
Privacy Preserving Trust Authorization Framework Using XACML

U.M.Mbanaso, G.S.Cooper
Informatics Research Inst,
University of Salford, UK

U.M.Mbanaso@pgr.salford.ac.uk

D.W.Chadwick
Computer Department
University of Kent UK

D.W.Chadwick@Kent.ac.uk

Seth Proctor
Sun Microsystems Labs
Burlington, MA, USA

Seth.proctor@sun.com

Abstract

Nowadays many organizations share sensitive services
through open network systems and this raises the need
for an authorization framework that can interoperate
even when the parties have no pre-existing
relationships. Trust Negotiation is the process used to
establish these first relationships, through the transfer
of attributes, embedded in digital credentials, between
the two parties. However, these attributes may
themselves be considered sensitive and so may need
protection from disclosure. In some environments, the
policies that govern the protected services may also be
considered sensitive and their release to arbitrary
strangers may leak confidential business information.
This paper describes a way to unify the protection of
services, sensitive credentials and policies in a
synchronized trustworthy manner. We propose a trust
authorization framework (TAF) that builds on the
capabilities of XACML to support the bilateral
exchange of policies and credentials through trust
negotiation.

1. Introduction

Authorization ensures that resources can be
accessed only by parties who have the right privileges.
Thus, the resource gatekeeper requires some level of
trust be established before sensitive information can be
released. Service requesters are required to submit
sufficient authorization credentials before access will
be granted. Wherever people are involved in the
exchange of digital information, such as personal,
potentially sensitive credentials, privacy [15] [2] [7]
becomes an issue of some concern, which raises an
interesting paradox. To make the services and
resources accessible to legitimate users an
authorization infrastructure requires the users’
attributes. However, the users may not be ready to
disclose their attributes to a remote service provider
without determining exactly who the provider is and
how their personal attributes will be used. One
approach for addressing these privacy concerns is to

employ a bilateral exchange of policies and credentials
between the parties involved in the transaction, so that
they can decide what to give and/or get from each
other. This process is known as trust negotiation in the
literature [8].

Consider the following motivating example. A
Secret Service (SS) offers online training both for its
agents and friendly secret agent services. The service
requires that each participant present a role Attribute
Certificate (certificate), a security assertion digitally
signed by the participant’s security authority, which
binds the holder’s attributes to the holder. Whilst the
policy that governs this service prevents unauthorized
access to its resources, it does not protect the fact that
SS offers training to friendly organizations, which is
itself a sensitive piece of business information.

To prevent arbitrary disclosure of sensitive policies,
access to the policies themselves needs to be protected.
On the other hand, an agent requester cannot give out
her role certificate to any service that poses as the SS
web server, and would like some proof that the server
can be trusted. To avoid the arbitrary disclosure of
sensitive policies [2] and digital credentials, parties
require a mechanism to gradually establish a trust
relationship. Trust relationships can be established
between service providers and requesters through the
exchange of information in a well-understood fashion
[10]. The information usually contains policies and
security assertions, issued by Attribute Authorities
(AAs), which describe the properties of the holders.
The exchange of this information is done in such a
manner that the security assertions are unforgeable and
can be verified and validated [18].

Trust negotiation management systems have been
proposed by researchers as one effective way to
guarantee the confidentiality of authorization
information. Trust establishment is a well-researched
concept [5] [2] [6]. However, existing efforts in this
area have not been standardized and do not fit into any
authorization standard such as the eXtensible Access
Control Markup Language (XACML) [3], which
would provide the benefit of promoting interoperability
and reducing the effort needed to integrate with
existing applications. This work investigates how

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

XACML can fit into trust authorization management
systems by exploring existing concepts, and where
necessary, extending them to accomplish our goal.

