
From COBOL to SQL Through Program Transformation and
XML

Farid Meziane
School of Computing, Science and Engineering

University of Salford
Salford M5 4WT, UK
+40 161 295 3699

f.meziane@salford.ac.uk

Jamila Aliwa
School of Computing, Science and Engineering

University of Salford
Salford M5 4WT, UK

j_aliwa@hotmail.com

ABSTRACT

The cost of maintaining legacy software systems has spiralled and

their maintenance became a burden for many organisations. In this

paper we present the first prototype of the LOBS-COQ system

that attempts to transform COBOL legacy systems into relational

database schema and produce SQL statements for data querying.

The approach first transforms the COBOL source code into XML

files, which are then processed to create tables and develop SQL

statements. Frames are used to develop the SQL statements.

COBOL statements are parsed and the information extracted is

used to fill the frames’ slots.

Keywords
Legacy Systems, Program Transformation, COBOL, SQL, XML.

1. I�TRODUCTIO�
Legacy software systems were developed years ago using old

programming language such as COBOL and FORTRAN. These

systems are still critical to the day-to-day activities of many

organisations and considered to be irreplaceable for many of

them. For these reasons, and many others, these systems were

maintained for years by many programmers. In the last few years

the cost of maintaining these systems has spiraled as there is a

shortage of skilled programmers in these old programming

languages and the documentation associated with most of these

systems became obsolete as it does not reflect any more their

implementation after years of modifications and updating.

Maintaining these systems has become a considerable burden for

these organisations. In this paper we concentrate on legacy

systems implemented in the COBOL (COmmon Business-

Oriented Language) programming language for two main reasons.

First it has been reported there are still hundreds of billions of

COBOL lines code still in use today [5, 1] and second this project

is developed for an organization that wishes to transform its

COBOL based systems into more modern technologies.

There have been many attempts to convert legacy systems to new

environments using new programming languages or new design

tools and techniques. However, if done manually, these

conversions are just as expensive as maintaining the old systems.

In this paper, we present the first prototype of the LOBS-COQ (an

anagram of COBOL and SQL omitting one L!) system that

attempts to transform COBOL programs into an implementation

based on relational databases. The data contained in the files used

by the COBOL programs are transformed into tables and the

programs transformed into SQL statements. The remaining of this

paper is organised as follows: In section 2 we give an overview of

some approaches and systems that attempted to reverse engineer

COBOL systems. Section 3 gives a general view of our approach.

In section 4 we describe how COBOL programs are transformed

into XML documents and in sections 5, 6 and 7 we give a flavor

of the data representation and SQL statement of the transformed

COBOL programs. Finally section 8 summarises the current

prototype development and the future developments of the system.

2. RELATED WORK
Reverse Engineering is the discipline that attempts to improve and

maintain legacy systems. It uses many techniques that range from

simple control restructuring to design and specification recovery

in preparation for new forward engineering. Edward and Munro

[6] developed the RECAST system that takes COBOL source

code and produces specifications and system documentation in the

Structured Systems Analysis and Design Method (SSADM). The

aim of their approach was to recover the design of the COBOL

programs, which may help in the redesign, and reimplementation

of the system using new design methods and new programming

languages. Another promising approach is to freeze and

encapsulate the legacy system as a component in a new

implementation. The functions provided by the legacy system can

then progressively be taken over by the new software until the

legacy software becomes redundant [9]. Other approaches have

adopted data reverse engineering [4] techniques in their attempt to

reengineer legacy systems. Nagaoka et al. [8] developed the

DORE system (Data Oriented Re-Engineering) to produces

reusable business specification in the form of entity relationship

models from COBOL data description. More recent approaches

have attempted to reengineer legacy systems through object

oriented models. Millham [7] for example used UML to reverse

engineer COBOL programs.

3. SYSTEM PRESE�TATIO�
COBOL is a business oriented programming language and was

developed in the late fifties. It has been adopted by many

organisations and government agencies and became a standard in

the development of business-oriented applications. COBOL was

not intended to operate at the hardware level and was not meant

for the development of scientific applications, as at that time,

FORTRAN was the de facto language for scientific applications.

