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Abstract

In general the numerical solution of boundary integral equations leads to full coefficient

matrices. The discrete system can be solved inO(N2) operations by iterative solvers of

the Conjugate Gradient type. Therefore, we are interested in fast methods such as fast

multipole and wavelets, that reduce the computational costto O(N lnpN).

In this thesis we are concerned with wavelet methods. They have proved to be very

efficient and effective basis functions due to the fact that the coefficients of a wavelet ex-

pansion decay rapidly for a large class of functions. Due to the multiresolution property

of wavelets they provide accurate local descriptions of functions efficiently. For example

in the presence of corners and edges, the functions can stillbe approximated with a lin-

ear combination of just a few basis functions. Wavelets are attractive for the numerical

solution of integral equations because their vanishing moments property leads to operator

compression. However, to obtain wavelets with compact support and high order of van-

ishing moments, the length of the support increases as the order of the vanishing moments

increases. This causes difficulties with the practical use of wavelets particularly at edges

and corners. However, with multiwavelets, an increase in the order of vanishing moments

is obtained not by increasing the support but by increasing the number ofmotherwavelets.

In chapter 2 we review the methods and techniques required for these reformulations,

we also discuss how these boundary integral equations may bediscretised by a boundary

element method. In chapter 3, we discuss wavelet and multiwavelet bases. In chapter

4, we consider two boundary element methods, namely, thestandardandnon-standard

Galerkin methods with multiwavelet basis functions. For both methods compression

strategies are developed which only require the computation of the significant matrix ele-

ments. We show that they areO(N logpN) such significant elements. In chapters 5 and

6 we apply the standard and non-standard Galerkin methods toseveral test problems.
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Chapter 1

Introduction

Over the last three-to-four decades it has become popular toreformulate linear second

order partial differential equations as integral equations over the boundary of the region

of interest. These boundary integral equations are then solved by finite element type dis-

cretisations; referred to as boundary element methods (BEM). Our research is concerned

with methods for solving boundary integral equations withalmost optimalefficiency.

There are several advantages to using BEM in place of finite element methods (FEM)

applied to the original partial differential equation, see[1]:

• Exterior problems are treated more naturally, since BEM requires meshing over

only a finite domain, whereas, FEM requires meshing over an infinite domain.

Boundary conditions at infinity can be neatly incorporated into the boundary in-

tegral equation reformulation.
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• Reformulating the problem on the boundary alone reduces thedimension of the

problem by one, resulting in smaller matrices for the same mesh sizeh.

• BEM allows us to compute the solution only in a subdomain of special interest.

When using FEM, the solution must be computed everywhere.

• The matrices formed by BEM are generally better conditionedthan those formed

by FEM.

There are also disadvantages to BEM:

• FEM can be applied to linear, nonlinear and time-dependent partial differential

equations. Boundary element counterparts for more “complicated” partial differ-

ential equations have not yet fully developed, although research is underway, eg [2].

• The elements of matrices formed by FEM are easy to compute. Bycontrast, each

element of a BEM matrix involves integration. For diagonal elements, these inte-

grals may be singular.

• The matrices formed by FEM are sparse and can be solved quickly by fast solvers.

However, boundary element matrices are full. Traditionally, they are solved by a

direct method such as Gaussian elimination. However, we areinterested infast

methodswhich reduce the computing time for large scale problems.

Briefly, boundary element methods partition the boundary intoN elements. This results in

anN ×N system of linear equations. A direct solver such as Gaussianelimination solves
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the system inO(N3) arithmetic operations. In general, the use of an iterative solver,

possibly with preconditioning, results inO(N2) operations. However, these methods

cannot improve upon anO(N2) complexity estimate, since simply forming the coefficient

matrix requiresO(N2) arithmetic operations.

The fast methodswith which we are concerned aim to solve the boundary integral equa-

tion to within the discretisation error inO(N logpN) for some small integer valuep;

typically p = 0, 1, 2. This is the so-calledalmost optimalcomplexity one can achieve in

findingN-unknowns.

A typical (Galerkin) boundary element matrix entry has the form

Aij =

∫

Γ

∫

Γ

K(p, q)ψi(p)ψj(q) dΓqdΓp. (1.0.1)

Clearly, in afast methodwe can not evaluate the whole coefficient matrixA. Currently,

there are two distinct classed of fast methods for solving boundary integral equations.

One is the so-calledfast multipole algorithm, closely related to panel clustering [3]; see

Profit, Amini & Profit [4, 5] for application to the Helmholtz equation. The basic idea

here is that the kernelK(p, q) of the integral operator is approximated by a degenerate or

“separable” kernel

K(p, q) ≈
L∑

l,m=−1

fl(p)blmgm(q) = f(p)TBg(q).

Substituting this into (1.0.1) we can see that

A ≈ UBV = Ã,
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whereU is anN × L matrix,B anL× L matrix, andV anL×N matrix with entries,

Uil =

∫

Γ

fl(p)ψi(p) dΓp

Blm = blm

Vmj =

∫

Γ

gm(q)ψj(q) dΓq.

In place ofA the elements of the sparse matrix decompositionUBV are computed. This

requires2NL + L2 elements, as opposed toN2 for A. If L = O(logN) we see that

this requires onlyO(N logN) elements are stored and a similar number of operations for

forming Ãx.

The second type of fast method, with which we are concerned with in this thesis, is the

so-calledwavelet algorithm, [6, 7, 8, 9]. Here, the basis functionsψi are the so-called

wavelet basis. These arerefinablebases obtained from translations and scalings of a

single functionψ, the so-calledmotherwavelet. That is,

ψi = 2
m
2 ψ(2m · −l) for m ∈ Z, l ∈ ∇m.

They have the additional property of being orthogonal to loworder polynomials; known

as the property of vanishing moments.

We can show that using a wavelet basis, for a large class of kernels the elements of the

Galerkin matrixA satisfy,

|Aij | ≤ c
2−(m+m′)(k+ 1

2
)−2k

(2k + 1) dist(Γj,Γi)1+2k+α
.

We can prove that onlyO(N logpN) of these elements are sufficiently large enough to af-

fect the accuracy of our solution. The rest of the elements need not be computed, resulting
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in the desired efficiency.

In chapter 2 we review the methods and techniques required when partial differential

equations are reformulated as boundary integral equations. We also discuss how these

boundary integral equations may be discretised by a boundary element method. In chapter

3, we present themultiresolutionframework for wavelets, along with our choice of basis

functions for this thesis, namely, themultiwaveletsof [10].

In chapter 4, we consider two boundary element methods, namely, thestandardandnon-

standardGalerkin methods with multiwavelet basis functions. For both methods applied

to operators of the standard analytical class, we find boundsfor the size of the coeffi-

cient matrix elements. Using these bounds compression strategies are developed which

only require the computation of the significant matrix elements. We show that there are

O(N logpN) such significant elements, for some small integer valuep.

In chapters 5 and 6 we apply the standard and non-standard Galerkin methods to sev-

eral test problems. In chapter 5 we are concerned with the radiosity problem of image

synthesis, whereas, in chapter 6 we are concerned with the boundary integral equation re-

formulation of Laplace’s equation. However, when we consider Laplace’s equation with

Dirichlet boundary conditions the resulting coefficient matrix is ill-conditioned. There-

fore, in order to use an iterative solver efficiently we must precondition the coefficient

matrix. For a wavelet basis a diagonal scaling matrix is shown to be sufficient, see [11].

Here, we extend the preconditioner for use with multiwavelet basis functions. Finally we

present a conclusion to our work and identify some future avenues of study.
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Chapter 2

Boundary Integral Methods

In this chapter we introduce the methods and techniques required for solving boundary

integral equations. In general boundary integral equations are derived as reformulations

of partial differential equations over a domainΩ. We arrive at equations of the form

(Au) (p) =

(
B∂u
∂n

)
(p), p ∈ Γ = ∂Ω, (2.0.1)

whereA andB are pseudodifferential operators.

To discuss the existence and uniqueness of solutions to (2.0.1) and study the convergence

analysis of boundary element methods, we need to introduce appropriate function spaces.

Sobolev spaces are introduced in section 2.1. The operatorsA andB are pseudodiffer-

ential operators over Sobolev spaces. This allows us to study differential, integral and

hypersingular operators within the same framework. Pseudodifferential operators are in-

troduced in section 2.2. In section 2.3 we reformulate Laplace’s equation as a boundary

integral equation of the form (2.0.1), such equations are discretised using the projection

methods introduced in section 2.4.
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2.1 Sobolev Spaces

Sobolev spaces provide a natural setting in which to describe the smoothness of solutions

in partial differential theory. In this section, we briefly introduce these spaces and their

basic properties. For a more comprehensive study see [12].

Let Ω be a simply connected domain inRn. Initially the Sobolev spacesWs
p(Ω) are

defined for non-negative integerss. For a multi-index of non-negative integersl =

(l1, . . . , ln), we define the partial derivativeDl by

Dl
x = Dl1

1 Dl2
2 . . .D

ln
n =

(
∂l1

∂xl11

)
. . .

(
∂ln

∂xlnn

)
=

∂|l|

∂xl11 . . . ∂x
ln
n

, (2.1.1)

where|l| = l1 + . . .+ ln.

Definition 2.1.1. The spaceWs
p(Ω) is the space defined by

Ws
p(Ω) :=

{
u ∈ Lp(Ω)| Dlu ∈ Lp(Ω) for |l| ≤ s

}
, (2.1.2)

and is equipped with the norm

‖u‖Ws
p

=


∑

|l|≤s

∫

Ω

∣∣Dlu(x)
∣∣p dx




1
p

, (2.1.3)

see [13].

Sobolev spaces withp 6= 2 are rarely used. Therefore, we concentrate on the casep = 2

and denoteWs
2(Ω) by Hs(Ω). We note, that fors = 0, H0(Ω) = L2(Ω). In order

to introduce Sobolev spacesHs(Ω) for real s, we consider the Fourier transform of a
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functionu,

û (ξ) =

∫

Ω

e−2πix.ξu(x) dx. (2.1.4)

Then, it can be shown, see [1], that for non-negative integerss,

c1 ‖u‖2
Hs ≤

∫

Ω

(
1 + |ξ|2

)s |û (ξ)|2 dξ ≤ c2 ‖u‖2
Hs . (2.1.5)

Therefore, (∫

Ω

(
1 + |ξ|2

)s |û (ξ)|2 dξ
)1

2

(2.1.6)

defines an equivalent norm inHs(Ω). Furthermore, (2.1.6) has meaning for all real values

of s. This allows us to defineHs(Ω) for any reals, possibly negative, by

Hs(Ω) := {u ∈ L2(Ω)| u is a generalized function such that (2.1.6) is finite} . (2.1.7)

In fact, for 0 ≤ s < ∞ the spaceH−s(Ω) is the dual ofHs(Ω), i.e. space of bounded

linear functionals onHs(Ω).

Let Γ be the boundary of a simply connected domainΩ ⊂ Rn. Then, we can similarly

define Sobolev spacesHs(Γ), see [1]. For the casen = 2, if Γ has a smooth parameteri-

sation

γ : [0, 1) → Γ,

then, we may defineHs(Γ) by

Hs(Γ) := {u| (u ◦ γ) ∈ Hs[0, 1)} , (2.1.8)

where(u ◦ g)(x) = u (γ(x)). This definition is invariant under changes of the parameter-

isation, see [14].
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Supposes, t ∈ R with s > t. Then,Hs ⊂ H t and foru ∈ Hs we have‖u‖Ht ≤ ‖u‖Hs.

In fact the imbedding (identity) operatorI : Hs → H t is compact, see [1, Theorem 2.1.5].

We now mention an important trace theorem, [1, Theorem 2.2.2].

Theorem 2.1.1.Let Ω be a bounded open domain with smooth boundaryΓ. If s > 1
2
,

then the trace operator

u→ u|Γ (2.1.9)

is a continuous mapping fromHs(Ω) toHs− 1
2 (Γ).

2.2 Pseudodifferential Operators

Pseudodifferential operators are a natural extension of linear integral and partial differ-

ential operators. The theory of pseudodifferential operator has developed alongside the

study of singular integral operators, which occur in many areas of mathematical physics.

A pseudodifferential operator is a linear operatorA : Hs(Ω) → Hs−α(Ω) whereα is

called theorder of the operator. We can write the pseudodifferential operator A as the

integral operator

(Au) (p) =

∫

Ω

a(p, q)u(q) dΩq, (2.2.1)

wherea(·, ·) is a kernel function or a distribution. Ifa is a weakly singular kernel this

is a classical compact integral operator. However, this definition also covers the cases of

differential and integro-differential operators. We follow the approach of [1] to introduce

the pseudodifferential operator concept.

A general partial differential operator of orderα is a polynomial expression of the form

P (x,D) =
∑

|l|≤α
al(x)Dl

x, (2.2.2)
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wherel = (l1, . . . , ln) is a multi-integer and the symbol of the operatorP is defined by

σ(P ) = p(x, ξ) =
∑

|l|≤α
al(x) (iξ)l

. (2.2.3)

Therefore, we wish to show thatPu can be written in the integral form (2.2.1). We

consider the inverse Fourier transform

u(x) =

∫

Ω

e2πix.ξû(ξ) dξ. (2.2.4)

It follows that the partial derivatives satisfy

Dl
xu(x) =

∫

Ω

e2πix.ξ(2πiξ)lû(ξ) dξ, (2.2.5)

and hence,

P (x,D)u(x) =

∫

Ω

e2πix.ξp(x, 2πξ)û(ξ) dξ. (2.2.6)

Therefore, substituting the Fourier transform

û(ξ) =

∫

Ω

e−2πiy.ξu(y) dy, (2.2.7)

into (2.2.6) we obtain

P (x,D)u(x) =

∫

Ω

k(x, y)u(y) dy, (2.2.8)

where

k(x, y) =

∫

Ω

p(x, 2πξ)e2πi(x−y).ξ dξ. (2.2.9)
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Definition 2.2.1. p(x, ξ) is said to be a symbol of orderα ∈ R, denoted byp ∈ Sα, of a

pseudodifferential operatorP (x,D) defined by (2.2.6), if it satisfies the following:

1. p(x, ξ) isC∞ in both variables;

2. p(x, ξ) has compactx-support;

3. for all multi-indicesl,m, there is a constantcl,m such that

∣∣Dl
xD

m
ξ p(x, ξ)

∣∣ ≤ cl,m (1 + |ξ|)α−|m|
. (2.2.10)

Definition 2.2.2. If p ∈ Sα the pseudodifferential operatorP , with symbolp, is a pseu-

dodifferential operator of orderα.

We now give the basic mapping property of a pseudodifferential operator [1, Theorem

4.1.1].

Theorem 2.2.1.LetP be a pseudodifferential operator of orderα ∈ R. Then,

P : Hs → Hs−α (2.2.11)

for all s ∈ R and the mapping is continuous.

Therefore, ifα < 0 the operator acts as a smoothing or classical integral operator. How-

ever, ifα > 0 the pseudodifferential operator is principally a differential operator.
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2.2.1 Solvability of Pseudodifferential Operator Equations

LetA : X → Y be an operator from a normed spaceX to a normed spaceY . The equation

Au = f (2.2.12)

is said to be well-posed if the mapping is bijective and the inverse operatorA−1 : Y → X

is continuous. Otherwise, the equation is said to be ill-posed; [14,§15].

For pseudodifferential operators on Sobolev spaces we knowthat the mappings are con-

tinuous, Theorem 2.2.1. However, this does not guarantee the existence of a bounded

inverse. The additional property we require is that the pseudodifferential operators are

Strongly Elliptic; [1,§4.3].

Definition 2.2.3. Let p(x, ξ) ∈ Sα. Then,

1. p is said to be Elliptic of orderα if there existsR > 0 andc > 0 such that

|p(x, ξ)| ≥ c(1 + |ξ|)α ∀ |ξ| ≥ R. (2.2.13)

2. p is said to be Strongly Elliptic of orderα if there existsR > 0 andc > 0 such that

Re p(x, ξ) ≥ c(1 + |ξ|)α ∀ |ξ| ≥ R. (2.2.14)

The pseudodifferential operatorP is said to be (strongly) elliptic if its symbolp is (strongly)

elliptic.

We can now state the basic result which links all our boundaryintegral operators on

Γ ∈ C∞; See [15].

12



Theorem 2.2.2.The boundary integral operators associated with regular elliptic bound-

ary value problems are strongly elliptic pseudodifferential operators of integer order.

We next quote the important coerciveness result which is used to prove the solvability of

the pseudodifferential operator equation.

Theorem 2.2.3.(Gårding Inequality, [16,§0.7][17, Theorem 3.9]). IfA is a strongly

elliptic pseudodifferential operator of orderα then there exists a positive constantγ and

a compact operatorC : H
α
2 (Γ) → H

α
2 (Γ) such that for allg ∈ H

α
2 (Γ)

Re 〈(A + C)g, g〉L2(Γ) ≥ γ ‖g‖2

H
α
2 (Γ)

. (2.2.15)

Hence, ifD = A + C then, the above result says thatD is strictly coercive.

Theorem 2.2.4.(Lax-Milgram,[14, Theorem 13.23]). In a Hilbert spaceX , a strictly

coercive operatorD : X → Y has a bounded (continuous) inverse.

This says that for a strongly elliptic pseudodifferential operatorA we can writeA = D − C,

whereC is compact andD has a bounded inverse. Thus, for strongly ellipticA we can

write (2.2.12) in the equivalent form of a second kind equation

(
I − D−1C

)
u = D−1f, (2.2.16)

whereD−1C is compact. This means that for strongly elliptic pseudodifferential operators,

including first kind and hypersingular equations, the existence of unique solutions can be

established from the Fredholm alternative, see [14, 18].
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2.3 Boundary Integral Equations

Let Γ be a closed surface inR3 or a closed contour inR2 containing a number of subsur-

faces of classC2. We denote the interior and exterior ofΓ by Ω− andΩ+, respectively.

The equation

∇2u(p) = 0, p ∈ Ω±, (2.3.1)

is called Laplace’s equation. Here, we are interested in deriving the boundary integral

equation solution of (2.3.1) with appropriate boundary conditions. We will use these

boundary integral equations more fully in chapter 6, where we study their numerical so-

lution by multiwavelets.

2.3.1 Free Space Green’s Function

The function

G(p, q) =





− 1
2π

ln r, in 2 dimensions,

1
4πr
, in 3 dimensions,

(2.3.2)

wherer = |p − q|, is called the free space Green’s function or the fundamental solution

for Laplace’s equation, sinceG satisfies

∇2G(p, q) = −δ(p − q), (2.3.3)

both as a function ofp andq. The functionδ is the Dirac delta function.
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2.3.2 Boundary Integral Operators

We now define the boundary integral operators for Laplace’s equation, namely the single-

and double-layer potentials and their normal derivatives.We also study some of their

pertinent smoothness properties.

Definition 2.3.1. Let the density functionσ ∈ C(Γ), we define the following operators:

The single-layer potential,

(Lσ) (p) =

∫

Γ

σ(q)G(p, q)dΓq; (2.3.4)

The double-layer potential,

(Mσ) (p) =

∫

Γ

σ(p)
∂G(p, q)

∂nq
dΓq; (2.3.5)

The normal derivative of the single-layer potential,

(
M

Tσ
)
(p) =

∂

∂np
(Lσ) (p) =

∂

∂np

∫

Γ

σ(q)G(p, q)dΓq; (2.3.6)

The normal derivative of the double-layer potential (the hypersingular operator),

(Nσ) (p) =
∂

∂np
(Mσ) (p) =

∂

∂np

∫

Γ

σ(q)
∂G(p, q)

∂nq
dΓq. (2.3.7)

Where bynp andnq we denote the unit outward normal toΓ atp or atq, respectively. We

note that, the operatorMT is the normal derivative ofL and is the operator transpose of

M.

