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ABSTRACT 

The reliability of electronic products is fast becoming of major importance with the 

demand for increased safety, especially in the automotive industry.  Tracks, pads and vias 

on printed circuit boards can suffer a variety of problems if circuits are contaminated with 

electrical-conducting substances.  

Electrochemical migration, especially dendrite growth, has long been a concern in safety 

critical and durable systems, and current preventative methods tend to focus on various 

styles of printed circuit board protective coatings.  These measures have a number of 

disadvantages, mainly process and material costs with extreme scepticism on their overall 

efficacy.  Any design related developments that can minimise the impact of dendrite 

growth on reliability can lead to a more economic, durable and safer product. 

The work in this thesis provides a thorough literature search of the field of electrochemical 

migration on printed circuit boards. This study then develops a novel circuit-design-

orientated model, based on a multilevel full-factorial design, to study the effects of 

temperature, voltage and electrode gap on dendritic growth under saturated conditions.  

Preparation of several DC-biased copper-comb patterned printed circuit boards placed in 

temperature-controlled water-filled cuvettes enables the specific monitoring of dendrite 

activity, and detects a sharp current increase that accompanies a dendritic short circuit 

condition. 

A high R2 polynomial correlation-model is derived and it is noted that increased voltage 

and temperature and reduced track spacing increases the impact of dendritic growth on 

reliability.  At voltages between 3 and 4V, gas bubble formation at the electrodes has the 

effect of increasing reliability by destroying the dendrite fuses.  It is shown that dendrites 

may not grow below 1.25V, which coincides with the theoretical onset voltage for the 

decomposition of water.  It was also demonstrated that electrically biased, water-

contaminated printed circuit boards form extreme acid and alkaline regions close to the 

anode and cathode terminations, respectively, which can cause corrosion. 

The thesis proposes a novel approach, termed ‘design contingency’, for preventing 

dendritic growth through design optimisation.   
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GLOSSARY 

Adsorption: The take-up of a substance at the surface of another 

material 

Anode and cathode: Anode and cathode are the positive and negative polarities 

of an electrochemical system, respectively. 

CAF: Conductive Anodic Filaments are electrochemical growths 

between the laminates of printed circuit boards, which are 

usually formed from copper. 

Copper-clad: Printed circuit board before the etching process.  This is 

usually thin copper bonded to a fibre glass substrate. 

Corrosion: The decomposition of a metal due to the exchange of 

electron and the formation of ionic species usually in an 

aqueous solution. 

Dendrite: Electrochemical growths with a fractal-like structure 

Dendrite fusing: The point when a dendrite shorts between two electrically 

biased electrodes causing a reduction in resistance. 

  

Double-layer capacitance: A capacitance created by the charge of molecules between 

metal-liquid interfaces below the overvoltage potential. 

EDX: Energy-dispersive X-ray spectroscopy, used to analyse the 

atomic composition of a material. 

Factors: A parameter under consideration that can influence the 

response variable 

Field Life: The expected working operation of an electronic system 



 

viii 

Flux: A liquid substance use to clean metallic surface before a 

solder wets 

Halide: The ionised form of halogens 

Halogens : A series of non-metal elements from the periodic table, 

comprising fluorine, chlorine, bromine, iodine, and 

astatine. 

Hydroscopic : A material’s ability to absorb moisture from the 

atmosphere 

Hydroxide: The ion form of OH 

Interaction: Two or more variables that interact with each other and 

hence the response 

Migration: The movement of ions through an electrolyte 

Nernst diffusion-layer: A linear diffusion region adjacent to an electrode where the 

species concentration remains stagnant and is unchanged 

by time when electrolysis occurs. 

Noble metal: Metal that is more resistant to corrosion or oxidation. 

  
Overvoltage: The additional potential added to the theoretical activation 

energy required for electrolysis to occur. 

Pad: The metallic area of a printed circuit board where 

electronic component leads are soldered 

PCB: Printed Circuit Board 

Point source: A nucleation point that can experience high current 

concentrations. 
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Pourbaix Diagram: A diagram used to plot electrochemical reaction relative to 

potential and pH, named after it creator Marcel Pourbaix 

(1904-1998), also known as Potential-pH diagram. 

p-value: The probability of the event happening. 

Redox: Reduction and Oxidation 

Reflow soldering: A method of forming a solder joint between component 

and circuit board by heating solder paste to its alloy 

liquidus temperature 

Regression: A method of determining the next response from historical 

data. 

RH Relative Humidity (scale 0-100%) 

RMA Flux activation level.  Rosin Mildly Activated.  

Rosin: A natural product from the sap of pine trees and the main 

ingredient in solder fluxes. 

R-square: The difference between the observed data and the model. 

A high percentage value indicates that the model closely 

represents the observed data. 

SEM: Scanning Electron Microscope used for producing high-

resolution images 

SHE Standard Hydrogen Electrode 

SIR: Surface Insulation Resistance 

Via: A connection between layers on a printed circuit board 

(also known as PTH - plated through holes) 
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Chapter One: Introduction 

 

Satellite failures are rare and very costly when they occur, with interconnection failures 

accounting for over 15% of satellite malfunctions[1].  In May 1998 a Boeing 601 

telecommunications satellite, Galaxy 4, failed with drastic results[2].  The failure, which 

disabled telephone networks across the United States, was unexplained for many years 

although the failure mechanism was later believed to be the formation of tin growths.   

The earliest account of metal migration was a report on a telephone-switchboard by 

Kohman in 1955[3] who found an electrical field and water were needed for migration 

to occur through an electrochemical process. 

Reliability of electronics is of paramount importance and failures can cause serious, if 

not disastrous, consequences.  In the manufacture of electronic goods the drive towards 

longer field life and increased reliability is an ongoing trend, driven by a demand for 

improved reliability, durability and safety.  

In the manufacture and assembly of printed circuit boards (PCB), residues produced by 

the process can be deposited on a PCB. When PCBs are energised by electronic signals, 

these residues can produce parasitic growths, potentially causing short circuits and the 

failure of the PCB. The occurrences of electrochemical migration failure modes, such as 

dendrites and conductive anodic filaments (CAF), are problems which can bring 

catastrophic failure and lead to the malfunction of mission critical systems[4].    

1.1 Electrochemical Degradation of Printed Circuit Boards 

The conductive lands on a printed circuit board can suffer a variety of problems if 

metallic surfaces are contaminated with electrically-conductive substances. When 

contamination is combined with moisture it can result in the lowering of resistance 

between the tracks and pads and lead to the galvanic corrosion of metals. It can also 

lead to the formation of dendrites and/or CAFs between the conductors.  
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Electronic equipment used under very dry conditions may not have such problems, 

unless there are large temperature fluctuations that result in dew condensation occurring 

on the surface of the circuitry or if the contaminants are hygroscopic and adsorb enough 

moisture to provide a liquid film on the surface. With high relative humidity conditions, 

a thin layer of moisture can occur on the surface which may be sufficient to decrease 

surface insulation resistance, cause corrosion or form metallic dendrites. Higher 

humidity can cause a thicker moisture layer and a faster corrosion or dendrite growth 

can then take place[5]. 

The problem of electrochemical degradation in electronic systems has long been 

recognized. The first dendritic failure was reported in 1955[3, 6], with further 

publications later[7-10].  CAF failure modes were first reported by Bell Laboratories in 

1976[11]. 

More recently there has been an increase in reliability concerns arising from 

electrochemical degradation for three main reasons: 

• Increased use of electronics in safety critical applications in harsh environments, 

such as in automotive, aviation and medical fields. 

• Integration and the trend towards smaller multi-layer printed circuit board 

geometries. 

• Increased use of lower operating currents and voltages (dendrite bridges will 

often self-heal if the current is large enough to blow the short). 

1.2 Electrochemical Migration (ECM) 

Electrochemical migration can be defined as the movement of metal or metal-salt ions 

under the influence of a voltage bias.  This can occur on the surface of a printed circuit 

board or through the bulk of the printed circuit board fibre glass[12].  The growths 

occur through electrolysis of an aqueous solution containing metal ions dissolved from 

the complementary metal conductor i.e. tracks, pad or via.  This can occur on the 

surface of a printed circuit board, potentially resulting in dendrites, or through the bulk 

of the printed circuit board fibre glass, potentially resulting in CAFs[12]. 
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There are two distinct electrochemical migration failure phenomena that can occur on 

printed circuit boards.  The first form is conductive anodic filament (CAF) formations.  

CAF failures in printed circuit boards occur under conditions of high humidity and high 

voltage gradients, with the filament composed of copper salts that grow from the anode 

towards the cathode along the fibres of the epoxy/glass interface.  As CAFs are formed 

within the fibres it is not possible to see the failures on the surface of the substrate, as in 

the case of a dendrite, and substrate sectioning and polishing is required to expose the 

growth.  An example section of a CAF is shown in Figure 1.  Note the black CAFs 

spikes from the positive terminal, anode, emanating towards the ground plane, cathode. 

 

Figure 1 – Cross-section of a PCB Via Showing Evidence of CAF 

The second form of electrochemical migration failures and the focus of this thesis are 

surface dendrites.  Dendrites can grow from the cathode to the anode under an applied 

voltage bias when aqueous contamination is present.  These dendrites are fractal in 

shape, as in Figure 2, and can bridge the conductors (cathode-anode). 

1mm
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Figure 2 – Example of a Dendrite 

 In the presence of low currents (μA) dendrite shorts can be maintained.  However, if 

the currents are sufficiently high they can blow, similar to a fuse.   Dendrites differ from 

CAFs for a number of reasons as follows[13]: 

• Dendrite growth usually occurs on the surface of a substrate/contact and not 

internally as in CAF growth. 

• A dendrite can be formed from various metals such as copper, lead or tin, 

whereas in CAF growth, the migrating metal is usually copper. 

• The direction of a dendrite’s filament growth is from the cathode to anode and 

not from the anode to the cathode as observed in CAF growth. 

• The composition of a dendrite filament is understood to be neutral metal and not 

a metallic salt as found in CAF growth. 

A full description of these aspects is given in Chapter 2. 

 

10um 
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1.3 Aims and Objectives 

To better understand the problem contacts were established with Delphi Automotive 

Systems, The Test Lab (USA), National Physics Laboratories (NPL - UK) and Heraeus 

Circuit Materials (USA). 

From discussions with these links, the broad aims and objectives of this research were 

established.  The sponsoring company, Delphi Electronics Systems, has a particular 

interest in the following areas: 

• Operating temperatures for automotive electronic engine controllers are extreme 

from -40ºC to 125ºC.  However, whilst most of the validation for controllers 

operate at either end of these extremes the mechanisms of failures such as 

dendrites at normal ambient temperatures (5-50ºC) is assumed to be similar.  

Gaining an understanding of the operating parameters of typical failure 

mechanisms, such as dendrites, would benefit overall automotive electronic 

controller reliability. 

• Further understanding of dendrite growth relative to the design parameters 

required to minimise or even eliminate their formation. 

• Designing and developing a system to conduct analysis of typical ionic and 

dendritic formations on PCBs, whilst eliminating external factors that hinder 

experiments of parametric identification. 

• Understanding mechanisms of dendritic growth under DC and AC conditions. 

Based on these requirements this research project investigates factors that enhance 

dendrite formation between printed circuit board (PCB) tracks.  The main parameters 

studied are (1) conductor track spacing, (2) temperature, (3) operating voltage and (4) 

effect of pH.   

The purpose of this project is to further the understanding of electrochemical migrations 

on printed circuit boards, especially dendrite growth, to prevent field failures.  And to 

then develop a model and subsequently new design guidelines for improving the 

reliability of electronic automotive products. 
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The motivation for this research is to determine improved methods for assessing printed 

circuit board (PCB) reliability of current surface insulation resistance (SIR) failures.  

The author bases part of this study on his M.Sc – ‘Investigation into a modified area-of-

spread method to monitor the effect of oxygen levels in a reflow oven’[14, 15] and, to a 

degree, on his B.Eng project ‘The effects of hydrogen/nitrogen mixtures on Soldering in 

Electronics of copper and tin/lead surfaces for PCB assemblies’[16]. 

In some fields, such as AC formation, there is very little literature.  In these cases, 

additional experimentation has been conducted to remove gaps in the background 

information, allowing continuity and a more complete description of the current area.  

 



 

7 

1.4 Thesis Outline 

This thesis is divided into seven Chapters and three appendices.  Chapter 1 covers the 

project background and the problem description.  It also reviews the research objectives 

and gives an overview of the thesis.  Chapter 2 presents the background and literature 

review on electrochemical failures.  The first part of this Chapter outlines materials used 

in the electronics industry and then develops an understanding of electrochemical 

migration before moving on to mechanisms associated with electrochemical failures.  

Chapter 3 explains the methods and equipment used for the experiment outlined in 

Chapters 4 and 5.  Chapter 4 presents the initial work on dendrite growth that forms the 

basic understanding for experimental methods used in Chapter 5.  Chapter 5 is devoted 

to understanding the parameters that augment the growth of dendrites, which aids the 

development of a factorial design used in Chapter 6.  Chapter 6 presents a multilevel 

factorial experiment as the basis for modelling three main parameter, temperature, 

voltage and track spacing.  Chapter 7, the final Chapter presents the conclusion of the 

thesis and proposes areas for further investigation. 

Appendix 1 contains three publications as a result of this work.  Appendix 1a is a copy 

of a paper on the work conducted in Chapter 6 and accepted for publication in 

Microelectronics International in May 2007.  Appendix 1b is a white paper, requested 

by Delphi, published internally to help employees understand the differences between 

Dendrites and CAF.  Appendix 1c presents a poster proposed at an early material 

conference, April 2006, which identifies dendrite fusing and suggests AC as an 

alternative for surface insulation resistance testing. 
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Chapter Two: Background and Literature Review 

 

Much work has been conducted on the reliability impact of metallic and slat deposits 

formed by an electrochemical process when a printed circuit board is contaminated with 

an aqueous solution[3, 17-23].  The earliest citation on electrochemical migration on 

printed circuit boards was published by Bell Systems[7], with most of the relevant 

subsequent publications, up to 1977, focussing on silver migration[7-9, 24]. 

 

Figure 3 – Two Types of Electrochemical Migration  
              Dendrites and CAF 

Electrochemical migration in the field of printed circuit board reliability can be 

classified as either dendrite or conductive anodic filament (CAF) depending on the 

shape of the deposits and the conditions leading to the occurrence, as in Figure 3.  The 

term dendrite refers to the tree-like shape formed on the surface of the PCB insulation 

and emanating from the cathode.  The term CAF refers to metal-salt deposits in the 

shape of elongated fibres deposited along the glass fibres of the interior of the printed 

circuit board insulation panel emanating from the anode.  Figure 4 shows the established 

formation of a dendrite between two components leads created in a laboratory.   
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Figure 4 – Formations of tin/lead Dendrites on a SMD Capacitor (Delphi, 2005) 

Figure 5 show the growth of a dendrite between two copper tracks. 

 

Figure 5 – Example of a Dendrite between Two Copper Tracks 
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To understand the nature of the electrochemical failure mode of electronic products it is 

important to review the construction of printed circuit boards, the metals used in the 

industry, flux and its removal, and electrochemistry. 

2.1 Materials Used in the Electronics Industry 

2.1.1 Printed Circuit Boards 

Printed circuit boards (PCB) or printed wiring boards (PWB) were commercially 

introduced after World War II, usually credited to Paul Eisler[25, 26], and were 

primarily used for airborne instruments and for telecommunications.  However, the 

substantial production of printed circuit boards did not start until the 1950s.  Since its 

introduction, the printed circuit board has been used in most applications from 

communication satellites to the humble transistor radio.   

The printed circuit board is constructed of conductors, also called tracks, consisting of 

copper strips adhered to an insulating substrate.  There are four major printed circuit 

board constructs: 

1) Single-sided boards:  The copper is only present on one side of the insulating 

material. 

2) Double-sided boards: The copper is present on both side of the insulating 

material and connections between the two sides are usually made by plated tin-

lead alloy, commonly known as plated through hole (PTH) or vias. 

3) Multilayer boards: The copper is present on both sides of the insulating material 

with additional conductor layers inside the boards.  Typical constructs are of 

four, six and eight layers, with the outer layer (top and bottom) used for power 

i.e. ground and other voltage levels.  Figure 6 shows a cross-section of an eight-

layer board with a component lead soldered at both ends of the board to a 

through-hole via. 

4) Flexible circuit: These circuits use any of the above configurations although 

normally using a flexible insulating material.  These are typically used in digital 

cameras or application where greater density is required. 
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Figure 8 – EDX of FR4 Image 

2.1.2 Metals 

From the electronics manufacturing point of view, the most important metals for 

interconnection systems include at least three elements; copper, tin and nickel.  Copper 

is the main metal used for printed circuit board tracks and therefore constitutes the main 

base interconnect material.  Tin, copper, nickel or nickel-based alloys with protective 

coatings such as gold are used for other contact metallization.  Electrochemical 

migration failures experienced in electronic products usually involves the copper or tin 

parts of the printed circuit board in the form of dendrites, CAFs or even current 

leakages.  Although it is noted[13, 30] that the formation of CAFs only occurs  with 

copper.  

