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Abstract

This paper provides a method for generating a proof tree from an instance and a general logic
program, viz. one which includes negative literals. The method differs from previous work in the
field in that negative literals are first unfolded and then transformed using De Morgan’s laws, so
that the tree explicitly includes negative rules.

The method is applied to a real-world example, a large executable specification providing rules
for separation for two aircraft. Given an instance of a pair of aircraft whose flight paths potentially
violate seperation rules, the tree contains both positive and negative rules which contribute to the
proof.

1 Introduction

Logic programming languages such as Prolog include features for implementing meta-programs. Conse-
quently they may be used to implement meta-interpreters which generate proof trees, that is hierarchic
structures which represent proofs of successful queries.

Proof trees are important to logic program debugging, logic program analysis and explanation-based
generalisation (EBG) [1], a technique of machine learning which requires that a generalised proof tree
be generated.

A simple approach to debugging a logic program is to execute a test-set of queries, where the desired
outcome of each query is known prior to its execution. A query which fails when it was expected to
succeed or succeeds when it was expected to fail alerts the programmer to the presence of an error.
However this debugging strategy will not uncover all the errors in a program. A query that should
succeed may do so but for the wrong reasons. Furthermore parts of a logic program may be unreachable,
that is they will never be executed whatever the query. More sophisticated strategies which use proof
trees are needed to find such errors.

The ‘text-book’ meta-interpreters for generating proof trees [2, 3] are restricted to definite programs;
they cannot cope with general programs, that is programs which include negative literals. This restriction



severely limits their application because many logic programs contain negation, including the real-world
example described later in this paper. As far as these authors are aware (see Section 6), this is the first
paper to describe a meta-interpreter for generating proof trees which explicitly represent negative rules.

The remainder of the paper is structured as follows. Section 2 lists some definitions and denotation.
Section 3 explains how the meta-interpreter unfolds and then transforms negative literals. Section 4
describes how these ideas can be implemented in a logic programming language. Section 5 illustrates
the advantage of explicitly representing negative rules for a ‘real-world’ application. Relevant previous
work is reviewed in Section 6 which is followed by the Conclusion.

2 Preliminaries

We assume the standard logic program terminology, where a general clause has the form H <— B, with
head H and body B. B is composed of a conjunction of literals, L;, which are expressed Ly A Lo, ..., A L.
Other denotations are Ly, L, ..., Ly, or A, L;. In the latter case the limits will be understood as being
from unity to some appropriate finite number. In a similar manner Ly V Ly V, ...,V L, can be denoted
V; L;. Bold letters are used to denote finite sequences of syntactic objects, thus z; = ¢,...z, = ¢, is
denoted x = t. Given that a substitution # is a function from variables to terms, we write £ for the
result of applying 6 to expression E. If F is a formula, then V(F) denotes the universal closure of F,
where all its free variables are universally quantified. In a similar manner, 3(F) denotes the existential
closure of F.

2.1 Negation as Failure and Completion

SLD-resolution allows the derivation of positive consequences (namely, conjunctions of atoms) [4] from
Horn clause programs. Where negative consequences are desired, in general programs, SLD-resolution
is augmented with the Negation as Failure rule to become SLDNF-resolution. (See also [5, 6].) In order
to justify the use of negation as failure rule, Clarke [7] introduced the idea of the completion of a general
program and this is outlined as follows.

The completed definition of predicate p requires a new predicate ‘=" whose intended interpretation is
identity. Suppose predicate p (€ Prog) is defined by m statements of the form: p(t;) «— W;, where W;
is a conjunction of literals. The completed definition of p is a series of disjoined predicates of the form:

Vx(p(x) ¢ A1V ... An),

where each A; has the general form Jy;(x = t;) A W, where y; are the variables of the original
clause. Additionally, if ¢ is a proposition or predicate occurring in a program, where there is no program
statement with ¢ at its head, the completed definition of ¢ is Vx— ¢(x). (¢ is ‘undefined’.) This might
occur in a program automatically generated from a requirements specification.