With the advent of distributed applications and the Internet other

problems have appeared and added to an already long list as

COBOL programs are difficult to share. Given the nature of

COBOL systems, business oriented and mainly concerned with

data processing, we believe that the appropriate target

transformation of COBOL systems is relational databases and

SQL statements. There were many attempts to transform COBOL

program to other programming languages. However, we believe

that COBOL programs do not have and do not require such

functionality. Three basic types of programs in COBOL have been

identified [9]: online transaction programs, batch processing

programs and general subprograms. The current LOBS-COQ

prototype is limited by the following constraints:

� It deals only with batch processing program although it

can handle the program part of the online transaction

programs (i.e. omitting the parts dealing with the

interfaces).

� It does not attempt to migrate the existing data stored in

the files used by old COBOL programs but attempts

only to construct the tables that will ultimately be used

to store the data at a later stage.

Based on these assumptions, the prototype presented in this paper

can be summarised as shown in Figure 1. COBOL source files are

used as inputs to LOBS-COQ. The COBOL-Transform module

transforms these files into XML files as described in section 4.

The XML files are then used as an input to the XML-Transform

module. Using the knowledge of COBOL programs structures and

its programming standards, tables’ schema are extracted and SQL

statements developed.

COBOL

Source

Code

COBOL-Transform

XML Files

XML-Transform

COBOL

Knowledge

repository

Relational

Database

Schema

SQL

Statements

Figure 1: LOBS-COQ Architecture

4. COBOL to XML
COBOL programs are presented as a hierarchical structure. The

levels of the hierarchy are Divisions, Sections, Paragraphs,

Sentences and Statements respectively. There are four divisions

and each division provides part of the information needed by the

compiler. The divisions are defined in the following order:

� Identification Division: identifies the program

� Environment Division: describes the environment in

which the program will run

� Data Division: describes the input/output files and data

to be used by the program

� Procedure Division: Describes the tasks performed by

the program

Each division begins with the name of the division followed by

the reserved word DIVISION and a period. Divisions are divided

into sections. For example the environment division is composed

of the CONFIGURATION section and the INPUT-OUTPUT

section. Each section begins with the name of the section and the

reserved word SECTION followed by a period. Sections are

divided into paragraphs and paragraphs into sentences. In the

procedure division, a sentence describes an operation or series of

operations the computer is to perform. Each sentence is composed

of one or more statements, which are the basic instructions that

are used to describe the processing that the computer is to

perform. There are also standards when writing COBOL programs

that include indentation at the beginning of each structure and the

use of the period (.) to end statements. The rigid structure of

COBOL programs and the standards used when writing the

programs, made it easy to transform COBOL programs into XML

documents. The process consists at tokenizing the source file and

then looks for the COBOL reserved words that delimit each

grouping. The reserved words are then changed to XML tags and

a closing tag is added at the end of the grouping that can be

identified by a period and/or the start of another grouping. An

example of an XML document is given in Figure 2 which

represents a transformation of a complete but very simple COBOL

program. This program will be used for illustration in this paper.

5. DATA REPRESE�TATIO�
The first step in the transformation process is the definition of the

database tables and their structures. This information is provided

by the Data Division of the COBOL programs. However, the

Environment Division is also used to complete some details when

constructing the tables. The Environment division will tell us

which files are used as input and which ones are output files.

When building tables, output files are not considered as these will

be produced as reports by SQL statements. However, minimum

information about them is kept; particularly their names, attributes

and types (output file). In the program given in Figure 2, the

statement "SALES-PERSO�-FILE ASSIG� TO I�PUT-DEVICE"

indicates that the "SALES-PERSO�-FILE" is an input file and the

statement: "REPORT-FILE ASSIG� TO OUTPUT-DEVICE" states

that the file “REPORT-FILE” is an output file. At this stage a

table named “SALES-PERSO�” is identified. Files can have two

organisations, sequential or indexed. This is stated by the

statements “ORGA�IZATIO� IS I�DEXED” or

“ORGA�IZATIO� IS SEQUE�TIAL”.