Copper is also used for high grade and high density interconnects on integrated circuits, 

replacing the nickel/iron alloy lead-frames and aluminium wirebonds.  The reason for 

changing to copper is due to its superior thermal conductivity, coefficient of thermal 

expansion (CTE) and electrical conductivity[31].  However, there has been a reported 

disadvantage[32] in using copper for die wirebonds due to a greater electrochemical 

migration susceptibility than its aluminium predecessor.  
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Under relatively high humidity, electronic components with metal content respond to 

applied voltages by electrochemical migration of metal ions and the formation of a 

filament that can lead to short-circuit failure, termed electrochemical migration (ECM) 

[30, 32-35].  A metal which, in the presence of moisture, can form ions with reasonable 

mobility under electrical potential can exhibit electrochemical migration[36].  The 

transfer occurs between the electrodes of devices when exposed to both moisture and an 

electric field.  An example is dew condensation adhering between two electrodes.   

2.1.3 Flux 

Component leads, terminations and pads are normally covered in a layer of oxide before 

they are soldered, and therefore a flux is required.  The chemical function of flux is to 

remove oxide films from the surface and to protect the clean surface from re-oxidising. 

There are two main types of flux used in electronic manufacturing; water soluble fluxes 

that require removal after the reflow process and no-clean flux that can be left on the 

printed circuit board with no, or very little, impact on reliability, with both types 

containing tree rosins. 

The flux in a typical solder paste contains up to 60% by weight of rosin, 7-10% 

thickeners, 5-10% viscosity agents and up to 2% actuators.  The rest of the flux contains 

a variety of solvents such as alcohols (isopropyl, butyl alcohol and polyethylene glycol) 

to form the solution.  Rosin is a natural product that is extracted from pine tree and 

therefore its constituents depend on where it originates.  Rosin consists of several rosin 

acids and the typical composition is listed in Table 1. 

Rosin Acid % Composition 
Levopimaric Trace 
Neoabietic 10-20 

Abietic 30-40 
Isodextropimaric 8 

Dextropimaric 8 
Dehydroabietic 5 
Dihydroabietic 16 
Tetra-abietic 16 

Table 1 – Typical Composition of Rosin[14, 36, 37] 

Hunt et al. report[38, 39] on the impact of flux on circuit board contamination where, in 

the presence of high humidity conditions, flux can cause a decreases in surface 

insulation resistance, Figure 9.  Figure 9 shows three levels of contamination levels; 
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clean (no flux), 30μl and 100μl.  The measured flux volumes were applied to a combed 

test pattern, similar to the one shown in Figure 35, using a pipette. 

 

Figure 9 – Effect of Temperature on SIR at 85% RH[38] 

Flux can be the source of various anions such as chlorine ions, bromine ions and other 

ions that originate from rosin and organic acids[40].  This increases the number of ions 

and hence increases the number of charge carriers, which leads to a reduction in surface 

resistance.  For circuit reliability the presence of flux residues combined with surface 

water leads to a stray current, causing dendrites and leading to circuit failure. 

2.1.3.1 Flux Removal 

In applications requiring a high degree of reliability, such as military applications, the 

flux is commonly removed.  The flux used for these applications is usually water 

soluble and is removed using saponifiers, as opposed to environmentally aggressive 

alternatives, such as Trichloroethane and other CFCs, the use of which is now forbidden 

under the 1987 Montreal Protocol[41].   

In a typical surface mount process flow the flux cleaning process, shown in Figure 10 

highlighted in blue, is commonly located immediately after the reflow oven, i.e. after 

the component leads are soldered.  It is commonly believed that removing the flux using 

water based methods provides the safest means of cleaning[39].  However, as processes 

used for removing water-based flux involve the use of high pressure deionised water, 
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problems can occur if the cleaning processes are not strictly controlled, as water 

contamination may be left on the PCBs after the operation. 

The use of no-clean fluxes provides a lower cost alternative to expensive water-based 

cleaning processes.  However, whilst the commercial literature for no-clean fluxes tends 

to indicate that the contaminates left behind after the reflow process will not cause 

electromigration problems, it has been reported[42] that when water contaminates an 

electrically-biased PCB with no-clean residues, dendrites can still occur. 

 

Figure 10 – A Typical Surface Mount Process Flow 

 

2.2 Electrochemical Migration 

Various failure modes can be further understood by the use of electrochemistry.  

Examples include migration potentially leading to dendrite growth and pH diffusion 

potentially leading to  corrosion and CAF formation[13].  This Section focuses on the 

specific aspects of electrochemistry applicable to copper and water electrolyte.  

When electrically-biased copper, such as a track on a printed circuit board, is exposed to 

water a resistive pathway is created through the water electrolyte, allowing current to 

flow, see Figure 11.   
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2 2Cu Cu e+ −→ −

2 2Cu e Cu+ −− →

 

Figure 11 – Copper Migration of PCB Tracks 

The mechanism at the anode and the cathode involves oxidation and reduction of the 

copper.  There are three species of copper present in a copper-water based electrolytic 

system.  They are neutral metal copper, cuprous ion copper(I) Cu1+ and cupric ion 

copper(II) Cu2+.  These evolve from two electrochemical reactions[43, 44], as in 

Equation 1 and Equation 2. 

 

However, copper(I) only evolves when the copper is not biased (as in corrosion 

processes) or if other contaminates are present, such as chloride.  As neutral copper is 

not a charged ion, copper deposition is produced when copper(II) migrates from the 

anode depositing copper onto the cathode, as shown in Equation 3[43]. 

2 1Cu e Cu+ − +− ↔   Equation 1
1Cu e Cu+ −− ↔   Equation 2
2 2Cu e Cu+ −− ↔   Equation 3
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2.2.1 Anode and Cathode 

There is a great deal of confusion in some literature on the understanding of electrode 

polarity.  The general perception is that the anode corresponds to the positive polarity 

and the cathode corresponds to the negative polarity.  International convention[45, 46] 

calls the electrode where oxidation occurs the anode and the electrode where reduction 

occurs the cathode.  The polarity on the electrodes depends on whether the cell converts 

electricity into chemical energy or vice versa[47, 48].  If the electrical energy is 

converted to chemical energy (reaction is not spontaneous), i.e. electrolysis of water to 

produce hydrogen and oxygen, then the anode is positive and the cathode is negative, 

i.e. electrons flow into the cathode.  However, if chemical energy is converted to 

electrical energy (reaction is spontaneous), i.e. non-rechargeable battery or the 

phenomenon of corrosion (where no useful electrical energy is produced as it is 

internally converted to heat), then the anode is negative and the cathode is positive, i.e. 

electrons flow out of the cathode, Figure 12. 

However, to reduce confusion and maintain continuity the general perception of polarity 

is used throughout this thesis, i.e. anode equates to positive and cathode equates to 

negative. 

 

Figure 12 – International Convention of Electrode Polarity 
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2.2.2 Electrolysis of Water  

The electrolysis of water is an electrochemical process in which water decomposes into 

oxygen and hydrogen caused by the flow of electrons, according to the reaction shown 

in Equation 4.   

2 2 22 ( ) 2 ( ) ( )electrolyte cathode anodeH O liquid H gas O gas→ ↑ + ↑   Equation 4 

 

Figure 13 – A Typical Aqueous Electrochemical Cell 

Figure 13 shows a typical electrolytic cell consisting of two inert electrodes, such as 

platinum, with a water electrolyte, which is representative of either a large volume of 

water or a water drop.  A potential difference is applied between the electrodes, with the 

anode connected to the positive terminal attracting the negative ions (anions) in the 

electrolyte.  Similarly, the cathode is connected to the negative terminal attracting the 

positive ions (cations).  The velocity of the ions migrating from the anode is typically a 

function of the viscosity of the bulk fluid, the ion radius and the electric field.  For this 

reason it can be difficult to calculate the velocity, theoretically, for an unknown 

contaminate without experimentation. 

On the surface of the electrodes a reaction occurs that leads to the release or 

incorporation of electrons by the ions with the creation of a large pH gradient.  At the 

anode water is oxidised to form oxygen gas and hydrogen ions (H+) and at the cathode 

water is reduced to form hydrogen gas and hydroxide ions (OH-).   
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Figure 14 demonstrates the large pH gradients produced at the interface of the 

electrodes due to the creation of the H+ and OH- ions, shown in red and blue in 

Equation 5 and Equation 6, respectively.  At the anode the pH gradient is more acidic 

(pH<7) with the creation of H+ ions, while the creation of OH- at the cathode leads to a 

more basic pH gradient (pH >7).  These pH gradients can strongly affect the corrosive 

properties of the metal[49].  The reaction involved for a metal exposed to moisture 

under a range of electric potentials and solution pH conditions are portrayed in a pH-

potential (usually referred to as Pourbaix diagrams[50]), see Section 2.2.3. 

 

Figure 14 – Demonstration of pH Gradients at the Metal Interfaces 

An electrolytic cell, shown in Figure 13, consists of a redox reaction composed from 

two half-reactions (anode-cathode).  
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2 22 4 4H O O eH −+→ ↑ + +  
2, 1.23O

AnodeE Vθ = −  Oxidation (Anode) Equation 5

2 22 2 2 He OH O H− −+ → ↑ +  
or  

2 22 4 4 HO OO H e− −+ + →  

2, 0.83H
CathodeE Vθ = − Reduction(Cathode) Equation 6

Equation 5 and Equation 6 shows the half-reactions for the anode and cathode, 

respectively[51].  The
2,O

AnodeEθ

and
2,H

CathodeEθ

values, shown to the right of the equations, are 

known as the electrochemical series or standard electrode potentials (Eθ), Section 

2.2.2.1.  Under ideal conditions a potential of 1.23V is required to oxidise water to form 

oxygen gas and 0.83V to form hydrogen gas.  Therefore, biasing the cell with a voltage 

of 1.23V would initiate redox (reduction-oxidisation).  However, under real conditions 

decomposition of water requires larger voltages to initiate the redox reaction.  This is 

due to a phenomenon called overvoltage, see Section 2.2.2.2, which is the additional 

potential required to initiate the reaction to the rate it would occur in an ideal system.  

The minimum practical voltage required to initiate redox of water needs to be at least 

0.5V greater than the ideal voltage[51].  However, depending on material used for the 

electrode, the overvoltage potential can be up to 1V greater than the ideal voltage. 

2.2.2.1 Standard Electrode Potentials 

The standard electrode potentials are individual thermodynamic voltages of any 

electrode material at a temperature of 298.15K (25ºC) and at a pressure of 1 

atmosphere, that are referenced to a hydrogen electrode, with an Eθ potential of 0V.  

The values are produced from an electrochemical cell that consists of two electrodes, a 

hydrogen electrode (hydrogen over platinum) and a test metal, in an acidic solution with 

an activity of H+ = 1 mol/dm-3, at a temperature of 298K[52].  Metals that have a 

standard electrode potential higher than that of the standard hydrogen electrode (SHE) 

are considered ‘noble’ and the Eθ value is positive, whilst the Eθ value of ‘ignoble’ 

metals is negative    Noble metals tend not to corrode with the release of hydrogen in a 

solution with a zero pH value, whereas, ignoble metals tend to corrode with the release 

of hydrogen in a solution[50].   
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The standard electrode potentials are also derived from thermodynamic data and are 

calculated using the Nernst equation, Equation 7, with the Gibbs energy (ΔG) sourced 

from standard tables[52, 53]. 

θnFEG −=Δ  Equation 7 

Where n is the number of electrons transferred for one step of the overall reaction; F is 

the Faraday Constant (96,487 C mol-1) and Eθ is the electrode potential.  Thus for water, 

n = 2 and for ΔG = -237,100 J/mol at 25ºC, which gives the electrode potential of 

1.229V. 

Table 2  lists the relative electrochemical potentials of metals commonly used in 

electronics, listed in order of their chemical reactivity, the less active at the top and the 

more active, or nobler at the bottom of the table.  The scale of electrochemical series is 

used to give the degree of nobility of various electrode processes and thus is used to 

indicate the ability of material to ‘resist’ an electrochemical redox process, such as the 

corrosion process.   

Metal Reaction Eθ (V) 
Gold Au+ + e- = Au 1.692 
Gold Au3+ + 3 e- = Au 1.498 
Platinum Pt2+ + 2 e- = Pt 1.18 
Palladium Pd2+ + 2 e- = Pd 0.951 
Silver Ag+ + e- = Ag 0.7996 
Copper Cu+ + e- = Cu 0.521 
Copper Cu2+ + 2 e- = Cu 0.3419 
Hydrogen 2H+ +2e- = H 0.00 
Iron Fe3+ + 3 e- = Fe -0.037 
Lead Pb2+ + 2 e- = Pb -0.1262 
Tin Sn2+ + 2 e- = Sn -0.1375 
Indium In+ + e- = In -0.14 
Nickel Ni2+ + 2 e- = Ni -0.257 
Cadmium Cd2+ + 2 e- = Cd -0.403 
Iron Fe2+ + 2 e- = Fe -0.447 
Bismuth Bi+ + e- = Bi -0.5 
Tantalum Ta3+ + 3e- = Ta -0.6 
Chromium Cr3+ + 3 e- = Cr -0.744 
Zinc Zn2+ + 2 e- = Zn -0.7618 
Chromium Cr2+ + 2 e- = Cr -0.913 
Aluminium Al3+ + 3 e- = Al -1.662 

Table 2 – Electrochemical Series of Metals Used in the Electronics Industry[52] 

The degree of standard electrode’s potential nobility can differ considerably from the 

‘practical nobility’ established experimentally i.e. in situ experiments as opposed to 
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absolute values of quantitative evaluations.  The differences may be due to the 

following[50]: 

1. Some metals dissolve in the form of two simple ions (Cu+ and Cu2+) and in the 

form of a complex ion (CuCl2-) as opposed to the single form (Cu+), thus 

compounding the Eθ value and producing a misleading result.  

2. Some metals may become coated with a passivating film. Yielding, for example 

the Eθ value for the complex Cu(OH)2 rather than the correct Eθ value for 

copper. 

3. The additional potential added to the theoretical activation energy required for 

electrolysis to occur; known as the overvoltage. 

2.2.2.2 Overvoltage 

Overvoltage (η), in Equation 8, is the difference between thermodynamic potential, Eθ, 

and the practically measured potential (E) at which a noticeable current flows, i.e. the 

potential at which bubbles of gas appear[54].  It is the potential at which hydrogen and 

oxygen evolves at the cathode and anode, respectively.  

The overvoltage potential is influenced by pH, temperature and other ion species in the 

solution, although it varies considerable with different electrode materials[55].   

Material Overvoltage (V) Periodic Block Material Overvoltage (V) Periodic Block 
Platinum 0.03 d Copper 0.67 d 
Tungsten 0.27 d Iron 0.71 d 
Smooth platinum 0.29 d Graphite 0.77 p 
Antimony 0.43 p Aluminium 0.80 p 
Gold 0.48 d Mercury 0.89 d 
Nickel 0.56 d Tin 0.92 p 
Palladium 0.59 d Zinc 0.94 d 
Silver 0.62 d Lead 1.00 p 
Carbon 0.64 p Cadmium 1.22 d 

Table 3 – Average Overvoltage of Hydrogen on Various Metal Cathodes[54, 56] 

 

E Eθη = −   Equation 8



 

24 

Table 3 [54, 56] tabulates a number of experimentally gained overvoltage values for 

various electrode materials.  The list is compiled from various literature values and is 

aimed at demonstrating the affinity of overvoltage between the different materials.  

However, overvoltage values are normally only obtained through experimentation, 

because of the number of factors involved for a given system. 

The highest values of overvoltage tend to be observed from s- and p-block metals such 

as lead and mercury, whilst the lowest tend to be observed for transition metals (d-

block) such as platinum[57].   

For an aqueous cell with platinum electrodes, as in Figure 13, the voltage applied to 

form gas bubbles is in the order of 1.7V[54], demonstrating an overvoltage of 0.47V 

above the thermodynamic potential of water (Eθ), which is 1.23V.   

 

Figure 15 – Charging of the Double-Layer within Decomposition Voltage 

If the applied voltage varies with Eθ, i.e. below 1.23V, then no decomposition will 

initiate although charging of the double layer will occur, as in Figure 15(a).  If the 

applied voltage varies within the overvoltage, η, e.g. between 1.23-1.7V, it may only 

alter the charge characteristics of the double layer capacitance[58], i.e. increase the 

electrostatic distance between the molecules and reduce the capacitance of the double-
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layer at the metal interface, as in Figure 15(b).  However, beyond E (i.e. Eθ+η) the 

effective capacitance at the double layer significantly reduces as the water molecules 

decompose and effectively reducing the resistance. 

2.2.3 Pourbaix Diagrams 

Pourbiax diagrams, named after the originator Marcel Pourbaix (1904-1998), or E-pH 

diagrams are plots for viewing the interrelationships between pH and potential[50].  

On a Pourbaix diagram there are two axes, the Y-axis labelled E for the voltage and the 

X-axis labelled pH.  Within the graph there are several regions that describe the 

function relative to pH and potential.   

 

Figure 16 – Outline of a Pourbaix Diagram for an Aqueous Systems [50] 

In the Pourbaix diagram in Figure 16 the lines (a) and (b) indicate the decomposition of 

water and the regions inside these lines are explained as follows:[50] 

• In the region below line (a) water is unstable and will decompose to hydrogen by 

electrolysis at the cathode. 

