Speeding up Parsing of
Biological Context-Free Grammars

Daniel Fredouille and Christopher H. Bryant*

The Robert Gordon University, Aberdeen, UK.
http://www.comp.rgu.ac.uk/research/cig
Email: {chb|df}@comp.rgu.ac.uk

Abstract. Grammars have been shown to be a very useful way to model
biological sequences families. As both the quantity of biological sequences
and the complexity of the biological grammars increase, generic and
efficient methods for parsing are needed. We consider two parsers for
context-free grammars: depth-first top-down parser and chart parser; we
analyse and compare them, both theoretically and empirically, with re-
spect to biological data. The theoretical comparison is based on a com-
mon feature of biological grammars: the gap - a gap is an element of
the grammars designed to match any subsequence of the parsed string.
The empirical comparison is based on grammars and sequences used by
the bioinformatics community. Our conclusions are that: (1) the chart
parsing algorithm is significantly faster than the depth-first top-down
algorithm, (2) designing special treatments in the algorithms for manag-
ing gaps is useful, and (3) the way the grammar encodes gaps has to be
carefully chosen, when using parsers not optimised for managing gaps,
to prevent important increases in running times.

1 Introduction

Among models used to represent sets of strings, formal grammars introduced
by Chomsky [1] have been the subject of many studies. Searls [2] made the link
between this formalism and structural phenomena found in biological sequences,
showing the capabilities and limits of this formalism to represent biological se-
quences families. Numerous types of grammar formats are used for biological
sequences analysis. Sub-regular patterns are used in PROSITE [3]; more complex
patterns have been designed using Definite Clause Grammars (DCG) [4], String
Variable Grammars (SVG) [5], PATSCAN patterns [6] or Basic Gene Grammars
(BGG) [7]. For all but PATSCAN patterns, parsing is realised through algo-
rithms available in the field of context-free grammar parsing: DCG and SVG
with depth-first top-down parsing, and BGG with chart parsing. In this article,

we focus on context-free grammars (CFG) parsers because they are generic!,

* Contact author

! CFGs can represent a wide range of grammatical constructs, and special treatments
can be easily added to the parsers to take into account constructs beyond context-
free.

and are well studied?. However, to the best of our knowledge, they have never
been analysed and compared when executed on biological data. Such a compar-
ison has become important because there is a growing need for efficient parsers
for biological grammars: the quantity of biological sequences is increasing daily
and biological grammars are becomming more complex.

Our preliminary experiments made it clear to us that the respective perfor-
mances of the considered parsers on biological data are closely related to a very
common feature of biological grammars: the notion of gap. A gap is a rule de-
signed to match any subsequence of the parsed string. This article compares the
algorithms both theoretically (for grammars containing gaps) and empirically on
biological strings and grammars. Our conclusions are: (1) the chart parser (CP)
possesses a significant advantage in terms of running time over depth-first top-
down parser (DFTDP), (2) designing special treatments for gaps in these parsers
is useful, and (3), when using parsers not optimised for gaps, the gap rule design
has to be carefully chosen to prevent important increases in running times.

After presenting the definitions (Section 2), we analyse the complexity of
the DFTDP and the CP with respect to gaps (Sections 3 and 4). This analysis is
then empirically validated on biological data (Section 5). The appendix contains
the proofs (or sometimes hint of the proofs due to space restrictions) for the
properties of the paper.

2 Definitions

Words, languages and grammars: For any finite set S, we denote by |S]
its cardinality and by S* its free monoid, i.e., the set of all sequences made by
concatenating 0 or more symbols of S. An element of S* is called a word over S.
The length of a word w is denoted by |w|, the word of length 0 or empty word is
denoted by €. Any set of words over S (i.e., any subset of §*) is called a language
over §. Languages can be represented by formal systems called grammars. The
grammars we consider in this paper are Contezt-Free.

Definition 1. A Context-Free Grammar (CFG) is a tuple G = (T,N,S,R)
where T and N are finite sets of symbols called respectively terminals and non-
terminals. 7 and N are disjoint and their union is denoted by V = TUN. S
is a nonterminal called the start symbol and R is the set of production rules;
each rule in R is of the form A — « where A € N is called the left part of the
rule, and o € V*. O

A CFG represents a language over 7 using the relation — defined by:
Vu,v eV*: u—=ve I (A—a) R, Jur, us € V*, u=wuiAuz, v=ujaus.

We denote by —* the transitive closure of —; if v —* v, v is said to derive from
u. The language L(N) generated by a nonterminal N is the set of words over T
derived from N, i.e., L(N) 2 {u € T*: N —* u}. The language represented by

2 Among others, in the field of natural language processing.

a grammar G = (T, N, S,R) is L(G) £ L(S).

Gaps rules: An unlimited gap is a nonterminal G such that L(G) = T*. For
fixed values lo,up € N, a limited gap is a nonterminal G such that L(G) = {u €
T*: lo < |u| < up}. Numbers lo and up are respectively the lower and upper
bounds of the limited gap, the value ra = up — lo is its range.

