, as : 

C_0.144 a d4 KB (4"1) 
Et3b3 
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and 

where a and b =dare the overall dimensions of the 

diaphragm 

d is the pitchhof the corrugation 

t is the thickness of the sheeting. 

E the Elastic Modulas 

KB a constant for a particular profile 

The above expression was based on experimental observation 

of a short single corrugation, which showed that the fold lines 

remain straight, Fig. 4.2, and is termed "rigid plate movements". 

From full scale tests and more detailed analysis it has 

been found that there are large non-linear deformations near the 

region of the fasteners which Bryan, in the discussion of his 

work, states as a limitation of the analysis. So the 

assumption of linear plate movement breaks down in such cases. 

Horne and Raslan developed a more general approach to 

the analysis by again equating the internal and external work. 

They identified three basic displacements of the profile, Fig. 4.3 

when under the action of a shear flow. A sinusoidal term was 

included, in addition to Bryan's analysis, in the displacement 

functions as follows : 

Cq b 
IIB = ýý. Sin b 

(! li `vt' v ýý ý IJ .� 
and u= -ý Sin 

a ti-r 

Cý býY 
IIT =Cy+ IT 

Sin b 

C2b 'TT Y 
UB = Tr 

Sin b 

C ti `ý' y 
IIa =ý Sin b 7T vý b 

'TT Y (4.2) 
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with y=0 at the centre of, the corrugation 

As a point of note, for the tern for U5, the analysis 

assumes no side plate movement at the ends of the corrugation. 

For a practical corrugation one end will remain zero, but 

consequently, as a result of the asymmetrical displacement 

patterns, the opposite end will have some significant value. 

The above displacement pattern was a means of obtaining some 

correlation with the actual test displacement in the region of 

the end purlins, Fig. 4.4" 

Horne and Raslan do not compare any experimental results 

with the theory developed, but give. a comparison with an 

equilibrium solution 
(If2 that they developed. The additional term 

in the displacement function allowed the authors to consider non- 

linear plate movements. BryQn's analysis for rigid plate movements 

was shown to be valid up to 2 metres in length, but beyond this, 

non-linear movement in the region of the fastener required the 

additional term to be included. Consequently as a result of this 

non-linear movement, the shear flow is now no longer constant along 

the sheeting, and can be determined from the transverse bending 

moments. 

Davies and Lawson 
(7) (ý) 

further extended the analysis to 

include additional terms in the displacement functions and to 

allow for asymmetrical displacements of U8 in the unpropped 

condition, so 
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From their results it was found that the C1.1 expression 

derived by Bryan was incorrect and they proposed a new expression 

of 

C1.1 - 
a d2'5 K 

E t2.5 b2 

(4.4) 

A comprehensive study was undertaken into the effect of 

purlin restraint at the ends of the corrugation, intermediate 

purlins, and the results included in the K factor. The results 

were compared extensively with Finite Element and experimental 

results, which for large diaphragms were found to agree. For 
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small diaphragms however, the effect of the edge members were 

found to dominate as a result of rigid plate movements from the 

"edge members. 

Lawsoii(43 Z 
also undertook an extensive literature study of 

the previous analyses. 
(r3) Libove and his fellow workers undertook the analysis 

of the shear distortion from a different approach. They again 

considered bending of the cross-section, longitudinal plate 

flexure, shear and- torsional energies, with differential 

equations being formed, such as 

d2IIT 2 bT3 tE (4.5) 
(. 

dY2 
3 

-. 2 
CLY 

for the bending energy of the top plate in the UT direction 

The total energy is then expressed in terms of differential 

parameters, and by applying the calculus of variations, six 

differential equations are obtained corresponding to the minimised 

total potential energy. Libove solved the differential equations 

in terms of a complementary function and particular integral for 

varying boundary conditions to represent the methods of fastening. 

4.3 The Work of Lawson 

Lawson 
(43)has 

undertaken the most extensive study todate 

into the analysis of corrugated diaphragm, and in particular 

the distortional behaviour of the profile. The approach for the 
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analysis of the profiled sheeting was to divide the problem 

into the analysis for a single corrugation fastened and the 

analysis for multiple corrugations fastened. The multiple 

corrugations having an additional distortion pattern from the 

every corrugation as a result of the absence of the intermediate 

fasteners. 

Considering a single corrugation the total strain energy 

for the profile is obtained from the displacements UTI Us and 

UB in equation (4.3)\and the in. plane shear strains. This 

energy is expressed as the sum of the energies due to the 

following : 

a. bending of the cross section 

J[C (1r1) UT 2+ C(1.2) Us UT + C(1,3) UT UB 

0 

+ C(2,2) IIS2 + C(2ý3) US UB + C(3,3) IIB2 dy 

. 
(4.6) 

(44) where C (1,1) etc., have been derived by Horne and Raslan 
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b. energy due to longitudinal bending of the plates 

-k- /m 2 

i 

E I! 

2 
-b/2 

(d2 
Ui 

dY? 

where i refers to the top, side and bottom plates 

(4.7) 

c. energy due to longitudinal axial strain of the plates. 

This is a result of the incompatibility of the longitudinal strain 

caused by the longitudinal bending of the plates, and is easily 

obtained from the following strain expression : 

_1 A-2 

ýT 

9 
aY 

-bL. 
90 

dYý ýY dYý dy 

..... 
(4. s) 

(bT. d2 UT + bT. d 

clv2 

d2üB -b 
., 
LO d OB 

d. v2 dv 

where 
9T 

and OB are the axial strain expressions. 
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d. energy due to the shear strain in the plates 

Es = 
G 
2 

S 

O l -bý2 
V2 ds. 

2 

where s. refers to the appropriate plate widths 

bL' bT' bs 

e. energy due to torsion of the plates. This is an additional 

energy not included in previous analyses. 

t2. G ET 3 
11 
b+b iT 

b/2 

d üs 

J 
dý 

-b/2 

1 
+ 2bs 

b/2 

-b/2 

dIIa 
dy dy 

dy (4.9) 

) 

0 

dy 

2 

(4.10) 
dJ 

The total energy can then be expressed in terms of the 

parameters (as) in the displacement functions (4.3). By 

considering small variations in the parameters dai, and allowing 

zero strain along the centre lines of the bottom plates, we 

obtain 17 simultaneous equations with 17 unknowns. 

b/2 
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The computed values can then be substituted back into the 

expressions for total energy E,, -r, from which shear flexibility 

C1.1 + C1.2 is obtained as follows : 

ý1.1 + C1.2 - 

nz 
(4.11) 

2. E. 
rö r 

where 
L is the shear displacement. 

In dealing with the alternate corrugations, Lawson assumed 

that the shear flexibility is the resultant of two separate 

modes bf distortion, Fig. 4.5, these are : 

1. the flexibility when every corrugation is fastened, as 

described previously. 

2. the flexibility due to the concertina deformation when 

the force in the missing fastener is reversed. 

It is therefore only necessary to determine the flexibility 

due to the concertina action and add this to the flexibility due 

to the every corrugation fastened, so 

K= Ka + Ke (4.12) 
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0 
where Ka is the concertina sheeting factor 

Ke is the sheeting factor for every 

corrugation 

For the concertina action, Lawson again developed the 

analysis based on non-linear movements and redefined the bottom 

plate movement into two separate expressions, Fig. 4.6 : 

0 

a 
UB1 = aý y+ 2 sin 

27T y+ sin 
4bv 

77' b4 77' 

abb -y 
+ý sin b 

UB2 = sin 
2 77 y+4.7 

b 
sin 

6 sin b 

.. __ . 
(4.13) 
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The top plate movement is assumed to be the average of 

the neighbouring bottom plates. 

+ üT =2, IIBl (4.14) 

The development is now similar to the every corrugation in 

the determination of the shear flexibility expression. 

The analysis described previously has been shown to be 

adequate in comparison with experimental results and the Finite 

Element Method. In particular it has shown that Bryans factor 

KB varies considerably with the length of the sheeting. However, 

there are certain limitations to the theory and this does restrict 

the methods use, namely :- 

1. that the analysis gives no indication as to whether all the 

internal energies have been considered. Lawson did include 

an additional term for the torsion of the side plates, as 

compared with previous work, but the total internal energies 

may still not be included. Though Lawson's comparison with a 

similar Finite Element model does seem to confirm that the 

total internal energy has been considered. 

2. as the length of the sheeting increases further terms are 

required in the displacement function to adequately predict 

the displaced form. For any additional terms in the 

displacement function the parameters ai have to be re- 

determined and so the method is not self-generating. 
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3. Lawson also determined the propping restraint forces f6r a 

linear plate movement, and, as shown by the unpropped 

analysis, the effect of non-linear plate movements are of 

paramount inportance in the analysis. It will be shown by 

the Finite Strip Method that the use of non-linear plate 

movements does predict the Finite Element and experimental 

results more closely. 

4. no effect of edge members are included, as the analysis 

only considers a single corrugation in a "large field of 

corrugations". The effect of the edge member was stated 

by Lawson to be the reason for-this discrepancy between the 

test and theoretical results. The edge member influences 

the results by preventing bottom plate movement of the 

displacement UB at the shear connectors. 

4.4 Determination of the Propping Force from the Finite Strip 

Analysis 

The actual deformation of the profile under the action of 

a shear flow is not purely asymmetrical, as the edge purlins have 

the effect of restricting the downwards displacement of the 

profile, Fig. 4.4. However, points restraints can not be applied 

to the Finite Strip Method directly as the nodes are considered 

to be twö dimensional, whereas in the Finite Element Method the 

nodes are one dimensional in nature. The method commonly 

employed to overcome this problem in the Finite Strip Method is to 

use the "flexibility" approach. This method was first employed in 

a program by Loo 4) 
, who analysed bridge decks with discrete 

columns. 
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The structure in. Fig. 4.7 is loaded by externally applied 

forces and restrained at certain points by "n" forces. The 

displacements at these points 1,2,3. ..., n-1, n are 

zero. The method of determining the propping forces consists 

of relaxing the restraints, thus producing the deflections Vi 

at each of the restrained, points due to the external load. 

This is termed the primary structure. 

{off _ 
--. 

(4.15) 

Unit loads are then applied to the structure individually 

and the respective displacements [f] 
ij at each of the restrained 

nodes are obtained froni : 
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10 

f, J12 

Jß2 

.I 

LE, Ihn 

ý: ý 6) 

where 
i 

refers to the loaded point 

and refers to the deflection point 

From compatibility requirements of the displacements at 

the restrained points we obtain : 

[T] {R} ýM= [0? (4, 
- /7) 

from which the reactions 
JR3 

can be easily obtained 

4.5 Comparison of the Finite Strip Method and the Work of Lawson 

Before any analysis by the Finite Strip Method can be 

undertaken for the profiled sheeting, the correct boundary 

conditions for each strip in the profile must be identified. In 
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the analysis by Lawson the boundary conditions for U8, UT and 

UB were defined by the displacement functions 4.3. Together 

with these defined boundary conditions, boundary values were 

implied for the bottom plates in the region of the fasteners. 

These boundary conditions are identified as the restriction of 

the vertical displacements alon the nodes A and B in Fig. 4.8 (a) 

for the every corrugation case and Fig. 4.8 (b) for the 

alternate corrugation case. 

An additional requirement, stated by Lawson, is that the 

longitudinal strain which can be expressed as 

ab 
=0 (4"1a) 

dy 

where 
A is the shear displacement 

along node A. This is required so that the analysis of a single 

profile models the effect of a single profile in a large 

diaphragm. This can be easily instigated in the program by 

restraining the inplane displacements (v) except for the second 

harmonic which is a constant displacement function. 

Having determined the boundary conditions, the analysis of 

the profiled sheeting can now be compared with the work of Lawson. 

The results of the study, carried out on the profile given in 

Fig. 4.9., are shown in Fig. 4.10 and 4.11 for the every corrugation 

and alternate fastened cases respectively. The diagrams give the 
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variation of Bryan's factor KB with the length of the sheeting 

" (b), where Bryan's factor is determined from : 

Et3b3 C1ý1ý 

KB (4"19) 
0.144 ad 

4 

where a is the width of the diaphragm, in this case 

the pitch of the profile "d 

b is the length of the sheeting 

E is the Elastic Modulas 

t is the thickness of the sheeting 

and C1.1 is the shear distortional flexibility 

It should be noted that the value of SB was determined 

only up to the 12th harmonic, as the computer was not able to 

store matrices above this value. In both fastener arrangements 

correlation of the three methods (Finite Strip, Finite Element and 

Lawson's energy method) was found to be excellent. However, for 

the alternate arrangement case, the results of the Finite Strip, 

show that for short lengths of profile (under 2.5 metres) there 

is a slight divergence of the results. This could be accounted 

for by the fact that for short lengths of sheeting the internal 

energy in the profile may not be fully included in"the analysis. 

Also the type of finite elements adopted could cause a divergence 

of the results. Even though both comparisons do differ from the 
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Finite Strip solutions, the results for this method are stiffer, 

and this is acceptable in most results. 

The energy method of Lawson's could only consider the 

asymmetrical displacements for non-linear movements. In the 

propped arrangement, Lawson applied a linear analysis based on 

compatibility of displacements at the propped nodes. The Finite 

Strip and Finite Element solutions do show a shift from Lawson's 

energy method for these results, but, this error is not 

significant for design purposes and the tables given by Lawson 

do not need to be modified in this respect. 

A repeat of the convergence study, carried out by Lawson, 

has also been undertaken for both fastener configerations to 

investigate the accuracy of the results for a varying number of 

harmonics. Only the unpropped arrangement has been analysed, as 

the propped case would only produce corresponding results. 

For the every corrugation arrangement, the results shown 

in Fig. 4.12,. give identical results to those of the previous 

work(43) This is logical, as the displacement functions for 

the energy method and the Finite Strip Method are similar. In 

the alternate corrugation arrangement, given in Fig. 4.13, there 

is no limiting value of KB for each harmonic as the length of 

the sheeting increases. This contradicts the results of Lawson 

who showed that a limiting value does occur of KB in the 

alternate corrugation case. This can be explained by the fact 

that this study includes the combined distortional movement of the 

concertina action and the every corrugation cases of Lawson. The 

Finite Strip results having been shown previously to correspond 

to the combined results of Lawson's work. 

As the curves in the alternate case have no plateau, an 

i 
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acceptable result could be obtained for less harmonics, and 

this also shows that there is less distortional behaviour of 

the profile near to the fasteners against the much larger 

distortional behaviour for the every corrugation. 

Having obtained the convergence for the number of harmonics 

it was felt that a study of the number of strips per plate of the 

profile and the number of profiles could have an effect on the 

results. From this investigation there was found to be no 

variation in the results compared with the single corrugation 

with one strip per plate. So for all future studies this 

arrangement of the strips will be considered. 

4.6 The Influence of Edge Members on the Shear Distortion 

In the analysis of the shear distortion factor R Lawson 

showed that many factors influenced the value of a particular 

profile. These factors included the number of purlins, the 

overlapping of the sheet lengths, and the number of fastener in 

each corrugation. Comparing the theoretical and experimental 

results, Lawson also concluded that the effect of the edge 

member influenced the K factor, though, due to the limitations 

of the energy method, a riourous analysis could not be undertaken. 

The Finite Strip program that has been developed is able to 

analyse diaphragms in which there are more than one corrugation, 

and thus the influence of the edge members can be fully investigated,. 

The effect of the edge member is to restrict the lateral 

movement UB at the shear connectors. This displacement has 

been shown by previous work to be the predominate-factor that 

contributed to the shear distortion. In the energy method 

Lawson restricted this movement UB at certain points to 
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investigate an increasing number of purlins on the value of K. 

For the case of an infinite number of purlins, this fully 

restricted the UB movement, and was shown to cause a considerable 

reduction in the k value. The case of an infinite number of 

purlins in the Lawson analysis can be likened to that of a 

single corrugation between two edge members. As the number of 

corrugations are increased, the restriction of the UB movement 

at the end of the diaphragm would tend to be less effective on 

the value of Lawson's K. There would then be a point at which 

the effect of the edge members would have diminished from the 

K factor. 

Before the investigation could be carried out using the 

program, a selection of profiles had to be decided from among 

the many available profiles. The author used a number of the 

profiles investigated by Lawson together with a deeper profile, 

the profile dimensions of which are given in Fig. 4.14. A 

standard length of profile of 5 metres was selected for the 

investigation which was within the convergence accuracy of 

twelve harmonics, and this was not considered to be classed as 

a short profile, i. e., it was not a profile in which a linear 

displacement function was adequate to predict the shear displacement 

Firstly, considering the results of the every corrugation 

case, which are given in Fig. 4.15 - 4.18, it can be seen that 

with increasing number of corrugations the value tends towards 

the single profile analysed without any edge effect included. 

For all profiles in the study the conclusions are that, after 

the 8th corrugation, the influence of the edge members need not 

be considered. If a 5% cut off, for design purposes, is also 

considered, then after five corrugations the edge member need 



121 

not be considered. 

Again, for the alternate corrugation case, the results 

given in Fig. 4.19 - 4.21 show that with about eight corrugations 

the consideration of the edge member need not be included in the 

design. However, comparing the rate of convergence of the two 

fastener arrangepents, it is seen that they do not converge at 

the same rate and their extent of divergence is not similar. 

This is most likely due to the greater influence that the 

concertina deformation pattern has on the alternate corrugations 

case. 

4.7 The Influence of Friction on the Shear Distortion of the 

Profile 

The work of Lawson(43) has shown, for the alternate 

corrugation case that the teat results are overstiff. One of the 

factors that has been shown to influence the test results is 

that of the edge members, which were considered in the previous 

section. An additional factor which could vary the shear 

distortion for the alternate corrugation case is due to the 

friction of the bottom plate which include no fastener. This 

plate is restricted against vertical movement by the purlin, 

Fig. 4.22, and as the plate moves horizontally, there is an 

induced friction force on the profile. In turn, due to the 

asymmetrical displacement of the profile a couple is formed as 

shown in Fig-4.22. This couple is opposite to the lateral 

displacement of the bottom plate and so will reduce the shear 

distortion of the profile. 

An analysis of this reduction can be undertaken in one of 
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two ways. Firstly, applying Lawsons's criteria of two displacement 

patterns, the friction couple will only be concerned with the con- 

certina mode and the every corrugation deformation pattern will 

remain unchanged. By first analysing the profile without 

the friction force the purlin force P2 can be obtained. 

This results in a friction force Pf of 

Pf = ýA . Pa (4.20) 

where 1A is the coefficient of friction between the 

two materials. 

So for a unit shear flow, the value of Pf can be compared 

with the concertina fastener force d. The percentage 

reduction is obtained simply by 

100 
, ý. c, . P2 

d 

and the value of Lawsons factor K is given by 

(4.21) 

(4.22) 
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This is only an approximate value of the friction force 

as no account of the comparative values of every and concertina 

shear distortion factors are included. 

Another method of analysis is to use the Finite Strip 

Program and by applying a couple, obtained from the previous 

analysis, to the profile. A number of profiles have been 

analysed in this way using a value of the coefficient of friction 

of 0.3. From the results the maximum reduction in the Lawson 

K factor was found to be only 2.5%. Therefore in design this 

does not need to be considered, though from a theoretical 

point of view it may slightly effect experimental results. 
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5 End Failure of Profiled Steel Diaphragms 

5.1 Introduction 

To predict the strength of a diaphragm it is necessary to 

consider a number of possible failure modes. These failure modes 

can be classified into two main groups; those involving ductile 

failure and those leading to a more brittle type of failure. It 

is desirable that diaphragms are designed so that failure is 

ductile, and this usually occurs when there is tearing of the 

sheeting at the fasteners, and in particular at the seam fasteners. 

From experience however, there are a number of other ductile 

failure modes which have been identified and included in the 

overall stressed skin theory. 

There are at present three methods available to predict the 

strength of diaphragms. The first is the full scale testing of 
(3) 

diaphragm as described by Nilson 
ý. 

Clearly, this is not 

only time consuming but also expensive in the actual testing and 

only a limited amount of data can be obtained from each test. 

Secondly, there is the finite element method 
(q, '0) 

which takes 

account of the individual components of the diaphragm, namely, 'the 

sheeting, framing members and the fasteners. Due to the 

complexity of the method and the size of the computer required 

this method of analysis is not generally available to designers. 

However, it can give much detailed information into the distribution 

of internal forces and has been advantageously used by researchers. 

The final method was developed by Bryan 
(22) 

, who derived simple 

expressions for predicting the strength of the components of a 

diaphragm. The ultimate strength of a diaphragm is determined 

by considering each components' own mode of failure and choosing 
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the least value. Following the work of Bryan and Davies 
ý6 

I 

who later refined Bryan's work, the following failure modes are 

usually considered :- 

1. seam failure between adjacent sheets 

2. failure of the sheet / shear connectors 

3. failure of the sheet / purlin fasteners 

4. overall buckling of the sheeting 

5. failure due to axial tension or compression in the 

outermost purlin. 

Mach work has been carried out to determine expressions for 

these failure modes, and this recently culminated in the 

publication of the European Recommendations on Stressed Skin 

Design of Steel Structures 
(45) 

. The design expressions given in 

the recommendations include :- 

a. failure of the sheeting by tearing at the fasteners. 

In this group there are a number of failure modes that 

are dependent on the various fastener groups, that are 

defined in Fig. 5.1. These are : - 

1. failure of the fasteners between the adjacent sheets, 

known as seam fasteners in which the failure load is 

given by :- 

Vult = 

(ns. Ps + np. Fp) (2ns. Sp + 3,. np. Ss) 

(2ns. Sp + np. Ss) 

...... 
(5.1) 
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2. failure of the sheet / shear connectors, in which 

the failure load is given by :- 

Yult = nsc. Fsc (5.2) 

As can be seen in Fig. 5.1, there is an 

additional fastener group - that of the sheet 

purlin fasteners. However, the recommendations do 

not at present allow for failure to occur in this 

fastener group. So that failure does not occur in 

this group the recommendations specify the following 

criteria :- 

(nf 1) Pp 1.25 Va. OC3 - 
b. nshh 

(5.3) 

where V is the least value of Vult in equations 

(5.1) and (5.2). 

b. failure due to the overall buckling of the diaphragm. 

this usually occurs where there is a shallow deck or the 

fastener spacings are close. The expressions in the 

recommendations are those of Easley 
(21) 

and for the 

every corrugations fastened, the critical shear load 

is given by :- 
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Vcrit = 36 Dx -i. Dy 
'' 

Et 3d 
where Dx = 

Dy 

12 (1 - v2) u 

E. Iy 

d 

(5.4) 

From these expressions the strength of a diaphragm 

can be ascertained. However, for certain aspect ratio's 

of the diaphragm and fastener spacings, failure in the 

sheet / purlin fasteners can be critical and it is 

useful to be able to predict more accurately what the 

failure load for this case should be. The 25% extra 

strength capacity required by the European Recommendations 

takes account of secondary effects, which cannot at 

present be accurately assessed. Thus, if failure of the 

sheet / purlin fasteners can be more accurately predicted 

and be shown to be ductile, then it may be possible to 

design more economical diaphragms. 