For SLDNF resolution, positive literals are ‘deleted’ via resolution. The proposed solution [4] for
negative literals is (intuitively) as follows: the deletion of every negative literal is via a subsidiary
(finitely failed) tree. A proof tree for a query containing negative literals is composed of a ‘main’ tree
and subsidiary trees associated with negative literals. The subsidiary trees are ‘kept aside’ from the
main tree. For each node n associated with a negative literal, a subsidiary tree is linked to the main
tree via a function subs(n).

Safe negation: sufficient rules for safe negation are either that the negative goal must be ground
when called or that negated goals are in the form — 3 p(x,y), where non-ground variables x are bound
by the existential quantifier. For a full discussion of this topic see [4, 5].



3 Proof Tree Generation

3.1 Clause Shielding

A proof tree need not include all the clauses involved in a proof of an instance, for some clauses can be
‘shielded’ (this is related to the choice of ‘operational’ predicates in the EBG literature.) In the work
described here, shielded clauses are

1. ‘definitional’ predicates, whose proof is not required. (We assume a hierarchy where shielded
clauses have only shielded clauses in their bodies.) For a given predicate, rules associated with
it are either all shielded or all unshielded. In the case study presented in Section 5.1 these are
derived from auxiliary or domain axioms.

2. predicates ‘built-in’ by the Prolog system, such as ‘is’, ‘<’, etc.

3.2 Tree Generation with Negative Literals Shielded

First we consider the case where negation is shielded, in addition to 1 and 2 above. The definition
presented here is based on ‘traditional’ EBG tree generation described in [8]. A recursive function
gen_tree takes a non-empty goal G and a node n and yields an expression as follows. Our development
and notation follows that of [9], in order for later comparison. The tree generation is guided by an
instance a whose role is to decide which clauses are used in a resolution step. It produces a generalised
version of the proof of the instance which follows the proof. (The example in Section 3.2.1 shows both
proofs.) The tree generation is assumed independent of the computation rule. Consider root node n of
SLD tree labelled with instance Ga of G. Suppose G has the form

L,p(t),R,

where £, R are sets of conjoined literals left and right of p(t). Suppose non-empty G. Assuming p(t)a
is the atom selected at n then there are two cases to consider: clause p(t) can be shielded or unshielded.
If p(t) is shielded, then it is eliminated via resolution using other shielded clauses and gen_tree calls
itself recursively with goal argument (£,R) and node m. If clause p(t) is unshielded, suppose node m
is a child of n on a successful branch derived with clause p(s) where p(s) «— B. Node m is labelled
(L, B,R)ab where taf = saf. The clause p(s) «— B eliminates p(t) and gen_tree calls itself recursively
with goal argument (£, B, R) and node m. The tree gen_tree(G, n) is defined as:

gen_tree(G,n) = G:G=0 (1)
= p(t), gen_tree((L,R), m) : pisshielded; (2)
(t =s), gen_tree((L,B,R), m) : pisunshielded (3)

The equality (t = s) in (3) represents the instantiation of the new goal (£, B,R). Note that (2) includes
the case where the ’atom’ considered at n is a negated literal.

3.2.1 Example — Treel

We will use the following program to illustrate the different trees obtained through proof tree generation.
For reasons which will be explained, each clause is numbered.

\* clauses numbered from 101 to 104 *\
r(A) :- t(A), not__(p(A,Y)).

p(A, 1) :- m(A, X), Y is 12«X, Y < 20000 .



p(A, 2) :- m(A, X), Y is 12%X, Y < 24000 .
p(A, 3) :- m(A, X), Y is 12«X, Y < 36000 .

\* clauses numbered from 111 to 114 *\
m(a, 1000). m(b, 3000).

t(a). t(b).

Two kinds of tree are generated, one of which represents a proof of the given instance, the other
representing a generalisation of it. The identity number of the clause is also provided, where 'not’ is
given the identity of ‘built in’ predicates, viz. zero.

| 7- gen_trees(r(b), r(X), P, GenP).