If the file's organisation is indexed, the “RECORD KEY IS...”

statement provides the key and the equivalent attribute extracted

from the Data Division is used as the key for the database table. If

the file's organisation is sequential, no key attribute is provided

and the system will create a new numerical attribute which will be

used as a key, in the same way as many relational database

systems do when you omit to define a key field. However, the user

will be alerted about this and he/she will be given the opportunity

to define a key and remove the one created by the system. The

table attributes are extracted exclusively from the Data Division.

Records may have different levels in COBOL and the top levels,

those not containing a PIC description, are ignored.

Figure 2: COBOL to XML Document

<?xml version="1.0" ?>

 <COBOLPROGRAM>

 <IDENTIFICATIONDIVISION>PROGRAM-ID. TEST3. REMARKS. SALES
QUOTA PROGRAM (INDEXED FILE)</IDENTIFICATIONDIVISION>

 <ENVIRONMENTDIVISION>

 <CONFIGURATIONSECTION>

 <SOURCE-COMPUTER>XYZ-1</SOURCE-COMPUTER>
 <OBJECT-COMPUTER>XYZ-1</OBJECT-COMPUTER>

 </CONFIGURATIONSECTION>

 <INPUT-OUTPUTSECTION>

 <FILE-CONTROL>

 <SELECT>SALES-PERSON-FILE ASSIGN TO INPUT-DEVICE </SELECT>
 <ORGANIZATION>ORGANIZATION IS INDEXED</ORGANIZATION>
 <ACCESS>ACCESS MODE IS SEQUENTIAL</ACCESS>
 <KEY>RECORD KEY IS SP-NUMBER</KEY>
 <SELECT>REPORT-FILE ASSIGN TO OUTPUT-DEVICE</SELECT>

 </FILE-CONTROL>

 </INPUT-OUTPUTSECTION>

 </ENVIRONMENTDIVISION>

 <DATADIVISION>

 <FILESECTION>

 <FD>FD SALES-PERSON-FILE LABEL RECORDS ARE OMITTED</FD>
 <R01>

 <R-NAME>01 SALES-PERSON-RECORD</R-NAME>
 <ATTRIBUTE>05 SP-NUMBER PIC 9999</ATTRIBUTE>
 <ATTRIBUTE>05 SP-NAME PIC X(20)</ATTRIBUTE>
 <ATTRIBUTE>05 SP-AMOUNT PIC 9(6)V99</ATTRIBUTE>

 </R01>

 <FD>FD REPORT-FILE LABEL RECORDS ARE OMITTED</FD>
 <R01>

 <R-NAME>01 REPORT-RECORD</R-NAME>
 <ATTRIBUTE>05 RT-NUMBER PIC 9999</ATTRIBUTE>
 <ATTRIBUTE>05 RT-NAME PIC X(20)</ATTRIBUTE>
 <ATTRIBUTE>05 RT-AMOUNT PIC 9999</ATTRIBUTE>

 </R01>

 </FILESECTION>

 <WORKING-STORAGSECTION>

 <W01>WS-EOF-FLAGE PIC X VALUE "N"</W01>
 </WORKING-STORAGSECTION>

 </DATADIVISION>

 <PROCEDUREDIVISION>

 <PARAGRAPH> MAIN-ROUTINE
 <STM>OPEN INPUT SALES-PERSON-FILE OUTPUT REPORT-FILE</STM>
 <STM>MOVE "N" TO WS-EOF-FLAGE</STM>
 <STM>READ SALES-PERSON-FILE AT END MOVE "Y" TO WS-EOF-FLAG</STM>
 <STM>PERFORM MAIN-LOOP UNTIL WS-EOF-FLAG IS EQUAL TO "Y"</STM>
 <STM>CLOSE SALES-PERSON-FILE</STM>
 <STM>STOP RUN</STM>

 </PARAGRAPH>

 <PARAGRAPH> MAIN-LOOP
 <STM>IF SP-AMOUNT GREATER THAN 500</STM>
 <STM>MOVE SPACES TO REPORT-RECORD</STM>
 <STM>MOVE SP-NUMBER TO RT-NUMBER</STM>
 <STM>MOVE SP-NAME TO RT-NAME</STM>
 <STM>MOVE SP-AMOUNT TO RT-AMOUNT</STM>
 <STM>WRITE REPORT-RECORD</STM>
 <STM>READ SALES-PERSON-FILE AT END MOVE "Y" TO WS-EOF-FLAG</STM>