Gaps can be implemented using different sets of grammar rules. To define

these rules we use the following notation: N? denotes nonterminal N repeated
i times (e.g., N> = NN, and N° = ¢) and X is a nonterminal with rules
{X —t: t e T} Westudy the following unlimited gap implementations: the
left-recursive gap G; with rules {G; — ¢,G; — G, X}, and the right-recursive
gap G, with rules {G, — ¢,G, — X G, }. We study the following limited gap
implementations, with bounds lo and up fixed, and range ra = up—lo: the linear
gap G 1o,up, With rules {Gl,lt),up — Xlo Ilﬂ“a’ Ilﬂ“a - X X, —» X, X, — €},
and the quadratic gap G2,10.up, With rules {G2 15.4p — X'° brat U {Gh 0 —
X% : 4 € [0,ra]}. The linear and quadratic gaps are so called because they
respectively need, to represent the gap, a linear or a quadratic number of sym-
bols in function of ra. It can be checked that these implementations respect the
gap definitions, i.e.: L(G;) = L(G,) = T* and L(G1,10,up) = L(G2,10,up) = {u €
T*: lo < |u| < up}. We denote by Gaps the set of nonterminals we use to imple-
ment gaps, i.e., Gaps = {G}, G, X, X. } U{G1.10.up, G2,10,ups G 14y G pg + O, up,
ra € N,lo < up}.
Other notations: In the remainder of this paper we consider that: a grammar
G =(T,N,S,R) is given, with ¥V = T U N; that lower case letters u,v,w, ...
denote words over 7 with w being the word to parse by the grammar; that greek
letters a, 3, ... denote words over V and that lower case letters i, j,... denote
natural numbers.

For a word wu, u[i:j] (with i,j € [0,]u|], # < j) denotes the subword of
u starting at position ¢ and ending at position j excluded (e.g. abed[0:1] =
a, abed[2:4] = ed, abed[1:1] = €). w[i], u[i:] and u[:i] are respectively shortcuts
for w[i:i+1], u[iz|u|] and u[0:4].

3 Parsing gaps using depth-first top-down parsing

In this section we consider the study of the depth-first top-down parser (DFTDP)
with respect to gaps. Subsection 3.1 describes the principle of the DFTDP, then,
in Subsections 3.2 and 3.3 we study respectively the effect of the implementation
of gap rules on the DFTDP and a way of speeding it up when extra information
is available on which rules represent gaps.

3.1 The depth-first top-down parser

The DFTDP can parse words in any CFG which is not left-recursive, i.e. such
that VN € N : —=(N — a —* Np). Its worst complexity is non polynomial
(O(|w|'91Y), where |G| is the sum of the length of all rules in G. However, this

Algorithm 1 Depth-first top-down parser, the initial call is DFTDP(w,S) with
boolean accepted set to false.

Function DFTDP(u,)

if a = € then{ if u = € then {accepted < true; Stop algorithm}}

else if a[0] € N then{for all a[0] = A;...4,, € R do DFTDP(u, A ... Ana[l:])}
else if a[0] € T then{if u # ¢ and u[0] = @[0] then DFTDP(u[l:], a[1:])}

parser possesses the advantages of being very easy to implement, to need only
O(]G| x |w|) memory, and is considered to be fast for most grammars in practice.

The DFTDP uses the — relation to explore the space of all possible derivations
of S and tries to find one equal to the input word w. This space is explored in
a depth-first manner, and is pruned as soon as an incompatibility between the
input word and the derivation currently considered is found. It can be described
in a simplified manner by Algorithm 1. The word w is accepted by Algorithm 1
iff boolean accepted is true after execution.

3.2 Complexity of parsing gaps with DFTDP

The worst case execution time for the DFTDP is when the whole space of deriva-
tions has to be explored in order to reject a word. As we focus on gaps, we
consider this worst, case arising from the presence of a gap.

Concerning unlimited gaps, the DFTDP does not work on left-recursive rules
implying that the right-recursive gap implementation has to be used. Property
1 shows that the DFTDP has a reasonable linear behaviour in this case.

Property 1. For a call DFTDP(u, Ga), with u[|u|—1] # a, the number of recursive
DFTDP calls is linear in |ul.

Concerning limited gaps, from Property 2 we can expect the quadratic im-
plementation to be far more efficient than the linear one.

Property 2. For a call DFTDP(u, G1 jo,up) (resp. DFTDP(u, G210 up)), With |u| >
up, the number of recursive DFTDP calls is linear in lo and non polynomial (resp.
quadratic) in ra = up — lo.

Conditions u[|u| — 1] # a and |u| > up, respectively in Property 1 and 2,
ensure the worst case complexity is reached by forcing the parsed word u to be
rejected.

3.3 Adapting the algorithm

We have seen in the previous subsection which rules are adequate to represent
gaps when using the DFTDP. In this subsection, we consider the option of im-
plementing an algorithm based on the DFTDP, but adapted to gap rules. The
proposed adaptation consists in changing line 3 of Algorithm 1 to obtain a spe-
cial treatment of gap rules as shown by Algorithm 2. Property 3 shows that this
modification deals with any kind of gaps in linear time, compared to quadratic
or exponential behaviour given by Property 2.