We describe our proposed XACML Trust
Authorization Framework (XTAF). XTAF is a loosely
coupled architecture with a trust component that
protects authorization information (policies and
credentials) layered such that it integrates seamlessly
into any XACML compliant authorization engine with
minimal effort. We expose different ways that the
XACML policy language can be used to support
bilateral exchange of policies and credentials, and
protect unauthorized access to services. We introduce a
Trust Authorization Service Handler (TASH) to handle
trust and privacy of authorization information. This
supports runtime bilateral authorization operations
between two or more parties.

The rest of this paper is organized as follows: In
section 2, we provide an overview of related work,
highlighting some of the challenges. Section 3 gives a
brief overview of the XACML authorization
framework and the proposed XACML Trust
Authorization Framework. In section 4 we illustrate,
through a hypothetical example, the usage of our
framework. Section 5 concludes the paper with a
summary.

2. Related Works

Seamons et el [13] [14] [11] [12] and Bertino et el
[6] [8] have done useful works in the area of Trust
Negotiation and Management, providing a good
theoretical background on the concepts of trust with
quite a number of implementation scenarios. Seamons
et el have advanced the notion of a trust negotiation
protocol and strategy with some practical
demonstration of how they can be implemented [10].
In the area of trust policy and language, Bertino et el
have proposed a number of ways to encode policies
and credentials [6]. However, these works are
proprietary and cannot interoperate; thus investigating
how the XACML framework can fit into trust
management systems becomes important.

Lorch et el [4] presented their first experience using
XCAML in distributed systems, including the analysis
of the performance of XACML with existing models,
and highlighted its limitations. They drew on
experience gained in the integration of SAML [22] and
XACML in distributed open systems and performance
results based on the PRIMA model [19]. PRIMA is
specifically designed for access control in grid
computing environments: users can assign and/or

delegate privileges to each other without involving
policy administrators. However, Lorch et el focused
mainly on the analysis of XACML’s performance and
did not address the privacy issues and trustworthiness
in distributed environments. Our work is among the
first to look into how XACML can be used to build
trust relationships in distributed authorization
environments. This is a significant direction since
XACML is a generic access control model that has
continued to address wider access control
requirements.

The Shibboleth infrastructure, an attempt to address
privacy in an authorization environment, proposed two
kinds of policies: Attribute Release Policy (ARP) and
Attribute Acceptance Policy (AAP) [16]. Shibboleth is
a distributed authentication architecture whose access
control is based on users' attributes. Privacy in
Shibboleth is primarily focused on using
pseudonymity; however this does not completely
protect privacy in an environment where the user may
give other attributes in order to use the authorized
resources. For instance, an institution may give a
student a signed assertion, authorization token to
access a discount online bookshop. But if the student
wants to purchase a book, (s)he needs to provide other
personal attributes such as credit card number, physical
address for payment and delivery. In such a case, the
user cannot determine whether a party can be trusted
with sensitive attributes. Lorch et el also used WSPL, a
profile of XACML that supports policy intersection to
determine whether two policies are mutually amenable.
This approach requires some policy on the server side
to be released without negotiation, but then provides a
very simple means for calculating what the client is
willing to share.

PERMIS [11] [18] is a middleware authorization
framework, which focuses mainly on the role based
access control (RBAC) model. PERMIS has
successfully been implemented in a number of
application scenarios with interesting results [19][20]
[18]. It fully supports role hierarchy and its policy
language is user friendly. It has a GUI policy editing
tool [21] and Privilege Allocation (PA) subsystems for
managing roles and permissions. The PERMIS
language is limited in expressions and semantics
compared to XACML. The PERMIS framework does
not provide direct support for bilateral exchange of
policies and credentials to address privacy issues.
PERMIS has in its architecture a subsystem that signs,
verifies and validates X.509 attribute certificates used
to represent authorization credentials.

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

3. XACML Trust Authorization Framework

One promising mechanism to solve privacy and
trust is the eXtensible Access Control Markup
Language (XACML), a standard created in OASIS [3].
This standard defines a general-purpose, flexible
authorization policy language and a query/response
format. The XACML standard uses a generic access
control framework based on the IETF/DMTF model
that allows an enterprise to specify and deploy an
access control policy for a variety of resources. Though
XACML is a rich framework, it intentionally does not
address how to preserve the privacy of authorization
entities.