5.2 Previous work associated with end failure of diaphragms 

End failures of profiled steel diaphragms are those failures 

that occur in the region of the sheet / purlin fasteners. As the 
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stressed skin theory has developed, failure modes associated with 

the diaphragms have been identified and included in the overall 

theory. However, in the case of end failures, this has not been 

the case due to a number of reasons, namely :- 

a. the state of the art for the overall diaphragm was not 

developed sufficiently to justify work in this region of 

the sheet / purlin fasteners. 

b. a lack of knowledge of the fastener force distributions 

and the characteristics of the sheet / purlin fasteners. 

Over the years a number of researchers have considered these 

possible failure modes, but did not include the work into the 

comprehensive theory that was developed by Bryan. From these 

studies three basic end failure modes can be identified, these 

are namely :- 

a. failure of the sheet / purlin fastener, which were 

first identified in the early studies of Bryan. As a 

result of the proportions of the diaphragms tested, few 

failures occurred in these fasteners. Thus, attention 

was diverted to the more likely failure modes. 

b. failure by buckling of the profile web as shown in 

Fig. 5.3. This mode has been studied by Falkenberg 
(46) 

who derived simple expressions for the failure and 

buckling criteria. Much of the work carried out by 

Falkenberg was undertaken before the more recent work by 

Davies and Lawson 
(7) 

on the distortion of the profile 

and this is shown in his expression for the purlin 

9 

restraint force of 
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P=q"h....... (5"5) 

The criteria for buckling is limited to its 

application in that only a pure shear mode is considered. 

For realistic criteria, two additional factors need to 

be included in the model, namely :- 

1. the effect of the compressive stresses induced in 

the web by the purlin restraint, Fig 5.2. 

and 

2. to define the buckled shape of the web. 

As in all buckling expressions, the effective length is 

one of the critical factors. The effect of the shear 

flow is to induce moments in the profile, and, as common 

with all buckling analyses, the effective length is 

defined as the length between points of contraflexure. 

However, there is only one point of contraflexure, 

which can be clearly defined as shown in Fig. 5.2, and 

this consideration complicates the analysis. 

c. the lateral sway of the profile. Unlike the two previous 

failure modes this mode cannot be classified as an 

ultimate limit state. For this failure mode the 

diaphragm can continue to carry additional load, but due 

to the excessive distortion of the profile, Fig. 5.4, a 

limiting value must be placed on this movement. Schardt 

and Strehl 
(47) 

considered this "serviceability" failure 

criteria and assumed a limiting value of lateral sway 

to be not greater than h/20 for any particular profile. 
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This approach does not take into account the types of 

fastener arrangement, that is the every and alternate 

corrugation cases, and does seem to be on an arbitrary 

value. A more precise criteria could be that due to 

the formation of plastic hinges in the profile. This 

criteria is the basis of the method proposed in this 

study. 

5.3 Test Programme 

Investigation of the failure modes that are classified by 

the author as "end failures" show that there are certain 

deficiencies in the present theories. A test programme was 

instigated to clarify the work of the previous research and to 

obtain information necessary to determine the empirical expressions 

that will be developed in due course. 

As stated previously, certain aspect ratio's of profiled 

steel diaphragms can cause failure in the region of the sheet 

purlin fasteners. Applying the expressions (5.1) (5.4). 

previously obtained from the European Recommendations a possible 

range of aspect ratio's were determined for failure of the sheet 

purlin fasteners. A test rig was then constructed so that suitable 

variation was possible in both the length and the width of the 

tested panel, as shown in Fig. 5.5. Using this rig, diaphragms 

with length varying from 1.5 metres to 3.0 metres, and width from 

0.75 metres to 1.5 metres could be considered. Fig. 5.6 shows the 

test rig with sheeting in position ready for testing. The structures l 

form of the test rig is that of a cantilever, developed by Nilson 
('3 ) 

and in this form is bolted to the "structural" floor together with 

a reaction frame. 
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For a particular diaphragm and profile, the test procedure 

involved first attaching the sheeting to the frame with the 

required fasteners; self-drilling, self-tapping fasteners for the 

perimeter fasteners, and blind rivets for the seam fasteners. So 

that an accurate predicted strength of the diaphragm could be 

obtained separate shear tests on the fasteners, as defined in the 

European Recommendations 
(zs), 

were undertaken. 

The test itself involved first loading in increments up to 

a load in excess of 50'/ of the predicted failure load, or in 

certain cases to a load in which a change in stiffness of the load 

deflection curve was observed. As will be described later this 

is the result of the attainment of plastic bending at the end of 

the sheeting profile. At this point the load was removed 

gradually, and the subsequent reloaded until failure occured. 

The shear deflection (A) was obtained from the reading 

of the four dial gauges shown in Fig. 5.5 and a graph of deflection 

V load was plotted. 

0=91-9 2 
b (ö3+ä4) (5.6) 

Some typical load / deflection curves are shown in Fig. 5.7 

and Fig. 5.8. For each test the actual failure load together with 

the load at which plasticity occurs in the profile were noted. 
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5.4 Investigation of the interaction between shear and tension 

on the sheet / purlin fasteners 

Comparison of the test results and the predicted failure 

loads for the sheet / purlin fasteners show that there is a 

reduced shear capacity for these fasteners. The most likely 

cause for this reduction is the influence of the tension force on 

the fastener that results from the distortion of the profile , 

Fig. 5.2. The effect of the tension force can be likened to that 

previously found for bolts 
4-8), 

where an interaction relationship 

between the shear and tension capacity of the bolt has been shown 

to exist. 

For diaphragm action the predominate factor is the shear 

capacity of the fasteners. As a result of the tension force on 

the fastener an investigation was undertaken to determine the 

reduction of this shear capacity. No previous experimental work 

was known to the author into a shear / tension interation curve 

for self-drilling, self-tapping fasteners. However, the European 

Recommendations on Stressed Skin Design do specify a circular 

interaction curve for a fastener with shear / tension load of 

the form below :- 

O0 

ST 
-+ I- 
Su 

I r- I- r- 
s1 /Tý 

_+_<1 
Su Tu 

where S is the design shear load 

(5.7) 

Su is the shear strength when T=0 
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T is the design tension load 

Tu is the tension strength when S=0 

In order that an interaction curve could be obtained a testing 

procedure had to be formulated. At present there are two specific 

testing methods for self-drilling fasteners, as given by the 

European Recommendations 
("). 

These are the simple lap test for 

determination of the shear capacity of the fasteners and the tension 

test to simulate the suction force on the sheeting. These tests 

however, give no guidance to the actual test arrangement for the 

shear / tension interaction curve. The lap test was designed to 

simulate a line of fasteners, thus two or more fasteners need to 

be tested at any one time. The tension test was again designed 

to simulate suction loads and would cause prying of the sheeting 

around the fastener from more than one direction. Whereas the 

prying action only occurs in one direction from the distortion of 

the profile, as shown in Fig. 5.9. The lap test can be of some 

use in allowing a comparison with the results obtained from the 

interaction curve. 

A test arrangement, Fig. 5.10, was constructed to simulate 

varying shear and tension forces on the fastener. The test rig 

consisted of a self-stressing frame with a swivel base, which is 

clamped by bolts to allow for varying angles between the applied 

force and the fastener / sheeting surface. Measurement of the 

applied force was undertaken by means of an electrical transducer. 

In the study a number of parameters were varied so that the 

general characteristics of the interaction curve could be fully 

investigated. The parameters that were considered included the 

thickness of the thinnest material and cases with and without 
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neoprane washers in the self-drilling, self-tapping fasteners. The 

interaction curve for all the tests is given in Fig. 5.11 on a 

dimensionless basis. The actual pure shear and tension failure 

loads are given in Table 5.1. 

From the tests a number of points of interest should be 

noted, namely : - 

a. for the design shear strength there is a slight 

reduction in the value for the case of no washers. This 

reduction is mostly to be a result of the change in the 

initial force applied to the fastener by clamping 

together of the two materials by the fastener. 

b. in the case of the tension strength there is a 

considerable reduction when washers are not included. 

This reduction is as a result of the reduced contact 

area that the fasteners have with the sheeting. 

and c. a good resemblence is shown between each interation 

curve in terms of their shape for the tests with and 

without washers. 

There is evidence of experimental scatter, as 

would be expected, but the circular design curve in 

certain regions is found to be conservative and a new 

design curve "A" in Fig. 5.11 appears to be more suitable. 

5.5 Analysis of End Failures 

5.5.1 Forces on the Sheet / Purlin Fasteners 

Expressions for the prediction of this failure have been 

derived in previous work. However, there have been significant 

disparities between the actual failure load and the predicted 
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failure load. The previous work was based on the shear force 

acting on the fasteners and no account of the tension force, 

resulting from the distortion of the profile, was considered. 

The following analysis extends the previous work to include the 

tension force on the fastener. 

The shear force on the sheet / purlin fastener can best be 

accurately determined by the use of a finite element model 
(4 ) (JO 

due to the high degree of indeterminacy of this group of fasteners. 

The finite element model is not well suited to an application in 

design, but has been given much useful information into the 

distribution of forces in each of the fastener groups. The main 

purpose of the model has been as a base to verify the simple 

design methods 
(`) (22) 

that have been developed. These simple 

methods have separated the force in the sheet / purlin fasteners 

into respective components as shown in Fig. 5.12, from which the 

design expressions have been obtained. 

For the purpose of this study the components of shear will 

be termed the longitudinal and transverse shear as shown in 

Fig. 5.12. The longitudinal shear is assumed to be as a direct 

result of the shear flow on the profile, whereas the transverse 

shear is a function of the fastener spacings. 

Considering a corrugation fastened in every trough, the 

notation is as given in Fig. 5.13-(a) with a shear flow of unity 

acting on the surface and restrained at B to vertical movement. 

The end forces Fx, Fy etc., are determined by considering the 

equilibrium of the profile. However, this structure is one degree 

indeterminate and is reduced to its primary structure by removal 

of the propping restraint. The end forces then become :- 
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2h 
Fx =( 2br + 

d 

and Py = 
d/2 

P 

.... -. " (5.8) 

The propping force P is then determined by considering 

the propping conditions m1 and m2 , Pig. 5.13 (c) and (d), 

respectively, and by applying the principle of virtual work we 

obtain :- 

sý2 
2f( mo m1 ) ds 

P=ý"-"- (5"9) 
s/2 s1'2 

0 (ml m1 ) ds +0 J-/ 
(II'2 M2 ) ds 

s/2 
where f signifies the integral around half 

0 
the profile. 

Having obtained an expression (5.9) for the redundant 

propping force the actual end forces become 
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longitudinal shear (Psi. )=d+ 

b (bs + bT ) 

where FY2 = 
hý 

2b3s+h-iý 

P 
2 Fy2 (5. io) 

for a unit shear flow around the profile. 

For a general case, therefore, the shear flow must be 

related to the diaphragm load Q. As a consequence of the 

primary shear force Q interacting with the distortion of the 

profile, the profile tends to bend as a whole in the x-direction 

shown in Fig. 5.14. The bending induces internal shear forces in 

the profile rising to a maximum of at the ends. The resulting 

shear et the ends is therefore statically determinate, giving 

q 
Q 
b 

where Q is the diaphragm load. 

then 

(5.11) 

ad PQ 
Fs c. _-+-" Fy2 (5.12) 

b 2b 
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The propping force is examined in greater detail in Appendix 

4, where tables are given for the force in terms of a dimensional 

parameter k. The force is then given by 

P= kd 
....... 

(5.13) 

Qd 
k FY ). 

so Fsý. =- (1 +2 (5"14) 
b2....... 

or, using the symbols of the European Recommendations 

Fsý _ 

kF, y2 
Qa oC3 (1+2) 

(5.15) 
(n j- 1)b. nsh 

The resultant tension Pr on the fastener is given by : - 

Pq 
FT = Fx. q+2 (Fx2 - Fx1) (5.16) 

2h 
where Fx =d"( 2b T+pý 

2 
Px1- d ýbr + Pý 

Fx2 =1 
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which can be-modified for the general case to give 

Qd FX 
Fr =bä+2(1- Fx1) 

.. " -- "(5.17) 

The expressions (5.14) and (5.17) are only applicable to 

diaphragms with every corrugation fastened. In the case where 

alternate corrugations are fastened, similar expressions can be 

developed, but noting that in this case there are two purlin 

restraints. 

Considering the profile in Fig. 5.15 the expression for 

longitudinal shear is :- 

Qd k1 Fy2 k2 F`Y4 
FsL =- 12 ++ 

b22 

bi I bs + bT 
where Fy2 =h1 2bs +b7 

3 

d bs + bT 
F'4 - 4n 

'2bs+ 
bt 

L3 

(5.1s) 

ki and k2 are the propping force coefficients 

obtained from Appendix 4 
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The tension force F7 on the fastener is 

Qd )Fx k1 k2 
FT =b d+ 2 

1- Fx1 +2 

2h 
where Fx =dd 2bT +p 

Fx1 = 

Fx3 

d- bL 

d 

bL 

d 

- Fx3 ll.. - (5.19) 

The previous analysis only took account of the forces in the 

plane of the corrugations. Davies' 
6) 

has shown that within each 

sheeting panel there are out of plane forces acting on the fastener, 

which are termed transverse shear forces. Expressions for the 

fastener forces were not given by Davies in his work, but can 

easily be derived from the expressions that are given in his text. 

Davies considered a number of fastener variations, which are 

as follows :- 

a. the direct transfer case, where the fasteners are 

attached on all four sides of the diaphragm. 

and b. the indirect transfer case, where the fasteners are 

attached on only to opposite sides of the diaphragm. 
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In the development of the transverse fastener forces only 

the direct transfer case will be considered, even though other 

variations can easily be derived. Davies shows that, due to the 

bending of the purlins, the maximum shear force occurs in the 

end sub-panels. Thus the diaphragm shown in Fig. 5.16 is divided 

into sub-panels, which are designated end sub-panels and intermediate 

sub-panels. 

Considering an intermediate sub-panel, Fig. 5.17, moment 

equilibrium gives :- 

Q. Ss. S 

(2ns. S+ gl np Ss) 

where gj = 

or 

nf -1 
21 

nf -1 

)2 

for a linear distribution of the transverse 

fastener force 

91 

nf -1 
2 

3 
21 

nf-1 
i=1 ýi 

for a quadratic variation in the transverse 

fastener force. 

(5.20) 
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It was found that both force distributions compared well 

with the finite element model. 9 

Having obtained a relationship between'the seam slip 2,6 

and the applied force Q the end sub-panel, Fig. 5.18, is now 

considered for vertical equilibrium :- 

ne 
= 

where gz 

or 92 

A. a 2ng Ssc - nsc . Ss 

Ss ngr. S+ g2 np . Ssc 

nf -1 
2 /21 

nf-1 

nf-1 - 
2 

nf2i -1 

(5.21) 

linear distribution 

quadratic distribution 

The slip of the end fastener ( A+ Q 
e) was shown by Davies 

to be :- 

S 2nS Ssc - ns, . Ss 
Le =1+ (5.22) 

Ss nSc "S+ g2 np Ssc 
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from which the end fastener force, the maximum transverse 

fastener force, is :- 

Fn 

2 
B 

(5.23) 

Combining expression (5.23), (5.22) and (5.20) we can obtain 

an expression for P in terms of the fastener distribution 

and slip characteristics as follows :- 

Fn 
-r 

a =Q 
[s+s 

2ns . Ssc - nsc. Ss 

nsc . Ss + g2 np Ssc 

1 
". "" 

(5.24) 
(2fl. 

3 .S+ g1 np Ss) 

The resultant shear force on the end fastener, derived from 

the two components of shear, can be obtained by summation of the 

force vectors. 

FR = (FeL 2 ) 

z 

2 (5.25) 
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5.5.2 Buckling of the Profile Web at the End Purlin 

An expression has now been given (5.9) for the propping 

force at the end purlin, and in Appendix 4 tables for its 

value has been determined in terms of the factors 2br/d, 

h/d and theta. In the course of the test series carried out 

on a number of profiles, buckling of the profile web at the 

end purlin occurred, Fig 5.3. In order that this can be 

predicted in terms of the propping force already obtained, a 

buckling criteria must be determined. Falkenberg 
(46) 

suggested 

that a simple expression, similar to that for compressive 

failure, could be developed. However, in this approach, only 

the effect of the shear flow was considered. A more realistic 

development would include the effect of the restraint that is 

induced by the unbuckled region of the web, and the effective 

length of the buckled section. 

This would require a complex analysis and in order to 

obtain a simple design expression the problem is best solved 

by obtaining an empirical relationship between the effective 

length of the web and some physical property of the profile. 

This effective length, based on Euler's expression, was 

therefore determined for each of the tests in which buckling 

took place. 

The effective length (leff) as a proportion of the 

length of the web (2bs) has been plotted against the non- 

dimensional ratio of the height to the thickness of the 

profiles (h/t) and can be seen in Fig 5.20. Inspection of 

the diagram shows that there is a simple empirical relationship 

between these parameters. However, the result for the profile 
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which includes the web stiffener, shown on the diagram by the 

triangular symbol, compared with the general trend of the curve 

gives grounds for an alternative curve in this region for 

profiles without web-stiffeners. This is due to the fact that 

a column with lateral cranks have a lower buckling load than a 

normally straight column. So for a similar profile without 

the web stiffener a considerable increase in the buckling load 

of the web may be expected. 

Further tests will have to be carried out, but in the 

present state of the art there seems to be two curves of which 

Fig 5.20 is a combination of these curves. 

Clearly for the majority of profiles produced by 

manufacturers the curve given in Fig 5.20 can adequately 

predict the buckling failure load. 

Thus if Pf is the buckling load, then the effective 

stress Qeff is obtained from the expression: - 

Pf 

(5.26) 
t (bp+bsp ) 

where bp = the width of the purlin 

bsp = the assumed spread of the purlin restraint force. 

This distance was found from observation of the 

tests to be the position of maximum stress in the 

web, Fig 5.9. From the actual tests this has 

been found to be approximate equal to a quarter 

of the web length = bs/2. 
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The critical stress for buckling can be obtained from 

Euler's expression. 

23 Et ýcr; f- Ir 

12(1- 1 (Qeff)2 

So equating 6eff and d 
rr't, the effective length is 

given by: - 

Qeff 
= -ff t2/ E(bp+bs/2) 

J 12(1-ýj) Pf 

The bucling load for a given diaphragm is therefore 

P= ?TE t4 (bp + bs/2) 

12(1-i) (eeff)2 

where 
eeff is obtained from Fig 5.20. 

This can then be compared with the purlin restraint 

force obtained from 

P-kQd 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
b 
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, 
5.5.3. Lateral Sway of the Profile 

5.5.3.1 Identification of the Problem 

When a profile is distorted under the action of a shear 

flow the displacements at the ends of the profile can become 

excessive. This constitutes a failure and must be considered 
(47) 

at the design stage. Schardt and Strehl have proposed 

a method of restricting the displacement of the profile based 

on the elastic bending moments in the profile and a 

deflection criterion. There are certain limitations in this, 

in that the method takes no account of the redistribution that 

will occur in the bending moments at the end of the profile. 

Furthermore, the value of the lateral displacement was restricted 

by the authors to a value of 
h/20. This seems to be an arbitary 

value and not based on any rigous analysis. 

Instead of limiting the lateral displacement of the 

profile an alternative criterion would be the formation of a 

plastic mechanism at the ends of the profile. However, the 

analysis of this mechanism is not as easy as one might at 

first imagine. -In all plastic analyses 
(49) 

the three 

conditions of equilibrium, yield and mechanism have to be 

satisfied. So, when a plastic mechanism is formed, a slight 

increase in load would in theory produce large deflections. 

In fact this is not the case for this collapse as the sheeting 

exerts a restraining force on the profile. The problem is 

therefore a plastic collapse restrained by an elastic region 

of the sheeting. 
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The method of analysis has been to allow the actual end 

elastic bending moments in the profile to redistribute to an 

equilibrium condition, which in this case is the assumed plastic 

mechanism. The end bending moments can be considered in this 

way as there is little spread of plasticity into the profile. 

The initial work equation for this sytem is therefore 
EPa; O' 

(5.31) 

where ýý 
- hinge rotation at points hi 

Mpg 
- the corresponding plastic moment 

at joints i 

and Ja` - the actual corresponding elastic 
bending moment at joints i 

Davies 
(50) 

has proposed a profile constant for the 

load at which plasticity occurs, similar to the constant in 

wide use at present for the distortion of the profile, of 

QP = tl .5 dý Jüb 

ap 

where Qp - the load at which plasticity occurs 

t- the thickness of the sheeting 

- the yield stress of the material 

d- the pitch of the corrugation 

b- length of the sheeting 

a- width of the sheeting 

p- the plastic constant 

5.2.3.2 Analysis for every trough fastened 

4ý 

A unit'depth of profile, Fig 5.21 under the action of 

(5.32) 

the shear flow and restrained to vertical moment at E will be 
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considered. Neglecting the effect of the resultant slip of the 

fasteners, the structure is two degree's indeterminate, and so 

there must be three plastic hinges to form a complete mechanism. 

For the mechanism under consideration plastic hinges are 

assumed to form at B, C and E and free hinges occur at A and F 

in Fig 5.21. 

The instantaneous centre is at E and the resultant mode 

of deformation is as shown in Fig 5.22(a). 

The moment diagram shown in Fig 5.22(b) gives the internal 

forces in the profile for this deformation. 

The internal work of the profile is given by 

4ýý 
and by compatibility at B 

ýs 
= 2®; 

(brtP) 

6L 
The sign convention for the every and alternate corrugation 

cases, is that all plastic moments are assumed positive and that 

rotation in an opposite direction to the moment are also 

considered positive . 

so- 
IJipý 8ý -mv, 

d 

6, 
where m= plastic moment = t2 Ty 

4 

The internal work based on the plastic moments, can then 

be equated to the equivalent work done when the elastic bending 

moment distribution undergoes an identical virtual displacement. 