Algorithm 2 Line 3 of Algorithm 1 with gap optimisation.

1: else if @[0] € N then

2: if o[0] is a gap then if @[0] is limited then let lo and up be its bounds
3: else let lo + 0 and up < ©

4; for all ¢ € [lo, min(|u|, up)] do DFTDP(u[i:], a[l:])
5 else for all a[0] - A;... A, € R do DFTDP(u, 4, ... Apa[l:])

Property 3. We denote by brTDP’ Algorithm 1 with modification of Algorithm
2, and by G a gap nonterminal with bounds lo and up (with lo = 0 and up = oo
if the gap is unlimited). The call DFTDP'(u, Gb), with b € T and u[|u] — 1] #b
generates a number of recursive calls linear in min(|u|, up) — lo.

4 Parsing gaps using chart parsing

We study in this section the behaviour of the chart parser (¢P) when it encoun-
ters gaps. Subsection 4.1 describes the cP, Subsection 4.2 examines the effect of
the gap implementation on it and Subsection 4.3 provides a way of speeding it
up when it is provided with extra information on which rules represent gaps.

4.1 Chart-parsing

The cP can parse any CFG (most CFG parsers are limited to subsets of CFG).
Its worst complexity is polynomial, O(Jw|?), and it has the advantage of repre-
senting all the alternative ways of parsing a sequence (potentially an exponential
number) into a structure of polynomial size.

We will not detail the whole algorithm, only its main abstract data types
and principles. For details on the algorithm, the interested reader can consult
[8,9]. The basic component of chart parsing is the item, this is a structure of the
form : R — « @ fQ@i, j. Such an item means that the a part of rule R — af can
derive wli, j], more formally:

a =% wli:j] (1)

Symbols e and @ are separators between respectively a and 3, and between (3
and the couple i,j. R is called the left part of the item, and indice j is called
the ending position of the item. Items are stored in a set called itemset. From
Equation 1, w is accepted by the grammar iff itemset contains an item of the
form S — a e @0, |w|.

In its most studied implementation due to Earley [10,11], the CP first inserts
(in itemset) items which end at position 0, and then iteratively fills itemset
with items ending at position j (j being incremented from 1 to |w|) . The cp
stops after inserting items for j = |w|. In the Earley implementation, items also
respect the following equation:

Iv,8 € V* such that: S =" yRé and v =" w:] (2)

Equation 2 represents the fact that items with a left part that cannot be reached
from S at position ¢ of w are useless to check the acceptance of w, and therefore
do not need to be stored. The only items which the Earley implementation stores
in itemset are those which satisfy both Equations 1 and 2.

4.2 Complexity of parsing gaps with chart parsing

We will compare the gap implementations by assessing their complexity using
the number of items the CP stores in itemset. The fewer items we need to store,
the more efficient is the cp.

Property 4. Let G = G, when considering right-recursive gaps and G = G|
when considering left-recursive ones. For [€ [0, |w]|], let 7, = {k € [0,]] : 3R —
a e GPBQj, k € itemset, R # G}, and p1 = min(P),, U {Jw| + 1}). Suppose
S # @, the number of items in itemset with G as left part is S) for right
recursive gaps, and 5] for left-recursive gaps with: S| = S; = 0 iff p1 > |w];
St = (1= 5p1/2+ p3/2) + [w](25 — p1) + [w?/2 and] < (2] + DIPpy| <
@lwl? + [w])| i pr < Jul.

From Property 4, for right-recursive and left-recursive gaps, itemset can contain
a number (resp. S;. and S}) of items in the worst case quadratic in the size of the
parsed word. However, in practice, |P|,| representing the number of positions
where a gap is started in w, it can be supposed small compared to |w|. Moreover,
biological grammars often model a pattern to be found somewhere in the parsed
word, implying the use of unlimited gap before the pattern, and in this case
p1 = 0. Considering these points, the following approximations can be made:
S/~ # + # and S] ~ 2% K * |w| where K is small, showing that right-
recursive gaps imply a better behaviour of the ¢P than left-recursive ones.

Property 5. For | € [0,|wl|], let Z1(l,ra) (resp. Z>(l,ra)) be the set of items in
itemset having [as ending position and with G ,, or X, (resp. G5 ,,) as left
part. We have: |7, (I,ra)| > |Zz(l,ra)| + 2ra

From Property 5, we can see that we will always have more items in itemset
when using linear limited gaps instead of quadratic limited gaps, the difference
being proportional to the ra = up — lo value of the gap for items ending at
position [. Considering all items, the difference can therefore be quite large (in
O(|Jw| * ra)) implying that the use of quadratic gaps is recommended for chart
parsing.

4.3 Adapting the algorithm

Some modifications of the cp have already been proposed to speed it up when
encountering particular rules: [10] propose optimisations linked with rules of the
form A — €, and in [7] an optimisation for gap rules is briefly explained. We
adapt this last one for the Earley implementation changing the algorithm the
following way: (a) Items of the form A — « e f@i,j with A € Gaps are not

introduced in itemset. (b) Each time an item of the form R — oo GBQ1, j, with
G a gap nonterminal, is inserted into itemset, we store R — aG ¢ Q¢, j into a
set called gapset. (c) Before the algorithm fills in itemset with items ending at
position k, we insert items R — aG e fQi, k iff item R — aG e fQi,j is present
in gapset and k € [lo+ j,up + j], where lo and up are the bounds of the gap, or
0, oo if the gap is unlimited.