An architecture is required that can support trust
and confidentiality at the same time. Access control
techniques can be used to protect access to a party’s
credentials, but to establish trust requires a gradual and
progressive approach in the exchange of a party’s
credentials. This entails a bilateral process, in which
both parties can use access control policies to
determine the way their attributes are given to each
other, requiring a repeated exchange of policies and
credentials as trust is progressively increased. In order
to know which credentials to release, a subject must be
sent a policy of the resource. If the subject is happy
with the policy, it will release further credentials.
Rather than taking all the risk of releasing sensitive
attributes at once, parties are subject to smaller risk on
an incremental basis and are able to withdraw at any
point.

3.1 Trust Authorization Architecture

Figure 1 shows the basic building block of XACML
Trust Authorization Framework. Core XACML
components are described in [3]. We introduce a Trust
Authorization Service Handler (TASH), a component
added to the core XACML model to address the
aspects of privacy and trust in distributed authorization
environments. In the normal XACML approach, the
Policy Decision Point (PDP) requests attribute values
from the ContextHandler. In theory, the
ContextHandler can query the Policy Information Point
(PIP) for the attributes; in SunXACML, the AFM
(Attribute Finder Module) [17] does the job of finding
attributes that were not in the initial request context.
The proposed service is being implemented as a Trust
Negotiation (TN) server integrated via a SunXACML
AFM to the core XACML engine, allowing the TASH
to work seamlessly with the XACML engine. In
TASH, the Negotiation Protocol Module (NPM)

handles the trust negotiation protocols and ordering of
messages [10] during the building of a trust
relationship. The Attribute Validation Engine (AVE)
verifies and validates every credential attribute and
policy that is received by the system before passing it
to the trust decision engine. The Trust Information
Handler (TIH) is responsible for the canonical
representation of the inputs consumed by the TrustPDP
and the outputs from it.

The TrustPDP handles trust access management
decisions by comparing local policies with received
credentials and received policies with local credentials.
The TrustPDP performs trust access management
decisions in two ways:

It checks whether there are any local credentials
(and policies) that can be disclosed by comparing
the received credentials with the local policy.

This is a necessary but not sufficient step for
releasing further local credentials (and policies).
It checks the received policy to see whether there
is sufficient benefit to be gained from releasing
further local credentials. When the recipient is a
human user, he or she can be asked to make a
decision. When the recipient is a service being
accessed by a user, then there may be no received
policy but it may still be beneficial to the service
to release further local credentials and policies.

Both parties in the exchange require a TASH in
order to engage in a trust building session.

3.2 XACML Trust Policy Set

The XACML language provides several ways to
form a negotiation policy set. To enable the gradual
building of trust, we arrange access control policies as
directed policy graphs or trees [10], enabling the
sequence and ordering of disclosure policies to be
discovered at runtime. A node at any level is a pre-

Figure 1. XACML Trust Authorization Architecture

PEP

PDP

ContextHandler

PAP

XACML

NPM

TrustPDP

TIH

Store

TASH

NPM

TrustPDP

TIH

Store

TASH

SunXACML AFM

Service ProviderUser Domain

Request/response

Negotiation

A
ttribute gatekeeper

PEP

PDP

ContextHandler

PAP

XACML

PEP

PDP

ContextHandler

PAP

XACML

NPM

TrustPDP

TIH

Store

TASH

NPM

TrustPDP

TIH

Store

TASH

NPM

TrustPDP

TIH

Store

TASH

NPM

TrustPDP

TIH

Store

TASH

SunXACML AFM

Service ProviderUser Domain

Request/response

Negotiation

A
ttribute gatekeeper

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

condition for evaluating that branch of the graph and
for continuing to process the other parts of the graph.
Similarly, in XACML, each Target at any node of the
tree is an intersection of Targets in the path that leads
to that branch of the tree. This demands that if the
Target at any level evaluates false, evaluating that
branch of the tree becomes needless.