• In the region above line (b) water is unstable and will oxidise to oxygen by 

electrolysis at the anode. 
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• In the region between lines (a) and (b) water is stable.  Hydrogen is oxidised to 

water and any oxygen dissolved is reduced to water.  

Figure 17 shows a calculated Pourbaix diagram at 25°C for copper[60] in water.  These 

metals are commonly used in electronic manufacture with silver and gold used for 

connector contacts, platinum and palladium used for relay contacts, and tin and lead as 

the main constituents of solder.  

Pourbaix diagrams are useful indicators for electrochemical failure modes, but are 

limited to pure elements and pure water.  Therefore such diagrams may not reveal the 

true condition of a specific failure mode.  

 

Figure 17 – Copper Pourbaix Diagram at 25°C[60] 

2.2.4 Metal Migration Potential on Electronic Products 

Some metals are more susceptible than others to migrating and thus forming deposits 

that affect the resistance between circuit tracks.  Table 4 lists a number of commonly 

used metals in the electronics industry[61].  The metals are categorised into three groups 

in terms of susceptibility for electrochemical migration (ECM).  The electrochemical 

migration of the first group can occur in the presence of water and an electric field.  The 

second group requires the addition of halogen-containing contaminants.  The final group 

is quite passive in a normal environment [36].   
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Metals that migrate with 
deionised water 

Metals that migrate with deionised 
water and halogen contaminant 

Metals that may need other 
conditions to migrate 

Bismuth Gold Aluminium 
Cadmium Indium Antimony 
Copper Palladium Chromium 
Lead Platinum Iron 
Silver  Nickel 
Tin  Rhodium 
Zinc  Tantalum 
  Titanium 
Bias* 1-45 volts 

Table 4 – ECM Condition for Different Metals Used in Electronics [61] 

Figure 18, Figure 19 and Figure 20 show the Pourbaix diagrams of the metal groups in 

Table 4.   

 

Figure 18 – Pourbaix Diagrams of Metals that Migrate with Deionised Water and Halogen 
Contamination[50] 
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Figure 19 – Pourbaix Diagrams of Metals that Migrate with Deionised Water[50] 
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Figure 20 – Pourbaix Diagrams of Metals that may need other Conditions to Migrate[50] 

When two oppositely polarized metal electrodes on a circuit, for example two copper 

tracks, are contaminated with water then electrolysed mass migration only occurs at 

redox, or above 1.23V.  Below this voltage threshold any free ions within the 

contaminated-water solution will migrate to the opposite electrode and the current will 

decay to near zero and aid in the formation of the metal double-layer.  Once the 

electrolysis threshold has been breached the electron flow will continue.  Table 5 shows 

a number of Ea values of potential chemical species that may be present in a 

copper/water electrochemical system; such as a copper tracks contaminated by water.  

Note that the decomposition potential of water is 1.229V. 

For all metals, electrolysis in water does not theoretically begin unless the voltage is 

greater than 1.23V.  Below this voltage the capacitive charging effects can be observed 

due to the double-layer capacitance.  This large capacitance occurs below 1.23V as the 

electrode interfaces are largely undisturbed by movement caused by water 

decomposing.   
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Species ΔG (J/mol) Ea (V) 
H2O -237,100 1.229 
Cu(s) 0 0 
Cu+(aq) 50,000 0.518 
Cu2+(aq) 65,000 0.337 
CuO -129,700 0.672 
Cu2O -146,000 0.757 
OH-

(aq) -157,000 1.627 
Cu(OH)2 -373,000 1.939 

Table 5 – ΔG [52, 53] and calculated Ea values of Typical Ionic Species when Copper is 
Electrolysed in Water 

It is worth noting that whilst certain other electrochemical reliability failure modes, such 

as dendrite growth and CAF formation, are well reported there seems to be no literature 

published on the potential failure effects of large capacitances caused by the double-

layer on printed circuit board contamination. 

2.3 Electrochemical Failures on Electronic Products 

2.3.1 Dendrites 

The process of dendrite growth begins with the oxidation of a metal, forming metal 

ions, at the anode, Equation 9, that migrate to the cathode where the metal ions then 

reduce back to their base metal, Equation 10[62].  This reaction is similar to the 

processes experienced in electroplating, although in electroplating the migrating metal 

ions usually plate a metal film on the cathode and tend not to form dendrites, such as 

shown in Figure 21. 

nMetal Metal ne+ −→ +    Equation 9
nMetal ne Metal+ −+ →    Equation 10

When the metal ions migrate toward the cathode they can attach themselves to nucleation 

points on the cathode surface, producing localised sites in the form of needles or 

spikes[63].  At the tip of these nuclei the current densities, as in Figure 22, are at a 

maximum and this results in an increased possibility of further deposits or growths, 

shown as accelerated growth emanating from the tip in the form of fine black filaments 

growing from the cathode back towards the anode, as in Figure 23[34].   
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Figure 21 – 9K x Magnification of a Dendrite Showing Fractal-like Branching 

 

 

Figure 22 – Large Current Density at the Tip of a Nucleus  
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Figure 23 – Basic Mechanism of Dendrite Formation 

Metal ions produced at the anode must be able to migrate to the cathode without 

forming other neutral insoluble compounds i.e. non-ionised species that do not dissolve 

in water.  Copper(I) tends to precipitate with OH- to form Cu(OH) and therefore may 

not form nucleation points, unlike Cu(II) which migrates from the anode without 

precipitation[62], and can form nuclei and start growth of a dendrite. 

Most metals used as conductors can be electrochemically oxidised, including copper, 

gold, platinum and palladium, although gold, platinum and palladium usually require 

additional contaminants such as bromide, chloride and iodide ions[36, 62], as noted in 

Table 4.  These contaminants are commonly found on printed circuit board, with 

bromide used as a fire retardant, and chloride and iodide used in copper etchants.  

Chloride and bromide are also found in solder fluxes. 

The formation of a dendrite is accompanied by the decomposition of water which 

involves an oxidisation process at the anode and a reduction process at the cathode[64], 

with large pH gradients formed at the electrode interfaces.  These steps are typically 

termed as a redox (reduction-oxidation) process.  This is sometimes demonstrated by 

the production of gas at the electrodes.  As noted in Section 2.2.2, the decomposition 
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process of water consist of two sets of reactions with the base reaction for the anode 

shown in Equation 5, with Equation 6 showing the base reactions for the cathode. 

The pH of a solution is defined as the inverse log of the H+ ion concentration, i.e. –log 

[H+], and thus the pH level experienced at each electrode differs as a function of H+ 

production.  This can be seen in the reactions in Equation 5 and Equation 6 with the 

production of H+ at the anode forming a more acidic solution and at the cathode with the 

production of OH- ions forming a more basic solution, i.e. more OH- than H+.  However, 

the final pH at the electrode interface also depends on the contamination present such as 

sodium and potassium carbonate from the basic solder mask developer[65] and weak 

organic acids found in solder fluxes, shown in Table 1.   

An experimental study[64] into the effects of pH on dendritic growth in saturated 

conditions indicates dendritic growth is accelerated by decreasing the pH below pH 5, 

with higher pH suppressing growth, although signs of solid corrosive products may be 

observed between the anode and cathode.  The study explains that a fractal formation of a 

dendrite, i.e. shape, size and overall characteristics, changes notably if anionic 

contaminants, such as Cl-, are added to the electrolyte, i.e. water.  Another source[66] 

suggests a similar change to the dendrite shape, where an increase in the concentration 

gradient reduces the fractal nature of the dendritic growth, as in Figure 24.   

 

Figure 24 – Dendrite Shapes as a Function of Concentration Gradient[66] 

Dendrites usually form a bridge between two electrodes effectively shorting the 

conductors and producing an increase in current.  The cross-sectional area of a dendrite 

is typically only 0.5-2.5um diameter[67] and thus in high power circuits the bridges will 
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fuse and the current leakage is either reduced or disappears.  However, over time the 

dendrite filament will thicken and the current may increase sufficiently to produce 

circuit failures [68, 69]. 

With lower current circuits, such as microprocessor data buses, these dendrite bridges 

can be problematic.  The failures caused by the formation of dendrites are not normally 

intermittent, i.e. they are either fully open or fully short, and for this reason it can be 

difficult to detect dendrites especially if they have been blown-out.   

Available papers dealing with the effects of dendrites at varying temperature within 

normal operating conditions of commercial electronics are limited.  This is probably due 

to a combination of the long durations required for each experiment (at humidity less 

than saturation) and the emphasis on standard testing, i.e. 1800 hours,(rather than 

operating) conditions, with most electrochemical migration validation testing limited to 

comparatively high temperatures of 85°C/85% RH exposure[21, 23].  Wassink[26] 

generalised that the chance of dendrite growth is a function of the Arrhenius equation, 

which is shown in Section 2.5.     

2.3.1.1 Electrochemical Growth Models 

Theoretical growth models that reflect the behaviour of failure mechanisms such as 

dendritic growth tend not to reflect the failure conditions experienced in the field.  The 

most accurate models are those produced from experimental data that determine the 

quality of fit, which is generally not perfect.  The reason is the unseen variables that are 

not considered and which can play a significant role in the end result[70].  The quality 

of the data depends on the material quality and the experimental control. 

Bockris[71] discusses two theories that may account for the formation of growths in an 

electrochemical system due to ion transport; he termed electro-growth.  In the first theory 

he explains the deposition in terms of micro steps, where each subsequent micro step is 

the adsorption of a single ion.  The single ‘flat’ face interpreted as the terrain of the 

electrode-electrolyte interface, may be valid as a starting condition although with 

continued deposition a number of reactions could take place, with one such reaction 
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shown in Figure 25[49].  Here positive metal ions are formed at the positively biased 

electrode (the anode), and migrate toward the negatively charged cathode.  

 

Figure 25 – Overview of Electrochemical Migration [49] 

 

 

Figure 26 – Micro-steps [72] 

The micro-steps, shown in Figure 26, cluster into irregularities and appear on the 

surface.  At these projections the electric field becomes concentrated and results in 

faster growth, as displayed in Figure 27, which portrays a representation of the 
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concentrated electric field at a projection; producing a faster growth than on a flat 

surface. 

 

Figure 27 – Representation of a Concentrated Electrical Field [71] 

In his second theory Bockris explains the mechanics of dendritic growth under the 

heading of dendrites; loosely termed the elementary theory of dendrite formation. This 

theory seems to complement the previous theory that under the ‘right conditions’ the 

next step, after the growth of a metal deposit, is to form a dendrite.  However, Bockris 

does not make this connection obvious.   

The tip of the growth has a small diameter of approximately 1um.  In contrast to micro-

step formation, this should not be considered a ‘plane sink’, Figure 27, that stimulates 

linear diffusion.  It is virtually a ‘point sink’, as in Figure 22, or point source dependent 

on the polarity, with the radius of curvature being much less than the diffusion-layer 

thickness (r<<δ).  The linear concentration gradient can be considered as occurring over 

an effective distance of δ, the Nernst diffusion-layer thickness, obtained by 

extrapolating the linear portion of the concentration change (Ce –C) as in Figure 28.  

Under these conditions there is a spherical diffusion to the point-sink. 



 

37 

 

Figure 28 – The Nernst Diffusion-layer Thickness (δ) 

Di Giacomo  [73] explains that for the production of a metal dendrite, the current 

density at the whisker’s tip must be several orders of magnitude higher than the average 

current.  The growth is possible through spherical diffusion ‘focusing’ the ionic current 

on the dendrite tip, which can be expressed in terms of its radius of curvature. 

The electric field can be calculated from the voltage bias, which, in turn, is directly 

proportional to the force applied on a charged particle (e.g. a metal ion) within the 

field[74].  The force applied on a charged particle may affect the time it takes an ion to 

move through the electrolyte.  The electric field can be calculated from the applied 

voltage and electrode geometry under consideration.  In its simplest form the field in a 

parallel plate capacitor is expressed by, E=V/d where E is the electric field, V is the 

applied voltage and d is the distance between the two oppositely biased plate 

electrodes[75].     

2.3.2 Conductive Anodic Filaments (CAFs) 

In the mid 1970s Bell laboratories first reported[76-78] electrical shorts due to 

conductive anodic filament (CAF) in epoxy-glass (FR-4) printed circuit boards which 

presented a major reliability problem in both the computer and telecommunications 

industry.  The main characteristic of this failure mode is the abrupt and unpredictable 

loss of current flow between electrically biased conductors.  The occurrence of CAF 

tends to be observed where fine pitched circuit layout and uncontrolled environments 
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are used.  However, the chemical composition of the laminates and processing 

materials, humidity, and voltage bias are also understood to aid in their formation[79]. 

The formation of a CAF is the result of an electrochemical migration process that 

initiates at the anode.  In contrast to dendrites forming from the cathode, CAF growths 

emanate from the anode inside the printed circuit board epoxy fibres and contain a 

combination of materials such as halide ions to form copper salts[22, 30, 79].  These 

growths tend to form between vias, also known as printed-through holes, and can 

potentially migrate to a more cathodic via and form a short circuit, shown in Figure 29. 

 

Figure 29 – Schematic of a CAF Pathway between Two Vias 

Bell Laboratories[76, 77] published the mechanism by which CAF formations evolve in 

the form of several steps.  In the first step the epoxy fibres degrade and moisture 

absorption occurs.  This creates an aqueous channel through the separated epoxy fibre 

interfaces that provides a conductive path.  These separated epoxy fibre interfaces are 

the result of laminating several layers to form a multilayer printed circuit board.  The 

second step is the process of electrochemical corrosion from the absorbed water acting 

as an electrolyte.  The two copper vias act as electrodes and the operating voltage drives 

the ion migration process.  At each of the electrodes a pH gradient occurs with an acidic 

pH gradient (H+) occurring at the anode and basic pH gradient (OH-) occurring at the 
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cathode (Equation 5 and Equation 6).  If these pH gradients either propagate or the pH 

diffusion regions are in close proximity, for example closely spaced vias, then 

essentially these extreme pH concentrations can form salts (i.e. base+acid = salt).  The 

simplified copper Pourbaix diagram[50], in Figure 30, shows that with a pH below 7 

and a potential greater than 0.2V copper corrosion can occur.  In a CAF, as the anode 

produces copper ions (Cu2+), migration occurs towards the cathode, which remains 

virtually stable at all pH levels.  As the copper ions migrate they move towards the 

cathode, a more basic region, and the pH increases above 5 where the corrosion process 

starts to declines.  At approximately pH 8.6 the copper product becomes insoluble[69], 

forming stable conductive copper salts that emanate from the anode acting as 

conductive paths and potentially electrically shorting the biased vias. 

 

Figure 30 – Simplified Copper Pourbaix Diagram 25ºC [50] 
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2.3.3 AC Formations 

Literature searches have not revealed any published work that directly cites results using 

AC (alternating current) ECM (electrochemical migration) testing or AC ECM 

reliability issues for printed circuit boards.  This is clarified in a communication with 

Neves[80] and a meeting with NPL.  Neves comments in one of his articles[81] that 

there are some movements in Europe towards the use of AC power sources in ECM 

testing.   

In correspondence, Neves explains that his comments in the article are founded on 

general discussions on CAF testing with members of the IEC (International Electro-

technical Commission), in his role as chairman of the working group for Test Methods 

for Printed Circuit Boards & Materials.  Within this working group they discussed the 

creation of methods for the IEC 61189[82] standard.  In this correspondence, Neves also 

clarifies that they too have not found published work in the field of AC in ECM testing.  

His group feels this may become an area that should be noted and thus his comments in 

his article.   

In a further communication with Neves [83] he indicates an interest in understanding 

(empirically) how AC voltages influence ECM, both with, and without, a DC bias, and 

an interest in comparing the results with the present DC ECM test methods.  The author 

later found the sole European interest was actually the NPL funded by the DTI 

(Department of Trade and Industry). 

In its simplest form ECM using low frequency AC is similar to electroplating.  When 

running a DC ECM test (Surface Insulation Resistance), the metal atoms on the most 

positive electrode experience oxidisation (lose electrons to become ions) and dissolve into 

the electrolyte (in this case a layer of water).  They then begin to migrate from the anode 

to the cathode.  If, however, the polarity abruptly reverses after say 1/50th of a second 

(50Hz), the metal ions may migrate back to the electrodes where they originated and thus 

reduce back to a metal atom, shown in Figure 31, resulting in no net flow.  However, it is 

possible the ion continues in the same direction immediately after the polarity of the cell 

reverses, due to inertia, shown at t2 on Figure 31.   
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Examples of dendrites grown with an AC bias are shown in Figure 32, with the left 

image showing a dendrite grown at ±2v 0.0001Hz and the right image showing a double 

tailed dendrite grown at ±2v 0.1Hz.  As these dendrites are grown at sub-hertz 

frequencies it could be said the bias used is pulse DC as opposed to AC, effectively 

operating as a DC electrochemical cell.  However, formations grown at frequencies 

greater than 10Hz do not produce dendrite-like structures, but rather powder-like growth 

at both the anode and the cathode. 

 

Figure 31 – AC Bias Cell: Idealised Relationship of a Copper Ion Migration path 
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Figure 32 – AC Dendrite Growth (a: 0.001Hz, b: 0.1Hz) 

This is further detailed by Hamann [72] where he explains the application of an AC 

potential to a cell.  Due to the rapidly changing potentials, the various processes at the 

electrode surfaces are forced to oscillate with an applied frequency above 1Hz.  The 

process of redox will also oscillate although the greater the distance from the electrode 

the more dampened the concentration changes.  If there is no DC offset to the AC signal 

then the cell may not form growths such as dendrites.  However, a DC offset will 

encourage a net current flow and thus increase the chance of dendrite formation. 