With these modifications, no more item with G € Gaps as left part is inserted
in itemset, but some items are inserted in gapset. The size of gapset is in the
worst case of the order of O(|w|?) like the worst case given in Subsection 4.2. In
practice, a quadratic behaviour is in fact very unlikely to happen since, as we
already argued in Subsection 4.2, the number of position where a gap can start
should be small for non artificial data (i.e., the number of possible k in items of
the form R — « @ GBQi, k is small).

5 Experimental comparison

The material of the experiments is available at http://www.comp.rgu.ac.uk/
staff/chb/research/data_sets/cpm05/README.html. Running times have been
obtained on a SunBlade 2500 (under SunOS 5.8).

5.1 Parsing protein grammars and sequences

Data: The first experimental comparison uses patterns of the PROSITE? database
[3] as a source of grammars, and the UNIPROT? database [12] as source of se-
quences. We chose the PROSITE (resp. UNIPROT) database because it contains
the largest collection of hand validated protein patterns (resp. protein sequences)
in the world. PROSITE patterns can be seen as grammars with low expression
power. (They represent a subset of regular languages). Their wide use by the
bioinformatics community shows that they can be considered as potentially perti-
nent subparts of more complex biological grammars. Thus, their efficient parsing
is a prerequisite to the efficient parsing of more complex grammars.
Experimental setting: For each one of a random sample of 500 PROSITE pat-
terns, we sampled 1000 sequences from UNIPROT, and parsed these sequences
with a grammar equivalent to the pattern. For each pattern-sequence couple,
the parsing time has been stored.
Results: Table 1 gives the mean parsing times for pattern-sequence couples with
the different parsers and gaps implementation. A particular event explained later
made us separate one of the patterns from the others in the last column. The
means are taken over the 499 reminding patterns and the 1000 sequences parsed
in each pattern. Figure 1 presents these results graphically as a function of the
length of the parsed word.

Considering non optimised versions of the parsers, the CP with left-recursive
gaps and the DFTDP with right-recursive gaps have similar running times. For

% http://www.expasy.ch/prosite/
* http://www.expasy.uniprot.org/

Experiment Mean | Standard | ppocoossa Table 1. Mean execution

Algo. |Gaps time | deviation |mean time times per sequence on
cp G, Gi 4.37Tms| 81.4ms 32.0ms 499 PROSITE patterns and
CP Gy, G2 |4.36ms| 8l.4ms | 16.4ms for the particular pattern
CP optimised 1.54ms| 62.4ms 1.20ms PDOC00354.

CcP Gr, G1 1.88s 4.82s 32.0ms
CP G, G2 1.88s 4.81s 16.5ms
DFTDP|G,, Gi |4.35ms| 83.0ms | > 86.4s"

DFTDP|G,, G> |4.31ms| 82.4ms | 53.2ms *86.4s = 24h % 60mn *
DFTDP optimised|0.63ms| 49.8ms | 0.350ms 60s/1000 sequences
0.08 L CP Gl,G‘I‘ X k
CP GI,G2 —=— Z
007 L CP optimised +—*— //
" : DFTD Gr,G1 —&— e ' Z
° DFTD Gr,G2 —=— = e
§ 006 - DFTD optimised —o— Vi | .
2 YA
£ 0.05 + ‘.-/’ 7
€ oosl "/ = .
= o - S
£ 003 : 1
8
) 0.02 - B
0.01 - ° Ma

()

0

3000 4000 5000
Length of the parsed sequences

Fig. 1. Parsing time as a function of sequence length: each point is the mean parsing
time for sequences with length +100 around the value of the x-axis. Only a subset
of the standard deviations bars were plotted to keep the graph readable. Times for
sequences lengths greater than 5000 were removed because less than 20 sequences were
available for each mean. The results of the cp with G, gaps were removed due to their
large running time.

the CP, the unlimited gap implementation has a strong affect on running time,
confirming the recommendation of Section 4.3 to use left-recursive gaps. For both
parsers, important improvments have been obtained by using the modifications
described in Section 3.3 and 4.3 (speeding up the parsers by a factor larger than
6 for the DFTDP and 2 for the cp).

For all but one of the patterns, the experiments do not show any significative
difference between the linear and the quadratic gap implementations. The excep-
tion is the pattern PDOC00354: <x(10,115) [DENF] [ST] [LIVMF] [LIVSTEQ] Vx [AGP]
[STANEQPK]. This pattern comprises a limited gap with range 105, followed by
alternative choices for each position. The differences between this pattern and
other PROSITE patterns are the position of the gap (at the beginning of the pat-
tern) and its large range. This led to an important impact on the running time
depending on the limited gap implementation. The DFTDP with linear gap had
to be stopped on this pattern after 24 hours, showing the exponential blow-up
predicted in Section 3.2. As a consequence, mean running times on this pattern

have been separated from the 499 remaining in the last column of Table 1. From
this column we see that, as predicted in Sections 3.2 and 4.2, using the quadratic
gap implementation leads to better running times for all parsers, despite the fact
that the grammar is described with more symbols.