(5.33) 
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So for a unit diaphragm force applied to a profile the 

elastic bending moments Mai can be related to the internal work 

by 

ý. 
Pc' 4= QP" «, MaZ vi 

where Qp is the plastic load 

Therefore Qp =C Jy2 8I 

MC'; ez 

The external work in equation 5.34 is given by, 

l7ý [2nd / 
t ýt 

+ýý 
ýý 

mß ,- ,n E 
Substituting equation (5.33)(5.34) and (5.35), we 

obtain 

Qp c M. d 
2me Or+p) 

+ 
LL (me 

+ mE / 

As stated previously, Davies has proposed a profile 

constant for the plastic load Qp. An investigation was 

therefore undertaken to verify Davies expression of 

Qp Ei D 

ap 

In expression 5.36 the elastic bending moments can be 

determined from a number of sources including the finite element 

method and energy methods. 

(5.34) 

(5.35) 

(5.36) 

(5.37) 
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Profile Thickness Length (b) Qp 
(mm) (mm) (kN) 

A 0.75 1500 6.41 3.171 
A 0.75 3000 13.16 3.089 
A 0.75 4500 20.22 3.016 
A 0.75 6000 27.15 2.995 
A 0.75 7500 33.81 3.006 
A 0.75 9000 40.40 3.019 
A 0.10 7500 -1.59 4.948 

A 0.25 7500 6.43 3.042 
A 0.40 7500 13.15 3.010 
A 0.55 7500 22.22 2.872 
A 0.90 7500 44.53 3.000 
A 1.10 7500 60.34 2.992 
B 0.80 1500 6.47 3.322 
B 0.80 3000 16.02 2.683 
B 0.80 4500 24.61 2.620 
B 0.80 6000 32.70 2.629 
B 0.80 7500 41.04 2.615 
B 0.80 9000 49.43 2.609 
B 0.10 7500 1.73 2.745 
B 0.25 7500 7.14 2.629 
B 0.40 7500 14.41 2.636 
B 0.55 7500 23.26 2.633 
B 0.90 7500 40.09 2.612 
B 1.10 7500 66.53 2.604 

Table 5.2 Values of p for Every Corrugation Fastened. 
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However, the program previously described for analysing 

trapedzoidal profiles in chapters 3 and 4 was found-to be 

inadequate for this purpose. This is due to the fact that only 

slope compatibility was included in the strip matrices and a 

further requirement of curvature would also be required. The 

actual program used for this analysis was developed by Professor 

J. M. Davies and is based on energy methods. 

A parameter study using this program and equation 5.37 

was undertaken to determine the validity of the expression 

for a variation of length and thickness of the sheeting. 

Figures 5.23 and 5.24 show the variation of the plastic load 

Qp for both the length and the thickness of the sheeting 

respectively. It can be concluded that both figures verify 

Davies' expression except for short lengths of profile where 

there is a non-linear relationship, similar to the results for 

the shear distortion factor for short length of profile. 

Table 5.2 gives the value of p, equation 5.3, for the 

profiles in the study and as can be seen there is a convergence 

of p for a particular profile as both the thickness and length 

of the sheeting are increased. 

5.5.3.3 Analysis for alternate trough fastened 

As with the case of every corrugation fastened, the 

analysis for alternate corrugations fastened considers a unit 

depth of profile, Fig 5.25, under the action of a shear flow 

and restrained against vertical movement at B and E. If the 

effect of the resultant slip of the fasteners is neglected, 
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t 
, 

the structure is three degree's indeterminate and so there 

must be four plastic hinges to form a complete mechanism. A 

number of alternative collapse mechanisms exist, however, noting 

the typical deformed shape of the alternate fastened profile 

under the action of a shear flow, the mechanism show in 

Fig 5.26(a) is proposed as typifying the deformed shape. 

For the mechanism under consideration plastic hinges are 

assumed to form at B, C, F and H and free hinges occur at A and J 

in Fig 5.26(a). Two instanteous centres occur at I, and I. with 

rotations 
0, 

and 
64 

respectively, and rotations of 
ej 

and 
0,4, 

at the nodes B and J follow by simple geometry. The moment 

diagram shown in Fig 5.26(b) gives the internal forces in the 

profile for this deformed shape. 

The internal work of the profile is given by 

` 
ýlP` ei 

rn 
(2®, 

+ 0203 + 
e4' ) 

where m= plastic moment = D; V `+ y 

By compatibility the relationship between the rotations 

can be easily obtained. However, due to the length of the 

alegbra relationship they have been omitted. 

The internal work can now be related to the applied 

load by considering the elastic bending moments in an 

equivalent system, such that 

Qp = ýýPý ý' 
C 

tia: oi 

(5.38) 

(5.39) 
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where 
ý nar 

VL 
[mý)4 

mF(0'-%) 

+ mý 
ýe, 

t V3 
) 

4- MS 631 

where me, r, mF and mM are the elastic bending moments 

related to figure 5.25. 

Substituting equations 5.38,5.40 in 5.39 we obtain 

Qp =M 
(12 

d, -r al l73 f V4. 
) 

-- 
m4 (0.? +®j +rnr (61 - ez) +rrt (B, 

tl°13)+meQ? 

A parameter study was again undertaken with the elastic 

bending moments obtained from the program developed by 

Professor J. M. Davies. Figures 5.27 and 5.28 show the 

variation of Qp for both the thickness and the length of the 

sheeting. As with the every corrugation the figures verify 

Davies' expression. However, the non-linear portion of the 

graphs extend further along the sheeting length than for the 

every corrugation case. This is a similar result to that found 

for the shear distortion factor IR when comparing alternate 

corrugation with every corrugation. 

Table 5.3'gives the value of p for the parameters in the 

study and again there is convergence of the value of p as the 

sheeting length and thickness are increased. 

(5.40) 

(5.41) 
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Profile t (mm) b (mm) QP 

A 0.75 1500 3.46 5.638 
A 0.75 3000 9.54 4.090 

A 0.75 4500 16.16 3.622 
A 0.75 6000 21.96 3.553 
A 0.75 7500 27.42 3.557 
A 0.75 9000 32.94 3.553 
A 0.10 7500 1.11 4.278 

A 0.25 7500 5.11 3.674 
A 0.40 7500 10.63 3.574 
A 0.55 7500 17.19 3.563 
A 0.90 7500 36.13 3.549 
A 1.10 7500 48.97 3.538 
B 0.75 1500 3.49 5.590 
B 0.75 3000 10.60 3.680 
B 0.75 4500 20.24 2.892 
B 0.75 6000 31.29 2.495 
B 0.75 7500 42.09 2.317 
B 0.75 9000 51.91 2.255 
B 0.10 7500 0.33 14.390 
B 0.25 7500 5.71 11.446 
B 0.40 7500 14.56 2.609 
B 0.55 7500 25.19 2.432 
B 0.90 7500 56.31 2.277 
B 1.10 7500 76.88 2.254 

Table 5.3 Values of p for Alternate Corrugation Fastened 
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5.5.3.4 Test Programme 

In the tests carried out, section 5.3, to determine the 

various failure modes associated with "end failures" of trapezoidal 

sheeting, the sway of the profile was considered as a possible 

failure. 

From the experimental tests carried out in the study, the 

collapse load Qp was determined by noting the change in stiffness 

of the load/deflection curve. This change in stiffness is as a 

result of the formation of a plastic region in the profile. The 

profile then has less resistance to the shear flow, so causing an 

effective reduction in the sheeting length and hence the 

stiffness of the sheeting. Figures 5.7 and 5.8 show the load/ 

deflection curves for two typical tests noting the change in the 

slope of the curves. In the alternate corrugation case this 

change is slight as the sheeting is relatively more flexible 

initially than the every corrugation case. At this point it 

should be noted that both diaphragms still have capacity to 

carry load after the plastic load Qp has been attained. Therefore 

the formation of a plastic mechanism only contributes to the 

serviceability of the diaphragm. 
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5.6 Discussion of Results 

From the tests carried out in this study, three failure 

modes were identified of which only one includes failure by 

tearing of the sheeting at the fasteners. A number of profiles 

were tested two of which exhibited this failure mode. 

Table 
. 
5.4 gives the predicted and experimental results for these 

profiles, together with the shear strength values for the 

fastener with and without the effect of the tension force on 

the fastener columns (e) and (c) respectively. 

The modified results give amore accurate prediction of 

the failure load, although there is some discrepancy in a number 

of the results. This can be attributed to the redistribution of 

the forces in the sheet / purlin fasteners at failure. However, 

the predicted results do occur on the conservative side. The 

redistribution of the forces in the sheet / purlin fasteners 

take place as there is a large slip value for the sheeting 

between the point of attaining the ultimate load and the tearing 

load, Fig. 5.29. As further load is applied to the diaphragm, 

after the end fasteners have reached their ultimate value, the 

end fastener does not carry any additional load but is allowed 

to continue to slip along the load / slip curve for the 

fastener. In practice there is a reduction in the load carried 

by the fastener. The additional load now applied to the 

diaphragm, is distributed to the adjacent fasteners which have 

not attained their ultimate load carrying capacity. This 

progresses to the other sheet / purlin fasteners until the 

end fastener has attained the tearing slip value. At this 

point there is a progressive failure with a transfer of energy 
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from the fasteners to the sheeting, causing the sheeting 

to buckle. 

At present the European Recommendations 
(45) 

specify 

a 25% factor of safety on this brittle failure to accommodate 

redistribution and the effect of the tension forces on the 

fastener. From the profiles tested, the percentage reduction 

in the shear strength was found to be 7% for the A-series, 

38mm deep profile and 11% for the E-series, 90mm deep profile. 

So-. the 25% factor of safety is adequate and a re-evaluation 

of this figure can now be undertaken for the failure of the 

sheet / purlin fasteners. 

In the tests associated with the buckling of the profile 

web, Table 5.5, the complex stresses induced in the profile 

and the buckled shape required that the test results be used 

to obtain an empirical solution. In the case of the test, 

which included a stiffener in the web there was found to be a 

considerable reduction in the failure load compared with a 

similar profile without the stiffener. Before any design 

results can be formulated for this type of profile further 

tests will have to be carried out. 

A comparison of the theoretical and experimental 

values for the plastic load are given in Table 5.6. The 

theoretical values are based on the plastic mechanism criteria 

described previously. Also included in. the table is the 

load Q(h/20) at which the criteria of Schardt and Strei/ 
(47) 

occurs in that the top plate movement is restricted to h/20. 
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The value of Q(YV20) was obtained using the Finite Strip 

Program in which the value of the top plate movement 

was used in the every corrugation fastened case. For the 

alternate corrugation fastened case the top plate movement 

could again be the basis for the deflection criteria. 

Schardt and Strehl do not give any guidance for other 

fastener arrangements, as they based most of their work 

on the every corrugation use. Therefore, since this is a 

serviceability criteria and the bottom plate movement is 

greater than the top plate movement, it would seem realistic 

to base the deflection criteria on the unrestrained bottom 

plate movement in the alternate corrugation case. 

Comparison of the experimental plastic load with the 

deflection and plastic criteria shows that both are conservative 

by differing margins. In the case of the every corrugation 

fastened case the plastic criteria is more conservative than the 

deflection criteria, whereas for the alternate corrugation case 

the plastic criteria produces realistic results. The difference 

between the two criteria and the experimental results can be 

explained by a number of factors, 

(1) the accuracy of the experimental plastic load 

cannot be fully guaranteed. 

(2) the theories on which both the criteria are based 

assume a point load restraint at the end purlin. 

This is not the case in the actual tests, in which 

the propping force is spread over the full width 

of the purlin. The resulting spread of the 

propping force will cause a variation in the end 

bending moments and deflections, which are the 
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(3 ) 

basis for the two criteria. 

the assumed shape of the stress/strain curve 

for the plastic criteria, Fig 5.30, will result 

in a lower bound failure compared with the actual 

stress/strain curve. 

When there is a possibility of end failures in a 

diaphragm one of the above failure modes will be critical. 

So as to help an engineer identify the most likely mode of 

failures table 5.7 gives an indication of the most likely 

failure mode for a particular type of diaphragm. 

5.7 Design Recommendations 

Following the work carried out on the failure modes 

associated with end failures, three specific recommendations 

are proposed for inclusion in the European Recommendations on 

Stressed Skin Design. These are: - 

a. that at present a 25% reserve of ýtrength is 

required in the recommendations to allow for 

additional forces on the sheet / purlin fasteners. 

The present study has shown this to be conservative 

and there are two means öf reducing this value. 

One proposal is to use a 12-% reserve of strength 

instead of the 25% value. The second proposal 

is to incorporate the tensile force in the 

calculations and to obtain a reduced shear 

capacity based on the proposed shear / tension 
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interaction curve. An expression for the tension 

and shear forces on the fasteners are given by 

Qd k Fy2 

Fs =(1+) 
b2 

(5.42) 

for the longitudinal shear force 

Qd Fx k 

and FT =-(-+_(1- x1 (5.1+3) 
bd2 

for tension force 

bL (bs +b) 

where Fy2 = 
h (2bs +b) 

3 

Fx = 2h 
(2bT + p) 

d 

2 Fx 1= 
(bT + p) 

d 

It must be noted that these expressions should 

only be applied to the every corrugation arrangements. 
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b. the buckling of the profile web is only a-secondary 

consideration. This failure load is given by 

ý2 Et4 (bp + bs/2) 

Pe: - 12 (1 J2) (ýeff)2 
(5: 4+) 

where 
Jeff is obtained for Fig. 5.21 

bp is the width of the purlin 

"bs is half the web length 

t is the thickness of the profile 

This can then be compared with the actual purlin 

restrain force given by 

kQd 

P= 

b 

where k is obtained from Appendix 4 

Q is the diaphragm load 

giving a design criterion that if P is less than 

PB, failure will not occur by buckling of the profile 

web. 

As a consequence of the large deflected shape of 

the profile in the alternate corrugation fastened 

case, this requirement need only be considered in 

the case of every corrugation fastened. 

(5.45) 
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c. the lateral sway of the profile need only be 

considered as a serviceability requirement as 

further load can be applied to the diaphragm until 

the ultimate load criteria is obtained. An 

expression for the plastic load Qp, defined as the load 

at which a change in shape in the load / deflection 

curve is obtained, for the every corrugation fastened 

case is given by 

md 

Qp _ (5.46) 
2mB(bT + p) +bL(mB + ME) 

where m= plastic moment of sheeting 

= t2 O1- 

4 

mB and mE are the actual bending moments 

at the ends of the sheeting, Fig. 5.21. 
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sheet /shear 
connector 
fasteners 

Fig 5.1 Individual diaphragm and the fastener 

groups 

purlin 

Fig 52 Local forces on profile at end of sheeting 
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Fig 5.3 Buckling of profile at end purlin 

Fig 5.4 Excessive distortion of profile 
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Fig 513 Analysis of End Forces for Every 

Coryugation Fastened 
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Fig 5.15 Alternate Corrugations Fastened 
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Fig 5.18 Forces and deformations assumed 
for end sub-panel 
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Conclusion to Thesis 

6.1 Introduction 

The work carried out in this thesis has been concerned 

with investigating certain aspects of "stressed skin theory". The 

areas of study have been concerned with the diaphragm action of 

composite slabs, the shear distortion of profiled sheeting and 

end failures in profiled steel diaphragms. As a result of this 

work, stressed skin theory has been extended to include further 

failure modes and the introduction of new materials namely, 

composite diaphragms into the theory. 

6.2 Composite Diaphragms 

For composite diaphragms, two types of fastener arrangements 

have been defined, namely :- 

a. diaphragms in which the steel sheeting is fastened to 

the supporting structure and there is no direct attach- 

ment of the concrete to the supporting structure. 

and b. diaphragms incorporating shear connectors. No work has 

been undertaken in this area although many buildings 

do incorporate composite beams in their construction. 

The work in this study has been concerned with the first 

type and the following points can now be noted from the work :- 

1. that expressions for'the ultimate load of the composite 

slab have been presented and verified experimentally. 

Three failure modes have been identified and all three 

are possible in cantilever diaphragms. In the case 

of simply supported diaphragms only the first mode is 
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possible. 

2. the flexibility of the diaphragm has bees predicted 

for only the reloading of the slabs. For this condition 

the flexibility has been shown to be dependent on 

a. the elastic strain of the diaphragm 

b. the flexibility of the side fasteners 

c. the flexibility of the longitudinal fasteners 

and d. the axial strain of the supporting structure. 

3" 

The initial deformation of the slab was shown to 

include a non-linear portion which was found to be a 

result of the shrinkage of the concrete away from the 

sheeting. 

that the composite slabs acting as horizontal diaphragms 

has a considerable influence on the distribution of the 

forces in multi-storey buildings. A computer model has 

been presented for analysing these buildings. 

Further work is still required in the area of composite 

slabs before they can be an acceptable design material. These 

area a can be summarized as : - 

a. varying the aspect ratio of the diaphragm to verify. 

further the above formulae. 

and b. only slabs with self-drilling, self-tapping fasteners 

have been tested, whereas there are many fastener 

arrangements used, especially in North America where 

the practice is to use welded diaphragms, which have 

higher failure loads. Failure could then, not only 

occur in the fastener but in the concrete or at the 

connection between the steel and concrete. 
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As a consequence of the possibility of rotation of the 

composite slab over the supporting frame cantilever composite 

diaphragms behave differently from simply supported diaphragms. 

It is recommended that in further experimental studies simply 

supported diaphragms should be-used despite the great increase 

in cost. 

6.3 Shear Distortion of Profiled Sheeting 

A Finite Strip Program has been written to analyse profiled 

sheeting under the action of a shear flow. At present there are 

two forms of analysis recognised, although, there are certain 

limitations apparent. The method that has been presented 

overcome these limitations, in that : - 

a. more detailed information of deflections and stresses 

are available compared with the Energy Method 
(43 )9 

although consuming more computer time and storage. 

and b. the method gives similar information to the Finite 

Element Method but produces this information in a 

reduced computer time for a similar machine. 

A further advantage over the energy method is that non- 

linear plate movements are considered in the propped condition 

and they have been shown to predict the experimental and Finite 

Element results more accurately. 

The influence of the edge member on the shear distortion 

has also been investigated and it can be concluded that, in the 

case of sheeting over five corrugations for the every corrugation 

fastened, and over. six fastener spacings for the alternate 

corrugation case the edge member need not be considered. 
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I 

6.4 End Failure of Profiled Steel Diaphragms 

Profiled steel diaphragms have been shown to include 

additional failure modes in the region of the sheet/purlin 

fasteners, and together with the failure of these fasteners have 

been classified into "End Failures". From the work in the study 

there are a possibility of three failure modes, namely : - 

a. failure by tearing of the sheeting at the sheet / purlin 

fasteners. Here the previous work has been extended 

to include the tension force acting on the fastener, 

as a result of the distortion of the profile. A shear 

tension interaction curve for the sheet / purlin 

fastener has also been determined. 

In order to avoid end failures the current 

European Recommendations 
(45) 

specify a 25% increase in 

strength for failure at the sheet / purlin fasteners. 

To deal with the effect of the tensile force, it has 

been shown that a more acceptable value could be a 12% 

increase in strength for these fasteners. 

b. failure by buckling of the profile web at the outermose 

purlin. An empirical expression for the buckling load 

has been developed incorporating a factor °eff based on 

test results. 

c. failure by excessive distortion of the profile. The 

analysis has been based on the formation of a plastic 

mechanism in the profile,. although as a result of the 

elastic portion of the sheeting it is not a pure 

mechanism. Design expressions for diaphragms with every 

and alternate corrugations fastened have been derived. 
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The last two failure modes are not primary modes as the 

diaphragm would still have load carrying capacity. They are 

therefore more in the nature of serviceability requirements. 
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APPENDIX 3.224 

C ******************************************************* 
C 
C FINITE STRIP PROGRAM DEVELOPED BY J. FISHER 
C THAT CAN BE USED TO ANALYSE 
C (1) BENDING ONLY PROBLEMS 
C (2)' PLANE STRESS ONLY PROBLEMS 
C (3) FOLDED PLATE PROBLEMS 
C (4) "DISTORTION OF CORRUGATED PROFILES 
C 
C ******************************************************* 

PROGRAII STRIP (INPUT, OUTPUT, MAGI, MAG2, MAG3, 
2TAPE1=INPUT, TAPE2-OUTPUT, 
1TAPE3-IIAG1, TAPE4-IIAG2, TAPE5-MAG3 ) 

DIMENSION SS(96,96), BLO(4,4), PL02(4,4), F(4), BETA(100) 
1, SK(96,96), FF(96,2), FK(96), R(2000), FX(56), SB(6,8), SR(6) 
2, RI (8,8), RIT(8,8), BOL(8,8), POL2 (8,8), FQ (4 ), XZ (100) 
3, AC(2000), XF(10,10), DELTA(10), AX(10), AY(10), IZ(10) 
4, XU(100), XV(10,10), ZZ(10), RR(2000), H(100), AL(100), K5(100) 
5, QZ(100), QU(100), QB(100), RS(8), OB(8,8),. BO(8,8), BG(2000,7) 
6, RRS(8), AB(30) 

COMMON /BL2/FK, R/BL3/RI, RIT/BL1/SS, SK/ßL60/AC 
+/BL4/BLO/BL5/PL02/BL6/I1, I2, I3,14, I5/BL8/LL 
+/BL10/IR, X2, X3, Y1, Y2, JO, NV, NA, K5/BL12/IZ, AX, AY 

REAL 11,12,13,14, I5, J 1, K, NC, K1, K2, K3, K4 
LEVEL 2, S S, S K, AC 
DATA NIUN, LZ, LV/ 1,0,0/, XX, T 1, A2, B 1, NC, QY 1, Q 1, 

1P1, XI 1, YI1 /10*0.0/, IA, JA, IL, JL/100,100,100,100/ 
900 READ (1,20) LL, NN1, NN2, N3, IP 
20 FORMAT (512) 

IF (LL. LT. O) GO-TO 999 
XX=0.0 
READ (1,5) (AB(I), I=1,15) 

5 FORMAT (1X, 15A4) 
WRITE (2,10) 

10 FORMAT (1H1, ///, 19X, 46(1H*), /, 19X, 1211********** , 13411FINITE STRIP PROGRAM **********, /, 19X, 46(111*), ///) 
WRITE (2,15) (AB(I), I=1,15) 

15 FORMAT (111 , 10X, 15A4///) 
C 
C LL=O BENDING 
C LL=1 PLANE 
C LL=2 BENDING + PLANE 
C NN1=0 U. D. L. 
C NN1=1 POINT LOAD 
C NN1-2 PROPPING 
C NN1-3 NODAL FORCES 
C NN1-4 DISTORTION OF PROFILE 
C NN1=5 DATA GENERATOR FOR SHELL ROOFS 
C NN2=0 LIMITED OUTPUT 
C 11112-1 