We examine two pragmatic ways in which the
XACML policy language can be used to form an
effective trust negotiation policy set. One approach is
to use the existing PolicySet container depicted in
figure 2, which can be considered as a tree containing
one or more children: PolicySet or Policy. A Policy on
the other hand contains one or more child elements:
Rule, and a PolicyId attribute. Thus, in PolicySet, each
Policy can specify a disclosure policy. The sequence
and ordering can be determined by using the notion of
PolicyIds, to specify the order in which the policies are
disclosed at runtime. We give a simple example here.
Alice wants to access webserver1 protected by policy
p2, which specifies that the subject must be a nuclear
research student in the computing department of the
University of Salford. We assume that p2 is considered
sensitive, so that its disclosure is controlled by another
policy p1. It can only be disclosed to a subject with a
proof of affiliation with the University of Salford. We
can implicitly specify a generic requirement in the
PolicySet Target, then p1 and p2 as policies in the
PolicySet, but with p2’s policyId as the attribute of the
protected Resource in p1. Here, p2 is disclosed only if

p1 is evaluated to true. Thus, the idea of a PolicySet, in
theory can be used to construct effective trust
negotiation policy set, whose order can be determined,
but requires good crafting skills. However, this

introduces a computational overhead, in that
processing of the policy requires the evaluation of two
pre-conditions: PolicySet Target and Policy Target,
before the Policy Rule is evaluated.

A second approach is to make use of the RuleId
attribute of the Rule container, since a Policy can
contain one or more Rule elements, as shown in figure
3. In this case, a Rule can be made to point to another
Rule in order to protect that Rule from disclosure to
arbitrary strangers using the RuleId. The sequence and
order of disclosure can be determined simply by
finding the relationships between the Rule containers.
This model is less complex, and has less computational
overhead. Again, Rule containers can be used to
express fine-grained disclosure policies, and additional
constraints can be enforced in each rule by using the
XACML Conditions and Obligations in a more refined
way. We adopt this model as an efficient way to
construct a simple, effective trust policy set. Though,
in some environments, the first approach can be more
effective, especially where policies are defined by a
hierarchy of authorities to protect authorization
information flow.

At trust session runtime, an effective disclosure
trust policy set is constructed from the applicable

Policy, from which it can infer the order of disclosure
by setting the source and sink nodes [12]. Then trust
can progressively be negotiated with a remote party.
The policies satisfied during the negotiation phase are
eliminated until the sink node is satisfied or the session
fails. The trust level and what each party is ready to

Figure 2. The XACML PolicySet

PolicySet

Target

CombinerParameter

Pre-conditions

Target

Rule

Policy policyId=p1

Target

Rule

Policy policyId=p2

Policy

Target

CombinerParameter

Rule RuleId=r1

Target

Subjects

Obligations

Resources

Actions

Environments

Rule RuleId=r2

Rule RuleId=rn

Pre-condition

Conditions

Policy

Figure 3. The XACML Policy Container

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

give in exchange for his own information is determined
by the ordering of the policy set.

4. Discussions

In [13] it was mentioned that policy disclosures are
vulnerable to probing attacks. As a result an adversary
can use policy disclosure techniques to learn of a
party’s possession or non-possession of the
information being asked for. It is also possible for an
attacker to lie by expressing constraints on credentials
or services that (s)he does not possess in order to
gather information from the attacked. Thus, it is
important that both parties receive what they expected
and none gains undue advantage [23]. Our exchange
protocol uses a gradual, incremental release of
information based on a finer trust policy layering that
specifies the order in which policies and attributes can
be disclosed.