The Laplace boundary integral operators are strongly elliptic pseudodifferential opera-

tors. The single-layer operator is of order−1. Therefore, it is a smoothing operator
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from Hs(Γ) → Hs+1(Γ). The hypersingular operatorN has order+1. Therefore, it

acts like a differential operator, that is,N : Hs(Γ) → Hs−1(Γ). The operatorsM

andMT are infinitely smooth onC∞ boundaries, that is,M : Hs(Γ) → C∞(Γ) and

M
T : Hs → C∞(Γ). However, this phenomenon is special to the 2 dimensional case. In

the 3 dimensional case,M andMT have order−1 and hence,M : Hs(Γ) → Hs+1(Γ)

andMT : Hs(Γ) → Hs+1(Γ).

Theorem 2.3.1.Let Ω ⊂ R3 (or Ω ⊂ R2) be a bounded domain with a smooth boundary

Γ. Also, we letσ ∈ Hs(Γ), s ≥ 0. We denote points in the domainΩ− by p−, points in

Ω+ by p+ and points on the boundaryΓ by p. We define

(
L

+σ
)
(p) = lim

p+→p
(Lσ)

(
p+

)
, (2.3.8)

(
L

−σ
)
(p) = lim

p−→p
(Lσ)

(
p−
)

(2.3.9)

and similarly defineM+, M−, MT+, MT−, N+ andN−. Then, forp ∈ Γ we have;

(
L

+σ
)
(p) =

(
L

−σ
)
(p) = (Lσ) (p), (2.3.10)

(
M

+σ
)
(p) =

1

2
σ(p) + (Mσ) (p), (2.3.11)

(
M

−σ
)
(p) = −1

2
σ(p) + (Mσ) (p), (2.3.12)

(
M

T+σ
)
(p) = −1

2
σ(p) +

(
M

Tσ
)
(p), (2.3.13)

(
M

T−σ
)
(p) =

1

2
σ(p) +

(
M

Tσ
)
(p), (2.3.14)

(
N

+σ
)
(p) =

(
N

−σ
)
(p) = (Nσ) (p). (2.3.15)

Proof: See [1].�

Therefore the operatorsL andN are continuous. However, the operatorsM andMT have

a jump discontinuity atp ∈ Γ.
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2.3.3 Direct Formulation of the Boundary Integral Equation

The direct formulation makes use of Green’s second Theorem.

Theorem 2.3.2.(Second Green’s Theorem). Letu, v ∈ C2(Ω). Then,

∫

Ω

(
u∇2v − v∇2u

)
dΩ =

∫

Γ

(
u
∂v

∂n
− v

∂u

∂n

)
dΓ. (2.3.16)

Consider Laplace’s equation in the exterior domain,

∇2u(p) = 0, p ∈ Ω+

lim
|p|→∞

|u(p)| = 0.
(2.3.17)

In (2.3.16) if we takeu to be the solution of Laplace’s equation andv the free space

Green’s function satisfying (2.3.3), we obtain the Laplaceintegral equation representa-

tion,

u(p) =

∫

Γ

u(p)
∂G(p, q)

∂nq
dΓq −

∫

Γ

G(p, q)
∂u(q)

∂nq
dΓq, p ∈ Ω+. (2.3.18)

Then, by lettingp ∈ Ω+ → p ∈ Γ and using the jump conditions of Theorem 2.3.1, we

obtain

1

2
u(p) =

∫

Γ

u(q)
∂G(p, q)

∂nq
dΓq −

∫

Γ

G(p, q)
∂u(q)

∂nq
dΓq, p ∈ Γ. (2.3.19)

Rewriting (2.3.19) in terms of the single- and double-layeroperators,L andM respec-

tively, we have (
−1

2
I + M

)
u(p) = L

∂u

∂n
(p), p ∈ Γ. (2.3.20)

Clearly if we have bothu and ∂u
∂n

on Γ (the so-called “Cauchy data”), (2.3.18) gives the
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unique solution to Laplace’s equation. In practice we have either u or ∂u
∂n

on Γ (or part

of Γ) and we solve (2.3.20) for the missing Cauchy data. Then, (2.3.18) is used to obtain

u(p) for p ∈ Ω+.

Indeed it is the simple boundary integral equation (2.3.20)which we solve in chapter 6,

both in the case of Dirichlet and Neumann boundary conditions, using multiwavelets.

2.4 Projection Methods

In this section we consider the numerical solution of pseudodifferential equations of the

form

Au = f, (2.4.1)

where we assumeA : Hs(Γ) → Hs−α(Γ) is any of the boundary integral operators

introduced in section 2.3.2. The main idea of projection methods is to seek an approx-

imate solution from some finite dimensional subspace of the space containing the exact

solution. We then try to force the approximate solution to have small residual when the

integral equation is projected onto this space. We considerthe Galerkin method which

is an orthogonal projection method and the collocation method in which the projection is

interpolatory. For a more comprehensive study see [19].

First we define a projection operator and its corresponding projection method [14].

Definition 2.4.1. LetX be a Banach space andY a non trivial subspace ofX . A bounded

linear operatorP : X → Y with the property thatPy = y for all y ∈ Y , is called a

projection operatorfrom X → Y .

Theorem 2.4.1.A non trivial bounded linear operator is a projection operator if and only

if it satisfiesP 2 = P . Furthermore,‖P‖ ≥ 1.
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Definition 2.4.2. Let A : Hs(Γ) → Hs−α(Γ) be an injective bounded linear oper-

ator. LetHN ⊂ Hs(Γ) andH ′
N ⊂ Hs−α(Γ) be two sequences of subspaces with

dimHN = dimH ′
N = N and letPN : Hs−α(Γ) → H ′

N be projection operators. The

projection method generated byHN andPN approximates equation (2.4.1) by the projec-

tion equation

PNAuN = PNf, uN ∈ HN . (2.4.2)

The projection method is said to be convergent if there exists someC ∈ N such that for

eachf ∈ Hs−α(Γ), the approximating equationPNAuN = PNf has a unique solution

uN ∈ HN for all N ≥ C anduN → u asN → ∞.

We now discuss the collocation and Galerkin methods.

2.4.1 Collocation Method

We start by recalling a result regarding interpolation and interpolation operators [14,§13].

Theorem 2.4.2.LetHN ⊂ Hs(Γ) be anN-dimensional subspace andx1, . . . , xN beN

points inΓ such thatHN is unisolvent with respect tox1, . . . , xN . That is, each function

from HN which vanishes at these points must be identically zero. Then, given values

f1, . . . , fN there exists a unique functionv ∈ HN such that

v (xi) = fi, i = 1, . . . , N.

With the data given by the valuesfi = f (xi), i = 1, . . . , N , of a functionf ∈ Hs(Γ) the

mappingf 7→ v defines a bounded linear projection operatorPN : Hs(Γ) → HN called

the interpolation operator.
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Given equation (2.4.1),Au = f , whereA : Hs(Γ) → Hs−α(Γ) is a strongly elliptic pseu-

dodifferential operator of orderα, the collocation method seeks an approximate solution,

in the subspaceHN ⊂ Hs(Γ), by requiring that the equation is satisfied at a finite number

of collocation points. ChoosingN points{xi}, the collocation method approximates the

solution of (2.4.1) by a functionuN ∈ HN such that

(AuN) (xi) = f (xi) , i = 1, . . . , N. (2.4.3)

Let us assume thatHN is the space of piecewise polynomials (splines) of degreed, with

basis functions{χi}. Then, the approximate solution has the form

uN(x) =
N∑

j=1

βjχj(x). (2.4.4)

Substituting (2.4.4) into (2.4.3) yields the system of linear equations

N∑

j=1

βj (Aχj) (si) = f (xi) , i = 1, . . . , N (2.4.5)

for the unknown coefficients{βj}. This can be interpreted as a projection method with

PN being the interpolation operator in Theorem 2.4.2.

The following convergence result holds for the collocationmethod, see [15, Theorem

3.6],[20].

Theorem 2.4.3.Letα < d if d is odd andα < d+ 1
2

if d is even. Letα ≤ t ≤ s ≤ d+ 1,

t < d+ 1
2

andα+ 1
2
< s. Then, there exist constantsc andc′ such that

‖u− uN‖Ht ≤ c ‖u− PNu‖Ht (2.4.6)

≤ c′hs−t ‖u‖Hs . (2.4.7)
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Remark: The first inequality shows that the error in collocation is ofthe same order as

the error in approximation by the interpolation projector.The second part simply states

the error for projection into spline spaces.

2.4.2 Galerkin Method

We consider the Galerkin solution of (2.4.1),Au = f , whereA : Hs(Γ) → Hs−α(Γ)

is a strongly elliptic pseudodifferential operator of order α. The Galerkin method, as

in the collocation method, seeks an approximate solutionuN ∈ HN ⊂ Hs(Γ), where

dimHN = N . The Galerkin method approximates the solution of (2.4.1) by a function

uN ∈ HN such that

〈AuN , vN〉L2 = 〈f, vN〉L2 , (2.4.8)

holds for all vN ∈ HN . Or equivalently〈A (u− uN) , vN〉L2 = 0, showing that this

is an orthogonal projection method. Let us assume thatHN is the space of piecewise

polynomials (splines) of degreed, with basis functions{χi}. Then, we can expressuN in

the form

uN(x) =

N∑

i=1

βiχi(x). (2.4.9)

Then, the Galerkin equation (2.4.8) is equivalent to the linear system

N∑

j=1

βj〈Aχj, χi〉L2 = 〈f, χi〉L2 i = 1, . . . , N, (2.4.10)

for the unknown coefficients{βj}.
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The following convergence result holds for the Galerkin method, see [15, Theorem 2.10],

[1, Cor. 10.1.2].

Theorem 2.4.4.Letα < 2d + 1. Letα − d − 1 ≤ t ≤ s ≤ d + 1 andt < d + 1
2
. Then,

there exist constantsc andc′ such that

‖u− uN‖Ht ≤ c ‖u− PNu‖Ht (2.4.11)

≤ c′hs−t ‖u‖Hs . (2.4.12)

Remark: The first inequality shows that the error in the Galerkin method is of the same

order as the error in approximation by the orthogonal projector. The second part simply

states the error for projection into spline spaces. We note that for the Galerkin method,

the range oft is different, allowing more accuracy if negative norms are used.

Chapter Review

In this chapter we have introduced the methods and techniques required for solving bound-

ary integral equations. In order to be able to discuss the existence and uniqueness of

solutions to(Au) (p) =
(
B ∂u
∂n

)
(p), the Sobolev spaces were introduced in section 2.1.

We briefly discussed the theory of pseudodifferential operators in section 2.2. Within the

framework of pseudodifferential operators, we can then study differential, integral and

hypersingular operators.

In section 2.3 we introduced the single- and double-layer potentialsL andM, respec-

tively. Then, using Green’s second Theorem we reformulatedLaplace’s equation as a

boundary integral equation. Such boundary integral equations are discretised using the

projection methods introduced in section 2.4. In particular, we discussed the collocation
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and Galerkin methods, and their respective convergence properties. It is the Galerkin

method which we employ mainly, in this thesis.
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Chapter 3

Wavelet Analysis

Wavelets were developed independently by mathematicians,physicists and engineers who

came together in the 1980’s to develop the subject of wavelets. In simplest terms wavelets

are just a basis for a Hilbert spaceH, that have several interesting and important features

that make them different to other basis functions. This has lead to wavelets being widely

used in applications ranging from data compression to data denoising in multimedia to

the fast solution of problems in numerical analysis, see [11, 21, 22, 23, 24, 25].

The wide applicability of wavelets is due to the fact that wavelets can very efficiently and

effectively approximate a large class of functions. They provide efficient approximations

to functions at edges and corners, due to theirmultiresolutionproperty. The multiresolu-

tion property acts like a ‘mathematical microscope’ letting us zoom in on the finer detail

of functions and then zoom out again to see the coarser detail. They also have the property

of vanishing moments, this leads to the wavelet coefficients being small when the function

is smooth over the support of the wavelet and consequently leads to the compression of

data.
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Before continuing let us introduce a compact notation for general bases and their trans-

forms. LetΦ denote a countable set or collection of functions in the Hilbert spaceH.

Here, we write a linear combination of elements ofΦ in the form

αTΦ =
∑

φ∈Φ

αφφ, (3.0.1)

whereαφ are some real or complex valued coefficients. Furthermore, for anyf ∈ H,

the quantities〈f,Φ〉 and〈Φ, f〉 mean the row and column vectors, respectively, of the

coefficients〈f, φ〉 and 〈φ, f〉, φ ∈ Φ. Now, we consider two countable collections of

functionsΦ andΥ. Then, the possibly infinite dimensional matrix(〈φ, υ〉)φ∈Φ,υ∈Υ
can

be represented in shorthand by〈Φ,Υ〉.

3.1 Multiresolution

The multiresolution property plays an important role in thecontext of wavelets onR. Let

H be a Hilbert space with inner product〈·, ·〉 and norm‖·‖ = ‖·‖H = 〈·, ·〉 1
2 . Let us

consider arefinablecountable setΦm ⊂ H, for m ∈ Z. That is,Φm is obtained by

translations and scalings of a single functionφ. For any countable setΦm ⊂ H, let

Vm := spanΦm, Φm = {φλ := 2
m
2 φ(2m · −l)| λ = {m, l}, l ∈ ∆m}, (3.1.1)

for some, possibly infinite, countable index set∆m. We will give an example later in this

section. Note that here, the parameterλ is a coupletλ = {m, l} identifying the level, i.e.

m ∈ Z and the location,l ∈ ∆m.
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Definition 3.1.1. Any countable setΦm ⊂ H is called a Riesz basis ofH, if there exist

positive constantsa andb, with 0 < a ≤ b <∞, such that

a ‖α‖ℓ2(∆m) ≤
∥∥αTΦm

∥∥
H
≤ b ‖α‖ℓ2(∆m) . (3.1.2)

In shorthand we denote this as

‖α‖ℓ2 ∼
∥∥αTΦm

∥∥
H
. (3.1.3)

In the above relations,

‖α‖ℓ2 =

√∑

l∈∆m

|αl|2.

Then, a sequenceV = {Vm}m∈Z of closed subspacesVm ⊂ H is said to form a multires-

olution analysis ofH, if it satisfies the following conditions, [26]:

1. . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ H;

2.
(⋃

m∈N
Vm
)

= H;

3.
⋂
m∈N

Vm = {0};

4. f(x) ∈ Vm ⇐⇒ f(2−mx) ∈ V0;

5. The basisΦm is a Riesz basis.

Definition 3.1.2. If Φm is a Riesz basis for the spaceVm, and the spacesVm satisfy the

multiresolution conditions 1, 2 and 4, then, the functionφ is called thescalingfunction.
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3.1.1 Multiscale Basis

The sequence of nested subspacesV is dense inH. Therefore, we can assemble a basis

for H from the functions that span the differences between trial spaces. DefineWm to be

the complement of the trial spaceVm in Vm+1, that is

Vm+1 = Vm ∔ Wm. (3.1.4)

Hence, we look for countable sets

Ψm = {ψλ := 2
m
2 ψ(2m · −l)| λ = {m, l}, l ∈ ∇m} ⊂ Vm+1, (3.1.5)

such that

Wm = spanΨm. (3.1.6)

The set{Φm ∪Ψm} satisfies (3.1.3) and therefore is a Riesz basis forVm+1. If there also

exists a space

W̃m := span Ψ̃m, (3.1.7)

such that

〈Ψm, Ψ̃m′〉 = I, (3.1.8)

then,Ψm is a wavelet series and the functionψ in (3.1.5) is called themotherwavelet.

Furthermore,̃Ψm = {ψ̃λ := 2
m
2 ψ̃(2m · −l)| λ = {m, l}, l ∈ ∇m} is also a wavelet series

and the functioñψ is called thedualwavelet. Similarly, there is a dual basisΦ̃m = {φ̃λ :=

2
m
2 φ̃(2m · −l)| λ = {m, l}, l ∈ ∆m} that generates a sequenceṼ =

{
Ṽm

}
m∈Z

of closed

subspaces, which form a different multiresolution ofH. Note that we use the countable

index set∇m for the location of wavelet functions, whereas, we use the countable index

set∆m for the location of scaling functions. We see later that for the orthogonal bases
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on which we concentrate,∇m = ∆m. The wavelet seriesΨm andΨ̃m are the so-called

biorthogonalwavelet bases; see [27, 28]. In this thesis we concentrate onorthogonal

wavelet bases. IfΨm is an orthogonal wavelet basis, then, the waveletψ is said to be

self-dual. That is,

ψ = ψ̃.

In this case we haveVm+1 = Vm ⊕Wm.

Throughout this thesis we denote the highest level of discretisation byM andNM will

denote the dimension of the spaceVM . Then, through recursive use of decomposition

(3.1.4), we can write the trial spaceVM as the sum of complement spaces

VM = Vm0

M−1⊕

m=m0

Wm, (3.1.9)

wherem0 is some fixed coarsest level. This relationship is shown in Figure 3.1. Thus,

anyfM ∈ VM can be expressed in single scale form, that is, with respect to the basisΦM ,

as

fM = ΦT
MαM , (3.1.10)

whereαM = 〈ΦM , f〉. We can also express the function in multiscale form, that is, with

respect to the basis

ΨM := Φm0

M−1⋃

m=m0

Ψm, (3.1.11)

as

fM = ΦT
m0

αm0 + ΨT
m0

βm0
+ . . .+ ΨT

M−1βM−1, (3.1.12)

whereβm = 〈Ψm, f〉 for m = m0, . . . ,M − 1. Since the sequenceV is dense inH, the

union

Ψ := Φm0

∞⋃

m=m0

Ψm (3.1.13)

28



Vm0

WM-1

VM-1

VM

Wm0

Vm0+1

Vm0+2Wm0+1

.
.
.

Figure 3.1: Decomposition ofVM into the complement spacesWm

is a candidate for a basis for the whole spaceH.

3.1.2 Vanishing Moments

An important property of wavelets is that of vanishing moments. A waveletψ has vanish-

ing moments of orderd if

∫

R

xiψ(x) dx = 0 for i = 0, . . . , d− 1. (3.1.14)

It is the order of vanishing moments that governs the compression capacity of a wavelet.

Thus, for numerical applications we wish to have a high orderof vanishing moments to

maximize operator compression.
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Example 3.1.1. (Haar Basis).

The simplest example of an orthogonal wavelet, is the Haar basis or Haar wavelets. Here,

H = L2[0, 1] andVm is the space of piecewise constant functions with nodes atxi = i
2m ,

for i = 0, 1, . . . , 2m − 1. Our scaling function is

φ(x) =





1 for 0 ≤ x < 1;

0 elsewhere.

(3.1.15)

Therefore, the countable setΦm = {φλ := 2
m
2 φ(2m · −l)| λ = {m, l}, l ∈ ∆m} where

∆m = {0, 1, . . . , 2m − 1} is a basis for the spaceVm.

For the coarsest levelm = m0 = 0, Φ0 = {φ} is a basis for the spaceV0. The space

V1 is the space of piecewise constant functions with nodes at0 and 1
2
. Therefore,Φ1 =

{φ1,0, φ1,1} is a basis for the spaceV1, where

φ1,0(x) =





√
2φ0,0(2x) for 0 ≤ x < 1

2
;

0 otherwise,

(3.1.16)

φ1,1(x) =





√
2φ0,0(2x− 1) for 1

2
≤ x < 1;

0 otherwise.

(3.1.17)

The Haar function or Haar wavelet is

ψ(x) =





1 for 0 ≤ x < 1
2
;

−1 for 1
2
≤ x < 1;

0 elsewhere.

(3.1.18)

Clearly, the Haar wavelet has vanishing moments of order 1. The countable setΨm =
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{ψλ := 2
m
2 ψ(2m ·−l)| λ = {m, l}, l ∈ ∇m}, where∇m = {0, 1, . . . , 2m−1}, is a basis

for the spaceWm.