. 
SK MATRIX AND K MATRIX ALSO OUTPUT 

C N3-0 SYMMETRICAL 
C N3=1 UN-SYMMETRICAL 
C 

INPROP=1 
AQ=40. 
IR=1 
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H(1)-0.0 
AL(1)-0.0 
IF . (NN1. N$. 5) GO TO 643 

C 
C READ STATEMENT FOR CYLINDRICAL SHELLS 
C 

READ (1,642) E, PV, A, RE, T, NS, MM, Q, Q2 
642 FORMAT (F10.2, F3.1,3F10.2,2I4,2F10.2) 

QX-0.0 
643 IF (LL. EQ. O) GO TO 25 

IF (LL. EQ. 1) GO TO 25 
IF (LL. EQ. 2) GO TO 30 
GO TO 999 

25 N1=4 
N2=2 
GO TO 35 

30 N1=8 
N2=4 

35 IF (N3. EQ. 0) GO TO 640 
IF (N3. EQ. 1) GO TO 645' 
GO TO 999 

640 NCC=2 
GO TO 655 

645 NCC=1 
655 IF (NN1. NE. 5) GO TO 644 

CALL CYMESH (NS, AQ, RE, NEC, II, JJ, XSUM, XSUPil ) 
GO TO 44 

644 READ (1,40) E, NS, PV, A, MM, T, Q, QX, Q2 
40 FORMAT (F10.2, I2, F3.1, F10.4, I4, F10.5,3F10.8) 

READ (1,45) X3, X2, Y1, Y2 
45 FORMAT (4F10.2) 
44 IH=N1*MM 

IG=IH/2 
H (NNN+1 )=Y2-Y1 
AL(NNN+1)=X2-X3 
B=SQRT((H(NNN+1)**2)+(AL(NNN+1)**2)) 
IF (NNN. EQ. 1. AND. NNI. EQ. 4) QX-1. /A 
QZ(NNN)=Q*1000. 
QU(NNN)=Q2*1000. 
QB(NNN)=O. 0 
IF (NN1. NE. 3) QB(NNN)=QX*1000. 
QB(NS+1)=0.0 
IF (NN1. EQ. 3) QB(NS+1)=QX*1000. 
ID=1.5*IIi 
IF (AL(NNN+1). LT. 0.0. AND. H(NNN+1). EQ. 0.0) GO TO 56 
IF (AL(NNN+1). EQ. 0.0. AND. H(NNN+1). LT. 0.0) GO TO 54 
IF (AL(NNN+1). EQ. 0.0. AND. H(NNN+1). GT. 0.0) GO TO 559 
BETA(NNN)=ATAN (H(NNN+1)/AL(NNN+1)) 
GO TO 53 

56 BETA(NNN)=2*1.5707963 
GO TO 53 

54 BETA(NNN)=-1.5707963 
GO TO 53 

559 BETA(NNN)=1.5707963 
53 IF(E. LE. 0.0) GO TO 999 

IF(XX. NE. 0.0) GO TO 51 
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NX-N2*MM*(NS+1) 
IF (NX. GT. 2000) WRITE (2,950) 

950 FORMAT (1X, 32HSTORAGE TO SMALL FOR PROBLEM) 
824 WRITE (2,55) NS, MM 
55 FORMAT (1X, 24HNUMBER OF STRIPS '-, I2, //, 1X, 

124HNUMBER OF HARMONICS -, 14, ///) 
51 PK-1.0 
50 IF (NNN. NE. 1) GO TO 61 

WRITE (2,60) 
60 FORMAT (1X, 12H STRIP DATA, /, 1X, 711 STRIP, 7X, 6HLENGTH, 7X, 

15HW IDTH, 7X, 9HTHICKNESS, 4X, 16HELASTIC MODULAS, 3X, 
216HPOISSON'S RATIO, 10X, 4HBETA, 9X, 2HPK, /, 16X, 4H(MM), 8X, 
3411(MM), 1oX, 4H (MM), 9X, 1oH(KN/1111**2), 31X, 9H(RADIANS, ), /) 

61 WRITE (2,62) NNN, A, B, T, E, PV, BETA(NNN), PK 
62 FORMAT (1X, 2X, I3,5X, F10.1,3X, F10.1,3X, F10.2,7X, F10.3,13X, 

1F3.1,16X, F7.4,8X, F3.1) 
DO 71 I-1, IH 

71 FF(I, 2)-O. O 
IF (XX. NE. 0.0) GO TO 65 
DO 70 I=1, IH 
DO 72 II=1,2 

72 FF(I, II)=0.0 
FX(I)=0.0 
DO 70 J=1, IH 
SK(I, J)=0.0 

70 SS(I, J)=O. 0 
NX=N2*MM*(: JS+1) 
DO 75 I=1, IH 

75 FK(I)=0.0 
65 G=E/(2.0*(1. +PV)) 

D X=PK*E*(T**3. )/(12. *(1. -(PV**2. ))) 
DY-DX 
D 1=PV*DX 
DXY=G*PK*(T**3. )/12. 
IF (NN1. EQ. 5) GO TO 81 
READ (1,80) NEC, II, JJ, IHOLD, JHOLD, NPROP 

80 FORMAT (612) 
K5(NNN)=IHOLD 
IF (NNN. EQ. NS) K5(NNN+1)=JHOLD 

81 IF (NN1. NE. 1) GO TO 85 
READ (1,90) XI, YI, P 

85 IF (XX. EQ. 0.0) GO TO 95 
IF(T. NE. T1)GO TO 95 
IF(A. NE. A2)GO TO 95 
IF(B. NE. B1)GO TO 95 
IF(Q. NE. Q1) GO TO 95 
IF (Q2. NE. QY1) GO TO 95 
IF(QX. NE. QX1) GO TO 95 
IF (IP. NE. 0) GO TO 95 

IF (BETA(NNN). NE. BETA(NNN-1)) GO TO 95 
IF (NN1. NE. 1) GO TO 95 
IF (XI. NE. XI1) GO TO 95 
IF (YI. NE. YI1) GO TO. 95 
IF (P. NE. P1) GO TO 95 
IF (IP. NE. O) GO TO 95 
GO TO 100 
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95 DO 105 1-1,111 
DO 73 11-1,2 

73 FF(I, II)-O. O 
FX(I)=0.0 
DO 105 J=1, IH 
SS(I, J)=0.0 
SK(I, J)=0.0 

105 CONTINUE 
DO 104 1-1,4 

104 FQ(I)=0.0 
XX=1.0 
DO 110 M-1,1411 
DO 110 N=1, MM 

14 CALL INTE (A, NEC, M, N) 
IF (LL. EQ. 1) GO TO 115 

C 
C BENDING STIFFNESS MATRIX, COMPATIBILITY OF SLOPE 
C 

CALL BENDL02 (B, DX, DY, D1, DXY) 
IF (NN1. EQ. 1) GO TO 120 

C 
C FORCE MATRIX FOR U. D. L 
C 

BET=BETA(NNN) 
CALL FORCE (Q, Q2, B, II, NEC, A, F, BET, FQ, LL, NCC) 
GO TO 115 

C 
C FORCE MATRIX FOR DISTORTION OF PROFILES 
C 
90 FORMAT (3F10.3) 
C 
C FORCE MATRIX FOR POINT LOAD 
C 
120 CALL POINT (P, B, A, XI, YI, F, NEC, M) 
115 E1=E 

PV1=PV 
IF (LL. EQ. O) GO TO 125 

C 
C PLANE STRESS STIFFNESS MATRIX 
C 

CALL PLANL02 (E, E1, PV, PV1, G, B, A, T, NEC, ri, N, I: 1, K2, K3, K4 ) 
IF (NN1. LE. 2. O1i. NN1. GT. 5) GO TO 125 

C 
C FORCE MATRIX FOR NODAL U. D. L. 
C 

CALL PFORCE (QX, B, 2,, 21EC, A, FQ, NCC) 
125 IF (LL. NE. 0) GO TO 160 
1 50 DO 175 I=1,4 

NIa4*(M-1)+I 
IF (N. GT. 1) GO TO 180 
FX(NI)=FX(NI)+F(I) 

1 80 DO 175 J-1,4 
N J=4 * (N-1 )+J 

1 75 SS (NI, NJ)aSS(NI, NJ)+BLO(I, J) 
GO TO 110 

160 IF (LL. EQ. 2) GO TO 185 
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DO 200 1-1,4 
NI-4*(M-1)+1 
IF (N. GT. 1) GO TO 205 
FX(NI)-FX(NI)+FQ(I) 

205 DO 200 J-1,4 
NJ-4*(N-1)+J 

200 SS(NI, NJ)-SS(NI, NJ)+PL02(I, J) 
GO TO 110 

C 
C FORMATION OF FOLDED PLATE STIFFNESS MATRIX 
C 
185 CALL C014B (B0, PL02, BLO) 

BET-BETA(NUN) 
CALL ENT (BET, LL) 
CALL XI"iULT (8,8,8, BO, RIT, OB) 
CALL XMULT (8,8,8, RI, OB, BO) 
DO 112 1-1,8 
NI=8*(M-1)+I 
IF (N. GT. 1) GO TO 113 
IF (I. LE. 2) GO TO 106 
IF (I. LE. 4) GO TO 107 
IF (I. LE. 6) GO TO 108 
FX(NI)=FX(NI)+F(I-4) 
GO TO 113 

106 FX(NI)=FX(NI)+FQ(I) 
GO TO 113 

107 FX(NI)=FX(NI)+F(I-2) 
GO TO 113 

108 FX(NI)=FX(NI)+FQ(I-2) 
113 DO 112 J-1,8 

N J=8* (N-1 )+J 
112 SS(NI, NJ)=SS(NI, NJ)+BO(I, J) 

110 CONTINUE 
LV-0 
LZ=0 

C 
C RE-ARRANGEMENT OF INDIVIDUAL STIFFNESS TIATRIX FROM 
C HARMONIC BASED SYSTEM TO A NODAL BASED SYSTEM 
C 

IF(MM. EQ. 1) GO TO 285 
KY=0 

290 DO 295 I=1,14M 
KX-0 

300 IF(KY. EQ. 1) GO TO 305 
IS=(I*N2-N2)*2 
IX=(I-1)*: I2 
I7-IS 
I8=IX 
GO TO 310 

305 IS=(I*2-1)*N2 
IX-(I-1+ciM) *N2 
I7=IS 
18-IX 

310 IF(KX. EQ. 1) GO TO 315 
DO 325 III-1, N2 
IF(III. NE. 1) GO TO 320 
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IS-I7 
IX-18 

320 IS-IS+1 
IX-IX+1 

325 FF(IX, 1)-FF(IX, 1)+FX(IS) 
315 DO 330 J-1, MM 

IF(KX. EQ. 1) GO TO 335 
JS-(J*N2-N2)*2 
IY-(J-1)*N2 
I9-JS 
I10-IY 
GO TO 340 

335 JS-(J*2-1 )*N2 
IY-(J-1+1"IM) *N2 
I9-JS 
I10=IY 

340 DO 345 III-1, N2 
IF(III. NE. 1) GO TO 350 
IS-I7 
IX-I8 

350 IS-IS+1 
IX-IX+1 
DO 355 JJ-1, N2 
IF(JJ. NE. 1) GO TO 360 
JS-19 
ly-Ilo 

360 JS =JS+1 
IY=IY+1 

355 SK(IX, IY)-SK(IX, IY)+'SS(IS, JS) 
345 CONTINUE 

IF(J. EQ. Mii) KX-F: X+1 
330 CONTINUE 

IF(KX. EQ. 1) GO TO 300 
IF(I. EQ. I*1) KY=KY+1 

295 CONTINUE 
IF(KY. EQ. 1) GO TO 290 

285 IF (MPI. NE. 1) GO TO 370 
DO 375 I-1, IH 
FF(I, 1)-FF(I, 1)+FX(I) 
DO 375 J-1, Iii 
SK(I, J)-SK(I, J)+SS(I, J) 

375 CONTINUE 
370 CONTINUE 

IF(NN2. EQ. 0) GO TO 100 
DO 380 I=1, IH 
WRITE (2,385) I 

385 FORMAT (1X, I2) 
WRITE (2,390) (SK(I, J), J-1, IH) 

390 FORMAT (1X, 4E15.5) 
380 CONTINUE 

WRITE (2,390) (FF(I, 1), I=1, IH) 
C 
C ASSEMBLY OF OVERALL STIFFNESS MATRIX 
C 
100 NI=N2*IdlI* (I I-1 ) 

QY1=Q2 
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T1-T 
IA-1 
A2-A 
B1-B 
Q 1-Q 
QXI-QX 
IF (NPROP. EQ. O) GO TO 101 
CALL PROP (IH, MM, NEC, A, B, LL, N2, NX, NP, BG, NN, MI, 1.12, NNN, 

1FF, INPROP) 
INPROP-INPROP+1 

101 IF (NN1. NE. 1) GO TO 102 
XI1-XI 
YII-YI 
PI=P 

102 CALL REST (IHOLD, JI1OLD, IG, MIM N1 ) 
CALL PART (NIIN, IH, IG, FF, BG, NS, INPROP, IP) 
IF (NS. EQ. NNN) GO TO 455 
NNN=NNN+1 
GO TO 35 

455 WRITE (2,452) 
SUM1=0.0 
SUM2=0.0 
NA=ZINN+1 
DO 453 I=1, NA 
SUM1-SUM1+AL(I) 
SUM2=SUM2+11(I) 

453 WRITE (2,451) I, SUIM11, SUM2, K5 (I ) 
452 FORMAT (1X, //, 14H NODAL DATA, / /, 1 X, 5X, 4HNODE, 1 OX, 

11411DIMENSIOII (X), 1OX, 141IDIMENSION (Z), 10X, 
2 9HRESTRAINT, / /) 

451 FORMAT (7X, I2,10X, F 10.2,15X, F 10.2,17X, I2 ) 
WRITE (2,414) 

414 FORMAT (1X, //, 3X, 20H**LOADING DETAILS**, /, 4X, 5HSTRIP, 
1 1OX, 19Ii0VERALL U. D. L. (P ), 4X, 19HOVERALL U. D. L. (Q), /, 
224X, 9H(N/MM**2), 14X, 9H(N/MM**2), /) 

DO 413 I=1, NNN 
413 WRITE (2,412) I, QZ(I), QU(I) 
412 FORMAT (6X, i 2,15x, E 10.4,13X, E 10.4 ) 

WRITE (2,411) 
411 FORMAT (1X, /, 5X, 4FINODE, 10X, 611U. D. L. , 13X, 1 6HPO INT LOAD (N) 

1/, 20X, 611(N/i"1M), 8X, 11HX-DIRECTION, 4X, 1111Y-DIRECTION, /) 
DO 409 I=1, NA 
WRITE (2,408 ) I, QB (I ) 

408 FOR11AT (7X, I2,8X, F1O. 3) 
IF (QB(I). EQ. 0.0) GO TO 409 
IF (NN1. EQ. 3. AND. NEC. EQ. 1) WRITE (2,2001) 
IF (NN1. EQ. 3. AND. NEC. EQ. 2) WRITE (2,2002) 

2001 FORMAT (111+, 60X, 1211 U-DIRECTION) 
2002 FORMAT (1H+, 60X, 12H V-DIRECTION) 
409 CONTINUE 
C 
C SOLUTION OF SIMULTANEOUS EQUATIONS 
C 

CALL SOLVE (IH, IG, BG, 1, NS, INPROP, IP) 
N P=NNN 
DO 403 II=1, INPROP 
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DO 402 JJ-1, NX 
402 R(JJ)-BG(JJ, II) 

IF (II. EQ. 1) WRITE (2,476) 
I J-I I-1 
IF (II. NE. 1) WRITE (2,477) IJ 

477 FORMAT (1X, //, 1X, 30HDEFLECTION DUE TO PROP FORCE R, 12, //) 
CALL OUTPUT (R, NNN, I12"i, LL, N2) 

403 NNN-NP 
462 FORMAT (1X, /, 60(1H*), //, 24H **DEFLECTION OUTPUT**) 
476 FORMAT (1X, //, 1X, 32HDEFLECTIOI+ DUE TO EXTERNAL LOADS) 

N P-NNN 
C 
C DEFLECTION OUTPUT 
C 

IF (NN1. EQ. 2) GO TO 484 
IF (NN1. EQ. 4) GO TO 484 
GO TO 4800 

484 11-0 
NZ-NN+1 
DO 490 I-1, NZ 
DO 480 J-1, NX 
I I-II+1 

480 AC(II)-BG(J, I) 
490 CONTINUE 

DO 600 I-1, NN 
S U'iýi-0.0 
Z-AX(I) 
U-AY (I)/A 
Cl-Cl (Z, B) 
CJ-C2(Z, B) 
CL-C3(Z, B) 
CK-C4(Z, B) 
KA-1 
IF( LL. EQ. 2) KA-3 
DO 605 J-1,1111 
IB-N2*Flt4*IZ(I)+N2*(J-1 ) 
IA-N2*MM* (IZ (1)-i )+112* (J-1 ) 
Y 1-YM(NEC, 14, J, 0, A) 
SU: d-SUi+AC(IA+KA)*Y1*CI 
SUi-SUM+AC(IA+KA+1)*Y1*CJ 
S Ui-SUM+AC(IB+KA)*Y1*CL 
S UI-i-SUM+AC ( IB+KA+1 ) *Y l *CK 

605 CONTINUE 
DELTA(I)-SUM 
DO 610 L-1, NN 
SUM-0.0 
DO 615 J-1,1111 
IA-N2*I1Fi* (IZ (I )-1 )+NX*L+N2* (J-1 ) 
I B-N 2 *Mii* IZ (I )+NX*L+N2 * (J-1 ) 
Y 1-YM (NEC, W, J, O, A) 
SUM-SUM+AC(IA+KA)*Y1*CI 
SUM-SUM+AC(IA+): A+1 )*Y1*CJ 
S Uti-SUI"i+AC ( IB+I: A ) *Y 1 *CL 
SUM-SUM+AC(IB+KA+1)*Y1*CK 

615 CONTINUE 
XF(I, L)-SUM 
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610 CONTINUE 
600 CONTINUE 

I-0 
DO 700 J-1, NN 
DO 700 L-1, NN 
I-I+1 

700 XZ(I)-XF(J, L) 
CALL INVERTI (NN, XZ, XU ) 
I-0 
DO 705 J-1, NN 
DO 705 L-1, NN 
I-I+1 

705 XV(J, L)-XU(I) 
DO 710 I-1, NN 
ZZ(I)-O. 0 
DO 710 

, 
J-1, NN 

ZZ(I)-ZZ(I)-DELTA(J)*XV(I, J) 
710 CONTINUE 

WRITE (2,714) 
714 FORMAT (1X, //, 19H PROPPING FORCES/) 

WRITE (2,715) (ZZ(I), I-1, NN) 
715 FORMAT (IX, 4(4X, E15.5)) 

DO 720 1-1, N11 
DO 720 II-1, NX 
J-NX*I+II 
AC(J)-AC(J)*ZZ(I) 

720 CONTINUE 
DO 730 II-1, NX 
S UM=0.0 
N I=NN+1 
DO 725 I-1, NI 
J-(I-1)*NX+II 
SU14-SUM+AC(J) 

725 CONTINUE 
R(II)-SUM 

730 CONTINUE 
CALL OUTPUT (R, NP, MM, LL, N2) 

C 
C SECTION TO OBTAIN STRESS AT CETRE OF 14ODAL LINES 
C 
4800 WRITE (2,481) 
481 FORMAT (1X, /, 60(1H*), //, 20H **STRESS OUTPUT**/) 

Y-0.0 
DO 8000 IIX-1,5 
WRITE (2,8005) Y 

V005 FORMAT (/1311 --STRESS AT ,F 1O. 3,211--) 
DO 805 I-1, NS 
WRITE (2,829) I 

829 FORMAT (1X, 12H ++STRIP++ , 13) 
DO 835 IX-1,11M 
I Y-2 
IF (LL. EQ. O. OR. LL. EQ. 1) CO TO 800 
DO 810 J-1,4 
NI-(I-1)*4*11M+(IX-1)*4+J 
NA-I*4*1IM+(IX-1)*4+J 
NJ-J+4 
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RS(J)-R(NI) 
810 RS(NJ)-R(NA) 

B ET-B ETA ( I. ) 
CALL ENT(BET, LL) 
CALL XMULT (8,8,1, RIT, RS, RRS) 
DO 801 IN-1,8 

801 RS(IN)-RRS(IN) 
GO TO 815 

800 IF (LL. EQ. 1) GO TO 820 
DO 825 IU=1, IY 
NJ-(I-1)*2*MM+(IU-1)*MT1*N2+(IX-1)*2 
NI-(IU-1)*4 
RS(NI+1 )-0.0 
RS(NI+2)=0.0 
RS(NI+3)=R(NJ+1) 
RS(NI+4)=R(NJ+2) 

825 CONTINUE 
GO TO 815 

820 DO 830 IU=1, IY 
NJ=(I-1 ) *2*riM+(IU-1 ) *I"IM*N2+(IX-1 ) *2 
NI=(IU-1)*4 
F. S(NI+1)=R(NJ+1) 
RS(NI+2)=R(NJ+2) 
RS(NI+3)=0.0 
F. S(NI+4)=0.0 

830 CONTINUE 
815 X-O. O 

CALL SBBEND (B, DX, DY, D1, DXY, X, Y, A, SB 
CALL MULTI (6,8, RS, SB, SR) 

835 CALL STRESS (SR, IX, I) 
DO 840 IX=1, I4M 
X=B 
IF (LL. EQ. O. OR. LL. EQ. 1) GO TO 850 
DO 855 J=1,4 
NI=(I-1)*4*IIM+(IX-1)*4+J 
NA=I*4*MM+(IX-1)*4+J 
NJ-J+4 
RS(J)=R(NI) 
RS(NJ)=R(NA) 

855 CONTINUE 
BET=BETA(I) 
CALL ENT (BET, LL) 
CALL XMULT (8,8,1, RIT, RS, RRS) 
DO 854 IN=1,8 

854 RS(IN)=RRS(IN) 
GO TO 860 

850 IF (LL. EQ. 1) GO TO 865 
DO 870 IU-1, IY 
NJ=(I-1 ) *2*. Mii+(IU-1 ) *MM*N2+(IX-1 ) *2 
NI=(IU-1)*4 
RS(NI+1 )=0.0 
RS(NI+2)=0.0 
RS(NI+3)=R(NJ+1) 
RS(NI+4)=R(NJ+2) 

870 CONTINUE 
GO TO 860 

0 NEC, IX, K1, K2, K3, K4) 



234 

865 DO 875 IU-19IY 
NJ-(I-1)*2*MM+(IU-1)*MM*N2+(IX-1)*2 
NI-(IU-1)*4 
RS(NI+1)-R(NJ+1) 
RS(NI+2)-R(NJ+2) 
RS(NI+3)-0.0 
RS(NI+4)-0.0 

875 CONTINUE 
860 CALL SBBEND (B, DX, DY, D1, DXY, X, Y, A, SB, NEC, IX, K1, K2, K3, K4) 

CALL MULTI (6,8, RS, SB, SR) 
NNN-I+1 

840 CALL STRESS (SR, IX, NNN) 
'805 CONTINUE 

WRITE (2,804) 
804 FORMAT (1X, 60(1H*)) 
8000 Y=Y+A/8. 