We illustrate our exchange protocol with a simple
example illustrated in figure 4. A CIA agent wants to
gain access to a CIA web service that is hidden behind
a publicly accessible service. Alice, a CIA agent asks
for a protected electronic resource resCIA, governed by
policy Pres, but is unwilling to give up her role attribute
certificate roleCert until she is confident that she is
communicating with a CIA server. This is specified in
ARProle. But Pres cannot be disclosed to arbitrary
strangers, so it is protected by another policy P. Alice
also cannot disclose the access requirement of roleCert -
ARProle to arbitrary strangers, so ARProle is governed by
another policy ARPp1 stating that only US government
certified servers can read ARProle. When Alice requests
access to resCIA, the server instead of disclosing Pres,
returns policy P to Alice, which says that Pres, can only
be disclosed to US government employees
(USGovtcert).

It is apparent therefore that the first round of policy
disclosures is not tightly coupled to resources resCIA
and roleCert. The assumption is that the kick-off
policies cannot explicitly reveal whether both parties
possess the required credentials or services. This
suggests that both Alice’s and the server's behaviour
cannot reveal non-possession or possession at the first
round of iteration. Again, if the server gives out
USGovtServerCert and Alice fails to respond with
credentials that can satisfy the server’s disclosure
policy, the negotiation can fail at this point. This is
fair: the server has given one of its properties, but
neither the access requirements for the sensitive
resource nor the resource itself have been disclosed.
For trust negotiation to succeed, the policy and

credential flow must advance the level of trust, which
minimizes the effect of probing attack or lying under
false policy expression. This is what makes our

approach pragmatic and optimistic. The negotiators
must possess a set of credentials (but, of course, this is
natural) in order that access control policies can be
used to determine the order in which those credentials
can be released to advance the trust building session.

5. Conclusions

We have demonstrated how the XACML model can
be explored to enable privacy and trust whilst
protecting access to electronic resources in a
synchronized manner. We described how to construct
effective trust policy sets, which can optimize trust
establishment sessions, and propose a new trust layer
component in the primitive XACML model. We have
leveraged trust concepts already proposed by
researchers and show how our model optimistically
addresses the problem of probing attacks such that the
risk to which a party is exposed at any point in the
negotiation can be minimized. Our framework has the
capabilities to protect resources, policies and
credentials simultaneously in distributed environment
for users with or without pre-existing trust
relationships. The implementation of this framework is
in an advanced stage using the SunXACML
implementation [17] and the PERMIS Attribute
Verifier subsystem.

Figure 4. A Simple Negotiation Sequence

Requests(resCIA)

Policy(P1)

Policy(ARPp1)

Cred(USGovtServerCert)

Cred(USGovtEmpCert)
Policy(Pres)

Policy(ARProle)

Cred(CIAServerCert)

Cred(CIARolecert)
Done _Access_Allowed(resCIA)

Alice Server
Requests(resCIA)

Policy(P1)

Policy(ARPp1)

Cred(USGovtServerCert)

Cred(USGovtEmpCert)
Policy(Pres)

Policy(ARProle)

Cred(CIAServerCert)

Cred(CIARolecert)
Done _Access_Allowed(resCIA)

Alice Server

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

6. References

[1] A.Anderson, "Privacy Policy Languages: XACML vs
EPAL," presented at 5th Annual Privacy & Security
Workshop, 2004.

[2] K.E.Seamons, M.Winslett, and T.Yu, "Limiting the
Disclosure of Access Control Policies During Automated
Trust Negotiation," presented at Network and Distributed
System Security Symposium, San Diego, CA, Feb 2001.

[3] OASIS, "eXtensible Access Control Markup Language
(XACML) Version 2.0," http://www.oasis.org, Feb 2005.

[4] M.Lorch, S.Proctor, R.Lepro, D.Kafura, and S.Shah,
"First Experience Using XACML for Access Control in
Distributed Systems," presented at ACM Workshop on
XML Security, Fairfax Va US, 2003.

