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Abstract

In general the numerical solution of boundary integral ¢igna leads to full coefficient
matrices. The discrete system can be solve@{iV?) operations by iterative solvers of
the Conjugate Gradient type. Therefore, we are interestédst methods such as fast

multipole and wavelets, that reduce the computationaltco®t( N In” N).

In this thesis we are concerned with wavelet methods. Theg paoved to be very
efficient and effective basis functions due to the fact thatdoefficients of a wavelet ex-
pansion decay rapidly for a large class of functions. Duééomultiresolution property
of wavelets they provide accurate local descriptions otfiams efficiently. For example
in the presence of corners and edges, the functions cabet@pproximated with a lin-
ear combination of just a few basis functions. Wavelets #radiive for the numerical
solution of integral equations because their vanishing erasproperty leads to operator
compression. However, to obtain wavelets with compact st@nd high order of van-
ishing moments, the length of the support increases as tlee of the vanishing moments
increases. This causes difficulties with the practical dseavelets particularly at edges
and corners. However, with multiwavelets, an increaseerotider of vanishing moments

is obtained not by increasing the support but by increasiagitimber omotherwavelets.

In chapter 2 we review the methods and techniques requirethése reformulations,
we also discuss how these boundary integral equations mdigtretised by a boundary
element method. In chapter 3, we discuss wavelet and mukiwbbases. In chapter
4, we consider two boundary element methods, namelystdedardand non-standard
Galerkin methods with multiwavelet basis functions. Fothbmethods compression
strategies are developed which only require the computafithe significant matrix ele-
ments. We show that they a¢® N log” N) such significant elements. In chapters 5 and

6 we apply the standard and non-standard Galerkin methais/ayal test problems.
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Chapter 1

Introduction

Over the last three-to-four decades it has become populefeomulate linear second
order partial differential equations as integral equationer the boundary of the region
of interest. These boundary integral equations are themddly finite element type dis-
cretisations; referred to as boundary element methods (BEMr research is concerned

with methods for solving boundary integral equations wailtmost optimakfficiency.

There are several advantages to using BEM in place of fingmeht methods (FEM)

applied to the original partial differential equation, $&p

e Exterior problems are treated more naturally, since BEMiireg meshing over
only a finite domain, whereas, FEM requires meshing over &nit@ domain.
Boundary conditions at infinity can be neatly incorporatet ithe boundary in-

tegral equation reformulation.



e Reformulating the problem on the boundary alone reduceslithension of the

problem by one, resulting in smaller matrices for the samshnsezeh.

e BEM allows us to compute the solution only in a subdomain afcsg interest.

When using FEM, the solution must be computed everywhere.

e The matrices formed by BEM are generally better conditiotiesh those formed

by FEM.

There are also disadvantages to BEM:

e FEM can be applied to linear, nonlinear and time-dependartigb differential
equations. Boundary element counterparts for more “carapd” partial differ-

ential equations have not yet fully developed, althougbaesh is underway, eg [2].

e The elements of matrices formed by FEM are easy to computeoBirast, each
element of a BEM matrix involves integration. For diagonaheents, these inte-

grals may be singular.

e The matrices formed by FEM are sparse and can be solved glngKhast solvers.
However, boundary element matrices are full. Traditiondhey are solved by a
direct method such as Gaussian elimination. However, wendeeested infast

methodsvhich reduce the computing time for large scale problems.

Briefly, boundary element methods partition the boundaxy Melements. This results in

anN x N system of linear equations. A direct solver such as Gaus$imation solves
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the system inO(N3) arithmetic operations. In general, the use of an iteratoltees,
possibly with preconditioning, results i®?(/N?) operations. However, these methods
cannot improve upon af'( N?) complexity estimate, since simply forming the coefficient

matrix requiresD(N?) arithmetic operations.

Thefast methodsvith which we are concerned aim to solve the boundary integraa-
tion to within the discretisation error i@ (N log” N) for some small integer valug;
typically p = 0, 1, 2. This is the so-calledlmost optimacomplexity one can achieve in

finding N-unknowns.

A typical (Galerkin) boundary element matrix entry has thenf

A, = / / K (p, Q)¢ (p);(Q) dTqdT. (1.0.1)

Clearly, in afast methodve can not evaluate the whole coefficient matdix Currently,
there are two distinct classed of fast methods for solvingnidary integral equations.
One is the so-callethst multipole algorithmclosely related to panel clustering [3]; see
Profit, Amini & Profit [4, 5] for application to the Helmholtzgeation. The basic idea
here is that the kerné{ (p, q) of the integral operator is approximated by a degenerate or

“separable” kernel

Ep,a)~ > filP)bunmgm(a) = f(p)" Bg(q).

I,m=-—1

Substituting this into (1.0.1) we can see that

A~UBV = A,



whereU is anN x L matrix, B anL x L matrix, andV an L x N matrix with entries,

Uy = / f(P)6(p) dT
Blm == blm

Vs = / Gun (Q)15(q) T

In place ofA the elements of the sparse matrix decompositi@gl” are computed. This
requires2N L + L? elements, as opposed #¢* for A. If L = O(log N) we see that
this requires onlYO (N log N) elements are stored and a similar number of operations for

forming Ax.

The second type of fast method, with which we are concernéu iwithis thesis, is the
so-calledwavelet algorithm([6, 7, 8, 9]. Here, the basis functions are the so-called
wavelet basis These argefinablebases obtained from translations and scalings of a

single functiony, the so-calleanotherwavelet. That is,
v =229 2" =1) for me€Z, 1 € V,,.

They have the additional property of being orthogonal to toder polynomials; known

as the property of vanishing moments.

We can show that using a wavelet basis, for a large class otlsethe elements of the
Galerkin matrixA satisfy,

9—(m+m’)(k+3)—2k

|A;;] <c : )
J (2k + 1) dist(T;, T;)1+2k+e

We can prove that onl) (N log” N) of these elements are sufficiently large enough to af-

fect the accuracy of our solution. The rest of the elemergd met be computed, resulting



in the desired efficiency.

In chapter 2 we review the methods and techniques requireshplartial differential
equations are reformulated as boundary integral equatidfes also discuss how these
boundary integral equations may be discretised by a boymrdament method. In chapter
3, we present thenultiresolutionframework for wavelets, along with our choice of basis

functions for this thesis, namely, tineultiwvaveletof [10].

In chapter 4, we consider two boundary element methods, Iyathe standardandnon-
standardGalerkin methods with multiwavelet basis functions. Fothbmethods applied
to operators of the standard analytical class, we find botordghe size of the coeffi-
cient matrix elements. Using these bounds compressiotegtea are developed which
only require the computation of the significant matrix elatse We show that there are

O(N log” N) such significant elements, for some small integer value

In chapters 5 and 6 we apply the standard and non-standastkdamethods to sev-
eral test problems. In chapter 5 we are concerned with thegity problem of image

synthesis, whereas, in chapter 6 we are concerned with tredaoy integral equation re-
formulation of Laplace’s equation. However, when we coesicaplace’s equation with
Dirichlet boundary conditions the resulting coefficienttmais ill-conditioned. There-

fore, in order to use an iterative solver efficiently we mustigondition the coefficient
matrix. For a wavelet basis a diagonal scaling matrix is shtmbe sufficient, see [11].
Here, we extend the preconditioner for use with multiwatedesis functions. Finally we

present a conclusion to our work and identify some futurenaes of study.



Chapter 2

Boundary Integral Methods

In this chapter we introduce the methods and techniquesresijfor solving boundary
integral equations. In general boundary integral equatare derived as reformulations

of partial differential equations over a domd&in We arrive at equations of the form

(Au) (p) = (82—2) (p), pel =09, (2.0.1)

whereA andB are pseudodifferential operators.

To discuss the existence and uniqueness of solutions tdJ20d study the convergence
analysis of boundary element methods, we need to introdym®priate function spaces.
Sobolev spaces are introduced in section 2.1. The operdtarsd 5 are pseudodiffer-
ential operators over Sobolev spaces. This allows us to/ifferential, integral and
hypersingular operators within the same framework. Psdiffdcential operators are in-
troduced in section 2.2. In section 2.3 we reformulate Legitaequation as a boundary
integral equation of the form (2.0.1), such equations aserdtised using the projection

methods introduced in section 2.4.



2.1 Sobolev Spaces

Sobolev spaces provide a natural setting in which to desthié smoothness of solutions
in partial differential theory. In this section, we briefiytioduce these spaces and their

basic properties. For a more comprehensive study see [12].

Let ©2 be a simply connected domain &r". Initially the Sobolev spaceBV;((2) are
defined for non-negative integess For a multi-index of non-negative integefs=

(I, ...,1,), we define the partial derivatii@' by

o Hin ol
D‘:DllDlQ...Dl”:( )( ):7, 2.1.1
; b " ozl Oxlr o't ... oxln ( )

where|l| =1, + ...+ 1,.

Definition 2.1.1. The space/V; (€2) is the space defined by
Wi(Q) = {u € L,(Q)| D'u € L,(Q) for [I| < s}, (2.1.2)

and is equipped with the norm

=

fally = (Z/Q}Dlu(x)”dx) , (2.1.3)

U<s

see [13].

Sobolev spaces with #~ 2 are rarely used. Therefore, we concentrate on the gase
and denote/V;(Q) by H*(2). We note, that fors = 0, H(Q2) = Ly(Q). In order

to introduce Sobolev spacd$®((2) for real s, we consider the Fourier transform of a



functionu,

() = AG_ZWix'gu(x) dz. (2.1.4)

Then, it can be shown, see [1], that for non-negative integer

e flully. < / (1+[€7)" 1 (©)2 e < e Jull (2.1.5)

Therefore, 1
( /Q (1+ 1)’ |a<§>|2ds)2 (2.1.6)

defines an equivalent norm fi*(Q2). Furthermore, (2.1.6) has meaning for all real values

of s. This allows us to definé/*(2) for any reals, possibly negative, by
H*(2) :={u € Ly(2)| u is a generalized function such that (2.1.6) is fihite (2.1.7)

In fact, for0 < s < oo the space —*(12) is the dual ofH*((2), i.e. space of bounded

linear functionals orff*(£2).

Let I" be the boundary of a simply connected dom@irc R™. Then, we can similarly
define Sobolev spacé$’(I"), see [1]. For the case = 2, if ' has a smooth parameteri-
sation

~v:[0,1) =T,

then, we may definé/*(I") by
H*(T) :==A{u| (uoy) e H?[0,1)}, (2.1.8)

where(u o g)(x) = u (y(x)). This definition is invariant under changes of the parareter

isation, see [14].



Suppose, t € Rwith s > ¢t. Then,H* C H' and foru € H*® we havel|ul ;. < ||u|| -
In fact the imbedding (identity) operatdr. H* — H'is compact, see [1, Theorem 2.1.5].

We now mention an important trace theorem, [1, Theorem R.2.2

Theorem 2.1.1.Let (2 be a bounded open domain with smooth boundaryf s > %
then the trace operator

u— u (2.1.9)
r

is a continuous mapping frofi*(Q) to 7~z ().

2.2 Pseudodifferential Operators

Pseudodifferential operators are a natural extensiomeatli integral and partial differ-
ential operators. The theory of pseudodifferential operatis developed alongside the
study of singular integral operators, which occur in margaarof mathematical physics.
A pseudodifferential operator is a linear operator: H*(2) — H* *(Q2) wherea is
called theorder of the operator. We can write the pseudodifferential operdt as the

integral operator

(Au) (p) = / a(p, Q)u(q) A%, (2.2.1)

Q
wherea(-, ) is a kernel function or a distribution. if is a weakly singular kernel this
is a classical compact integral operator. However, thisd&fn also covers the cases of
differential and integro-differential operators. We @il the approach of [1] to introduce

the pseudodifferential operator concept.

A general partial differential operator of orderis a polynomial expression of the form

P(z,D) = Y )DL, (2.2.2)

[l<a

9



wherel = ({4, ...,1,) is a multi-integer and the symbol of the operaibis defined by

o(P)=p(x,€) = Y _ a(x) (i)' (2.2.3)

[t|<a

Therefore, we wish to show thatu can be written in the integral form (2.2.1). We

consider the inverse Fourier transform

u(z) = /Q emTEG(€) dE. (2.2.4)

It follows that the partial derivatives satisfy

Diu(z) = / ™8 (2mie) i €) d, (2.2.5)
Q
and hence,
P(z,D)u(z) = / ™8 (x, 2mE)0(€) dE. (2.2.6)
Q

Therefore, substituting the Fourier transform

il§) = [ e uty) dy 2.2.7)
into (2.2.6) we obtain
P(z, D)u(x)z/ﬁk(x?y)u(y) dy, (2.2.8)
where
k(x,y) = /Q p(x, 21€) ™ ==v)E ge. (2.2.9)

10



Definition 2.2.1. p(x, ) is said to be a symbol of order € R, denoted by € S, of a

pseudodifferential operatdt(z, D) defined by (2.2.6), if it satisfies the following:

1. p(z, &) is C* in both variables;
2. p(z, &) has compact-support;

3. for all multi-indicesl,m, there is a constamn ,,, such that

[DLDZp(x,6)| < cum (14 €)™ (2.2.10)

Definition 2.2.2. If p € S* the pseudodifferential operatét, with symbolp, is a pseu-

dodifferential operator of order.

We now give the basic mapping property of a pseudodiffeaéoperator [1, Theorem
4.1.1].

Theorem 2.2.1.Let P be a pseudodifferential operator of orderc R. Then,
P:H°— H™® (2.2.11)

for all s € R and the mapping is continuous.

Therefore, ifo < 0 the operator acts as a smoothing or classical integral tpetdow-

ever, ifa > 0 the pseudodifferential operator is principally a diffeiahoperator.

11



2.2.1 Solvability of Pseudodifferential Operator Equations

LetA : X — )Y be an operator from a normed spacéo a normed spac®. The equation

Au=f (2.2.12)

is said to be well-posed if the mapping is bijective and tveiise operatad ! : ) — X

is continuous. Otherwise, the equation is said to be illepo§l4,515].

For pseudodifferential operators on Sobolev spaces we khnaithe mappings are con-
tinuous, Theorem 2.2.1. However, this does not guaraneetistence of a bounded
inverse. The additional property we require is that the gedifferential operators are

Strongly Elliptic; [1,84.3].

Definition 2.2.3. Let p(z,{) € S*. Then,

1. pis said to be Elliptic of ordet: if there existsk > 0 andc¢ > 0 such that

p(z,8)] = c(1+[E)* V€[ = R. (2.2.13)

2. pis said to be Strongly Elliptic of order if there existsR > 0 andc > 0 such that

Re p(z,€) > c(1+[€))* ¥ |€] > R. (2.2.14)

The pseudodifferential operatéris said to be (strongly) elliptic if its symbglis (strongly)

elliptic.

We can now state the basic result which links all our boundiatggral operators on

[' € C; See [15].

12



Theorem 2.2.2.The boundary integral operators associated with reguléipgt bound-

ary value problems are strongly elliptic pseudodifferahtiperators of integer order.

We next quote the important coerciveness result which id tserove the solvability of

the pseudodifferential operator equation.

Theorem 2.2.3.(Garding Inequality, [16,§0.7][17, Theorem 3.9]). If4 is a strongly
elliptic pseudodifferential operator of order then there exists a positive constgnand

a compact operato€ : H=(I') — H? (T') such that for ally ¢ H> (T

Re ((A+ C)Q?Q)LQ(F) > ||9qu%(1“) . (2.2.15)

Hence, ifD = A + C then, the above result says this strictly coercive.

Theorem 2.2.4.(Lax-Milgram,[14, Theorem 13.23]). In a Hilbert spacg, a strictly

coercive operatoD : X — ) has a bounded (continuous) inverse.

This says that for a strongly elliptic pseudodifferentipéoator.4 we can writed = D — C,
whereC is compact and has a bounded inverse. Thus, for strongly ellipdiave can

write (2.2.12) in the equivalent form of a second kind equrati
(Z-D'C)u=D""f, (2.2.16)

whereD~!C is compact. This means that for strongly elliptic pseudediintial operators,
including first kind and hypersingular equations, the exise of unique solutions can be

established from the Fredholm alternative, see [14, 18].

13



2.3 Boundary Integral Equations

LetT" be a closed surface iR?® or a closed contour if®? containing a number of subsur-
faces of clas€£?. We denote the interior and exterior Bfby Q_ and(),., respectively.
The equation

V2u(p) = 0, p ey, (2.3.1)

is called Laplace’s equation. Here, we are interested iividgrthe boundary integral
equation solution of (2.3.1) with appropriate boundaryditons. We will use these
boundary integral equations more fully in chapter 6, wheeestudy their numerical so-

lution by multiwavelets.

2.3.1 Free Space Green’s Function

The function

_% Inr, in 2 dimensions
G(p,q) = (2:32)

L in 3 dimensions

Arr?
wherer = |p — q, is called the free space Green’s function or the fundanrheotation

for Laplace’s equation, singg satisfies

V2G(p,q) = —6(p — q), (2.3.3)

both as a function gb andqg. The functiorn is the Dirac delta function.

14



2.3.2 Boundary Integral Operators

We now define the boundary integral operators for Laplaaggmgon, namely the single-
and double-layer potentials and their normal derivativé&e also study some of their

pertinent smoothness properties.