Since,V1 = W0 ⊕V0, we have two distinct bases for the spaceV1, namely,Φ1 and{Ψ0 ∪

Φ0}. Therefore, a function in the spaceV1 can be represented as a linear combination of

either the basisΦ1 or the basis{Φ0 ∪ Ψ0}. For the Haar basis it is easy to verify this,

φ1,0(x) =
1√
2
φ0,0(x) +

1√
2
ψ0,0(x), (3.1.19)

φ1,1(x) =
1√
2
φ0,0(x) −

1√
2
ψ0,0(x). (3.1.20)

This is shown graphically in Figure 3.2, wherec0,0 = c1,0 = d0,0 = 1√
2

andd1,0 = − 1√
2
.
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Figure 3.2:V1 = W0 ⊕ V0
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3.1.3 Multiscale Transformations

The coefficient vectorsαM andβm, for m = 0, . . . ,M − 1, in (3.1.10) and (3.1.12),

respectively, convey different information. The coefficientsαM in (3.1.10) indicate the

geometric location of the functionfM . However, the coefficientsβm represent thediffer-

encebetween the function representation at the current level and that of the previous level.

That is, the wavelets encode the detail information, or the correction that must be added

to the higher-level representation of a function. Therefore, we usually need all the entries

of αM to obtain an accurate representation offM . However, many of the entries ofβm

may be small and replacing such entries by zero may still permit a sufficiently accurate

approximation tofM . On the other hand, the pointwise evaluation offM is simpler in the

single scale form. Therefore to exploit the benefits of both representations, one needs a

method to convert one into the other.

Due to the nestedness of the spacesVm and the stability condition (3.1.3), everyφm,l ∈ Vm

can be represented as an expansion of the functionsφm+1,i ∈ Vm+1. That is,

φm,l =
∑

i∈∆m+1

ci,lφm+1,i, (3.1.21)

with a maskcml = {ci,l}i∈∆m+1 ∈ ℓ2 (∆m+1). Let Cm,0 be the so-calledrefinement matrix

containing thecml as columns, then (3.1.21) can be rewritten as

ΦT
m = ΦT

m+1Cm,0. (3.1.22)

Similarly, due to (3.1.4) everyψm,l ∈ Wm can be represented as an expansion of the
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functionsφm+1,i ∈ Vm+1. That is,

ψm,l =
∑

i∈∆m+1

di,lφm+1,i, (3.1.23)

with a maskdml = {di,l}i∈∆m+1
∈ ℓ2 (∆m+1). Let Cm,1 be the matrix containing thedml

as columns, then (3.1.23) can be rewritten as

ΨT
m = ΦT

m+1Cm,1. (3.1.24)

Collectively (3.1.22) and (3.1.24) are known as thetwo scale relationships.

The decompositionVm+1 = Vm ⊕ Wm is equivalent to the fact that the operator Cm :

ℓ2 (∆m) × ℓ2 (∇m) → ℓ2 (∆m+1) is invertible, where

Cm := (Cm,1,Cm,0) , (3.1.25)

and

Cm

(
βm

αm

)
:= Cm,1βm + Cm,0αm, (3.1.26)

for αm ∈ ℓ2 (∆m), βm ∈ ℓ2 (∇m). Additionally the basis{Φm ∪ Ψm}, of the space

Vm+1, is uniformly stable if and only if

‖Cm‖ = O(1),
∥∥C−1

m

∥∥ = O(1), m→ ∞, (3.1.27)

see [29].

For convenience, let Gm := C−1
m , where

Gm =

(
Gm,1

Gm,0

)
, (3.1.28)
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and

CmGm = Cm,1Gm,1 + Cm,0Gm,0 = I. (3.1.29)

Therefore, the matrix Cm describes a change of basis for the spaceVm+1, from the basis

{Φm ∪ Ψm} to the basisΦm+1. The matrix Gm describes the reverse change. From

relationship (3.1.29) and the two scale relationships (3.1.22) and (3.1.24), we obtain the

reconstruction relationship

ΦT
m+1 = ΦT

mGm,0 + ΨT
mGm,1. (3.1.30)

Relationships (3.1.22), (3.1.24) and (3.1.30) are transformations that can be used to con-

vert the coefficients of (3.1.10) into the coefficients of (3.1.12) and vice versa. Let us now

derive these explicitly here. A functionfM ∈ VM can be expanded in single scale as in

(3.1.10), as well as in double scale form as

fM = ΦT
M−1αM−1 + ΨT

M−1βM−1, (3.1.31)

with respect to the basis{ΦM−1 ∪ΨM−1}. Therefore, using (3.1.22) and (3.1.24), yields

fM = ΦT
M−1αM−1 + ΨT

M−1βM−1 = ΦT
M

(
CM−1,0αM−1 + CM−1,1βM−1

)
. (3.1.32)

Comparing the r.h.s. of (3.1.32) with (3.1.10), we obtain

CM−1,0αM−1 + CM−1,1βM−1 = αM . (3.1.33)

That is, the operator Cm applied to the coefficients
(

βm

αm

)
produces the coefficientsαm+1.

Thus, repeated application of the operator Cm converts the coefficients of the multiscale

form of fM , (3.1.12), into the coefficients of the single scale form (3.1.10), giving the
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transformation

RM : βm0,M−1 → αM , (3.1.34)

whereβm0,M−1 =




βM−1

...

βm0

αm0




. The transformation (3.1.34) is called thereconstruction

transformation, or reconstruction algorithm and is schematically given by

α
Mm

0

m
0
,0

m
0
,1

m
0
+1

m
0

m
0
+1

m
0
+1,0

m
0
+1,1

m
0
+2

m
0
+2

M-1,0

M-1,1

M-1

...

...

β

α
C

C

α

β

C

C

α

β

C

C

β
(3.1.35)

To express the transformation RM in matrix form, form < M , we define theNM × NM

matrix

RM,m :=




I 0

0 Cm


 , (3.1.36)

where I is the identity matrix of sizeNM−Nm+1. Then, the reconstruction transformation

RM in (3.1.34) can be written as

RM = RM,M−1 · · ·RM,m0 . (3.1.37)

The inverse transformation, transforms the single scale coefficientsαM of fM (see (3.1.10))

to the multiscale coefficients offM as in (3.1.12). Applying (3.1.30) tofM in single scale

form we obtain,

fM = ΦT
MαM
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= ΦT
M−1 (GM−1,0αM) + ΨT

M−1 (GM−1,1αM)

= ΦT
M−1αM−1 + ΨT

M−1βM−1. (3.1.38)

That is, the operatorGm applied to the coefficientsαm+1 results in the coefficients
(

βm

αm

)
.

Thus, repeated application of the operatorGm converts the coefficients of the single scale

form of fM , (3.1.10), into the coefficients of the multiscale form (3.1.12), giving the

transformation

TM : αM → βm0,M−1. (3.1.39)

The inverse transformation (3.1.39) is called thedecompositiontransformation, or decom-

position algorithm and is schematically given by

m
0

m
0

M-1,0

M-1,1

M-1

M-1

M-2,0

M-2,1

M-2

M-2

m
0

m
0

α...

...

α α

β

α

β

M

G

G

G

G

β

G

G ,1

,0

(3.1.40)

Form < M , we define theNM ×NM matrix

TM,m :=




I 0

0 Gm


 , (3.1.41)

where I is the identity matrix of sizeNM−Nm+1. Then, the decomposition transformation

TM in (3.1.39) can be written as

TM = TM,m0 · · ·TM,M−1. (3.1.42)

There are infinitely many possible complement basisΨm that yield the decomposition
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(3.1.4). A constraint on the choice ofΨm is the stability of the multiscale transformations.

Theorem 3.1.1. ([30, Theorem 3.3]).The transformations RM and TM are well condi-

tioned in the sense that

‖RM‖ , ‖TM‖ = O (1) , M → ∞, (3.1.43)

if and only if the collectionΨ of (3.1.13) is a Riesz basis ofH.

Example 3.1.2.Using the Haar basis of Example 3.1.1, we obtain the decomposition and

reconstruction algorithms for the Haar basis.

When we consider the Haar basis, the two scale relationships(3.1.22) and (3.1.24) be-

come

φλ = c0,0φm+1,2l(x) + c1,0φm+1,2l+1(x), (3.1.44)

ψλ = d0,0φm+1,2l(x) + d1,0φm+1,2l+1(x), (3.1.45)

for λ = {m, l}, m ∈ Z, l = 0, . . . , 2m − 1. To find the coefficientsc0,0 and c1,0, the

equidistant valuesx1 = 1
3

andx2 = 2
3

are substituted into relationship (3.1.44). Hence,

for m = 0, we obtain the linear system

φ0,0

(
1

3

)
= c0,0φ1,0

(
1

3

)
+ c1,0φ1,1

(
1

3

)
,

φ0,0

(
2

3

)
= c0,0φ1,0

(
2

3

)
+ c1,0φ1,1

(
2

3

)
.

(3.1.46)

Solving (3.1.46), we findc0,0 = c1,0 = 1√
2
. Similarly, using relationship (3.1.45), we find

d0,0 = 1√
2

andd1,0 = − 1√
2
.

We now derive the decomposition algorithm for the Haar basis. Given a functionf , we
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consider the projection coefficients off onto the spaceVm,

αλ =

∫

Iλ

f(x)φλ(x) dx

= c0,0

∫

Im+1,2l

f(x)φm+1,2l(x) dx+ c1,0

∫

Im+1,2l+1

f(x)φm+1,2l+1 dx

= c0,0αm+1,2l + c1,0αm+1,2l+1, (3.1.47)

for λ = {m, l},m ∈ Z, l = 0, . . . , 2m − 1. Similarly, the projection coefficients off onto

the spaceWm are

βλ =

∫

Iλ

f(x)ψλ(x) dx

= d0,0

∫

Im+1,2l

f(x)φm+1,2l(x) dx+ d1,0

∫

Im+1,2l+1

f(x)φm+1,2l+1(x) dx

= d0,0αm+1,2l + d1,0αm+1,2l+1, (3.1.48)

for λ = {m, l}, m ∈ Z, l = 0, . . . , 2m − 1. Relationships (3.1.47) and (3.1.48) together

are the decomposition algorithm in filter form for the Haar basis. In matrix form, for

M = 3, the decomposition algorithm isT3 = T3,0T3,1T3,2, where

T3,0 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1√
2

− 1√
2

0 0 0 0 0 0 1√
2

1√
2



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T3,1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2




T3,2 =




1√
2

− 1√
2

0 0 0 0 0 0

0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2

1√
2

1√
2

0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2




We now derive the reconstruction algorithm for the Haar basis. Due to the decomposition

(3.1.4), a functionf ∈ Vm+1 has two distinct representation, namely,

f(x) =

2m′−1∑

l′=0

αλ′φλ′(x), (3.1.49)

whereλ′ = {m′, l′} with l′ = 0, . . . , 2m
′ − 1, herem′ = m+ 1; and

f(x) =
2m−1∑

l=0

(αλφλ(x) + βλψλ(x)) , (3.1.50)
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whereλ = {m, l} with l = 0, . . . , 2m− 1. Therefore, applying the two scale relationship,

(3.1.44) and (3.1.45), to equation (3.1.50), we obtain

f(x) =
2m−1∑

l=0

(c0,0αλ + d0,0βλ)φm+1,2l(x) + (c1,0αλ + d1,0βλ)φm+1,2l+1(x). (3.1.51)

Then, comparing equations (3.1.49) and (3.1.51) we obtain the following reconstruction

algorithm, in filter form,

αm+1,2l = c0,0αλ + d0,0βλ

αm+1,2l+1 = c1,0αλ + d1,0βλ.

(3.1.52)

In matrix form, forM = 3, the reconstruction algorithm isR3 = R3,2R3,1R3,0, where

R3,2 =




1√
2

0 0 0 1√
2

0 0 0

− 1√
2

0 0 0 1√
2

0 0 0

0 1√
2

0 0 0 1√
2

0 0

0 − 1√
2

0 0 0 1√
2

0 0

0 0 1√
2

0 0 0 1√
2

0

0 0 − 1√
2

0 0 0 1√
2

0

0 0 0 1√
2

0 0 0 1√
2

0 0 0 − 1√
2

0 0 0 1√
2



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R3,1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1√
2

0 1√
2

0

0 0 0 0 − 1√
2

0 1√
2

0

0 0 0 0 0 1√
2

0 1√
2

0 0 0 0 0 − 1√
2

0 1√
2




R3,0 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 − 1√
2

1√
2




To illustrate a use of the decomposition and reconstructionalgorithms, we consider the

functionf(x) = 2 cos 2πx+ sin 2πx. We approximate the functionf(x) in the spaceV3,
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in multiscale form, that is, we use the basisΨ3. The resulting multiscale coefficients are




β2,0

β2,1

β2,2

β2,3

β1,0

β1,1

β0,0

α0,0




=




0.131842719

0.3955448157

−0.1318482721

−0.3955448156

0.9003163161

−0.9003163163

0.6366197718

0




.

Therefore, applying the reconstruction algorithm to the multiscale coefficients, we obtain

the single scale coefficients,

R3




0.131842719

0.3955448157

−0.1318482721

−0.3955448156

0.9003163161

−0.9003163163

0.6366197718

0




=




0.7384680443

0.5820064299

0.0546133422

−0.5047715007

−0.7684680444

−0.5820064297

−0.0546133419

0.5047715010




.

Applying the decomposition algorithm to the single scale coefficients, we re-obtain the

multiscale coefficients.

The transformationsRM andTM in the present form are for theoretical analysis. In prac-

tice the matricesRM andTM are not computed, instead local filters are applied, see section

3.2.3
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3.1.4 Wavelets on[0, 1]

The wavelets we have discussed so far are defined onR. However, we are concerned with

integral equations defined over a subset ofR. Therefore, we require wavelets defined on

a closed interval.

There are several methods which adapt wavelets defined onR to wavelets defined on an

interval; see [31, 32, 33, 34]. Here, following Daubechies [26], we briefly introduce two

methods for defining wavelets on the interval[0, 1]. The first and most basic method is to

use wavelets defined overR, with the functionf set to zero outside of[0, 1]. However, this

method introduces a discontinuity in the function at the interval’s boundary. This leads

to large wavelet coefficients for wavelets whose support overlaps the interval’s boundary.

Furthermore, this method is not computationally efficient.

The second method is the so-calledperiodized wavelets. We start with the scaling function

φ and the waveletψ defined overR. Form = 0, 1, . . ., we define the periodized scaling

function and wavelet as

φ
per
λ (x) =

∑

i∈∆m

φλ(x+ i) = 2
m
2

∑

i∈∆m

φ(2mx− 2mi− l), (3.1.53)

for λ = {m, l}, l ∈ ∆m and

ψ
per
λ (x) =

∑

i∈∇m

ψλ(x+ i) = 2
m
2

∑

i∈∇m

ψ(2mx− 2mi− l), (3.1.54)

for λ = {m, l}, l ∈ ∇m. Here,∆m = ∇m = Z. Clearly, bothφper
λ andψper

λ are periodic

of period 1. The spacesV per
m andW per

m are defined as

V per
m := span{φper

λ | λ = {m, l}, l ∈ Z}, (3.1.55)
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and

W per
m := span{ψper

λ | λ = {m, l}, l ∈ Z}, (3.1.56)

respectively.

Since the scaling function and wavelet are periodic with period 1, φper
m,l+2m = φ

per
m,l and

ψ
per
m,l+2m = ψ

per
m,l, the spacesV per

m andW per
m are2m-dimensional spaces, [26, 23]. These

spaces inherit the multiresolution properties of the non-periodized spacesVm andWm.

That is,

V
per
0 ⊂ V

per
1 ⊂ . . . ⊂ L2[0, 1], (3.1.57)

∞⋃

m=0

V
per
m = L2[0, 1] (3.1.58)

and

V per
m = V

per
m−1 ⊕W

per
m−1. (3.1.59)

In the remaining section of this chapter we discuss the baseswe use in this thesis, namely,

the multiwavelets. These are a wavelet basis developed for the interval[0, 1].

3.2 Multiwavelets on[0, 1]

Wavelets are attractive for the numerical solution of integral equations, because their van-

ishing moments property leads to operator compression [21,35]. However, to obtain

wavelets with compact support and high order of vanishing moments, the length of the

support increases as the order of the vanishing moments increases, [26, 36]. This causes

difficulties with the practical use of wavelets particularly at edges and corners. To avoid
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such problems, we consider the orthonormal multiwavelets of [10]. With such basis func-

tions, the order of vanishing momentsd is related to the number ofmotherwavelets rather

than the size of the compact support.

Supposek is a positive integer andm a non-negative integer, we define the spaceV k
m of

piecewise polynomial functions

V k
m :=





g : g|[2−ml,2−m(l+1)] is a polynomial of degree less thank

∀ l = 0, 1, . . . , 2m − 1 and vanishes elsewhere




.

It is clear that the spacesV k
m have dimension2mk and are nested subspaces such that,

V k
0 ⊂ V k

1 ⊂ . . . ⊂ V k
m ⊂ . . . ⊂ L2[0, 1]. (3.2.1)

For m = 0, 1, 2, . . ., we define the2mk dimensional spaceW k
m to be the orthogonal

complement ofV k
m in V k

m+1; that is

V k
m+1 = V k

m ⊕W k
m. (3.2.2)

Then, we have the decomposition

V k
m = V k

0 ⊕W k
0 ⊕W k

1 ⊕ . . .⊕W k
m−1. (3.2.3)

The spaceV k
0 is the space of polynomials of degree less thank on the interval [0,1] and

we assume{φ1, φ2, . . . , φk} to be a basis for it. Suppose{ψ1, ψ2, . . . , ψk} is a basis of

W k
0 . Therefore, for the orthogonality conditionV k

0 ⊥ W k
0 to be satisfied we require the
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first k moments of{ψ1, . . . , ψk} to vanish. That is

∫ 1

0

ψj(x)x
idx = 0 for j = 1, 2, . . . , k; i = 0, 1, . . . , k − 1. (3.2.4)

The2k-dimensional spaceW k
1 is spanned by the functions{ψ1(2x), . . . , ψk(2x), ψ1(2x

−1), . . . , ψk(2x− 1)}. In general, if we define

ψλ := 2
m
2 ψj(2

mx− l), whereλ := {j,m, l}, (3.2.5)

the spaceW k
m is spanned by the set

Ψm := {ψλ| l = 0, . . . , 2m − 1, j = 1, . . . , k} . (3.2.6)

Therefore, the wavelet spaces{W k
m} are generated from thek mother wavelets{ψ1, ψ2,

. . . , ψk}. Similarly the spaces{V k
m} can be generated from the scaling functions{φ1, φ2,

. . . , φk}, as the span of the set

Φm :=
{
φλ = 2

m
2 φj(2

mx− l)| l = 0, . . . , 2m − 1, j = 1, . . . , k
}
. (3.2.7)

Note that when dealing with multiwavelets the parameterλ is a tripletλ = {j,m, l}

identifying themotherwavelet, i.e.j = 1, . . . , k, the level, i.e.m = 0, . . . ,M and the

location,l = 0, . . . , 2m − 1 indicating the span of the wavelet is over[2−ml, 2−m(l + 1)].

Let us now define the set of basis functionsΨM as follows:

ΨM := Φ0

M−1⋃

m=0

Ψm. (3.2.8)

It is easy to see that bothΦM andΨM are bases for the2Mk-dimensional spaceV k
M .
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3.2.1 Multiwavelet Construction

We now show one possible way to generateψ1, ψ2, . . . , ψk as proposed in [10]. First, we

constructk functionsg1, g2, . . . , gk defined fromR to R, with compact support on[−1, 1],

satisfying the following conditions:

1. The restriction ofgj to (0, 1) is a polynomial of degreek − 1.

2. The functiongj is extended to the interval(−1, 0) as an even or odd function ac-

cording to whetheri+ k − 1 is even or odd, respectively.

3. The functionsg1, g2, . . . , gk satisfy the following orthonormality conditions:

∫ 1

−1

gi(x)gj(x) dx = δij, i, j = 1, . . . , k.