NNN=1 
GO TO 900 

999 STOP 
END 
SUBROUTINE PROP (IH, 111.1, NEC, A, B, LL, N2, NX, NP, BG, NN, M1, M2, NNN, 

1FF, I) 
DIMENSION BG(2000,7), FX(96), FF(96,2), FK(96), 

1R(2000), IZ(10), AX(10), AY(10), F(4) 
CO1111ON /BL12/IZ, AX, AY/BL2/FK, R 

C 
C NO. OF PROPPING FORCES 
C 
C 
C POSITION OF PROPPING FORCES 
C 

N1=IH/till 
READ (1,500) NEC, AX(I), AY(I) 

500 FORMAT (12,2F10.2) 
IZ(I)=NNN 
DO 505 IN=1, IH 
FX(IN)=0.0 
FF(IN, 2)=0.0 

505 CONTINUE 
XS=AX(I) 
Z=AY(I) 
DO 510 H=1,11. M. 
CALL POINT (1 ., B, A, XS, Z, F, NEC, M) 
DO 515 IL-1,4 
IF (LL. NE. 2) GO TO 100. 
N I=N 1* (M-1 ) 
IF (IL. EQ. 1) NI=NI+3 
IF (IL. EQ. 2) NI=NI+4 
IF (IL. EQ. 3) NI=NI+7 
IF (IL. EQ. 4) NI=NI+8 
GO TO 515 

100 NI=N1*(M-1)+IL 
515 FX(NI)=FX(NI)+F(IL) 
510 CONTINUE 
511 IF (IiM. EQ. 1) GO TO 520 

KY=O 
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525 DO 530 J-1, MM 
535 IF (KY. EQ. 1) GO TO 540 

IS-(J*N2-N2)*2 
IX-(J-1)*N2 
17-IS 
I8-IX 
GO TO 545 

540 IS-(J*2-1)*N2 
IX-(J-1+MNi) *N2 
17=IS 
I8-IX 

545 DO 550 III-1, N2 
IF (III. NE. 1) GO TO 555 
IS-I7 
IX-18 

555 IS-IS+1 
IX-IX+1 

550 FF(IX, 2)=FF(IX, 2)+FX(IS) 
IF (J. EQ. MM) KY=KY+1 

530 CONTINUE 
IF (hY. EQ. 1 ) GO TO 525 
GO TO 560 

520 DO 565 J-1,111 
FF(J, 2)=FF(J, 2)+FX(J) 

565 CONTINUE 
560 RETURN 

END 
SUBROUTINE INTE (A, NEC, M, N) 
COMMON /BL6/I1,12,13,14,15 

C 
C SUBROUTINE FOR BENDING I14TEGRALS 
C 

REAL 11,12, I3, I4, I5 
Ut4=(ri-2 ) *3.1415926 
UN=(N-2)*3.1415926 
IF (kI. EQ. N) GO TO 5 

IF (II. GT. 2. AND. N. GT. 2) GO TO 10 
IF (lI. EQ. I. AND. Id. EQ. 2) GO TO 10 
IF (21. EQ. 2. AND. N. EQ. 1) GO TO 10 
IF( l-i. EQ. 2. AND. N. GE. 3) GO TO 35 
IF (M. GE. 3. AND. N. EQ. 2) GO TO 40 
IF (H. EQ. 1. AND. N. GE. 3) GO TO 15 
IF (II. GE. 3. AND. N. EQ. 1) GO TO 50 
GO TO 10 

50 I1=A*(1. -COS(U1) )/U1'1 
12- -Ulf* (1 . -COS (Ulf) ) /A 
I3=0.0 
14=0.0 
I5=0.0 
GO TO 20 

15 Il=A*(1. -COS(UN))/UN 
12=0.0 
I3=-UN*(1. -COS(UN))/A 
14=0.0 
15-0.0 
GO TO 20 



236 

10 I1-0.0 
12-0.0 
13-0.0 
14-0-0 
15-0.0 
GO TO 20 

5 IF (M. EQ. 1) GO TO 25 
IF (M. EQ. 2) GO TO 30 
I1-A/2. 
I2=_((UM/A)**2)*A/2. 
13-12 
I4=((UM/A)**4)*A/2. 
15--12 
GO TO 20 

30 I1=A/3. 
12-0.0 
I3-0.0 
I4=0.0 
I5-4. /A 
GO TO 20 

35 I1=A*(COS(UN)+1. )/UN 
12-0.0 
I3--UN*(COS(UN)+1. )/A 
14-0.0 
I5-0.0 
GO TO 20 

40 I 1=A* (COS (UM)+1 .) /Ul"i 
I2=-U14* (COS (Uli)+1. ) /A 
13-0.0 
14=0.0 
15-0.0 
GO TO 20 

25 I1-A 
12-0-0 
13-0-0 
14=0.0 
I5-0.0 

20 RETURN 
END 
SUBROUTINE BENDL02 (B, DX, DY, D1, DXY) 
COMMON /BL6/Il, I2, I3,14, I5/BL4/BLO 
DIMENSION BB(24), BLO(4,4) 

C 
C BENDING STIFFNESS MATRIX 
C 

REAL 11,12,13,14,15 
BB(1)=5040. *DX*I1 
Bß(2)=504. *(B**2)*D1*I2 
Bß(3)=504. *(B**2)*D1*I3 
BB(4)=156. *(B**4)*DY*I4 
B B(5)=2016. * (B**2) *DXY*I5 
BB(6)=5040. *DX*B*I1/2. 
BB(7)=462. *(B**3)*D1*I2 
BB(8)=42. *(B**3)*D1*I3 
BB(9)=22. * (B**5) *DY*I4 
BB(10)=168. *(B**3)*DXY*I5 
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BB(11)-42. *(B**3)*D1*I2 
BB(12)-13. *(B**5)*DY*I4 
BB(13)-54*. (B**4. )*DY*I4 
BB(14)-462. *(B**3)*D1*I3 
Bß(15)-1680. *(B**2)*DX*I1 
BB(16)-56. *(B**4)*D1*I2 
BB(17)-56. *(B**4)*D1*I3 
BB(18)-4. *(B**6)*DY*I4 
BB(19)-224*(B**4. )*DXY*I5 
BB(20)-BB(15)/2. 
BB(21)-14*(B**4. )*D1*I2 
BB(22)=14*(B**4. )*D1*I3 
BB( 23)=3. * (B**6) *DY*I4 
BB(24)=56. *(B**4)*DXY*I5 
BLO(1,1)=BB(1)-BB(2)-BB(3)+BB(4)+BB(5) 
BLO(1,2)=BB(6)-BB(7)-BB(8)+BB(9)+BB(10) 
BLO(1,3)=-BB(1)+BB(2)+BB(3)+BB(13)-BB(5) 
BLO(1,4)=BB(6)-Bß(11)-BB(8)-Bß(12)+BB(10) 
BLO(2,1)=BB(6)-BB(14)-BB(11)+BB(9)+BB(10) 
BLO(2,2)=BB(15)-BB(16)-BB(17)+BB(18)+BB(19) 
BLO(2,3)=-BLO(1,4) 
BLO(2,4)=BB(20)+BB(21)+BB(22)-BB(23)-BB(24) 
BLO(3,1)=BLO(1,3) 
BLO(3,2)-BLO(2,3) 
BLO(3,3)=BLO(1,1) 
BLO(3,4)=-BLO(1,2) 
BLO(4,1)=BLO(1,4) 
BLO(4,2)=BLO(2,4) 
BLO(4,3)=-BLO(2,1) 
BLO(4,4)=BLO(2,2) 
DO 15 I=1,4 
DO 15 J-1,4 
BLO(I, J)=BLO(I, J)/(420. *(B)**3) 

15 CONTINUE 

C 

RETURN 
END 
SUBROUTINE FORCE (Q, Q1, B, 11, NEC, A, F, BETA, FQ, LL, NCC) 

C FORCE MATRIX FOR U. D. L. 
C 

REAL J 1, J3 
DIMENSION F(4), FQ(4) 
CALL FORINT (A, ri, NEC, J1, J3, NCC) 
F(1)=Q*B*COS(BETA)*J1/2. 
F(2)=Q*B*B*COS(BETA)*COS(BETA)*J1/12. 
F(3)=F(1) 
F(4)=-F(2) 
IF (Q1. EQ. 0.0) GO TO 25 
F(1)=F(1)+Q1*B*COS(BETA)*J1/2. 
F(2)=F(2)+Q1*B*B*J1/12. 
F(3)=F(3)+Q1*B*COS(BETA)*J1/2. 
F(4)=F(4)-QI*B*B*J1/12. 

25 IF (LL. NE. 2) GO TO 20 
FQ(1)=-Q1*B*SIN(BETA)*J1/2 
FQ(2)=0.0 
FQ(3)=FQ(1) 
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FQ(4)-O. 0 
20* RETURN 

END 
SUBROUTINE PFORCE (QX, B, ti, NEC, A, F, NCC) 
REAL J1, J3 

C 
C FORCE MATRIX FOR NODAL U. D. L. 
C 

DIMENSION F(4) 
UM'-3.1415926*M 
CALL FORINT (A, M, NEC, J 1, J3, NCC) 
F(1)-0.0 
F(2)-0.0 
F(3)-0.0 
F(4)=0.0 
IF (NEC. EQ. 1) F(1)=QX*J1 
IF (NEC. EQ. 2) F(4)=QX*J3 
RETURN 
END 
SUBROUTINE FORINT (A, M, NEC, J1, J3, NCC) 
REAL J1, J3, K 
J3=0.0 
PI=3.141592653 
IF (NCC. EQ. 1) GO TO 2 

1 K=(M-2)*PI 
IF (M. EQ. 1) GO TO 20 
IF (M. EQ. 2) GO TO 25 
J3=0.0 
J1=A*(1-COS(K))/K 
GO TO 10 

20 J1=A 
J3=0.0 
GO TO 10 

25 J3=A 
J1-0.0 
GO TO 10 

2 IF (M. EQ. 1) GO TO 11 
IF (11. EQ. 2) GO TO 12 
K= (AI-2 ) *PI 
J1=A*(1. -COS(K/2))/K 
GO TO 10 

11 J1-A/2. 
GO TO 10 

12 J1=A/4. 
10 CONTINUE 

RETURN 
END 
SUBROUTINE SBBEND (B, DX, DY, D1, DXY, X, Y, A, S$, NEC, id, K1, K2, K3, Ký 

C 
C STRESS MATRIX 
C 

DIMENSION SB(6,8), BZ(3,4) 
COMMON /BL8/LL 
REAL K1, K2, K3, K4 
DO 15 I=1,6 
DO 15 J-1,8 
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15 SB(I, J)-0.0 
Z-Y/A 
Y 1-YM ( 1, Z, 21, O, A)' 
Y2-YM(1, Z, M, 1, A) 
Y 3-YM (1, Z, M, 2, A) 
Y 4-YM (2, Z; 11,0, A) 
Y5-YM(2, Z, M, 1, A) 
XBAR-X/B 
IF (LL. EQ. I) GO TO 10 
BZ(1,1)-6. *(1. -2*XBAR)*Y1/(B**2) 
BZ(1,2)-2. *(2. -3*XBAR)*Y1/B 
BZ(1,3)--BZ(1,1) 
BZ(1,4)-2. *(-3*XBAR+1)*Y1/B 
BZ(2,1)--Y3*(1. -3*XBAR**2+2*XBAR**3) 
BZ(2,2)=-X*(1. -2*XBAR+XBAR**2)*Y3 
BZ(2,3)=-(3. *XBAR**2-2. *XBAR**3)*Y3 
BZ(2,4)--X*((XBAR)**2-Y. BAR)*Y3 
BZ(3,1)=2. *Y2*(-6. *XBAR+6. *XBAR**2)/B 
BZ(3,2)=2. *Y2*(1. -4. *XBAR+3. *XBAR**2) 
BZ(3,3)--BZ(3,1) 
BZ(3,4)-2*Y2*(3. *XBAR**2-2. *XBAR) 
SB( 4,3)-DX*BZ(1,1)+D1*BZ(2,1) 
SB(4,4)=DX*BZ(1,2)+D1*BZ(2,2) 
SB(4,7)=DX*BZ(1,3)+D1*BZ(2,3) 
SB(4,8)=DX*BZ( 1,4)+D1*BZ(2,4) 
SB(5,3)=D1*BZ(1,1)+DY*BZ(2,1) 
SB(5,4)=D1*BZ( 1,2)+DY*BZ(2,2) 
SB(5; 7)=D1*BZ(1,3)+DY*BZ(2,3) 
SB(5,8)=D1*BZ(1,4)+DY*BZ(2,4) 
SB(6,3)=DXY*BZ(3,1) 
SB(6,4)=DXY*BZ(3,2) 
SB(6,7)=DXY*BZ(3,3) 
SB(6,8)=DXY*BZ(3,4) 

10 IF (LL. EQ. 0) GO TO 20 
SB(1,1)--KI*Y1/B 
S13(1,2)=K2*(1. -XBAR)*Y5 
Sß(1,5)=-SB(1,1) 
Sß(1,6)=K2*XBAR*Y5 
SB(2,1)=-K2*YI/B 
SB(2,2)-K3*(1. -:: BAR)*Y5 
SB(2,5)=-SB(2,1) 
S13(2,6)=K3*XBAR*Y5 
Sß(3,1)=K4*(1. -XBAR)*Y2 
Sß(3,2)=-K4*Y4/B 
Sß(3,5)=K4*XBAR*Y2 
SB(3,6)=-SB(3,2) 

20 CONTINUE 
RETURN 
END 
SUBROUTINE PLANL02 (EX, EY, PVX, PVY, GXY, B, A, T, NEC, M, N, K1, K2, K3 
DIMENSION PL02(4,4) 

C 
C PLANE STRESS STIFFFNESS MATRIX 
C 

COMMON /BL5/PLO2 
REAL K1, K2, K3, K4, L1, L2, L3, L4, L5, L6, L7, L8 
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K1-EX/(1. -PVX*PVY) 
K2-PVX*K1 
K3-EY/(1. -PVX*P VY) 
K4-GXY 
PI-3.141592653 
UN-(N-2)*PI 
UM-(M-2)*PI 
CALL INS (M, N, UN, UM, A, L1, L2, L3, L4, L5, L6, L7, L8) 
PL02(1,1)-K1*L1/B+K4*L4*B/3. 
PL02(1,2)--K2*L2/2. -Y. 4*L3/2. 
PL02(1,3)--K1*L1/B+K4*L4*B/6. 
PL02(1,4)--K2*L2/2. +K4*L3/2. 
PL02(2,1)=-K2*L5/2. -K4*L6/2. 
PL02(2,2)=K3*L7*B/3. +K4*L8/B 
PL02(2,3)=K2*L5/2. -K4*L6/2. 
PL02 (2,4)=K3*L7*B/6-Y. 4*L8/B 
PL02(3,1)-PL02(1,3) 
PL02(3,2)=K2*L2/2. -Y. 4*L3/2. 
PL02(3,3)=K1*L1/B+K4*L4*B/3. 
PL02(3,4)-K2*L2/2. +K4*L3/2. 
PL02(4,1)=-K2*L5/2. +K4*L6/2. 
PL02 (4,2)=PL02 (2,4) 
PL02(4,3)=K2*L5/2. +K4*L6/2. 
PL02(4,4)=K3*B*L7/3. +K4*L8/B 
DO 15 I=1,4 
DO 15 J=1,4 
PL02 (I, J)=PL02 (I, J) *T 

15 CONTINUE 
RETURN 
END 
SUBROUTINE INS (Id, N, UN, UI. i, A, L1, L2, L3, L4, L5, L6, L7, L8) 
REAL L1, L2, L3, L4, L5, L6, L7, L8 

C 
C INTEGRALS FOR PLANE STIFFNESS I1ATRIX 
C 

IF(M. NE. N) GO TO 5 
IF(M. EQ. 1) GO TO 10 
IF(M. EQ. 2) GO TO 15 
L1-A/2. 
L2=-UM/2 
L3=-L2 
L4=((UP"i/A)**2)*L1 
L5=L2 
L6=L3 
L7=L4 
L8=L1 
GO TO 20 

15 L1=A/3. 
L2=0.0 
L3=-2. 
L4=4. /A 
L5=L2 
L6=L3 
L7=0.0 
L8=A 
GO TO 20 
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10 L1-A 
L2--2. 
L3-0.0 
L4-0.0 
L5-L2 
L6-0.0 
L7-4. /A 
L8-A/3- 
GO TO 20 

5 IF (M. EQ. 1. AND. N. EQ. 2) GO TO 25 
IF (M. EQ. 1. AND. N. GE. 3) GO TO 30 
IF (11. EQ. 2. AND. N. EQ. 1) GO TO 25 
IF (11. GE. 3. AND. 14. EQ. 1) GO TO 40 
IF (M. EQ. 2. AND. N. GE. 3) GO TO 45 
IF (M. GE. 3. AND. N. EQ. 2) GO TO 50 

25 L1=0.0 
L2=L1 
L3-L1 
L4-L1 
L5-L1 
L6=L1 
L7=L1 
L8-L1 
GO TO 20 

30 Y=1. -COS(UN) 
L 1=A*Y/UN 
L2=-Y 
L3=0.0 
L4=0.0 
L5=-2*Y/UN 
L6=-L5 
L8=2*A*Y/(UN*UN) 
L7=2. *Y/A 
GO TO 20 

40 Y=1. -COS(UM) 
L1=A*Y/UM 
L2=-2*Y/Uil 
L3=2*Y/UM 
L4-0.0 
L5=-Y 
L6=0.0 
L8=2*A*Y/ (UP1*Ui1) 
L7=2 *Y/A 
GO TO 20 

45 Y=1+COS(UN) 
L1=A*Y/UN 
L2=-Y 
L3=0.0 
L4=0.0 
L5=0.0 
L6=0.0 
L7=0.0 
L8=0.0 
GO TO 20 

50 Y=1+COS(UM) 
L 1=A*Y/Ul1 
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L2-0.0 
L3-0.0 
L4-0.0 
L5--Y 
L6-0.0 
L7-0.0 
L8-0.0 

20 CONTINUE 
RETURN 
END 
SUBROUTINE XMULT (L, M, N, A, B, C) 
DIMENSION A(8,8), B(8,8), C(8,8) 
DO 2 I-1, L 
DO 2 J-1, N 
C(I, J)-0. 
DO 2 K-1,11 

2 C(I, J)-C(I, J)+A(I, K)*B(K, J) 
RETURN 
END 
SUBROUTINE ENT (BETA, LL) 

C 
C TRANSFORMATION MATRICES 
C 

DIMENSION RI (8,8), RIT(8,8) 
COMMON /BL3/RI, RIT 
DO 10 I=1,8 
DO 10 J-1,8 
RI(I, J)-0.0 

10 CONTINUE 
RI( 1,1)=COS (BETA) 
RI(1,3)=-SIN(BETA) 
RI(2,2)-1.0 
RI(3,1)=-RI(1,3) 
RI(3,3)=RI(1,1) 
RI(4,4)-1.0 
P. I(5,5)=RI(1,1) 
RI(5,7)-RI(1,3) 
RI(6,6)=1.0 
a I(7,5)=-RI(1,3) 
RI(7,7)=RI(1,1) 
RI(8,8)=1.0 
DO 20 I=1,8 
DO 20 J-1,8 
RIT(I, J)=0.0 

20 CONTINUE 
RIT(1,1)=COS(BETA) 
RIT(1,3)=SIN(BETA) 
RIT(2,2)=1.0 
RIT(3,1)=-P. IT(1,3) 
RIT(3,3)=F. IT(1,1) 
RIT(4,4)-1.0 
RIT(5,5)=RIT(1,1) 
RIT(5,7)=RIT(1,3) 
RIT(6,6)=1.0 
RIT(8,8)-1.0 
RIT(7,7)=RIT(1,1) 
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RIT(7,5)--RIT(1,3) 
RETURN 
END 
FUNCTION YM(NEC, YA, M, IDC, A) 
PI-3.141592653 
IF (NEC. EQ. 2) GO TO 2 

1 IF (M. EQ. 1) GO TO 20 
IF (M. EQ. 2) GO TO 25 
UM-(M-2)*PI 
IF(IDC. EQ. O)YM-SIN(UM*YA) 
IF(IDC. EQ. 1)YM-(UM/A)*COS(UM*YA) 
IF(IDC. EQ. 2) YM--(UM*UM/(A*A))*SIN(UM*YA) 
GOTO 10 

20 IF (IDC. EQ. 0) YM-1. 
IF (IDC. GT. O) YM=0.0 
GO TO 10 

25 IF (IDC. EQ. O) YM-1. -2. *YA 
IF (IDC. EQ. 1) YM--2. /A 
IF (IDC. EQ. 2) YI1-0.0 
GO TO 10 

2 IF (M. EQ. 1) GO TO 11 
IF (M. EQ. 2) GO TO 12 
UM= (I-1-2 ) *P I- 
IF (IDC. EQ. O) YM=COS(UI"i*YA) 
IF (IDC. EQ. 1) YM=-(UM/A)*SIN(UM*YA) 
GO TO 10 