Definition 2.3.1. Let the density functiol € C(I"), we define the following operators:

The single-layer potential,

(Lo) (p) = / o(a)G(p. )Ty (2.3.4)

The double-layer potential,

o) (p) = [ o(p) 2 Mar 235)

r

The normal derivative of the single-layer potential,

0

(") (B) = g2 (£) () = 8% / o(a)G(p. )T (2.3.6)

The normal derivative of the double-layer potential (thpémgingular operator),

) )= e ) (0) = 5 [ 0@ G2 Vare 2ad)

Inp Jr

Where byn, andny we denote the unit outward normallfaatp or atq, respectively. We
note that, the operatdv(" is the normal derivative of and is the operator transpose of

M.

The Laplace boundary integral operators are stronglytallpseudodifferential opera-

tors. The single-layer operator is of ordefl. Therefore, it is a smoothing operator

15



from H*(I') — H*TY(T"). The hypersingular operatd¥ has order+1. Therefore, it
acts like a differential operator, that i&\ : H*(I') — H* }(T'). The operators\(

and M" are infinitely smooth orC> boundaries, that isM : H*(I') — C>(T') and
M' : H® — C°°(T). However, this phenomenon is special to the 2 dimensiorsa.da
the 3 dimensional cas@&{ andM" have order-1 and henceM : H*(I') — H*t(I)

andM' : H5(T') — H*TY(T).

Theorem 2.3.1.LetQ C R? (or Q C R?) be a bounded domain with a smooth boundary
I'. Also, we le € H*(I'), s > 0. We denote points in the domdin byp_, points in

(24 byp, and points on the boundaiy by p. We define

(L+U) (p) = plir—r}p(LU) (p+) , (2.3.8)
(L70) (p) = pljr_r)lp (Lo) (p_) (2.3.9)

and similarly definév(*, M~, M™, M™, N* andN~. Then, forp € I" we have;

(L¥0) (p) = (£70) (p) = (Lo) (p), (2.3.10)
(M) (p) = %a(p) + (Mo) (p), (2.3.11)
(M70) (p) = —%o(p) + (Mo) (p), (2.3.12)
(M0) (p) = ~(p) + (M) (p), 2313)
(M) (p) = %a(p) + (MTe) (p), (2.3.14)
(N*a) (p) = (N"0) (p) = (No) (p). (2.3.15)

Proof: See [1].0J
Therefore the operatofs andN are continuous. However, the operatdtsandM™ have

a jump discontinuity ap € I'.

16



2.3.3 Direct Formulation of the Boundary Integral Equation

The direct formulation makes use of Green’s second Theorem.

Theorem 2.3.2.(Second Green’s Theorem). Letv € C%(Q2). Then,
/ (uV?0 — vV?u) dQ = / u@ — v@ dr. (2.3.16)
QO r 3n 3n

Consider Laplace’s equation in the exterior domain,

Viu(p) =0, peQy
(2.3.17)
lim |u(p)| = 0.

[p|—o0

In (2.3.16) if we takeu to be the solution of Laplace’s equation andhe free space
Green’s function satisfying (2.3.3), we obtain the Lapladegral equation representa-

tion,

oG (p, ou
) = [u@ GEAar,— [ .Gl pen.  (@ae)

Then, by lettingp € 2, — p € I' and using the jump conditions of Theorem 2.3.1, we

obtain

%u(p) _ /F u(q)aGa(Zq)drq _ /F (. q)aau—éj)dl“q, per. (2.3.19)

Rewriting (2.3.19) in terms of the single- and double-lagperators L and M respec-

tively, we have
ou

8—n(p), pel. (2.3.20)

<—%z+ M) u(p) = L
Clearly if we have both, and% onI (the so-called “Cauchy data”), (2.3.18) gives the

17



unique solution to Laplace’s equation. In practice we hatleeeu or % onI (or part
of I') and we solve (2.3.20) for the missing Cauchy data. TheB,X8) is used to obtain

u(p) forp € Q..

Indeed it is the simple boundary integral equation (2.3v@ich we solve in chapter 6,

both in the case of Dirichlet and Neumann boundary conditiasing multiwavelets.

2.4 Projection Methods

In this section we consider the numerical solution of pséeiifterential equations of the
form

Au = f, (2.4.1)

where we assumel : H*(I') — H* *(T") is any of the boundary integral operators
introduced in section 2.3.2. The main idea of projectionhuds is to seek an approx-
imate solution from some finite dimensional subspace of ffaee containing the exact
solution. We then try to force the approximate solution teehamall residual when the
integral equation is projected onto this space. We congideGalerkin method which
is an orthogonal projection method and the collocation mth which the projection is

interpolatory. For a more comprehensive study see [19].

First we define a projection operator and its correspondingeption method [14].

Definition 2.4.1. Let X be a Banach space apta non trivial subspace of. A bounded
linear operator” : X — ) with the property that’y = y for all y € ), is called a

projection operatofrom X — ).

Theorem 2.4.1.A non trivial bounded linear operator is a projection opesaif and only

if it satisfiesP? = P. Furthermore||P|| > 1.

18



Definition 2.4.2. Let A : H*(I') — H* (') be an injective bounded linear oper-

ator. LetHy c H*(I') and Hy C H**(I') be two sequences of subspaces with
dim Hy = dim Hy, = N and letPy : H*~*(I') — H}, be projection operators. The

projection method generated bfy and Py approximates equation (2.4.1) by the projec-
tion equation

PyAuy = PNf, uy € Hy. (242)

The projection method is said to be convergent if there exsmeC € N such that for
eachf € H*(I'), the approximating equatioRy.Auy = Py f has a unique solution

uy € Hy forall N > C anduy — v asN — oo.

We now discuss the collocation and Galerkin methods.

2.4.1 Collocation Method

We start by recalling a result regarding interpolation artdrpolation operators [1413].

Theorem 2.4.2.Let Hy C H*(I') be anN-dimensional subspace and, ..., zy be N
points inI" such thatH y is unisolvent with respect toy, . .., xy. Thatis, each function
from Hy which vanishes at these points must be identically zero.n,Tgeen values

f1,. .., fn there exists a unique functiane H y such that

U(I’i):fi, 'L:]_,,N

With the data given by the valugs= f (x;),7 =1,..., N, of a functionf € H*(I") the
mappingf — v defines a bounded linear projection operaf@y : H*(I') — Hy called

theinterpolation operator
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Given equation (2.4.1)4u = f,whereA : H*(I') — H* *(T") is a strongly elliptic pseu-
dodifferential operator of order, the collocation method seeks an approximate solution,
in the subspacé& y C H*(T"), by requiring that the equation is satisfied at a finite number
of collocation points. Choosing points{z;}, the collocation method approximates the

solution of (2.4.1) by a functiony € Hy such that

Let us assume thdfy is the space of piecewise polynomials (splines) of dedreeth

basis functiong x;}. Then, the approximate solution has the form

N
(@) =D B (). (2.4.4)

Substituting (2.4.4) into (2.4.3) yields the system of inequations
N
> B (Axg) (si) = f(x), i=1,...,N (2.4.5)
j=1

for the unknown coefficient§s; }. This can be interpreted as a projection method with

Py being the interpolation operator in Theorem 2.4.2.

The following convergence result holds for the collocatioethod, see [15, Theorem

3.6],[20].
Theorem 2.4.3.Leta < dif disodd andy < d+ S if diseven. Lett <t < s < d+1,

t<d+ % anda + % < s. Then, there exist constantsnd ¢ such that

|l —un||ge < cllu—Prul 4 (2.4.6)

< B ful

e - (2.4.7)
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Remark: The first inequality shows that the error in collocation idfué same order as
the error in approximation by the interpolation projectdhe second part simply states

the error for projection into spline spaces.

2.4.2 Galerkin Method

We consider the Galerkin solution of (2.4.13x = f, where A : H*(I') — H**(I')
is a strongly elliptic pseudodifferential operator of arde The Galerkin method, as
in the collocation method, seeks an approximate solutipne Hy C H*(I"), where
dim Hy = N. The Galerkin method approximates the solution of (2.4ylalbunction
uy € Hpy such that

(Aun,vn)r, = (f, UN) Lo, (2.4.8)

holds for allvy € Hy. Or equivalently(A (u — uy),vn)r, = 0, showing that this
is an orthogonal projection method. Let us assume thatis the space of piecewise
polynomials (splines) of degrekg with basis functiong x;}. Then, we can expressy in
the form
N
uy(z) = Z@Xi(x)- (2.4.9)
=1
Then, the Galerkin equation (2.4.8) is equivalent to thedimsystem
N
> BiAX, Xid e = (f:Xide, i=1,....N, (2.4.10)

j=1

for the unknown coefficient§s; }.
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The following convergence result holds for the Galerkinmoet, see [15, Theorem 2.10],

[1, Cor. 10.1.2].

Theorem 2.4.4.Leta < 2d+ 1. Leta—d—-—1<t<s<d4+1andt < d+ % Then,

there exist constantsand ¢’ such that

|l —un||ge < cllu—Prul 4 (2.4.11)

< B ful

e - (2.4.12)

Remark: The first inequality shows that the error in the Galerkin rodtis of the same
order as the error in approximation by the orthogonal ptojecThe second part simply
states the error for projection into spline spaces. We rwefor the Galerkin method,

the range of is different, allowing more accuracy if negative norms asedl

Chapter Review

In this chapter we have introduced the methods and techsirgg@ired for solving bound-
ary integral equations. In order to be able to discuss thstexte and uniqueness of
solutions to(Au) (p) = (B2%) (p), the Sobolev spaces were introduced in section 2.1.
We briefly discussed the theory of pseudodifferential ojpesan section 2.2. Within the
framework of pseudodifferential operators, we can thedystlifferential, integral and

hypersingular operators.

In section 2.3 we introduced the single- and double-layeéema@als L and M, respec-
tively. Then, using Green’s second Theorem we reformulatgalace’s equation as a
boundary integral equation. Such boundary integral eqnatare discretised using the

projection methods introduced in section 2.4. In particulee discussed the collocation
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and Galerkin methods, and their respective convergengeepies. It is the Galerkin

method which we employ mainly, in this thesis.
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Chapter 3

Wavelet Analysis

Wavelets were developed independently by mathematiqiuysjcists and engineers who
came together in the 1980’s to develop the subject of wasdlesimplest terms wavelets
are just a basis for a Hilbert spagg that have several interesting and important features
that make them different to other basis functions. This bad to wavelets being widely
used in applications ranging from data compression to dat@iding in multimedia to

the fast solution of problems in numerical analysis, see21122, 23, 24, 25].

The wide applicability of wavelets is due to the fact that elats can very efficiently and
effectively approximate a large class of functions. Theyvpte efficient approximations
to functions at edges and corners, due to thaittiresolutionproperty. The multiresolu-

tion property acts like a ‘mathematical microscope’ lejtus zoom in on the finer detail
of functions and then zoom out again to see the coarser délel also have the property
of vanishing momentshis leads to the wavelet coefficients being small whenuhetfon

is smooth over the support of the wavelet and consequeratisléo the compression of

data.
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Before continuing let us introduce a compact notation faregal bases and their trans-
forms. Let® denote a countable set or collection of functions in the étillspacer!.

Here, we write a linear combination of elementsioin the form

'R =" a0, (3.0.1)

ped

wherea, are some real or complex valued coefficients. Furthermawreary f € H,

the quantities f, ®) and (®, f) mean the row and column vectors, respectively, of the
coefficients(f, ¢) and (¢, f), ¢ € ®. Now, we consider two countable collections of
functions® and'. Then, the possibly infinite dimensional mat(i, v)),cq ey €N

be represented in shorthand &, T).

3.1 Multiresolution

The multiresolution property plays an important role in toatext of wavelets oiR. Let
H be a Hilbert space with inner produ¢t -) and norm||-|| = ||-||; = (-,-)2. Let us
consider arefinablecountable set,, ¢ H, form € Z. Thatis,®,, is obtained by

translations and scalings of a single functiarfFor any countable s&,, C H, let
Vip = span ®@,,,, ®,, = {¢ :=22¢(2"- =) A={m, 1}, 1€ A}, (3.1.1)

for some, possibly infinite, countable index 2et. We will give an example later in this
section. Note that here, the parametés a couplet\ = {m, [} identifying the level, i.e.

m € Z and the location, € A,,.
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Definition 3.1.1. Any countable se®,, C H is called a Riesz basis df, if there exist

positive constantg andb, with 0 < a < b < oo, such that
alleflya,y < |a"®,|, < blledlpyia,y - (3.1.2)
In shorthand we denote this as

(3.1.3)

ladle, ~ [l ][ ; -

In the above relations,
2
ledlly, = [ Jeul”.

lEA'nL

Then, a sequence = {V,, },.cz Of closed subspacés, C H is said to form a multires-

olution analysis off, if it satisfies the following conditions, [26]:

1...cvycWwcVicC...CH,

2. (Upnen Vin) = H;

3. Nnen Ven = {0};

4. f(x) eV, <= f(27™Mx) e V;

5. The basigp,, is a Riesz basis.

Definition 3.1.2. If ®,, is a Riesz basis for the spabg,, and the spaceg,, satisfy the

multiresolution conditions 1, 2 and 4, then, the functiois called thescalingfunction.
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3.1.1 Multiscale Basis

The sequence of nested subspakas dense inH. Therefore, we can assemble a basis
for H from the functions that span the differences between tpatss. Definél,, to be

the complement of the trial spagg, in V,,, ., that is
Vins1 = Vin + Wi, (3.1.4)
Hence, we look for countable sets
U, = {) :=2292™ - =) A={m,1}, 1 €V} C Vinp1, (3.1.5)

such that

W,, = span ¥,,,. (3.1.6)

The se{ ®,, U ¥, } satisfies (3.1.3) and therefore is a Riesz basi¥/for,; . If there also
exists a space

W,, := span ¥,,,, (3.1.7)

such that

(W, W) = 1, (3.1.8)

then, ¥, is a wavelet series and the functignin (3.1.5) is called thenotherwavelet.
FurthermoreW,, = {1, := 25 ¢(2™ - —I)| A = {m, 1}, | € V,,} is also a wavelet series
and the function) is called thedualwavelet. Similarly, there is a dual bagks, = {9, :=
25 G(2m - —)| A = {m, 1}, | € A,,} that generates a sequenée- {Vm}mez of closed
subspaces, which form a different multiresolution/6f Note that we use the countable
index setV,, for the location of wavelet functions, whereas, we use thetable index

setA,, for the location of scaling functions. We see later that fa brthogonal bases
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on which we concentrat&/,, = A,,. The wavelet serie¥,, and @m are the so-called
biorthogonalwavelet bases; see [27, 28]. In this thesis we concentratartbogonal
wavelet bases. I, is an orthogonal wavelet basis, then, the wavéles said to be

self-dual That is,

In this case we hav€,,.; = V,, & W,,.

Throughout this thesis we denote the highest level of disaton by M and N, will
denote the dimension of the spakg. Then, through recursive use of decomposition

(3.1.4), we can write the trial spa®&; as the sum of complement spaces

Vir = Viny €D Wan, (3.1.9)

wherem, is some fixed coarsest level. This relationship is shown guig 3.1. Thus,
any fi, € Vi, can be expressed in single scale form, that is, with respebttbasisb,,
as

fu = @)y, (3.1.10)

wherea,, = (®,,, f). We can also express the function in multiscale form, thatith

respect to the basis

M-1
M=, | @, (3.1.11)
m=mygo
as
Ju = ‘I)—rrnoamo + \Il;rno/ﬂmo +. Tt \II}\—4—1ﬁM—17 (3112)

wheregs,, = (¥,,, f) form = my,..., M — 1. Since the sequendeis dense inH, the
union

U=, | ¥, (3.1.13)

m=mg
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Figure 3.1: Decomposition dfj, into the complement spacék,,

is a candidate for a basis for the whole spate

3.1.2 Vanishing Moments

An important property of wavelets is that of vanishing momseA wavelet) has vanish-

ing moments of orded if
/x%(m) dr =0 fori=0,...,d—1. (3.1.14)
R

It is the order of vanishing moments that governs the consprasapacity of a wavelet.
Thus, for numerical applications we wish to have a high oaferanishing moments to

maximize operator compression.
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Example 3.1.1. (Haar Basis).
The simplest example of an orthogonal wavelet, is the Hasisli Haar wavelets. Here,
H = L,]0,1] andV,, is the space of piecewise constant functions with nodesatgim,

fori =0,1,...,2™ — 1. Our scaling function is

1 for 0<ax<1;
o(x) = (3.1.15)

0 elsewhere

m

Therefore, the countable s#t,, = {¢, := 22 ¢(2™ - =1)| A = {m,l}, | € A,,} where

A, ={0,1,...,2™ — 1} is a basis for the spacg,,.

For the coarsest leveh = my = 0, o = {¢} is a basis for the spack,. The space
V; is the space of piecewise constant functions with nodésaad % Therefore,®, =

{¢10, ¢1.1} is a basis for the spack;, where

\/§¢0,0(21’> for0 <z < %,
P10(z) = (3.1.16)

0 otherwise

>
V2¢oo(2z —1) fori <z <1;

P11(x) = (3.1.17)

0 otherwise.

\

The Haar function or Haar wavelet is

(

1 for 0<z<g;
(r) =9 -1 for L <a<1; (3.1.18)

0 elsewhere.