P = [101, [r(b), [0,n0t__(p(b,_A))]1]1],
GenP = [101, [r(X), [0,not__(p(X,_B))11]1 7

3.3 Tree Generation Including Expanded Negative literals

In this section we consider the case where negation is not shielded. The philosophy of this method is
that the Negation as Failure rule and subsequent necessity of subsidiary failed trees is ‘pushed down’ to
the ‘shielded’ rules. A tree is generated which explicitly identifies failed rules involved in the proof of
the instance. For each branch, the tree generation continues until either the proof associated with the
branch is completed, or when the clauses concerned are ‘shielded’.

For the most part our second definition of proof tree expansion is the same as the first, apart from
the treatment of the case where the ’atom’ considered at n is a negated literal, previously regarded as
‘shielded’. In the example code presented above, a call to the tree generator will provide the following
response:

| 7- gen_trees(r(b), r(X), P, GenP).

P = [101, [r(b),[-102, [not__(p(b,1)), [0,not__(36000<24000)11,
-103, [not__(p(b,2)),[0,not__(36000<36000)1],
-104, [not__(p(b,3)),[0,not__(36000<20000)11111,

GenP = [101,[r(X),[-102, [not__(p(X,1)),[0,not__(_A<24000)]1],
-103, [not__(p(X,2)), [0,not__(_B<36000)1],
-104, [not__(p(X,3)), [0,not__(_C<20000)1111] ?

As can be seen each of the negated clauses is expanded out and is represented in the tree. Negated
clauses are provided with a negated identity number. Since there are three clauses with predicate head
p, all contribute to the proof.

The tree is constructed as follows. The difference between this and the previous tree is that goals
can take the form (£,— (£),R), as well as (£, p(t),R), where £ is a conjunction of literals.

We first suppose a goal (£, ¢(t),R). Thus suppose node m is a child of n on a successful branch
derived with clause = ¢(t), (viz. ¢(t) has failed), where the completed definition of ¢(x) is written in
the form

q(x) +— Fy1(x =t1)q(t1) V ... V Iyi(x = ti)g(tx)
— V,; dyilx=t;) A W;



(The set of ¢(t;) correspond to different clause heads matching ¢(x).) We are assuming that each of the
clause heads is from an unshielded clause. We have

= (Ayi1(x=t1)q(t1) V...V Iyr(x = ti)q(tx))
= Ayr(x=t1)(q(t1)) A ... A= A(x = t)yr(g(ti))
— A\, 0 Tyilx=t;) A W,

The above unfolding process is the first step in the expansion of the negative tree. The process stops
only when a component clause is shielded. For goals of the form (£,— ¢(t),R) the negated literal is
replaced by the equivalent A, = (Fy;i(t = ti)yi(q(t:))).

The introduction of the 3 is because the ‘not’ is a test and the instantiation of variables does not
affect £,R. Given an input goal (£,— ¢(t),R), gen_tree eliminates — ¢(t) and gen_tree calls itself
recursively for each goal argument — (Jy;(t = t;) A W;). The resultant expressions are then conjoined,
for it is necessary for each of the conjoined components, comprising the definition of ¢(t) to fail for ¢(t)
to fail.

The second stage of the process of dealing with negative literals consists of the transformation of
each clause body (= Jy;(t = t;) A W;), as follows. Suppose the clause body W; is a conjunction of
literals A\; L;. Then

- Ayt =t;) A /\j Lj) «— - Jy; /\j(t =t;)L;
— Vj(_' Jy;(t =ti)Ly).

(Note that the converse is not necessarily true.)

It is only necessary for one of the L; to fail for W; to fail, and there may be more than one sub-tree
associated with the failure of each W;. We thus consider one of the sub-trees and we suppose this to be
the one associated with Lj; we assume that L; fails. then with input goal £, (= Jy;(t =t;) A W), R,
the result is a further recursive call with new goal £, (= Jyi(t = t;) A L;), R.

An exception is the case where one or more of the disjoined literals is itself negative. Thus suppose
that L; is of the form = M, then the goal becomes £, M, R.