Based on the theoretical explanation in Figure 31, the growth of metallic dendrites would 

be impossible to form in a purely AC circuit.  In practice, as also demonstrated in Figure 

32, if enough water is present to bridge the two electrodes while they are biased then there 

will be a diffused, white or blue-green residue formed (sometimes black or dark grey on 

the top of chip capacitors) as the metals dissolve into the moisture, as shown in Figure 33.  

These images are produced by biasing several water contaminated printed circuit boards 

with an AC potential across the tracks.  
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Figure 33 – Diffuse, White or Blue-green Residue on AC Circuits 

The image shown in Figure 32 seemingly demonstrates dendrite growths under AC 

conditions.  However, the definition of AC needs to be considered in the case of 

electrochemical migration.  The growth on Figure 32(a) is formed at a frequency of 

0.0001 Hz, which is equivalent to 10,000 seconds for one complete cycle.  The cell is 

exposed to a peak voltage of 2V twice per cycle, once at 2,500 seconds and again at 

7,500 seconds.  The growth of the dendrites probably occurred during these intervals, 

which is also suggested by Chan [84].  Thus, the dendrites effectively grew under DC 

conditions, i.e. above 1.23V demonstrated in Experiment 2 in this thesis.   

Chan [84] suggests an AC SIR (Surface Insulation Resistance) approach which may 

pose several advantages as an alternative to DC SIR.  Firstly, the disturbance to the ion 

distribution of the systems due to the measurement itself is minimised, i.e. under DC 

ions distribute evenly at the electrodes reducing the resistance.  Secondly, voltage 

accelerated experiments may be possible, as in theory no net migration will occur. 

Under an AC voltage, the mobile ions may merely oscillate back and forth 

hypothetically resulting in no net flow.  However, Chan explains the process may 

produce a redox reaction that may not be reversible; as the voltage rises above the 

activation potential for decomposition of water then the redox process will begin.  If this 
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is the case, each half cycle that is favourable for the reaction will still accelerate the ions 

toward the opposite electrode possibly due to the inertia.  This can be considered as 

similar to the theoretical model shown in Figure 31, however, at the appropriate 

activation potential the anode loses hold on the ion and accelerates it towards the 

cathode, i.e. the AC field creates momentum and the hysteresis over shoots the field 

strength and accelerates the ion towards the cathode. 

From the frequency tests Chan conducts, the AC current stays stable for several hours.  

However, over longer time periods the SIR decreases slowly, and steadily, to 2-3 times 

less than the initial value after 150 hours.  A point worth noting in these results is that 

the SIR does not increase at all under the AC bias.   

Compared to DC SIR, Chan’s results demonstrate the potential advantages of AC 

measurements.  On a DC system the electrodes are fixed and there is a known cathode 

and anode polarity.  In this type of system the pH levels differ towards either an acid, 

H+ migration, for the cathode or an alkaline, OH-, migration, for the anode.  With an AC 

system there could be various interactions and this could have implications for the 

residual salts left in the electrolyte and could explain the images in Figure 33.   

In a paper by Yin[85] he demonstrates the effect of AC on two metals bismuth and 

nickel.  Yin grew nickel and bismuth nano-wires using AC electrodeposition for 

applications of high density recording devices and sensors.  Yin uses an anodised 

aluminium oxide film as the cathode and a graphite bar as the anode.  He states 

electrodeposition of metal into porous alumina film directly following anodisation, can 

only take place under AC conditions.  Producing either bismuth or nickel nano-wires 

requires different conditions.  To produce nickel nano-wires, the electrodeposition can 

only take place under an AC potential, whilst the production of Bi nano-wires requires 

both an AC potential and a DC bias.  Using common electrochemical deposition (DC 

alone) causes problems.  He terms this the skyscraper effect, i.e. wires towering over 

others.  This is interesting and could be indicative of whisker or dendrite formation seen 

in electrochemical migration of PCBs and should thus be further investigated.   
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Yin also finds the frequency range used affects the results.  Another point for noting is 

that high quality deposition of nickel can be obtained with AC frequencies from 10 to 

750 Hz and for bismuth the optimum frequency range is between 10 and 100 Hz. 

The reason for the difference seen as the frequency changes is unclear.  However, Yin 

compares this to a similar phenomenon seen in pulse electroplating, which the 

acceleration effect to the opposite electrode could therefore facilitate the growths.  The 

effects of frequency on the deposition could also be explained by the difference in 

particle size, in that bismuth is a heavier metal than nickel; i.e. if the effect of simple 

harmonic motion on a molecule is considered, it can be concluded the rate of oscillation 

will be dependent on the mass.  Thus a particle that has a larger mass will vibrate slower 

than a lighter particle.   

The paper does highlight the difference could be associated with the double layer 

capacitance which is a function of the AC frequencies.  However, if the electrodes are 

of the same size for both materials (bismuth and nickel) then why would the double 

layer capacitance have such a difference?  Further investigation is needed to ascertain 

more data and a fuller understanding of the double layer and its effects with different 

metal and electrolytes.  

Yin’s paper is not unique and there have been several other papers published describing 

AC electrodeposition [86, 87], albeit most on the formation of nano-wires.  

From the literature search it is evident that the effects of AC on the process of 

electrochemical migration are significant and it does show that some formations with 

AC may happen, under the right conditions, on PCBs.   

The interesting point from Yin’s work is that both nickel and bismuth are used in 

soldering in electronics, and tin/bismuth alloys may be the successor to the tin/lead 

alloys currently used in commercial soldering processes.  
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2.4 Methods for detecting ionic migration 

The detection of electrochemical migration is traditionally conducted using a standard 

industrial technique termed Surface Insulation Resistance (SIR) and executed within a 

given standards, a number of which are shown in Table 6.   

Standard IEC 61189-5 
(in draft) 

IOS 9455-17 
(latest) J-STD-001C IPC-TM-650 2.6.3 IPC-TM-650 

2.6.3.3 Bellcore 

Temperature/ 
Humidity 40°C/93%RH 85°C/85%RH 85°C/85% 

RH 

Class 1:35/90°C at 
98%RH for 4 days 

static. 
Class 2:50/90°C at 
98%RH for 7 days 

static. 
Class 3:25/65°C at 

90/98%RH for 7 days 
cycling. 

85°C/85%RH 35°C/85% 
RH 

Test Duration 72 hours 168 hours 168 hours 168 hours 168 hours 120 hours 

Measurement 
Frequency 

20 min 
intervals 

Twice in 24 
hour period 

24 hrs, 94 
hrs and 168 

hrs 
24 hr intervals 

24 hrs, 94 
hrs and 168 

hrs 

25 hrs and 
120 hrs 

Test Voltage 5v 50v 100v 100v 100v 100v 
Bias +5v +50v -50v -50v -50v -50v 

Test Coupon Under 
Review IPC-B-24 IPC-B-36 IPC-B-25A IPC-B-24 IPC-B-25A 

Table 6 – Summary of SIR Standards and Some Parameters 

A number of factors can influence the phenomenon of electrochemical migration with 

some of these factors listed in Table 7. 

Item Factors 
Conductors -Nature of the metal or alloy 

-Surface condition/roughness 
-Conductor configuration  
-Conductor spacing 

Substrate -Composition and moisture absorptivity  
-Structure 
-Reinforcements and their nature 

Atmosphere -Temperature 
-Humidity 
-Corrosive elements and their concentration 
-Electrical conductivity of the medium 
-Air velocity 

Operating Conditions -Electrical potential 
-Temperature 
-Humidity 

Table 7 – Factors that can Influence Electrochemical Migration 

Three main factors are needed to be present for electrochemical failure to occur, they 

are electrical potential, moisture and an ionic contamination[88].  Electrochemical 

failure can be visualised as a Venn diagram, shown in Figure 34.  Increasing and 
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decreasing these factors can be thought of as increasing and decreasing the diameter of 

the circles. 

 

Figure 34 – Venn Diagram of Electrochemical Failure Modes 

The following Sections describe current test methods for detecting the presence of 

electrochemical migration on printed circuit boards. 

2.4.1 Surface Insulations Resistance (SIR) 

Surface insulation resistance testing is a method used to assess the point that materials 

used in electronics degrade through electrochemical phenomena and is described in the 

IPC (Institute of Interconnecting and Packaging) standard IPC-9201[89]   The testing 

usually involves biasing a test sample, Figure 35, with a DC potential between 50-

100V and artificially elevating the temperature and humidity levels to one of the 

standards shown in Table 6, with the aimed effect of accelerating the aging of the 

product.  The aging of the product is associated with the Arrhenius reaction rate[89] 

where every 10ºC rise doubles the aging rate.  For example, a year of service at 

35ºC/50% RH would be approximated by six months exposure to 45ºC/50% RH or 

three months 55ºC/50% RH. 
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Figure 35 – IPC-B-25A Test Comb[89] 

If the test sample contains a low ionic content then the measured SIR will remain in 

the acceptable region, within a given tolerance of the initial reading.  However, if the 

ionic content is high, as may be experienced from improperly-cured solder resist or 

flux residues, then unacceptable leakage currents, corrosion and metal migration, or 

dendritic growth, can occur.  The testing is conducted on a pass or fail criterion based 

mainly on SIR electrical values.  Often the electrical measurement fails to reveal the 

presence of surface dendrites from contaminants related to processing chemicals.  This 

is because the dendrite burns out between electrical readings when the circuit 

continues to be biased at 50 volts[22]. 

Misconceptions and poor understanding of the objectives of SIR testing are common.  

SIR testing, to date, is used primarily as a ‘quality’ test of single materials and 

processes such as the assessment of soldering fluxes.  The difficulties with SIR testing 
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as a true tool for the reliability evaluation of printed circuit boards are brought about 

for several reasons[62].  These are predominantly: 

• Lack of definitions of expressions used or inconsistent use of defined 

expressions. 

• Insufficient knowledge of the failure mechanism. 

• Poor understanding of what one is trying to achieve with SIR testing. 

• Difficulties in testing true printed circuit boards. 

One of the major misconceptions about SIR testing is that surface insulation resistance 

is a material property, whereas the purpose of SIR testing is to accelerate failure 

mechanisms that are only related to SIR[90].  In Tegehall’s critical review on the SIR 

test method[62] he considers the purpose of normal SIR testing is to accelerate 

electrochemical migration.  Thus if it becomes a test method for acceleration of a 

failure mechanism, primarily electrochemical migration, then the test should be named 

the electrochemical migration test. 

According to the IPC, Surface Insulation Resistance is defined[89] as: 

a property of the material and electrode system. It represents the electrical 

resistance between two electrical conductors separated by some dielectric 

material(s). This property is loosely based on the concept of sheet 

resistance, but also contains element of bulk conductivity, leakage through 

electrolytic contaminants, multiple dielectric and metallization materials 

and air. 

Thus, as SIR is measured during an electrochemical migration test, it gives the 

impression that the electrochemical migration can be quantitatively measured.  

Tegehall argues that this is not the case as there is no method to separate electric 

current due to migrating metal ions from current due to other migrating ions.  The 

biased comb will eventually cause an increase of SIR (reduction in current leakage) 

due to electrochemical processes of corrosion, where oxides effectively partially 

insulate the cathode; thus indicating an improvement of reliability.   

Tegehall explains that it is more complex to measure SIR than the present methods 

detail.  SIR is determined using Ohm’s law R=V/I.  In humid conditions most of the 
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current flow on contaminated boards is generated through ion migration.  This causes a 

depletion of ions in the area between the biased surfaces (free ions in the water will be 

attracted to the electrodes), which will result in a decrease of current, i.e. an increase in 

SIR.  This is shown by Chan [84], who notes that initially the SIR rapidly increases then 

slows down over time.  On a contaminated board of 10µg/in2 table salt, there was an 

initial decrease of SIR from 1 x 1010 ohms to 5.3 x 106 ohms.  However, when a bias of 

100 volts was applied to the contaminated board the SIR increased to 3.7 x 107 ohms 

after 60 seconds, 1 x 109 after a few hours and 8 x 109 ohms after 100 hours, as in Figure 

36. 

 

Figure 36 – Current and SIR for Coupon Contaminated with Salt Solution 10µg/in2[84] 

Chan also shows SIR increases continuously when a bias is applied to a specimen 

contaminated with table salt solution and approached the values of a clean board after a 

few days.  This demonstrates the initial condition of the SIR test should be observed (not 

disregarded) and measured after a few days as some standards prescribe. 

Some standards prescribe that measurements of SIR should be gathered using a 

voltage with reverse polarity after 60 seconds.  By reversing the polarity, the SIR will 

start to drop as ions start to migrate in the opposite direction and then increase again 

later when the area between the conductors once more becomes depleted of ions[62].   

EU-sponsored SIR research, conducted by NPL [40] has determined several important 

factors that should be implemented in any new testing programs.  These are: 
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• The test pattern should have a pitch of 200um and a width of 400um. 

• The test conditions should be 40°C, 93% relative humidity. 

• The measurements should be taken at 20 minute intervals. 

• The test voltage should be 5 volts, in line with most microprocessor circuitry 

operating voltage.  This would results in a voltage gradient of 25V/mm 

(5V/0.2mm). 

• When conducting process characterisation tests, the test patterns must be over-

mounted with dummy components. 

 

Figure 37 – Dendrites Fusing in Commercial Water 

Figure 37 shows a continuous plot from a SIR test, in saturated conditions, over a 

14,000 seconds period.  This plot shows two sharp drops in resistance.  This is due to 

dendritic growth fusing the path of the test comb.  The formation of dendrites 

normally does not have any impact on SIR except for a few seconds when a short is 

formed and the dendrite is burned off [12].  However, this does depend on the 

magnitude of the current used.  If a current is used that is within the current-carrying 

capacity of the dendrite then it may be hours before the dendrite either blows open the 

circuit or remains as a short circuit.  This is shown in Figure 37 at around 6,000 

seconds and approximately 11,000 seconds. 

These results highlight the problem with taking infrequent measurements.  For 

example; if a measurement is taken at the beginning of the test, t = 0s, and the next is 
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then taken, say, at t = 8,000s it may be incorrectly perceived that the material under 

test has a good resilience to forming dendrites.  This situation could be termed 

Measurement Aliasing as the sampling time is too infrequent to represent the actual 

true signal which is the measured data.  A measurement system that can supply a 

greater sampling rate would reduce the probability of missing a dendrite’s fuse and 

provide a more accurate picture of the system under test. 

Current methods of reliability validation of ionic migration all use some form of DC 

bias to augment the migration of metal ions in a controlled environment and their 

occurrence is detected by the measure of some DC characteristics such as resistances 

on a test coupon.  Almost all suppliers and manufacturers of electronic equipment 

drive to minimise the occurrence of ionic growth by ensuring the materials used in 

soldering electronics, such as flux, solder pastes and laminates, comply with standards 

set by international bodies, although there are still reports of failures due to ionic 

migration, even after stringent validation testing. 

2.4.2 A Novel Method for Analysing CAFs 

The linear circuit, developed by Ready[22], is used as a method of analysing the 

growth of CAFs without damaging them once formed. 
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Figure 38 – Electrical Schematic of Ready’s Linear Circuit[22] 

This circuit serves to monitor the RC time constant formed by the banks of 0.1uF 

capacitors and the RECM(sample under test).  The circuit operates by switching a bias 

on to RECM for a given period, measured by the linear circuit, where the energy from 

the 0.1uF capacitors discharges into the test sample, RECM.  The exponential discharge 

response is plotted over time and any deviations from the initial discharge plot are 

considered a function of the surface insulation.  The advantage of this method over the 

standard SIR testing technique is that it prevents excessive damage of CAF or 

dendrites, potentially caused by the constant current bias in a SIR test.  However, the 

main drawback with this technique is that it is not a continuous monitoring method 

and potential signal aliasing may be a concern if electromigration activity is to be 

observed.  

2.4.3 Saturated Condition Test  

There are some techniques that can be used to simulate the effects of saturated 

conditions.  The most common is the Water Drop (WD) test where a drop of water is 

placed between two biased electrodes, see Figure 39.  However, the results from the 

WD test can vary significantly due to numerous factors, including variations in the 

drop size, the evaporation of the water droplet and water volume to contamination 

ratio; for example, 1 mole of contamination in the water drop test will have a lower 



 
resistance 

resulting i

A more re

volume of

test piece 

method is 

No literatu

saturated 

addresses 

filled cuve

2.5 Acce

Establishin

failure un

temperatu

extrapolat

The effect

some func

(
K Ae=

The accel

experimen

than 1 mol

in sample-to

F

epeatable m

f water that 

to be place

currently av

ure cites or

SIR testing

most of the

ette test. 

elerated L

ng the relia

nder accele

ure, humidit

tion techniq

t of temper

ction of the 

)aE
kT

−
 

leration fact

ntally deriv

le in a large

o-sample me

Figure 39 – W

method, term

can be acc

ed inside, a

vailable. 

r describes e

g.  Theref

e weakness 

Life Testin

ability of ele

erated cond

ty and volt

ques, the nor

ature on mo

Arrhenius r

tor or rate 

ved constan

54

e volume of

easurement

Water drop 

med water-

curately mea

although no

either proce

fore, a new

of the wate

ng of Elec

ectronic pro

ditions.  Th

tage levels

rmal operati

ost chemica

relationship

of reaction

nt (dependi

4 

f water, thu

t errors.   