\

Clearly, the Haar wavelet has vanishing moments of orderlie dountable se¥,, =
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m

{n :=2292" =) X={m,l}, 1 € V,,}, whereV,, ={0,1,...

for the spacéV/,,,.

,2™ —1}, is a basis

Since,V; = Wy @ Vy, we have two distinct bases for the spagenamely®, and{¥, U

®,}. Therefore, a function in the spatg can be represented as a linear combination of

either the basi®, or the basis{®, U ¥}. For the Haar basis it is easy to verify this,

1 1
Pr0(7) = E%,O(ﬁ) + ﬁ%,o(x),
¢1,1($) = iCbo,o(x) - LQ/)o,o(x)-

V2

V2

This is shown graphically in Figure 3.2, whetgy, = c¢1 9 = doo =

Cook 4

1

1.414

+ dook O

0.5 I -

anddLo = —

(3.1.19)

(3.1.20)

o

C
10 sk 1

+ 10 0

Figure 3.2:V; =
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3.1.3 Multiscale Transformations

The coefficient vectorex,, andg,,, form = 0,..., M — 1, in (3.1.10) and (3.1.12),
respectively, convey different information. The coeffita,, in (3.1.10) indicate the
geometric location of the functiofy,. However, the coefficient8,, represent thdiffer-
encebetween the function representation at the current le\ettzat of the previous level.
That is, the wavelets encode the detail information, or tireection that must be added
to the higher-level representation of a function. Therefare usually need all the entries
of o), to obtain an accurate representationfgf. However, many of the entries ¢f ,
may be small and replacing such entries by zero may still pexrsufficiently accurate
approximation taf,,. On the other hand, the pointwise evaluatiorfgfis simpler in the
single scale form. Therefore to exploit the benefits of befiresentations, one needs a

method to convert one into the other.

Due to the nestedness of the spalggsind the stability condition (3.1.3), evepy,; € V;,

can be represented as an expansion of the functigns; € V,,,+1. Thatis,

Pmy = Z CidPm+1, (3.1.21)

ieAm+l

with a maskc)” = {c¢; }iea,,., € L2 (Ant1). Let C, o be the so-calledefinement matrix

m+1

containing the;” as columns, then (3.1.21) can be rewritten as
@] =@ Cpo. (3.1.22)

Similarly, due to (3.1.4) every,,; € W,, can be represented as an expansion of the
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functionseg,,+1; € Viny1. Thatis,

Yl = Z di 1 P14 (3.1.23)

Z'eAm+l

with a maskd]" = {d,-J}Z.eAm+1 € ly (Ap41). Let G, 1 be the matrix containing the)"

as columns, then (3.1.23) can be rewritten as

U =& Cpi. (3.1.24)

Collectively (3.1.22) and (3.1.24) are known as the scale relationships

The decompositioi,,,,; = V,, & W,, is equivalent to the fact that the operatoy, C

Uy (A) X by (Vi) — €3 (A1) is invertible, where

Cm = (Cm71, Cm70) s (3125)
and
C. <§m> = Cni1B,, +Choanm, (3.1.26)

for o, € 02 (A), B,, € l2(V,,). Additionally the basis®,, U ¥,,}, of the space

Vi1, IS uniformly stable if and only if
ICnll =0(1), |IC.H|=0(1), m— oo, (3.1.27)

see [29].

For convenience, let G:= C,‘,Ll, where

Gm 1
= ’ .2
G, (Gmp), (3.1.28)
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and

C.G,, =C1Gn1 +ChoGro = 1. (3.1.29)

Therefore, the matrix (7 describes a change of basis for the spégge;, from the basis
{®,, U ¥,,} to the basisb,,,;. The matrix G, describes the reverse change. From
relationship (3.1.29) and the two scale relationships.22)land (3.1.24), we obtain the

reconstruction relationship

@LH =& G0+ V]G, (3.1.30)
Relationships (3.1.22), (3.1.24) and (3.1.30) are transftions that can be used to con-
vert the coefficients of (3.1.10) into the coefficients ofl(32) and vice versa. Let us now

derive these explicitly here. A functiofy, € V), can be expanded in single scale as in

(3.1.10), as well as in double scale form as
fu =@ an 1+, B, (3.1.31)
with respect to the basigb,, ; U W,,_,}. Therefore, using (3.1.22) and (3.1.24), yields
fu =@y o+ 8 By =@y (Cu_ioan—1+ Cu_118y_1) . (3.1.32)
Comparing the r.h.s. of (3.1.32) with (3.1.10), we obtain
Car—1.00n-1+ Cr—118y, 1 = . (3.1.33)

That is, the operator,Capplied to the coeﬁicient@i:) produces the coefficients,,, 1.
Thus, repeated application of the operatgr €énverts the coefficients of the multiscale

form of f,;, (3.1.12), into the coefficients of the single scale formi(BO), giving the
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transformation

RM . ﬁmo,]\/l—l — aM7 (3134)
Brr-1

wheres,, 1 = ' . The transformation (3.1.34) is called theconstruction
Bing
(8

transformation, or reconstruction algorithm and is scherably given by

CmO,O Cmo+1,0 CM—I,O
amo C(m0+] am0+2 aM
Bmo Bm0+] Bm0+2 B M1
(3.1.35)

To express the transformation Rn matrix form, form < M, we define theV,; x Ny,

matrix

I 0
Rirm = , (3.1.36)

0 C,

where | is the identity matrix of siz&,, — N,,, 1. Then, the reconstruction transformation

Ry 1n (3.1.34) can be written as

Ry = Ruzar—1 -+ Rusmo.- (3.1.37)

The inverse transformation, transforms the single sca#ficentsa,, of f,; (see (3.1.10))
to the multiscale coefficients gf,; asin (3.1.12). Applying (3.1.30) tf, in single scale

form we obtain,
T
fM = ‘I’MOtM
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= ‘1’}4_1 (Grr—100r) + ‘I’X/[_l (Gup—1.1001)

= q)]TW—laN[—l + ‘Iﬂ];/[_lﬁM_y (3.1.38)

That is, the operatadf,,, applied to the coefficients,,,,; results in the coeﬁicient@i:).
Thus, repeated application of the operatQr converts the coefficients of the single scale
form of f;, (3.1.10), into the coefficients of the multiscale form (22), giving the
transformation

T o = Brog vt (3.1.39)

The inverse transformation (3.1.39) is calleddeeompositiotransformation, or decom-

position algorithm and is schematically given by

Gir10 G0 Gmy0
Oy Opr1 Oy —= Ay,
BM—I BM—Z B’”o
(3.1.40)
Form < M, we define theV,, x N, matrix
I 0
Tym = , (3.1.41)
0 G,

where | is the identity matrix of siz&,;,— N,,.1. Then, the decomposition transformation

Ty in (3.1.39) can be written as

TM = TM,mo N 'TMJ\/j_l. (3142)

There are infinitely many possible complement bakjs that yield the decomposition



(3.1.4). A constraint on the choice ¥, is the stability of the multiscale transformations.

Theorem 3.1.1. ([30, Theorem 3.3])The transformations R and T, are well condi-

tioned in the sense that
IRyl [[Tar| = O (1), M — o0, (3.1.43)

if and only if the collectionP of (3.1.13) is a Riesz basis 6f.

Example 3.1.2.Using the Haar basis of Example 3.1.1, we obtain the decoitipoand

reconstruction algorithms for the Haar basis.

When we consider the Haar basis, the two scale relationql8ids22) and (3.1.24) be-

come

Ox = C0.0Pm+1.21(T) + C1.0Pm1.2041(), (3.1.44)

Uy = dooPmi1.2(T) + d1oPmi1.2041(), (3.1.45)

for A = {m,i}, m € Z,1 = 0,...,2™ — 1. To find the coefficients,, and ¢, o, the
equidistant values; = % andz, = % are substituted into relationship (3.1.44). Hence,

for m = 0, we obtain the linear system

®0,0 (%) = C0,001,0 (%) + CroP1,1 (%) )
(3.1.46)
2\ 2 2
Po.0 (g) = C0,091,0 (g) + C10011 (g) i

Solving (3.1.46), we finchy = c1p = % Similarly, using relationship (3.1.45), we find

d070 = % anddm = —

-

We now derive the decomposition algorithm for the Haar baGisven a functionf, we
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consider the projection coefficients pbnto the spacé’,,,

o= f(x)px(z) dz

= CO,O/ f(@)pmir,2(x) do + 01,0/ f(@)Pmy1,2141 da

LIg1,20 It1,2041

= C0,00m+1,21 + C1,0Qm+1,21+1, (3.1.47)

for A ={m,l},me€Z,1=0,...,2™ — 1. Similarly, the projection coefficients gfonto

the spacéV,, are

B = ; f(x)x(x) do

— dog /
I

m—+1,21

f(@)pmir,2() do + d1,0/ f(@)bmir,241(2) do

Lpy1,2141

= do,0m+1,21 + d1,00m+1,2141, (3.1.48)

for A = {m,l}, m € Z,1=0,...,2™ — 1. Relationships (3.1.47) and (3.1.48) together
are the decomposition algorithm in filter form for the Haarsim In matrix form, for

M = 3, the decomposition algorithm & = 75 (75 115 5, where

100000 0 O
010000 0 O
0010000 O
0001000 0

T3,0—

000010 0 O
000001 0 0
000000 5 —
000000 5 5
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1000 0 O 0 O
0100 0 0 0 0
10 0 0 0 0
01 0 0 0 0
a1 = 1 1
0000 g —5 0 0
1 1
0000 0 0 = -
1 1
0000 g 5 0 0
1 1
0000 0 0 = 5
1 1
%~ 0 0 0 0 0 0
00%—%0000
1 1
0 0 0 0 o -5 0
1 1
- 0 0 0 0 0 0 o5 —%
3,2—1 .
% 5 0 0 0 0 0 0
0 0%%0 0 0 0
1 1
0 0 0 0 Z 5 0 0
1 1
o 0 0 0 0 0 S o

We now derive the reconstruction algorithm for the Haar baBiue to the decomposition

(3.1.4), a functiory € V,,.; has two distinct representation, namely,

fl@) =Y axoy(z), (3.1.49)
I'=0
whereX = {m/, '} with’ = 0,...,2™ — 1, herem’ = m + 1; and
2m—1
fl@) =" (anoa(x) + Batha(x)), (3.1.50)

=0
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where\ = {m,(} withl = 0,...,2™ — 1. Therefore, applying the two scale relationship,
(3.1.44) and (3.1.45), to equation (3.1.50), we obtain

om _1

f(z) = Z (co,00n + do0B) Pmt1,2(x) + (c100n + d1,002) Pmy1,2041(2).  (3.1.51)
1=0

Then, comparing equations (3.1.49) and (3.1.51) we obtarfdllowing reconstruction

algorithm, in filter form,

Q1,21 = Co,000\ + do o5
(3.1.52)

Q12141 = C1,000 + dy 05

In matrix form, forA/ = 3, the reconstruction algorithm i8; = Rs32Rs 1 R3, Where

5 0 7 0

—% 0 % 0

0 % 0 0 0 % 0 0
Ryq = 0 -7 0 0 0 5 0 0

0 0 % 0 0 0 % 0

0 0 —% 0 0 0 2 0

0 0 0 % 0 0 0 %

0 0 0 —% 0 0 0 %
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1000 O 0 0 0
0100 0 0 0 0
10 0 0 0 0
00071 0 0 0 0
Rsy =
0000 - 0 Z5 0
0000 -5 0 5 0
0000 0 S 0 =
0000 0 -7 0 7
100000 0 0
010000 0 O
001000 O O
000100 0 O
Rs,oz
000010 O O
000001 0 0
000000 5 5
000000 —% 7

To illustrate a use of the decomposition and reconstructilgorithms, we consider the

functionf(z) = 2 cos 2mx + sin 2z, We approximate the functiof{z) in the spacéd’,

41



in multiscale form, that is, we use the badis. The resulting multiscale coefficients are

Ba2.0 0.131842719
B2 0.3955448157
P22 —0.1318482721
P23 —0.3955448156
B0 - 0.9003163161
Bia —0.9003163163
Bo.o 0.6366197718
Q0,0 0

Therefore, applying the reconstruction algorithm to thdtraoale coefficients, we obtain

the single scale coefficients,

Applying the decomposition algorithm to the single scaleffodents, we re-obtain the

multiscale coefficients.

The transformation®,, andT), in the present form are for theoretical analysis. In prac-

tice the matricest,, andT), are not computed, instead local filters are applied, semsect

3.2.3

0.131842719
0.3955448157
—0.1318482721
—0.3955448156
0.9003163161
—0.9003163163
0.6366197718
0
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—0.5047715007
—0.7684680444
—0.5820064297
—0.0546133419
0.5047715010




3.1.4 Wavelets o0, 1]

The wavelets we have discussed so far are definékl dtowever, we are concerned with
integral equations defined over a subseRofTherefore, we require wavelets defined on

a closed interval.

There are several methods which adapt wavelets definé&ltorwavelets defined on an
interval; see [31, 32, 33, 34]. Here, following Daubechis]|] we briefly introduce two
methods for defining wavelets on the interiall]. The first and most basic method is to
use wavelets defined ovRr with the functionf set to zero outside ¢8, 1|. However, this
method introduces a discontinuity in the function at thernwdl’s boundary. This leads
to large wavelet coefficients for wavelets whose supportlaps the interval’s boundary.

Furthermore, this method is not computationally efficient.

The second method is the so-calfestiodized waveletdNe start with the scaling function
¢ and the wavelet) defined oveiR. Form = 0, 1,.. ., we define the periodized scaling

function and wavelet as

¥ 2) = > dalw+i) =2% Y p(2mx —2mi— 1), (3.1.53)

€A, 1€EAmM

for A = {m,!l},l € A,, and
R ) = D alw+i) =27 Y ¢p(2"w —2mi - 1), (3.1.54)
1€Vm 1€Vim

for A\ = {m,l},1 € V,,. Here,A,, = V,, = Z. Clearly, bothp}*" and{*" are periodic
of period 1. The spacdgP*" andIWP*" are defined as

VP = span{¢"| A = {m, 1}, | € Z}, (3.1.55)
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and

WPe .= span{y{°| A = {m, 1}, | € Z}, (3.1.56)

respectively.

Since the scaling function and wavelet are periodic withquet, ¢, ,. = ¢}, and

per _per
m,l4+2™ T Ym,l?

the spaced’P* and WP are 2-dimensional spaces, [26, 23]. These

spaces inherit the multiresolution properties of the neneulized space$;, andW,,,.

That s,
VP c VP e c Lyfo,1], (3.1.57)
G Ve = L,[0,1] (3.1.58)
m=0
and
VR =Vt @ Wi, (3.1.59)

In the remaining section of this chapter we discuss the hasesse in this thesis, namely,

the multiwavelets. These are a wavelet basis developetiddantervall0, 1].

3.2 Multiwavelets on|[0, 1]

Wavelets are attractive for the numerical solution of inkégquations, because their van-
ishing moments property leads to operator compression3gJL, However, to obtain
wavelets with compact support and high order of vanishingnerats, the length of the
support increases as the order of the vanishing momenesaises, [26, 36]. This causes

difficulties with the practical use of wavelets particwealt edges and corners. To avoid
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such problems, we consider the orthonormal multiwaveligtsd). With such basis func-
tions, the order of vanishing momeuntss related to the number afiotherwavelets rather

than the size of the compact support.

Supposék is a positive integer angh a non-negative integer, we define the spe¢eof

piecewise polynomial functions

Vk g : glp-mi2-ma41) is @ polynomial of degree less than
VIi=0,1,...,2™ — 1 and vanishes elsewhere

It is clear that the spacésg’ have dimensio2™k and are nested subspaces such that,

VicVic...cvic... cLlo1]. (3.2.1)

Form = 0,1,2,..., we define the2™k dimensional spac&/’* to be the orthogonal

complement of/% in V% ,; that is

Vi = Vi @ Wy (3.2.2)

Then, we have the decomposition

VE=VieWroWwlo...owWk_,. (3.2.3)

The spacéd/}" is the space of polynomials of degree less tham the interval [0,1] and
we assumg ¢q, oo, . .., ¢x } to be a basis for it. Suppode),, v, ..., Y} is a basis of

Wg. Therefore, for the orthogonality conditidrif® | W/ to be satisfied we require the
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first K moments of{ ¢4, ..., vy} to vanish. That is

1
/ Yj(x)a'de =0  forj=1,2,....k;i=0,1,....k— 1. (3.2.4)
0

The 2k-dimensional spac®F is spanned by the function(s); (2z), ..., ¥r(2z), 11 (2

—1),...,¢%r(2z — 1)}. In general, if we define
Py = 2% (2" — 1),  where\ := {j,m,}, (3.2.5)
the spacéV* is spanned by the set

U, ={|l=0,....2"—1,j=1,... k}. (3.2.6)

Therefore, the wavelet spacfid’* } are generated from themother waveletg), , 1,
.., U }. Similarly the space$§V*} can be generated from the scaling functi¢ns, ¢,,

..., ¢}, as the span of the set
®,, = {pr=22¢;(2"x—1)|1=0,....,2" -1, j=1,....k}. (3.2.7)

Note that when dealing with multiwavelets the parametas a triplet\ = {j, m,[}
identifying themotherwavelet, i.e.j = 1,...,k, the level, i.,e.m = 0,..., M and the

location,l = 0,...,2™ — 1 indicating the span of the wavelet is oyer™/, 2= (Il + 1)].