 </PARAGRAPH>

 </PROCEDUREDIVISION>

 </COBOLPROGRAM>

5.1 COBOL Data Types
Data is composed of symbols and/or characters. The three basic

types of characters are: numeric characters or digits (0, 1... 9),

alphabetic characters or letters (a, b... z, A, B... Z), and special

characters (comma, decimal point etc.). Each category has a

special picture representation in COBOL, where the description of

an elementary item in the Data division which is its PICTURE

(PIC) clause determines its category. An alphanumeric input field

is described in the Data division with a picture clause containing

Xs and for numeric item COBOL uses 9s.

A numeric item can include a V (to represent a decimal point) and

S to represent a sign, see Figure 2 for examples. The signed input

field's picture does not count as a character position. A signed

field can be either positive or negative if the S is not used the field

can only be positive. The VALUE clause is used to initialise the

value of working field in the WORKING-STORAGE section.

This clause appears in the entry of the field's description

following the PICTURE clause.

5.2 SQL Data Types
The basic data types supported by SQL are: Character String,

Numeric String, Date and Time. Characters can either be of fixed

or variable length. Numeric values which are defined as some

types of numerical values are typically referred to as NUMBER,

INTEGER, REAL, DECIMAL and FLOAT. Standard SQL

supports DATETIME data types, which can be DATE, TIME,

INTERVAL, and TIMESTAMP. Date and Time data type can

contain a date and time portion in the format: DD-MM-YY

HH:MI:SS. Note that these are ORACLE types as it is our target

Database Management System.

5.3 Mapping COBOL Data Types to

ORACLE Data Types
As show in the previous subsections, although we have more ways

of representing data in ORACLE, the basic types are available in

both and Table 1 summarises the rules used for the transformation

of data types from COBOL to ORACLE.

Table 1. Data Types Transformation

Type COBOL ORACLE

Character String PIC X…X CHAR(n)

n-Character

String
PIC X(n) CHAR(n)

Variable Length

String

PIC X(n)

VARYING

VAR

CHAR2(n)

�umeric
PIC 9…9

PIC 9(n)
NUMBER(n)

Decimal Point
PIC 9…9V9…9

PIC S9…9V9…9
DECIMAL(p,s)

Floating Point

�umber

COMP-1

COMP-2
FLOAT(n)

Date
PIC DD-MM-YY

PIC X(n)
DD-MM-YY

At this level, once the table names and attributes are identified, we

use these rules to associate types to the attributes and the system is

ready to create the tables. The SQL Statement to create the table

representing the file described in the Environment division and

data division of the program given in Figure 2 is:

CREATE TABLE SALES_PERSO�_FILE

(SP_�UMBER �UMBER (4),

SP_�AME VARCHAR2 (20),

SP_AMOU�T �UMBER (6,2),

CO�STRAI�T SP_�UMBER_KEY

PRIMARY KEY (SP_�UMBER));

6. A� OVERVIEW OF COBOL A�D SQL

STATEME�TS
This section summarises the most common statements used by

COBOL and SQL. For a complete list of statements and operators

the reader is advised to consult specialised literature [3, 2].

COBOL statements can be divided into the following three

categories:

� Files and data manipulation statements: They include

statements to open and close files (OPEN, CLOSE),

read data from files (READ), write data to files

(WRITE) and move data in the computer's internal

storage (MOVE). To delete records from a file COBOL

uses DELETE and to update a record it uses REWRITE.

� Arithmetic statements: COBOL arithmetic statements

are ADD, SUBTRACT, MULTIPLY, DIVID, and

COMPUTE. Each statement has several forms that

depend on the data used in the computation and the

outcome of the output result. Sometimes these

statements are followed by the reserved word GIVING

(not included in the COMPUTE statement) that states

that the result is stored in the variable that follows

GIVING.

