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Abstract

This paper provides a method for generating a proof tree from an instance and a general logic

program� viz� one which includes negative literals� The method di�ers from previous work in the

�eld in that negative literals are �rst unfolded and then transformed using De Morgan�s laws� so

that the tree explicitly includes negative rules�

The method is applied to a real�world example� a large executable speci�cation providing rules

for separation for two aircraft� Given an instance of a pair of aircraft whose �ight paths potentially

violate seperation rules� the tree contains both positive and negative rules which contribute to the

proof�

� Introduction

Logic programming languages such as Prolog include features for implementing meta�programs� Conse�
quently they may be used to implement meta�interpreters which generate proof trees� that is hierarchic
structures which represent proofs of successful queries�

Proof trees are important to logic program debugging� logic program analysis and explanation�based
generalisation �EBG� ��	� a technique of machine learning which requires that a generalised proof tree
be generated�

A simple approach to debugging a logic program is to execute a test�set of queries� where the desired
outcome of each query is known prior to its execution� A query which fails when it was expected to
succeed or succeeds when it was expected to fail alerts the programmer to the presence of an error�
However this debugging strategy will not uncover all the errors in a program� A query that should
succeed may do so but for the wrong reasons� Furthermore parts of a logic program may be unreachable�
that is they will never be executed whatever the query� More sophisticated strategies which use proof
trees are needed to 
nd such errors�

The �text�book� meta�interpreters for generating proof trees �� �	 are restricted to de
nite programs�
they cannot cope with general programs� that is programs which include negative literals� This restriction
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severely limits their application because many logic programs contain negation� including the real�world
example described later in this paper� As far as these authors are aware �see Section ��� this is the 
rst
paper to describe a meta�interpreter for generating proof trees which explicitly represent negative rules�

The remainder of the paper is structured as follows� Section  lists some de
nitions and denotation�
Section � explains how the meta�interpreter unfolds and then transforms negative literals� Section �
describes how these ideas can be implemented in a logic programming language� Section � illustrates
the advantage of explicitly representing negative rules for a �real�world� application� Relevant previous
work is reviewed in Section � which is followed by the Conclusion�

� Preliminaries

We assume the standard logic program terminology� where a general clause has the form H �� B� with
head H and body B� B is composed of a conjunction of literals� Li � which are expressed L� � L�� � � � �� Ln �
Other denotations are L��L�� � � � �Ln � or

V
i Li � In the latter case the limits will be understood as being

from unity to some appropriate 
nite number� In a similar manner L� � L� �� � � � �� Ln can be denotedW
i Li � Bold letters are used to denote 
nite sequences of syntactic objects� thus x� � t�� � � � xn � tn is

denoted x � t� Given that a substitution � is a function from variables to terms� we write E� for the
result of applying � to expression E � If F is a formula� then ��F� denotes the universal closure of F �
where all its free variables are universally quanti
ed� In a similar manner� ��F� denotes the existential
closure of F �

��� Negation as Failure and Completion

SLD�resolution allows the derivation of positive consequences �namely� conjunctions of atoms� ��	 from
Horn clause programs� Where negative consequences are desired� in general programs� SLD�resolution
is augmented with the Negation as Failure rule to become SLDNF�resolution� �See also ��� �	�� In order
to justify the use of negation as failure rule� Clarke ��	 introduced the idea of the completion of a general
program and this is outlined as follows�

The completed de
nition of predicate p requires a new predicate ��� whose intended interpretation is
identity� Suppose predicate p �� Prog� is de
ned by m statements of the form� p�ti���Wi � where Wi

is a conjunction of literals� The completed de
nition of p is a series of disjoined predicates of the form�

�x�p�x� �� A� � � � �Am��

where each Ai has the general form �yi�x � ti� � Wi � where yi are the variables of the original
clause� Additionally� if q is a proposition or predicate occurring in a program� where there is no program
statement with q at its head� the completed de
nition of q is �x	 q�x�� �q is �unde
ned��� This might
occur in a program automatically generated from a requirements speci
cation�

For SLDNF resolution� positive literals are �deleted� via resolution� The proposed solution ��	 for
negative literals is �intuitively� as follows� the deletion of every negative literal is via a subsidiary
�
nitely failed� tree� A proof tree for a query containing negative literals is composed of a �main� tree
and subsidiary trees associated with negative literals� The subsidiary trees are �kept aside� from the
main tree� For each node n associated with a negative literal� a subsidiary tree is linked to the main
tree via a function subs�n��

Safe negation� su�cient rules for safe negation are either that the negative goal must be ground
when called or that negated goals are in the form 	 � p�x�y�� where non�ground variables x are bound
by the existential quanti
er� For a full discussion of this topic see ��� �	�





� Proof Tree Generation

��� Clause Shielding

A proof tree need not include all the clauses involved in a proof of an instance� for some clauses can be
�shielded� �this is related to the choice of �operational� predicates in the EBG literature�� In the work
described here� shielded clauses are

�� �de
nitional� predicates� whose proof is not required� �We assume a hierarchy where shielded
clauses have only shielded clauses in their bodies�� For a given predicate� rules associated with
it are either all shielded or all unshielded� In the case study presented in Section ��� these are
derived from auxiliary or domain axioms�

� predicates �built�in� by the Prolog system� such as �is�� ���� etc�

��� Tree Generation with Negative Literals Shielded

First we consider the case where negation is shielded� in addition to � and  above� The de
nition
presented here is based on �traditional� EBG tree generation described in ��	� A recursive function
gen tree takes a non�empty goal G and a node n and yields an expression as follows� Our development
and notation follows that of ��	� in order for later comparison� The tree generation is guided by an
instance � whose role is to decide which clauses are used in a resolution step� It produces a generalised
version of the proof of the instance which follows the proof� �The example in Section ���� shows both
proofs�� The tree generation is assumed independent of the computation rule� Consider root node n of
SLD tree labelled with instance G� of G � Suppose G has the form

L� p�t��R�

where L�R are sets of conjoined literals left and right of p�t�� Suppose non�empty G � Assuming p�t��
is the atom selected at n then there are two cases to consider� clause p�t� can be shielded or unshielded�
If p�t� is shielded� then it is eliminated via resolution using other shielded clauses and gen tree calls
itself recursively with goal argument �L�R� and node m� If clause p�t� is unshielded� suppose node m
is a child of n on a successful branch derived with clause p�s� where p�s� �� B� Node m is labelled
�L�B�R��� where t�� � s��� The clause p�s��� B eliminates p�t� and gen tree calls itself recursively
with goal argument �L�B�R� and node m� The tree gen tree�G �n� is de
ned as�

gen tree�G �n� � G � G � � ���

� p�t�� gen tree��L�R��m� � p is shielded� ��

� �t � s�� gen tree��L�B�R��m� � p is unshielded ���

The equality �t � s� in ��� represents the instantiation of the new goal �L�B�R�� Note that �� includes
the case where the �atom� considered at n is a negated literal�

����� Example � Tree�

We will use the following program to illustrate the di�erent trees obtained through proof tree generation�
For reasons which will be explained� each clause is numbered�

�� clauses numbered from ��� to ��� ��

r�A� �	 t�A�
 not���p�A
Y���

p�A
 �� �	 m�A
 X�
 Y is ��X
 Y � ���� �
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p�A
 � �	 m�A
 X�
 Y is ��X
 Y � ���� �

p�A
 �� �	 m�A
 X�
 Y is ��X
 Y � ����� �

�� clauses numbered from ��� to ��� ��

m�a
 ������ m�b
 ������

t�a�� t�b��

Two kinds of tree are generated� one of which represents a proof of the given instance� the other
representing a generalisation of it� The identity number of the clause is also provided� where �not� is
given the identity of �built in� predicates� viz� zero�

� �	 gen�trees�r�b�
 r�X�
 P
 GenP��

P � ����
�r�b�
��
not���p�b
�A�����


GenP � ����
�r�X�
��
not���p�X
�B����� �

��� Tree Generation Including Expanded Negative literals

In this section we consider the case where negation is not shielded� The philosophy of this method is
that the Negation as Failure rule and subsequent necessity of subsidiary failed trees is �pushed down� to
the �shielded� rules� A tree is generated which explicitly identi
es failed rules involved in the proof of
the instance� For each branch� the tree generation continues until either the proof associated with the
branch is completed� or when the clauses concerned are �shielded��

For the most part our second de
nition of proof tree expansion is the same as the 
rst� apart from
the treatment of the case where the �atom� considered at n is a negated literal� previously regarded as
�shielded�� In the example code presented above� a call to the tree generator will provide the following
response�

� �	 gen�trees�r�b�
 r�X�
 P
 GenP��

P � ����
�r�b�
�	��
�not���p�b
���
��
not����������������


	���
�not���p�b
��
��
not�����������������


	���
�not���p�b
���
��
not�������������������


GenP � ����
�r�X�
�	��
�not���p�X
���
��
not����A��������


	���
�not���p�X
��
��
not����B���������


	���
�not���p�X
���
��
not����C����������� �

As can be seen each of the negated clauses is expanded out and is represented in the tree� Negated
clauses are provided with a negated identity number� Since there are three clauses with predicate head
p� all contribute to the proof�

The tree is constructed as follows� The di�erence between this and the previous tree is that goals
can take the form �L�	 �E��R�� as well as �L� p�t��R�� where E is a conjunction of literals�

We 
rst suppose a goal �L�	 q�t��R�� Thus suppose node m is a child of n on a successful branch
derived with clause 	 q�t�� �viz� q�t� has failed�� where the completed de
nition of q�x� is written in
the form

q�x��� �y��x � t��q�t�� � � � � � �yk�x � tk�q�tk�
��

W
i �yi�x � ti� � Wi
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�The set of q�ti� correspond to di�erent clause heads matching q�x��� We are assuming that each of the
clause heads is from an unshielded clause� We have

	 ��y��x � t��q�t�� � � � � � �yk�x � tk�q�tk��
�� 	 �y��x � t���q�t��� � � � � � 	 ��x � tk�yk�q�tk��
��

V
i 	 �yi�x � ti� � Wi �

The above unfolding process is the 
rst step in the expansion of the negative tree� The process stops
only when a component clause is shielded� For goals of the form �L�	 q�t��R� the negated literal is
replaced by the equivalent

V
i 	 ��yi�t � tk�yi�q�ti����

The introduction of the � is because the �not� is a test and the instantiation of variables does not
a�ect L�R� Given an input goal �L�	 q�t��R�� gen tree eliminates 	 q�t� and gen tree calls itself
recursively for each goal argument 	 ��yi�t � ti� � Wi �� The resultant expressions are then conjoined�
for it is necessary for each of the conjoined components� comprising the de
nition of q�t� to fail for q�t�
to fail�

The second stage of the process of dealing with negative literals consists of the transformation of
each clause body �	 �yi�t � ti� � Wi �� as follows� Suppose the clause body Wi is a conjunction of
literals

V
j Lj � Then

	 ��yi�t � ti� �
V

j Lj ��� 	 �yi
V

j �t � ti�Lj
��
W

j �	 �yi�t � ti�Lj ��

�Note that the converse is not necessarily true��
It is only necessary for one of the Lj to fail for Wi to fail� and there may be more than one sub�tree

associated with the failure of each Wi � We thus consider one of the sub�trees and we suppose this to be
the one associated with Lj � we assume that Lj fails� then with input goal L� �	 �yi�t � ti� � Wi��R�
the result is a further recursive call with new goal L� �	 �yi�t � ti� � Lj ��R�

An exception is the case where one or more of the disjoined literals is itself negative� Thus suppose
that Lj is of the form 	 M � then the goal becomes L�M �R�

Hence the tree gen tree�G �n� is de
ned as�

gen tree�G �n� � 	 q�t�� gen tree��L�R��m� � p�t� is	 q�t� and q�t� is shielded� ���

�
�

i

gen tree�L� �	 �yi�t � ti� � Wi ��R��m� � p�t� is	 q�t�� ���

� gen tree��L� �	 �yi�t � ti� � Lj ��R��m� � p�t� is	
�

i

Li and

Lj is a positive literal which fails ���

� gen tree�L�M �R� � p�t� is	 �	 M � ���

� Implementation

In order to produce a robust version of the tree generator� information about the head and body of
every clause in the �theory plus background� is stored in a Prolog structure� Each clause is provided with
an automatically generated identity number and the information as to its shielded �status�� This is for
e�ciency and convenience as there may be many rules associated with a given predicate� �This is true
of the case study in Section ����� The tree output consists of the identity number of each rule� together
with the rules themselves� If a rule whose identity number is Id fails� �i�e� its negation succeeds� then it
is provided with a new identity� �Id � in the proof tree� as in the example output of Section ����
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In gen tree de
nition ��� above we need to obtain proofs of expressions such as 	
V

i Ei � Expanding
to obtain the disjunction

W
i �	 Ei �� we may 
nd that � since Prolog uses a left�to�right computation

rule� a given component is insu�ciently instantiated� We thus recursively replace �

	 �Ei � � 	 �Ei����� 	 �Ei � � ��Ei � � 	 �Ei�����

� Application to a Large Case Study

��� CPS

The case study is derived from part of the ongoing work of the IMPRESS project� ���	� The aim of the
project is the improvement of an existing formal requirements speci
cation using methods from machine
learning such as explanation�based generalisation and theory revision� The existing speci
cation is a
�con�ict prediction speci
cation� �CPS� for the control of aircraft �ying in the eastern half of the North
Atlantic� The requirements� written in Many Sorted First Order Logic� consists of a theory of over
����� axioms� held in a tools environment supporting validation� �The development and validation of
the existing CPS is described in ���	��

Two of the tools components were a parser for identifying syntactic errors� and a prototyping tool
for generating an executable form of the CPS in Prolog� Batches of expert�derived test cases were used
to compare expected and actual results� Tests take the form of two �ight plans in con�ict violation with
one�another� or else separated to the required standard� Other validation strategies included reasoning
about the CPS�s internal consistency and producing a �Validation Form� of the CPS written in structured
English� Each of the validation strategies uncovered errors in the initial encoding of the requirements�
and their use improved the accuracy of the model� However� tests may succeed for the wrong reasons�
and where tests fail �i�e the expert decision is at variance with the prototype�s decision� it is still very
di�cult to identify the faulty or incomplete requirements�

Theory revision tools take an existing 
rst order logic theory �in Prolog for example� and a test
�example� set as input� A revised version of the theory is output which will entail the examples� However
existing tools� such as ��	� do not accept as input theories containing negation�

The current version of the CPS has been translated to sicstus Prolog� and the translation gives rise
to clauses corresponding to main axioms� and those �de
nitional� corresponding to auxiliary axioms and
domain objects� Both main and auxiliary contain general clauses� which allow negative literals in their
bodies� The translation mechanism deals with negation in two ways� Expressions which result in clauses
of the form 	 � z �q�z ��� are translated to �is not provable�� viz� �� in sicstus Prolog� For all other forms
of negation� the goal must be ground� and this is checked� The executable form of the CPS is complex�
containing �� unshielded rules� �� auxiliary and domain object rules� and over ���� facts concerned
with aircraft� air
elds and �ight plans�

��� Application to CPS

The target concept is of a pair of aircraft whose �ight plans are �in con�ict�� An instance of a pair
of �ight plans is provided� together with aircraft identi
ers� aircraft types etc� The �ight plans involve
�ight paths �sequences of �ight segments� with latitudinal and longitudinal co�ordinates and �ight levels�
Given the instance and concept goal� a proof is given of the con�icting �ight plans� The following is a
tiny fragment of the rule tree� where rules are represented by numbers� A pictorial representation of this
fragment is shown in Figure ��

�IMProving the quality of formal REquirements Speci�cationS
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GenProof � ��
��������
������

 ���
 ���
 ���
�������
 �
���������
 ��

��	��
��	��
��	�����
��
	�
��	���
������
���� �� �

1  Aircraft in conflict

100056 10043

2  Segments of aircraft in conflict

7  Vertical conflict 8  Lateral and longitudinal conflict

3

10076 10075

-31  Not westerly and separated -32  Not easterly and separated

-10084

-30  Not deemed
        laterally separated

overlap
Time periods

Belongs to Belongs to

-1042
Not west of the eastern
Shanwick boundaryNot westerly

Figure �� A Proof Tree Fragment�

� Previous Work

Siqueira and Puget have described a method for generating a failed proof tree ����	�� namely� Explanation�
Based Generalisation of Failures �EBGF�� A su�cient condition is derived from the failed proof tree
which is satis
ed by the instance and ensures the failure of the goal� However clause bodies contributing
to the failed tree can contain only positive literals� The work has subsequently been extended ���� �	�
EBGF has been used to aid the generation of trees for proofs which use SLDNF�resolution� General
clauses can be associated with the tree� ���	 also includes a review of other methods��
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��� EBGF � method

The method uses the de
nition of program completion �Section ��� as follows�

Given� A goal� G �a counterexample resulting in a failed proof tree��

Completed De�nition and Unfolding� Each predicate p can be de
ned as a disjunction�
� x� � � �� xn�p�x�� x�� � � � � xn� �� A� � � � �Am�� Starting with G � we unfold each conjoined
component�Ai � Recall that each Ai is a conjunction of literals� we replace each literal with its
completed de
nition� The rewriting is completed when all the derived predicates are �operational��

Simpli�cation� The distributivity of �or� over �and� is applied to put the result into disjunctive form�
Negating the result gives a a conjunction of negated components� Bi � where each Bi is itself a
conjunction of literals� � x� � � �� xn�p�x�� x�� � � � � xn��� 	 B� � � � � � 	 Bm ��

Removal of Literals� The resulting generalisation may be very complex so a heuristic is used to remove
literals from each of the Bi � Su�cient literals are retained to obtain a condition satis
ed by the
counterexample�

��� EBGF � extension

The method is extended by Schr�odel in ���� �	� using traditional EBG described in ��	� For positive
literals� a traditional EBG tree is generated� However for negative literals a subsidiary tree is generated
via EBGF� The ebg tree is de
ned in a similar manner to gen tree described by equations ������ However
a subsidiary ebgf tree is also de
ned as follows� If n is a node of a failed SLD tree with instance G��
where the set of p�ti �� Bi de
nes p� the children of n are the set of ni � Then

ebgf �G �n� � p�t��
�

i

ebgf ���L�R��ni � � p�t� is shielded� ���

�
�

i

�t � ti�ebgf ��L�Bi �L��ni � � p�t� is unshielded ���

The ebgf tree is joined to the main tree via the function subs�n� de
ned in Section ��� The gener�
ator recurses between EBG and EBGF� The derived formula contain negative goals� disjunctions and
existential quanti
ers� It is then converted to a set of general clauses via translation rules provided in ��	�

The di�erence between the method described and our work is that the ebgf tree is de
ned separately
from the ebg tree� In our work the failed clauses are rede
ned and integrated with the successful clauses�
Thus negation is �deferred� to the leaf nodes of the tree� This has the advantage that the failed clauses
of interest� viz� the unshielded clauses are immediately identi
able�

The CPS has a large number of rules and resulting lengthy proof tree� and thus we feel that our
method is an improvement over ebg�ebgf just described�

� Conclusions

The �text�book� meta�interpreters for generating proof trees are limited to de
nite programs� A meta�
interpreter is needed which can generate proof trees which explicitly represent negative rules from general
logic programs� As far as these authors are aware this is the 
rst paper to describe such a meta�
interpreter� The explicit representation of negative rules is achieved by 
rst unfolding negative literals
and then transforming them using De Morgan�s laws�
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