Let us now define the set of basis functiob§’ as follows:
M-1
V=9, | | W, (3.2.8)
m=0
It is easy to see that both,, and ¥ are bases for th2" k-dimensional spack};.
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3.2.1 Multiwavelet Construction

We now show one possible way to generateys, . . ., 1y, as proposed in [10]. First, we
construct: functionsg, g, . . ., g defined fromR to R, with compact support o1, 1],

satisfying the following conditions:

1. The restriction of; to (0, 1) is a polynomial of degreg — 1.

2. The functiong; is extended to the interval-1,0) as an even or odd function ac-

cording to whethei + k£ — 1 is even or odd, respectively.

3. The functiongy, ¢, . . ., gx Satisfy the following orthonormality conditions:

1
-1

4. The functiory; has the following vanishing moment properties:

1
/ gi(r)z' dz =0, i=0,1,....5+k—2;j=1,...,k
-1
We determing; constructively. Suppose we hazefunctions,l, z, ..., 21 gf ... gi,

which span the space of polynomials of degree less than the interval§0, 1) and
(—1,0). Then, we first orthogonalizie of them to the functions, z, . .., z%~! then to the

functionsz®, 2** ... 2***! and finally to themselves. We defipgas follows:

;

7 1 e(0,1),

gjl(x) =49 -zl ze(-1,0), forj=1...k (3.2.9)

Y

0, otherwise

47



Note that the2k functionsl, z, ..., 2" ¢i,..., gi are linearly independent. Therefore,
they span the space of functions which are polynomials ofedelgss thak on (0, 1) and

on(—1,0). Then;

1. By the Gram-Schmidt process we orthogonajj}:e/vith respect tol, z, ..., 2"!

over(—1,1), obtainingg? for j = 1,... k.

2. Using the following sequence of steps we obftain 1 functions orthogonal ta*,
of which k — 2 functions are orthogonal ta"*!, and so forth, down to one function
which is orthogonal ta:**=2. We proceed in the following manner: If at least one of
the functionng. is not orthogonal ta*, we reorder the functions so that it appears
first. We definey? = ¢ — a; - g7, wherea; is chosen such thdy?, 2*) = 0 for
j = 2,...,k. Therefore, obtaining the desired orthogonalityzfo In the same
way, we orthogonalize ta**+!, ... 2%~ to obtaing?, ¢3,g4,..., 95", such that

<g§+1,xi> =0fori<j+k—2.

3. In the final step we apply the Gram-Schmidt orthogonabredlgorithm tog; ™,

gr_.,..., g% We then normalize these functions to obtging,_i,. .., g

If we now define,
V(1) =V2g;(20 —1), j=1,...k x€l0,1], (3.2.10)

we have obtained a basis fidf}. Here, we present; for k =1,..., 4.

\/g forz € (0,1),
g1(x) = (3.2.11)
—\/g forx € (—1,0).
k=1
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g1

92

p

p

93 =

\

p

\/g(—l +2z) fora € (0,1),
\_\/5(1 +2z) forz e (—1,0),

p

(3.2.12)
\/g(—Q +3z) forz € (0,1),

\\/g(Q—l—Bx) forz € (—1,0).

k=2

g\/éu — 24z + 3022) forz € (0,1),

\_é\/g(l + 24z +302%) forz € (-1,0),

1. /2(3 — 162 + 1522) forz € (0,1),
z\ﬁ (3.2.13)
%\/§(3 + 162 4 152%) forz € (—1,0).

1024 — 152 + 1222) fora € (0,1),

_é\/§(4 4152 +1222) fora € (—1,0).

k=3
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(

gi(x) =
\ \/g(—28$3 — 3022 — 4x + 1) forx € (_17 0)7
(
\/g(210x3 _ 3001‘2 + 105z — 4) forx € (0, 1)7
92(x) =
\/g@l()x?’ + 30022 + 1052 + 4) forz € (—1,0),
; (3.2.14)
%\/%(641’3 _ 1053;2 —+ 481 — 5) fOI’ T € (07 1)7
g3(z) =
\%\/%(—64933 — 1052% — 48z — 5) forz € (~1,0),
(
%\/g(mar?’ — 19222 + 105z — 16) forz € (0,1),
ga(x) =
1/ 21052 419222 + 105z + 16) for z € (—1,0).

\

k=4

3.2.2 Multiwavelet Approximation

Given a functionf € L,[0, 1], the projectionP* f of f ontoV* is
(P f) (x) =Y (f dr)oa(@). (3.2.15)
L
Then the following result can be proved.

Lemma 3.2.1. Suppose that the functigh: [0, 1] — R is & times continuously differen-

tiable. Then,P* f approximates with the following error bound:

2
1Bt = fll,, <27 g . (). (3.2.16)
s

Proof: The intervall0, 1] is divided into subintervalg,, ;, such thatP* f is a polynomial
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of degree less thah that approximateg with minimum mean error. We then use the
maximum error estimate for the polynomial of degkeghich agrees witlf at Chebyshev
nodes of ordek on I,,,. We definel,,,;, = [27™],27™(l + 1)) forl = 0,...,2™ — 1.

Then, we obtain

1Puf — FI2, = / Py () — f(2)]dn

21—mk ) 2
<\ = sup ()] ] -
4F ! :BE[O,I]‘ ‘

Then, by taking square roots we obtain bound (3.2.16). Hfé[tbgf denotes the polyno-
mial of degreet which agrees witly at the Chebyshev nodes of ordeon /,,, ;. (I

Therefore, when using the multiwavelet basis to approxénighe error decays like—™*.

3.2.3 Multiwavelet Transformations

As seen in section 3.1.3 for a given wavelet basis we canrobtaltiscale transformations
R,. and T,, that allow us to move between single and multiscale reptatens of a
function. However, in practice we do not form the matricgsdhd T,,, instead we apply
local filters. In this section we follow [37] in developingdufilters for multiwavelet

bases.

We start by rewriting the two scale relationships (3.1.22) §3.1.24) in terms of the
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individual basis functions. That is,

Pa(z) = Z Cj ikl —2k P ma 1,0y (@) (3.2.17)
et
and
(ONE Z dj jrktr—2k1P Lt m+1,03 (T) (3.2.18)
st

where\ = {j,m,(},j=1,...,k, 1 =0,...,2™—1.In(3.2.17) to find th&k unknowns

{¢j1,¢j2,...,cja}, foreachj =1,... k, we solve2k x 2k linear systems

¢i(z;) = V2 Z ety (20 —1), i=1,... 2k (3.2.19)

,,,,,

The pointsz; are equidistant i0, 1] and given byz; = In the same way we can

find {dj,la dj72, e dj,Zk}-

2k+1

Next, we consider the reconstruction transform. BDue to decomposition (3.1.4) there
are two distinct basis for the spa&z’;,éjﬂ, namely®,,., and{®,, U ¥, }. Therefore,

everyf € V¥, | has two distinct representations,
)\/
and

=3 (aaon(@) + Bana(@)) (3.2.21)
A

where N = {5/, m+1,I'}, 5 = 1,...)k, ' = 0,....,2"" —Tand\ = {j,m,(}



j=1,...,k, 1=0,...,2™ — 1. Applying (3.2.17) and (3.2.18) to (3.2.21), we obtain

f(z) = Z Z (cjjrrr—aran + dj iy —2k100) Ogjrma1y ()

A g=1,k
1/=21,21+1

= Z {(cjrax+ dj1By) Dm0 () + ..+ (¢jpon + dj ) Pipm,any(2)
)
+ (¢jpr100 + dj p1150) ¢{1,m+1,21+1}($) + ...

+ (¢jon0n + dj ok 0) Pirmr1,21413 () - (3.2.22)

Then, comparing (3.2.22) and (3.2.20) we obtain the foll@uieconstruction relation-
ship. Fory’=1,...,k, [ =0,...,2™ —1,

agrmiray = Y (Gyon+dipB),
(3.2.23)

for A = {j,m,(}. Hence, (3.2.23) is the filter representation of (3.1.25faltiwavelet
bases. Therefore, repeated application of the local filk&.23) converts the coefficients
of the multiscale representation 6f; into the coefficients of the single scale representa-

tion of f;.

Finally, we consider the decomposition transformatign The projection coefficients of

f onto the spac&* are

ay = i f(z)pr(x)dx, (3.2.24)

and the projection coefficients onto the sp&iég are

Br = ’ f(x)a(x)dz. (3.2.25)
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Then, applying the two scale relationship (3.2.17) to @12.we obtain

ay = Z Cijrrrv—2ml [ f(@)Pgrmirpy(z)de
Iy

U/'=21,21+1

= Z Cj,j’—i—kl’—2kla{j’,m+1,l’}' (3.2.26)

j .
1/=21,21+1

Similarly, applying the two scale relationship (3.2.18)3a2.25), we obtain

Oy = Z dj,j/+k:l’—2k:l f(l’)gb{j/,m.;.uf}(l')dl'
Iy

j=1, .k
1'=21,214+1

= Z dj kil — 21O 1,10} - (3.2.27)

jl=1,... .k
1'=21,214+1

Hence, (3.2.26) and (3.2.27) are the filter representatfo{8.4.28) for multiwavelet
bases. Therefore, repeated application of the local f{{82.26) and (3.2.27), converts
the coefficients of the single scale representatiofypfnto the coefficients of the multi-

scale representation g¢f;.

Example 3.2.1. (Multiwavelet Basis).
To show the compression power of using a multiwavelet basisomsider the multi-

wavelet and scaling function representations of a fungtion

p

%sinllﬂx for0 <z < %,

31 o 1 21
% sin 80wy fors <z < o

f(x) = (3.2.28)

3 1 21
gsindm(z — 55) for 5 <o <1,

0 otherwise

as shown in Figure 3.3.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.3: the functiorf (x) of (3.2.28)

We consider the multiwavelet basis with vanishing momentsder 4, that is, k = 4.
Therefore, thanothermultiwavelets, foik = 4 shown in Figure 3.4, are obtained from

(3.2.10), using the functiong,i = 1,..., kin (3.2.14).
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Figure 3.4: The Mother Wavelets

The corresponding scaling functions are

¢1(x) =1,
bo(z) = V3(22 — 1),
(3.2.29)
¢3(x) = @(6x2 — 6z +1),
V28

pa(x) = T(20;::3 —302% 4+ 122 — 1).

We approximate the functiof{x) in the space$/,,, for M = 6,...,10. Table 3.1 con-
tains the results when the function is approximated usiegstaling functions. The dis-
cretisation error is denoted f — f,||, the error introduced when setting elements less
than a given tolerance to zero is denotgt}, — f,||. The total error is denoteflf — f,||-

The colummz b4 tol shows the number of non-zero coefficients before the tateren
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applied, tol shows the tolerance applied and is the remaining number of non-zero

coefficients.
M| |If = fsll | nz b4 tol tol I fo=TFoll | [[F=Tsll | nz
5 |3.53x107" 128 | 1x1071|1.88x 1071 |3.94x 107 | 27
6 |615x1072| 256 |1x1072|4.63x1072|7.87x1072| 80
7 1119%x1072| 512 |[2x107%|852x107%|1.37 x 1072 | 216
8 | 5.84x1073| 1024 |8x107*|5.07x107%|7.92x 1073 | 416
9 |150x 1073 | 2048 |2x107*|1.44%x1073|1.96x 1073 | 893
10| 7.14 x 107* | 4096 | 6 x 107> | 5.54 x 107* | 9.33 x 10~* | 1830

Table 3.1: Approximation of (x) using the scaling function basis

Table 3.2 contains the results when the function is appratechusing the multiwavelet
basis. The discretisation error is denotgd — f, ||, the error introduced when setting
elements less than a given tolerance to zero is denﬁ)f@dr ?wH- The total error is

denoted||f — f,|. From tables 3.1 and 3.2, it can clearly be seen that whenguthie

M| |If = foll | nzbdtol tol I fo = Full | 1|f=Foll | n2
5 1353x107"| 124 | 1x107'| 146 x107"|3.76 x 107" | 14
6 |6.15x1072| 250 |4x1072|581x1072{8.26x1072 |21
7 | 1.19%x1072| 504 | 7x1073]9.93x107% | 1.46 x 1072 | 33
8 | 5.84x107%| 892 |3x1073|4.81x1073|7.79x 1073 | 37
9 [150x 1073 | 1537 |6x107*|1.32x 1073 | 1.88x 1073 | 50
10| 7.14 x 107* | 2836 | 2x107* | 4.71 x 107* | 8.89 x 10~ | 60

multiwavelet basis significantly less terms are requiredefmresentf (z) than when the

Table 3.2: Approximation of (x) using the multiwavelet basis
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scaling function basis is used.

Chapter Review

In this chapter we have reviewed the basic properties of lwtsie/Ne have discussed the
multiresolution analysis, where a scaling function bdsjs= {¢, := 22 ¢(2™-—1), |\ =

{m,1},l € A,,} generates a sequence of nested subspaces of a Hilbert/$psiceh that
L.cVicVycViC...CH.

The difference spacél/,,,, between two nested subspaégsandV/,, . ; is spanned by the

basis®,, = {1\ := 22 (2™-—1), |A = {m,1},] € V,,}, wherey is themotherwavelet.

We have shown that any spatg;, has two distinct bases, namely, the scaling function

basis®,, and the wavelet basis

M-—1
oM = P, U U, .

m=mg

Therefore, when approximating a functignn the spacé/,; we have two choices, either

we can approximatg using the scaling function basi,,,
far = @300,

or using the wavelet basig"
M—-1

fu=®ag+ > TG,

m=mg
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Using the decomposition and reconstruction transformatio,, and R,,, respectively,
we are able to transform the scaling function approximatoefficientsa,, into the
B
wavelet approximation coefficienfs and vice versa. Due to the vanishing mo-

Bo

(&%)
ments property of wavelets, many of the coefficieBfsmay be small and can therefore

be discarded. This results in wavelets being widely usedoplieations ranging from

image compression and data denoising to numerical analysis

Following [10], we developed the basis functions we use is tiiesis, namely, the mul-
tiwavelets. These have the advantage that an increase andbeof vanishing moments
is obtained not by increasing the functions compact supperiwith wavelets, but by

increasing the number ofotherwavelets.
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Chapter 4

Multiwavelet Galerkin Methods

The approach we present in this chapter is in contrast to rotithat in current use in
the engineering community, where, because of the percarddeal complexity in di-
rectly using wavelet bases, many practitioners obtain tagircompression offered by
wavelets by adopting a two stage scheme. First, the starfmbanddary element matrix
is computed using the scaling function badeg for V. Then, a wavelet transform
is applied to obtain the coefficient matrix with respect te tavelet basis (3.2.8). The
resulting matrix is then compressed by the application dfrashold, see [38]. Whilst
this method results in some speed up of the solution timeoitsputational cost is still
O (N?). Here, we are interested in ‘real’ fast methods. By estingathe size of the
matrix elements, we are able to decide a priori which elemarg going to be too small
to affect the accuracy of our approximation. This way we dvamputing them in the
first place, resulting in a fast algorithm with computatiboast O (N log? N). Whilst,
here, we are only concerned with the Galerkin method, tHecation method with mul-

tiwavelets is considered in [39, 40].

In section 4.1 we consider the standard Galerkin methodneghect to the multiwavelet
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basis functions, whereas, in section 4.2 we introduce thmaled non-standard Galerkin
method, see [6], with respect to the multiwavelet basistions, [41, 42, 43]. For both
methods we obtain bounds for the size of matrix elementsidbiese bounds, compres-

sion strategies are developed. Finally complexity resurkspresented for both methods.

4.1 The Standard Galerkin Method

In this section we apply the Galerkin method using the maltiglet basisk’ . We order
the basis functions such th#" = ¥,, , U...U ¥, U ¥, U ®,. Therefore, the re-

UJM_]_ e qu llJO (po

W1

2

Wo
@y

Figure 4.1: The standard multiwavelet Galerkin matrix

sulting coefficient matrix with element$, ,» = (K, 1) has the symmetric structure
illustrated in Figure 4.1. Here, we see that the square d@gaocks contain interac-
tions between basis functions at the same resolution, \ekeodf diagonal blocks contain

interactions between multiwavelets at different resolusi
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4.1.1 Matrix Element Bounds

We consider matrix elements of the form,

Ay = / K(z,y)0x(y) oy (z)dydz (4.1.1)

Iy JIy

where\ = {j,m,l},withj =1,... . k;m=M—1,...,0andl =0,...,2™ — 1 and

={j,m 'Y, withj’ =1,... . k;m'=M—1,...,0andl' =0,...,2™ —1. I, isthe
support of the wavelet, (x) over the transformed boundary. Similarly; is the support
of the waveletyy, over the transformed boundary. The ker#@&lr, y) is the so-called
transformed kernel, when the integration domain is tramséal fromI" to [0,1]. The

kernels in many integral equations fall into the clasamdlytically standardunctions.

Definition 4.1.1. The kernelK(z, ) is calledanalytically standardof order « if the
transformed kernet(z, y) satisfies
2K (2, y)| < e—A LT (4.1.2)

d'lSt ( ~ A)1+\l|+|m\+a

where

K(z,y) = K (k(@), £(y)) [ |y, (4.1.3)

with 2 := k(z), y := k(y) and|x,|, |x,| are the Jacobians for the parametric map

[0,1] — T, [44].