� Other statements: Like other programming languages,

COBOL uses an IF statement. An IF statement in

COBOL can take the simple one sided decision form

“IF Condition THEN Statements”, a two sided decision

form “IF Condition THEN Statements1 ELSE

Statements2” or the nested decision form. These are the

most diffcult statements to translate into SQL. Other

statements in COBOL are SEARCH to search for

records in a file and SORT to sort the records of a file

using a key.

SQL statements can also be divided into three categories:

� Table and data manipulation: This includes SELECT

to query data in tables, INSERT to insert data into a

table, UPDATE to update data in a table and DELETE

to delete data from a table.

� SQL Arithmetic statements and aggregate functions:

Aggregate functions operate on a single column and

return a single value. These functions are: COUNT,

SUM, AVG, MIN and MAX. The usual arithmetic

operators (*, +, - and /) are used for arithmetic

statements.

� Multi-table queries: When using more than one table,

SQL queries can become complex. Subqueries can be

used to further filter the selected data. Statements using

the operators JOIN, UNION, INTERSECT and

EXCEPT are also used.

The SELECT statement in SQL is the most important and used

one. Usually the SELECT statement contains other clauses that

specify extra conditions on the data selected. The general format

of a SELECT statement is [3]:

SELECT Specifies which columns to appear in the

output

FROM Specifies the table or tables to be used

WHERE Filters the rows according to some condition

GROUP BY Forms groups of rows with the same column

value

HAVING Filters the groups subject to some conditions

ORDER BY Specifies the order of the output

This statement is going to be used as the basis for developing the

SQL statements.

7. DEVELOPI�G SQL STATEME�TS

From the transformation point of view, COBOL statements can be

divided into three categories. The first category contains the

statements that are discarded by the system as they are not used in

the generation of SQL statements and do not have their equivalent

in SQL. A list containing these statements is created and named

StopWords. StopWords contains the following statements:

StopWords = [OPEN, READ, WRITE, CLOSE, STOP,

 ACCEPT, DISPLAY]

The second category of statements contains the statements that

have their equivalent in SQL and their transformation is straight

forward. This list is called StraightWords and is initialised as

follows:

StraightWords = [ADD, SUBTRACT, MULTIPLY, DIVIDE,

 SEARCH, SORT, DELETE]

The third category contains statement that can be (and should be)

translated to SQL but do not have their direct equivalent. We have

to use transformations to achieve the same result. This list is

called ComplexWords and is initialised as follows:

ComplexWords = [IF, IF...THEN, IF...THEN...ELSE, MOVE,

 REWRITE, PERFORM/UNTIL]

The LOBS-COQ approach to transform COBOL statements into

SQL is based on the PROCEDURE DIVISION node of the XML

document produced from the COBOL program. The

PROCEDURE DIVISION node is the parent of one or more

PARAGRAPH nodes. Each PARAGRAPH node in turn is

composed of one or more statements. Each statement is identified

and parsed using the COBOL syntax rules as defined in [2]. The

type of the statement is identified and relevant information

extracted if the statement belongs to the StraightWords list or

ComplexWords list. The statement is ignored if it belongs to the

StopWords list. We then use frames as the basis for the

development of the SQL statements. The information extracted

from the COBOL statements is used to fill the different frame's

slots. Usually, all the statements of a Paragraph will contribute to

the filling of the frame's slots and all the paragraphs of the

PROCEDURE DIVISION have to contribute too.

We used an incremental approach for the development of the

frames. We first started with some easy COBOL programs and we

used the frame defined for the SELECT statement described in

section 6 and shown in Figure 3 as the starting point. The aim of

the transformation process is to fill all the required slots of the

frame at the end of the procedure division analysis and then merge

the different parts to produce the SQL statements. We illustrate

our approach through some examples.

The simplest COBOL program would be the opening of a file and

the printing of its records to an output file as illustrated by the

program in Figure 2.

SELECT

WHERE

FROM

GROUP BY

HAVI�G

ORDER BY

[………………………………………]

[……………….]

Condition

Attribute

Condition

Attribute

Figure 3: The Frame for the SELECT statement

At this stage the tables and their attributes are identified and

information about the COBOL output files is recorded. Let us

consider the paragraph MAIN-LOOP and as a start we ignore the

first statement

“<STM>IF SP-AMOU�T GREATER THA� 500</STM>”

of this paragraph. The remaining statements is a set of “MOVEs”

from the Input File to the Output file. The name of the table

SALES_PERSON is used to fill the FROM slot of the SELECT

frame.