4. The functiongj has the following vanishing moment properties:

∫ 1

−1

gj(x)x
i dx = 0, i = 0, 1, . . . , j + k − 2; j = 1, . . . , k.

We determinegj constructively. Suppose we have2k functions,1, x, . . . , xk−1, g1
1, . . . , g

1
k,

which span the space of polynomials of degree less thank on the intervals(0, 1) and

(−1, 0). Then, we first orthogonalizek of them to the functions1, x, . . . , xk−1 then to the

functionsxk, xk+1, . . . , x2k+1 and finally to themselves. We defineg1
j as follows:

g1
j (x) =





xj−1, x ∈ (0, 1),

−xj−1, x ∈ (−1, 0),

0, otherwise,

for j = 1, . . . , k. (3.2.9)
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Note that the2k functions1, x, . . . , xk−1, g1
1, . . . , g

1
k are linearly independent. Therefore,

they span the space of functions which are polynomials of degree less thank on(0, 1) and

on (−1, 0). Then;

1. By the Gram-Schmidt process we orthogonalizeg1
j with respect to1, x, . . . , xk−1

over(−1, 1), obtainingg2
j for j = 1, . . . , k.

2. Using the following sequence of steps we obtaink − 1 functions orthogonal toxk,

of whichk−2 functions are orthogonal toxk+1, and so forth, down to one function

which is orthogonal tox2k−2. We proceed in the following manner: If at least one of

the functionsg2
j is not orthogonal toxk, we reorder the functions so that it appears

first. We defineg3
j = g2

j − aj · g2
1, whereaj is chosen such that〈g3

j , x
k〉 = 0 for

j = 2, . . . , k. Therefore, obtaining the desired orthogonality toxk. In the same

way, we orthogonalize toxk+1, . . . , x2k−1 to obtaing2
1, g

3
2, g

4
3, . . . , g

k+1
k , such that

〈gj+1
j , xi〉 = 0 for i ≤ j + k − 2.

3. In the final step we apply the Gram-Schmidt orthogonalization algorithm togk+1
k ,

gkk−1, . . . , g
2
1. We then normalize these functions to obtaingk, gk−1, . . . , g1.

If we now define,

ψj(x) =
√

2gj(2x− 1), j = 1, ..., k, x ∈ [0, 1], (3.2.10)

we have obtained a basis forW k
0 . Here, we presentgj for k = 1, . . . , 4.

g1(x) =





√
1
2

for x ∈ (0, 1),

−
√

1
2

for x ∈ (−1, 0).

(3.2.11)

k = 1
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g1 =





√
3
2
(−1 + 2x) for x ∈ (0, 1),

−
√

3
2
(1 + 2x) for x ∈ (−1, 0),

g2 =





√
1
2
(−2 + 3x) for x ∈ (0, 1),

√
1
2
(2 + 3x) for x ∈ (−1, 0).

(3.2.12)

k = 2

g1 =





1
3

√
1
2
(1 − 24x+ 30x2) for x ∈ (0, 1),

−1
3

√
1
2
(1 + 24x+ 30x2) for x ∈ (−1, 0),

g2 =





1
2

√
3
2
(3 − 16x+ 15x2) for x ∈ (0, 1),

1
2

√
3
2
(3 + 16x+ 15x2) for x ∈ (−1, 0).

g3 =





1
3

√
5
2
(4 − 15x+ 12x2) for x ∈ (0, 1),

−1
3

√
5
2
(4 + 15x+ 12x2) for x ∈ (−1, 0).

(3.2.13)

k = 3
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g1(x) =





√
15
34

(28x3 − 30x2 + 4x+ 1) for x ∈ (0, 1),

√
15
34

(−28x3 − 30x2 − 4x+ 1) for x ∈ (−1, 0),

g2(x) =





√
1
42

(210x3 − 300x2 + 105x− 4) for x ∈ (0, 1),

√
1
42

(210x3 + 300x2 + 105x+ 4) for x ∈ (−1, 0),

g3(x) =





1
2

√
35
34

(64x3 − 105x2 + 48x− 5) for x ∈ (0, 1),

1
2

√
35
34

(−64x3 − 105x2 − 48x− 5) for x ∈ (−1, 0),

g4(x) =





1
2

√
5
42

(105x3 − 192x2 + 105x− 16) for x ∈ (0, 1),

1
2

√
5
42

(105x3 + 192x2 + 105x+ 16) for x ∈ (−1, 0).

(3.2.14)

k = 4

3.2.2 Multiwavelet Approximation

Given a functionf ∈ L2[0, 1], the projectionP k
mf of f ontoV k

m is

(
P k
mf
)
(x) =

∑

l,j

〈f, φλ〉φλ(x). (3.2.15)

Then the following result can be proved.

Lemma 3.2.1.Suppose that the functionf : [0, 1] → R is k times continuously differen-

tiable. Then,P k
mf approximatesf with the following error bound:

∥∥P k
mf − f

∥∥
L2

≤ 2−mk
2

4kk!
sup
x∈[0,1]

∣∣f (k)(x)
∣∣ . (3.2.16)

Proof: The interval[0, 1] is divided into subintervalsIm,l, such thatP k
mf is a polynomial
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of degree less thank that approximatesf with minimum mean error. We then use the

maximum error estimate for the polynomial of degreek which agrees withf at Chebyshev

nodes of orderk on Im,l. We defineIm,l = [2−ml, 2−m(l + 1)) for l = 0, . . . , 2m − 1.

Then, we obtain

‖Pmf − f‖2
L2

=

∫ 1

0

[Pmf(x) − f(x)]2dx

=
∑

l

∫

Im,l

[Pmf(x) − f(x)]2dx

≤
∑

l

∫

Im,l

[Ck
m,lf(x) − f(x)]2dx

≤
∑

l

∫

Im,l

(
21−mk

4kk!
sup
x∈Im,l

∣∣f (k)(x)
∣∣
)2

dx

≤
(

21−mk

4kk!
sup
x∈[0,1]

∣∣f (k)(x)
∣∣
)2

.

Then, by taking square roots we obtain bound (3.2.16). Here,Ck
m,lf denotes the polyno-

mial of degreek which agrees withf at the Chebyshev nodes of orderk on Im,l. �

Therefore, when using the multiwavelet basis to approximatef the error decays like2−mk.

3.2.3 Multiwavelet Transformations

As seen in section 3.1.3 for a given wavelet basis we can obtain multiscale transformations

Rm and Tm, that allow us to move between single and multiscale representations of a

function. However, in practice we do not form the matrices Rm and Tm, instead we apply

local filters. In this section we follow [37] in developing such filters for multiwavelet

bases.

We start by rewriting the two scale relationships (3.1.22) and (3.1.24) in terms of the
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individual basis functions. That is,

φλ(x) =
∑

j′=1,...,k

l′=2l,2l+1

cj,j′+kl′−2klφ{j′,m+1,l′}(x) (3.2.17)

and

ψλ(x) =
∑

j′=1,...,k

l′=2l,2l+1

dj,j′+kl′−2klφ{j′,m+1,l′}(x) (3.2.18)

whereλ = {j,m, l}, j = 1, . . . , k, l = 0, . . . , 2m−1. In (3.2.17) to find the2k unknowns

{cj,1, cj,2, . . . , cj,2k}, for eachj = 1, . . . , k, we solve2k × 2k linear systems

φj(xi) =
√

2
∑

j′=1,...,k

l′=0,1

cj,j′+kl′φj′ (2xi − 1) , i = 1, . . . , 2k. (3.2.19)

The pointsxi are equidistant in[0, 1] and given byxi = i
2k+1

. In the same way we can

find {dj,1, dj,2, . . . , dj,2k}.

Next, we consider the reconstruction transform Rm. Due to decomposition (3.1.4) there

are two distinct basis for the spaceV k
m+1, namelyΦm+1 and{Φm ∪ Ψm}. Therefore,

everyf ∈ V k
m+1 has two distinct representations,

f(x) =
∑

λ′

αλ′φλ′(x), (3.2.20)

and

f(x) =
∑

λ

(αλφλ(x) + βλψλ(x)) , (3.2.21)

whereλ′ = {j′, m+ 1, l′}, j′ = 1, . . . , k, l′ = 0, . . . , 2m+1 − 1 andλ = {j,m, l}
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j = 1, . . . , k, l = 0, . . . , 2m − 1. Applying (3.2.17) and (3.2.18) to (3.2.21), we obtain

f(x) =
∑

λ

∑

j′=1,...,k

l′=2l,2l+1

(cj,j′+kl′−2klαλ + dj,j′+kl′−2klβλ)φ{j′,m+1,l′}(x)

=
∑

λ

{
(cj,1αλ + dj,1βλ)φ{1,m+1,2l}(x) + . . .+ (cj,kαλ + dj,kβλ)φ{k,m+1,2l}(x)

+ (cj,k+1αλ + dj,k+1βλ)φ{1,m+1,2l+1}(x) + . . .

+ (cj,2kαλ + dj,2kβλ)φ{k,m+1,2l+1}(x)
}
. (3.2.22)

Then, comparing (3.2.22) and (3.2.20) we obtain the following reconstruction relation-

ship. Forj′ = 1, . . . , k, l = 0, . . . , 2m − 1,

α{j′,m+1,2l} =
∑

j=1,...,k

(cj,j′αλ + dj,j′βλ) ,

α{j′,m+1,2l+1} =
∑

j=1,...,k

(cj,j′+kαλ + dj,j′+kβλ) ,

(3.2.23)

for λ = {j,m, l}. Hence, (3.2.23) is the filter representation of (3.1.25) for multiwavelet

bases. Therefore, repeated application of the local filter (3.2.23) converts the coefficients

of the multiscale representation offM into the coefficients of the single scale representa-

tion of fM .

Finally, we consider the decomposition transformation Tm. The projection coefficients of

f onto the spaceV k
m are

αλ =

∫

Iλ

f(x)φλ(x)dx, (3.2.24)

and the projection coefficients onto the spaceW k
m are

βλ =

∫

Iλ

f(x)ψλ(x)dx. (3.2.25)
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Then, applying the two scale relationship (3.2.17) to (3.2.24), we obtain

αλ =
∑

j′=1,...,k

l′=2l,2l+1

cj,j′+kl′−2kl

∫

Iλ

f(x)φ{j′,m+1,l′}(x)dx

=
∑

j′=1,...,k

l′=2l,2l+1

cj,j′+kl′−2klα{j′,m+1,l′}. (3.2.26)

Similarly, applying the two scale relationship (3.2.18) to(3.2.25), we obtain

βλ =
∑

j′=1,...,k

l′=2l,2l+1

dj,j′+kl′−2kl

∫

Iλ

f(x)φ{j′,m+1,l′}(x)dx

=
∑

j′=1,...,k

l′=2l,2l+1

dj,j′+kl′−2klα{j′,m+1,l′}. (3.2.27)

Hence, (3.2.26) and (3.2.27) are the filter representation of (3.1.28) for multiwavelet

bases. Therefore, repeated application of the local filter,(3.2.26) and (3.2.27), converts

the coefficients of the single scale representation offM into the coefficients of the multi-

scale representation offM .

Example 3.2.1. (Multiwavelet Basis).

To show the compression power of using a multiwavelet basis we consider the multi-

wavelet and scaling function representations of a function,

f(x) =





3
2
sin 4πx for 0 ≤ x ≤ 1

2
,

31
5

sin 80πx for 1
2
< x ≤ 21

40
,

3
2
sin 4π(x− 1

40
) for 21

40
< x ≤ 1,

0 otherwise,

(3.2.28)

as shown in Figure 3.3.
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Figure 3.3: the functionf(x) of (3.2.28)

We consider the multiwavelet basis with vanishing moments of order 4, that is,k = 4.

Therefore, themothermultiwavelets, fork = 4 shown in Figure 3.4, are obtained from

(3.2.10), using the functionsgi, i = 1, . . . , k in (3.2.14).

55



(x)ψ
1

ψ (x)2

ψ
3 (x)

ψ
4
(x)

4

3

2

1

0

−1

−2

−3

−4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: The Mother Wavelets

The corresponding scaling functions are

φ1(x) = 1,

φ2(x) =
√

3(2x− 1),

φ3(x) =

√
20

2
(6x2 − 6x+ 1),

φ4(x) =

√
28

2
(20x3 − 30x2 + 12x− 1).

(3.2.29)

We approximate the functionf(x) in the spacesVM , for M = 6, . . . , 10. Table 3.1 con-

tains the results when the function is approximated using the scaling functions. The dis-

cretisation error is denoted‖f − fφ‖, the error introduced when setting elements less

than a given tolerance to zero is denoted
∥∥fφ − fφ

∥∥. The total error is denoted
∥∥f − fφ

∥∥.

The columnnz b4 tol shows the number of non-zero coefficients before the tolerance is
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applied, tol shows the tolerance applied andnz is the remaining number of non-zero

coefficients.

M ‖f − fφ‖ nz b4 tol tol
∥∥fφ − fφ

∥∥ ∥∥f − fφ
∥∥ nz

5 3.53 × 10−1 128 1 × 10−1 1.88 × 10−1 3.94 × 10−1 27

6 6.15 × 10−2 256 1 × 10−2 4.63 × 10−2 7.87 × 10−2 80

7 1.19 × 10−2 512 2 × 10−3 8.52 × 10−3 1.37 × 10−2 216

8 5.84 × 10−3 1024 8 × 10−4 5.07 × 10−3 7.92 × 10−3 416

9 1.50 × 10−3 2048 2 × 10−4 1.44 × 10−3 1.96 × 10−3 893

10 7.14 × 10−4 4096 6 × 10−5 5.54 × 10−4 9.33 × 10−4 1830

Table 3.1: Approximation off(x) using the scaling function basis

Table 3.2 contains the results when the function is approximated using the multiwavelet

basis. The discretisation error is denoted‖f − fψ‖, the error introduced when setting

elements less than a given tolerance to zero is denoted
∥∥fψ − fψ

∥∥. The total error is

denoted
∥∥f − fψ

∥∥. From tables 3.1 and 3.2, it can clearly be seen that when using the

M ‖f − fψ‖ nz b4 tol tol
∥∥fψ − fψ

∥∥ ∥∥f − fψ
∥∥ nz

5 3.53 × 10−1 124 1 × 10−1 1.46 × 10−1 3.76 × 10−1 14

6 6.15 × 10−2 250 4 × 10−2 5.81 × 10−2 8.26 × 10−2 21

7 1.19 × 10−2 504 7 × 10−3 9.93 × 10−3 1.46 × 10−2 33

8 5.84 × 10−3 892 3 × 10−3 4.81 × 10−3 7.79 × 10−3 37

9 1.50 × 10−3 1537 6 × 10−4 1.32 × 10−3 1.88 × 10−3 50

10 7.14 × 10−4 2836 2 × 10−4 4.71 × 10−4 8.89 × 10−4 60

Table 3.2: Approximation off(x) using the multiwavelet basis

multiwavelet basis significantly less terms are required torepresentf(x) than when the
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scaling function basis is used.

Chapter Review

In this chapter we have reviewed the basic properties of wavelets. We have discussed the

multiresolution analysis, where a scaling function basisΦm = {φλ := 2
m
2 φ(2m ·−l), |λ =

{m, l}, l ∈ ∆m} generates a sequence of nested subspaces of a Hilbert spaceH, such that

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ H.

The difference space,Wm, between two nested subspacesVm andVm+1 is spanned by the

basisΨm = {ψλ := 2
m
2 ψ(2m ·−l), |λ = {m, l}, l ∈ ∇m}, whereψ is themotherwavelet.

We have shown that any spaceVM , has two distinct bases, namely, the scaling function

basisΦM and the wavelet basis

ΨM = Φ0

M−1⋃

m=m0

Ψm.

Therefore, when approximating a functionf in the spaceVM we have two choices, either

we can approximatef using the scaling function basisΨM ,

fM = ΦT
MαM ,

or using the wavelet basisΨM ,

fM = ΦT
0 α0 +

M−1∑

m=m0

ΨT
mβm.
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Using the decomposition and reconstruction transformations,TM andRM , respectively,

we are able to transform the scaling function approximationcoefficientsαM into the

wavelet approximation coefficients




βM−1

...

β0

α0




and vice versa. Due to the vanishing mo-

ments property of wavelets, many of the coefficientsβm may be small and can therefore

be discarded. This results in wavelets being widely used in applications ranging from

image compression and data denoising to numerical analysis.

Following [10], we developed the basis functions we use in this thesis, namely, the mul-

tiwavelets. These have the advantage that an increase in theorder of vanishing moments

is obtained not by increasing the functions compact support, as with wavelets, but by

increasing the number ofmotherwavelets.
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Chapter 4

Multiwavelet Galerkin Methods

The approach we present in this chapter is in contrast to muchof that in current use in

the engineering community, where, because of the perceivedand real complexity in di-

rectly using wavelet bases, many practitioners obtain the matrix compression offered by

wavelets by adopting a two stage scheme. First, the standardboundary element matrix

is computed using the scaling function basesΦM for V k
M . Then, a wavelet transform

is applied to obtain the coefficient matrix with respect to the wavelet basis (3.2.8). The

resulting matrix is then compressed by the application of a threshold, see [38]. Whilst

this method results in some speed up of the solution time, itscomputational cost is still

O (N2). Here, we are interested in ‘real’ fast methods. By estimating the size of the

matrix elements, we are able to decide a priori which elements are going to be too small

to affect the accuracy of our approximation. This way we avoid computing them in the

first place, resulting in a fast algorithm with computational costO (N logpN). Whilst,

here, we are only concerned with the Galerkin method, the collocation method with mul-

tiwavelets is considered in [39, 40].

In section 4.1 we consider the standard Galerkin method withrespect to the multiwavelet
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basis functions, whereas, in section 4.2 we introduce the so-called non-standard Galerkin

method, see [6], with respect to the multiwavelet basis functions, [41, 42, 43]. For both

methods we obtain bounds for the size of matrix elements. Using these bounds, compres-

sion strategies are developed. Finally complexity resultsare presented for both methods.

4.1 The Standard Galerkin Method

In this section we apply the Galerkin method using the multiwavelet basisΨM . We order

the basis functions such thatΨM = ΨM−1 ∪ . . . ∪ Ψ1 ∪ Ψ0 ∪ Φ0. Therefore, the re-

...

... φ0ψ0ψ1ψΜ−1

ψ0
φ0

ψ1

ψΜ−1

Figure 4.1: The standard multiwavelet Galerkin matrix

sulting coefficient matrix with elementsAλ,λ′ = 〈Kψλ, ψλ′〉 has the symmetric structure

illustrated in Figure 4.1. Here, we see that the square diagonal blocks contain interac-

tions between basis functions at the same resolution, whereas, off diagonal blocks contain

interactions between multiwavelets at different resolutions.
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4.1.1 Matrix Element Bounds

We consider matrix elements of the form,

Aλ,λ′ :=

∫

Iλ′

∫

Iλ

K(x, y)ψλ(y)ψλ′(x)dydx (4.1.1)

whereλ = {j,m, l}, with j = 1, . . . , k; m = M − 1, . . . , 0 andl = 0, . . . , 2m − 1 and

λ′ = {j′, m′, l′}, with j′ = 1, . . . , k; m′ = M − 1, . . . , 0 andl′ = 0, . . . , 2m
′ − 1. Iλ is the

support of the waveletψλ(x) over the transformed boundary. Similarly,Iλ′ is the support

of the waveletψλ′ over the transformed boundary. The kernelK(x, y) is the so-called

transformed kernel, when the integration domain is transformed fromΓ to [0, 1]. The

kernels in many integral equations fall into the class ofanalytically standardfunctions.