We now give a result bounding the size of the matrix elemdnts.

Proposition 4.1.1. Let C(z, y) be an analytically standard kernel. Then, the matrix ele-

mentsA, y, as described in (4.1.1), satisfy the bound

9—(m+m')(k+3)—2k

Ay| <
Ayl < “(2k + 1) dist(Ty, Ty) H2kFa’

(4.1.4)
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for dist(T'y,T'y) > 0, whererl', is the support of the multiwavelgt, on the boundary'.

Proof: First, we expand as a Taylor series our analytically stahdamel in (4.1.1), up
to terms involving thek™ partial derivative ofC, about the pointzy, i), with z, taken

as the midpoint of ,» andy, as the midpoint of ,. Therefore, we obtain

— — oK oK
K(z,y) =K(zo,y0) + BN (x —x0) + BN (v — o)
x (:vo,yo) y (xo,yo)
oI ) )
+ = —— (xr —x0)"(y —yo) + ...
Z]ZQ Oz dy’ (0,y0)
1 OIIC , .
VP TR P — “y — o)’ 4.1.
+ (2]{3 _ 1) = axlayj (1’ xO) (y yO) + R, ( 5)

(z0,y0)
whereR is the remainder of the truncated series. That is,

1 I

R = T - A
(2k)! Nt Ozt 0y’

(x - xo)i(y - yo)j . (4.1.6)
(twvty)

Therefore, substituting the Taylor expansion (4.1.5) {Atd.1) and using the vanishing

moments property of the multiwavelets, in batlandy directions, we obtain

Ay | = 1 / / K
gl (2k)! 1, Jr, \ 9zF0yF

o1 ) 0**IKC
_— u —_—
~ (2k)! tzely,geh Oxkoy*

(z — xo)k(y - yo)k> Ua(y)w (z) dydax

(ta,ty)

X

(ta,ty)

/IA,/ x —20)"(y — y0) U (y)¥ow (2) dydz|.
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Then, using the Cauchy-Schwartz inequality yields,

1 K :
Ay v < —— sup _— / x—1x0)F dx| x
A < | S B, [ | (=)
%
[ an] o
I,
Now, we know that|y,|| = ||v\] = 1 and
Iy 2k+1 2—m'(2k+1)—2k
/ ([lf _ xO)Qk dr = 2‘k A ‘ _ ’
I 22k(2k + 1) 2k +1
N 9—m(2k+1)—2k
/ (y — o)™ dy = QL A =
I 22k(2k + 1) 2k+1
Therefore, we obtain
1 PRI 2—§m(2k+1)—k 2—%m’(2k+1)—k
[ Ay x| < E AR T Y : :
(2R)! |toery tyen, OxF0Y* | | V2 +1 V2k +1

2—%(m+m’)(2k+l)—2k

2k+1

0K
= — su _—
(2k)! tzely,geh Oxkoy*

(tz,ty)

Since, the kernel’(z, g) is analytically standard we use inequality (4.1.2) to abtai

| 1 9 L(mtm/)(2k+1)-2k (2k)!
< . : S
A S T IR T e e, istlnlE), )

2—(m+m’)(k+%)—2k

<
= 2k 1 1) dist(Ty, Dy)i2hre’

which is the result we requirél
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4.1.2 Compression Strategy

With the bound (4.1.4), we now follow [45] in developing a qamassion strategy for the
multiwavelets. The coefficient matriX,, is replaced by its sparse approximatidf,

where

0 diSt(FA/,F)\) > dm,m’
Af = (4.1.7)

A, otherwise
That is, instead of solving the linear system
AMuh = fh (418)
we replace the matrid,, by the matrixA% and solve the modified linear system

Afud =1, (4.1.9)

Therefore, the error introduced by the modified systerfuis— ug||,. We now find a

bound for this error. Using equations (4.1.8) and (4.1.9ph&in

d d d d
ApUp — Apuy + Apguy, = Aj Uy

AM (Uh — UZ) = — (A]\/j — A%/[) U;ll.

Therefore, taking norms we obtain

lun = ugll, < [l 457 ], [[ A = A5l [l
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Since A,, is a discretisation ofd : H®* — H*® it can be shown thaﬁA;jHQ <
) (k2M)|°“, also we can show thiiti,, ||, < c,, we obtain

Jun = uill, < du (k24) || 40 — AL,

Wheredl = C1Ca.

The valuesd,, ,,, are found so that the error in the solution with the modifiedrina
Al namerHuh — uﬁHT is of the same order as the discretisation error. We probged

studying the normj| Ay, — A4, ||, since|| Ay — A%/||, < VN ||Ay — AL ||, see [46].

HOO

Therefore,

up — ug]], < dy (B2M)'F2 || Ay, — A%, . (4.1.10)

Hence, in order to keep the error in the solution with modifieatrix A4, Huh —ud

2’
of the same order as the discretisation error, we find theegdly),,,,, such that the matrix
(Ay — AY)) satisfies,

o—M(lal+3)

4w — A4, <2 , (4.1.11)

wheren is an estimate for the discretisation error. Theorem 2.tates that for the

Galerkin method, the discretisation error is of the sameoas the approximation er-
ror by orthogonal projection. Moreover, Lemma 3.2.1 st#tasthe approximation error
when using multiwavelets to approximate the functioin the spacé’};, is bounded as

_ 2
[Pl =l <27 g s @)

Therefore, as an estimate for the discretisation error \@e us

d22—1\/[k
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We now proceed to find an estimate fpri,, — A%;|| . Let us denote bydA™™ the
natural submatrices of ; of sizek2™ by k2™ involving multiwavelet basis functions of
Wk andWW*,. We similarly denote byl™™' ¢ submatrices ofi¢,. We can now define the
submatrices

mm/

A _ Amm’ _Amm’,d‘

We bound the norm of the submatricds™ and use this to find the valués, ... There-

fore, summing along each row of the submatridés" we obtain,

= >, [ Axx|

N:dist(T'y/,I'x)>d

Z ‘ZA,A’
A/

m,m/

< Z 2k0_|_ 12_(m+m’)(k+%)—2kdist(rxa Iy~ (ke
N:dist(I'y,,I'x)>d

m,m/

(4.1.13)

As we are bounding away from the diagonal it is reasonablessorae thatl,, ,,, >
max{2~™,2"™ }. Therefore, we estimate the sum on the r.h.s of (4.1.13) biptagral

to obtain,

< LQ—(m+m/)(k+%)—2k.2m/ 92

Z ‘ZA,X
)\/

/ ‘x|—(1+2k+a) dﬂj
d /

—2k+1 o
_ c 2—(m+m’)(k+%)—2k2m’+1 1 —(2kl+a)
2k +1 2k +a ™™

Therefore, each submatrik™™" satisfies,

ER IS S
[o¢] N

& / 1 / —
< 9~ (m+m)(k+3)=2kgm/+1 4 (2kl+a)
‘J%m{@k+b@k+a) mm
— ¢ 2—(m+m’)(k+%)—2k2m’+ld;(ifl‘f‘a)‘ (4.1.14)

(2k + 1)(2k + «)
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Since we require, from (4.1.11) and (4.1.12), that

., M-1 - d2—Mko—M(lal+})
HAM - AMHoo = ognr?gaﬁ—l Z—:o HA o0 gk plal+s 7 (4.1.15)
we set,
! d2—Mko—M(jal+3)
HA < - (4.1.16)
o0 ARl 0

whered = g—j. Then, the valued,, ,,, are found by equating the r.h.s. of inequalities

(4.1.14) and (4.1.16),

M4kl{;‘]€l+|0“ 2k1+(¥ —2k(m+m/)—2k+14+M k+1+\a\
dm m = (& 2 9 e ( 2 ) . (4117)
’ A2k + 1) (2k + o)

Theorem 4.1.1.For k > a + |a| 4 1, the modified multivavelet Galerkin matrix using

the truncation value (4.1.17) h& (N log N) non-zero elements.

Proof. Since the structure of matriX,; is symmetric along the diagonal, as shown in
Figure 4.1, in this proof we consider only the upper blocrtgular part of matrixd,,,
namely, the submatrice™™ wherem > m’. Due to the truncation criterion (4.1.7),

each row of the submatri®™™ contains at mosp (2™'d,,, . + 1) non-zero elements.

Consider the submatriA-V®*-1) Each row of the submatrix contains at most
-M Sk—%—\a\)

O (2" Mdyraro1 + 1) = O | MTmM- 127w 41 =

L ]\1(2k+a)—]%(3k7%—\a\) | fM(kf%f\a\fa)
O M2k+a 2 2k+a —|— 1 — O M2k+a 2 2k+a —|— 1 =

—(k-3%-lal-a)

O| N~ 2+a log2k1+a N +1 | non-zero elements. Fér> a+|a|+1, N 7= 2

~(k-3%-lal)-a

— 0 asN — oo. Therefore, each row contains at mdfl) non-zero elements. The
submatrixAM=DM=1) has ¥ rows. Therefore, the submatrix contains at mosty)

non-zero elements.
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We now consider the submatrik®-D®™=2) - Applying the truncation valué; ; y;_»,
7(107%7\@\7&)

each row of the submatriAa»~1(M~2) contains at mosP (N 2 logZisa N + 1) =

O(1) non-zero elements. The submatA¥’/~1~2) has the same number of rows as the
submatrixA® =A™= ‘namelyS rows. Therefore, the submattig?~"*=2 contains

at mostO (%) non-zero elements.

Using the same argument for the submatrid€¥ -1, with m < M — 2, we infer that
each row has asymptoticall§(1) non-zero elements. Each of these submatrices’ghas
rows. Therefore, the submatricd§” =™, for m < M — 2, contain at mos® (%) non-
zero elements. In Figure 4.1, we can see that therd&are log N — log k submatrices

AM=1m < M — 1. Therefore, the submatrix
AM-1) < AM-DOM-1) L A(M=1)0 )

contains at mosb (4 log V') non-zero elements.

We now consider the submatrié? =2 (=2)Using the truncation valué,;  »;_», each
7(k7%7\a\7a)

row of the submatrixd(M-2(-2) contains atmos | N~ = logZra N + 1) =

O(1) non-zero elements. The submatrx’~2/=2) hasZ rows. Therefore, the sub-
matrix contains at mosp (&) non-zero elements. We now consider the submatrices
AM=2m for m < M — 2. Applying the same argument as above, each submatrix
AM=2m form < M — 2, contains at mosP (£') non-zero elements. In Figure 4.1, we
can see that there afé — 1 = log N —log k — 1 submatricesi™ =™ withm < M —2.

Therefore, the submatrix
AGI=2) < AM=2)(M=2) . A(M-2)0 )

contains at mosb (£ log V') non-zero elements.
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Applying the same argument to all levels, we infer that eatimsatrix A", for m < m’

contains at mosP (5 ) non-zero elements. Then, each submatrix
A= ( Ammo .. AmO ),

for 0 < m < M — 1, contains at most) (5 log V) non-zero elements. Therefore,
summing over all submatriceg’”, for0 < m < M — 1, the matrixA,, contains at
mostO (%logNJr%logNJr...—i-Q%logN) = O((%+i+...+2%)NlogN) =

O(N log N) non-zero elements]

4.2 The Non-Standard Galerkin Method

In this section, we use the so-called non-standard repiasemof an operator introduced
in [6]. Here, the non-standard representation is used aviaed® facilitate efficient

matrix-vector multiplication in the solution of the clasal Galerkin method. In the non-
standard form all levels are decoupled, that is, we only hatezactions between basis
functions of the same resolution. However, the price we gathat the non-standard
representation is an over representation involving theimaNelets and scaling functions

on all levels.

We consider the projection operataP : H*[0,1] — VF andQf : H*[0,1] — WE.
The classical form of the Galerkin representation of a bedrhear operatad : H* —

H*= in the spacd/}; is the matrix A, = PY,.AP},. Then, following [6] and using the
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fact thatQ* Pk — pk

m—1 — m—11

we rewrite Py, APY, as a telescopic expansion,

M
Py APf =Y [PEAPS — Pk APk || + PYAPS
m=1
M
=Y [(Ph—PE ) A(PL—PE )+ (Pt - DL ) APk,
m=1
+ Pr_A(PE —Pr )]+ PyAPy
M
=) (@ AQL  + QL JAPE |+ P AQY ]+ PIAPY,  (4.2.1)
m=1
where
QEAQEu =" Bl AT, by (), (4.2.2)
AN
Qb APSu =Y " V' By by (x), (4.2.3)
AN
and
PEAQEu =) BICYy éu (), (4.2.4)
AN

for \ = {yym, i}, N = {5/, m" '}, 5,/ =1,....)ks m =m' = M —1,...,0 and
[,I' =0,...,2™ — 1. The coefficientsx,, = {a}'} are the projection coefficients of a
functionu into the spacd’*, likewise, the coefficient®,, = {37} are the projection

coefficients into the spad&’*. That is,

Phu=> (u,¢2)0r =D _ ooy
A

A
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and

Qbu =" (u,da)r =D Blx.
A

A

We define the coefficientdy',,, BY,, andCY’,, as

Ay o= (A, ), (4.2.5)

By = (Adx, ¥), (4.2.6)
and

Clly 1= (A, o), (4.2.7)

where the superscript, signifies thatn = m’. Note that in section 4.1 submatrices are
denoted byd™™ but here we only have submatrices where= m/, therefore we denote

them by A™. We now, define the submatricds® of sizek2™ by k2™ as

Am =
m m m m
Al,m,O;l,m,O T Ak,m,O;l,m,O tt Al,m,2m—1;l,m,0 tt Ak,m72m—1;1,m70
m m m m
Al,m,O;k,m,O to Ak,m,O;k,m,O tt Al,m,?”—l;k,m,O tt Ak,m,Zm—l;k,m,O
m m m m
Al,m,O;l,QO—l to Ak,m,O;l,m,T”—l tt Al,m,Zm—l;l,QO—l tt Ak,m,2m—1;1,m,27”—1
m m A™m m
1,m,0;k,m,2m—1 - - k,m,0;k,m,2m—1 - 1,m,2m—1;k,m,2m—-1 k,m,2m—1;k,m,2m—1

The submatrice™ andC™ are similarly defined. Furthermore, B, := (A, ¢).

Then, the matrix representation of the operd®pd P} can be defined analogously 14y
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and we denote it by°.

We are now able to present the matrix representation of tasd@pic expansion, namely
the non-standard matrix. The non-standard mdtijx, of size2k (2™ —1) by 2k(2M —1),

is defined as

AM—l BM—l
C«M—l

AM—Z BM—2

KM = CM_2 . (428)

A BO

c’ D°

Therefore, when using the non-standard matrix, rathertti@standard matrix of section
4.1, we only have interactions between basis functions @fsime resolution. That is,
the matrix only involves the matrix blocké™ and not the off diagonal blockd™"™" of

the standard matrix. Consequently, the domains of integrdor the elements of the

non-standard matrix are the same size.

In the non-standard method, the non-standard matrix (Aiused to efficiently compute
the matrix-vector produdt,, = A, x, where A, is the classical Galerkin matrix, that is
the coefficient matrix with respect to the scaling functiasis. The elements of the vector
x are with respect to the scaling function ba®ig. Hence, the vector is of lengthk27.
Therefore, the vectax needs to be transformed to the vecyomf length2k(2M — 1),
whose elements are with respect to the over representglign ; U ®,, ;U...U ¥ U

&, U W, U D).

The decomposition transformatidhi,, of section 3.1.3 transforms the vectar,,, of

73



lengthk2", to the vecto, ,,_,, of lengthk2". That is,

Tyvon = Boar-1;

where

/61\/[—1

Bony-1= B4
Bo

(87}

Therefore, when using the non-standard method the decadtigposansformation’’,,
cannot be applied. Instead we introduce the decompositimsformatiori’,;. For0 <

m < M—1, we definé2k(2 — 1) — 2k (271 —1)] x [2k(2™ — 1) — 2k(27 1 — 1) + k2 +]

matrix
L 0
Tum=10 1, |, (4.2.9)
0 G,

where | is the identity matrix of siz&k(2™ — 1) — 2k(2™! — 1) — k2m*! and | is
the identity matrix of sizék2™*! and G,, is the matrix (3.1.28). Fomn = M — 1,

Tarrv—1 = Taar—1- Then, the decomposition transformatibyy is defined as,

Ty =Tmo - Trn—1-

The decomposition transformatidn,; acts on the vectat,,, of lengthk2™, and results
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in the vector

8, | (4.2.10)

of length2k (2 — 1).

We also require the reverse transformation, the recortgirutransformation?,;. For
0 <m < M — 1, we define thé2k (2™ — 1) — 2k(2™F — 1) + k2™ x [2k(2M — 1) —
2k(2™T1 — 1)] matrix

I, 0 O

Rypm = , (4.2.11)
0 1y C,

wherel; andI, are the identity matrices of si2& (2 — 1) — 2k(2™+! — 1) — k2m*! and
k2m+1, respectively, and,, is the matrix (3.1.25). Fann = M — 1, Ryjar—1 = Ryrv—1-

Then, the reconstruction transformatiBiy, is defined as,

Ry = Rarp—1 -+ Rarp.