11 IF (IDC. EQ. 0) Yf1=1. -2. *YA 
IF (IDC. EQ. 1) YM--2. /A 
GO TO 10 

12 IF (IDC. EQ. O) YM-1. 
IF (IDC. EQ. 1) YM=0.0 

10 RETURN 
END 
SUBROUTINE MULT1 (L, M, A, B, C) 
DIMENSION A(30), B(6,8), C(6) 
DO 2 I-1, L 
C(I)-0.0 
DO 2 K-1,11 

2 C(I)-C(I)+A(K)*B(I, K) 
RETURN 
END 
SUBROUTINE POINT (P, B, A, X, Y, BFP, 1IEC, , i) 
DIMENSION BFP(4) 
Z=Y/A 
Y 1=Yf"i(fiEC, Z, i"1, O, A) 
XC-X/B 
BFP(1)=P*Y1*(1. -3. *(XC)**2+2. *(XC)**3) 
BFP(2)=P*Y1*X*(1. -2. *XC+(XC)**2) 
BFP(3)-P*Y1*(3. *(XC)**2-2. *(XC)**3) 
BFP(4)=P*Y1*X*((XC)**2-XC) 
R ETURN 
END 
FUNCTION C1(X, B) 

C 
XC=X/B 
C1=1. -3. *(XC)**2+2. *(XC)**3 
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RETURN 
END 
SUBROUTINE. OUTPUT(R, NNN, MM, LL, NZ) 

C 
C OUTPUT MATRIX FOR DEFLECTIONS 
C 

DIMENSION R(2000) 
NNN-NNN+1 
NO-NZ*6 
I-1 
L-1 

20 IF (NNN-6. LE. O. 0) GO TO 100 
N1-(I-1 )*6+1 
N2-N1+1 
N3-N1+2 
N4=N1+3 
N5-N1+4 
N6-N1+5 
WRITE (2,10) Ni, N2, N3, N4, N5, N6 

10 FORMAT (1 X, / /, 5X, 4HNODE, 8X, I2,5 (1 7X, I2) ) 
WRITE (2,16) 

16 FORMAT (1X, /, 1X, 91iHARMONIC S, /) 
NX-NO*IMM 
NN-NZ *MIj 
I I-0 
JJ-(L-1 ) *1111*NO 
DO 21 K=1, NN, NZ 
WRITE (2,17) (R(JJ+J), J=K, NX, NN) 
11-11+1 
WRITE (2,18) 11 
M -K+1 
WRITE (2,17) (R(JJ+J), J=1.1, NX, NN) 
IF (LL. NE. 2) GO TO 21 
M 1-K+2 
WRITE (2,17) (R(JJ+J), J-M1, NX, NN) 
112-K+3 
WRITE (2,17) (R(JJ+J), J=112, NX, NUU) 

21 CONTINUE 
N-N-6 

17 FORMAT (ix, 7X, E 15.5,5 (4X, E 15.5) ) 
18 FORMAT (1H+, 1X, 5X, I1) 

NNN-NNN-6 
L=L+1 
I-I+1 
GO TO 20 

100 WRITE (2,25) 
25 FORMAT (1X, / /, 5X, 41UNODE ) 

N1=(I-1)*6+1 
N-N11N 
WRITE (2,30) 111- 

30 FORMAT (1H+, 17X, 12) 
IF (N-1. EQ. 0) GO TO 40 
N1=N1+1 
WRITE (2,35) Ni 

35 FORMAT ( 111+, 36X, 12) 
IF (N-2. EQ. 0) GO TO 40 
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N1-N1+1 
WRITE (2,45) Ni 

45 FORMAT (1H+, 55X, 12) 
IF (N-3. EQ. 0) GO TO 40 
N 1-N 1+1 

, WRITE (2,50) Ni 
50 FORMAT (1H+, 74X, 12) 

IF (N-4. EQ. 0) GO TO 40 
N 1=N 1+1 
WRITE (2,55) N1 

55 FORMAT (111+, 93X, I2) 
IF (N-5. EQ. 0) GO TO 40 
N 1=N1+1 
WRITE (2,60) Ni 

60 FORMAT (1H+, 112X, I2) 
40 CONTINUE 

WRITE (2,16) 
I I-0 
NN=NZ*MM 
DO 22 K=1, NN, NZ 
JJ=(L-1)*NO*MM 
NX=NZ*MM*N 
WRITE (2,17) (R(JJ+J), J=K, NX, NN) 
11=11+1 
WRITE (2,18) II 
M=K+1 
WRITE (2,17) (R(JJ+J), J=M, NX, NN) 
IF (LL. NE. 2) GO TO 22 
Ml-K+2 
WRITE (2,17) (R(JJ+J ), J=111, NX, NN) 
M2=K+3 
WRITE (2,17) (R(JJ+J), J=M2, NX, NN) 

22 CONTINUE 
RETURN 
END 
FUNCTION C2(X, B) 
XC=X/B 
C2=X*(1. -2. *(XC)+(XC)**2) 
RETURN 
END 
FUNCTION C3 (X, B) 
XC=X/B 
C3=3*(XC)**2-2. *(XC)**3 
RETURN 
END 
FUNCTION C4 (X, B) 
XC=X/B 
C4=X*((XC)**2-(XC)) 
RETURN 
END 
SUBROUTINE INVERT(IP) 
DIMENSION B(2400), C, (2400) 
COI-111ON /BL30/B, C 
LEVEL 2, B, C 
IF(IP. EQ. 1) GO TO 9 
Ill=IP*IP 
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DO 2 I-1, IW 
2 C(I)-0. 

DO 3 I-1, IP 
3 C(I+IP*(I-1))-1.0 

IW-IP-1 
DO 5 IQ-1, IW 
K-IP-IQ+1 
AP-B(K+IP*(K-1)) 
I K-K-1 
DO 5 I-1, IK 
AT-B(I+IP*(K-1))/AP 
DO 5 J-1, IP 
B(I+IP*(J-1))=B(I+IP*(J-1))-B(K+IP*(J-1))*AT 

5 C(I+IP*(J-1))=C(I+IP*(J-1))-C(K+IP*(J-1))*AT 
C MATRIX NOW REDUCED TO UPPER TRIANGLE FORM 

DO 6 IQ-1, IW 
AP=B(IQ+IP*(IQ-1)) 
I K=IQ+1 
DO 6 I=IK, IP 
AT=B(I+IP*(IQ-1))/AP 
DO 6 J=1, IP 
B(I+IP*(J-1))=B(I+IP*(J-1))-B(IQ+IP*(J-1))*AT 

6 C(I+IP*(J-1))=C(I+IP*(J-1))-C(IQ+IP*(J-1))*AT 
C MATRIX NOW REDUCED TO DIAGONAL FORM 

DO 7 I=1, IP 
DO 12 J=1, IP 

12 C(I+IP*(J-1))=C(I+IP*(J-1))/B(I+IP*(I-1)) 
7 CONTINUE 

GO TO 8 
9 C(1)-1.0/B(1) 
8 RETURN 

END 
SUBROUTINE COMB (B0, PL02, BLO) 

C 
C FOLDED PLATE STIFFNESS MATRIX 
C 

DIMENSION BO(8,8), PL02(4,4), BLO(4,4) 
DO 10 1-1,8 
DO 10 J-1,8 

10 BO(I, J)-O. O 
BO(1,1)=PL02(1,1) 
BO(1,2)=PL02(1,2) 
BO(2,1)=PL02(2,1) 
BO(2,2)=PL02(2,2) 
BO(5,1)=PL02(3,1) 
BO(5,2)=PL02(3,2) 
BO(6,1)=PL02(4,1) 
BO(6,2)=PL02(4,2) 
BO(3,3)=BLO(1,1) 
BO(3,4)=BLO(1,2) 
BO(4,3)-BLO(2,1) 
BO(4,4)-BLO(2,2) 
BO(1,5)=PL02(1,3) 
BO(1,6)=PL02(1,4) 
BO(2,5)=PL02(2,3) 
BO(2,6)=PL02(2,4) 
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AO(5,5)-PLO2(3,3) 

�BU(5,6)-PL02('3,14) HO(6.5)rPLO2(4. '3) . ýý'ýBÜ(6. "6)-PL02(4. ý4) ýý, 
`, ßU(3, '7)-3L0(1', `3) i" 
', Ba(3; 8)-Bc. o(1; 4) 
ßü(4, '7)-3L0(2,, 3) 
$U(4ý't3)pL'LO(2,4) 

, 'ßO(70'7)-BLO(3,3) 
BO(70'8)=BLO(8,; 4) 

ýý, ýIDt7(ý, 7)-3L0(4; '3) 
ß0(3,8)-MLO, (4,; 4) 
; SO(7,3)-BLO(3,, t) 
'i9ä(7,4)-KLO(3, '2) 
! 11O(8,3)-BLa(4', 1) 
DO(S, '4)-3Lt3(4,2) 
R 1rTtJk:; 1; 

ýý ý: Nil, ,,, 
i, ý nrfIs Ill. It T". tr" hTt1T"Tr 1 rTI i k, % 

;, uur. vuA. lºr[. . ºantiaa tia4., ap 'Lr 
) 

ý. 
ýý., li ý'Ji. y, 

, 
ýý 

ý 
.. 

ýI ý týý. 
- 

DISTORTION FORCE 1 : SATttIX ,; 
,ýýý�. ý 

DX. -tEitSIOr: I'(4), FQ(4) 
DO '5' I-1,4 

5 ! ̀ ( 

( ý'Q(1 )-0.0 

FQ(2)p1.0 ,, 
Iiý' 

, 
(: t. IiE. 2) iQ (2)-0.1') 

FQ(3)u0.0 

rQ(u)-1.0 
xFOl. l! iE. 2) 
R i: TURh 
RNA ' 
SUBROUTINE CYrik; Sti(iJS, f1Q, R, NEC 

C 
C 
C 

4IZXý'7H(Kr1*P1At) () 
fix; 7H(). N*rsrl), 12X, 711(KN*riH) 

-- ._. {. : i.. 

WRITE (2,5) ld 
FORMAT (1 X, / /t 7I1 NODE ; 12) 
WRITE (2.1q) 
FORMAT (1X, /, I5X; 7112: ICt1A-X1QX, 7I1ZICr1A-Y, IUX, 

IE3iIZTCt, iA-XY, "1, QX, DXp"ßlltiQttRIIT-Y, 1QK, 
2911MQlfENT-XY, '/; 1X,; 51III11RMCII'lI, QS, 1'4X, 1pI1{KPilriil*ý2),. ßX, 

CIIMENSIOa Sk(b) 
IF (I. INC. I) , GO TO 20 

sxKCss uUTPUT SUBRc)UTINý 

ý" ,. +, '. 
s'FORNAT ' (5 X. ' ýZ1 3Xr: ýl S" Si 3X: E 15ýr 5.3X. E: 15.5.2X. 
ýýW K 1; CF: ý', t. Gy [Ja., "1p t3l: tJ)"J! °I M, 0 ) ; '; `' '1 '' ! 

1 15. '5,3X, E15.5,, 3X, E15,5), r; 
.'...,... ý.,.. " . -i ý. ý. i' ., 'ý,.,. výý 

I, IIiPi 
;I f9'kin ' I' 

. ý- 

ýICýItllJ 1j. 

F(ý, '! 1) ; "jRUBROUT INE iL1FORCEý' (Avý B; F# 

A II, h1, XSU1, XSUH 1) 

, 'DATA- CEHHERATOR FOR SHELL ROOFS 

.ýi 
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DIMENSION K5(20) 
COMMON /BL10/IR, X2, X3, Y1, Y2, J, NV, NA, K5 
IF (IR. GT.. NS) GO TO 20 
X=3.1415925*AQ*R/(90*NS) 
IF (IR. NE. 1) GO TO 10 
II-0 
NVsO 
XSUM-0.0 
XSUM1-O. 0 

10 X3-XSUM 
Y1-XSUM 1 
ANGLE=AQ*(1. -(1. +2. *(IR-1))/NS) 
S-SIN(ANGLE)*X 
C=COS(ANGLE)*X 
XSUM=XSUM+C 
XSUM 1=XSUl11+S 
X2=XSUM 
Y 2=XSUM 1 
IR=IR+1 
NEC=1 
II=II+1 
JJ=I I+1 
GO TO 15 

20 IF (J. EQ. NS+1) GO TO 25 
NA=1 
NV=NV+1 
K5(J)=1 
GO TO 15 

25 NA=0 
15 RETURN 

END 
SUBROUTINE INVERTI (IP, B, C) 
DIMENSION B(100), C(100) 
IF(IP. EQ. 1) GO TO 9 
IW=IP*IP 
DO 2 I-1, IW 

2 C(I)=O. 
DO 3 I=1, IP 

3 C(I+IP*(I-1))=1.0 
IU=IP-1 
DO 5 IQ=1, IW 
K-IP-IQ+1 
AP=B(K+IP*(K-1)) 
I K=K-1 
DO 5 I-1, I1: 
AT=B(I+IP*(K-1))/AP 
DO 5 J=1, IP 
B(I+IP*(J-1))=B(I+IP*(J-1))-B(K+IP*(J-1))*AT 

5 C(I+IP*(J-1))=C(I+IP*(J-1))-C(K+IP*(J-1))*AT 
C MATRIX NOU REDUCED TO UPPER TRIANGLE FORM 

DO 6 IQ=1, IW 
AP=B(IQ+IP*(IQ-1)) 
I K= I Q+1 
DO 6 I-IK, IP 
A T=B(I+IP*(IQ-1))/AP 
DO 6 J=1, IP 
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B(I+IP*(J-1))-B(I+IP*(J-1))-B(IQ+IP*(J-1))*AT 
6 C(I+IP*(J-1))-C(I+IP*(J-1))-C(IQ+IP*(J-1))*AT 
C MATRIX NOW REDUCED TO DIAGONAL FORM 

DO 7 I-1, IP 
DO 12 J-1, IP 

12 C(I+IP*(J-1))-C(I+IP*(J-1))/B(I+IP*(I-1)) 
7 CONTINUE 

GO TO 8 
9 C(1)-1.0/B(1) 
8 RETURN 

END 
SUBROUTINE PART (IY, NN, N, B, DB, IZ, IPROP, IP) 
DIMENSION A(96,96), B(96,2), BB( 144,7), AA(144,144), ZZ(48,48) 

1, XY. (48,48), R(2400), RR(2400), SY (48,48), BA(48,7), AB(48,7), 
2AZ(96,96), DB(2000,7), D(48,7), A5(48,48) 
3, BZ (144,7), YY (48,48) 

COMM013 /BL1/AZ, A/BL30/R, RR/BL31/YY, SY/BL50/AA/BL65/BZ 
LEVEL 2, AZ, A, AA, R, RR, BZ 
i Q-2 
IF (IPROP. EQ. 1) IQ=1 
IN-1 
IF (IY. NE. 1) GO TO 61 
NQ=1.5*NN 
IPP-IP+1 
DO 210 I=1, NQ 
DO 220 II=1, IPP 

220 BB(I, II)=O. O 
DO 210 J=1, NQ 

210 AA(I, J)=O. O 
DO 20 I=1, NN 
DO 21 II=1, IQ 
114-1 
IF (II. EQ. 2) IN-IPROP 

21 BB(I, IN)=BB(I, IN)+B(I, IQ) 
DO 20 J=1, NN 

20 AA(I, J)=AA(I, J)+A(I, J) 
W1: ITE (3) ( (A(I, J), J=1, N), I=1, N) 
WRITE (4) ((A(I, N+J), J=1, N), I=1, N) 
GO TO 500 

61 DO 26 I=1, NN 
DO 27 II=1, IQ 
IN-1 
IF (II. EQ. 2) IN=IPROP 

27 BB(N+I, IN)=BB(N+I, IN)+B(I, II) 
DO 26 J=1, NN 

26 AA(N+I, 1i'+J)=AA(N+I, N+J)+A(I, J) 
I PP=1+IP 

63 DO 25 I=1, N 
DO 25 J-1, N 
ZZ(I, J)-AA(I, J) 
YY(I, J)=AA(I, N+J) 

25 XX(I, J)-AA(N+I, N+J) 
IF (IY. EQ. IZ+1) IY=IY+1 
II-0 
DO 30 I-1, N 
DO 30 J=1, N 
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II-II+1 
30 R(II)-ZZ(I, J) 

CALL INVERT (N) 
II-0 
Do 35 I-1., N 
DO 35 J-i, N 
II-II+1 

35" ZZ(I, J)-RR(II) 
CALL TRANS (N) 
CALL MULTI (N, N, N, SY, ZZ, A5) 
DO 40 IIs1, IPROP 
DO 40 I-1, N 

40 BA(I, II)=BB(I, II) 
CALL Xt1ULTI (N, N, IPROP, A5, BA, AB) 
DO 45 II=1, IPROP 
DO 45 1-1,14 

45 BB(N+I, II)=BB(N+I, II)-AB(I, II) 
IPP=IP+1 
WRITE (5) ( (BB(I, J), J=1, IPP), I=1, N) 
CALL MULTI (N, N, N, A5, YY, SY) 
DO 50 I=1, N 
DO 50 J=1, N 

50 XX(I, J)=XX(I, J)-SY(I, J) 
WRITE (3) ( (XX(I, J), J=1, N), I=1, N) 
WRITE (4) ( (YY(I, J), J=1, N), I=1, N) 
DO 80 I=1, N 
N I=N+I 
DO 80 J=1, N 
N J=N+J 

80 AA(NI, NJ)=XX(I, J) 
DO 81 I=1, NN 
N I=N+I 
DO 79 II=1, IPROP 
BZ(I, II)=BB(NI, II) 

79 CONTINUE 
DO 81 J=1, NN 
N J=N+J 

81 AZ(I, J)=AA(NI, NJ) 
NQ=1.5*NN 
DO 82 I=1, NQ 
DO 94 II=1, IPROP 

94 BB(I, II)=0.0 
DO 82 J=1, NQ 

82 AA(I, J)=0.0 
DO 83 I=1, NN 
DO 93 II=1, IPROP 

93 BB(I, II)=BZ(I, II) 
DO 83 J=1, NN 

83 AA(I, J)=AZ(I, J) 
IF (IY. EQ. IZ) IY=IY+1 
IF (IY. EQ. IZ+1) GO TO 63 
IF (IY. LT. IZ+1) RETURN 
WRITE (5) ( (BB(I, J), J=1, IPP), I=1, N) 
IY=IY-2 
II=0 
DO 65 I=1, N 
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DO 65 J-1, N 
II-II+1 

65 R(II)-XX(I., J) 
CALL INVERT (N) 
II=0 
DO 70 I=1, N 
DO 70 J-1, N 
11-11+1 

70 XX(I, J)-RR(II) 
DO 71 II=1, IPROP 
DO 71 1-1,11 

71 AB(I, II)=BB(I, II) 
CALL MULTI (N, N, IPROP, XX, AB, D) 
DO 75 II-1, IPROP 
DO 75 I-1, N 
NI=N*(IY) - 

75 DB(NI+I, II)-D(I, II) 
500 RETURN 

END 
SUBROUTINE SOLVE (NN, N, DB, NX, NS, IPROP, IP) 
DIMENSION ZZ(48,48), Xx(48,48), D(48,7), E(48,7), 

1DB(2000,7), R(2400), RR(2400), AB(48,7) 
COMMON /BL30/R, RR 
LEVEL 2, R, RR 
IX=NS 
DO 90 I=1, IX 
IXX=IX-(I-1) 
DO 110 II=1, IPROP 
DO 110 KI=1, N 
N I=11*IXX 

110 D(KI, II)=DB(NI+Y. I, II) 
CALL BACK(2,3) 
READ (3) ((ZZ(J, K), K=1, N), J=1, N) 
CALL BACK (2,4) 
READ (4) ( (XX(J, K), K=1, N), J=1, N) 
CALL XMULTI(N, 14, IPROP, XX, D, E) 
II=0 
DO 105 K-1, N 
DO 105 J=1, N 
I I=I I+1 

105 R(II)=Z'Z(K, J) 
CALL INVERT (N) 
II=0 
DO 120 K-1, N 
DO 120 J-1, N 
I I=II+1 

120 ZZ(K, J)=RR(II) 
CALL BACK (2,5) 
I PP=I P+1 
READ (5) ( (AB(II, JJ), JJ=1, IPP), II=1, N) 
DO 130 II=1, IPROP 
DO 130 K=1, N 

130 AB(K, II)=AB(K, II)-E(K, II) 
CALL MULTI (N, N, IPROP, ZZ, AB, D) 
DO 135 II=1, IPROP 
DO 135 K=1,14 
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NI-N*(IXX-1) 
135 DB(NI+K, II)-D(K, II) 
90 CONTINUE 

RETURN 
END 
SUBROUTINE TRANS (N) 
DIMENSION A(48,48), B(48,48) 
COMMON /BL31/A, B 
DO 5 I-2, N 
LL-I-1 
DO 10 J-1, LL 
X-A(I, J) 
B(I, J)-A(J, I) 

10 B(J, I)-X 
5 CONTINUE 

DO 20 I-1, N 
20 B(I, I)-A(I, I) 

RETURN 
END 
SUBROUTINE BACK (I, N) 
DO 10 J-1, I 

10 BACKSPACE N 
RETURN 
END 

SUBROUTINE REST (NI, NJ, N, 1114, N1 ) 
DIMENSION A(96,96), SS(96,96) 
COMi"ION /BL1/SS, A 
LEVEL 2, S S, A 

C 
C IJI, NJ=O NODE FREE 
C NI, NJ=1 NODE S. S. 
C NI, NJ=2 NODE FIXED 
C NI, NJ=3 NODE S. S. AT ENDS, V FREE 
C NI, NJ=4 NODE S. S. AT ENDS, V FIXED 
C NI, NJ=5 NODE S. S. AT ENDS, U&V FREE 
C NI, NJ, =6 AS NI, NJ=3, BUT WITH W RESTRAINED ALONG EDGE 
C NI, NJ=7 AS NI, NJ=4 BUT WITH W RESTRAINED ALONG EDGE 
C NJ-8 AS NJ-6 RIGID PLATE MOVEMENT 
C NI=10 AS NI=6 BUT WITH U1 AND U2 NOT = ZERO 
C 

IF (NI. EQ. O) GO TO 10 
IF (NI. EQ. 1) GO TO 20 
IF (NI. EQ. 2) GO TO 30 
IF (NI. EQ. 3) GO TO 40 
IF (NI. EQ. 4) GO TO 20 
IF (NI. EQ. 5) GO TO 40 
IF (N I. EQ. 6) GO TO 40 
IF (NI. EQ. 7) GO TO 20 
IF (NI. EQ. 10) GO TO 40 

20 DO 25 1-1,111 
IF (NI. EQ. 7. AND. I. EQ. 4) GO TO 25 
IF (NI. EQ. 7. AND. I. EQ. 8) GO TO 25 
A(I, I)-A(I, I)+1. E50 

25 CONTINUE 
IF (NI. EQ. 4. OR. NI. EQ. 7) GO TO 50 
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GO TO 10 
30 DO 35 I-1, N 