Test on a C

filled cuvet

asured and 

o methods o

edures or st

w method i

er drop test 

ctronic Pr

oducts is con

his is don

 of the ele

ing conditio

al and elect

p, as in Equa

n given by K

ing on ma

us affecting 

 

omb Pattern

tte test, wo

is of suffici

or procedur

tandards av

is proposed

and has be

roducts 

nducted by 

ne by artifi

ectronic pro

ons can be e

trochemical

ation 11.  

K (dimensi

aterial chara

the conduc

n 

ould involve

ient size to 

re describin

ailable in th

d in this th

een termed t

testing asse

icially elev

oduct.  Th

estimated.   

l processes 

Eq

ionless), an

acteristics 

ctivity and 

e a larger 

allow the 

ng such as 

he area of 

hesis that 

the water-

emblies to 

vating the 

hen, using 

is usually 

uation 11

nd A is an 

and test).  



 

55 

Boltzmann’s constant k is 8.617 x 10-5 eV/K, T is absolute temperature (Kelvin) and 

Ea is the value of the activation energy of the reaction (eV). 

The Arrhenius equation is valid for a variety of mechanisms such as ionic drift, 

electrochemical migration and corrosion at fixed humidity[91].  The activation energy 

is found empirically and a value of 0.9eV encompasses most of the temperature-

dependant failure mechanisms seen with printed circuit boards[91]. 

The effect of the relative humidity (RH) can be described by equation 12[26]: 

).( 2RHC
OH ekk =  Equation 12

The acceleration factor is given by KH (dimensionless), RH is the percent relative 

humidity and C is a calibration constant equal to 4.4 x10-4 for RH in percentage. 

Equation 11 and Equation 12 indicate that at a higher temperature, or a higher 

humidity the acceleration factor or reaction rate is also higher.  Sinnadurai[92]  

proposes a combined form of Equation 11 and Equation 12 to produce a single 

acceleration factor (Af) for both temperature and humidity, which is shown in 

Equation 13.  The actual conditions, or normal operating condition, and the accelerated 

conditions refers to the subscript life and test, respectively. 

( )2 21 1expf test life
life test

A B C RH RH
T T

⎡ ⎤⎛ ⎞
= − • −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 Equation 13

The value of the constants B and C are determined experimentally, although estimated 

value proposed by Sinnadurai[93], are 8120 and 0.025, respectively. 

The expected life (tlife) of the specimens under test can be calculated using the 

acceleration factor from Equation 13 and can be shown as the product of the total test 

time (ttest), as in Equation 14[93]. 

life f testt A t=  Equation 14
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2.6 Preventative Measures and Dendrite Design Contingency 

The intention of this section is firstly to outline current preventative techniques for 

reducing failures associated with dendrite formation on electronic products and the 

problems associated with these methods.  Secondly, to propose new areas of 

investigation to minimise the growth of dendrites in the area of electronic design, 

termed dendrite design contingency.  

There are four main factors required to cause an electrochemical migration failure: 

metal electrodes, the presence of water, voltage bias and mobile ions that act as 

catalysts for the initiation of dendrites to grow.  The failure mechanisms associated 

with these factors include several forms of corrosion and resistance changes in the 

operation of the circuit due to ion migration.  Both potentially causing catastrophic 

failures.   

The methods used for preventing dendrites tend to depend on the application in which 

the product is used, with safety critical and durable systems requiring a high degree of 

preventative measures.  However, applications such as standard home personal 

computers may include little or no electrochemical preventative measures. 

Current preventative methods usually focus on printed circuit board protective 

coatings which are categorised mainly by thickness.  A conformal coating [39] is 

usually less than 0.1mm thick, and is applied as a very low viscosity liquid that wets 

all of the surfaces leaving virtually no capillaries.  Once thermal or UV curing has 

been applied, the coating tends to be free from air bubbles and other defects. 

Non-conformal coatings [39] are used for more rugged applications and provides a 

more mechanically robust assembly.  However, the application of this type of coating 

is difficult as the thickness tends to be greater than 0.1mm and as a result air can 

become trapped within gaps below 0.3mm, due to the coating’s viscosity and surface 

tension.  For this reason, when using such coatings the assemblies must be placed in a 

vacuum chamber to remove all air from beneath the coating. 

These coatings are in the form of lacquers and epoxy, with the most commonly used 

being phenolic, acrylic and silicone lacquers and epoxy[94].   
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• The advantage of using phenolic lacquers is that they are extremely cheap 

although limited by their electrical characteristics at high voltages and 

frequencies.  This type of coating is used in non-demanding applications in 

temperature range -55 to + 125ºC.  

• Acrylic coatings are used for temperatures between -60 to +135ºC and provide 

vastly improved electrical characteristics over phenolic lacquers and are easy 

to rework, but sensitive to chemical attack.   

• Silicone coatings can be used over a wide temperature range (-60 to +260ºC) 

and provide excellent dielectric characteristics.  They also provide good 

thermal and mechanical shock resistance due to their flexibility.   

• Epoxy coatings are used in temperature ranges between -60 to +200ºC and are 

used where excellent electrical and solvent resistance properties are required 

but are generally very difficult to remove for rework.   

These preventative measures all add cost to the final product, as either materials or 

processing cost, and therefore methods that can be designed into the product to reduce 

the risk of dendrite growth provide both improved reliability and improved 

economics.  These measures should ultimately aim to reduce water accessing the 

printed circuit board conductors by sealing the circuit from the atmosphere.  However, 

if water does infiltrate the conductors on the printed circuit board it is highly likely 

that a failure will occur.  The scale of these failures due to equipment operating 

parameters is currently poorly documented and therefore makes it difficult to develop 

contingencies to tolerate or manage these failures.  The experimental work covered in 

the following sections aim to address these concerns by establishing design boundaries 

derived from a controlled series of experiments.    

The implementation of further contingences could allow a product to manage or, at 

best, tolerate the risks associated with the growth of dendrites.  To understand the 

meaning of dendrite tolerance would involve the parameter window of dendrite growth 

on a printed circuit board being expanded by exploring the limits of the factors 

associated with ion migration.  There are many areas poorly documented on dendrite 

growth; three parameters that can be easily controlled are the operating temperature, 

the operating voltage and the track spacing.  These three parameters are design related 
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and the understanding of the parametric limits with reference to dendrite growth may 

enable a failure contingency to be developed. 

There is limited literature on the impact of dendrite growth at normal operating 

temperatures (5ºC – 50ºC), as the majority of reliability testing methods use higher 

temperatures as a method of aging the product, but the risk associated with the growth 

of dendrites at these operating temperatures is not fully understood.   

The same is true for the impact of voltage on dendrite growth, as almost all surface 

insulation tests for assessing the risk of dendrite growth use voltages much higher than 

those experienced on typical microprocessor circuits.  Higher voltages and currents 

can provide a self-healing effect by destroying the fused dendrite and many of these 

tests are not truly representative of normal operating conditions.  Identifying the 

critical dendrite growth characteristics over the range of voltages that are used on a 

microprocessor circuits would allow for the addition of a failure contingency and thus 

reduce the impact of any dendrite growth.  

Whilst it is understood that via and track spacing influence the risk of CAF formation 

there is very little literature on the impact of track spacing on dendrite growth.  The 

mechanism that causes a CAF formation is usually associated with the large pH 

gradients experienced at the electrode interfaces and if these interfaces are sufficiently 

close the acid/base interfaces form metallic salts.  Dendrites, on the other hand, are 

formed by the process of migrating metal ions and therefore track spacing may yield 

different results. 

The following experimental work aims to provide both an understanding of 

electrochemical reliability impact on printed circuit boards and to develop a model and 

subsequently design guidelines for reducing dendrite susceptibility, called a dendrite 

design contingency.   
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Chapter Three: Experimental Approach 

 

This Chapter describes the equipment, samples and configurations of experiments to 

develop the background to understanding the parameters involved in dendritic growth. 

3.1 Sample Designs   

Commercial non-plated copper Vero board shown in Figure 40 was used for the 

preliminary experiments.  This board has a 2.54 mm spacing with copper thickness of 

35um on fibreglass (FR4) substrate.  The copper was cleaned with ammonia and 

rinsed in isopropanol and deionised water. 

 

Figure 40 – Image of Vero Board Used 

A custom printed circuit board (PCB) was required for the dendrite growth 

experiments and developed for this research.  The PCB was designed with four 

different sample configurations, Figure 41 and Figure 42.  The first three samples 

(Comb Samples) consist of a finger-comb style design, with distances between the 

fingers of 0.2 mm, 0.3 mm and 0.4 mm (8 mil, 12 mil, 16 mil) respectively.  These are 

typical track spacing values used in the design of automotive engine controllers.  The 

fourth sample (SMD Sample) was produced with a single surface mounted component 

pad.  Each of the samples was separated with a score line used to break each sample 
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from the main PCB.  The PCB was manufactured from one ounce copper1 and the 

thickness of the copper surface features was 70μm. 

 

Figure 41 – Left, PCB Design. Right, Magnified View of SMD Sample 

The combs were gold-plated with nickel barrier to preserve the copper track; as copper 

can easily oxidise and even corrode under the influence of atmospheric contaminants.  

Other protective barriers are HASL solder (Hot Air Solder Level), organic coatings 

and tin plating.  However, these coatings can only provide a very short shelf-life, or 

may contaminate the copper with complex compounds or may leach into the copper.  

                                                                          
1 (1oz over 1ft2), the printed circuit board industry still uses imperial measurements and most of 
the standards are therefore shown in imperial measurements.   
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As a method of establishing the residue’s elements, an EDX analysis was conducted, 

shown in Figure 44.  From the EDX analysis a large iodine peak can be seen.  

Reference literature[52] suggests a brownish-white compound formed from copper 

and iodine is likely to be copper iodide (CuI).  Copper iodide has a poor solubility in 

water although it is soluble in liquid ammonia.   

 

Figure 44 – EDX after Gold Removal, Note the high iodine content. 

Agitating the combs in a dilute solution of ammonia served to remove the copper 

iodide and expose the copper.  The EDX analysis in Figure 45, clearly shows the 

ammonia solution removed virtually all the iodide.  The combs were finally rinsed in 

deionised water before use. 
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Figure 45 – EDX of Ammonia Cleaned Comb, Note the absence of iodine. 

3.1.2 Sample Preparation   

To ensure the samples were free from contaminants, such as oxides and grease, the 

copper iodide was left on the samples and removed with ammonia within a standard 

one hour preparation time of the experiments being conducted.  The samples were then 

cleaned in isopropanol and finally rinsed in ultra-pure deionised water.2  The samples 

were then allowed to dry at ambient temperature (< 25°C) to minimise growth of 

copper oxides.  Samples left for more than 5 hours were re-cleaned using the aforesaid 

method. 

The growth of copper oxide (Cu2O) at room temperature proceeds at an exponential 

rate for approximately 100 hours, after which it proceeds to grow at a linear rate.  

After 90 days a layer of thickness 10 nm is formed.  Heating copper to 105°C 

produces the same thickness of oxide [26]. 

                                                                          
2 Water was purified using Elga PURELAB Option DV35 and Elga Ultra. These are coupled and 
produce 0.0666uS·m-1 and 0.055uS·m-1 water respectively. 
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3.2  Design of Experiment   

To analyse the data efficiently for the saturated experiments, a method known as 

factorial design is used to reduce the number of test runs and obtain a deeper 

understanding of the results gathered.  Factorial designs are part of a group of 

statistical analysis techniques called Design Of Experiments (DOEs) and there are 

several texts [95-98] that detail its theory. 

DOE is a collection of statistical and mathematical techniques used to develop, design 

and formulate complex systems, and to improve existing product designs [97].  DOE 

techniques are effective in identifying factors that have the greatest influence on the 

measured response of ‘black box’ systems, i.e. complex systems.  They are an efficient 

method for exploring trends in an unknown response space.  DOE is the process of 

planning an experiment so the appropriate data will be collected and analysed by 

statistical methods, resulting in an objective conclusion from the data. 

There are three basic principles of DOE used in this research: replication, 

randomisation and factorial design.   

• Replication is the repetition of a given experiment.  Replications allow the 

determination of the experimental error, used as the fundamental unit of measure 

for determining whether observed differences in the data are statistically 

significant. 

• Randomising a design cancels the impact of many factors neglected in an 

experimental design.  The correct randomisation of a design can ensure 

extraneous factors that may be present are applied equally to all test samples, in 

effect averaging over the experiment [96] and thus minimising any latent time-

related factors that might bias the results [99]. 

• In a factorial design several factors are varied simultaneously according to the 

experimental configuration; the results are then logged as a response.  For 

example, if k variables are being investigated and each variable has n levels 

(values) then a full factorial design requires kn experiments to analyse all possible 

combinations of the experimental space.  If an experiment has three variables that 

are of interest and each variable is to be studied at three levels then a total of 27 
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(3 x 3 x 3) experimental runs must be performed to investigate the parameter 

space fully.  In the saturated experiments, three factors were studied but each 

factor had a different number of levels (3, 3 and 5), thus a total of 45 (3 x 3 x 5) 

runs.  Using more than two levels allows the identification of non-linearity within 

the experiment; hence the term multilevel factorial. 
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3.3  Experiment Structure – Flowchart   

 

 

Figure 46 – Experiment Flow Chart   
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3.4  Experimental Setup 

3.5  Fundamental Experiment – Observations of Dendrites     

The initial work involved a number of simple experiments.  These required a number 

of small pieces of Veroboard™ (used for circuit prototyping), a video microscope, a 

signal generator and tap water (pH 7).  The outline setup is shown in Figure 47. 

10V

Ri

Z

Instrumentation
Amplifier

#7

Agilent 34970A

Voltage AC/DC
Current

Resistance
RMS

Temp_Control

Camera
Vero Board

 

Figure 47 – Setup of Biased Piece of Vero Board 

The test samples consist of a section of standard Vero board.  A wire is soldered to 

each strip (electrode), and a DC power supply and a signal generator are used as the 

bias power sources.  The bias is applied across the copper strips with a small amount 

of distilled water (0.1uS·m-1) used.  These samples are placed under a microscope and 

filmed using time-lapse photography.   

The first test involves a specimen of 10 mm length Vero board with a drop of tap 

water with a bias of 10 volts DC applied.  Observations reveal initial gas evolution 

before the first signs of a dendrite tip.  After tip formation, dendrite growth is not 
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observed until 10-30 seconds have elapsed. Not all tips develop into dendrites.  This 

seems unusual because, from the literature [71], the growth of a dendrite starts from a 

point source and emanates at an exponential rate, due to the increase of energy as it 

moves closer to the opposing electrode. 

3.5.1 Configuration of Experiment 1A: Metal Dissolution in Water   

The dissolution of metal ions is demonstrated in several experiments that involve the 

use of standard commercial grade copper and platinum leaf.  To conduct these tests a 

metal leaf test fixture is made from a glass slide and two graphite electrodes.  This 

fixture allows the metal leaf to be placed onto the graphite electrodes and suspended in 

deionised water (0.055uS·m-1), shown in Figure 48.  The water is kept in place by 

bonding two glass tubes at either side of the graphite to produce a water-tight seal.  

Each of the graphite electrodes is electrically connected to an adjustable-voltage power 

supply.  To minimise the effects of depth-of-field on the microscope, the metal leaf is 

suspended on top of the water’s meniscus.   

 

Figure 48 – Equipment Configuration for Metal Leaf Test 
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3.5.2 Configuration of Experiment 1B: Demonstrating pH Changes at 

Electrodes  

The changes in pH at the electrodes’ interfaces were demonstrated by two 

experiments, both biased by a 15 volt power supply.  The first experimental setup 

involved a custom-built electrochemical cell shown in Figure 49.  The cell was built 

on a glass slide with two graphite electrodes bonded on each side of the slide, using an 

automotive grade silicone sealant (Dow Corning SE 738 Clear).  The Dow Corning 

sealer was used because of its inert and non-corrosive properties towards electronic 

products. Along the side of the two electrodes, two pieces of fine glass tube were also 

bonded producing a water tight reservoir.  The reservoir was used to hold the 

deionised water and universal indicator solution. 

Figure 49 – Custom Electrochemical Cell 

The second experimental setup involved applying a 15V bias to a typical printed 

circuit board contaminated with deionised water and universal indicator solution.  The 

printed circuit board consisted of soldered copper tracks coated with a green solder 

resist, shown in Figure 50.  The electrodes were tinned copper leads soldered to the 

pads. 

Water
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Graphite - Anode Graphite - CathodeBonded Glass Tube
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Figure 51 – Schematic of Conditional Dendrite Growth Equipment 

A constant temperature was applied to the sample using a PID controller, using both 

heating and cooling to ensure the sample was not exposed to excessive thermal 

hysteresis.  The voltage bias was provided by an EG&G Model 273 potentiostat, 

which could provide step and sweeping voltages at a constant current.  The current 

flowing through the sample was measured from a shunt resistor with the potential drop 

being read by an Agilent 34901A precision data logger. 
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Figure 52 – Photograph of Conditional Controlled Dendrite Growth Equipment 

The experiments used the SMD sample boards.  The SMD sample was connected to 

the equipment by a moulded edge connector, which fitted into the countersunk 

aluminium heat block.  The sample was then secured with the thermocouple and a 

piece of thermal tape.  Both the anode and cathode pads were completely covered with 

a single drop of deionised water using a pipette. 
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3.5.4 Configuration of Experiment 2 – Dendrite Growth in 

Saturated Conditions   

The analysis of dendritic growth under saturated condition was undertaken using the 

water filled cuvette method and the equipment setup shown in Figure 54.  