Hence the tree gen_tree(G, n) is defined as:

gen_tree(G,n) = - q(t),gen_tree((L,R), m) : p(t)is - ¢(t) and g(t) is shielded; (4)
= /\gen_tree(ﬁ, (= Ayt =t;) A W;),R),m) : p(t)is— q(t); (5)

i

gen_tree((L, (- Jyi(t =t;) A Lj),R), m) : p(t)is— /\ L;and

Lj is a positive literal which fails (6)
= gen_tree(L,M,R) : p(t)is— (= M) (7)

4 Implementation

In order to produce a robust version of the tree generator, information about the head and body of
every clause in the ‘theory plus background’ is stored in a Prolog structure. Each clause is provided with
an automatically generated identity number and the information as to its shielded ‘status’. This is for
efficiency and convenience as there may be many rules associated with a given predicate. (This is true
of the case study in Section 5.1.) The tree output consists of the identity number of each rule, together
with the rules themselves. If a rule whose identity number is Id fails, (i.e. its negation succeeds) then it
is provided with a new identity, —Id, in the proof tree, as in the example output of Section 3.3.



In gen_tree definition (6) above we need to obtain proofs of expressions such as = A, F;. Expanding
to obtain the disjunction \/,(— E;), we may find that ( since Prolog uses a left-to-right computation
rule) a given component is insufficiently instantiated. We thus recursively replace :

= (i) V = (Big1) <= = (Ei) V ((Bi) A= (Big1)).

5 Application to a Large Case Study

5.1 CPS

The case study is derived from part of the ongoing work of the IMPRESS project! [10]. The aim of the
project is the improvement of an existing formal requirements specification using methods from machine
learning such as explanation-based generalisation and theory revision. The existing specification is a
‘conflict prediction specification’ (CPS) for the control of aircraft flying in the eastern half of the North
Atlantic. The requirements, written in Many Sorted First Order Logic, consists of a theory of over
1,000 axioms, held in a tools environment supporting validation. (The development and validation of
the existing CPS is described in [11].)

Two of the tools components were a parser for identifying syntactic errors, and a prototyping tool
for generating an executable form of the CPS in Prolog. Batches of expert-derived test cases were used
to compare expected and actual results. Tests take the form of two flight plans in conflict violation with
one-another, or else separated to the required standard. Other validation strategies included reasoning
about the CPS’s internal consistency and producing a ‘Validation Form’ of the CPS written in structured
English. Each of the validation strategies uncovered errors in the initial encoding of the requirements,
and their use improved the accuracy of the model. However, tests may succeed for the wrong reasons,
and where tests fail (i.e the expert decision is at variance with the prototype’s decision) it is still very
difficult to identify the faulty or incomplete requirements.

Theory revision tools take an existing first order logic theory (in Prolog for example) and a test
(example) set as input. A revised version of the theory is output which will entail the examples. However
existing tools, such as [12], do not accept as input theories containing negation.

The current version of the CPS has been translated to sicstus Prolog, and the translation gives rise
to clauses corresponding to main axioms, and those (definitional) corresponding to auxiliary axioms and
domain objects. Both main and auxiliary contain general clauses, which allow negative literals in their
bodies. The translation mechanism deals with negation in two ways. Expressions which result in clauses
of the form — 32(¢(2)), are translated to ‘is not provable’, viz. \+ in sicstus Prolog. For all other forms
of negation, the goal must be ground, and this is checked. The executable form of the CPS is complex,
containing 50 unshielded rules, 250 auxiliary and domain object rules, and over 1000 facts concerned
with aircraft, airfields and flight plans.

5.2 Application to CPS

The target concept is of a pair of aircraft whose flight plans are ‘in conflict’. An instance of a pair
of flight plans is provided, together with aircraft identifiers, aircraft types etc. The flight plans involve
flight paths (sequences of flight segments) with latitudinal and longitudinal co-ordinates and flight levels.
Given the instance and concept goal, a proof is given of the conflicting flight plans. The following is a
tiny fragment of the rule tree, where rules are represented by numbers. A pictorial representation of this
fragment is shown in Figure 1.