Definition 4.1.1. The kernelK(x̂, ŷ) is calledanalytically standardof orderα if the

transformed kernelK(x, y) satisfies

∣∣∂l
x∂

m
y K(x, y)

∣∣ ≤ c
(|l| + |m|)!

dist (x̂, ŷ)1+|l|+|m|+α , (4.1.2)

where

K(x, y) := K (κ(x), κ(y)) |κx| |κy| , (4.1.3)

with x̂ := κ(x), ŷ := κ(y) and |κx|, |κy| are the Jacobians for the parametric mapκ :

[0, 1] → Γ, [44].

We now give a result bounding the size of the matrix elementsAλ,λ′ .

Proposition 4.1.1.LetK(x̂, ŷ) be an analytically standard kernel. Then, the matrix ele-

mentsAλ,λ′ , as described in (4.1.1), satisfy the bound

|Aλ,λ′ | ≤ c
2−(m+m′)(k+ 1

2
)−2k

(2k + 1) dist(Γλ′,Γλ)1+2k+α
, (4.1.4)
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for dist(Γλ′ ,Γλ) > 0, whereΓλ is the support of the multiwaveletψλ on the boundaryΓ.

Proof: First, we expand as a Taylor series our analytically standard kernel in (4.1.1), up

to terms involving the2kth partial derivative ofK, about the point(x0, y0), with x0 taken

as the midpoint ofIλ′ andy0 as the midpoint ofIλ. Therefore, we obtain

K(x, y) =K(x0, y0) +
∂K
∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂K
∂y

∣∣∣∣
(x0,y0)

(y − y0)

+
1

2

∑

i+j=2

∂i+jK
∂xi∂yj

∣∣∣∣
(x0,y0)

(x− x0)
i(y − y0)

j + . . .

+
1

(2k − 1)!

∑

i+j=2k−1

∂i+jK
∂xi∂yj

∣∣∣∣∣
(x0,y0)

(x− x0)
i(y − y0)

j +R, (4.1.5)

whereR is the remainder of the truncated series. That is,

R =
1

(2k)!

∑

i+j=2k

∂i+jK
∂xi∂yj

∣∣∣∣
(tx,ty)

(x− x0)
i(y − y0)

j . (4.1.6)

Therefore, substituting the Taylor expansion (4.1.5) into(4.1.1) and using thek vanishing

moments property of the multiwavelets, in bothx andy directions, we obtain

|Aλ,λ′| =
1

(2k)!

∣∣∣∣∣

∫

Iλ′

∫

Iλ

(
∂2kK
∂xk∂yk

∣∣∣∣
(tx,ty)

(x− x0)
k(y − y0)

k

)
ψλ(y)ψλ′(x) dydx

∣∣∣∣∣

≤ 1

(2k)!

∣∣∣∣∣ sup
tx∈Iλ′ ,ty∈Iλ

∂2kK
∂xk∂yk

∣∣∣∣
(tx,ty)

∣∣∣∣∣×
∣∣∣∣∣

∫

Iλ′

∫

Iλ

(x− x0)
k(y − y0)

kψλ(y)ψλ′(x) dydx

∣∣∣∣∣ .
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Then, using the Cauchy-Schwartz inequality yields,

|Aλ,λ′ | ≤
1

(2k)!

∣∣∣∣∣ sup
tx∈Iλ′ ,ty∈Iλ

∂2kK
∂xk∂yk

∣∣∣∣
(tx,ty)

∣∣∣∣∣

[∫

Iλ′

(x− x0)
2k dx

] 1
2

×

[∫

Iλ

(y − y0)
2k dy

]1
2

‖ψλ‖ ‖ψλ′‖ .

Now, we know that‖ψλ‖ = ‖ψλ′‖ = 1 and

∫

Iλ′

(x− x0)
2k
dx =

|Iλ′|2k+1

22k(2k + 1)
=

2−m
′(2k+1)−2k

2k + 1
,

∫

Iλ

(y − y0)
2k
dy =

|Iλ|2k+1

22k(2k + 1)
=

2−m(2k+1)−2k

2k + 1
.

Therefore, we obtain

|Aλ,λ′| ≤
1

(2k)!

∣∣∣∣∣ sup
tx∈Iλ′ ,ty∈Iλ

∂2kK
∂xk∂yk

∣∣∣∣
(tx,ty)

∣∣∣∣∣ .
2−

1
2
m(2k+1)−k

√
2k + 1

.
2−

1
2
m′(2k+1)−k

√
2k + 1

=
1

(2k)!

∣∣∣∣∣ sup
tx∈Iλ′ ,ty∈Iλ

∂2kK
∂xk∂yk

∣∣∣∣
(tx,ty)

∣∣∣∣∣ .
2−

1
2
(m+m′)(2k+1)−2k

2k + 1
.

Since, the kernelK(x̂, ŷ) is analytically standard we use inequality (4.1.2) to obtain

|Aλ,λ′ | ≤
1

(2k)!
.
2−

1
2
(m+m′)(2k+1)−2k

2k + 1
.c sup
tx∈Iλ′ ,ty∈Iλ

(2k)!

dist(κ(tx), κ(ty))1+2k+α

≤ c
2−(m+m′)(k+ 1

2
)−2k

(2k + 1) dist(Γλ′ ,Γλ)1+2k+α
,

which is the result we require.�
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4.1.2 Compression Strategy

With the bound (4.1.4), we now follow [45] in developing a compression strategy for the

multiwavelets. The coefficient matrixAM is replaced by its sparse approximationAdM

where

Adλ,λ′ :=





0 dist(Γλ′ ,Γλ) > dm,m′

Aλ,λ′ otherwise.

(4.1.7)

That is, instead of solving the linear system

AMuh = fh (4.1.8)

we replace the matrixAM by the matrixAdM and solve the modified linear system

AdMudh = fh. (4.1.9)

Therefore, the error introduced by the modified system is
∥∥uh − udh

∥∥
2
. We now find a

bound for this error. Using equations (4.1.8) and (4.1.9) weobtain

AMuh −AMudh + AMudh = AdMudh

AM
(
uh − udh

)
= −

(
AM − AdM

)
udh.

Therefore, taking norms we obtain

∥∥uh − udh
∥∥

2
≤
∥∥A−1

M

∥∥
2

∥∥AM −AdM
∥∥

2

∥∥udh
∥∥

2
.
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SinceAM is a discretisation ofA : Hs → Hs−α it can be shown that
∥∥A−1

M

∥∥
2
≤

c1
(
k2M

)|α|
, also we can show that‖uh‖2 ≤ c2, we obtain

∥∥uh − udh
∥∥

2
≤ d1

(
k2M

)|α| ∥∥AM −AdM
∥∥

2
,

whered1 = c1c2.

The valuesdm,m′ are found so that the error in the solution with the modified matrix

AdM , namely
∥∥uh − udh

∥∥
2
, is of the same order as the discretisation error. We proceedby

studying the norm
∥∥AM −AdM

∥∥
∞, since

∥∥AM −AdM
∥∥

2
≤

√
N
∥∥AM − AdM

∥∥
∞, see [46].

Therefore,
∥∥uh − udh

∥∥
2
≤ d1

(
k2M

)|α|+ 1
2
∥∥AM − AdM

∥∥
∞ . (4.1.10)

Hence, in order to keep the error in the solution with modifiedmatrixAdM ,
∥∥uh − udh

∥∥
2
,

of the same order as the discretisation error, we find the valuesdm,m′, such that the matrix

(AM − AdM) satisfies,
∥∥AM − AdM

∥∥
∞ ≤ η2−M(|α|+ 1

2
)

d1k
|α|+ 1

2

, (4.1.11)

whereη is an estimate for the discretisation error. Theorem 2.4.4 states that for the

Galerkin method, the discretisation error is of the same order as the approximation er-

ror by orthogonal projection. Moreover, Lemma 3.2.1 statesthat the approximation error

when using multiwavelets to approximate the functionu in the spaceV k
M is bounded as

∥∥P k
Mu− u

∥∥
L2

≤ 2−Mk 2

4kk!
sup
x∈[0,1]

∣∣u(k)(x)
∣∣ .

Therefore, as an estimate for the discretisation error we use

η =
d22

−Mk

4kk!
. (4.1.12)
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We now proceed to find an estimate for
∥∥AM − AdM

∥∥
∞. Let us denote byAmm

′
the

natural submatrices ofAM of sizek2m by k2m
′
involving multiwavelet basis functions of

W k
m andW k

m′ . We similarly denote byAmm
′,d submatrices ofAdM . We can now define the

submatrices

A
mm′

= Amm
′ − Amm

′,d.

We bound the norm of the submatricesA
mm′

and use this to find the valuesdm,m′. There-

fore, summing along each row of the submatricesA
mm′

we obtain,

∑

λ′

∣∣Aλ,λ′
∣∣ =

∑

λ′: dist(Γλ′ ,Γλ)>dm,m′

|Aλ,λ′|

≤
∑

λ′: dist(Γλ′ ,Γλ)>dm,m′

c

2k + 1
2−(m+m′)(k+ 1

2
)−2kdist(Γλ′,Γλ)

−(1+2k+α).

(4.1.13)

As we are bounding away from the diagonal it is reasonable to assume thatdm,m′ ≥

max{2−m, 2−m′}. Therefore, we estimate the sum on the r.h.s of (4.1.13) by anintegral

to obtain,

∑

λ′

∣∣Aλ,λ′
∣∣ ≤ c

2k + 1
2−(m+m′)(k+ 1

2
)−2k.2m

′

.2

∣∣∣∣∣

∫ ∞

dm,m′

|x|−(1+2k+α)
dx

∣∣∣∣∣

=
c

2k + 1
2−(m+m′)(k+ 1

2
)−2k2m

′+1 1

2k + α
d
−(2k+α)
m,m′ .

Therefore, each submatrixA
m,m′

satisfies,

∥∥∥Amm
′
∥∥∥
∞

= max
λ

∑

λ′

∣∣Aλ,λ′

∣∣

≤ max
λ

{
c

(2k + 1)(2k + α)
2−(m+m′)(k+ 1

2
)−2k2m

′+1d
−(2k+α)
m,m′

}

=
c

(2k + 1)(2k + α)
2−(m+m′)(k+ 1

2
)−2k2m

′+1d
−(2k+α)
m,m′ . (4.1.14)
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Since we require, from (4.1.11) and (4.1.12), that

∥∥AM − AdM
∥∥
∞ ≤ max

0≤m≤M−1

M−1∑

m′=0

∥∥∥Amm
′
∥∥∥
∞

≤ d2−Mk2−M(|α|+ 1
2
)

4kk!k|α|+
1
2

, (4.1.15)

we set,
∥∥∥Amm′

∥∥∥
∞

≤ d2−Mk2−M(|α|+ 1
2
)

4kk!k|α|+
1
2M

, (4.1.16)

whered = d2
d1

. Then, the valuesdm,m′ are found by equating the r.h.s. of inequalities

(4.1.14) and (4.1.16),

dm,m′ =

(
cM4kk!k

1
2
+|α|

d(2k + 1)(2k + α)

) 1
2k+α

2
−2k(m+m′)−2k+1+M(k+1

2 +|α|)
2k+α . (4.1.17)

Theorem 4.1.1.For k > α + |α| + 1
2
, the modified multiwavelet Galerkin matrix using

the truncation value (4.1.17) hasO (N logN) non-zero elements.

Proof: Since the structure of matrixAM is symmetric along the diagonal, as shown in

Figure 4.1, in this proof we consider only the upper block triangular part of matrixAM ,

namely, the submatricesAm,m
′

wherem ≥ m′. Due to the truncation criterion (4.1.7),

each row of the submatrixAm,m
′
contains at mostO

(
2m

′
dm,m′ + 1

)
non-zero elements.

Consider the submatrixA(M−1)(M−1). Each row of the submatrix contains at most

O
(
2M−1dM−1,M−1 + 1

)
= O

(
M

1
2k+α 2M−12

−M(3k− 1
2−|α|)

2k+α + 1

)
=

O
(
M

1
2k+α 2

M(2k+α)−M(3k− 1
2−|α|)

2k+α + 1

)
= O

(
M

1
2k+α 2

−M(k−1
2−|α|−α)

2k+α + 1

)
=

O
(
N

−(k− 1
2−|α|−α)
2k+α log

1
2k+α N + 1

)
non-zero elements. Fork > α+|α|+1

2
,N

−(k− 1
2−|α|)−α

2k+α

→ 0 asN → ∞. Therefore, each row contains at mostO(1) non-zero elements. The

submatrixA(M−1)(M−1) hasN
2

rows. Therefore, the submatrix contains at mostO
(
N
2

)

non-zero elements.
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We now consider the submatrixA(M−1)(M−2). Applying the truncation valuedM−1,M−2,

each row of the submatrixA(M−1)(M−2) contains at mostO
(
N

−(k− 1
2−|α|−α)
2k+α log

1
2k+α N + 1

)
=

O(1) non-zero elements. The submatrixA(M−1)(M−2) has the same number of rows as the

submatrixA(M−1)(M−1), namely,N
2

rows. Therefore, the submatrixA(M−1)(M−2) contains

at mostO
(
N
2

)
non-zero elements.

Using the same argument for the submatricesA(M−1)m, with m < M − 2, we infer that

each row has asymptoticallyO(1) non-zero elements. Each of these submatrices hasN
2

rows. Therefore, the submatricesA(M−1)m, form < M − 2, contain at mostO
(
N
2

)
non-

zero elements. In Figure 4.1, we can see that there areM = logN − log k submatrices

A(M−1)m,m ≤M − 1. Therefore, the submatrix

Â(M−1) :=

(
A(M−1)(M−1) · · · A(M−1)0

)
,

contains at mostO
(
N
2

logN
)

non-zero elements.

We now consider the submatrixA(M−2)(M−2). Using the truncation valuedM−2,M−2, each

row of the submatrixA(M−2)(M−2) contains at mostO
(
N

−(k− 1
2−|α|−α)
2k+α log

1
2k+α N + 1

)
=

O(1) non-zero elements. The submatrixA(M−2)(M−2) hasN
4

rows. Therefore, the sub-

matrix contains at mostO
(
N
4

)
non-zero elements. We now consider the submatrices

A(M−2)m for m < M − 2. Applying the same argument as above, each submatrix

A(M−2)m, form < M − 2, contains at mostO
(
N
4

)
non-zero elements. In Figure 4.1, we

can see that there areM −1 = logN− log k−1 submatricesA(M−2)m, withm ≤M−2.

Therefore, the submatrix

Â(M−2) :=

(
A(M−2)(M−2) · · · A(M−2)0

)
,

contains at mostO
(
N
4

logN
)

non-zero elements.
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Applying the same argument to all levels, we infer that each submatrixAmm
′
, form < m′

contains at mostO
(

N
2M−m

)
non-zero elements. Then, each submatrix

Âm :=

(
Amm · · · Am0

)
,

for 0 ≤ m ≤ M − 1, contains at mostO
(

N
2M−m logN

)
non-zero elements. Therefore,

summing over all submatriceŝAm, for 0 ≤ m ≤ M − 1, the matrixAM contains at

mostO
(
N
2

logN + N
4

logN + . . .+ N
2M logN

)
= O

((
1
2

+ 1
4

+ . . .+ 1
2M

)
N logN

)
=

O(N logN) non-zero elements.�

4.2 The Non-Standard Galerkin Method

In this section, we use the so-called non-standard representation of an operator introduced

in [6]. Here, the non-standard representation is used as a device to facilitate efficient

matrix-vector multiplication in the solution of the classical Galerkin method. In the non-

standard form all levels are decoupled, that is, we only haveinteractions between basis

functions of the same resolution. However, the price we pay is that the non-standard

representation is an over representation involving the multiwavelets and scaling functions

on all levels.

We consider the projection operatorsP k
m : Hs[0, 1] → V k

m andQk
m : Hs[0, 1] → W k

m.

The classical form of the Galerkin representation of a bounded linear operatorA : Hs →

Hs−α in the spaceV k
M is the matrix AcM = P k

MAP k
M . Then, following [6] and using the
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fact thatQk
m−1 = P k

m − P k
m−1, we rewriteP k

MAP k
M as a telescopic expansion,

P k
MAP k

M =
M∑

m=1

[
P k
mAP k

m − P k
m−1AP k

m−1

]
+ P k

0 AP k
0

=
M∑

m=1

[
(
P k
m − P k

m−1

)
A
(
P k
m − P k

m−1

)
+
(
P k
m − P k

m−1

)
AP k

m−1

+ P k
m−1A

(
P k
m − P k

m−1

)
] + P k

0 AP k
0

=
M∑

m=1

[
Qk
m−1AQk

m−1 +Qk
m−1AP k

m−1 + P k
m−1AQk

m−1

]
+ P k

0 AP k
0 , (4.2.1)

where

Qk
mAQk

mu =
∑

λ,λ′

βmλ A
m
λ,λ′ψλ′(x), (4.2.2)

Qk
mAP k

mu =
∑

λ,λ′

αmλ B
m
λ,λ′ψλ′(x), (4.2.3)

and

P k
mAQk

mu =
∑

λ,λ′

βmλ C
m
λ,λ′φλ′(x), (4.2.4)

for λ = {j,m, l}, λ′ = {j′, m′, l′}, j, j′ = 1, . . . , k; m = m′ = M − 1, . . . , 0 and

l, l′ = 0, . . . , 2m − 1. The coefficientsαm = {αmλ } are the projection coefficients of a

functionu into the spaceV k
m, likewise, the coefficientsβm = {βmλ } are the projection

coefficients into the spaceW k
m. That is,

P k
mu =

∑

λ

〈u, φλ〉φλ =
∑

λ

αmλ φλ
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and

Qk
mu =

∑

λ

〈u, ψλ〉ψλ =
∑

λ

βmλ ψλ.

We define the coefficientsAmλ,λ′, B
m
λ,λ′ andCm

λ,λ′ as

Amλ,λ′ := 〈Aψλ, ψλ′〉, (4.2.5)

Bm
λ,λ′ := 〈Aφλ, ψλ′〉, (4.2.6)

and

Cm
λ,λ′ := 〈Aψλ, φλ′〉, (4.2.7)

where the superscriptm, signifies thatm = m′. Note that in section 4.1 submatrices are

denoted byAmm
′
but here we only have submatrices wherem = m′, therefore we denote

them byAm. We now, define the submatricesAm of sizek2m by k2m as

Am =



Am1,m,0;1,m,0 . . . Amk,m,0;1,m,0 . . . Am1,m,2m−1;1,m,0 . . . Amk,m,2m−1;1,m,0

...
...

...
...

Am1,m,0;k,m,0 . . . Amk,m,0;k,m,0 . . . Am1,m,2m−1;k,m,0 . . . Amk,m,2m−1;k,m,0

...
...

...
...

Am1,m,0;1,m,2m−1 . . . Amk,m,0;1,m,2m−1 . . . Am1,m,2m−1;1,m,2m−1 . . . Amk,m,2m−1;1,m,2m−1

...
...

...
...

Am1,m,0;k,m,2m−1 . . . Amk,m,0;k,m,2m−1 . . . Am1,m,2m−1;k,m,2m−1 . . . Amk,m,2m−1;k,m,2m−1




.

The submatricesBm andCm are similarly defined. Furthermore, letDm
λ,λ′ := 〈Aφλ, φλ′〉.

Then, the matrix representation of the operatorP k
0 AP k

0 can be defined analogously toA0
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and we denote it byD0.

We are now able to present the matrix representation of the telescopic expansion, namely

the non-standard matrix. The non-standard matrixKM , of size2k(2M−1) by 2k(2M−1),

is defined as

KM :=




AM−1 BM−1

CM−1

AM−2 BM−2

CM−2

. . .

A0 B0

C0 D0




. (4.2.8)

Therefore, when using the non-standard matrix, rather thanthe standard matrix of section

4.1, we only have interactions between basis functions of the same resolution. That is,

the matrix only involves the matrix blocksAm and not the off diagonal blocksAm,m
′

of

the standard matrix. Consequently, the domains of integration for the elements of the

non-standard matrix are the same size.