The water filled cuvette method involves using transparent scientific grade cuvettes 

with a volume of 1.2 ml.  The cuvette is filled with deionised water, and the 

electrodes and comb samples are placed into the opening.  Any dendritic growth can 

be observed from the front by a microscope or a macro-lens after the test have been 

run, which prevents disturbance of any growth from the film of the water, Figure 53.   

 

Figure 53 – Water Filled Cuvette Test 

Constant voltage sources were used to bias five test combs placed into cuvettes.  The 

cuvettes were held in a machined brass block and temperature was regulated via a PID 

controller, which adjusted the temperature of the brass block.  The brass block was 

also cooled to 0°C; allowing for lower temperature stabilisation, i.e. 5°C and 25°C. 
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The current through the combs was measured via the volt drop across the 10K ohm 

resistors and recorded on the Agilent data logger.  The results of each of the 

experiment were transferred to Excel for analysis. 

 

Figure 54 – Schematic: Dendrite Growth under Saturated Condition Equipment 
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Chapter Four: Fundamental Experimental Observations of 

Dendrites 

 

The first experiments using Vero board were video observations of dendrite growth 

using an optical microscope.  Tests were conducted on copper Vero board samples 

with a 10 V DC bias.  The first experiment was the observation of the effect of DC 

on the sample. Before the bias was applied a drop of deionised water was placed 

between the two electrodes.  Once the bias was applied, the time-lapse camera was 

activated.  The time-lapse was set to 2 seconds per frame.  When the current was first 

applied to the copper sample, shown in Figure 55, the generation of gas bubbles was 

very rapid and took place on the cathode, Figure 56. 

 

Figure 55 – DC bias on copper initial state 
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Figure 56 – DC bias on copper just after bias applied 

Within 10 seconds the bubbling slowed down and small formations started to grow 

from the cathode electrode.  These formations started growing towards the anode 

electrode with a tree-like structure – commonly known as a dendrite; images in 

Figure 57, Figure 58, Figure 59 and Figure 60), with cathode shown on the right and 

the anode on the left. 

Four phenomena were apparent from the observations:   

• Firstly, the starting time for a dendrite to initiate seemed to be random in nature. 

• Secondly, the fractal nature of the dendrites differed from sample to sample.   

• Thirdly, the fusing effect when a dendrite shorted the electrodes, and  

• Finally the creation of gas bubbles. 

Both initiation times and fractal nature of the dendrites are associated with 

contamination levels [38, 39, 66] and indicate that the sample preparation procedure 

may improve these characteristics. 

Figure 60 shows the dendrite has stopped growing and a slight blow-out can be seen, 

circled, resulting in small black fragments and a break in the dendrite. 
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Figure 57 – First Phase of the Growth of Dendrites 

 

Figure 58 – A Dendrite Dominates the Current Path.  
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Figure 59 – Moment the Dendrite made Contact with the Anode, before it ‘fused’. 

 

Figure 60 – The Fused Dendrite, the blue circles shows the break. 

Figure 61 shows the final phase of the experiment where no further dendritic growth 

was initiated or continued.  The electrolyte (water) has been replaced by a blue-

crystallised material. It is noted a dendrite tends to be produced close to the point 

where hydrogen is being formed, at the cathode.  Areas with no gas formation 

yielded no dendrites.  It is not certain why this happened but this phenomenon needs 

to be further investigated. 
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Figure 61 – Final Stages of Experiment: Blue-crystallised Finish 

The electrodes used are both copper, and their activity in terms of electrochemical 

half-potentials may be irrelevant; the sample will not operate like a galvanic cell.  

The voltage and current generated by a galvanic cell are directly related to the types 

of dissimilar materials used in the electrodes and electrolyte.   

The selection of the anode or the cathode biasing polarity is based on the polarity of 

the bias applied, and not offset by any additional electrode potential.  For example, if 

a metal with a different electrochemical potential was used this could change the cell 

potential.  However, if one of the electrodes oxidises then this would change the net 

potential required to start migration, i.e. (Ec-Ea) – Vsupply. 

Initially, as the bias was applied to the sample, fierce bubbling occurred at the 

cathode.  This could be explained by examining the reactions that occur at both the 

anode and the cathode.  The anode produces hydrogen until the copper has oxidised 

and slowly reduces surface energy, therefore inhibiting the migration potential.  In 

the presence of aqueous contamination, the electrochemical reactions that can occur 

at the anode and cathode are given in Table 8 [100]. 
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Equations Anode Cathode 

1 −+ ++→ eHOOH 22
2
1

22
−− →++ OHeOHO 442 22  

2 −+ +→ eCuCu 1
22 222 HOHeOH +→+ −−

3 −+ +→ eCuCu 22 CueCu →+ −+ 22
 

4  CueCu →+ −+
 

Table 8 – Reaction at Both Electrodes 

The stepped growth of a dendrite is shown in the images of Figure 57 to Figure 61.  

The two electrodes are made of the same material and placed into an electrolyte.  

When the bias is applied, a current flows through the electrolyte, initiated by any free 

ion in the fluid.  Close to the cathode, ions are reduced by electron transfer from the 

electrode and form a growing deposit.  The inverse takes place at the anode; metal is 

dissolved and new ions are formed.  For liquid electrolytes, as used in this 

experiment, the non-uniformities in the ion concentrations and the heat produced at 

the electrodes as a result of redox leads to strong convective flows.  If the electrolyte 

(or contaminate) had a higher viscosity (gel-like) then convection is restricted and 

ion transport can only be caused by diffusion and migration of the ions [101].  

Convection flow of small contaminants, such as debris, was observed on the sample 

when the volume of water was at its greatest.  

A single needle-like point on the surface of the cathode would give rise to high 

current densities, thus the cathode would pose the most likely platform for the birth 

of a dendrite because a large current density would propagate at this point.  This 

could be tested by creating a needle-like point on the cathode although the point 

would need to be in the order of 1um diameter [71]. 
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Chapter Five: Results and Discussions of Experiment 1 – 

Parameter Space of Dendritic Growth 

 

The main aim of this work is to investigate the parameters required for a suitable 

model to reflect the characteristics of dendrite initiation time, relative to temperature, 

voltage and track spacing.  Conclusions drawn from these fundamental experiments 

were used to refine the parameter window for the factorial design used in Experiment 

2, in Chapter Six:.  Whilst the known working region has been defined for 

temperatures 5ºC to 50ºC, the critical ranges for voltage and land distances for 

optimum, (i.e. minimum growth), dendritic growth requires further refinement.   

The aim of the first set of experiments is to visually demonstrate the foundations 

associated with electrochemical failure modes in electronic products. The impact of 

contaminants, dendrite fusing, metal dissolution, pH gradients and the impact of 

biased voltage levels is investigated.  The flow of the experimental order is shown in 

Figure 46. 

5.1  Experiment 1A: Metal Dissolution in Water   

As in the Chapter 2 literature review, when metals ionise they become cations and 

migrate from the anode to the cathode when biased in an electrochemical cell.  

However, not all metals readily ionise in water, for example platinum and palladium. 

5.1.1 Copper Dissolution in Water   

In an aqueous solution copper can migrate with ease in both electroless and 

electrodeposition systems.  In an electroless (or corrosion) system, copper dissolution 

can occur via the potential differences in the standard reduction potentials from the 

half-reactions in Equation 15 and Equation 16, respectively [102].  Copper dissolution 

in an electrodeposition (or electrochemical) system occurs via the biased electrodes 

that form the electrochemical cell. 
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2Cu Cu e+ −+  

standard electrode 
potentials = 0.37 V Equation 15

2 2 2 3HO H O e OH− − −+ +
 

standard electrode 
potentials = 0.87 V Equation 16

Copper migration and dissolution in an electrodeposition system was demonstrated by 

placing two copper leaf strips on each of the fixture’s graphite electrodes and 

suspending them on the meniscus of ultra pure water.  After biasing the fixture at 15V, 

the copper leaf on the anode started to ‘dissolve’ very quickly thus demonstrating the 

transportation of copper ions, Cu Cu e+ −→ + , towards the cathode as shown in Figure 

62.  The gas bubbles observed are oxygen as shown by 2 22H ( ) 4 4O O gas H e+ −⇒ + +  

 

Figure 62 – Copper Dissolution in Water at the Anode: Cu+Cu Electrodes 

On the cathode side there was no sign of metal dissolution, although there were visible 

signs of hydrogen gas production ( 22 2H e H+ −+ ⇒ ) and a single dendrite.  Copper 

ions formed from the dissolution of the copper migrating towards the cathode and 

form a dendrite if a nucleation point is sourced.  To confirm the cathode acts as a 

charge carrier for the process of dendrite growth, the cathode metal was changed to an 

inert material, namely platinum, and re-biased with 15V.  After a few seconds a 
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dendrite was evident on the platinum cathode, as in Figure 63.  The dendrite was thus 

grown from a process of positively charged deposits on the cathode and therefore it is 

possible dendrites could be formed on any conducting material. 

 

Figure 63 – Dendrites Forming at Platinum Electrode 

If the copper leaf anode is replaced by platinum leaf and the copper cathode leaf is 

again biased with 15V then it is seen that the platinum anode does not dissolve and 

therefore no dissolution or dendrite growths are visible, as shown in Figure 64. 
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Figure 64 – Electrolysis with Copper Cathode and Platinum Anode 

These tests show the copper anode dissolving in the water and forming copper ions, 

which migrate towards the cathode.  These copper ions deposited on the cathodic 

electrode formed dendrites on both copper and platinum cathodes.  Switching the 

cathode material to an inert metal also allowed the growth of a dendrite.  Thus the 

influence the cathode has on the growth is in the form of a conductor, providing a path 

for the flow of electrons, rather than a species contributor. 

5.1.2 Discussion  

The dissolution of metal under electrolysis, Experiment 1A, was the first test in a 

series of experiments (Experiment 1) to visually demonstrate a number of the 

mechanisms associated with electrochemical migration failures.  This experiment 

shows the dissolution of copper at the anode using commercial grade copper leaf when 

biased.  The copper leaf was initially used as both the anode and the cathode.  When 

the bias was applied it was observed the anode copper leaf rapidly dissolved into the 

water whilst on the copper cathode a dendrite began to form.  The effect of the cathode 

material has no effect on its ability to grow or act as a charge carrier as demonstrated 
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by changing the copper cathode to platinum leaf, a known electrochemically inert 

material.  In this configuration a dendrite still grew on the cathode.  However, the 

metal used at the anode does affect both the growth and the dissolution rate.  

Replacing the copper anode with platinum leaf yielded no dendritic growth on the 

cathode nor was there any dissolution at the anode.  

Therefore, on a printed circuit board the electrochemical failure mode on a particular 

land such as track, pad or via would depend on the polarity and the metal used.  For a 

positively biased land, metal erosion is likely to occur.  Erosion would be dependent 

on the metal used and the contamination available, with the electrochemical migration 

potential of some common metal used in the electronics industry shown in Table 4, 

demonstrating clearly that copper only requires water to migrate.   

For negatively biased lands dendritic growth is likely to occur, and although this 

would be independent of its own cathodic metal the probability of dendritic growth 

would differ dependent on the anodic metal used and the pH at the cathode interface.  

The Pourbaix diagram for copper, Figure 19, shows the cathode stays mainly immune 

over all pH ranges, with signs of passivation caused by copper oxidisation at pH levels 

greater than approximately pH 8 and voltage level below approximately 0.5V.  At 

these parameters the cathode would oxidise and potentially become immune from 

further dendritic growth due to the resistivity of copper oxide formed around the 

negative land.  If, however, the polarity of the land changes, due to a function of the 

circuit, then these conditions would change to that seen on the positive land and the 

effects of pH would change, as also shown in Figure 19. 
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5.2  Experiment 1B: pH Changes at the Electrode Interfaces   

Two experiments were used to demonstrate the change of pH at the electrode 

interfaces of a simple cell and between two printed circuit pads.   

The first test used a simple cell constructed from a glass slide and two graphite 

electrodes, chosen for their inertness. Deionised water was used for the electrolyte and 

a bias of 15v applied.  After 1 minute the pH at each of the electrodes was measured 

using litmus paper.  At the anode the litmus paper’s colour changed to a dark red 

corresponding to full-scale pH 2 (acid).  At the cathode the litmus paper’s colour 

changed to dark purple corresponding to full-scale pH 12 (basic).  However, in the 

middle of the electrode the litmus paper did not change colour implying the solution 

was a neutral pH 7, see Figure 65.   

 

Figure 65 – pH Change in vicinity of Electrodes  

The same experiment was again conducted but rather than use litmus paper a solution 

of universal indicator (range pH.4 –pH.10) and deionised water was used.  When 

biasing the cell the pH differs at each electrode, three distinct colours became visible: 

red at the anode, purple at the cathode and green in between the electrodes, as in 

Figure 66.  At the anode it is more acidic and at the cathode more basic.  The anode is 

the source of H+ and therefore by definition of Equation 17 the acid pH decreases 
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towards pH.1 as the production of H+ ions increases.  Conversely the cathode is the 

source of OH-.  Thus the pH increases toward pH.14 becoming more basic as the 

number of H+ ions reduces due to OH- production and diffusion toward the anode. 

10log ( )pH H += −
 

 Equation 17

From similar observations of these OH- and H+ concentrations Kohman [3] proposed 

Equation 18 and Equation 19 to explain the reaction occurring at both the cathode and 

anode. 

2 2: 4 4 2 4 ( )Cathode H O e H OH alkaline− −+ → +  
 Equation 18

2 2: 2 2 4 ( )Anode H O H O e acid+ −→ + +  
 Equation 19

This experiment was repeated three times with different voltage biases; 5V, 10V and 

15V.  The only difference noted over the voltage levels was the speeds at which the 

red and purple boundaries reduced the green neutral region over time, this is probably 

indicative of increased ion diffusion. 

 

Figure 66 – Demonstration of pH at both Anode and Cathode 

The second experiment attempted to simulate printed circuit board contamination by 

applying a quantity of universal indicator between two pads and then biasing with a 
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15V potential.  As seen in Figure 67 similar colour gradients to those of the graphite 

experiments were experienced. 

From both experiments a pH gradient was created at each electrode with the 

generation of acidic H+ ions at the anode and basic OH- ions at the cathode.  At the 

anode a high concentration of H+ ions forms and oxygen gas is produced.  At the 

cathode a high concentration of OH- ions forms and hydrogen gas is produced [103]. 

 

Figure 67 – High pH Gradient on Two Pads of Printed Circuit Board 

The effect pH gradients have on the reliability of circuit board electrodes depends on 

the electrode polarity, as seen from the simplified Pourbaix diagram in Figure 30.  

Using the Pourbaix [50] diagram as an indicative tool for viewing the inter-relation 

between pH and voltage can provide information about the degree of corrosive 

severity for different metals.  The diagram shows between the regions of pH.7 – 11 the 

copper is passivated at the anode and corrosion will therefore not occur.  Below pH 7, 

corrosion will occur at the anode whilst the cathode maintains immunity. 

H
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5.2.1 Discussion 

Whilst extreme pH level chemical exposure in the operation of the printed circuit 

board is unlikely, the exposure to extreme pH levels due to electrochemical activity is 

a certainty if the circuit is contaminated with water.  This is demonstrated by 

Experiment 1B with the use of biased electrodes and two pH indication mediums: 

litmus paper and universal indicator.  

This experiment simulates a powered printed circuit board when it is contaminated 

with water, demonstrating the extreme pH levels experienced at the conductor 

interfaces.  As the two biased solder joints show in Figure 67 when universal indicator 

is added to the water contamination, the anode or the positive joint becomes highly 

acidic and likewise the cathode or the negative solder joint becomes highly basic (or 

alkaline), due to the level of H+ formation.  Even if no dendrites form between water 

contaminated lands the risk of corrosion is quite feasible, again demonstrated by the 

copper Pourbaix diagrams, Figure 19.  The diagram shows corrosion can occur on the 

most positive electrode, anode, at the extreme end of the pH scale, i.e. pH>1.  Whilst 

dendritic growth may be restricted to a number of metals, such as copper, tin and lead, 

corrosion can occur with most metals, if not in the presence of water alone, then with 

the addition of halides. 

The effect of pH on dendrite growth is not fully understood although experimental 

studies in saturated conditions have been conducted, indicating critical pH thresholds 

[64] that may aid or hinder the formation of dendrites.  It is noted that the pH 

concentrations can affect the overall shape of growth [66].  However, the pH gradient 

between the anode and the cathode with glass-laminate circuit boards produces metal-

salts internally resulting in CAF formation.  The main catalysts for CAF formation are 

high temperatures, greater than 60ºC, and increased voltage gradients. 

The effect of voltage increases the pH diffusion region at the electrode interfaces, thus 

reducing the neutral pH region.  If the voltage level increases sufficiently close to the 

acid-basic diffusion regions then there is a possibility that salts will form.  This is the 

critical point for CAF formation, when the land distances and voltage level are large 
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enough for the pH diffusion zones to merge between the glass-fibre layers and form 

copper salts. 