5.2 Parsing DNA grammars and sequences

This subsection compares parsing times for DNA grammars. These grammars
represent more elaborate concepts than those of PROSITE.

Data: Different formalisms exist to represent patterns in DNA or RNA se-
quences, the one proposed by PATSCAN [6] has been widely used by the DNA/RNA
modeling community. A collection of such patterns can be found on the UTR-
SITE® [13] which gives patterns modelling untranslated 3’ and 5’ regions of eu-
kariotic mRNAs. This database is used to evaluate our approach for different
reasons: (1) it is one of the rare places where a collection of patterns can be
found, (2) the high degree of variation in the patterns gives rise to a wide variety
of grammars providing a thorough test of the parsers, and (3) the patterns can
generally be translated without too much difficulty into context-free grammars.
The parsed sequences have been taken from UTRDBS, the sequence database of
UTRs associated with UTRSITE.

Experimental setting: PATSCAN patterns of UTRSITE were translated into a
CFG 7. Then, we randomly sampled 5000 sequences from the UTRDB database®.
Finally we parsed the 5000 sequences in each CFG using those parsers which
had a reasonable execution time on PROSITE patterns: DFTDP optimised, DFTDP
with quadratic limited gaps, CP optimised, CP with left-recursive gaps and with
either linear or quadratic limited gaps.

Results: Execution times for the different algorithms are given in Table 2.

The DFTDP had to be stopped for several grammars after running more than
24h to parse the 5000 sequences. A possible explanation of this is that there was
an exponential blow-up for this parser due to features of PATSCAN patterns that
were not present in PROSITE ones. This shows that the DFTDP is not adequate
to parse complex biological grammars (even if the results of Subsection 5.1 on
simple grammars were very good).

The optimised version of the DFTDP was even slower than the one using G,
and G2,10,up gaps. A likely explanation is based on the number Z of executions
of line 2 of algorithm 2. A blow-up implies Z to be exponential in the pattern
size, if the encountered nonterminals at line 2 are not often gaps, this line brings

® http://www2.ba.itb.cnr.it/UTRSite/

® http://www.ba.itb.cnr.it/srs7bin/cgi-bin/wgetz?-page+top

7 An exact translation was not possible in all cases, so we sometimes modified the
patterns to obtain a slightly more general form that could be translated. We also
removed some patterns that were “too simple”, for example if the pattern was just
a subword to be found in the sequence. Also, as we do not study here parsing with
error-correcting, error limits were removed.

® Because some of the sequences in the database are very short (some are only one
nucleic acid), we considered only sequences of length larger than 100.

Experiment Mean |Standard Table 2. Mean execution times per se-

Algo. |Gaps time |deviation quence on the 20 patterns of UTRDB

CcP G, Gy 40.3ms| 423ms

CcP G, G2 40.7ms| 429ms

CcP optimised | 27.8ms| 321ms For experiments with the * symbol, 4 ex-
DFTDP|G,, G2 * 832s 2.63s ecutions were stopped after running 24
DFTDP [optimised *| 940s 2.84s hours.

few speed-up while spending an amount of ressources proportional to Z (i.e.,
exponential) to be evaluated.

The cp, on the other hand, showed a very stable behaviour: even if it is
slower than the DFTDP for simple grammars, it seems more suitable for complex
ones. We also see that the optimisations we added to the cp can be useful but
are not needed if a grammar contains well designed gap rules.

6 Conclusion

We have studied two context-free grammar parsing algorithms. We have shown
that for both the original and optimised versions of parsers, the CP is faster with
respect to experimental data than the brTDP. Indeed, even if the DFTDP can run
much faster than the chart parser on simple biological grammars, its complexity
increases drastically when provided with more complex grammars.

For algorithms not optimized to manage gaps, both our theoretical study of
complexity, and our empirical study conclude that rules representing gaps have
to be carefully choosen such as to obtain reasonable parsing times. On the other
hand, when optimised algorithms can be implemented, an interesting speed-up
can be achieved: between a factor of % to 6 depending on both the considered
algorithms and data.