A(I, I)-A(I, I)+1. E50 
35 CONTINUE 

GO TO 10 
40, DO 45 1-1,141 

IF (NI. EQ. 5. AND. I. EQ. 1) GO TO 44 
IF (NI. EQ. 6. AND. I. EQ. 4) GO TO 44 
IF (NI. EQ. 6. AND. I. EQ. 8) GO TO 44 
IF (NI. EQ. 5. AND. I. EQ. 5) GO TO 44 
IF (N I. EQ. 10. AND. I. EQ. 4) GO TO 44 
IF (N I. EQ. 10. AND. I. EQ. 8) GO TO 44 
IF (NI. EQ. IO. AND. I. EQ. 1) GO TO 44 
IF (NI. EQ. 10. AND. I. EQ. 5) GO TO 44 
IF (I. EQ. 6) GO TO 44 
A(I, I)-A(I, I)+1. E50 

44 CONTINUE 
45' CONTINUE 

IF (NI. EQ. 10) NI=6 
IF (NI. EQ. 6) GO TO 61 
GO TO 10 

50 NZ=1111-2 
IF (111-i. LE. 2) GO TO 10 
DO 57 IP=1, NZ 
I N=4 * (I P-1 )+10 

57 A(IN, IN)=A(IN, IN)+1. E50 
IF (NI. NE. 7) GO TO 10 
DO 56 IP-1, NZ 
IN=4*(IP-1 )+11 
A(IN-2, IN-2)=A(IN-2, IN-2)+1. E50 

56 A(IN, IN)=A(IN, IN)+1. E50 
GO TO 10 

61 DO 62 I=1, Tltß 
I14=4*(I-1)+3 
IF (I. EQ. 2) GO TO 62 
Ä(IN-1, IN-1)=A(IN-1, II: -1 )+1. E50 

62 A(IN, IN)-A(IN, IN)+1. E50 
10 IF (NJ. EQ. O) GO TO 60 

IF (NJ. EQ. 1) GO TO 70 
IF (NJ. EQ. 2) GO TO 80 
IF (NJ. EQ. 3) GO TO 90 
IF (NJ. EQ. 4) GO TO 70 
IF (NJ. EQ. 5) GO TO 90 
IF (NJ. EQ. 6) GO TO 90 
IF (NJ. EQ. 7) GO TO 70 
IF (NJ. EQ. 8) GO TO 90 

70 DO 75 I-1, N1 
IF (NJ. EQ. 7. AND. I. EQ. 4) GO TO 75 
IF (NJ. EQ. 7. AND. I. EQ. 8) GO TO 75 
A(N+I, N+I)=A(N+I, N+I)+1. E50 

75 CONTINUE 
IF (NJ. EQ. 4. OR. NJ. EQ. 7) CO TO 100 
GO TO 60 

80 DO 85 I-1, N 
A(N+I, N+I)=A(N+I, N+I)+1. E50 

85 CONTINUE 
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GO TO 60 
90 DO 95 I-1, N1 

IF (NJ. EQ. 5. AND. I. EQ. 1) GO TO 94 
IF (NJ. EQ. 8. AND. I. EQ. 8) GO TO 94 
IF (NJ. EQ. 8. AND. I. EQ. 4) GO TO 94 
IF (I. EQ. 6) GO TO 94 
IF (NJ. EQ. 5. AND. I. EQ. 5) GO TO 94 
IF (NJ. EQ. 6. AND. I. EQ. 8) GO TO 94 
IF (NJ. EQ. 6. AND. I. EQ. 4) GO TO 94 
A(N+I, N+I)=A(N+I, N+I)+1. E50 

94 CONTINUE 
95 CONTINUE 

IF (NJ. EQ. 6. OR. NJ. EQ. 8) GO TO 91 
GO TO 60 

100 NZ-111I-2 
IF (riM. LE. 2) GO TO 60 
DO 107 IP-1, NZ 
IN=4*(IP-1)+10+N 

107 A(IN, IN)=A(IN, IN)+1. E50 
IF (NJ. NE. 7) GO TO 60 
DO 106 IP=1, NZ 
III=4*(IP-1)+11+N 

106 A(IN, IN)=A(IN, IN)+1. E50 
GO TO 60 

91 DO 92 I=1,1111 
Ii1=4*(I-1)+3+N 
IF (NJ. EQ. 8) A(IN-2, IN-2)=A(IN-2, IN-2)+1. E50 
IF (I. EQ. 2) GO TO 92 
A(IN-1, IN-l)=A(IN-1, IN-1)+1. E50 

92 A(IN, IN)=A(IN, IN)+1. E50 
60 RETURN 

END 
SUBROUTINE IIULTI (L, M, N, A, B, C) 
DIMENSION A(48,48), B(48,48), C(48,48) 
DO 2 I-1, L 
DO 2 J-1, N 
C(I, J)=0. 
DO 2 K-1,1i 

2 C(I, J)=C(I, J)+A(I, K)*B(K, J) 
RETURN 
END 
SUBROUTINE XMULTI (L, N, N, A, B, C) 
DIMENSION A(48,48), B(48,7), C(48,7) 
DO 2 I=1, L 
DO 2 J=1, N 
C(I, J)=0.0 
DO 2 I; -1, M 

2 C(I, J)=C(I, J)+A(I, K)*B(K, J) 
RETURN 
END 
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APPENDIX 4 

Determination of Propping Forces 

The distortion of a profile is restricted at the ends of 

the sheeting due to the influence of the purlins. Many methods 

are now available, amongst these the Finite Strip Method, to 

determine the forces. Most methods however, are costly in 

computer time with respect to the accuracy required in a design 

method. For the design charts, to be given later, a simple method 

was therefore necessary. 

As the distortion mainly occurs at the ends of the sheeting 

it can be assumpted that the deformation of the plates the out at 

the same distance xd along the sheeting length, shown in 

Fig. A4.1. 

Considering Fig. A4.2, the uplift force P exerted by 

the purlin for the every corrugation fastened case is given by 

(s 
Fö Ml Mý xd 

P= 

d J 
of O 

M1 Ml xd 

so p=kF 

where k is a constant depending only on the cross- 

sectional geometry of the profile, 

and F is the fastener force =q. d 
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c 

To simplify the analysis, the propping moment diagram M1 

is separated into two moment diagrams M2 and M3,. and the 

propping force P can then be given by 

P= 

1/2 
140 r2 

s2s2 

�f 
M2 M2 + 

00 
M3 M3 4 

where is the integration around half the profile. 
s/2 f 

0 
The design tables are based on the above equation and a 

simple program was written to obtain the factor k for varying 

values of 2bT / d, h, /d and theta 

In the case of the alternate corrugations, the purlin 

restrains the profile at two positions, Fig. A4.3. The assumption 

that the decay of the distortion is constant for all the plates 

has been shown to be incorrect. A modification factor V0 
of 2 

has been chosen on the bases of Finite Element results undertaken 

by Lawson 
(ý-s). 

The propping forces can then be determined from 

the simultaneous equation 
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r 

Y2M0 
M5 

0 

M7 
-Y%10 0 

s2 
140 M7 

0 

sý2 ý2 

M5 H5 da +öI M6 M6 ds ds +s 
2' ýM6 

Mg d0 
0 

ýý145'47 

0 

s2 s/2 s2 
M7 ds +ý M6 Mg di) f' M7 H7 ds + Mg ds 

(YýN5 

00 -0 

P1 /2 

P2 2 

Again design tables were produced based on these equation, 

de - 

do 

were 

P1 
kl = 

2d 

k2 = 
P2 

2d 

It should be noted that certain values are not given in the 

design tables, this is for one of two reasons, namely : - 

a. that the various combinations of the parameter 

2b. ß. 
/d, h/d and theta give an unrealistic profile 
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i. e. 

. 2br +2 b` + 2p >d 

and b. that the value of the propping force is negative 

from the program and so the force should be taken as 

zero. 
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C 

Xd 

Fig A4,1 Plan View of the Distortion of Profile 

7 

h 

ý.. 
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Fig A 43 Moment Diagrams for alt. corr. fastened 
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0 

ALTERNATE CORRUGATIONS (KI) 

2ST/D 

? 73 
J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
H/D 

0.1 0.0016 0.0022 0.0030 0.0056 0.0082 0.0106 0.0121 0.0120 0.0088 

0.2 0'. 0052 0.0050 0.0070 0.0101 0.0148 0.0190 0.0218 0.0210 0.0148 

0.3 0.0100 0.0082 0.0100 0.0146 0.0206 0.0266 0.0300 0.0286 0.0196 

0=0 0.4 0.0156 0.0112 0.0126 0.0182 0.0258 0.0332 0.0376 0.0354 0.0238 

0.5 0.0218 0.0144 0.0150 0.0212 0.0306 0.0396 '0.0446 0.0418 0.0280 

0.6 0.0284 0.0176 0.0172 0.0240 0.0348 0.0454 0.0514 0.0480 0.0318 

0.7 0.0352 0.0206 0.0190 0.0266 0.0390 0.0512 '0.0578 0.0540 0.0354 

0.8 0.0424 0.0236 0.0206 0.0283 0.0428 0.0566 0.0642 0.0598 0.0392 

ALTERNATE CORRUGATIONS <K2) 4 

2BT/D 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 

WD 

0.1 0.0122 0.0212 0.0312 0.0432 0.0576 0.0758 0.1004 0.1372 0.2086 

0.2 0.0326 0.0510 0.0716 0.0940 0.1206 0.1424 0.1918 0.2436 0.3242 

0.3 0.0594 0.0876 0.1176 0.1508 0.1880 0.2302 0.2788 0.3362 3.4082 

0=0 0.4 0.0912 0.1294 0.1694 0.2120 0.2586 0.3094 0.3640 0.4212 0.4782 

0.5 0.1270 0.1758 0.2252 0.2772 0.3320 0.3896 0.4480 0.5020 0.5406 

0.6 0.1660 0.2256 0.2846 0.3452 0.4080 0.4712 0.5316 0.5802 
, 

0.5984 

0.7 0.2078 0.2782 0.3470 0.4158 0.4854 0.5538 0.6150 0.6566 0.6534 

0.8 0.2520 0.3336 0.4116 0.4886 0.5618 0.6354 0.6382 0.7320 0.7066 
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ALTERNATE CORRUGATIONS (K1) 

26T/D 

274 
J 

0.1 0.2 0.3 0.4 0.5 - 0.6 0.7 0.8 0.9 

HID 

0.1 0.0018 0.0024 0.0038 0.0060 0.0084 0.0106 0.0120 0.0116 0.0078 

0.2 0.0064 0.0062 0.0082 0.0118 0.0158 0.0196 0.0214 0.0192 0.0106 

0.3 0.0132 0.0114 0.0132 0.0176 0.0232 0.0276 0.0290 0.0244 0.0106 

0=5 0.4 0.0224 0.0178 0.0192 0.0242 0.0304 0: 0352 0. Q354 0.0276 0.0084 

0.5 0.0332 0.0256 0.0260 0.0312 0.0380 0.0426 0.0410 0.0294 0.0042 

0.6 0.0458 0.0346 0.0338 0.0388 0.0456 0.0494 0.0254 0.0294 -- 

0.7 0.0596 0.0448 0.0424 0.0472 0.0534 0.0558 0.0490 0.0280 -- 

0.8 0.0748 0.0560 0.0518 0.0560 0.0614 0.0620 0.0514 0.0218 

ALTERNATE CORRUGATIONS (K2) 

2BT/D 

0.1 0.2 0.3' 0.4 0.5 0.6 0.7 0.8 0.9 

H/D 

0.1 0.0124 0.0216 0.0318 0.0442 0.0592 0.0782 0.1044 0.1454 0.2312 

0.2 0.0334 0.0526 0.0736 0.0978 0.1262 0.1608 0.2050 0.2668 0.3656 

0.3 0.0610 0.0910 0.1232 0.1590 0.1998 0.2472 0.3038 0.3752 0.4804 

0=5 0.4 0.0940 0.1360 0.1794 0.2266 0.2786 0.3366 0.4016 0.1748 0.5624 

0.5 0.1362 0.1862 0.2412 0.3000 0.3620 0.4290 0.4986 0.5674 0.6266 

0.6 0.1744 0.2414 0.3080 0.3772 0.4494 0.5234 0.5918 0.6536 

0.7 0.2210 0.3008 0.3792 0.4590 0.5102 0.6196 0.6898 0.7336 

0.8 0.2712 0.3610 0.4544 0.5446 0.6338 0.7174 0.7834 8.8072 
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ALTERNATE CORRUGATION (KI) 

2BT'D 

0.1 0.2 0.3 0.4 0.5 - 0.6 0.7 0.8 

Hi0 

8.1 0.0020 0.0028 0.0014 0.0064 0.0088 0.0108 0.0118 0.0104 

0.2 0.0076 0.0082 0.0104 0.0138 0.0154 0.0198 0.0192 0.0134 

0.3 0.0164 0.0162 0.0186 0.0221 0.0260 0.0268 0.0224 0.0088 

0=15 0.4 0.0280 0.0264 0.0284 0.0318 0.0338 0.0310 0.0198 

0.5 0.0416 0.0386 0.0396 0.0112 0.0396 0.0308 0.0100 

0.6 0.0568 0.0518 0.0508 0.0490 0.0418 0.0244 

0.7 0.0726 0.0654 0.0608 0.0540 0.0398 0.0100 

0.8 0.0881 0.0778 0.0684 0.0542 0.0284 

ALTERNATE CORRUGATIONS (K2) 

2BT'0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FVD 

0.1 0.0132 0.0226 0.0334 0.0464 0.0626 0.0838 0.1142 0.1658 0.2986 

0.2 2.0366 0.0572 0.0802 0.1072 0.1402 0.1822 0.2404 0.3364 -- 

0.3 0.0702 0.1030 0.1396 0.1816 0.2318 0.2942 0.3780 0.5128 

0=15 0.4 0.1138 0.1602 0.2112 0.2692 0.3368 0.4186 0.5250 -- 

0.5 0.1680 0.2286 0.2950 0.3694 0.4544 0.5540 0.6792 -- 

0.6 0.2332 0.3090 0.3914 0.4826 0.5810 0.7990 -- 

0.7 0.3098 0.4016 0.5006 0.6082 0.7246 0.8504 -- -- 

0.8 0.3984 0.5068 0.6226 0.7458 0.8744 -- 
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ALTERNATE CORRUGATION (KI) 

2BT#D 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

wo 

0.1 0.0022 0.0031 0.0045 0.0067 0.0089 0.0108 0.0115 0.0096 0.0032 

0.2 0.0082 0.0030 0.0114 0.0147 0.0179 0.0194 0.0173 0.0088 

0.3 0.0179 0.0181 0.0207 0.0210 0.0260 0.0243 0.0154 

0=20 0.4 0.0302 0.0257 0.0315 0.0330 0.0313 0.0226 0.0025 

0.5 0.0443 0.0425 0.0120 0.0394 0.0307 0.0108 

0.6 0.0596 0.0548 0.0198 0.0401 0.0203 

0.7 0.0735 0.0640 0.0518 0.0311 

0.8 0.0838 0.0671 0.0441 0.0081 

ALTERNATE CORRUGATIONS (K2) 

28T'0 

0.1 0.2 0.3 " 0.4 2.5 0.6 0.7 0.8 0.9 

Hi0 

0.1 0.0136 0.0232 0.0344 0.0478 0.0646 0.0870 0.1200 0.1794 0.3544 

0.2 0.0390 0.0602 0.0844 0.1134 0.1492 0.1964 0.2658 0.3944 

0.3 0.0790 0.1114 0.1508 0.1972 0.2544 0.3290 0.4396 -- 

0=20 0.4 0.1284 0.1778 0.2342 0.3002 0.3808 0.4860 0.6460 -- 

0.5 0.1944 0.2608 0.3360 0.4236 0.5300 0.6698 -- 

0.6 0.2790 0.3618 0.4578 0.5690 0.7034 

0.7 0.3774 0.4826 0.6010 0.7374 

0.8 0.4976 0.6246 0.7668 0.9300 
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ALTERNATE CORRUGATIONS (KI) 

287/D 

0.1 0.2 0.3 . 0.4 0.5 0.6 0.7 0.8 0.9 

H/D 

0.1 0.0023 0.0032 0.0048 0.0075 0.0031 0.0108 0.0111 0.0087 0.0008 

0.2 0.0089 0.0100 0.0125 0.0156 0.0181 0.0183 0.0144 0.0025 

0.3 0.0193 0.0202 0.0226 0.0248 0.0247 ' 0.0193 0.0046 

0=25 0.4 0.0325 0.0323 0.0330 0.0314 0.0243 0.0071 

0.5 0.0467 0.0436 0.0395 0.0301 0.0101 

0.6 0.0690 0.0505 0.0373 0.0139 

0.7 0.0650 0.0467 0.0185 

0.8 0.0591 0.0246 

ALTERNATE CORRUGATIONS (K2) 

2BT/D 

0.1 0.2 0.3 0.4 0.5 " 0.6 0.7 0.8 0.9 

Wo 

0.1 0.0141 0.0239 0.0353 0.0492 0.0669 0.0908 0.1271 0.1960 0.4138 

0.2 0.0420 0.0640 0.0896 0.1208 0.1603 0.2144 0.3001 0.4889 

0.3 0.0853 0.1220 0.1649 0.2171 0.2839 0.3781 0.5409 

0=25 0.4 0.1465 0.2007 0.2645 0.3425 0.4443 0.5962 

0.5 0.2289 0.3038 0.3326 0.5028 0.6523 

0.6 0.3358 0.4354 0.5348 0.7068 

0.7 0.4716 0.6007 0.7584 

0.8 0.6412 0.8061 
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ALTERNATE CORRUGATIONS (KI) 

2BT/D 

0.1' 0.2 0.3 0.4 0.5 - 0.6 0.7 0.6 0.9 

Hi0 

0.1 0.0026 0.0034 0.0052 0.0072 0.0092 0.0108 0.2106 0.0074 

i 0.2 0.0096 0.0110 0.0136 0.0162 0.0180 0.0168 0.0102 

0.3 0.021d 0.0220 0.0238 0.0244 0.0212 0.0106 

0=30 0.4 0.0344 0.0336 0.2316 0.0250 0.0096 ' 

0.5 0.0464 0.0400 0.0286 0.0070 

0.6 0.0500 0.0320 0.0028 

0.7 0.0350 

ALTERNATE CORRUGATIONS CK2) 

2BT'D 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Hi0 

0.1 0.0148 0.0248 0.0366 0.0512 0.0698 0.0954 0.1356 0.2184 

0.2 0.0456 0.0688 0.0362 0.1300 0.1744 0.2384 0.3510 

0.3 0.0958 0.1356 0.1834 0.2438 0.3258 0.4556 

0=30 0.4 0.1704 0.2316 0.3066 0.4046 0.5480 

0.5 0.2758 0.3650 0.4780 0.6358 

0.6 0.4206 0.5482 0.7200 

0.7 0.6172 



2BT/D 

ALTERNATE CORRUGATIONS (K1) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

. 279. 

H/D 

0.1 0.0027 0.0037 0.0054 0.0074 0.0094 0.0106 0.0099 0.0059 

0.2 0.0105 0.0121 0.0142 0.0166 0.0171 0.0139 0.0034 

0=35 0.3 0.0226 0.0235 0.0210 0.0219 0.0139 

0.4 0.0350 0.0319 0.0249 0.0097 

0.5 0.0396 0.0253 

ALTERNATE CORRUGATIONS (K2) 

28T/0 

0.1 . 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

H/D 

0.1 0.0156 0.0260 0.0382 0.0534 0.0734 0.1010 0.1466 0.2504 

0.2 0.0502 0.0746 0.1042 0.1420 0.1932 0.2728 0.43G6 -- 

0=35 0.3 0.1096 0.1538 0.2086 0.2818 0.3914 -- -- 

0.4 0.2032 0.2756 0.3702 0.5090 

0.5 0.3150 0.4616 

ALTERNATE CORRUGATIONS (KI) 

2BT/D 

0.1 0.2 0.3 0.4 0. S 0.6 0.7 0.8 

N/D 

0.1 0.0030 0.0040 0.0058 0.0078 0.0094 0.0104 0.0090 0.0034 

0.2 0.0116 0.0132 0.0152 0.0166 0.0154.0.0090 

0=40 0.3 0.0248 0.0240 0.0220 0.0154 

0.4 0.0322 0.0238 0.0072 

0.5 0.0176 
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ALTERNATE CORRUGATIONS (K2) 

28T/0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

H/0 

0.1 0.0166 0.0272 0.0400 0.0560 0.0772.0.1080 0.1612 0.3010 

0.2 0.0560 0.0824 0.1150 0.1580 0.2198 0.3272 

0=40 0.3 0.1284 0.1790 0.2456 0.3422 -- -- 

0.4 0.2516 0.3446 0.4826 -- -- -- 

0.5 0.4624 -- -- -- -- -- 

ALTERNATE CORRUGATIONS (K1) 

2aT/D 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

H/D 

0.1 0.0032 0.0044 0.0062 0.0080 0.0094 0.0098 0.0076 

. 
0.2 0.0128 0.0144 0.0156 0.0154 0.0116 

0=45 
0.3 0.0244 0.0218 0.0152 

0.4 0.0204 

ALTERNATE CORRUGATIONS (K2) 

2BT'D 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

wo 
0.1 0.0180 0.0290 0.0424 0.0594 0.0821 0.1172 0.1824 

0.2 0.0640 0.0330 0.1300 0.1814 0.2620 
0=45 

0.3 0.1556 0.2176 0.3064 -- -- 

0.4 0.3334 
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8271 The diaphragm action of 
composite slabs 

J. M. DAVIES, DSc. PhD. FICE. FlStructE" 

J. FISHER, esc" 

Composite floor slabs consisting of profiled steel sheeting and in situ concrete topping 
act as horizontal diaphragms and attract significant in-plane loads. In this Paper, the 
diaphragm action of composite slabs fastened to the primary structure with mechanical 
fasteners such as self-drilling, self-tapping screws is considered. Four full-scale tests on 
cantilever diaphragms are described and three failure modes identified. A theory is then 
developed whereby the strength and flexibility may be predicted. The prediction of 
strength shows adequate accuracy but the prediction of flexibility is found to be applic- 
able only when a diaphragm is reloaded. The calculation of the initial flexibility is 
shown to be difficult because there is a relatively large initial movement before full com- 
posite action is developed. 