In the non-standard method, the non-standard matrix (4.2.8) is used to efficiently compute

the matrix-vector productbM = Ac
Mx, where AcM is the classical Galerkin matrix, that is

the coefficient matrix with respect to the scaling function basis. The elements of the vector

x are with respect to the scaling function basisΦM . Hence, the vectorx is of lengthk2M .

Therefore, the vectorx needs to be transformed to the vectory, of length2k(2M − 1),

whose elements are with respect to the over representation{ΨM−1 ∪ΦM−1 ∪ . . .∪Ψ1 ∪

Φ1 ∪ Ψ0 ∪Φ0}.

The decomposition transformationTm of section 3.1.3 transforms the vectorαM , of
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lengthk2M , to the vectorβ0,M−1, of lengthk2M . That is,

TMαM = β0,M−1,

where

β0,M−1 =




βM−1

...

β1

β0

α0




.

Therefore, when using the non-standard method the decomposition transformationTM

cannot be applied. Instead we introduce the decomposition transformationTM . For0 ≤

m < M−1, we define[2k(2M−1)−2k(2m+1−1)]×[2k(2m−1)−2k(2m+1−1)+k2m+1]

matrix

TM,m =




I1 0

0 I2

0 Gm



, (4.2.9)

where I1 is the identity matrix of size2k(2M − 1) − 2k(2m+1 − 1) − k2m+1 and I2 is

the identity matrix of sizek2m+1 andGm is the matrix (3.1.28). Form = M − 1,

TM,M−1 = TM,M−1. Then, the decomposition transformationTM is defined as,

TM = TM,0 · · ·TM,M−1.

The decomposition transformationTM acts on the vectorαM , of lengthk2m, and results
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in the vector 


βM−1

αM−1

...

β1

α1

β0

α0




, (4.2.10)

of length2k(2M − 1).

We also require the reverse transformation, the reconstruction transformationRM . For

0 ≤ m < M − 1, we define the[2k(2m − 1)− 2k(2m+1 − 1) + k2m+1]× [2k(2M − 1)−

2k(2m+1 − 1)] matrix

RM,m =




I1 0 0

0 I2 Cm


 , (4.2.11)

whereI1 andI2 are the identity matrices of size2k(2M −1)−2k(2m+1 −1)−k2m+1 and

k2m+1, respectively, andCm is the matrix (3.1.25). Form = M −1,RM,M−1 = RM,M−1.

Then, the reconstruction transformationRM is defined as,

RM = RM,M−1 · · ·RM,0.

Using the decomposition and reconstruction transformationsTM andRM , respectively,

the non-standard matrix can be used to efficiently compute the matrix-vector product

bM = AcMx, as follows:

1. The decomposition transformationTM is applied to the vectorx, of lengthk2M .

This results in a vectory, of length2k(2M − 1), whose elements are with respect to
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the over representation{ΨM−1 ∪ΦM−1 ∪ . . . ∪ Ψ1 ∪ Φ1 ∪ Ψ0 ∪Φ0}. That is,

Tmx = y.

Note that in practice the matricesTM,m are not formed. Instead, the decomposition

filters (3.2.26) and (3.2.27) are applied; when the non-standard method is used, co-

efficients with respect to the basesΦm are stored. However, when the filters (3.2.26)

and (3.2.27) are used to applyTM in the standard wavelet case, the coefficients with

respect to the basisΦm are not stored.

2. Then, the vectory is premultiplied by the non-standard matrixKM , to obtain the

vectorz,

KMy = z.

3. The reconstruction transformationRM is applied to the vectorz, of length2k(2M −

1), to obtain the required vectorbM = AcMx of lengthk2M . That is,

RMz = bM .

Note that in practice the matricesRM,m are not formed. Instead, we apply the filter

(3.2.23) as follows. Consider the vector

z =




AM−1βM−1 +BM−1αM−1

CM−1βM−1

...

A1β1 +B1α1

C1β1

A0β0 +B0α0

C0β0 +D0α0




, (4.2.12)
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which is the vector (4.2.10) premultiplied by the non-standard matrixKM . We note that

Dmαm is only present form = 0. By applying the reconstruction filter (3.2.23) we

reconstructDmαm, form > 0. We start by applying the filter (3.2.23) to the vector




A0β0 +B0α0

C0β0 +D0α0


 ,

to obtain the vectorb1, of lengthk21. That is, forj′ = 1, . . . , k andl = 0, 1,

b{j′,1,2l} =

k∑

j=1

cj,j′
([
C0β0

]
{j,0,l} +

[
D0α0

]
{j,0,l}

)
+ dj,j′

([
A0β0

]
{j,0,l} +

[
B0α0

]
{j,0,l}

)
,

b{j′,1,2l+1} =

k∑

j=1

cj,j′+k

([
C0β0

]
{j,0,l} +

[
D0α0

]
{j,0,l}

)
+ dj,j′+k

([
A0β0

]
{j,0,l} +

[
B0α0

]
{j,0,l}

)
.

The vectorb1 is then added to the vectorC1β1. Therefore, we obtain the vector




AM−1βM−1 +BM−1αM−1

CM−1βM−1

...

A1β1 +B1α1

C1β1 + b1




,

of length2k(2M − 1) − 2k. The filter (3.2.23) is now applied to the vector




A1β1 +B1α1

C1β1 + b1


 ,
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and we obtain the vectorb2, of lengthk22. That is, forj′ = 1, . . . , k andl = 0, 1, 2, 3,

b{j′,2,2l} =
k∑

j=1

cj,j′
([
C1β1

]
{j,1,l} + [b1]{j,1,l}

)
+ dj,j′

([
A1β1

]
{j,1,l} +

[
B1α1

]
{j,1,l}

)
,

b{j′,2,2l+1} =
k∑

j=1

cj,j′+k

([
C1β1

]
{j,1,l} + [b1]{j,1,l}

)
+ dj,j′+k

([
A1β1

]
{j,1,l} +

[
B1α1

]
{j,1,l}

)
.

The vectorb2 is then added to the vectorC2β2. Therefore, we obtain the vector




AM−1βM−1 +BM−1αM−1

CM−1βM−1

...

A2β2 +B2α2

C2β2 + b2




,

of length2k(2M − 1)− 6k. This is repeated for each level, until the vectorbM , of length

k2M , is recovered.

Therefore, if we wish to solve the classical Galerkin system

Ac
Muh = fh,

using an iterative solver, rather than forming the full matrix AcM we form the sparse non-

standard matrixKM . Then, for iterationi, the vectorb(i) = AcMu(i)
h can be computed as

b(i) = RMKMTMu(i)
h .
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4.2.1 Matrix Element Bounds

We consider the matrix elementsAmλ,λ′, B
m
λ,λ′ andCm

λ,λ′ of (4.2.5), (4.2.6) and (4.2.7),

respectively, where the operatorA has the form

(Au) (x) =

∫ 1

0

K(x, y)u(y) dy. (4.2.13)

Then we have the following result.

Proposition 4.2.1.LetK(x̂, ŷ) be an analytically standard kernel. Then, the matrix ele-

mentsAmλ,λ′ in (4.2.5) satisfy the bound

∣∣Amλ,λ′
∣∣ ≤ c

2−m(2k+1)−2k

(2k + 1) dist(Γλ′ ,Γλ)1+2k+α
, (4.2.14)

for dist(Γλ′,Γλ) > 0. Moreover, the matrix elementsBm
λ,λ′ and Cm

λ,λ′ of (4.2.6) and

(4.2.7), respectively, satisfy the bound

∣∣Bm
λ,λ′

∣∣ ,
∣∣Cm

λ,λ′

∣∣ ≤ c
2−m(k+ 1

2
)−k

√
2k + 1 dist (Γλ′,Γλ)

1+k+α
, (4.2.15)

for dist(Γλ′ ,Γλ) > 0.

Proof: The bound (4.2.14) follows from proposition 4.1.1 by lettingm = m′. To obtain

the bound (4.2.15) for

Bm
λ,λ =

∫

Iλ′

∫

Iλ′

K(x, y)φλ(y)ψλ′(x) dydx (4.2.16)

we rewrite the kernelK(x, y) as a(k + 1)-term Taylor expansion about the point(x0, y),
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with x0 taken as the mid-point ofIλ′. Therefore, we obtain

K(x, y) = K(x0, y) +
∂K
∂x

∣∣∣∣
(x0,y)

+
1

2!

∂2K
∂x2

∣∣∣∣
(x0,y)

(x− x0) + . . .

+
1

(k − 1)!

∂k−1K
∂xk−1

∣∣∣∣
(x0,y)

(x− x0)
k−1 +R (4.2.17)

whereR is the remainder of the truncated series. That is,

R =
1

k!

∂kK
∂xk

∣∣∣∣
(tx,y)

(x− x0)
k. (4.2.18)

Therefore, substituting the Taylor expansion (4.2.17) into (4.2.16) and using thek vanish-

ing moments property of the multiwavelets we obtain

|Bλ,λ′| =
1

k!

∣∣∣∣∣

∫

Iλ′

∫

Iλ

∂kK
∂xk

∣∣∣∣
(tx,y)

(x− x0)
kφλ′(y)ψλ(x) dydx

∣∣∣∣∣

≤ 1

k!

∣∣∣∣∣ sup
tx∈Iλ′ ,y∈Iλ

∂kK
∂xk

∣∣∣∣
(tx,y)

∣∣∣∣∣

∣∣∣∣∣

∫

Iλ′

∫

Iλ

(x− x0)
kφλ(y)ψλ′(x) dydx

∣∣∣∣∣ .

Then, using the Cauchy-Schwartz inequality yields,

|Bλ,λ′| ≤
1

k!

∣∣∣∣∣ sup
tx∈Iλ′ ,y∈Iλ

∂kK
∂xk

∣∣∣∣
(tx,y)

∣∣∣∣∣

[∫

Iλ

dy

]1
2

[∫

Iλ′

(x− x0)
2kdx

] 1
2

‖φλ‖ ‖ψλ′‖

≤ 1

k!

∣∣∣∣∣ sup
tx∈Iλ′ ,y∈Iλ

∂kK
∂xk

∣∣∣∣
(tx,y)

∣∣∣∣∣
2−

1
2
m′(2k+1)−k

√
2k + 1

.2−
1
2
m,

where we have used the facts that‖φλ‖ = ‖ψλ′‖ = 1 and

∫

Iλ′

(x− x0)
2k
dx =

|Iλ′ |2k+1

22k(2k + 1)
=

2−m(2k+1)−2k

2k + 1
.
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Since, the kernelK(x̂, ŷ) is analytically standard we use inequality (4.1.2) to obtain

∣∣Bm
λ,λ′

∣∣ ≤ 1

k!

2−m(k+ 1
2
)−k

√
2k + 1

.c sup
tx∈Iλ′ ,y∈Iλ

(k)!

dist(κ(tx), κ(y))1+k+α

≤ c
2−m(k+ 1

2
)−k

√
2k + 1dist(Γλ′ ,Γλ)1+k+α

,

which is the result we require. To prove the bound for matrix elementsCm
λ,λ′ we proceed

as above for elements ofBm
λ,λ, except we consider a Taylor expansion about the point

(x, y0), with y0 the mid-point ofIλ. �

4.2.2 Compression Strategy

With the bounds (4.2.14) and (4.2.15) we now develop a compression strategy for the non-

standard Galerkin method with multiwavelet basis functions. The non-standard matrix

KM is replaced by its sparse approximationKd,d′

M . That is, the submatricesAm, Bm and

Cm are replaced by the sparse submatricesAm,d,Bm,d′ andCm,d′ where

A
m,d
λ,λ′ :=





0 dist(Γλ′ ,Γλ) > dm

Amλ,λ′ otherwise,

(4.2.19)

B
m,d′

λ,λ′ :=





0 dist(Γλ′ ,Γλ) > d′m

Bm
λ,λ′ otherwise,

(4.2.20)

and

C
m,d′

λ,λ′ :=





0 dist(Γλ′ ,Γλ) > d′m

Cm
λ,λ′ otherwise.

(4.2.21)
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The valuesdm andd′m are found so that the error in the solution with the modified matrix

K
d,d′

M is of the same order as the discretisation error.

The submatricesA
m

, B
m

andC
m

are defined as

A
m

:= Am − Am,d,

B
m

:= Bm − Bm,d′ ,

and

C
m

:= Cm − Cm,d′.

We now bound the norm of the submatricesA
m

,B
m

andC
m

. These are then used to find

the valuesdm andd′m. Using the bound (4.1.14) withm = m′, we see that

∥∥Am
∥∥
∞ ≤ c

(2k + 1)(2k + α)
2−2k(m+1)+1d−(2k+α)

m . (4.2.22)

We now find a bound for
∥∥Bm∥∥

∞,

∥∥Bm∥∥
∞ ≤ max

λ





∑

λ′: dist(Γλ′ ,Γλ)>d′m

Bm
λ,λ′





≤ max
λ





∑

λ′: dist(Γλ′ ,Γλ)>d′m

c 2−m(k+ 1
2
)−k

√
2k + 1

dist(Γλ′,Γλ)
−(1+k+α)



 . (4.2.23)

As in section 4.1.2, it is reasonable to assume thatd′m ≥ 2−m. Therefore, we estimate the
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sum in (4.2.23) by an appropriate integral to obtain

∥∥Bm∥∥
∞ ≤ max

λ

{
c 2−m(k+ 1

2
)−k

√
2k + 1

2m2.

∣∣∣∣
∫ ∞

d′m

|x|−(1+k+α)
dx

∣∣∣∣

}

= max
λ

{
c 2−k(m+1)+ 1

2
m+1

√
2k + 1(k + α)

d′
−(k+α)
m

}

=
c 2−k(m+1)+ 1

2
m+1

√
2k + 1(k + α)

d′
−(k+α)
m . (4.2.24)

Similarly, we obtain

∥∥Cm∥∥
∞ ≤ c 2−k(m+1)+ 1

2
m+1

√
2k + 1(k + α)

d′
−(k+α)
m . (4.2.25)

We now consider the larger submatrices

Em :=




A
m

B
m

C
m

0


 , (4.2.26)

which satisfy

‖Em‖∞ ≤
∥∥Am

∥∥
∞ +

∥∥Bm∥∥
∞ . (4.2.27)

Therefore, the difference between the full non-standard matrix KM and its sparse approx-

imation can be written as

KM −K
d,d′

M =




EM−1

EM−2

. . .

E1

E0




. (4.2.28)

In order to keep the error in the solution with the modified non-standard matrixKd,d′

M to
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be of the same order as the discretisation error, we require

∥∥∥KM −K
d,d′

M

∥∥∥
∞

≤ d2−Mk2M(|α|+ 1
2
)

M4kk!k
1
2
−α ,

whered = d2
d1

. Since

∥∥∥KM −K
d,d′

M

∥∥∥
∞

= max
0≤m≤M−1

‖Em‖∞ , (4.2.29)

using relationship (4.2.27), we set,

‖Em‖∞ ≤
∥∥Am

∥∥
∞ +

∥∥Bm∥∥
∞ ≤ d2−Mk2M(|α|+ 1

2
)

M4kk!k
1
2
−α . (4.2.30)

Therefore, to find the valuesdm andd′m we set,

∥∥Am
∥∥
∞ ≤ d2−Mk2M(|α|+ 1

2
)

2M4kk!k
1
2
−α (4.2.31)

and

∥∥Bm∥∥
∞ ≤ d2−Mk2M(|α|+ 1

2
)

2M4kk!k
1
2
−α . (4.2.32)

Then, equating the r.h.s of (4.2.22) and (4.2.31) we obtain,

dm =

(
2c4kk!Mk

1
2
+|α|

d(2k + 1)(2k + α)

) 1
2k+α

2
−2k(m+1)+1+M(k+ 1

2 +|α|)

2k+α . (4.2.33)

Similarly, the r.h.s of (4.2.24) and (4.2.32) we obtain,

d′m =

(
2c4kk!Mk

1
2
+|α|

d(2k + 1)(k + α)

) 1
k+α

2
−k(m+1)+1

2 m+1+M(k+ 1
2+|α|)

k+α . (4.2.34)
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Theorem 4.2.1.Let |α| > k − 1
2
. Then, the modified multiwavelet non-standard matrix

using the truncation values (4.2.33) and (4.2.34) hasO
(
N1+ 1+|α|

k+α log
2

k+α N
)

non-zero

elements, whereN = k2M .

Proof:

First we consider the submatrixEM−1. Applying the truncation valuedM−1 to the sub-

matrixAM−1, each row contains at mostO
(
M

1
2k+α 2

−M(k−1
2−|α|)

2k+α + 1

)
=

O
(
N

−(k− 1
2−|α|)

2k+α log
1

2k+α N + 1

)
non-zero elements. For|α| < k − 1

2
,N

−(k− 1
2+|α|)

2k+α → 0

asN → ∞. Therefore, each row contains at mostO(1) non-zero elements. The sub-

matrix AM−1 has N
2

rows. Therefore, the submatrix contains at mostO
(
N
2

)
non-zero

elements. Applying the truncation valued′M−1 to the submatricesBM−1 andCM−1, each

row contains at mostO
(
N

1+|α|
k+α log

1
k+α N

)
non-zero elements. Since the submatrices

BM−1 andCM−1 both haveN
2

rows, the submatricesBM−1 andCM−1 contain at most

O
(
N

1+
1+|α|
k+α

2
log

1
k+α N

)
non-zero elements. Therefore, the submatrixEM−1 contains at

mostO
(
N

1+
1+|α|
k+α

2
log

1
k+α N

)
non-zero elements.

We now consider the submatrixEM−2. Applying the truncation valuedM−2 to the sub-

matrixAM−2, each row contains at mostO
(
M

1
2k+α 2

−M(k− 1
2−|α|)

2k+α + 1

)
= O(1) non-zero

elements. The submatrixAM−2 hasN
4

rows. Therefore, the submatrix contains at most

O
(
N
4

)
non-zero elements. Applying the truncation valued′M−2 to the submatricesBM−2

andCM−2, each row contains at mostO
(
N

1+|α|
k+α log

1
k+α N

)
non-zero elements. Since the

submatricesBM−2 andCM−2 both haveN
4

rows, the submatricesBM−2 andCM−2 con-

tain at mostO
(
N

1+
1+|α|
k+α

4
log

1
k+α N

)
non-zero elements. Therefore, the submatrixEM−2

contains at mostO
(
N

1+
1+|α|
k+α

4
log

1
k+α N

)
non-zero elements.

Using the same argument the submatricesEm, form < M − 2, contain at most
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O
(
N

1+
1+|α|
k+α

2M−m log
1

k+α N

)
non-zero elements. Therefore, summing over all submatrices

Em for m = 0, . . . ,M − 1, the non-standard matrixKd,d′

M contains at most

O
((

1
2

+ 1
4

+ . . .+ 1
2M−m

)
N1+

1+|α|
k+α log

1
k+α N

)
= O(N1+

1+|α|
k+α log

1
k+α N) non-zero ele-

ments.�

Chapter Review

In this chapter we have introduced the standard and non-standard Galerkin methods with

multiwavelet basis functions. For the standard Galerkin method, in proposition 4.1.1 we

found an upper bound for the size of matrix elements. Using this bound in section 4.1.2

we have developed a compression strategy where the error introduced by setting small

matrix elements to zero is of the same order as the discretisation error. Using this strategy

we only compute and storeO (N logN) elements.

For the non-standard Galerkin method, In proposition 4.2.1we found upper bounds for

the size of matrix elements of the submatricesAm,Bm andCm. Then, with these bounds

in section 4.2.2 we have developed a compression strategy where the error introduced by

the compression is of the same order as the discretisation error. Using this strategy we

only compute and storeO(N1+
1+|α|
k+α log

1
k+α N) elements.

These methods can then be combined with a conjugate gradienttype scheme to solve

Au = f , [47]. In the next two chapters we apply the methods developed here to the

radiosity problem and Laplace’s equation with Neumann and Dirichlet boundary condi-

tions.
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Chapter 5

The Radiosity Problem

For the past two decades it has been the aim of researches in computer graphics to create

images of non-existent environments, see [48, 49, 50, 51]. Practical applications for such

methods range from industrial and architectural design to advertising and entertainment.