Using the decomposition and reconstruction transformatfic,, and R, respectively,
the non-standard matrix can be used to efficiently compuwenthtrix-vector product

by = AS,X, as follows:

1. The decomposition transformatiah, is applied to the vectox, of length k2.

This results in a vectoy, of length2k (2 — 1), whose elements are with respect to
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the over representationt,, ; U®,, ;U...U¥; UP, U¥,UPy}. Thatis,

TX =Y.

Note that in practice the matric&s, ,, are not formed. Instead, the decomposition
filters (3.2.26) and (3.2.27) are applied; when the nonegstethmethod is used, co-

efficients with respect to the basés, are stored. However, when the filters (3.2.26)
and (3.2.27) are used to apply; in the standard wavelet case, the coefficients with

respect to the basi,, are not stored.

. Then, the vectoy is premultiplied by the non-standard matrk,,, to obtain the
vectorz,

Kyy =1z

. The reconstruction transformatidty, is applied to the vectar, of length2k (2 —

1), to obtain the required vectbn, = A$,x of lengthk2". That s,

RMZ = bM

Note that in practice the matricéd,, ,,, are not formed. Instead, we apply the filter

(3.2.23) as follows. Consider the vector

AM_I/BM—l + BJ\/[—la]V[_1

CM=18,, 4

z= A'B, + B'oy : (4.2.12)
C'1/31
A8, + B«
C°By + D«
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which is the vector (4.2.10) premultiplied by the non-stamldmatrix<,,. We note that
D"a,, is only present forn = 0. By applying the reconstruction filter (3.2.23) we

reconstructD™a,,,, for m > 0. We start by applying the filter (3.2.23) to the vector

A8, + By
Coﬁo + Doao

to obtain the vectob,, of length%2!. Thatis, forj’ = 1,..., kandl = 0,1,

b{j/ 120} = Z Cj.j! < C ﬁO G0} -+ [Doao} {].707”) —+ dj,j’ <[A0ﬁ0} G0} + [BOaO} {j,O,l}) ,

b{j’,1,2l+1} - Z Cjg'+k <[0050] {4,0,1} + [Doao}{j,OJ}) + djjrrk ([Aoﬁo} {5,0,1} + [BOO‘O} {jp,l}) )

J=1

The vectolb, is then added to the vect6r' 3,. Therefore, we obtain the vector

M-1 M-1
AT By + BY T o

CM=18y,

Al/ﬁl + Blal
Clﬁl + b1

of length2k (2 — 1) — 2k. The filter (3.2.23) is now applied to the vector

A'B, + Blay
Clﬁl + b1
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and we obtain the vectdm,, of lengthk22. That s, forj’ = 1,...,kandl =0, 1,2, 3,

b{jf,2,2l+1} = Z Cjj'+k ([0151]{]-71,;} + [bl]{j,u}) + djvj’+k <[Alﬁ1}{j,1,l} + [Blal}{j,l,l}> )

i=1

The vectolb, is then added to the vect6r*3,. Therefore, we obtain the vector

M-1 M-—1
A ,3]\/[_1 +B A pNr—1

CM=18y,

A2,62 + B2a2
02ﬁ2 ‘|‘ b2

of length2k (2 — 1) — 6k. This is repeated for each level, until the vedigy, of length

E2M is recovered.

Therefore, if we wish to solve the classical Galerkin system
Ai\/luh = fh,

using an iterative solver, rather than forming the full matt$, we form the sparse non-
standard matrix¥s ;. Then, for iteration, the vectoh® Afw ) can be computed as
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4.2.1 Matrix Element Bounds

We consider the matrix elementt;’,,, BY',, andCY",, of (4.2.5), (4.2.6) and (4.2.7),

respectively, where the operatdrhas the form

(Au) (z) = /0 Kz, y)u(y) dy. (4.2.13)

Then we have the following result.

Proposition 4.2.1.Let K(z, y) be an analytically standard kernel. Then, the matrix ele-

mentsAY',, in (4.2.5) satisfy the bound

2—m(2k’+1)—2k

<ec (4.2.14)

AT,
‘ S (2k + 1) dist(Ty, T'y) 1 H2k+e’

for dist(T'y,,I"y) > 0. Moreover, the matrix eIemenIB;’}X and Clly of (4.2.6) and

(4.2.7), respectively, satisfy the bound

2—m(k+%)—k
=c T+hta’
V2E + 1 dist (D, Ty) TFre

| B3y (4.2.15)

| Oy

for dist(T'y, ")) > 0.

Proof: The bound (4.2.14) follows from proposition 4.1.1 by legtin. = m’. To obtain
the bound (4.2.15) for

By, = /I [ T orinta) dydo (4.2.16)

we rewrite the kernelC(z, y) as a(k + 1)-term Taylor expansion about the pojat, y),
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with z, taken as the mid-point of,.. Therefore, we obtain

K(z,y) = K(zo.y) + 2K

1 9K
e (x —x0) + ...

21 Ox2 (zo.w)
N 1 oK
(k—1)! 9zk—1

(z0,y)

(x —z20)" '+ R (4.2.17)

(z0,y)

whereR is the remainder of the truncated series. That is,

1 OFKC
R:_8K

7 5k (z — 20)". (4.2.18)

(tz,y)

Therefore, substituting the Taylor expansion (4.2.1%) (4t2.16) and using thievanish-

ing moments property of the multiwavelets we obtain

1 oFIC
B /——/ — z — z0) o (y)Ur(z) dydx
| B A 8$k(”y)( 0)" dx (Y) ()
1 oFIC
<t ap Zh / | o= aof oy (o) dyds].
|tz€lys,yely X (tz,y Iy JIy

Then, using the Cauchy-Schwartz inequality yields,

1

1 'K
Baxl < | s S [ 2 [ (0o >2kdx] ol lex
© |t €1y, y€ly xr (tz,y) Iy
1 aklc 2——m’(2k+1) -
< — su — 272
~ k! tzel/\/SGIA Ok (ta,y) v2]€ +1
where we have used the facts thaf || = ||+x|| = 1 and
IN 2k+1 2—m(2k+1)—2k
/ (..'1:' . I'O)Zk dr = 2|k)\ | — )
. 2% (2k + 1) 2k + 1

A/
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Since, the kernel’(z, g) is analytically standard we use inequality (4.1.2) to abtai

1 2—m(k’+%)—k (k)l
‘B/T\’LX <—————¢ sup . Tk
: KU V2 +1  teerygery dist(k(ty), k(y)) ' Hete
2—m(k+%)—k

<c ,
o vV 2k + 1d’i8t(r)\/, FA)H'IH'O‘

which is the result we require. To prove the bound for matiexreentsCY",, we proceed
as above for elements d#}’,, except we consider a Taylor expansion about the point

(x, yo), With y, the mid-point of7,. O

4.2.2 Compression Strategy

With the bounds (4.2.14) and (4.2.15) we now develop a cosspye strategy for the non-
standard Galerkin method with multiwavelet basis funaioihe non-standard matrix
K is replaced by its sparse approximatisit” . That is, the submatrice4™, B™ and

C™ are replaced by the sparse submatri¢&s’, B™% andC™® where

(

p 0 dist(Fx, F)\) > d,,
Apd = (4.2.19)

\Ag’fk, otherwise,

p

z 0 dist(Fx,F,\) > d;n
B = (4.2.20)

BY',, otherwise,

\

and

J 0 d'iSt(F)\/, F)\) > d;n
opd = (4.2.21)

Cy', otherwise.
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The valuesi,,, andd,, are found so that the error in the solution with the modifiedrima

K is of the same order as the discretisation error.

The submatriced ", B" andC"" are defined as

A" = A — A

m

B" .= B™— B™?,

and

m

c"i=cm—om?

We now bound the norm of the submatric€s, B andC"". These are then used to find

the valuesi,, andd,,. Using the bound (4.1.14) witlhh = m/, we see that

140 < Grrp@Er T

9= 2k(mF1)+1 g~ (2h+a), (4.2.22)

We now find a bound foff B"|| _,

N dist(I'y,T'x)>dh,

c 2—m(k+%)—k

< max > —  dist(Ty, Ty 0 b (4.2.23)
A N:dist(Dy,Da)>d,, Y 2k +1

As in section 4.1.2, it is reasonable to assumedhat 2~. Therefore, we estimate the
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sum in (4.2.23) by an appropriate integral to obtain

. C2—m( +§)—k 00
Bm —2m2 —(14+k+a) d‘
I < {2 2 | [

9—k(m+1)+5m+1 N
= max { ¢ - d/m(H )

V2k+ 1(k + «)
c 2—k(m+1)+§m+1

— d/ k) 4.2.24
V2k+1(k+a) ™ ( )

Similarly, we obtain

o c 2—k(m+1)+%m+1 B
ol < d/ -kt 4.2.25
1" < ot vy 4 (4.2.25)

We now consider the larger submatrices

A" B™
E™i=1 _ , (4.2.26)
c" o0
which satisfy
IE™ |l < [ A7) o + 1B™ - (4.2.27)

Therefore, the difference between the full non-standardix&’,; and its sparse approx-

imation can be written as

Ky — K& = . (4.2.28)

El

In order to keep the error in the solution with the modified +stendard matrii(f@d' to
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be of the same order as the discretisation error, we require

d2—Mk2M(\oz|+%)

o~ MAkElka—

d,d
HKM K

)
whered = j—f Since

Ky — K&\ = max ||E™]_, (4.2.29)
M o)

0<m<M-1

using relationship (4.2.27), we set,

d2—MkoM (al+3)

EM < |[A™]_+IB™|. < 4.2.30
H ||oo — H Hoo H Hoo - M4kk"k‘%_a ( )
Therefore, to find the values, andd,, we set,
. d2—MkoM(lal+3)
A7, < — (4.2.31)
> 2MARE k2~
and
. d9—MkoM(ja|+3)
IB"||. < . (4.2.32)
o 2MARK k2~
Then, equating the r.h.s of (4.2.22) and (4.2.31) we obtain,
of ) 7
2cAR kI M s+ ¢ —2k(mA D1+ M(k+ S +a)
n (d(% Dkt a)> o (4.2:33)
Similarly, the r.h.s of (4.2.24) and (4.2.32) we obtain,
_1
;n _ 2C4kk!Mk%+la\ Eto ,k(m+1)+%nzTJM(H%Ha\) . (4.2.34)
d(2k +1)(k + «)
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Theorem 4.2.1.Let|a| > k — i. Then, the modified multiwavelet non-standard matrix

1+

using the truncation values (4.2.33) and (4.2.34) ﬁhéN” e logk%a N) non-zero

elements, wher&/ = k2M,

Proof:

First we consider the submatrix-!. Applying the truncation valué,,_; to the sub-

. . , M k—%—\a\)
matrix AM-1 each row contains at moét [ M 2x+=2 2+a +1] =

— (k=3 +lal)

—(k=3%-lal)
(@) <N e log2k1+a N +1 | non-zero elements. Fo| < k — 1, N7 7= — 0

asN — oo. Therefore, each row contains at m@3tl) non-zero elements. The sub-
matrix A~ hasZ rows. Therefore, the submatrix contains at mOsty') non-zero
elements. Applying the truncation valdg, , to the submatrice8*~! andC -1, each
row contains at most (N% logk%a N) non-zero elements. Since the submatrices

BM-1 andCM-1 poth have% rows, the submatriceB™ - andC™-! contain at most

1+|af
o (N TFie gt N) non-zero elements. Therefore, the submafii~' contains at

2

N 1
mostO log¥= N ) non-zero elements.

2

We now consider the submatrix—2. Applying the truncation valué,;_, to the sub-
-M kféf\a\)

matrix A¥~2, each row contains at mogt | Mz a2z + 1) = O(1) non-zero

elements. The submatrix*—2 has% rows. Therefore, the submatrix contains at most
@ (%) non-zero elements. Applying the truncation valljg , to the submatrice®—2

. la| .
andC™ 2, each row contains at mo&x <N1k+? logﬁ N) non-zero elements. Since the

submatrices3"~2? andC*~2 both haveZ rows, the submatriceB8’~2 andC*~2 con-

1+|a]

tain at most» (N 4’““ logk%a N ) non-zero elements. Therefore, the submaltii—2

1+]al 1
contains at mosp (N = logka N) non-zero elements.

Using the same argument the submatrie&s for m < M — 2, contain at most
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1+ lfr\g\ 1 . .
@) (% log#= N | non-zero elements. Therefore, summing over all submatrice

E™form =0,..., M — 1, the non-standard matrix®? contains at most

14|« 14|«

© <(% + i + ...+ 21\4_1—771) N1+m logﬁ N) - O<Nl+ Fe logk%t N) non-zero ele-

ments.]

Chapter Review

In this chapter we have introduced the standard and nowtatdiGalerkin methods with
multiwavelet basis functions. For the standard Galerkithoe, in proposition 4.1.1 we
found an upper bound for the size of matrix elements. Usiiglibund in section 4.1.2
we have developed a compression strategy where the errodutted by setting small
matrix elements to zero is of the same order as the disdietiserror. Using this strategy

we only compute and sto® (N log N) elements.

For the non-standard Galerkin method, In proposition 4x&Ifound upper bounds for
the size of matrix elements of the submatriegs, B™ andC™. Then, with these bounds
in section 4.2.2 we have developed a compression strateggevihe error introduced by
the compression is of the same order as the discretisation dgsing this strategy we

o
only compute and stor@(N”lle logk%v N) elements.

These methods can then be combined with a conjugate gragiatscheme to solve
Au = f, [47]. In the next two chapters we apply the methods develdpe to the
radiosity problem and Laplace’s equation with Neumann antiidet boundary condi-

tions.
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Chapter 5

The Radiosity Problem

For the past two decades it has been the aim of researchesputer graphics to create
images of non-existent environments, see [48, 49, 50, 5aftieal applications for such
methods range from industrial and architectural desigrdt@#ising and entertainment.
The creation of an image by evaluating a model of light pregiag is calledmage syn-

thesis Early image synthesis models were based on local illuntnathere each surface
is considered separately from all other surfaces. Greatdism requires that global il-
lumination models are used, which take account of the irgiiection of light between

surfaces. In a global illumination model, when we considgivan surface in an environ-
ment, all other surfaces can be considered as light emittergarly method for solving

the global illumination problem was the ray tracing methéthwever, when using this
method if the position of the viewer is changed the solutias to be recomputed. Later
methods applied the radiosity techniques of radiant haasfers to the global illumina-
tion problem. Using these techniques the global illummraproblem can be modelled
mathematically by a second kind integral equation, thetswiwf which is viewer inde-

pendent. In this chapter we use the results of chapter 4 @ sokecond kind integral
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equation which is the mathematical model for the globahililnation or radiosity prob-

lem.

In section 5.1 we introduce the radiometric quantities tiesticribe the movement of light
in an environment. Then, using the radiometric quantitieslerive the radiosity equation
in section 5.2. Finally in section 5.2.1 we present sevenaherical examples using the

multiwavelet Galerkin methods of chapter 4.

5.1 Radiometric Quantities

In this section we introduce the physical quantities thatrabterize radiant energy trans-

fers.

The physical quantity used to describe the transfer of raéiaergy igadiance denoted
by L. Radiance is defined as the amount of energy travelling aégmimt in a specified
direction, per unittime, per unit area perpendicular todinection of travel, per unit solid
angle. Therefore, the energy radiated in a solid adgldrom differential arealp, during
time intervaldt is,

L(p, 0;, ;) dp cos b; dwdt (5.1.1)

and the powefP radiated in this direction satisfies
d*P = L(p, 0;, ;) dp cos b; dw. (5.1.2)

Due to it's “per unit solid angle” definition, radiance doex decay with distance. There-
fore, a knowledge of the radiance leaving all surfaces ishalt is required to create a

image of an environment from any viewer position.
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In (5.1.2) we describe the power leaving a point on the sarfia@ specific direction. To
obtain the total power leaving a point on the surface we natieg5.1.2) over a hemisphere

Q,

dP:/dzP
Q

= dp/ L(p, 0;, ;) cos 0; dw. (5.1.3)
Q

Dividing this bydp we obtain the power per unit area at a pgnor theradiosity, denoted

by B, at pointp,

_ar

=D

= / L(p, 62‘, ()02) cos 62 dw. (514)
Q

B(p)

To describe the light sources in an environment we introdlbeejuantityexitance Exi-
tance is defined as the energy radiated per unit time, peatgat Exitance is similar to

radiosity in that it can be expressed as the integral of théeshradiance,

E(p) = / Lo(p. 05, 1) cos s duw. (5.1.5)
Q

To be able to fully describe the transfer of light within avieonment, in addition to the
quantities already described we require a knowledge ofdfieative properties of all the
surfaces in the environment. The reflecting properties affangmaterial are described
by the concept of reflectance, specifying the charactesisif the reflected light. The
most general expression of reflectance idtickrectional reflectance distribution function
(BRDF). The BRDF is the ratio of the radiance in the reflectedation and the radiant

flux density (power per unit area) in the incident directidhis a function of both the
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Figure 5.1: Notation for the definition of the BRDF

incident and reflected directions and is denotgd The incident radiant flux density
coming from a differential solid anglév around the directio(¥;, v;), as shown in Figure

5.1,isd©; = L; (p, 0;, ;) cosb; dw. Therefore, we can write the BRDF as

L (pu 0, WT)
p7 6i7 @Z) COS 92 dw

Pbd (‘97"7 @r;em%) = I ( (5-1-6)

5.2 The Radiosity Equation

In the general case, the energy equilibrium for a set of temjasurfaces is expressed by

the following integral equation,

L(p767‘7¢7‘2: L6<p797‘7¢7‘2+/ pbd(p7‘9M¢T79i7¢i)Li<p79i7¢i) COS@Z' dw . (521)
~~ ~~ Q

&

total radiance emitted radiance ~~
reflected radiance

The first term on the r.h.s. of equation (5.2.1) represemtdigint emitted by the surface,
this is only non-zero for light sources. The second term anrth.s. represents the

effect of light reflected from other points on the surfaceingghe radiosity method we
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solve a simplified version of equation (5.2.1), under theiagdion that all surfaces are
ideal diffuse reflectorsThat is, the surface reflects light equally in all directohen,
the BRDF is independent of both the incident and reflectegictdons and reduces to a

function of position only,

Pbd (p7 97‘7 Pr, 0i7 SOZ) = pbd<p)

As we now show, we can now use radiosity to describe the lighhienvironment, rather
than the radiance. Under the assumption that the surfaeesl@al diffuse reflectors,

radiance is a function of position only, that is

L(p,0;, ;) = L(p).