References

1. Chomsky, N.: Three models for the description of language. IRE Trans. on Infor-
mation Theory 2 (1956)

2. Searls, D.B.: The linguistics of DNA. American Scientist 80 (1992) 579-591

3. Falquet, L. et multi al..: Protein data bank. Nucleic Acid Research 30 (2002)
235-238

4. Pereira, F., Warren, D.H.D.: Definite clause grammars for language analysis - a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13 (1980) 231-278

5. Searls, D.B.: String variable grammar: A logic grammar formalism for the biological
language of DNA. Journal of logic Programming 12 (1993)

6. Dsouza, M., Larsen, N., Overbeek, R.: Searching for patterns in genomic data.
Trends in Genetics 13 (1997) 497-498

7. Leung, S.w., Mellish, C., Robertson, D.: Basic Gene Grammars and DNA-
ChartParser for language processing of Escherichia coli promoter DNA sequences.
Bioinformatics 17 (2001) 226-236

8. Grumne, D., Jacobs, C.J.: Parsing techniques — a practical guide. Ellis Horwood,
Chichester, England (1990)

9. Gazdar, G., Mellish, C.: Natural Language Processing in Prolog. Addison Wesley
(1989)

10. Aycock, J., Horspool, R.N.: Practical Earley parsing. The Computer Journal 45
(2002)

11. Jay, E.: An efficient context-free parsing algorithm. Commun. ACM 13 (1970)
94-102

12. Apweiler, R. et multi al..: UniProt: the universal protein knowledgebase. Nucl.
Acids Res. 32 (2004) D115-119

13. Pesole, G., Liuni, S.: Internet resources for the functional analysis of 5’ and 3’
untranslated regions of eukaryotic mRNA. Trends in Genetics 15 (1999) 378

Proofs of properties

Properties on the DFTDP

For properties 1 and 2, we denote by |DFTDP(v, «)| the number of DFTDP calls
realised when executing the call DFTDP(v, @).

Property 1 The call of DFTDP(u, G,b), with b € T, u[|u| — 1] # b, generates a
number of recursive DFTDP calls linear in |u].

Proof. We consider the value of [DFTDP(u, G,b)| and proceed by induction. The
base case is: |[DFTDP(e, G,.b)| = |T| + 3. Indeed:

|IDFTDP(e, Gb)| =1 + |[DFTDP (€, XG,b)| + |DFTDP(e, b)|
=1+ |[DFTDP (€, XG,.b)| + 1
=1 + 1+ Zicr|DFTDP(6, tGb)| + 1 =|T|+3

The induction step with a € T is: [DFTDP(au, G,-b)| = | T |+2+|DFTDP(u, G,b)|+
|[DFTDP(au, b)|. Indeed:
|IDFTDP(au, G, b)| =1 + |[DFTDP(au, X G,b)]| + |DFTDP(au, b)|
=1+ (14 Xigr||DFTDP(au,tG,b)|) + |DFTDP(au,b)|
=1+ (1+ |pFTDP(au,aG,b)|+|T|—1) + |[DFTDP(au,b)|
=1+ (1+ 1+ |pFrDP(u,G,b)| + |T|— 1) + |[DFTDP(au,b)|
We have |DFTDP(au, b)| = 1if @ # b and |[DFTDP(au, b)| = 14+ |DFTDP(u,€)| =
2 if @ = b. The induction step stays valid because the call DFTDP (e, €) will never
be considered due to the condition u[ju| — 1] # b (the algorithm will not stop
because of the condition of line 2, implying that all considered calls will be
executed). Therefore, we have the following recursive equation:
|IDFTDP(€,Grb)| = |T| + 3
{ |DFTDP(au, G,b)| = |T| + 2 + |[DFTDP(u, G,:b)| + |DFTDP(au, b)|
which admit as solution:
|DFTDP(u, Gb)| = |T]+ 3 + Z1<i<ju(|T] + 2 + [DFTDP(u, b)|)
= 7]+ 3+ [ul(T| +2) + Zi<ic)ug [DFTOP(u,)|
=|T|+3+|ul(|]T]|+2) + |u| + 1 + K where K is the number of letters equal to
bin u

= (Ju| + D)(|T|+3) + K. |

Property 2 The call DFTDP(u, G1 40,up) (resp. DFTDP(u, G2 1o,up)), With |u] >
ra generates a number of recursive DFTDP calls linear in [o and non-polynomial
(resp. quadratic) in ra = up — lo.

Proof.

We first consider the calls DFTDP(u, G1,10,up) (resp. DFTDP(u, G210 up)) gener-
ates a linear number of calls in function of lo, and then calls DFTDP(u, G ,.,)
(resp. DFTDP(u, G5 ,.,)), where the quadratic (resp. non-polynomial) complexity
is observed. Depending on the gap implementation, let G, v, denote G o,up OF
G2,10,up> and G, denote G ., or G ..
Call DFTDP(u, Gio,up):

We have: |DFTDP(u, Gio,up|) = 14+DFTDP(u, X'°G.,) (rule Gio,up — X'°G!,, and
line 3 of algorithm 1). We show by induction that: DFTDP(u, X'°G",) = (|T|+1)*
lo+|pFTDP(u, X!°GL,)|. The base case is:|DFTDP(u, X°GL,)| = |DFTDP(u, GL,)|.
For lo > 0, the induction step is:

|DFTDP(au, X'°GL,)| = 1 + Zier|DFTDP(au, tX°71)]

=1+|T| -1+ |pFTDP(au,aX)| = |T|+ 1+ [DFTDP(u, X' 1)

From the base case and the induction step, we have for lo > 0:
|DFTDP (au, X'°G.,)| = |DFTDP(u, GL,)| + Zi<i<io| T| + 1

= [DFTDP(u, G,)| + 1o (|T] + 1).