The creation of an image by evaluating a model of light propagation is calledimage syn-

thesis. Early image synthesis models were based on local illumination where each surface

is considered separately from all other surfaces. Greater realism requires that global il-

lumination models are used, which take account of the inter-reflection of light between

surfaces. In a global illumination model, when we consider agiven surface in an environ-

ment, all other surfaces can be considered as light emitters. An early method for solving

the global illumination problem was the ray tracing method.However, when using this

method if the position of the viewer is changed the solution has to be recomputed. Later

methods applied the radiosity techniques of radiant heat transfers to the global illumina-

tion problem. Using these techniques the global illumination problem can be modelled

mathematically by a second kind integral equation, the solution of which is viewer inde-

pendent. In this chapter we use the results of chapter 4 to solve a second kind integral
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equation which is the mathematical model for the global illumination or radiosity prob-

lem.

In section 5.1 we introduce the radiometric quantities thatdescribe the movement of light

in an environment. Then, using the radiometric quantities we derive the radiosity equation

in section 5.2. Finally in section 5.2.1 we present several numerical examples using the

multiwavelet Galerkin methods of chapter 4.

5.1 Radiometric Quantities

In this section we introduce the physical quantities that characterize radiant energy trans-

fers.

The physical quantity used to describe the transfer of radiant energy isradiance, denoted

by L. Radiance is defined as the amount of energy travelling at some point in a specified

direction, per unit time, per unit area perpendicular to thedirection of travel, per unit solid

angle. Therefore, the energy radiated in a solid angledω, from differential areadp, during

time intervaldt is,

L(p, θi, ϕi) dp cos θi dωdt (5.1.1)

and the powerP radiated in this direction satisfies

d2P = L(p, θi, ϕi) dp cos θi dω. (5.1.2)

Due to it’s “per unit solid angle” definition, radiance does not decay with distance. There-

fore, a knowledge of the radiance leaving all surfaces is allthat is required to create a

image of an environment from any viewer position.
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In (5.1.2) we describe the power leaving a point on the surface in a specific direction. To

obtain the total power leaving a point on the surface we integrate (5.1.2) over a hemisphere

Ω,

dP =

∫

Ω

d2P

= dp
∫

Ω

L(p, θi, ϕi) cos θi dω. (5.1.3)

Dividing this bydp we obtain the power per unit area at a pointp, or theradiosity, denoted

byB, at pointp,

B(p) =
dP

dp

=

∫

Ω

L(p, θi, ϕi) cos θi dω. (5.1.4)

To describe the light sources in an environment we introducethe quantityexitance. Exi-

tance is defined as the energy radiated per unit time, per unitarea. Exitance is similar to

radiosity in that it can be expressed as the integral of the emitted radiance,

E(p) =

∫

Ω

Le(p, θi, ϕi) cos θi dω. (5.1.5)

To be able to fully describe the transfer of light within an environment, in addition to the

quantities already described we require a knowledge of the reflective properties of all the

surfaces in the environment. The reflecting properties of a given material are described

by the concept of reflectance, specifying the characteristics of the reflected light. The

most general expression of reflectance is thebidirectional reflectance distribution function

(BRDF). The BRDF is the ratio of the radiance in the reflected direction and the radiant

flux density (power per unit area) in the incident direction.It is a function of both the
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θi

θr

ϕ
r

ϕ
i

Figure 5.1: Notation for the definition of the BRDF

incident and reflected directions and is denotedρbd. The incident radiant flux density

coming from a differential solid angledω around the direction(θi, ϕi), as shown in Figure

5.1, isdΘi = Li (p, θi, ϕi) cos θi dω. Therefore, we can write the BRDF as

ρbd (θr, ϕr, θi, ϕi) =
L (p, θr, ϕr)

Li (p, θi, ϕi) cos θi dω
. (5.1.6)

5.2 The Radiosity Equation

In the general case, the energy equilibrium for a set of radiating surfaces is expressed by

the following integral equation,

L(p, θr, φr)︸ ︷︷ ︸
total radiance

= Le(p, θr, φr)︸ ︷︷ ︸
emitted radiance

+

∫

Ω

ρbd(p, θr, φr, θi, φi)Li(p, θi, φi) cos θi dω

︸ ︷︷ ︸
reflected radiance

. (5.2.1)

The first term on the r.h.s. of equation (5.2.1) represents the light emitted by the surface,

this is only non-zero for light sources. The second term on the r.h.s. represents the

effect of light reflected from other points on the surface. Using the radiosity method we
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solve a simplified version of equation (5.2.1), under the assumption that all surfaces are

ideal diffuse reflectors. That is, the surface reflects light equally in all directions. Then,

the BRDF is independent of both the incident and reflected directions and reduces to a

function of position only,

ρbd (p, θr, ϕr, θi, ϕi) ≡ ρbd(p).

As we now show, we can now use radiosity to describe the light in an environment, rather

than the radiance. Under the assumption that the surfaces are ideal diffuse reflectors,

radiance is a function of position only, that is

L (p, θi, ϕi) ≡ L(p).

Then, substituting this into equation (5.1.4) we obtain,

B(p) = L(p)

∫

Ω

cos θi dω

= L(p)

∫ π

0

∫ 2π

0

cos θi sin θi dθidϕi

= πL(p). (5.2.2)

Thus, radiosity is proportional to radiance and they can be used interchangeably to char-

acterize light leaving ideal diffuse surfaces. Similarly,we obtain

E(p) = πLe(p) (5.2.3)

and therefore, we can interchange exitance and emitted radiance. If we now substitute

91



relationships (5.2.2) and (5.2.3) into equation (5.2.1) weobtain,

B(p) = E(p) + πρbd(p)

∫

Ω

Li (p, θi, ϕi) cos θi dω. (5.2.4)

Let q be a point visible from the pointp in the direction(θi, ϕi), then the pointp is also

visible from the pointq in the direction(θ′i, ϕ
′
i). Therefore, the invariance of radiance

along a line of sight states that

Li (p, θi, ϕi) = L (q, θ′i, ϕ
′
i) .

Then, using relation (5.2.2) we have that the incident radiance at pointp is proportional

to the radiosity at pointq, that is,

Li (p, θi, ϕi) =
B(q)

π
. (5.2.5)

The integral in equation (5.2.4) is now written as an integral over all surfaces in an envi-

ronment by expanding the differential solid angle,

dω =





cos θ′idΓq

|p−q|2 in 3D

cos θ′idΓq

|p−q| in 2D

, (5.2.6)

and setting the domain of integration to be the set of all surfaces in the environment that

are visible from pointp. This is achieved by including a visibility functionV (p, q), such

that

V (p, q) =





1 if p andq are mutually visible,

0 otherwise.

(5.2.7)
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Thus, in two dimensions, equation (5.2.4) reduces to the radiosity equation,

B(p) = E(p) + ρbd(p)

∫

Γ

cos θi cos θ′i
|p − q| V (p, q)B(q)dΓq, (5.2.8)

where the exitanceE(p) is known and the radiosityB(p) is unknown.

5.2.1 Numerical Results

We now present the numerical results for a radiosity problemon an ellipse of circumfer-

ence4π, with minor axis1.29704815 and major axis2.5940936 centered at the origin.

We consider the environment when two light sources are placed atp0 =
(
1.2477, 3

5
π
)

and

p1 =
(
1.1909, 7

5
π
)
, with strengths1.5 and1, respectively. We first consider the solution

of the problem using the non-standard Galerkin method discussed in section 4.2. We then

consider a standard Galerkin method using a multiwavelet basis. In practice for the ra-

diosity problem we do not know the exact level of discretisation error,η. Therefore, we

estimate the discretisation error asη = k2−M .

Non-standard Results

In tables 5.1-5.4 the column‖uh − uh‖ is theL2 error introduced when using the non-

standard Galerkin method. The columnnz is the number of non-zero elements of the

matrix that are computed. The column% gives the percentage of the matrix entries that

have not been computed without any detrimental effect to thesolution. Here, the conju-

gate gradient square (CGS) method, [47], was used to solve the linear system, and never

required more than16 iterations to converge.
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M ‖uh − uh‖ nz %

4 5.3428 × 10−1 164 35.94

5 3.3755 × 10−1 420 59.98

6 1.9688 × 10−1 1412 65.53

7 8.6546 × 10−2 5224 68.12

8 4.7271 × 10−2 19016 70.98

9 3.0266 × 10−2 66576 74.60

10 1.7667 × 10−2 240080 77.10

Table 5.1:k = 1

M ‖uh − uh‖ nz %

4 1.2856 × 10−1 528 48.44

5 2.8012 × 10−2 1936 52.73

6 7.1220 × 10−3 6816 58.40

7 2.1748 × 10−3 23968 63.43

8 6.1847 × 10−4 89312 65.93

9 1.5865 × 10−4 352192 66.41

10 6.5420 × 10−5 1283136 69.41

Table 5.2:k = 2
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M ‖uh − uh‖ nz %

4 1.3822 × 10−2 1476 35.94

5 1.5213 × 10−3 4356 52.73

6 2.1048 × 10−4 15480 58.01

7 2.5693 × 10−5 59112 59.91

8 3.6313 × 10−6 232056 60.66

9 4.0529 × 10−7 882288 62.60

10 4.90529 × 10−8 3509712 62.81

Table 5.3:k = 3

M ‖uh − uh‖ nz %

4 1.9113 × 10−3 2624 35.94

5 1.1138 × 10−4 7744 52.73

6 5.6804 × 10−6 29312 55.27

7 3.4306 × 10−7 109440 58.25

8 3.9489 × 10−8 420736 59.88

9 1.2869 × 10−9 1619200 61.40

Table 5.4:k = 4
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The sparsity patterns of the non-standard matrices fork = 3, M = 8 andk = 4, M = 8

are shown in Figures 5.2 and 5.3, respectively. Studying thestructure of the non-standard

matrices in Figures 5.2 and 5.3 we can clearly see that the multiwavelet levels have been

fully decomposed, that is, there are only interactions between multiwavelets and scaling

functions of the same resolution. We also note, that due to the presence of two multi-

wavelets the banding of the submatrices Am is significantly tighter than the banding of

the submatrices Bm and Cm.

Figure 5.2: Non-standard matrix:k = 3,M = 8
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Figure 5.3: Non-standard matrix:k = 4,M = 8

We note that in tables 5.1-5.4, the% of matrix entries that have not been computed without

any detrimental effect to the solution, is higher fork = 1. This is due to the fact that ask

increases the approximate discretisation error decreasesrapidly to the level of computer

accuracy. For a given problem, once we decide on the number ofmotherwaveletsk

and the level of discretisationM , the non-standard and standard matrices,KM andAM ,

respectively, are fixed. Moreover, using Theorem 2.4.4 and Lemma 3.2.1 we see that the

discretisation error is bounded as

‖u− uh‖ ≤ chk sup
x∈[0,1]

∣∣u(k)(x)
∣∣ . (5.2.9)

Now, if the problem is “difficult” the bound (5.2.9) is large.Therefore, we can set many

of the entries of the non-standard and standard matrices,KM andAM , respectively, to
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zero. If the problem is “less difficult” the bound (5.2.9) is smaller. Therefore, less entries

of the non-standard and standard matrices,KM andAM , respectively, can be set to zero.

Hence, due to the fixed accuracy of computers the optimal complexity estimate may not

always be observable. In Figures 5.4 and 5.5 we plot the non zero elements of the non-

stand matrix fork = 3, M = 8, when entries less than10−8 and10−6, respectively, have

been set to zero.

0 500 1000 1500

0

500

1000

1500

nz = 36238

Figure 5.4: Non-standard matrix with a threshold10−8: k = 3,M = 8

98



0 500 1000 1500

0

500

1000

1500

nz = 6528

Figure 5.5: Non-standard matrix with a threshold10−6: k = 3,M = 8

Standard Results

In tables 5.5-5.8 theL2 norm of the error of the compressed system is denoted by‖u− uh‖

andnz is the number of non-zero elements. The column% gives the percentage of the

matrix entries that can be set to zero without any detrimental effect. Here, the CGS

method was used to solve the linear system, and never required more than16 iterations to

converge.
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M ‖uh − uh‖ nz %

4 6.9223 × 10−1 30 88.28

5 3.3883 × 10−1 146 85.74

6 1.3372 × 10−1 442 89.21

7 5.7805 × 10−2 1078 93.42

8 3.4555 × 10−2 2486 96.21

9 2.3982 × 10−2 4718 98.20

10 1.4199 × 10−2 8102 99.23

Table 5.5:k = 1

M ‖uh − uh‖ nz %

4 1.3481 × 10−1 168 83.59

5 2.5724 × 10−2 416 89.84

6 6.8517 × 10−3 1300 92.07

7 2.1018 × 10−3 2354 96.41

8 6.0852 × 10−4 5882 97.76

9 1.4283 × 10−4 14534 98.61

10 6.3136 × 10−5 23824 99.43

Table 5.6:k = 2
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M ‖uh − uh‖ nz %

4 4.5796 × 10−2 138 94.01

5 1.0363 × 10−3 1134 97.70

6 2.2526 × 10−4 3192 91.34

7 2.3683 × 10−5 8284 94.38

8 3.8771 × 10−6 18940 96.79

9 4.0126 × 10−7 46397 98.03

10 4.5481 × 10−8 109532 98.84

Table 5.7:k = 3

M ‖uh − uh‖ nz %

4 1.1632 × 10−3 773 81.13

5 1.2851 × 10−4 2457 85.00

6 6.5478 × 10−6 6693 89.79

7 2.7598 × 10−7 19158 92.69

8 2.9482 × 10−8 48010 95.42

9 1.8780 × 10−9 116126 97.23

Table 5.8:k = 4
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The sparsity patterns of the standard matrices fork = 3, M = 8 andk = 4, M =

8 are shown in Figures 5.6 and 5.8, respectively. The sparsitypatterns display the so-

called ‘finger’ structure, this occurs when the kernel of theintegral equation has non-

polynomial like behaviour along the diagonal. Figures 5.7 and 5.9 show the eigenvalues

of the respective matrices clustering about1. In this case we know that conjugate gradient

type schemes have fast convergence, inO(1) iterations.
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Figure 5.6: Standard Matrix:k = 3,M = 8
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Figure 5.7: Standard Matrix Eigenvalues:k = 3,M = 8
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Figure 5.8: Standard Matrix:k = 4,M = 8
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Figure 5.9: Standard Matrix Eigenvalues:k = 4,M = 8

In Figures 5.10 and 5.11 we plot the non zero elements of the standard matrix fork = 3,

M = 8, when entries less than10−8 and10−6, respectively, have been set to zero.
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Figure 5.10: Standard matrix with a threshold10−8: k = 3,M = 8
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Figure 5.11: Standard matrix with a threshold10−6: k = 3,M = 8
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Chapter Review

In this chapter we have introduced image synthesis, the creation of an image by evaluating

a model of light propagation. Image synthesis methods have practical applications ranging

from industrial and architectural design to advertising and entertainment.

We have discussed the physical quantities that characterize radiant energy transfers, namely,

radiance, radiosity and exitance. The transfer of light in an environment is governed by

the equilibrium equation,

L(p, θr, φr)︸ ︷︷ ︸
total radiance

= Le(p, θr, φr)︸ ︷︷ ︸
emitted radiance

+

∫

Ω

ρbd(p, θr, φr, θi, φi)Li(p, θi, φi) cos θi dω

︸ ︷︷ ︸
reflected radiance

.

We assume that all the surfaces in the environment are ideal diffuse surfaces. That is,

they reflect light equally in all directions. Under this assumption, radiance is proportional

to radiosity and emitted radiance is proportional to exitance. Therefore, radiosity can be

used to describe the transfer of light in an environment, which is now governed by the

radiosity equation,

B(p) = E(p) + ρbd(p)

∫

Γ

cos θi cos θ′i
|p − q| V (p, q)B(q)dΓq.

We have presented numerical results for the solution of the radiosity equation, for both

the standard and non-standard methods have been obtained.

————
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Chapter 6

Numerical Solution of Laplace’s

Equation

In this chapter we consider the numerical solution of Laplace’s equation on the exterior

of a domainΩ, with either Neumann or Dirichlet boundary conditions. LetΓ = ∂Ω be a

smooth closed curve. Then , as shown in section 2.3, Laplace’s equation on the exterior

domain,

∇2u(p) = 0, p ∈ Ω+

lim
p→∞

|u(p)| = 0,
(6.0.1)

can be reformulated as a boundary integral equation,

(
−1

2
I + M

)
u(p) = L

∂u

∂n
(p), p ∈ Γ, (6.0.2)

on the boundaryΓ, for the single- and double-layer operatorsL andM, respectively. We

wish to solve (6.0.2) using the multiwavelet Galerkin methods of chapter 4. The resulting
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linear system will be solved by an iterative technique such as conjugate gradient squares

(CGS) or generalized minimal residual (GMRES), [52]. The use of an iterative solver

is efficient if the linear system is well conditioned and its eigenvalues cluster at a point

different from zero.

When we consider equation (6.0.2) with Neumann boundary conditions, that is∂u
∂n

is given

andu is unknown, the resulting linear system is well conditionedand the eigenvalues

cluster about−1
2
. In this case, an iterative method of the conjugate gradienttype can

converge inO(1) iterations. In section 6.1 we present numerical results forthe solution

of several Neumann test problems. However, when we considerequation (6.0.2) with

Dirichlet boundary conditions, that isu is given and∂u
∂n

is unknown, the resulting linear

system is ill conditioned. This is because the single-layeroperatorL is of order−1 and

therefore its eigenvalues cluster at zero. Therefore, in order to use an iterative solver we

precondition the linear system, [53]. In section 6.2 we discuss the preconditioner used

when wavelet bases are employed, we then extend this to our case where multiwavelet

bases are employed. In section 6.2.4 we present numerical results for a Dirichlet test

problems.

6.1 The Neumann Problem

In this section we consider the solution of equation (6.0.2)with Neumann boundary con-

ditions. we need to solve the second kind equation

−1

2
u(p) +

∫

Γ

u(q)
∂G(p, q)

∂nq
dΓq =

∫

Γ

G(p, q)
∂u(q)

∂nq
dΓq, p ∈ Γ, (6.1.1)
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for the unknown Dirichlet boundary conditionu. Onceu is found on the boundary we

can use the integral representation (2.3.18), namely,

u(p) =

∫

Γ

u(p)
∂G(p, q)

∂nq
dΓq −

∫

Γ

G(p, q)
∂u(q)

∂nq
dΓq, p ∈ Ω+,

to findu anywhere in the exterior domainΩ+.

6.1.1 Numerical Results

Problem One

Here, we consider the numerical solution of equation (6.1.1) exterior to an ellipse of

circumference4π, with major axis2.5940938 and minor axis1.2970468 centered at the

origin. We consider a Neumann problem, equivalent to that generated by three interior

point sources placed atp0 =
(
1.3611, 3

5
π
)
, p1 =

(
1.1909, 7

5
π
)

andp2 =
(
1.1342, 8

5
π
)

with strengths2, 1.5 and1.5, respectively. The field generated isu(p) = − 1
π

ln |p−p0|−
1.5
2π

ln |p − p1| − 1.5
π

ln |p − p2|. We first consider the solution of the problem using the

non-standard Galerkin method discussed in section 4.2. Then, we consider a standard

Galerkin method using a multiwavelet basis.

Non-Standard Results

We denote byuh the solution of the compressed system. Then, in tables 6.1-6.4, theL2

norm of the error of the compressed system is denoted by‖u− uh‖ andnz is the number

of non-zero elements of the non-standard matrix that are computed. The column% gives

the percentage of the matrix entries that have not been computed without any detrimental
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effect to the solution. Here, the CGS method was used to solvethe linear system, and

never required more than14 iterations to converge.

