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Abstract. We are interested in using ILP to infer context-free gram-
mars (CFGs) representing sets of biological sequences. ILP systems are
well suited to this task in the sense that CFGs are often represented
as logic programs using the Definite Clause Grammar formalism. The
speed at which ILP systems can generate biological grammars has been
shown to be a bottleneck. When learning a biological grammar, training
sequences must be parsed repeatedly during the search and thus the ILP
system speed is dependent upon the efficiency of the parser. We tackle
this speed problem by providing ILP systems written in PROLOG with a
parser for CFGs. We show empirically that this reduces the overall exe-
cution time by an amount larger than 45% of the time that ILP systems
would normally spend parsing.
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1 Introduction

We are investigating how ILP systems can be improved for the task of acquiring
Context-Free Grammars (CFG) from sets of biological sequences (DNA, RNA
and proteins). We call such grammars biological grammars. Grammars have been
used with success to model biological sequences (e.g. with String Variable Gram-
mars [1]). However, the hand development of grammars is difficult and requires
expensive human expertise. Thus, given the enormous volume of data arising
from genome projects, there is a need to automate the acquisition of biological
grammars from sets of biological sequences. ILP is a natural choice for this task
since grammars are often represented by logic programs using the Definite Clause
Grammar (DCG) formalism [2], and ILP systems infer logic programs. In [3],
CPROGOL was used to infer biological grammars. In these experiments, although
the visited portion of the search space was quite restricted, the inference took
time of the order of days to complete. Such long training times imply that only
the exploration of a very limited number of research avenues can be tried. This
paper attempts to alleviate this bottleneck by taking a first step towards a more
efficient method of acquiring biological grammars.

Rather than design yet another ILP system to meet the particular require-
ments of this application, we have developed a fast Context-Free Grammar
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(CFQG) parser which can be used by standard ILP systems. During learning,
this parser, rather than the PROLOG deduction procedure, is used whenever
examples are parsed by inferred grammars. Consequently, this speeds-up the
computation of the coverage of the examples, and hence the inference process.
We explain in Section 2 how we introduced the parser in a PROLOG engine:
this is a necessary step for its use by a wide range of ILP systems. Section
3 then describes the incorporation of the parser into an ILP system. Data-
sets, programs and documentation for the experiments are available at http:
//www.comp.rgu.ac.uk/staff/chb/research/data_sets/ilp05b.

2 Introducing the parser in a Prolog engine

Method Our motivation for introducing a CFG parser in a PROLOG interpreter
(instead of directly in a given ILP system) is that the predicates associated to
parsing can then be used by any ILP system implemented in PROLOG.

Many algorithms have been designed to parse sequences in CFGs. However,
all but two of these algorithms are not adapted to either parsing of biological
grammars or parsing during an inference process. The two exceptions are depth-
first top-down parsing, in short DFTD, and chart parsing. We chose to integrate
a DFTD parser, rather than a chart parser, into a PROLOG interpreter because
we have shown elsewhere [4] that DFTD parsing is more efficient for the relatively
simple CFGs that we plan to generate using ILP.

The technical solutions to integrate a parser into a PROLOG engine are lim-
ited. Extreme choices are implementing the parser: using the PROLOG language,
as a stand alone program (and using system calls from PROLOG to access it),
or by modifying directly the code of a PROLOG interpreter. These solutions are
either generic and slow, or specific and fast. A compromise was found thanks to
the YAP PROLOG implementation [5]. YAP provides some mechanisms to add
user-defined built-in predicates implemented in C. More precisely, C functions
can be compiled into an object file which can be introduced at running time into
the YAP PROLOG interpreter. This enables dedicated functions of the object file
to be considered as built-in predicates of YAP, without changing YAP as such.
We therefore implemented the parser as a stand alone program in C, and added
an interface layer to download the parser in YAP, providing predicates related
to parsing.

Evaluation We compared parsing times of our parser with the YAP theorem
prover parsing times, on grammars and sequences that were encountered during
a biological grammar inference process. The particular process that we consid-
ered deals with neuro-peptide precursor (NPP) proteins [3]. Among the different
experiments reported in [3], we selected the one that took the longer to complete.
This experiment involved inferring on subsequences of the NPPs called middle.

From the 76 positive and 2910 random examples of middle used in [3], we
generated grammars by running an inference process with ALEPH [6]. The cost/
3 ALEPH predicate used during this inference was modified such as to save
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each encountered hypothesised clause (i.e., grammar rule) in a file. Running
the inference process generated 699 889 grammar rules in DCG form.