We now consider separately the proof for the linear and quadratic gap imple-
mentation.

Call DFTDP(u, G ,.,):
We have |DFTDP(u, G ,,)| = 1 + [DFTDP(u, X[?)| (rule G ,,
Algorithm 1).

We consider the value of |[DFTDP(u, X7*)| and proceed by induction. The
base case is:|DFTDP(u, X0)| = |DFTDP(u,€)| = 1 due to line 2 of Algorithm 1.
For ra > 0, the induction step is:

IDFTDP(au, X7%)| = 1 + |[DFTDP(au, X X7 1)| + [DFTDP(au, X727 1)|

=1+ (1 + Xie7|DFTDP(au, tX 1)) + |DFTDP(au, X ¢~ 1)|

=1+ (1+ |pFTDP(au,aX 1) + |T| = 1) + |DFTDP(au, X 1))

=1+ (1+ 1+ [DFTDP(u, X %")| +|T| —1) + |DFTDP(au, X1*~1)]

=2+ |T| + |pFTDP(u, X% 1)| + |[DFTDP(au, X 1))

We have |DFTDP (u, X *~1)| = [DFTDP(au, X7*1)| due to the condition |u| > ra
and therefore: |[DFTDP(au, X'®)| = 2+ |T| + 2|DFTDP (u, X% 1)]|

As Vi > 1, |pFTDP(u, XI*)| > f(|u]), where f(0) = 1 and Vi > 0, f(i) =
2f(i — 1) = 2¢, |pDFTDP(u, X7%)| > f(|u|) is not polynomial in i.

— X7, line 3 of

Call DFTDP(u, G ,.,):
We have [DFTDP(u,GY ,.,]) =1+ Xo<j<ra|DFTDP(u, X7)].

We consider the value of [DFTDP(u, X7)| (Vj > 0) and proceed by induction.
The base case is:[DFTDP(u, X°)| = [DFTDP(u, €)| = 1 due to line 2 of Algorithm
1. The induction step is for j > 0:
|DFTDP (au, X7)| = 1 + Ze7|DFTDP(au, tX771)|

=1+ [pFTDP(au,aX 1) +|T| -1 =14 1+ |prrDP(u, X7 ~H| +|T| -1
=|T|+1+ |DFTDP(u, X771)]|

From the base case and the induction step, we have Vj > 0:

IDFTDP(au, X9)| = 14+ Di<i<;(|T|+ 1) =1+ (T + 1)

And therefore:

[DFTDP (1, GY ,.0)| = 1+ Zo<j<ra| DFTDP(u, X7)| = 14 Zocjcra(1+j(|T] + 1))

=1+ (ra+1) + (|| + 1) » 2ol O

Proof of property 3 We denotes by DFTDP’ the algorithm 1 with modification
of algorithm 2, and by G a gap nonterminal with bounds lo and up (with lo =0
and up = oo if the gap is unlimited). The call DFTDP’(u, Gb), with b € T and
u[|u| — 1] # b generates a number of recursive calls linear in min(|u|, up) — lo.

Proof. We consider the value of |[DFTDP’(u,Gb)|. From line 4 of algorithm 2,
this imply recursive calls of the form |DFTDP'(uli :],b)| for ¢ € [lo, min(|ul, up)].
Therefore:

|DFTDP' (1, Gb)| = 1+ Xici0,min(|ul,up)] [DFTDP' (u[i 3], b)]|

DFTDP'(u[i :],b) calls imply a new call (and only one) iff u[0] = b, so if we denote
by K the number of b in u[lo : min(|u|, up) + 1], we have:

|[DFTDP! (u, Gb)| = 1 + (min(|u|,up) —lo) + K. a

Properties on the CP

When evaluating the performances of the cP, we will not count items in itemset
with X as left part neither those of the form N — € ® €Qi, j. Indeed counting
them would not realise a fair comparison between the gap implementations since
optimisations of the CP exist that suppress (the vast majority of) these items
from the itemset®.

For the proofs of this section, we will use the following notations: The sym-
bol G will represent G = G, when considering right-recursive gaps, G = G
when considering left-recursive gaps, G = G ,, for linear limited gaps and
G = {G},,} for quadratic limited gaps. For I € [0, [w]], let P, = {k € [0,]] :
IR — a e GBQj, k € itemset, R # G}, and p; = min(P, U {|w| + 1}).

Intuitively, P; is the set of positions in w0 : {4 1] where an unlimited gap can
be started, or where the range of a limited gap starts to influence the algorithm',
and p; is the first of these positions for w0 : |w| + 1] = w.

For these properties, we will also suppose that S & Gaps), indeed, the case
S € Gaps is not useful in practice (such grammars are too simple to be used in
practice), and taking them into account complexify the proofs.

9 Optimisation known under the name of look-ahead implies that most items with X
as left part do not have to be stored [8]; and an optimisation due to [10] implies that
items of the form N — ¢ e €@, j do not have to be stored either.

'% For limited gaps, as the rules G1ioup = X'°G1 .y 10 and G2ioup —> X'°Gh oy 10
are similar, they will not be useful to characterize the difference between the imple-
mentations, this is why we focus on rules G1 ., and G5 ,,.