5.3  Experiment 1C: Parameters for Dendrite Growth   

The aim of these tests (DC bias voltage test) is to empirically set the factorial design 

levels for the voltage factors.  This involves applying manual biasing with six voltages 

(1V, 2V, 4V, 6V, 10V and 15V) to the SMD samples with temperature set to 30°C and 

observing signs of dendrite growth after 300 seconds.   

Figure 68 shows the images of the six different SMD samples for voltages levels 

between 1V to 15V, with the cathode shown at the bottom of each image.  In the 1V 

and 2V images no signs of redox or dendrite growth are evident.  At 4V redox is 

initiated with slight signs of dendrite ‘spores’ on the cathode.  At 6V a dendrite 

successfully bridged the electrodes within 100 seconds, this was also the case at 

voltage levels of both 10V and 15V.  Between 6V and 15V the bias was removed after 

100 seconds to prevent the dendrite from fusing.  Evidently there is a critical voltage 

threshold where dendrites will readily form and bridge.   

 

Dendrite Thresholds Low Threshold (V) High Threshold (V) 

Initiation Critical Voltage 2 4 

Growth Plateau 4 6 

Table 9 – Summary of Dendrite Thresholds 

From these experiments the critical voltage levels off at some point between 4V and 

6V.  The dendrites initiated at some point between 2V and 4V, demonstrating a second 

critical voltage threshold. Table 9 summarises these thresholds. 
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Figure 68 – Voltage Level Observations at 30°C 
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5.3.1 Potential Sweep   

To determine the voltage dependence of copper mass migration for initiating dendrite 

growth a potential sweep experiment was conducted, using the equipment shown in 

Figure 51 and Figure 52.  A voltage sweep from 0V to 4V, Figure 69, over 400 

seconds was applied to SMD Samples at four temperatures of 30, 35, 40 and 60°C.   

 

Figure 69 – Voltage Sweep from 0V to 4V over 400 Seconds  

Figure 70 shows a plot of the voltage against current, with the bottom graph showing 

the current on a log scale.  The first noticeable difference is the effect of temperature.  

As the temperature increases it can be seen that the onset voltage for the initial flow of 

current also increases, whilst maintaining a similar gradient, although similar onset 

voltages were produced for 35°C and 40°C.  The voltage range between 30°C and 

60°C is 2.2V and 2.8V, respectively, giving a rate for dendrite initiation of 0.02V/°C.  

The current required to initiate the dendrites can be seen more clearly from the bottom 

graph of Figure 70.  From this graph, the average current for all temperatures and 

dendrite onset voltages is constant at approximately 20uA, implying that the voltage 

has a greater significance on the dendrite onset time.  At voltages greater than 2.8V the 

current gradient begins to level at approximately 2mA rising to a maximum current of 

5mA, demonstrating a dendrite ‘holding’ current.   

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

0 100 200 300 400

Vo
lta

ge
(V

ol
ts

)

Time(seconds)



 

93 

Voltage (Volts)

C
ur

re
nt

 (A
m

ps
)

0 1 2 3 4
0

1

2

3

4

5

6
(X 0.001)

Voltage(Volts)

C
ur

re
nt

 (A
m

ps
)

p

0 1 2 3 4
1.E-9

1.E-8

1.E-7

0.000001

0.00001

0.0001

0.001

0.01

0

1

2

3

4

Variables
Current_30degC
Current_35degC
Current_40degC
Current_60degC
VDC

 

Figure 70 – Voltage and Temperature Effect on Migration, Current in linear [top] and 
log scales [bottom] 

3
2

fuseI kD=  Equation 20 

Using the Preece [104] equation, Equation 20, and transposing to gain the diameter of 

the copper dendrite, Equation 21, can provide an indicator of the dendrite range.  

Where Ifuse is the current required to fuse the metal, k is the Preece coefficient factor 

(which is 80 for copper) and D is the diameter (mm). 
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2
3

fuseI
D

k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 Equation 21 

Note that the Preece equation was developed in air and therefore some error may be 

incurred due to thermal dissipation through the water.  Evaluating Equation 21 from 1-

10mA for copper produced the results shown in Table 10.  For ‘fusing’ currents between 

2mA and 5mA the diameter of the hypothetical dendrite could be between 0.855um and 

1.575μm.  Note the values are fusible currents and currents shown in Figure 70 have not 

demonstrated a fuse-like condition, i.e. a sharp current drop. 

Current(A) Diameter(m)
1.000E-03 538.609E-09 

2.000E-03 854.988E-09 

3.000E-03 1.120E-06 

4.000E-03 1.357E-06 

5.000E-03 1.575E-06 

6.000E-03 1.778E-06 

7.000E-03 1.971E-06 

8.000E-03 2.154E-06 

9.000E-03 2.330E-06 

10.000E-03 2.500E-06 

Table 10 – Evaluation of the Preece Equation 
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Figure 71 – At 30°C Sweep captured at 2.8V 

 

 

Figure 72 – At 30°C Sweep captured at 3.25V 
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Figure 73 – At 35°C Sweep captured at 2.5V 

 

 

 

Figure 74 – At 35°C Sweep captured at 3.55V 
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Figure 75 – At 40°C Sweep captured at 2.45V 

 

 

Figure 76 – At 40°C Sweep captured at 2.8V 
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5.3.2 Discussion  

Experiment 1C, demonstrates the impact various voltage levels have on dendritic 

growth over a period of 100 second and the definition of the voltage factor level for 

the factorial design in Experiment 2 in Chapter 6.   

A typical SMD pad was contaminated with deionised water and electrically biased.  

Tests were conducted at six voltage levels from 1V to 15V with the temperature set to 

30ºC.  Visual observations were made at the different voltage levels and signs of 

dendrite formation over a 300 second period noted.  Figure 68 shows the images of the 

six different SMD samples for voltages levels between 1V to 15V, with the cathode 

shown at the bottom of each image. 

At voltage levels 1V and 2V no signs of dendrites were observed, however, growths of 

dendrites were observed from 4V.  At voltage levels higher that 4V the growth of 

dendrites was accelerated with dendrite fusing occurring at 6V after 100 seconds.  

From these test the initial critical voltage points is established at 2-4V for the dendrite 

initiation period and 4-6V as the growth rate plateau period. 

To establish a more accurate measurement of the voltage level of the initiation periods 

at different temperatures, a potential sweep experiment was conducted between 0-4V 

over 400 seconds and at temperatures of 30, 35, 40 and 60ºC. 

The results of this experiment demonstrates that the initiation voltage is affected by 

temperature at a rate of 0.02V/ºC with the first sign of a potential dendrite at 2.2V 

shown at the lower temperatures.   

At voltage level greater that 2.8V dendrite fusing was evident with a holding current 

averaging 2mA.  Using Preece’s equation the average diameter range of the dendrite 

was estimated at between 0.855um and 1.575μm giving an indication of the short 

circuit potential and that electronic systems with current less that 5mA may be more 

susceptible to dendrite shorting, as oppose to systems with higher current, i.e. greater 

than 5mA, which will fuse the dendrite and thus eliminate the failure mode. 
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5.4  Experiment 1D – Analysis of Dendrite Filaments 

The following experiment involved imaging the filaments of a dendrite using an 

Olympus microscope with CCD camera, a Jeol JSM 840 SEM and analysing the 

atomic compositions using a SuperDry II EDX system.  The aim of this experiment is 

to provide insight into the mechanics of dendrite growth and formation.  The dendrites 

were grown on a 10V biased 0.2 mm copper comb sample at 25°C with the tracks 

covered by deionised water.  The samples were prepared by cleaning with ammonia 

and rinsing in isopropanol, followed by a final rinse in deionised water.  

Dendrites are formed by the deposits of metal ions, specifically copper ions, on point 

sources located on the cathode.  If the filament grows from metal ions then the 

dendrites’ atomic composition will consist mainly of the donor metal; in these 

experiments copper.  If, however, additional reactions occur in situ of dendritic growth 

then the composition may be formulated with other atomic elements. 
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Figure 77 – 50x Magnification of a Comb with Dendrite 

The first stage of the experiment was to grow a number of typical copper formed 

dendrites and allow the water to naturally dry at room temperature.  Figure 77 shows 

part of the sample comb with obvious signs of dendritic growth, in particular the 

formation of a classic tree-like dendrite growth.   

A 200x magnification can be seen in Figure 78.  The images clearly show a dendrite 

emanating from the cathode portraying the classic fractal branching usually associated 

with dendritic growth.   

The image in Figure 79 shows branching towards the right-hand cathode rather than 

focused towards the anode, which has probably occurred due to stray copper ions in 

the water attracted to the point source of the filaments, produced whilst the dendrite 

was emanating towards the anode, thus splintering off towards the second cathode.  

The images clearly show a dendrite emanating from the cathode portraying the classic 

fractal branching usually associated with dendritic growth.   
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Figure 78 – 200x Magnification of the Dendrite Shown in Figure 77 

 

Figure 79 – 200x Magnification of a Dendrite Branching Toward 2nd Cathode 

 

Anode 
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Figure 80 – 300x SEM Image of Two Dendrites 

 

Figure 81 – 7Kx Magnification of a Dense Dendrite Tip 

 

Cathode 
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Figure 82 shows the EDX analysis of the dendrite whisker illustrated in Figure 81.  This 

demonstrates dendrites grown between copper tracks are primarily formed from copper. 

 

Figure 82 – EDX Analysis of Dense Dendrite Tip in Figure 81 

 

5.4.1 Discussion 

The EDX analysis, Figure 82 of the dendrite tip, Figure 80 and Figure 81, shows the 

dendrites consist primarily of copper.  Traces of bromide and nickel were also found.  

Whilst copper can form various compounds with bromine, the bromine counts on the 

EDX did not show significant ratios with the copper, i.e. CuBr and CuBr2 would 

produce 1:1 and 1:2 ratios respectively, and the largest peak of bromine is 

approximately 10% of the largest copper peak.  The nickel trace is probably from the 

gold plating process, as nickel is use as a barrier to prevent the gold leaching into the 

copper. 
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5.5 Conclusion 

The results of the tests provide the basis for the main experimentation and led to the 

improvement of both sample design and sample preparation.  In the initial experiments 

it was observed that initiation times and fractal nature of the dendrites could have been 

affected by stray contaminants from either the samples or consumables such as water.  

Consequently, for the main experimentation, custom gold plated samples were 

produced, Figure 41, to reduce the impact of oxidisation and other contaminants. The 

gold was removed and the EDX results demonstrated the cleanliness of the samples 

showing only the presence of copper on the tracks, Figure 45.  Due to the complex 

nature of contamination, i.e. knowing what contaminants are on any given sample at 

any given time and the effect contaminants may have on dendritic growth, this sample 

preparation process enables experimental continuity and provides the basis for 

consistent results.  Furthermore, deionised water was used with conductivity less than 

0.1uS/m-1 for all experiments. 

Dendrite bridging and the self-healing nature of dendritic growth were demonstrated 

when a bridged dendrite fused.  This provides evidence that dendritic growth may not 

be a permanent failure on a printed circuit board although both the current leakage 

leading up to the short and the high transitional currents produced by the short could 

prove to be problematic.  In industrial SIR testing measurements are made at various 

time periods and therefore it is possible that the formation of dendrite growth is missed 

due to acquisition aliasing, again providing further support for continuous 

measurement systems to detect dendrite fusing.  If more dendrites form and then short, 

not only will the increase in current leakage be problematic, but the high current surge 

oscillations from the shorting dendrites are likely to become an issue with most 

microprocessor circuitry. 

The formation of hydrogen and oxygen gas bubbles at the cathode and anode, 

respectively, is demonstrated.  This phenomenon could aid in the evaporation of the 

water and eventually remove the water-based problem.  However, two areas of 

concern are noted, namely the splashing effect and the residual compound formed after 

dehydration.  The splashing effect produced by the bubbles could contaminate other 
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regions of the printed circuit board and initiate further electrochemical failure modes.  

It is uncertain the impact residual contaminates may have on a printed circuit board’s 

overall reliability due to the lack of information on the contaminate type at the time of 

rehydration.  The Pourbaix diagram indicates corrosion may occur with more acidic 

(pH < 7) compounds on the anode of a copper track or pad. 
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Chapter Six: Results and Discussions of Experiment 2 – Dendrite 

Growth in Saturated Conditions   

 

Tracks, pads and vias on printed circuit boards can suffer from a variety of problems if 

the surfaces are contaminated with electrical conducting substances.  The aim of this 

experiment is to produce a model multilevel full-factorial design to study the effects of 

temperature, voltage and electrode gap on dendritic growth under saturated conditions, 

i.e. water droplet contamination.   

6.1 Modeling Growth of Copper Dendrites in Saturated Conditions 

Potential step voltammetry (PSV) experiments were carried out using a precision 

voltage source, potentiostat, and high input impedance data-logger (Agilent 34970A), 

with the transition from E1 to E2 controlled manually whilst the data-logger was 

running in continuous mode.  The PSV experiments were conducted from zero volts 

with a step of 1.25V and icut = 100mA. The technique used involves controlling the 

temperature of a small cuvette filled with 1.2ml of deionised water.   

 

Figure 83 – 1.2ml Cuvette 

A number of interdigitated printed circuit boards (IPCB) were designed with gap 

spacings of 0.2, 0.3 and 0.4mm on nickel-barrier gold plated 0.07 mm copper FR4 

fibreglass circuit board, Figure 84.  Using gold plated copper ensured the IPCB stays 
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free from copper oxide contamination over time,3 as copper will not produce dendrites 

when contaminated with copper oxides, due to the oxide’s insolubility in water [19].   

 

Figure 84 – Copper Interdigitated Printed Circuit Boards 

A voltage biased IPCB was then placed into the cuvette and the current was measured 

over a period of 300 seconds; this was repeated according to the experimental design 

permutations.  A sharp rise in current signified a dendrite short and the time was noted 

as the first evidence of dendritic growth under the given conditions; the value was then 

logged, see Figure 85. A multilevel factorial design was used to control the 

experimental execution and minimise experimental error.  The experiment was 

designed using a randomised 3 factor multilevel factorial design using ‘Statgraphics 

Centurion XV’[105] and consisted of two (replicated) 3 x 5 x 3 runs.  Table 11 

displays parameters used for the design with their respective levels. 

                                                                          
3 The gold was removed before experimentation with KI + I2, rinsed in deionised water and the 
cupreous iodide residue was removed with ammonia, finally rinsing in deionised water, see 
section 3.1.1.. 
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Figure 85 – Example i-t Plot for 5.25v and 1.25v at 25°C and Gap Spacing on 0.2 mm 

 

The gap distances, 0.2-0.4 mm, originated from the typical spacing used on a 

microprocessor based printed circuit boards.  The temperature range, 5 to 45°C, is 

typical of the normal operating temperature of most electronics products.  The voltage 

range, 1.25-5.25V, originates from typical operating voltages of modern 

microprocessor circuits.   

Factors Low High Levels Units 
Temp 5.0 45.0 3 'C 

Voltage 1.25 5.25 5 V 
Gap 0.2 0.4 3 mm 

Responses Units  
D_init_time_sec Seconds

Base Design  
Number of experimental factors 3 

Number of responses 1 
Number of runs 90 

Error degrees of freedom 79 
Randomized Yes 

Table 11 – Factors Included in Design of Experiments 
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6.2 Discussion of Results 

When measuring the dendrite initiation point from the i-t curves, Figure 85, none of 

the 1.25V charts demonstrates any signs of rapid current surges, implicit of dendrite 

shorts, nor was there any significant movement in current.  This voltage threshold 

coincides with the voltage required to electrolyse water.  Equation 22 to Equation 24 

shows the reaction for the electrolysis of water [106], note that Ea is close to 1.25v. 

Anode: −+ ++→ eHOH 22½0 22  
Ea = 1.229V with reference to the standard 
hydrogen electrode (SHE) Equation 22

Cathode: 222 HeH →+ −+
 Ec = 0V with reference to SHE Equation 23

Overall: 222 ½0 HOH +→  Ec- Ea=-1.229V Equation 24

The cathode for all the experiments was held at 0V and therefore Ec= 0; with the anode 

held at greater than, or equal to, 1.25V.  Voltage required to start the electrolysis of 

water, shown in Equation 22 to Equation 24, is calculated using the Nernst equation, 

Equation 25, with the Gibbs free energy (ΔG) sourced from standard tables [52, 53].   

θnFEG −=Δ  Equation 25

Where n is the number of electrons transferred for one step of the overall reaction, F is 

the Faraday Constant (96,487 C mol-1) and Eθ is the electrode potential. 

Thus from Equation 25, n = 2 and for H2O(liquid) ΔG = -237,100 J/mol at 25ºC, this 

gives the electrode potential of 1.229V. 