We parsed all middle examples in all the grammars obtained by the pre-
viously described process. This parsing was done using on one hand the YAP
theorem prover and on the other our DFTD parser called from YAP. Resulting
mean parsing times per sequence are shown in Figure 1. They are plotted respec-
tively as a function of the examples’ lengths and the inferred clauses lengths. The
total time for parsing all sequences in all grammars was 25h45 with YAp. With
our DFTD parser introduced in YAP, this time was reduced to 11h30. Figure 1
shows that not only is our parser much faster on average, but also that it has
a much more stable behaviour than YAap. Our parser therefore possesses some
potential to speed-up inference. The next section presents how to use it during
an ILP based biological grammar acquisition process.

3 Introducing the parser in ILP

The ALEPH ILP system [6] will be used during this section to illustrate our
points. The method to call the parser during inference is explained in Subsection
3.1. The experimental evaluation is presented in Subsection 3.2.

3.1 Method

An inference process takes basically place in two stages: (1) initialisation of the
parameters and data structures associated to inference, (2) inference. The use
of our parser follows these two stages: it first has to be initialised using the
background knowledge and examples, and then used during inference.

Initialisation The information that has to be given to the parser comprises the
grammar and the examples. However, the particular grammar rules and examples
which must be passed to the parser are not known in advance. Grammar rules
which were known a priori will be available from the background knowledge
but those that are to be learned do not, of course, exist before inference begins.



The set of examples that we need to parse can change during inference when,
for example, we use the cover-set algorithm. The background knowledge and
examples therefore only enable to realise a partial initialisation, which needs to
be completed for each evaluated clause. This partial initialisation is done after
ALEPH has stored the background knowledge and examples (i.e., after the read_
all/1 call). ALEPH predicates are then used to fill in the parser data structures:
the examples and grammar elements can be obtained from the example/3 and
determination/2 predicates of ALEPH.

Parsing during inference Two possibilities can be considered to use the parser
during inference. Solution (1) consider calling the parser in a user defined evalua-
tion function for the inferred clauses. Solution (2) consists in modifying the ILP
system itself such as to call our parser instead of the PROLOG theorem prover for
the coverage computation. Solution (1) can be seen as more generic since we do
not modify the ILP system itself. However, it requires the ILP system to pro-
vide access to its evaluation function. Solution (2) has to be implemented in an
ad-hoc manner in each ILP system, but does not need any requirement (except
that the ILP system has to be implemented in PROLOG). We have implemented
both solutions, the next paragraph describes briefly the first one.

In ALEPH, the cost/3 predicate can be used to define the inferred clause
evaluation function (using option set(evalfn,user)). A call cost(C, [P,N,
L],Res) provides the inferred clause (C), the count of positive and negative
examples covered (P and N), the inferred clause length (L). The user is then
supposed to unify the Res argument with the desired cost for clause C.

We are not interested in changing the evaluation score of the clauses; rather
we want to compute P and N using our parser. To do this, we told ALEPH at
initialisation not to compute the P and N values itself (option set(lazy_on_
cost,true)). At inference time, in the cost/3 predicate, we use the C value to
complete the grammar initialisation, and the ’$aleph_global’ (atoms_left,
atoms_left(Type,Left)) predicate to know the list of examples to parse. We
then call our parser to obtain P and N, and compute the cost function value (e.g.
Res is N+L-P, a classical cost value).

3.2 Evaluation

Method As in section 2, we use the middle dataset to test our approach.
The following implementations of the ILP system were tested!: i-YAP: Inferring
with ALEPH (unmodified, and therefore using YAP theorem prover); i-DFTD:
Inferring with ALEPH, the parsing being done by our parser embedded in ALEPH
code; i-DFTD-cost: Inferring with ALEPH, the parsing being done by our parser
introduced in ALEPH cost/3 predicate. For reasons that will become clear, we
also considered the implementation i-YAP-cost: inferring with ALEPH using the
YAP theorem prover, but called from the cost/3 predicate. We observed the
behaviour of the different algorithms with respect to the value of the nodes

! Each implementation infers the same set of rules if called with the same parameters.
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ALEPH parameter. This parameter corresponds to the limit on the number of
evaluated clauses for each example generalisation. Inference processes with i-
YAP, i-DFTD, and i-DFTD-cost implementations were started for different values
of the nodes parameter.