M ‖u− uh‖ nz %

4 6.4281 × 10−2 124 51.56

5 3.2171 × 10−2 308 69.92

6 1.6862 × 10−2 900 78.03

7 8.3855 × 10−3 2248 86.28

8 4.0197 × 10−3 7944 87.88

9 2.4887 × 10−3 25488 90.28

10 1.1519 × 10−3 100048 90.46

Table 6.1:k = 1

M ‖u− uh‖ nz %

4 7.2992 × 10−3 528 48.44

5 2.5857 × 10−3 1616 60.55

6 1.1753 × 10−3 4384 73.24

7 3.5843 × 10−4 11552 82.37

8 7.7036 × 10−5 43584 83.27

9 2.9272 × 10−5 186944 82.17

10 4.8206 × 10−6 653952 84.41

Table 6.2:k = 2
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M ‖u− uh‖ nz %

4 2.7309 × 10−3 1188 48.44

5 9.8955 × 10−4 2772 69.92

6 1.3717 × 10−4 9252 74.90

7 1.5517 × 10−5 29736 79.83

8 1.9597 × 10−6 118440 79.92

9 2.4560 × 10−7 437616 81.45

10 3.0737 × 10−8 1790928 81.02

Table 6.3:k = 3

M ‖u− uh‖ nz %

4 1.4305 × 10−3 2112 48.44

5 1.6489 × 10−4 4928 69.92

6 9.7781 × 10−6 16512 74.80

7 1.1039 × 10−6 52608 79.93

8 8.3695 × 10−8 204672 80.48

9 4.2303 × 10−9 836864 80.05

10 2.6474 × 10−10 3331840 80.15

Table 6.4:k = 4

The sparsity patterns of the non-standard matrices for problem on withk = 3, M = 8

andk = 4,M = 8 are shown in Figures 6.1 and 6.2, respectively.
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Figure 6.1: Non-standard matrix:k = 3,M = 8
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Figure 6.2: Non-standard matrix:k = 4,M = 8

Standard Results

In tables 6.5-6.8 theL2 norm of the error of the compressed system is denoted by‖u− uh‖

andnz is the number of non-zero elements. The column% gives the percentage of the

matrix entries that can be set to zero without any detrimental effect. Here, the CGS

method was used to solve the linear system, and never required more than14 iterations to

converge.
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M ‖u− uh‖ nz %

4 5.4698 × 10−2 30 88.28

5 2.8932 × 10−2 46 95.51

6 1.5063 × 10−2 114 97.22

7 8.1767 × 10−3 234 98.57

8 4.0179 × 10−3 606 99.08

9 1.9259 × 10−3 1462 99.44

10 1.1253 × 10−3 2290 99.78

Table 6.5:k = 1

M ‖u− uh‖ nz %

4 7.1011 × 10−3 84 91.80

5 3.2568 × 10−3 120 97.07

6 1.0855 × 10−3 358 97.81

7 3.2906 × 10−4 706 98.92

8 7.5767 × 10−5 1686 99.36

9 1.8639 × 10−5 3826 99.64

10 4.6889 × 10−6 8250 99.80

Table 6.6:k = 2
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M ‖u− uh‖ nz %

4 3.5872 × 10−3 84 96.35

5 9.9750 × 10−4 228 97.53

6 1.3878 × 10−4 600 98.37

7 1.7144 × 10−5 1276 99.13

8 2.2674 × 10−6 3002 99.49

9 3.2507 × 10−7 5458 99.77

10 3.5897 × 10−8 13162 99.86

Table 6.7:k = 3

M ‖u− uh‖ nz %

4 1.6417 × 10−3 106 97.41

5 2.1813 × 10−4 272 98.34

6 1.1242 × 10−5 804 98.77

7 1.4569 × 10−6 1622 99.38

8 7.1202 × 10−8 4690 99.55

9 5.4075 × 10−9 8534 99.80

10 3.7089 × 10−10 17470 99.90

Table 6.8:k = 4
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The sparsity patterns of the standard matrices for problem one withk = 3, M = 8 and

k = 4, M = 8 are shown in Figures 6.3 and 6.5, respectively. We note, thatsince

the kernel is polynomial like along the diagonal we do not obtain the so-called ‘finger’

structure. Instead since the kernel is smooth everywhere, so we only have significant

interactions involving the lowest levels. Figures 6.4 and 6.6 show the eigenvalues of the

respective standard matrices rapidly clustering about−1
2
.
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Figure 6.3: Standard matrix:k = 3,M = 8
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Figure 6.4: Standard Matrix Eigenvalues:k = 3,M = 8
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Figure 6.5: Standard matrix:k = 4,M = 8
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Figure 6.6: Standard Matrix Eigenvalues:k = 4,M = 8

Problem Two

In problem two we again consider the numerical solution of equation (6.1.1) exterior

to an ellipse of circumference4π, with major axis2.5940938 and minor axis1.2970468

centered at the origin. Here, we consider a Neumann problem,equivalent to that generated

by two interior point sources placed atp0 =
(
1.7981, 7

10
π
)

andp1 =
(
1.4178, 7

5
π
)

both

with strength2. These point sources are closer to the boundary than those inproblem

one, this leads to a much “nastier” solution. The field generated isu(p) = − 1
π

ln |p −

p0| − 1
2π

ln |p − p1|. We first consider the solution of the problem using the non-standard

Galerkin method discussed in section 4.2. Then, we considera standard Galerkin method

using a multiwavelet basis.
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Non-standard Results

As before, in tables 6.9-6.12 theL2 norm of the error is denoted by‖u− uh‖ andnzis the

number of non-zero elements of the non-standard matrix thatare computed. The column

% gives the percentage of the matrix entries that have not beencomputed without any

detrimental effect on the solution. Here, the CGS method wasused to solve the linear

system, and never required more than14 iterations to converge.

M ‖u− uh‖ nz %

4 9.7429 × 10−2 124 51.56

5 5.9653 × 10−2 268 73.83

6 3.2539 × 10−2 564 86.23

7 1.7673 × 10−2 1544 90.58

8 8.9169 × 10−3 5000 92.37

9 4.4959 × 10−3 16272 93.79

10 2.3293 × 10−3 37712 96.40

Table 6.9:k = 1
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M ‖u− uh‖ nz %

4 4.9823 × 10−2 528 48.44

5 1.9560 × 10−2 1232 69.92

6 9.3892 × 10−3 2640 83.92

7 2.0211 × 10−3 5600 91.46

8 8.2200 × 10−4 14112 94.62

9 2.0150 × 10−4 43488 95.85

10 5.1577 × 10−5 135584 96.77

Table 6.10:k = 2

M ‖u− uh‖ nz %

4 3.4996 × 10−2 1116 51.56

5 1.1482 × 10−2 2412 73.83

6 2.4024 × 10−3 5076 86.23

7 5.6894 × 10−4 10584 92.82

8 5.7816 × 10−5 30600 94.81

9 9.5992 × 10−6 104040 95.59

10 1.2087 × 10−6 365904 96.12

Table 6.11:k = 3
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M ‖u− uh‖ nz %

4 2.5927 × 10−2 1984 51.56

5 3.7868 × 10−3 4416 73.05

6 1.3000 × 10−3 9536 85.45

7 7.2456 × 10−5 19840 92.43

8 1.3431 × 10−5 56704 94.59

9 6.9589 × 10−7 181632 95.67

10 4.2181 × 10−8 698112 95.87

Table 6.12:k = 4

The sparsity patterns of the non-standard matrices fork = 3, M = 8 andk = 4, M = 8

are shown in Figures 6.7 and 6.8, respectively.

Figure 6.7: Non-standard matrix:k = 3,M = 8

121



Figure 6.8: Non-standard matrix:k = 4,M = 8

Standard Results

In tables 6.13-6.16 theL2 norm of the error of the compressed system is denoted by

‖u− uh‖ andnzis the number of non-zero elements. The column% gives the percentage

of the matrix entries that can be set to zero without any detrimental effect. Here, the CGS

method was used to solve the linear system, and never required more than14 iterations to

converge.
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M ‖u− uh‖ nz %

4 9.5533 × 10−2 30 88.28

5 5.4961 × 10−2 46 95.51

6 2.8759 × 10−2 114 97.22

7 1.6583 × 10−2 234 98.57

8 8.8686 × 10−3 454 99.31

9 4.1247 × 10−3 1642 99.44

10 2.2959 × 10−3 2054 99.80

Table 6.13:k = 1

M ‖u− uh‖ nz %

4 5.1578 × 10−2 54 94.73

5 1.9581 × 10−2 116 97.17

6 9.3315 × 10−3 192 98.83

7 2.0100 × 10−3 486 99.26

8 6.0769 × 10−4 1130 99.57

9 1.5951 × 10−4 2038 99.81

10 4.2436 × 10−5 4002 99.90

Table 6.14:k = 2
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M ‖u− uh‖ nz %

4 3.5131 × 10−2 76 96.70

5 1.1436 × 10−2 132 98.57

6 2.4208 × 10−3 324 99.12

7 5.3742 × 10−4 664 99.55

8 4.9299 × 10−5 1918 99.67

9 9.7179 × 10−6 3026 99.87

10 1.3187 × 10−6 5854 99.94

Table 6.15:k = 3

M ‖u− uh‖ nz %

4 2.6259 × 10−2 84 97.93

5 3.7294 × 10−3 240 98.54

6 1.3171 × 10−3 372 99.43

7 6.9790 × 10−5 950 99.64

8 1.3926 × 10−5 1840 99.82

9 6.6913 × 10−7 4098 99.90

10 4.8726 × 10−8 8030 99.95

Table 6.16:k = 4
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Tables 6.13-6.16 show that we achieve better compression ask andM increase. The

sparsity patterns of the standard matrices fork = 3,M = 8 andk = 4,M = 8 are shown

in Figures 6.9 and 6.10, respectively.
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Figure 6.9: Standard matrix:k = 3,M = 8
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Figure 6.10: Standard matrix:k = 4,M = 8

6.2 The Dirichlet Problem

In this section we consider the solution of equation (6.0.2)with Dirichlet boundary con-

ditions. We need to solve the first kind equation

∫

Γ

G(p, q)
∂u(q)

∂nq
dΓq = −1

2
u(p) +

∫

Γ

u(q)
∂G(p, q)

∂nq
dΓq, p ∈ Γ, (6.2.1)

for the unknown Neumann boundary condition∂u
∂n

. Again, once∂u
∂n

is found on the bound-

ary we use the integral representation (2.3.18) to find∂u
∂n

anywhere in the domainΩ+.

We can show that the discretisation of an operator of orderα, will in general have condi-
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tion numberO(N |α|) and eigenvaluesO(Nα). Therefore, since the single-layer operator

L is of order−1, the eigenvalues ofAM = O(N−1) andκ2(AM) = O(N). Therefore, in

order to use an iterative method efficiently we must precondition the matrixAM .

6.2.1 Preconditioning

The convergence of Krylov subspace iterative methods is rapid if the matrix has a small

condition number and the eigenvalues are clustered. If the original system matrix A∈

CN×N does not satisfy these conditions then it may be possible to find a preconditioner

D such that D−1A has the desired properties. The Krylov subspace methods can then be

applied to the preconditioned system

Bx = y, (6.2.2)

where B= D−1A andy = D−1b. Within conjugate gradient type methods the coefficient

matrix is required only in matrix-vector products, therefore B is never explicitly formed.

Suppose the matrix-vector productz = Bv is required, wherev ∈ C
N is known. Then

z = D−1Av = D−1t, where

Dz = t. (6.2.3)

Hence to findz, we first findt = Av and then solve (6.2.3).

Therefore, a good preconditioner D must satisfy two (often conflicting) requirements.

• Firstly, D must be a good approximation to A, that is the eigenvalues of D−1A

should be clustered near1. Therefore a conjugate gradient type algorithm applied

to (6.2.2) should converge faster than for the original system.

127



• Secondly, the solution of (6.2.3) must be cheap.

6.2.2 Wavelet Preconditioning

Consider the pseudodifferential operator equation

Au = f (6.2.4)

for A : Hs → Hs−α. We denote its Galerkin discretisation by the biorthogonalwavelet

basis by

AMuh = fh. (6.2.5)

In a recent paper by Dahmen (see also references within) [11]it has been proved that

κ2(AM) = O(2|α|M) = O(N)|α|. (6.2.6)

Furthermore, they state and prove the following result:

The matrices

BM := DlAMDl (6.2.7)

where
(
Dl
)
λ,λ′

= 2mlδλ,λ′ , (6.2.8)

have uniformly bounded condition numbers

κ2(BM) = ‖BM‖
∥∥B−1

M

∥∥ = O(1). (6.2.9)
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This implies that in place of solving

AMuh = fh,

we solve

BMx = y,

where Dlx = uh and D−ly = fh. In the next section we wish to use this preconditioner

with the multiwavelet basis.

6.2.3 Multiwavelet Preconditioning

The result in the previous section requires the biorthogonality of wavelet basis; our wavelets

of course are orthogonal. The result above can be used to establish uniform boundedness

of preconditioned matrices. However, we show that the natural extension we employ here

can result insignificant improvement of the condition number. For the multiwavelet basis,

ΨM = {ψλ| λ = {k,m, l}}, m = M − 1, . . . , 0 andl = 0, . . . , 2m − 1, with k mother

wavelets the natural generalization of the preconditionerin section 6.2.2 is to use the nat-

ural k × k dimensional diagonal blocks. Let DM be the matrix containing the diagonal

block entries of

AM := 〈AΨM ,ΨM〉T. (6.2.10)

Then, we propose the use DM as a preconditioner for AM in the form below

BM := D
− 1

2
M AMD

− 1
2

M . (6.2.11)

That is to say, in place of solving

AMuh = fh
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we solve

BMx = y,

where D
− 1

2
M x=uh and D

1
2
My=fh.

The condition number ofAM is O(N). Our numerical results show a big improvement

with precondition systems, namely,

‖BM‖
∥∥B−1

M

∥∥ = O
(
log2N

)
. (6.2.12)

6.2.4 Numerical Results

In this section we present numerical results for the Laplaceproblem exterior to an el-

lipse of circumference4π, with major axis2.5940936 and minor axis1.2970468, cen-

tered at the origin. We consider a Dirichlet problem, equivalent to that generated by

three interior point sources placed atp0 = (1.445288, 3
5
π), p1 = (2.264285, 8

5
π) and

p2 = (2.2478149, 53
50
π) with strengths 1, 1.3 and 2, respectively. In table 6.17, cond(AM )

is the condition number of the unpreconditioned matrix, ‘unpre its’ is the number of GM-

RES(10) iterations required, where GMRES(l) is the so-called “GMRES with restarts”

after everyl iterations, [52]. The column cond(BM ) gives the condition number of the

preconditioned, ‘pre its’ is the number of GMRES(10) iterations required. TheL2 norm

of the error of the compressed system is denoted by
∥∥∥ ∂u
∂nq

−
(
∂u
∂nq

)
h

∥∥∥ andnzis the number

of non-zero elements remaining after compressing the matrix. The column % gives the

percentage of the matrix entries that can be set to zero without any detrimental effect. Our

matrices are of sizek2M .
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M cond(A) unpre its cond(BM ) pre its
∥∥∥ ∂u
∂nq

−
(
∂u
∂nq

)
h

∥∥∥ nz %

3 51.0 30 7.2 22 7.810 × 10−2 466 54.5

4 110.0 41 10.5 29 3.207 × 10−2 1334 67.4

5 233.4 65 14.5 38 3.621 × 10−3 3948 76.0

6 482.8 86 19.2 46 6.715 × 10−4 12072 81.6

7 982.8 120 24.6 53 4.814 × 10−5 28744 89.0

8 1983.2 164 30.7 70 2.948 × 10−6 75030 92.8

9 3984.4 220 37.5 91 1.407 × 10−7 223256 94.7

10 7986.9 250 45.0 111 7.299 × 10−9 455060 97.3

Table 6.17:k = 4

Figure 6.11 shows the eigenvalues of the standard matrix AM for k = 4, M = 8, before

preconditioning. As expected the eigenvalues rapidly cluster about0. In Figure 6.12, we

show the eigenvalues of the preconditioned matrix BM . In the preconditioned case, we

see that the eigenvalues do not cluster as rapidly as in the unpreconditioned case, however,

they are all away from zero.
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Figure 6.11: Eigenvalues of the unpreconditioned standardmatrix fork = 4,M = 8

Figure 6.12: Eigenvalues of the preconditioned standard matrix for k = 4,M = 8

The sparsity pattern of the standard matrix fork = 4,M = 8 is shown in Figure 6.13.
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Figure 6.13: The standard matrix:k = 4,M = 8

Figure 6.14 shows the growth of the number of iterations for both the preconditioned and

unpreconditioned methods using GMRES(10).
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Figure 6.14: Iteration numbers for the preconditioned and unpreconditioned methods

Figure 6.15 shows the growth of the condition number for boththe preconditioned and un-

preconditioned methods. In Figure 6.16 we show theO
(
log2N

)
growth of the condition

number in the preconditioned case.
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Figure 6.15: Condition numbers for both the preconditionedand unpreconditioned meth-

ods
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Figure 6.16: Condition number growth in the preconditionedcase
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Chapter Review

In this chapter we have presented the numerical results of two test problems for Laplace’s

equation with Neumann boundary conditions. Results for both the standard and non-

standard methods have been obtained.

In section 6.2 we have considered Laplace’s equation with Dirichlet boundary conditions.

As the resulting coefficient matrix is ill-conditioned, we have discussed matrix precondi-

tioning. In particular, we introduced the wavelet preconditioner suggested in [11]. Here,

we have extended the use of the wavelet preconditioner to multiwavelet bases. We have

presented numerical results, which show that our multiwavelet preconditioner reduces

the growth of the matrix condition number toO(log2N), and significantly reduces the

number of GMRES(10) iterations required.

reduces the growth of the matrix condition number toO(log2N), and significantly re-

duces the number of GMRES(10) iterations required.
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Chapter 7

Conclusion and Further work

In this thesis, we have been concerned with the so-called wavelet algorithm for the solu-

tion of boundary integral equations. In chapter 2 we have briefly reviewed the methods

and techniques required when partial differential equations are reformulated as boundary

integral equations. In chapter 3, we discussed themultiresolutionframework for wavelets,

as well as, our choice of basis functions for this thesis, namely, themultiwaveletsof [10].

In chapter 4, we developed thestandardandnon-standardGalerkin methods for multi-

wavelets. For both methods applied to operators of the standard analytical class, bounds

are found for the size of matrix elements. Using these boundscompression strategies have

been developed which only require the computation and storage of the significant matrix

elements. We have shown that there are onlyO(N logpN) such significant elements.

In chapters 5 and 6 we have applied the standard and non-standard Galerkin methods to

several test problems of varying “difficultly”. In chapter 5, we concentrated on the radios-

ity problem of image synthesis, whereas, in chapter 6 we concentrated on the boundary

integral reformulation of Laplace’s equation. However, when we consider Laplace’s equa-
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tion with Dirichlet boundary conditions the resulting coefficient matrix is ill-conditioned.

This is because the single-layer operatorL is of order−1 and therefore its eigenvalues

cluster at zero. Therefore, in order to use an iterative solver efficiently we precondition

the linear system. We introduced the wavelet preconditioner suggested by Dahmen [11].

Then, we extend the preconditioner for use with multiwavelet basis functions. Our nu-

merical results show that the multiwavelet preconditionerreduces the growth of the matrix

condition number fromO(N) to O
(
log2N

)
.

Many difficulties with the application of multiwavelets bases still remain. These include:

• The development of quadrature rules for the efficient numerical integration of mul-

tiwavelets over large supports.

• Further development of multiwavelet preconditioners to increase the clustering of

eigenvalues and reduce further theO
(
log2N

)
growth of the condition number.

• Due to the prevalence of collocation methods in the engineering community, the

development of multiwavelet collocation methods, analogous to the standard and

non-standard Galerkin methods.
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