Then, substituting this into equation (5.1.4) we obtain,

B(p) = L(p) / cos 0; dw

Q

T 2
p) / / COS HZ sin 62 d&ld(pl
0 0
)

= L(
=nL(p).

(5.2.2)

Thus, radiosity is proportional to radiance and they candslunterchangeably to char-

acterize light leaving ideal diffuse surfaces. Similav obtain
E(p) = mL.(p) (5.2.3)

and therefore, we can interchange exitance and emittedrregli If we now substitute
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relationships (5.2.2) and (5.2.3) into equation (5.2.1pbtin,

B(p) = E(p) + mpsa(p) /Q L; (p, 0;, ;) cosb; dw. (5.2.4)

Let g be a point visible from the poirg in the direction(d;, ¢;), then the poinp is also
visible from the pointg in the direction(6;, ;). Therefore, the invariance of radiance

along a line of sight states that

Then, using relation (5.2.2) we have that the incident razBaat poinfp is proportional

to the radiosity at poing, that is,

Li (p,6;, i) = ? (5.2.5)

The integral in equation (5.2.4) is now written as an integvar all surfaces in an envi-

ronment by expanding the differential solid angle,

S g

cosfidl'q -
: in2D
lp—a|

and setting the domain of integration to be the set of allas@$ in the environment that
are visible from poinp. This is achieved by including a visibility functidri(p, q), such

that

1 if pandq are mutually visible,
V(p,q) = (5.2.7)

0 otherwise.
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Thus, in two dimensions, equation (5.2.4) reduces to thieség equation,

cos 0; cos 0’

B(p) = E(p) + pra(p) / V(p,q)B(q)dlq, (5.2.8)

r |p—d

where the exitanc&(p) is known and the radiositi3(p) is unknown.

5.2.1 Numerical Results

We now present the numerical results for a radiosity prola@man ellipse of circumfer-
ence4sw, with minor axis1.29704815 and major axi.5940936 centered at the origin.
We consider the environment when two light sources are glage, = (1.2477, 27) and

p, = (1.1909, %ﬂ) with strengthd .5 and1, respectively. We first consider the solution
of the problem using the non-standard Galerkin method dsadiin section 4.2. We then
consider a standard Galerkin method using a multiwavelgisban practice for the ra-
diosity problem we do not know the exact level of discretmaerror,n. Therefore, we

estimate the discretisation errorias- k2=,

Non-standard Results

In tables 5.1-5.4 the columjhu, — || is the L, error introduced when using the non-
standard Galerkin method. The column is the number of non-zero elements of the
matrix that are computed. The colurfihgives the percentage of the matrix entries that
have not been computed without any detrimental effect testhetion. Here, the conju-
gate gradient square (CGS) method, [47], was used to sadvintar system, and never

required more tham6 iterations to converge.
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M ||un, — @] nz %
4 |5.3428 x 107! 164 35.94
5 |3.3755 x 1071 | 420 | 59.98
6 | 1.9688 x 1071 | 1412 | 65.53
7 | 8.6546 x 1072 | 5224 | 68.12
8 | 4.7271 x 1072 | 19016 | 70.98
9 | 3.0266 x 1072 | 66576 | 74.60
10 | 1.7667 x 1072 | 240080 | 77.10
Table 5.1:k =1
M |lun, — | nz %
4 | 1.2856 x 107! 028 48.44
5 | 2.8012 x 1072 1936 52.73
6 | 7.1220 x 1073 6816 58.40
7 121748 x 1073 | 23968 | 63.43
8 |6.1847 x 107* | 89312 | 65.93
9 | 1.5865 x 1074 | 352192 | 66.41
10 | 6.5420 x 1075 | 1283136 | 69.41
Table 5.2:k = 2
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M ||un, — @] nz %
4 | 1.3822 x 1072 1476 35.94
5 | 1.5213 x 1073 4356 | 52.73
6 | 2.1048 x 1074 15480 | 58.01
7 | 25693 x 107° | 59112 | 59.91
8 | 3.6313 x 107% | 232056 | 60.66
9 | 4.0529 x 107 | 882288 | 62.60
10 | 4.90529 x 1078 | 3509712 | 62.81
Table 5.3:k =3
M |lun, — | nz %
4 119113 x 1073 2624 35.94
5| 1.1138 x 10~* 7744 52.73
6 | 5.6804 x 107¢ | 29312 | 55.27
7 | 3.4306 x 1077 | 109440 | 58.25
8 | 3.9489 x 1078 | 420736 | 59.88
9 | 1.2869 x 1072 | 1619200 | 61.40
Table 5.4:k =4
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The sparsity patterns of the non-standard matrices fer3, M = 8 andk = 4, M = 8
are shown in Figures 5.2 and 5.3, respectively. Studyingtifueture of the non-standard
matrices in Figures 5.2 and 5.3 we can clearly see that thBwawuklet levels have been
fully decomposed, that is, there are only interactions betwmultiwavelets and scaling
functions of the same resolution. We also note, that duedmthsence of two multi-
wavelets the banding of the submatrice€s & significantly tighter than the banding of

the submatrices'Band C".

0

N

500

1000

"y

a

1500 , , r
0 500 1000 1500

Figure 5.2: Non-standard matrix:= 3, M =8
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Figure 5.3: Non-standard matrik:= 4, M =8

We note that in tables 5.1-5.4, thieof matrix entries that have not been computed without
any detrimental effect to the solution, is higher fo& 1. This is due to the fact that &s
increases the approximate discretisation error decreapedly to the level of computer
accuracy. For a given problem, once we decide on the numberottier waveletsk
and the level of discretisatiol/, the non-standard and standard matrid€g, and A,,,
respectively, are fixed. Moreover, using Theorem 2.4.4 aamdrha 3.2.1 we see that the

discretisation error is bounded as

|u — up|| < ch® sup ‘u(k)(x)‘ : (5.2.9)
z€[0,1]

Now, if the problem is “difficult” the bound (5.2.9) is larg&herefore, we can set many

of the entries of the non-standard and standard matri€gsand A,,, respectively, to
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zero. If the problem is “less difficult” the bound (5.2.9) maller. Therefore, less entries
of the non-standard and standard matridég, and A,,, respectively, can be set to zero.
Hence, due to the fixed accuracy of computers the optimal ity estimate may not
always be observable. In Figures 5.4 and 5.5 we plot the nametements of the non-
stand matrix fork = 3, M = 8, when entries less tha)—® and10~°, respectively, have

been set to zero.

500

1000

1500

0 500 1000 1500
nz = 36238

Figure 5.4: Non-standard matrix with a threshold®: k = 3, M = 8
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nz = 6528

Figure 5.5: Non-standard matrix with a threshold®: k = 3, M =8

Standard Results

In tables 5.5-5.8 thé, norm of the error of the compressed system is denoteld.by @, ||
andnzis the number of non-zero elements. The colufgives the percentage of the
matrix entries that can be set to zero without any detrimlezffact. Here, the CGS
method was used to solve the linear system, and never requives thari 6 iterations to

converge.
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<

|un — Tl

nz

%

© oo N O Ot

6.9223 x 10~
3.3883 x 107!
1.3372 x 1071
5.7805 x 102
3.4555 x 102
2.3982 x 102
1.4199 x 1072

30
146
442

1078
2486
4718
8102

88.28
85.74
89.21
93.42
96.21
98.20
99.23

Table 5.5:%

| wn — ||

nz

%

1.3481 x 107!
2.5724 x 1072
6.8517 x 1072
2.1018 x 1073
6.0852 x 10~*
1.4283 x 1074
6.3136 x 10~°

168
416
1300
2354
2882
14534
23824

83.59
89.84
92.07
96.41
97.76
98.61
99.43

Table 5.6:k = 2
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M ||wn — @] nz %
4 | 45796 x 1072 | 138 | 94.01
5 | 1.0363 x 1073 | 1134 | 97.70
6 | 2.2526 x 10~* | 3192 | 91.34
7 23683 x 107° | 8284 | 94.38
8 | 3.8771 x 107% | 18940 | 96.79
9 | 4.0126 x 1077 | 46397 | 98.03
10 | 4.5481 x 107% | 109532 | 98.84
Table 5.7:k =3
M ||un, — @] nz %
4 111632 x 1073 | 773 |81.13
5 | 1.2851 x 107* | 2457 | 85.00
6 | 6.5478 x 1076 | 6693 | 89.79
7 | 2.7598 x 10~7 | 19158 | 92.69
8 |2.9482 x 107% | 48010 | 95.42
9 | 1.8780 x 107 | 116126 | 97.23
Table 5.8:k =4
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The sparsity patterns of the standard matriceskfor 3, M = 8 andk = 4, M =

8 are shown in Figures 5.6 and 5.8, respectively. The spapsitterns display the so-
called ‘finger’ structure, this occurs when the kernel of thiegral equation has non-
polynomial like behaviour along the diagonal. Figures ;d 8.9 show the eigenvalues
of the respective matrices clustering abbuin this case we know that conjugate gradient

type schemes have fast convergenc&)in) iterations.

0 T T T T T T T

,1
100 H&‘

;!

%

i

200
'
300 “
'
400f ]
500} i

600

M
700 "
[ ——————— s 2. . e S -,
o I e [ o
0 100 200 300 400 500 600 700

nz = 18940

Figure 5.6: Standard Matrik: = 3, M =8
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Figure 5.8: Standard Matri: = 4, M = 8
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Figure 5.9: Standard Matrix Eigenvalués= 4, M = 8

In Figures 5.10 and 5.11 we plot the non zero elements of drelatd matrix fok = 3,

M = 8, when entries less tha—® and10-%, respectively, have been set to zero.
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Figure 5.10: Standard matrix with a threshold™®: k = 3, M = 8
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Figure 5.11: Standard matrix with a threshold®: &k = 3, M = 8
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Chapter Review

In this chapter we have introduced image synthesis, théioneaf an image by evaluating
amodel of light propagation. Image synthesis methods hagtipal applications ranging

from industrial and architectural design to advertisind antertainment.

We have discussed the physical quantities that charaeteazant energy transfers, namely,
radiance, radiosity and exitance. The transfer of lightrireavironment is governed by

the equilibrium equation,

L(pa 97“7 ¢r) - {/e(pa 97“7 ¢rl+ / pbd(p: 97”7 ¢r7 92’7 ¢2)Lz(pa 92’7 ¢z) COs 92 dw .

Q

-

total radiance emitted radiance ~
reflected radiance

We assume that all the surfaces in the environment are idiasel surfaces. That is,
they reflect light equally in all directions. Under this asgtion, radiance is proportional
to radiosity and emitted radiance is proportional to exa@anrherefore, radiosity can be
used to describe the transfer of light in an environmentctviis now governed by the

radiosity equation,

cos 0, cos 0’

B(p) = E(p) + pra(p) / “V(p,q)B(q)dl.

r |p—d

We have presented numerical results for the solution of ddeosity equation, for both

the standard and non-standard methods have been obtained.
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Chapter 6

Numerical Solution of Laplace’s

Equation

In this chapter we consider the numerical solution of Lapkequation on the exterior
of a domain(2, with either Neumann or Dirichlet boundary conditions. LCet 052 be a
smooth closed curve. Then , as shown in section 2.3, Lagl&cgiation on the exterior

domain,

Viu(p) =0, peQ,

(6.0.1)
lim Ju(p)| = 0.
can be reformulated as a boundary integral equation,
1 ou
<—§I+ M) u(p) = Lﬁ—n(p), pel, (6.0.2)

on the boundary, for the single- and double-layer operatérandM, respectively. We

wish to solve (6.0.2) using the multiwavelet Galerkin methof chapter 4. The resulting
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linear system will be solved by an iterative technique suchanjugate gradient squares
(CGS) or generalized minimal residual (GMRES), [52]. The o$ an iterative solver
is efficient if the linear system is well conditioned and itgemvalues cluster at a point

different from zero.

When we consider equation (6.0.2) with Neumann boundargtions, that isg—z is given
and « is unknown, the resulting linear system is well conditiorzedl the eigenvalues
cluster about—%. In this case, an iterative method of the conjugate gradigrg can
converge inO(1) iterations. In section 6.1 we present numerical resultstfersolution
of several Neumann test problems. However, when we consigigation (6.0.2) with
Dirichlet boundary conditions, that isis given and% is unknown, the resulting linear
system is ill conditioned. This is because the single-layaratorL is of order—1 and
therefore its eigenvalues cluster at zero. Therefore,deroio use an iterative solver we
precondition the linear system, [53]. In section 6.2 we wsscthe preconditioner used
when wavelet bases are employed, we then extend this to earvdaere multiwavelet
bases are employed. In section 6.2.4 we present numergaltgdor a Dirichlet test

problems.

6.1 The Neumann Problem

In this section we consider the solution of equation (6.@i#) Neumann boundary con-

ditions. we need to solve the second kind equation

drq = /G(pvq)aau—(q)drm pE Fa (611)
r Nq

9G(p,q)
Ong

~5up)+ [ u(@
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for the unknown Dirichlet boundary conditian Oncew is found on the boundary we

can use the integral representation (2.3.18), namely,

_ oG(p.q) .. / du(q)
u(p)—/ru(p)ianq dl'q FG(|o,q>—6,nq dlgq, p €y,

to find w anywhere in the exterior domain, .

6.1.1 Numerical Results
Problem One

Here, we consider the numerical solution of equation (§.&xterior to an ellipse of
circumferencelr, with major axis2.5940938 and minor axisl.2970468 centered at the
origin. We consider a Neumann problem, equivalent to thaegsed by three interior
point sources placed g, = (1.3611, %), p; = (1.1909, I7) andp, = (1.1342, &7)
with strength<, 1.5 and1.5, respectively. The field generatedii®) = —% In [p — py| —
2In|p — py| — X2 1In|p — p,|. We first consider the solution of the problem using the
non-standard Galerkin method discussed in section 4.2n,We consider a standard

Galerkin method using a multiwavelet basis.

Non-Standard Results

We denote by, the solution of the compressed system. Then, in tables.@, & L,
norm of the error of the compressed system is denotgf:by u, || andnzis the number
of non-zero elements of the non-standard matrix that argpoted. The columft gives

the percentage of the matrix entries that have not been deahputhout any detrimental
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effect to the solution. Here, the CGS method was used to sbe/éinear system, and

never required more thanl iterations to converge.