Results If the node value was less than 40000, the experiments ended cor-
rectly in a few hours. However, experiments with implementations i-YAP and
i-DFTD for a nodes value larger than 40000 had to be stopped after running
more than 4 days. A deeper analysis showed that it is likely that over a value
of 40 000 for the nodes setting, implementations i-YAP and i-DFTD needed more
memory than what was available?, which leads to an unpredictable behaviour
for YAp. Implementation i-DFTD-cost does not need as much memory as imple-
mentations i-YAP and i-DFTD (it recomputes the coverage at each evaluation
instead of storing it). Implementation i-DFTD-cost was therefore able to explore
a larger portion of the search space. In practice we want, such as to obtain bio-
logically pertinent grammars, to explore portions of the search spaces as large as
possible®. To compare our parser with the YAP theorem prover in this case, we
used implementation i-YAP-cost which calls YAP theorem prover for the parsing,
but which does not require ALEPH to store the coverage. As for implementation
i-DFTD-cost, implementation i-YAP-cost was able to explore larger search spaces.

The running times for implementations i-DFTD-cost and i- YAP-cost are plot-
ted in Figure 2 as a function of the nodes parameter values. The figure shows an

2 YAP was called with 5Mb of heap area, 100Mb of stack area, and 5Mb of Trail area.
Complementary experiments shown that the mentionned problem was still present
when using the maximum memory available on our computer (500Mb of stack area).
Our aim is not to evaluate the grammar pertinence, and therefore no test set valida-
tion has been realised. Our claim for the exploration of large portions of the search
space can however be justified by the number of randoms of the training set classified
as positives with the rules obtained for the different nodes values: inference with a
nodes value of 20000 gave 1573 such randoms (on a total of 2910), showing the
inadequacy of the inferred rules (the random are believed to contain a small propor-
tion of middles). The accepted number of randoms drops to 617 for nodes=200 000,
the obtained rules therefore having better chances to be biologically useful.
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improvement of running times when using our parser instead of the YAP theorem
prover. To evaluate this result, we have to take into account that the inference
process has to construct the clauses to evaluate (in addition to parsing). There-
fore, we obtained via some complementary experiments (not described here) an
estimate of the time not spent parsing (see Figure 2). This estimate provides a
base-line against which to compare our results, namely the absolute maximum
possible speed-up that can result from accelerating parsing during inference.
From this curve, we can see that we improved the parsing time by more than
45% to the optimum for all nodes parameter values, even reaching 85% for a
nodes value of 200000. This gives a gain between 18% (nodes=160000) up to
47% (nodes=20000) on total inference times, depending on the nodes value.
This gain seems to stabilise around 20% for nodes values larger than 80 000.
It is interesting to see that the deeper the search space visited, the greater the
proportion of the time spent to construct this space instead of parsing exam-
ples. This suggests other possible approaches to improve inference time for large
search spaces.

4 Conclusion

We have shown that ILP systems which are encoded in PROLOG can acquire bio-
logical CFGs more quickly by using our proposed parser instead of the PRoLOG
theorem prover. The gain in execution time is of more than 45% of the time that
such ILP systems would normally spend for parsing.

Moreover, the implemented system shows that algorithms available in specific
application domains can be integrated in a set of ILP engines by using only one
implementation. This seems an interesting alternative to the design of ad hoc
ILP systems for particular applications.

Acknowledgements This work is supported by EPSRC grant GR/S68682/01.
The authors would like to thank Simon Topp (company GlaskoSmithKline) for
his inputs about the NPP/middle data set.

References

1. Searls, D.B.: String variable grammar: A logic grammar formalism for the biological
language of DNA. Journal of Logic Programming 12 (1993)

2. Pereira, F., Warren, D.H.D.: Definite clause grammars for language analysis - a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13 (1980) 231-278

3. Muggleton, S.H., Bryant, C.H., Srinivasan, A., Whittaker, A., Topp, S., Rawlings,
C.: Are grammatical representations useful for learning from biological sequence
data? - a case study. Journal of Computational Biology 5 (2001) 493-522

4. Fredouille, D., Bryant, C.H.: Speeding-up parsing of biological context-free gram-
mars. In: Comb. Pat. Match.: 16th Symp. Volume 3537., Springer-Verlag (2005)

5. Damas, L., Santos Costa, V.: Yap. http://www.ncc.up.pt/ vsc/Yap (1989)

6. Srinivasan, A.: A Learning Engine for Proposing Hypotheses (Aleph). http://web.
comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph (1993)