Proof of property 4 In this subsection, for I € [0, |w|], the set of items in
itemset with G as left part and ending at position [are denoted Z,(I) for right-
recursive gaps and Z; () for left-recursive gaps.

Property 4 Suppose S # G, the number of items in itemset with G as left part
is S, for right recursive gaps, and S for left-recursive gaps with:

S, =5/ =0iff p1 > |w|

Sp = (1= 5p1/2+ p?/2) + |w]|(2.5 = p1) + [w]?/2 and S} < (2Jw]| + 1)|Ppy| <
2lwl* + Jw])] iff p1 < |wl.

Proof. Let | € [0, |w]|], from Lemma 1, itemset contains all and only items with
ending position equal to [and with G as left part of rule that are present in
the set Z,.(1) for right-recursive gaps and Z;(l) for left-recursive gaps. The size of
Z-(1) (resp. Z;(1)) can be easily deduced from Lemma 1, we denote it S,.(I) (resp.
Si(1)), with:
2+10—prifp <l
Sp(l) =< 1+1l—pyifpy =1 and Sl(l):{
0if p; > 1
If p1 = |w| +1, we have trivially S} = 5] = 0, otherwise (p; < |w|+ 1) we obtain
values for S, and S; by summing S, () and S, () for all possible I:

24| P if 1 &P
2« |P|+1ifleP

S = ZiepuSr(l) = Ziep w2+ 1-p1) -1

= (1=5p1/2+pi/2) + [w[(2.5 — p1) + Jw]?/2

St = ZiepupSi(l) = [Pl + Ziepo,w (2 * [Pi)

:>Sl’§|73|w||+2*|w|*|73|w||:>S{§|w|+2*|w|2 a

Lemma 1. Suppose S # G, then:

7. (1) = {G, - oXG,Ql1l:1>p} (r.1)
U{G, » X eG,Ql-1,1:1>p} (r.2)
U{G, = XG,eQi,l: keP k<i<l} (r.3)

and

Ti(l) = (G — oG XQLL: €} (1.1)
U{Gl—DGZOX@k:,l: k‘EPl} (1.2)
U{G - GXeQkl: kePk<lI} (1.3)

Proof. We use equations 1 and 2 to show respectively that G; — ¢G; X @Qi,l €
itemset A S # Gy is equivalent to i = IANl € P NS # Gy, and that G, —
e X (G .Qi,l € itemset NS # Gy is equivalent to i =IAN1>p A S # G,

From this first step, which corresponds to the content of line respectively 1.1
and r.1, we can show similar properties for lines r.2, r.8 and 1.2, 1.3. Due to
space restrictions the full proof is not included in the paper.

Proof of Property 5 We use the following definitions in this subsection: let
Z:(l,ra) be the set of items with G ,., or X, as left part of rule and [as ending
position present in itemset. Similarly, let Z5(l,7a) be the set of items with G ,.,
as left part of rule and [as ending position present in itemset.

Property 5 |Z;(I,ra)| > |Z2(I,ra)| + 2ra.

Proof. Lemma 2 shows which items are present in each of the Z;(l,ra) and
Z>(l,ra) sets. From Lemma 2 equations, we can see that the part 4.1 of Z; is
always larger than Z,, and that parts 4.2 and 4.3 of Z; have size ra, showing
that |Z, (I, ra)| > |Z2(1, ra)| + 2ra. a

Lemma 2. The Z;(l,ra) and the I5(l,ra) contents respects the following equa-

tions:

Ti(l,ra) D {G) . — Xt Fe X7 RQk 1 : ke Pryie[0,ratk—11} (4.1)
U{X, —»eXQll: keP,lelkk+ra[} (4.2)
U{X,»>XeQl—-1,1: ke Py, l€lk,k+ral} (4.3)

And

Iy(l,ra) = {G - X'"* e XiQk,l :keP, je[0,ra+k—1], [#Fk V j#0}

Proof. For I,(l,ra), the proof consists in first showing that G ,, — Xie
Xere—iQk,l € itemset A S # G ,rq is equivalent to k € PrAi =k —1+jA0<
i <k —1+ra by using equations 1 and 2. Then it can be shown from this first
result and some more use of equations 1 and 2 that this implies the presence of
at least the items of line 4.2 and 4.3 (other items are the ones comming from
different possible values for ra). For Ix(l,ra), the proof is:

Xt —* wlk,]
* '
I2’r‘a - Xl d X]@k;l € itemset * S _)* 7G2,T‘a6
S #G! &Iy oeV Lyt w0k] &
o 0<i+j<ra
S#GIQ,T‘U/
i=l-k
Im €N, S =" ’YIR(S, - 7laG,2,ra/86’
IR — aGIZ,TaB € R’ ; 7, —* U)[Om] =
I, eV a —* w[m:k]
0<j+l—-k<ra
P =1—k i=1—k
dn eN ¢
’ :¢ R— aepQm,k € itemset & ¢ ke€P
iR G" R ;
— oGy .0 € 0<j+l—-k<ra k—l<j<ra+k—I

a