M |lu — @ | nz %

4 |6.4281 x 1072 124 | 51.56
5 | 3.2171 x 1072 308 | 69.92
1.6862 x 1072 900 | 78.03
8.3855 x 1073 | 2248 | 86.28

co N O

4.0197 x 1073 | 7944 | 87.88
9 | 2.4887 x 1073 | 25488 | 90.28

10 | 1.1519 x 1073 | 100048 | 90.46

Table 6.1:k =1

M ||lu — @y| nz %

4 7.2992 x 1073 | 528 | 48.44
5 25857 x 1073 | 1616 | 60.55
6 | 1.1753 x 1073 | 4384 | 73.24
7 |3.5843 x 107* | 11552 | 82.37
8 | 7.7036 x 107° | 43584 | 83.27
9 |2.9272 x 107° | 186944 | 82.17
10 | 4.8206 x 107¢ | 653952 | 84.41

Table 6.2:k = 2
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M |lu — @ || nz %

4 127309 x 1073 1188 | 48.44
5 19.8955 x 1074 | 2772 | 69.92
1.3717 x 107 | 9252 | 74.90

6

7 | 1.5517 x 107° | 29736 | 79.83
8 | 1.9597 x 1076 | 118440 | 79.92
9

2.4560 x 1077 | 437616 | 81.45

10 | 3.0737 x 1078 | 1790928 | 81.02

Table 6.3:k = 3

M ||u — ay| nz %

4 | 1.4305 x 1073 2112 | 48.44
5 | 1.6489 x 1074 4928 | 69.92
6 | 9.7781 x 107% | 16512 | 74.80
7 | 1.1039 x 1075 | 52608 | 79.93
8 | 8.3695x 107® | 204672 | 80.48
9 | 4.2303 x 107 | 836864 | 80.05
10 | 2.6474 x 1071° | 3331840 | 80.15

Table 6.4:k =4

The sparsity patterns of the non-standard matrices forlgnolon withk = 3, M = 8

andk = 4, M = 8 are shown in Figures 6.1 and 6.2, respectively.
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Figure 6.1: Non-standard matrik:= 3, M =8
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Figure 6.2: Non-standard matrik:= 4, M =8

Standard Results

In tables 6.5-6.8 thé, norm of the error of the compressed system is denoteld.by @, ||
andnzis the number of non-zero elements. The colufgives the percentage of the
matrix entries that can be set to zero without any detrimiegftact. Here, the CGS
method was used to solve the linear system, and never relquivee than 4 iterations to

converge.
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lu — 2|

nz

%

© o N o ot

5.4698 x 102
2.8932 x 1072
1.5063 x 1072
8.1767 x 1073
4.0179 x 1073
1.9259 x 1073
1.1253 x 1073

30
46
114
234
606
1462
2290

88.28
95.51
97.22
98.57
99.08
99.44
99.78

Table 6.5:k =1

[ — |

nz

%

S

© o N O o

7.1011 x 1073
3.2568 x 1073
1.0855 x 1073
3.2906 x 1074
7.5767 x 107°
1.8639 x 107°
4.6889 x 107°

84
120
358
706

1686
3826
8250

91.80
97.07
97.81
98.92
99.36
99.64
99.80

Table 6.6:k = 2
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M ||u — @y| nz %
4 | 3.5872 x 1073 84 96.35
5 19.9750 x 107* | 228 | 97.53
6 | 1.3878 x 10~*| 600 | 98.37
7 | 1.7144 x 1075 | 1276 | 99.13
8 | 2.2674 x 1079 | 3002 | 99.49
9 | 3.2507 x 1077 | 5458 | 99.77
10 | 3.5897 x 1078 | 13162 | 99.86
Table 6.7:k =3
M |lu — @ | nz %
4 | 1.6417 x 1073 106 | 97.41
5 | 21813 x 107* | 272 | 98.34
6 | 1.1242x 107° | 804 |98.77
7 | 1.4569 x 1075 | 1622 | 99.38
8 | 7.1202 x 1078 | 4690 | 99.55
9 | 54075 x 1079 | 8534 | 99.80
10 | 3.7089 x 10710 | 17470 | 99.90
Table 6.8:k = 4
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The sparsity patterns of the standard matrices for probleenwvath% = 3, M = 8 and

k = 4, M = 8 are shown in Figures 6.3 and 6.5, respectively. We note, dinae
the kernel is polynomial like along the diagonal we do notagbthe so-called ‘finger’
structure. Instead since the kernel is smooth everywhergyesonly have significant
interactions involving the lowest levels. Figures 6.4 ar@lghow the eigenvalues of the

respective standard matrices rapidly clustering abQ}Jt
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Figure 6.3: Standard matrix: = 3, M =8
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Problem Two

In problem two we again consider the numerical solution afadigpn (6.1.1) exterior
to an ellipse of circumferencer, with major axis2.5940938 and minor axisl.2970468
centered at the origin. Here, we consider a Neumann proleguivalent to that generated
by two interior point sources placedgf = (1.7981, --7) andp, = (1.4178, Zx) both
with strength2. These point sources are closer to the boundary than thgs®lohem
one, this leads to a much “nastier” solution. The field geteer@su(p) = —<1In|p —
Pyl — % In|p — p,|. We first consider the solution of the problem using the namdard

Galerkin method discussed in section 4.2. Then, we conaide&andard Galerkin method

using a multiwavelet basis.
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Non-standard Results

As before, in tables 6.9-6.12 thig norm of the error is denoted biy: — %y,|| andnzis the

number of non-zero elements of the non-standard matrixatteatomputed. The column
% gives the percentage of the matrix entries that have not bemputed without any
detrimental effect on the solution. Here, the CGS method wezsl to solve the linear

system, and never required more thHariterations to converge.

M ||lu — @g| nz %

4197429 x 1072 | 124 | 51.56
5 | 59653 x 1072 | 268 | 73.83

6 |3.2539 x 1072 | 564 | 86.23
7 1 1.7673 x 1072 | 1544 | 90.58
8 | 8.9169 x 1073 | 5000 | 92.37

9 | 4.4959 x 1073 | 16272 | 93.79
10 | 2.3293 x 1073 | 37712 | 96.40

Table 6.9:k =1
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M ||lu — @y| nz %

4 | 4.9823 x 1072 528 48.44
5 | 1.9560 x 1072 | 1232 | 69.92
6 |9.3892 x 1073 | 2640 | 83.92
7 120211 x 1073 | 5600 | 91.46
8 |8.2200 x 107* | 14112 | 94.62
9 |2.0150 x 107% | 43488 | 95.85
10 | 5.1577 x 107° | 135584 | 96.77

Table 6.10% = 2

M |lu — @ | nz %

4 13.4996 x 1072 | 1116 | 51.56
5 | 1.1482 x 1072 | 2412 | 73.83
6 | 2.4024 x 1073 | 5076 | 86.23
7 15.6894 x 107 | 10584 | 92.82
8 | 5.7816 x 1075 | 30600 | 94.81
9 19.5992 x 1076 | 104040 | 95.59
10 | 1.2087 x 107% | 365904 | 96.12

Table 6.11% =3
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M |lu — @ | nz %

4 125927 x 1072 | 1984 | 51.56
5 | 3.7868 x 1073 | 4416 | 73.05
6 | 1.3000 x 1072 | 9536 | 85.45
7 | 7.2456 x 1075 | 19840 | 92.43
8 | 1.3431 x 107> | 56704 | 94.59
9 |6.9589 x 1077 | 181632 | 95.67
10 | 4.2181 x 107® | 698112 | 95.87

Table 6.12:k = 4

The sparsity patterns of the non-standard matrices fer3, M = 8 andk = 4, M =8
are shown in Figures 6.7 and 6.8, respectively.
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Figure 6.7: Non-standard matrix:= 3, M =8
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Figure 6.8: Non-standard matrik:= 4, M =8

Standard Results

In tables 6.13-6.16 thé, norm of the error of the compressed system is denoted by
|u — || andnzis the number of non-zero elements. The coldigives the percentage

of the matrix entries that can be set to zero without any ehetnital effect. Here, the CGS
method was used to solve the linear system, and never relquivee than 4 iterations to

converge.
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lu — 2|

nz

%

© o N o ot

9.5533 x 102
5.4961 x 1072
2.8759 x 1072
1.6583 x 1072
8.8686 x 1073
4.1247 x 1073
2.2959 x 1073

30
46
114
234
454
1642
2054

88.28
95.51
97.22
98.57
99.31
99.44
99.80

Table 6.13% =1

[ — |

nz

%

S

© o N O o

5.1578 x 1072
1.9581 x 1072
9.3315 x 1073
2.0100 x 1073
6.0769 x 10~*
1.5951 x 1074
4.2436 x 10~°

o4
116
192
486
1130
2038
4002

94.73
97.17
98.83
99.26
99.57
99.81
99.90

Table 6.14:k = 2
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lu — 2|

nz

%

© o N o ot

3.5131 x 1072
1.1436 x 1072
2.4208 x 1073
5.3742 x 104
4.9299 x 10~°
9.7179 x 10~°
1.3187 x 1076

76
132
324
664

1918
3026
5854

96.70
98.57
99.12
99.55
99.67
99.87
99.94

Table 6.15% = 3

[ — |

nz

%

S

© o N O o

2.6259 x 1072
3.7294 x 1073
1.3171 x 1073
6.9790 x 10~°
1.3926 x 1075
6.6913 x 1077
4.8726 x 1078

84
240
372
950

1840
4098
8030

97.93
98.54
99.43
99.64
99.82
99.90
99.95

Table 6.16% =4
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Tables 6.13-6.16 show that we achieve better compressi@naasl M increase. The
sparsity patterns of the standard matricesifer 3, M = 8 andk = 4, M = 8 are shown

in Figures 6.9 and 6.10, respectively.
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Figure 6.9: Standard matrix:= 3, M =8
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Figure 6.10: Standard matrix:= 4, M = 8

6.2 The Dirichlet Problem

In this section we consider the solution of equation (6.@i2) Dirichlet boundary con-

ditions. We need to solve the first kind equation

du(q) . 1 9G(p,q)
/FG(p,q) g dl'q = 2u(|0)+/ru(q)7anq dl'y, pel, (6.2.1)

for the unknown Neumann boundary conditign Again, oncel“ is found on the bound-

ary we use the integral representation (2.3.18) to gpdnywhere in the domaif,, .

We can show that the discretisation of an operator of afigevill in general have condi-
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tion numberO(N'*!) and eigenvalue®(N®). Therefore, since the single-layer operator
L is of order—1, the eigenvalues ofl,; = O(N~') andky(Ay) = O(N). Therefore, in

order to use an iterative method efficiently we must predoomihe matrixA,,.

6.2.1 Preconditioning

The convergence of Krylov subspace iterative methods isl idthe matrix has a small
condition number and the eigenvalues are clustered. If tiggnal system matrix Ac

CN*N does not satisfy these conditions then it may be possibledbdipreconditioner
D such that D'A has the desired properties. The Krylov subspace methadthea be

applied to the preconditioned system

Bx =y, (6.2.2)

where B= D~'A andy = D~'b. Within conjugate gradient type methods the coefficient
matrix is required only in matrix-vector products, theref® is never explicitly formed.
Suppose the matrix-vector product= Bv is required, where € CV is known. Then
z=D"'Av = D"'t, where

Dz =t. (6.2.3)

Hence to findz, we first findt = Av and then solve (6.2.3).

Therefore, a good preconditioner D must satisfy two (oftenflicting) requirements.

e Firstly, D must be a good approximation to A, that is the eigdmes of D'A
should be clustered near Therefore a conjugate gradient type algorithm applied

to (6.2.2) should converge faster than for the originalesyst

127



e Secondly, the solution of (6.2.3) must be cheap.

6.2.2 Wavelet Preconditioning

Consider the pseudodifferential operator equation
Au=f (6.2.4)

for A: H° — H* “. We denote its Galerkin discretisation by the biorthogavalelet
basis by
AMUh = fh. (625)

In a recent paper by Dahmen (see also references within)t[thd$ been proved that
ko(Ap) = O2My = O(N)lel, (6.2.6)

Furthermore, they state and prove the following result:
The matrices

By = D'A D! (6.2.7)

where

(D)) = 2™ (6.2.8)

have uniformly bounded condition numbers

k2(Bar) = B [[B3/ || = O(1). (6.2.9)
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This implies that in place of solving
Apuy = T,

we solve

BMX =Y,

where Bx = u,, and D'y = f,. In the next section we wish to use this preconditioner

with the multiwavelet basis.

6.2.3 Multiwavelet Preconditioning

The resultin the previous section requires the biortholijiyrat wavelet basis; our wavelets
of course are orthogonal. The result above can be used tadisktaniform boundedness
of preconditioned matrices. However, we show that the ahaxtension we employ here
can result insignificant improvement of the condition numBer the multiwavelet basis,
UM = Ly | A = {k,m,l[}},m=M—1,...,0andl = 0,...,2™ — 1, with k mother
wavelets the natural generalization of the preconditiomeection 6.2.2 is to use the nat-
ural k£ x k dimensional diagonal blocks. Let)pPbe the matrix containing the diagonal
block entries of

Ay = (ATM @M T (6.2.10)
Then, we propose the use [Das a preconditioner for A in the form below

By := Dy 2AyD; 7. (6.2.11)

That is to say, in place of solving

Apuy =1,
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we solve

BuX =Y,

where D_w%x:uh and DI%wy:fh.

The condition number of,; is O(NN). Our numerical results show a big improvement

with precondition systems, namely,

IBasll ||B37 || = © (log® N) . (6.2.12)

6.2.4 Numerical Results

In this section we present numerical results for the Laplaoblem exterior to an el-
lipse of circumferencer, with major axis2.5940936 and minor axisl.2970468, cen-
tered at the origin. We consider a Dirichlet problem, egentto that generated by
three interior point sources placed @ = (1.445288, ), p; = (2.264285, £7) and
p, = (2.2478149, 2 7) with strengths 1, 1.3 and 2, respectively. In table 6.17d¢ax,)

is the condition number of the unpreconditioned matrixpits’ is the number of GM-
RES(10) iterations required, where GMRBS$§ the so-called “GMRES with restarts”
after everyl iterations, [52]. The column cong(,) gives the condition number of the
preconditioned, ‘pre its’ is the number of GMRES(10) itevas required. Thd., norm
of the error of the compressed system is denoteHi%y — <§:7§;> hH andnzis the number
of non-zero elements remaining after compressing the rxattie column % gives the

percentage of the matrix entries that can be set to zero utitlhy detrimental effect. Our

matrices are of size2M.
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M | cond(d) | unpre its| cond(B,,) | pre its ‘ 2 (38:72);7“ nz %

3 51.0 30 7.2 22 7.810 x 1072 466 54.5
4 110.0 41 10.5 29 3.207 x 1072 1334 | 67.4
5 233.4 65 14.5 38 3.621 x 1073 3948 | 76.0
6 482.8 86 19.2 46 6.715 x 1074 12072 | 81.6
7 982.8 120 24.6 53 4.814 x 1073 28744 | 89.0
8 1983.2 164 30.7 70 2.948 x 1076 75030 | 92.8
9 | 3984.4 220 37.5 91 1.407 x 1077 223256 | 94.7
10 | 7986.9 250 45.0 111 7.299 x 107 455060 | 97.3

Table 6.17:k = 4

Figure 6.11 shows the eigenvalues of the standard matyiXdk £ = 4, M = 8, before
preconditioning. As expected the eigenvalues rapidlytelusbout). In Figure 6.12, we
show the eigenvalues of the preconditioned matrix. Bn the preconditioned case, we
see that the eigenvalues do not cluster as rapidly as in freconditioned case, however,

they are all away from zero.
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Figure 6.11: Eigenvalues of the unpreconditioned stanchettix fork = 4, M = 8
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Figure 6.12: Eigenvalues of the preconditioned standatdxfar k£ = 4, M =8

The sparsity pattern of the standard matrixfoe 4, M = 8 is shown in Figure 6.13.
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Figure 6.13: The standard matrik:= 4, M = 8

Figure 6.14 shows the growth of the number of iterations @@hhe preconditioned and

unpreconditioned methods using GMRES(10).
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Figure 6.14: Iteration numbers for the preconditioned amate&conditioned methods

Figure 6.15 shows the growth of the condition number for blo#preconditioned and un-
preconditioned methods. In Figure 6.16 we show(ﬂn@log2 N) growth of the condition

number in the preconditioned case.
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Figure 6.16: Condition number growth in the preconditionase
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Chapter Review

In this chapter we have presented the numerical resultsmfdast problems for Laplace’s
equation with Neumann boundary conditions. Results foh lthé standard and non-

standard methods have been obtained.

In section 6.2 we have considered Laplace’s equation witiclet boundary conditions.

As the resulting coefficient matrix is ill-conditioned, wave discussed matrix precondi-
tioning. In particular, we introduced the wavelet prectiodier suggested in [11]. Here,
we have extended the use of the wavelet preconditioner ttwawkelet bases. We have
presented numerical results, which show that our multiveayereconditioner reduces
the growth of the matrix condition number @(log® V), and significantly reduces the

number of GMRES(10) iterations required.

reduces the growth of the matrix condition numbeK?@og® N), and significantly re-

duces the number of GMRES(10) iterations required.
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Chapter 7

Conclusion and Further work

In this thesis, we have been concerned with the so-calle@etalgorithm for the solu-
tion of boundary integral equations. In chapter 2 we haveflgrreviewed the methods
and techniques required when partial differential equistiare reformulated as boundary
integral equations. In chapter 3, we discussedrb#iresolutionframework for wavelets,

as well as, our choice of basis functions for this thesis,algnthemultiwaveletf [10].

In chapter 4, we developed tis¢andardandnon-standardGalerkin methods for multi-
wavelets. For both methods applied to operators of the atdrahalytical class, bounds
are found for the size of matrix elements. Using these booongpression strategies have
been developed which only require the computation and ggoohthe significant matrix

elements. We have shown that there are @y log” V) such significant elements.

In chapters 5 and 6 we have applied the standard and nonastb@alerkin methods to
several test problems of varying “difficultly”. In chaptene concentrated on the radios-
ity problem of image synthesis, whereas, in chapter 6 weeauanated on the boundary

integral reformulation of Laplace’s equation. Howevergnhve consider Laplace’s equa-
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tion with Dirichlet boundary conditions the resulting cli@ent matrix is ill-conditioned.
This is because the single-layer operatois of order—1 and therefore its eigenvalues
cluster at zero. Therefore, in order to use an iterativeesaficiently we precondition
the linear system. We introduced the wavelet preconditisnggested by Dahmen [11].
Then, we extend the preconditioner for use with multiwalvblesis functions. Our nu-
merical results show that the multiwavelet preconditiorduces the growth of the matrix

condition number fronO (V) to O (log® N).

Many difficulties with the application of multiwavelets lessstill remain. These include:

e The development of quadrature rules for the efficient nucaémtegration of mul-

tiwavelets over large supports.

e Further development of multiwavelet preconditioners twéase the clustering of

eigenvalues and reduce further tﬁe(log2 N) growth of the condition number.

e Due to the prevalence of collocation methods in the engingezommunity, the
development of multiwavelet collocation methods, analsgtm the standard and

non-standard Galerkin methods.
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