[5] W.H.Winsborough, K.E.Seamons, and V.E.Jones,
"Negotiating Disclosure of Sensitive Credentials,"
presented at 2nd Conference on Security in
Communication Networks, Amlfi, Italy, Sept 1999.

[6] E. F. E.Bertino, A Squicciarini, "TNL: An XML-based
Language for Trust Negotiations," presented at IEEE 4th
International Workshop on policies for Distributed
Systems and Networks, Lake Como Italy, 2003.

[7] A.Acquisti, "Privacy and Security of Personal
Information- Economics Incentives and Technological
Solutions," presented at Workshop on Economics and
Information Security, University of California Berkeley,
2002.

[8] E. Bertino, E.Ferrari, and A. Squicciarini, "Trust
Negotiations: Concepts, Systems and Languages," IEEE
Computer, pp. 27-34, July/August 2004.

 [9] D.W.Chadwick, "The X.509 Privilege Management
Infrastructure," presented at Proceedings of the NATO
Advanced Networking Workshop on Advanced Security
Technologies in Networking, Bled, Slovenia, 2003.

[10] J.Holt and K.E.Seamons, "Interoperable Strategies in
Automated Trust Negotiation," presented at 8th ACM
Conference on Computer and Communications Security,
Philadelphia Pennsylvania, Nov 2001.

[11] W. Winsborough, K. Seamons, and V. Jones,
"Negotiating Disclosure of Sensitive Credentials,"
presented at Second Conference on security in
Communication Networks, Amalfi, Italy, September
1999.

[12] T.Barlow, A.Hess, and K.E.Seamons, "Trust
Negotiation in Electronic Markets," presented at Eighth
Research Symposium in Emerging Electronic Markets,
Maastrict Netherlands, Sept 2001.

[13] A.J. Lee, "Traust: A Trust Negotiation Based
Authorization Service For Open Systems" Master Thesis,
Cornell University, 2003

[14] K.E.Seamons, M.Winslett, T.Yu, B.Smith, E.Child,
J.Jacobson, H.Mils, and L.Yu, "Requirements for Policy
Languages for Trust Negotiation," presented at 3rd
International Workshop on Policies for Distributed
Systems and Networks, Moneterey, CA, June 2002.

 [15] W. Hommel, "Using XACML for Privacy Control in
SAML-Based Identity Federations." presented at "IFIP
International Federation for Information Processing CMS
2005 LNCS 3677 pp. 160-169, 2005

[16] S. Nazareth and S. Smith, "Using SPKI/SDSI for
Distributed Maintenance of Attribute Release Policies in
Shibooleth," Computer Technical Report TR2004-485,
2004.

[17] S. Proctor, "Sun's XACML implementation APIs"
http://sunxacml.sourceforge.net/

[18] D.W.Chadwick and O.Otenko, "Implementing Role
Based Access Controls Using X.509 Attribute
Certificates," IEEE Internet Computing, pp. 62-69, 2003.

[19] D.W.Chadwick and D.P.Mundy, "The Secure Electronic
Transfer of Prescriptions," presented at HC2004,
Harrogate, UK, March 2004.

[20] D.W.Chadwick and D.P.Mundy, "Policy Based
Electronic Transmission of Prescriptions," presented at
IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, Como Italy, 2003.

[21] S. Brostoff, M. A. Sassea, D. Chadwick, J. Cunningham,
U. Mbanaso, and O. Otenko, "RBAC what?
Development of a role-based access control policy
writing tool for e-Scientists," presented at Workshop on
Grid Security Practice and Experience, Oxford UK,
2004.

[22] OASIS, "Security Assertion Markup Language (SAML)
Version 2.0," http://www.oasis.org, Feb 2005.
 [23] Holger Vogt, Henning Pagnia, Felix Gartner
"Modular Fair Exchange Protocols for Electronic
Commerce" In Proceedings of the 15th Annual
Computer Security Applications Conference, pages
3--11, Phoenix, Arizona, Dec. 1999. IEEE
Computer Society Press

Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM'06)
0-7695-2593-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