Notation 
Q 
b 
F 

n. 
ne 
Pa 
pt. 

width of diaphragm 
depth of diaphragm 
ultimate strength of a single fastener in shear 
number of fasteners to edge member, alp. 
number of fasteners to main beam, b/p, 
pitch of fasteners to edge member 
pitch of fasteners to main beam 

Introduction 
Composite floors, consisting of profiled steel sheeting acting in conjunction with 
in situ concrete topping have been popular in the USA for many years. They 
are also becoming more widely used in Europe and design procedures have 
recently been developed for European use. ' 

2. Composite floors are efficient for their primary purpose of spanning 
between supporting beams under the action of vertical load. They have a very 
high in-plane stiffness and strength and it is apparent that they also serve to 
distribute lateral load between the frames of the primary structure. When 
acting in this way, the composite deck is behaving rather like a deep beam or 
diaphragm and as a consequence of the proportions of this diaphragm the in- 
fluence of shear is more important than that of bending. Scant attention has 
been paid to the performance of composite decks acting as diaphragms and this 
is the subject of this Paper. 

Written discussion closes 15 February, 1980, for publication in Proceedings, Part 2. 
0 Department of Civil Engineering. University of Salford. 
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0 
N 

(a) (b) 
Fig. 1. Decking profile types ; (a) re-entrant profile, (b) trapezoidal profile 

3. There are two distinct types of composite diaphragm 

(a) diaphragms in which the profiled steel sheet is fastened to the support- 
ing structure by mechanical fasteners or welds in such a way that there 
is no direct attachment of the concrete to the supporting structure 

(b) diaphragms incorporating shear connectors which typically take the 
form of studs welded through the sheeting to the supporting steel- 
work thereby fastening the sheeting to this steelwork and, at the same 
time, providing a direct shear connection to the concrete. 

Diaphragms of the second type are likely to be significantly more efficient in 
resisting shear loads than those without direct shear connection. 

4. There are also two distinct types of profile used in composite floor con- 
struction as shown in Fig. 1: re-entrant profiles and trapezoidal profiles. 

5. In this Paper, both types of profile are considered but attention is confined 
to diaphragms with no direct attachment of the concrete to the supporting 
structure. The Authors are not aware of any work on the diaphragm action 
of composite decks with shear connectors. 

Previous tests on composite diaphragms 
6. The first reported shear tests on composite diaphragms were carried out 

by S. B. Barnes and Associates. ' They were only three in number and, of these, 
one used lightweight vermiculite fill and one was fabricated using a two-skin, 
box section, steel deck so that only one is directly relevant to the present study. 
In each case the decks were directly welded to the supporting structure using 
puddle welds; this is typical practice in the USA. 

7. Each of the three diphragms tested appears to have failed by cracking of 
the concrete topping. The directly relevant test was, carried out on a trap- 
ezoidally profiled steel deck 76.2 mm deep with a concrete topping 63.5 mm deep 
and a strength at the time of testing of 16.1 N/mm'. Tension cracking started 
at a shear load of 31 "0 kN/m and continued to increase until failure took place 
at a shear load of 86.4 kN/m due to direct shear of the concrete over the crests 
of the profiles. There was no indication of any slippage in the button-punched 
seams between adjacent sheets despite the fact that such seams are considerably 
892 
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DIAPHRAGM ACTION OF COMPOSITE SLABS 

more flexible than those made with mechanical fasteners such as blind rivets 
or self-tapping screws. 

8. The only other known tests on composite diaphragms were carried out 
by Luttrell3 who tested nine diaphragms consisting of trapezoidally profiled 
steel sheets 9.5-34.9 mm deep with a topping of lightweight vermiculite concrete 
63.5-76.2 mm deep and an average strength of 1.01 N/mms. He compared the 
stiffness and ultimate loads of composite diaphragms with those of similar 
diaphragms without topping and found a considerable increase in both strength 
and ultimate load. The failure modes obtained are not reported and, as the 
concrete topping was very weak, these tests are not of direct help in the present 
study. 

Analysis of composite diaphragms 
9. The analysis of light gauge steel diaphragms has now reached a high 

degree of refinement' and this work is relevant to an understanding of composite 
diaphragms which may be seen to be light gauge steel diaphragms with the 
addition of concrete topping. However, much of the theoretical work is of 
recent origin and was not available to influence previous research*workers in the 
field of composite diaphragms. Luttrell3 offers only a simple empirical treat- 
ment of diaphragm strength applicable to the particular arrangement that he 
tested. Barnes and Associates' give a more comprehensive theoretical treat- 
ment which is an extension of work on light gauge steel diaphragms. However, 
their expressions are complex and include a number of empirical constants 
which were derived for welded diaphragms only. 

Load 

1 

Moving 
main 
beam 

Siae --I 
fasteners 

Edge member 
fasteners 

Direction of 
span of 
decking 1 

.I I V 
1o1/ 

Fixed 
ifý 
ip main 

beam 

io 
ý 
I 
ýo 

/ 
/ 
/ 
ý 

a3 
I/ 

Q--o 
a, 

Secondarybeam 
(edge member) 

a-3.5m 

Dial gauges 
measuring dellexion 

ý 

Fig. 2. General arrangement for cantilever diaphragm tests 
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b-3.5m 
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Table 1. Details of tests 

Test Sheeting 
t 

Slab 
thick 

Topping 
thi k 

Nominal pitch of fasteners, mm 
ype ness. 

mm 
c ness, 
mm Main beam Secondary beam 

I Re-entrant 100 50 300 304 
2 Trapezoidal 150 70 585 608 
3 Re-entrant 100 50 500 304 
4 Re-entrant 100 50 700 456 

I 
Test programme 

10. For the tests described in this Paper a rig was constructed so that canti- 
lever diaphragms 3.5 mx3.5 m could be subjected to loads of up to ISO kN. 
The general arrangement is shown in Fig. 2. The connections between the 
edge members and rafters were pinned so that the stiffness of the test frame itself 
was negligible. 

11. The steel deck profile was either re-entrant or trapezoidal as shown in 
Fig. 1 and was fastened to the supporting structure on four sides using 6 mm dia. 
Teks self-drilling. self-tapping screws. Seams were fastened with 4.8 mm dia. 
monel pop rivets at 152 mm centres. Four tests were carried out as detailed in 
Table I. With the exception of test 4, the procedure for each test was first to 
fix the steel deck to the supporting frame and then to apply load within the 
elastic range in order to determine the stiffness of the diaphragm without con- 
crete topping. 

12. Concrete topping was then placed and cured until cube tests indicated 
that the required 28 day strength had been obtained. This usually took between 
two and three weeks. The concrete used 9.5 mm aggregate and was designed 
to have a strength of 25 N/mm' at 28 days. Atypical diaphragm ready for 
testing is shown in Fig. 3. 

13. The composite slab was then tested by loading in increments up to failure. 
In the case of three of the four diaphragms tested, at a load of between a half 
and three quarters of the expected failure load, the diaphragm was unloaded 
and subsequently reloaded before continuing the test to failure. The load- 
deflexion curves are shown in Figs 4-7. 

14. The shear deflexion d plotted was in each case obtained from the readings 
of the four dial gauges shown in Fig. 2 as 

A= S1-8, -b(S., -S. ) 

15. For test 1, concrete strains were measured using Demec gauges and dial 
gauges were fixed to measure any slip between the steel and the concrete. At 
no time during the tests did the measured strain approach the tensile strain 
capacity of the concrete, nor was there any measurable slip between the steel 
deck and the concrete topping, and so these measurements were discontinued for 

subsequent tests. 
16. For test 4, the composite diaphragm used in test 3 was reinstated by 

carefully breaking away the perimeter concrete to a width of about 150 mm in 

order to expose the failed fasteners which were removed. The diaphragm was 

.ý 

ý 
I 
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Fig. 3 Diaphragm prepared for test 
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Fig 4. Load-deflexion curves for test 1 
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M 

Failure load 74 kN 

Fig. 5. Load-deflexion curves for test 2 
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Fig. 6. Load-deflexion curves for test 3 
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Fig. 7. Load-deflexion curves for test 4 

then refixed with fresh fasteners at the required pitches given in Table I and the 
concrete slab made good bý replacing the concrete which had been broken 
away. This procedure was adopted not only for reasons of economy but also 
to investigate the shape of the load-deflexion curve. 

Failure modes and analysis 
17. For tests 1,3 and 4, which were carried out using the re-entrant profile, 

failure of the diaphragm was due to a failure of the fasteners between the profiled 
Sheet and the supporting members (Fig. 8). The profiled sheet and its topping 
remained effectively rigid as the members of the supporting structure deformed 
in a parallelogram fashion below. 

18. Figure 9 shows the basic mode of failure. This mode, which does not 
involve any rotation of the composite slab, is called mode 1. Considering the 
mechanism of failure as a rigid body failure mechanism and equating internal 
and external work, if there is a fastener on the centre line, the deflexion d, at 

/ the ith fastener from the centre line is given by 
d, = di/n. 

........ (I ) 

and, including the corner fasteners with those to the edge members 
(il 

Pd = 2(nb- I)Fd2 +4 
*"n. 1it2 

\n. / 
FA ..... (2) 

Therefore 

P= (n, -1)F+(n"22)F= 
(nu+ 2) F.... (3) 

Similarly, it may be shown that if the total number of fasteners to the edge 
897 

Therefore 
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Fig. 8. Diaphragm used in test 1 after failure 

member is an even number so that there is no fastener on the centre line 

P= (no+2+2na) F (4) 

which gives similar numerical values unless na is small. 
19. Obviously this analysis assumes that all fasteners reach failure simul- 

taneously and this implies large deformations before failure which may not be 
achieved in practice. A more conservative approach is to assume that the 
forces in the fasteners to the edge members may vary linearly with distance from 
the centre line, so that if F, is the force in the ith fastener 

F, = 2iF/n, ........ (5) 
/1 //1 

Pd = 2(n,, - 1)F +4 
^1"1ý12 

I 
n') 

21 
/1") 

Fd 

Therefore 

where 

ný12 ! 21 

I +8 ý 
(-l 

JF- (no+ß)F 
i-i n. 

(6) 

. (7) 

n12 2 
ß-I L1 

ýn. ý 
-1 (8) 

20. A similar analysis for the case when the total number of fasteners to the 

edge member is an even number leads to an identical expression for the failure 
load P but with 

in, i1)122 
ý-ö 

1ý1 \ ns 

)-1 

. (9) 
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Members of supporting frame 

------ Edge of composite slab 
0 Typical fasteners 

Fig. 9. Basic fastener failure mode-mode 1 

21. There are many other assumptions regarding fastener force which might 
be made and the most suitable will be shown by comparison of the results of 
tests. However, in each case, the expression for the failure load will have the 
general form 

P= (no+ß)F ...... (10) 

and alternative assumptions will merely vary the value of P. The two assump- 
tions analysed in §§ 18-20 may be called plastic and linear respectively. 
The values of ß for these assumptions are shown-in Table 2 in terms of the 

n 

2 
3 
4 
S 
6 
7 
8 
9 

10 
lI 
12 
13 
14 
1S 

Plastic 

1.0 
1.67 
2.0 
2.6 
3.0 
3.57 
4.0 
4.56 
5.0 
5.55 
6.0 
6.54 
7.0 

. 7.53 

A 
Linear 

1.0 
1.22 
1.5 
1.8 
2.11 
2.43 
2.75 
3.07 
3.4 
3.73 
4.06 
4.38 
4.71 
5.04 

Table 2. Values of ß in 
expressions for failure load 

I 
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I is 
Members of supporting frame 

--- -- Edge of composite stab 
0 Typical fasteners 

Fig. 10. Alternative fastener failure mode-mode 2 

number of fasteners n equal to the length/pitch in the appropriate sides of the 
diaphragm, which in this analysis are the upper and lower sides of length a. 

22. For isolated cantilever diaphragms, as tested, there is an alternative 
failure mode (Fig. 10) called mode 2. This involves bodily rotation of the 
composite slabs as well as parallelogram-like deformation of the supporting 
structure leading to fastener failure on all four sides of the diaphragm as before. 
For this mode of failure, the failure load is 

P= 
a(n"+ß)F 

....... 0 1) 

where ß is dependent on the number of fasteners nb to the main beam. 
23. For test 2 failure again took place with relative movement between the 

composite slab and the supporting frame with no noticeable deformation of the 
concrete. However, in this case, the relative movement took place partly in 
failure of the fasteners, as before, and partly in collapse of the profile adjacent 
to the fixed rafter as shown in Fig. 11. For this mode of failure, the entire slab 
rotated about a point near the top right-hand corner leading to the relative 
displacement between the slab and the supporting frame (Fig. 12). For fastener 
failure, this pattern of relative movements gives higher ultimate load than that 
given for the deformations shown in Fig. 9. This failure mode involving profile 
collapse is called mode 3. 

24. At a distance x along the collapsing profile, the local deformations are 
as shown in Fig. 13. Assuming that these arise as a result of plastic hinges at 
B and C and, neglecting the small amount of twisting implied, the work done in 
a short length S. is 12a, 6xS, /2h and the total work done in collapsing the com- 
plete corrugation is t2b2a, 0/4h. It can then be shown that the expression for 
the failure load is given by 

P= 
Q(n. 

+ß-J)F+'s 
sy 

4oh . (1z) 
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Fig. 11. Failure mode for test 2-mode 3 

a 

Members of supporting frame 
------ Edge of composite slab 

Q Typical fasteners 

Collapseol 

profile in 
this region 

Fig. 12. Relative movements of slab and frame in failure mode 3 
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LJ 
B. 

`\\ 

ý 
ý 

C 
ý xB 

Fig. 13. Movements at section X in collapsing profile 

which is exact for fully plastic fastener forces and very nearly so for linearly 
varying forces along the main beam. This failure may be expected to occur if 
the value of P given by equation (12) is less than that calculated for either of the 
two fastener failure modes considered previously. 

25. The calculation in § 24 is conservative in that, in addition to the internal 
work considered, the deformations shown in Fig. 13 require the weight of 
concrete topping to be lifted a small distance and the resistance due to the head 
of the fasteners being embedded in the concrete to be overcome. 

26. This mode is applicable only to trapezoidal profiles of the type shown in 
Fig. 1(b) and then only on the side of the diaphragm where the outermost pro- 
file closes as bodily rotation of the composite slab takes place over the supporting 
structure. When trapezoidal profiles tend to open and for both cases of re- 
entrant profile this type of failure mode is prevented by jamming against the 
concrete. 

27. Barnes and Associates' reported failure in the concrete topping whereas 
in the present tests no distress in the topping was observed. However, the 
highest shear per unit length in the present tests was 28.6 kN/m, whereas in the 
test of Barnes and Associates cracking did not start until a load of 31.0 kN/m 
had been reached and failure was delayed until the load carried was 86.4 kN/m. 
The difference in behaviour is clearly a consequence of the relatively high strength 
of welded connections to the perimeter structure. If such fastening systems are 
to be used in the UK, there is a need for more tests but the present tests demon- 
strate the behaviour and design procedure for mechanically fastened diaphragms. 
In this respect Barnes and Associates reported that their diaphragm did not 
develop the full strength of the 63.5 mm thick concrete fill but the failure load 
was rather the shear strength of a net section across the flutes starting some 
distance back from the tension edge beam. There was negligible shear strength 
in the button-punched seam connections. 

Flexibility of composite diaphragms 
28. It was first shown by Bryana that the flexibility of a light gauge steel 

diaphragm could be obtained by summing the component flexibilities 

c2.3 flexibility due to distortion of profiled steel sheeting 
c1.2 flexibility due to shear strain in the sheeting 
c2.2 flexibility due to slip in sheet to purlin fasteners 

c2.2 flexibility due to slip in seam fasteners 

C2.3 flexibility due to slip in connections to rafters 
c3 flexibility due to axial strain in purlins 
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Some of the expressions used in the evaluation of these components have been 
modifiede. 7 but the basic principle remains valid. 

29. This approach may readily be extended to composite diaphragms if the 
following reasonable assumptions are made. 

(a) The confining effect of the concrete eliminates distortion of the steel 
profile so that c,., may be ignored. 

(b) At scams between adjacent steel sheets, the concrete carries almost all 
of the shear force and c3.3 may be ignored. 

(c) The expressions for c3.1, c2.3 and c3 are unchanged. 
(d) The shear force is shared between the steel and the concrete according 

to the requirements for strain compatibility and c, .a requires modifica- 
tion. 

30. In order to derive the modified expression for c1.2, the notation in Fig. 14 
is used. Considering a single corrugation subject to a unit shear load and with 
a shear deflexion cl. 2, let the load carried by the steel be P. and the load carried 
by the concrete be Po. Then 

P. +P. =I...... (13) 

31. From the accepted expression4 for shear strain in the steel 

cl a= 
2(1 + y. )(d+ 2h) P....... 

(14) E. t, b 

where y. and E. are respectively Poisson's ratio and Young's modulus for steel. 
For shear strain in the concrete, it may be shown that 

c, z= 
2(l +y. )dPc 

(15) 
Eýrrb 

where y. and EE are respectively Poisson's ratio and Young's modulus for con- 
crete. Equating equations (14) and (15) gives 

P. M 
(1 +y. )dE, t. (16) (I +yjdE. t. +(1 +y. )(d+2h)E. t. 

and hence the modified expression for c1.2 is 

Cl '_ 
2(1 +y. )(1 +y. )(d+2h)a 

(17) 
[(1 +Y. )dE. f. +(1 +y. )(d+2h)E, r, ]b 

Fig. 14. Notation for flexibility calculation 
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32. In the theoretical comparisons which follow, the flexibility c of a com- 
posite diaphragm is calculated as 

c=c,. 2+c2.2+C2. s+c3 $18) 

where c2.2 is as given in equation (17) and the expressions for the remaining 
components are taken direct from reference 4. Where theoretical comparisons 
for diaphragms without concrete topping are given these are also taken from 
rcference 4. 

Comparison of theory and tests 
33. As a preliminary to the interpretation of the test results, shear tests on 

the actual fasteners and sheeting used were carried out and gave the average 
values shown in Table 3. These values were used in the failure expressions 
(equations (10)-(12)) to give the comparison between experimental and theo- 
retical ultimate loads (Table 4). 

34. For the fastener failure in tests 1,3 and 4, the plastic calculation is 
unsafe and must be rejected. However, the theory based on a linear distribution 
of fastener forces gives an adequate design approach, being conservative for 
tests I and 3 and only slightly unconservative for test 4. 

35. For test 2, which failed in a mode including profile collapse, even the 
linear theory is unconservative. The reason for this probably lies in the assump- 
tions inherent in Fig. 12. In theory, because of potential jamming between the 
steel profile and the surrounding concrete, relative movement is possible only 
in the manner shown in Fig. 13, and this means that the composite slab must 
rotate about the top right-hand corner of Fig. 12. In practice, because other 
small relative movements are possible, the composite slab probably rotates 
about some other point lower in Fig. 12, resulting in a smaller failure load. 
Detailed investigation reveals that the failure load is sensitive to the assumed 

Table 3. Experimental fastener characteristics 

Fasteners Sheeting Number Average ultimate Average 
of tests load flexibility 

6 mm Tek Holorib 0.9 mm 3 6.15 kN 0.017 mm/kN 
6 mm Tek Robertson 1.5 mm 4 10.38 kN 0.058 mm/kN 

Table 4. Comparison of experimental and theoretical failure loads 

Test n. no Experimental 
failure load, 

Predicted failure load, 
kN 

Predicted 
failure 

d 

Failure load 
per unit length, 

kN kN 
Plastic Linear 

mo e /m 

1 11 12 100 104.6 ' 92.6 2 28.6 
2 6 6 74 93.4 84.2 1,2 or 3 21.1 
3 11 7 75 77.2 66.0 1 21.4 
4 8 6 52 61.5 53.8 2 15.0 

0 

4 

L 
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centre of rotation and that the experimental failure load can be explained on 
this basis. 

36. This mode of failure may be worth further investigation, although it 
must be admitted that both failure modes 2 and 3, which require rotation of the 
composite slab, are of limited practical importance because, in most applications, 
assemblies of composite panels will act more in the nature of simply supported 
beams than as cantilevers. In such circumstances, rotation of the composite 
slab is prevented by the adjacent slabs and, of the modes investigated, only mode 
1 is possible. 

37. The behaviour before failure is shown in the load-deflexion curves in 
Figs 4-7. " In each case the predicted stiffness is shown both through the origin 
and alongside the relevant part of the load-deflexion curve. 

38. In the initial stages of loading in tests 1,2 and 3 the response is dominated 
by a large initial movement which does not reappear on unloading and reloading. 
This is probably due to there being some initial freedom of movement between 
the steel and the concrete before full composite action takes place. That test 4, 
which was constructed rather differently to minimize this initial movement, 
shows a response of a different shape would seem to confirm this assumption. 
There was probably also some additional flexibility in the test rig as evidenced 
by the bare steel diaphragms also being more flexible than predicted. It is 
obviously extremely difficult to predict the stiffness of a composite diaphragm 
on first loading and no further analytical treatment is offered. 

39. On reloading, the diaphragms all exhibited a considerable increase in 
stiffness and the reloading stiffness agreed well with the predicted stiffness. A 
similar although smaller increase in stiffness on reloading was also observed in 
tests on light gauge steel diaphragms and it may be due in part to the character- 
istics of the fasteners as well as the relative movement already discussed. There 
is no difficulty in predicting the reloading stiffness of composite diaphragms. 

Conclusions 
40. Four tests on composite diaphragms have been described and a theory 

has been developed which makes it possible to assess accurately the ultimate 
load due to fastener failure. An alternative failure mode due to profile collapse 
has also been described, but this failure mode may prove to be of limited practical 
importance as it would appear to be possible only in cantilever diaphragms. 

41. Shear at the seams between adjacent steel sheets is taken largely by the 
concrete and tests of Barnes and Associates' indicate that for diaphragms with 
strong perimeter fasteners and weak seams there is an additional mode of 
failure involving cracking of the concrete over the seams. 

42. Composite diaphragms are considerably stiffer than their light gauge 
steel counterparts because of the absence of profile distortion and seam slip. 
The stiffness on first loading is dominated by a large initial movement and so it 
is extremely difficult to predict this stiffness. 

43. Composite diaphragms show a considerable increase in stiffness on 
reloading; the reloading stiffness may be predicted using a suitable modification 
of established procedures for light gauge steel diaphragms. 

44. Asa consequence of the possibility of rotation of the composite slab over 
the supporting frame, cantilever composite diaphragms behave differently 
from simply supported diaphragms. It is recommended that in further experi- 
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mental studies simply supported diaphragms should be used despite the great 
increase in cost. 
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