HMProving the quality of formal REquirements SpecificationS



GenProof = [1,[[100056,100043,2, [[7, [[3, ...,10076]1], 8,[[10075]], ..

[[-30,[[-31,[[-10084,]1],-32,[[-1042,11111],..11 11 1

1 Aircraft in conflict

2 Segments of aircraft in conflict

Belongsto Belongsto

7 Vertical conflict 8 Lateral and longitudinal conflict

-30 Not deemed
|aterally separated

Time periods
overlap

-31 Not westerly and separated -32 Not easterly and separated

Not west of the eastern

@ Shanwick boundary

Figure 1: A Proof Tree Fragment.

6 Previous Work

Siqueira and Puget have described a method for generating a failed proof tree ([13]), namely, Explanation-
Based Generalisation of Failures (EBGF). A sufficient condition is derived from the failed proof tree
which is satisfied by the instance and ensures the failure of the goal. However clause bodies contributing
to the failed tree can contain only positive literals. The work has subsequently been extended [14, 9]:
EBGF has been used to aid the generation of trees for proofs which use SLDNF-resolution. General
clauses can be associated with the tree. ([9] also includes a review of other methods.)



6.1 EBGF - method

The method uses the definition of program completion (Section 2.1) as follows:
Given: A goal, G (a counterexample resulting in a failed proof tree).

Completed Definition and Unfolding: Each predicate p can be defined as a disjunction:
V... Va,(p(z, 2,...,2,) «— A1 V ...A,). Starting with G, we unfold each conjoined
component, A;. Recall that each A; is a conjunction of literals, we replace each literal with its
completed definition. The rewriting is completed when all the derived predicates are ‘operational’.

Simplification: The distributivity of ‘or’ over ‘and’ is applied to put the result into disjunctive form.
Negating the result gives a a conjunction of negated components, B;, where each B; is itself a
conjunction of literals: Vay ...V @y (p(21, 22, .., %) ¢— 2 By A ... A= By,).

Removal of Literals: The resulting generalisation may be very complex so a heuristic is used to remove
literals from each of the B;. Sufficient literals are retained to obtain a condition satisfied by the
counterexample.

6.2 EBGPF - extension

The method is extended by Schrédel in [14, 9], using traditional EBG described in [8]. For positive
literals, a traditional EBG tree is generated. However for negative literals a subsidiary tree is generated
via EBGF. The ebg tree is defined in a similar manner to gen_tree described by equations (1-3). However
a subsidiary ebgf tree is also defined as follows. If n is a node of a failed SLD tree with instance Ga,
where the set of p(t; «+— B; defines p, the children of n are the set of n;. Then

ebgf (G,n) = p(t), /\ ebgf (((L,R), n;) : p(t)isshielded; (8)

[3

\/(t = t;)ebgf (L, B, L), n;) : p(t) is unshielded (9)

3

The ebgf tree is joined to the main tree via the function subs(n) defined in Section 2.1. The gener-
ator recurses between EBG and EBGF. The derived formula contain negative goals, disjunctions and
existential quantifiers. It is then converted to a set of general clauses via translation rules provided in [5].

The difference between the method described and our work is that the ebgf tree is defined separately
from the ebg tree. In our work the failed clauses are redefined and integrated with the successful clauses.
Thus negation is ‘deferred’ to the leaf nodes of the tree. This has the advantage that the failed clauses
of interest, viz. the unshielded clauses are immediately identifiable.

The CPS has a large number of rules and resulting lengthy proof tree, and thus we feel that our
method is an improvement over ebg/ebgf just described.

7 Conclusions

The ‘text-book’ meta-interpreters for generating proof trees are limited to definite programs. A meta-
interpreter is needed which can generate proof trees which explicitly represent negative rules from general
logic programs. As far as these authors are aware this is the first paper to describe such a meta-
interpreter. The explicit representation of negative rules is achieved by first unfolding negative literals
and then transforming them using De Morgan’s laws.
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