Species ΔG (J/mol) Ea (V)
H2O -237,100 1.229 

Cu(s) 0 0 

Cu+(aq) 50,000 0.518 

Cu2+(aq) 65,000 0.337 

CuO -129,700 0.672 

Cu2O -146,000 0.757 

OH-
(aq) -157,000 1.627 

Cu(OH)2 -373,000 1.939 

Table 12 – ΔG [52, 53, 53] and Calculated Ea Values of Typical Ionic Species, when 
copper is electrolysed in water. 
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Table 12 illustrates the activation energies and the calculated theoretical voltages for a 

number of typical species that may be present when electrolysing copper in pure 

water.  The electrolysis of H2O (1.229V), Equation 25, closely matches the empirical 

voltage below which dendrites did not grow, i.e. 1.25V.  The highest activation 

voltage (1.939V) of copper (II) hydroxide is unlikely to have an impact as it has poor 

solubility in water.  When biasing 0.4 mm combs at 25°C, with 1.5V, 1.4V and 1.3V 

dendrites were visible after 900 seconds, but at 1.2V there were no signs of dendrites. 

From the experimental data there is a certain degree of probability that a dendrite will 

not grow at 1.25V within 300 seconds.  However, this degree of certainty can not be 

demonstrated above 300 seconds as this was the maximum duration of the 

experimental run.  Therefore, in all the 1.25V cases, for dendrite initiation time, a 

figure of 301 seconds was given to the model as this demonstrated that no dendrites 

grew within the experimental time, shown in Table 13. 
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  Block 1 Block 2
Temp ('C) Voltage (V) Gap (mm) D_init_time_sec (sec) D_init_time_sec (sec) 

5 1.25 0.2 301 301 
5 1.25 0.3 301 301 
5 1.25 0.4 301 301 
5 2.25 0.2 110 190 
5 2.25 0.3 193 110 
5 2.25 0.4 185 255 
5 3.25 0.2 30 50 
5 3.25 0.3 100 100 
5 3.25 0.4 275 125 
5 4.25 0.2 100 40 
5 4.25 0.3 150 25 
5 4.25 0.4 130 50 
5 5.25 0.2 90 40 
5 5.25 0.3 85 30 
5 5.25 0.4 50 30 

25 1.25 0.2 301 301 
25 1.25 0.3 301 301 
25 1.25 0.4 301 301 
25 2.25 0.2 50 53 
25 2.25 0.3 62 51 
25 2.25 0.4 150 100 
25 3.25 0.2 33 11 
25 3.25 0.3 80 20 
25 3.25 0.4 55 65 
25 4.25 0.2 12 5 
25 4.25 0.3 40 92 
25 4.25 0.4 125 15 
25 5.25 0.2 20 10 
25 5.25 0.3 45 12 
25 5.25 0.4 25 25 
45 1.25 0.2 301 301 
45 1.25 0.3 301 301 
45 1.25 0.4 301 301 
45 2.25 0.2 35 25 
45 2.25 0.3 60 40 
45 2.25 0.4 65 70 
45 3.25 0.2 15 12 
45 3.25 0.3 15 30 
45 3.25 0.4 40 33 
45 4.25 0.2 21 27 
45 4.25 0.3 20 13 
45 4.25 0.4 32 18 
45 5.25 0.2 9 6 
45 5.25 0.3 11 14 
45 5.25 0.4 35 50 

Table 13 – Multifactoral Runs and Experiment Results of D_init_time_sec, sorted by 
temperature. 

Figure 86 illustrates the factors that have the greatest effect on D_init_time_sec, 

clearly indicating that voltage has a significant negative effect on dendrite initiation 

time.  As the voltage increases so the D_init_time_sec reduces, implying that dendrites 
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initiate faster as the voltage is increased.  Note the standard error is significantly less 

than the effect yielding a large signal-noise ratio. 

 

Figure 86 – Pareto of Response D_init_time_sec 

Table 14 shows the ANOVA (analysis of variance) table of the response 

D_init_time_sec.  The ANOVA tests the statistical significance of each effect by 

comparing the mean square against an estimate of the experimental error.  The F-Ratio 

is the ratio between signal and noise and the P-Value is the significance of the F-Ratio 

at 80% confidence i.e. a P-Value less than 0.2 is significant.  Temperature, voltage and 

gap all have P-values less than 0.2 and can therefore be considered in further analysis.  

When initially analysing the experiment all the effects were considered and those with 

P-Values less than 0.2 were removed (Note 20% was the product of the measurement 

equipment tolerances).   
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Source Sum of Squares Df Mean Square F-Ratio P-Value 
A:Temperature 66798.6 1 66798.6 63.11 0.0000 

B:Voltage 2223.49 1 2223.49 2.10 0.1511 
C:Gap 26356.2 1 26356.2 24.90 0.0000 

AA 4774.05 1 4774.05 4.51 0.0367 
BB 200773. 1 200773. 189.70 0.0000 

ABB 18901.9 1 18901.9 17.86 0.0001 
BBB 51782.3 1 51782.3 48.93 0.0000 
BBC 10545.0 1 10545.0 9.96 0.0022 

Total error 85727.5 81 1058.36   
Total (corr.) 1.06479E6 89   <=0.2 

 

Table 14 – ANOVA Table of Responses D_init_time_sec 

6.2.1 Model of Dendrite Initiation Time   

After completing the experiments a best fit third order polynomial regression model 

was created, Equation 26.  This model was from the calculated regression coefficients, 

in Table 15.   

Coefficient Estimate 

Constant 858.27 

T:Temperature -1.54 

V:Voltage -641.91 

G:Gap 168.17 

V2 166.04 

V3 -14.13 

Table 15 – Regression Coefficients Values from D_init_time_sec 

Coefficient values less than 0.1 had little effect on the final model results and were 

therefore removed from the final model to reduce the overall complexity.  For 

example, removing all the coefficient values below 0.1 affected the R-Square value by 

2 percentage points.  The results from the model demonstrate a good fit between the 

model and data for each of the different factors, shown by the adjusted R-squared 

value of 90%.  The R-Squared statistic indicates the fraction of the total squared error 

that is explained by the model, thus values approaching 100% are more desirable. 

2 3

_ _ _ sec 858.27 - 1.54T 
- 641.91V  168.17G  166.04V  - 14.13V

D init time =

+ +
 Equation 26

Figure 87 to Figure 89 illustrate the time for a dendrite to initiate (D_init_time_sec) 

for temperature, voltage and gap produced from the polynomial shown in Equation 26.  
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Figure 87 and Figure 88 both show a plateau between 3V and 4V.  This is likely to be 

associated with the increase of gas bubbles at the electrodes causing:  

i) a reduction in the current flow due to the gas resistance as it appears as a cloud of 

insulators obstructing the electrical path between the electrodes, and/or  

ii) the increased movement of gas bubbles at the electrode as this can damage the 

dendrites before they can ‘jump’ across the gap.  As the gas bubbles adhere to the 

surface of the electrodes and grow, buoyancy could eventually force them free.  If a 

bubble happens to be close to a dendrite’s nucleation point, i.e. the point at which 

the dendrite starts to grow, then it may obstruct, stop or damage the dendrite.   

Gas formation was observed from 2V with the bubble growth noticed at increasing 

voltages on the electrode interfaces, whilst at 1.25V the production of gas was not 

evident.  When the power was switched off the gas bubbles eventually escaped to the 

surface and resistance returned closely to its original lower value.   

 

Figure 87 – D_init_time_sec as a Function of Voltage and Temperature, with Gap held at 
0.3 mm. 
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Figure 88 – D_init_time_sec as a Function of Voltage and Gap, with Temperature held at 
25°C. 

Figure 89 illustrates the effect of Gap and Temperature relative to dendrite initiation, 

which is linear on both axes.  

 

Figure 89 – D_init_time_sec as a Function of Temperature and Gap, with Voltage held at 
3.25V. 
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This result coincides with experimental observations made by Krumbein [34] who 

notes the average initiation time of the first dendrite appearing, shown in Table 16. 

  Voltage    Time Interval   

(V)  0.64 mm Spacing 1.24 mm Spacing 
  Mean Stdev Mean Stdev 

6.00  0.92 0.14 2.40 1.00 
5.00  1.00 0.34 3.30 2.50 
4.00  0.93 0.55 - - 
3.00  1.75 0.35 4.70 1.00 
2.00  1.81 0.59 - - 

Table 16 – Krumbein’s Data on Average Time between Initiations of a Dendrite 

Krumbein explains that ‘the turbulence produced by bubble formation at the interface 

between the conductor and the water-covered insulator appears to play a major role 

in the apparent saturation of the failure rate when a certain level of applied voltage 

has been reached’.  His expression ‘saturation’ is the point where his average time 

data levels off between 4-6V.  He went on to say the gas bubbles tended to interfere 

with the nucleation of the first dendrite towards the anode. 

6.3  Summary 

When a track, pad or via is contaminated by a water drop or splash this saturated 

condition could, at lower voltages (between 3 and 5V), produce a constant rate of 

dendrite growth eventually leading to a short circuit.  However, whilst higher voltages 

do show significant signs of dendrite growth, this is counteracted by the buoyancy 

effects of gas formation; as the voltage increases to a point where the gas production 

and the dendrite formation have a cancelling effect.  Increasing the gap of the circuit 

lands did show some reduction in dendrite short circuit time. However, increased 

voltages and reduced temperatures yield the best scenario for reduced probability of 

dendritic growth.  Below 1.25V, dendrites did not grow and this could be associated 

with the onset voltage required for the electrolysis of H2O, although the impact of 

other contaminants may increase this threshold.  
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Chapter Seven: Conclusions and Suggestions for Further Work  

 

7.1 Conclusions 
The objective of this thesis is to increase understanding of the phenomenon of 

electrochemical dendritic growth; to minimise field failures and develop a model that 

reflects the impact of conductor track spacing, temperature and operating voltage on 

such growths.   

In the process of sample preparation a simple and less aggressive method was used to 

remove the gold from the printed circuit board combs.  A solution of potassium-iodide 

and iodine was used to remove the gold and the remaining compound (copper-iodide) 

was removed with a further solution of ammonia.  Alternative methods, such as aqua 

regia (concentrated nitric acid and hydrochloric acid), remove all metals and is less 

controllable.  The effectiveness of this method is demonstrated by an EDX analysis that 

shows predominant copper peaks. 

The formation of dendrites on the cathode, independent of the electrode material, is 

visually demonstrated using an electrochemically inert metal, platinum, commonly used 

in the electronics industry.  Depletion of the anode metal is also demonstrated using 

copper.  As a copper anode is depleted it is demonstrated an electrochemically inert 

platinum cathode can also develop dendrite formations, implying that the formation of 

the dendrite’s main constituent is copper.  This is confirmed by an EDX analysis of a 

dendrite filament with the identification of predominant copper peaks.   

The effect of pH is demonstrated on a printed circuit board, highlighting extremely large 

pH gradients at each of the electrodes; strongly acidic at the anode and strongly alkaline 

at the cathode, as noted in Figure 90 .  Pourbaix diagrams are an indicative method of 

predicting potential risks and show various states of corrosion can occur depending on the 

metal used and the polarity of the electrode.  The Pourbaix diagram for copper indicates 

the cathode, whilst becoming extremely basic, remains relatively stable.  The anode is 

likely to corrode.  
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Using the Preece equation the diameter of a dendrite filament was in the area of 

0.855um and 1.575 μm.  However, it must be noted the Preece equation is based on the 

assumption that the fusing material is in air. 

Using a temperature controlled system for analysing dendrites, by continuously 

monitoring the current flow through a combed circuit that simulated a number of printed 

circuit board track distances, it is found all three parameters, track distance, temperature 

and voltage, affect the dendrite growth rate.  Increasing the gap of the circuit lands did 

show some reduction in dendrite short circuit susceptibility, however, increased 

voltages and reduced temperatures yielded the best scenario for reduced probability of 

dendritic growth. 

 

Figure 90 – Summarised Pourbiax Diagram for Copper 

However, whilst higher voltages did induce significant signs of dendrite growth this is 

counteracted by the buoyancy effects of gas formation as the voltage increased, to a 

point where the gas production and the dendrite formation had a cancelling effect.  

Below 1.25V dendrites did not grow and it is shown this could be associated with the 

onset voltage required for the electrolysis of water, although the impact of other 

contaminants may increase this threshold. 

The effect of reducing track distances produced an increased chance of dendrites 

forming if they were contaminated with water.  As noted in the literature, reducing track 
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distance also increases the chance of CAF formation and it can be concluded that any 

form of electrochemical migration can be affected by electrode proximity, although the 

mechanisms by which the failure modes are created are not the same. 

It is demonstrated that implementing larger track spacing and lower operating voltages 

within a design can significantly reduce the probability of dendrite growth.  However, 

whilst reducing operating voltages is in line with current trends of reduced 

microprocessor core voltages, the increasing track spacing does not accord with the 

current design trends of reduced product size.  

Reducing operating temperature may be a difficult target to achieve for products that are 

specified for operation in hostile conditions.  However, this project does identify the 

significance of temperature at normal operating conditions, i.e. the temperature at which 

consumer products operate, and demonstrates applications that are expected to operate 

at higher temperatures are more likely to experience dendrite growth if contaminated by 

water. 
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7.2 Design Guidelines  

The following summary provides design guidelines for industrial use to develop design 

parameters, and Figure 91 provides a quick reference for design parameters of both 

printed circuit board layout restrictions and environmental conditions.   

 

Figure 91 – Quick Reference Design Guideline for Reducing Dendrite Growth 

A multilevel factorial design is used to analyse the effects conductor track spacing, 

temperature and operating voltage have on dendrite initiation times.  It is shown 

individually plotted dendrite initiation times follow a linear response over temperature.  

The impact of gap spacing from 0.2 mm to 0.4 mm shows dendrite initiation time is 

increased by 44 %, as summarised in Figure 92.  Increasing the gap spacing between 

printed circuit board tracks, pads and vias thus reduces the probability of a dendrite 

forming. 

The effect of temperature on the likelihood of dendrite growth reduces as the 

temperature increases, i.e. the reduction of the dendrite initiation time is not linear with 

temperature but reduces almost exponentially as the temperature increases.  A 

temperature rise of 40ºC (5ºC to 45ºC) affects the initiation time by more than 70 % or, 

assuming a linear response from 5ºC to 45ºC, then 1.5 sec/ºC or 0.66 ºC/sec, as 

summarised in Figure 93. 
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Voltage is the parameter that affects dendrite initiation time by the greatest measure and 

produces a parabolic curve, summarised in Figure 94.  The effect of increasing the 

voltage from 1.25V to 5.25V reduces dendrite initiation time by 90 %.  However, at 

4.25V the initiation time reaches a minimum and then starts to again increase. This may 

imply there is a secondary process acting on the dendrite growth.  It is thought this 

secondary process is probably caused by the formation of gas bubbles at the electrode 

interfaces which damages the dendrites and prevents them from short-circuiting as they 

continue to grow. 

In summary, reducing track spacing by 50% effectively reduces the dendrite initiation 

time by 44 %.  Likewise, increasing the temperature, by 40ºC, effectively reduces the 

dendrite initiation time by 70 %.  As the dendrites form much quicker whilst these two 

parameters change it is noted that reducing track spacing and increasing temperature 

increases the chance of a dendrite growth.  

The rate of change of dendrite initiation at voltages between 2.25V to 4.25V is much 

less than experienced at lower voltages.  The effect of increasing the voltage by 76 % 

reduces the dendrite initiation time by 90 %, again implying an increased chance of 

dendrite growth as the parameter value increases. 

  

Figure 92 – Effect of Track Spacing on Dendrite Growth 
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Figure 93 – Effect of Temperature on Dendrite Growth 

 

Figure 94 – Effect of Voltage on Dendrite Growth 
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7.3 Further Work 

As this thesis focuses on DC dendrite formation it may be beneficial to further 

understanding of the impact of AC on the growth of dendrites, which could lead to the 

establishment of a growth threshold with reference to frequency.  A combination of 

DC+AC (offset AC) could also be considered for further research. 

A dendrite tended to be produced close to the point where hydrogen was being formed, 

at the cathode.  Areas where there was no gas formation yielded no dendrites.  It is not 

certain why this happened but this phenomenon needs to be further investigated.  When 

the bias was removed and re-applied to a partially grown dendrite it was observed the 

dendrite did not continue to grow, whereas other dendrites grew from new nucleation 

points.  It is unclear why this occurs although oxidisation of the dendrite tip may 

account for the phenomena.  However, this is only speculation and this should be further 

examined. 

Whilst the occurrence of electrochemical reliability failure modes, namely dendrite 

growth and CAF formation, are well reported there seems to be no literature published 

on the failure effects of large capacitances caused by the double-layer, of the metal-

liquid interfaces, on printed circuit board contamination.  Large capacitances caused by 

water contamination across two tracks would cause problems at lower voltages.  As the 

core voltages of microprocessors reduce these phenomena may become an issue for 

electronic reliability. 

As a late addition to this thesis work was conducted that raises questions about the 

capacity of various water types to form classic dendrite structures.  Observations were 

made of various dendritic failures within a validation test; whilst attempting to re-grow 

dendrites, under very similar conditions, using water from the test, (standard tap water), 

it was obvious dendrite growth did not occur.  When the same test was run using 

deionised water dendrites were produced.  Possibly this may occur because standard tap 

water contains either, or both, chloride and fluoride, which will participate with copper 

ions to form a neutral copper complex.  As the copper ions combine with halogens to 

form a neutral complex then copper ions are not available to form dendrites.  Whilst this 
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answer is speculative it is suggested dendrite growth as a function of water type should 

be further investigated.  
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analysis of the growth of copper dendrites in saturated conditions using a multilevel 
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Appendix 1b 
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Appendix 1c 
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