COBOL MOVE statements are usually transformed into SQL

SELECT statements. However, the first Statement containing the

MOVE SPACES will be ignored as SPACES is not an attribute of

the input file (SALES_PERSON_FILE). The processing of the

second statement would initialise the slot SELECT to

SP-NUMBER, the third will add SP-NAME and the fourth

SP-AMOUNT. The fifth and sixth statements will be ignored as

WRITE and READ belong to the StopWords list identified

earlier. At the end of processing this simple procedure division,

the following SQL statement is produced:

“SELECT SP_�UMBER, SP_�AME, SP_AMOU�T FROM

SALES_PERSO�_FILE;”

Now, let us bring back the IF statement and consider the full

program given in Figure 2. Now, we are only printing those

records which SP-AMOUNT is greater than 500. Note that the

condition is given first in COBOL and its parsing in this case is

very simple and the condition (the expression following the IF

statement until the period) is just copied to the WHERE slot of

the select frame. The remaining statements will be processed in

the same way and this would produce the following SQL

statement:

“SELECT SP_�UMBER, SP_�AME, SP_AMOU�T

 FROM SALES_PERSO�_FILE

 WHERE SP_AMOU�T GREATER THA� 500; ”

A case where MOVE is processed in a different way is when we

are dealing with two files and an attribute in one file is the record

key in another file. Let's assume we have two Files: the Stock File

and the Supplier File. The Stock file records have the following

attributes:

<ATTRIBUTE> 05 STOCK-�UMBER PIC 9999</ATTRIBUTE>

<ATTRIBUTE> 05 STOCK-DESC PIC X(20)</ATTRIBUTE>

<ATTRIBUTE> 05 SUP-CODE PIC 9999</ATTRIBUTE>

<ATTRIBUTE> 05 STOCK-PRICE PIC 9(4)V99</ATTRIBUTE>

<ATTRIBUTE> 05 STOCK-QUA�TITY PIC 9(6)</ATTRIBUTE>

and the Supplier File records have the following attributes:

<ATTRIBUTE>05 SP-CODE PIC 9999.</ATTRIBUTE>

<ATTRIBUTE>05 SP-�AME PIC X(20).</ATTRIBUTE>

<ATTRIBUTE>05 SP-ADDRES PIC X(20).</ATTRIBUTE>

We note that the third attribute in the Stock File record is the

supplier code, the same as the first attribute (key) of the supplier

file. The following COBOL code outputs all items of stock which

quantity is less then 100 together with the details of their supplier.

<PARAGRAPH>

MAI�-LOOP.

<STM>IF STOCK-QUA�TITY LESS THA� 100</STM>

<STM>MOVE SUP-CODE TO SP-CODE</STM>

<STM>PERFORM READ-SUPP.</STM>

<STM>READ STOCK-FILE AT E�D MOVE "Y" TO WS-EOF-

FLAG</STM>

</PARAGRAPH>

<PARAGRAPH>

READ-SUPP.

<STM>READ SUPPLIER-FILE I�TO SUPPLIER-RECORD

I�VALID KEY DISPLAY SP-CODE MOVE SPACES TO SP-

�AME</STM>

<STM>MOVE SPACES TO REPORT-RECORD</STM>

<STM>MOVE SP-�AME TO RT-SUP-�AME</STM>

<STM>MOVE STOCK-�UMBER TO RT-�UMBER</STM>

<STM>MOVE STOCK-DESC TO RT-�AME</STM>

<STM>MOVE STOCK-QUA�TITY TO RT-AMOU�T</STM>

<STM>WRITE REPORT-RECORD.</STM>

</PARAGRAPH>

In the MAIN-LOOP Paragraph, IF the quantity is less than 100,

we move SUP-CODE to SP-CODE. However, SP-CODE is not

an attribute of the output file but an attribute of another input file.

Therefore our system deduce that it is not a “SELECTION” but

we are looking for the Supplier record which attribute SP-CODE

equals the attribute of the item of stock SUP-CODE. This is

processed as a condition (equality of the two attributes) and added

to the condition already obtained from the IF statement. This

would result in the production of the following SQL statement:

SELECT SP_�AME, STOCK_�UMBER, STOCK_DESC,

STOCK_QUA�TITY

FROM STOCK_FILE, SUPPLIER_FILE

WHERE SP_COD_KEY = SUP_CODE A�D STOCK_QUA�TITY

LESS THA� 100;

Note that both input file names are added to the FROM slot. As

shown through these simple examples, the development of SQL

statements is based on the process described in Figure 4.

As mentioned earlier, we took an incremental approach to the

development of LOBS-COQ. Although the basic syntax used to

transform COBOL statements into SQL statement is developed, It

is the combination of several COBOL statement that makes it

sometimes difficult to produce the full SQL statements. For this

purpose, new rules are introduced with every new example. At

this stage the prototype is dealing with programs using up to two

files and around 15 lines of code and up to three paragraphs. All

the statements in the StraightWords are easily translated to SQL

and some of the ComplexWords list has been successfully

transformed.

Figure 4: The Transformation Process

8. CO�CLUSIO� A�D FUTURE WORK
In this paper we presented the first prototype of the LOBS-COQ

system that attempts to transform COBOL legacy systems into

Relational database schema and produce SQL statements for data

querying. We gave a general overview of the approach and

illustrated it using some examples. At this early stage the

prototype does not deal with some complex situations such as

nested IF statements. The system has not attempted yet to

transform the data stored in the files used by COBOL programs to

populate the tables that have been created. To test our programs,

we had to manually enter the data into the tables and run the

queries. We do not expect this to be a major problem as this has

been already done by some systems. The results obtained so far

are very encouraging and we still believe that relational databases

are a good and cheap way of transforming COBOL legacy

systems. The case studies used so far are academics and in the

future developments more complex, industry-oriented programs

will be used.

9. REFERE�CES
[1] Douglas Bell. Software Engineering A Practical Approach.

Addison-Wesley, 2000.

[2] ACM Mo Budlong. Teach Yourself COBOL in 21 days.

Macmillan Computer Publishing, 2nd edition, 1997.

[3] Thomas Connolly and Carolyn Begg. Database Systems A

Practical Approach to Design, Implementation and

Management. Addison Wesley, 3rd edition, 2002.

Identify the Procedure Division

 For each Paragraph do

 For each statement in the Paragraph do

 IF statement belongs to StopWords List

 ignore statement;

 ELSE

 Parse the COBOL statement;

 Identify the COBOL statement;

 Extract variables, conditions,etc. From COBOL

 Statement;

 Fill appropriate Frame slot;

 end

 end

Merge the frame's slots

Format the SQL statement

Produce the SQL Statement

[4] Kathi Hogshead Davis. Lessons learned in data reverse
engineering. In Proceedings of the 8th Working Conference

On Reverse Engineering, pages 323_327, 2002.

[5] Brown Gary DeWard. COBOL the failure that wasn't. http://

cobolreport.com/columnists/gary/05152000.htm, 1999.

[6] Helen M. Edwards and Malcolm Munro. RECAST: Reverse

engineering from COBOL to SSADM specification. In

Proceedings of the 15th international conference on Software

Engineering, pages 499_508, Baltimore, Maryland, United

States, 1993.

[7] Richard Millham. Investigation: Reengineering sequential

procedure-driven software into object-oriented event-driven

software through UML diagrams. In Proceedings of the 26th

Annual International Computer Software and Applications

Conference, pages 731--733, Oxford, England, 2002.

[8] Ikuyo Nagaoka, Katsuaki Sanou, Daisuke Ikeo, Michio

Tsuda, and Shin'ichi Akiba, A reverse engineering method

and experiences for industrial COBOL system, In

Proceedings of the 4th Asia-Pacific Software Engineering

and International Computer Science Conference, pages

220_228, Clear Water Bay, Hong Kong, 1997.

[9] Harry M. Sneed. Wrapping legacy COBOL programs behind

an XML-interface. In Proceedings of the 8th Working

Conference on Reverse Engineering, pages 189--197,

Suttgart, Germany, 2001

