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Abstract. We are interested in using Inductive Logic Programming
(ILP) to infer grammars representing sets of protein sequences. ILP takes
as input both examples and background knowledge predicates. This work
is a �rst step in optimising the choice of background knowledge predicates
for predicting the function of proteins. We propose methods to obtain
di�erent sets of background knowledge. We then study the impact of
these sets on inference results through a hard protein function inference
task: the prediction of the coupling preference of GPCR proteins. All
but one of the proposed sets of background knowledge are statistically
shown to have positive impacts on the predictive power of inferred rules,
either directly or through interactions with other sets. In addition, this
work provides further con�rmation, after the work of Muggleton et al.,

2001 that ILP can help to predict protein functions.

1 Introduction

Inductive Logic Programming (ILP) has tackled many molecular biological ap-
plications such as: secondary structure prediction [1, 2], Mutagenic activity of
small molecules [3], prediction of genes' functions [4, 5] and prediction of func-
tions of proteins [6]. We are interested in this last application, where grammars
inferred from protein sequences have been shown, through a case study, to help
to predict the function of proteins. This paper provides a comparison of sources
of background knowledge that can be used in such tasks. It is also a con�rma-
tion, with stronger statistical evidence than [6], of the utility of ILP inferred
rules in predicting protein functions.

The next section introduces protein grammar inference via ILP. Section 2
presents di�erent sets of background knowledge predicates that can be used for
inference of grammars over proteins. Section 3 evaluates the main e�ects and
interactions of the di�erent sets using a reliability engineering method known as
Taguchi design [7], 10-folds cross-validations are used to draw the �nal conclu-
sions.
? Contact author, chb@comp.rgu.ac.uk.



Protein Grammar Inference with ILP

Patterns in the form of grammars have been used with success to model protein
families. The use of such grammars is twofold: (1) they can be used to anno-
tate sequences of unknown function, providing molecular biologists with a likely
function for such sequences; (2) they can help biologists to understand how bio-
logical functions are realised because the grammar structure represents common
points between sequences of similar functions. Many grammar formalisms have
been used, including String Variable Grammars (SVG) [8], Patscan patterns [9],
Prosite patterns [10, 11], Basic Gene Grammars (BGG) [12] and Probabilistic
Regular or Context-Free Grammars [13, 14]. The hand development of gram-
mars, using for example SVG or BGG formalisms, is diÆcult and requires ex-
pensive human expertise. Moreover, some patterns might be too subtle to be
recognised by a human expert. Thus, given the enormous volume of data aris-
ing from genome projects, the acquisition of grammars from sets of biological
sequences needs to be automated.

ILP has two advantages in this application domain: �rst ILP infers logic pro-
grams, and logic programs have been shown useful to represent hand designed
protein grammars (e.g., with SVG [8]); second, unlike most machine learning
techniques, ILP is able to bias inference to take expert knowledge into account.
This is certainly an advantage in this application domain since, as protein se-
quences are not just sequences but represent molecules with physical and chem-
ical properties, expert knowledge is often available. However, as providing more
background knowledge predicates enlarges the search space, a compromise be-
tween the space size and the amount of knowledge introduced has to be found.

Di�erent approaches to grammar learning with ILP have been considered,
mainly by Cussens and Pulman [15] and Muggleton et al. [6]. These papers
di�er in two main points. First the application in [15] is natural language while
the one in [6] is molecular biology. Second, the logic representation in [15] uses
chart parsing tables, while De�nite Clause Grammars (DCG) [16] are used in
[6]. Our inference approach takes its roots in the work of Muggleton et al. [6]
and can be summarised as follows. The inference process takes as inputs: (1)
examples (and counter-examples if available) of the form target(L,[]). where
L is a list representing the primary structure of the example protein, i.e., the
sequence of its amino-acids (e.g., L=[n,n,e,v, : : : ]) and [] is a list which
is empty i.e., has no elements; and (2) background knowledge predicates of
the form predi(+IL,-OL). where IL is the input list of amino-acids, and OL

is the output list, which is a suÆx of IL, obtained by removing the amino-
acids matched by the predicate from IL. From these, the inference process infers
rules of the form target(A,B):- pred1(A,C), pred2(C,D), : : : predn(X,B).

which maximises the score function of the ILP system. For further details see
[6].

This study proposes sets of background knowledge predicates for protein
grammar learning (i.e., the predi), and a statistical study of the inuence of
these sets on the predictive power of inferred rules.



BKS Example predicate Rules

Let a/2 a([a|B],B).

Pro tiny/2 tiny([a|B],B). tiny([g|B],B). tiny([s|B],B)

Gu gap/2 gap(A,A). gap([ |A],B):-gap(A,B).

Gs x0 1/2 x0 1(A,A). x0 1([ |A],A).

Sp or Sn dry/2 dry([d,r,y|B],B).

Pa pratt1/2 pratt1(A,B):- h(A,C), t or i(C,D), x0 1(D,E),

tiny(E,F), t(F,B).

t or i([t|A],A). t or i([i|A],A).

Ps pratt sub1/2 pratt sub1(A,B):- h(A,C), x0 1(C,D), t or i(D,E).

Fig. 1. Examples for the di�erent BKSs studied in this paper.

2 Protein Sequence Background Knowledge

We can split the background knowledge into two main categories: general molec-
ular biology knowledge (Subsection 2.1), and knowledge speci�c to each partic-
ular data-set (Subsection 2.2). In the following, a set of background knowledge
predicates obtained by a common procedure is denoted by BKS (Background
Knowledge Set).

2.1 General Molecular Biology Knowledge

This subsection considers expert knowledge which can a-priori be considered
relevant for any protein grammar inference process. We can split such knowl-
edge in two parts: (1) amino-acid letters and their physico-chemical properties,
(2) gaps. Except for some gaps predicates, these predicates have already been
used to infer biological grammars in [6].

Amino-Acid Letters and Properties The two �rst BKSs we consider are
predicates matching exactly one amino-acid letter (denoted by Let), and pred-
icates matching sets of amino-acid with common physico-chemical properties
(denoted by Pro). The use of these BKSs is motivated by the knowledge that
the conservation { of amino-acids for Let, or of physico-chemical properties for
Pro { at some positions in the proteins can often help predicting the protein
function. Di�erent physico-chemical properties can be considered; for this work,
we used those proposed by [1] and also used in [6]. Examples of predicates for
the Let and Pro BKSs are given in Figure 1.

Gaps Protein sequences contain parts participating to the overall structure of
the molecule but which are either not directly relevant to the function or which
cannot be characterised by the provided background predicates. To match such
parts of the protein, we can use predicates called gaps ; we consider two types
of gaps: unlimited and short gaps. An unlimited gap is a predicate which can



match any sequence. We will denote this BKS by Gu. There is just one predicate
for Gu, namely gap/2 (see Figure 1). The second BKS, short gaps, denoted by
Gs, contains predicates matching sequences with small length (we considered
predicates matching sequences with lengths from 0 to 1, 0 to 2, 1 to 1, 1 to 2,
and 2 to 2). As an example the predicate matching sequences with lengths from
0 to 1 is given in Figure 1. While unlimited gaps can cover large uncharacterised
parts of proteins, short gaps can help the discovery of well conserved groups
of amino-acids separated by a few, less conserved, amino-acids. Some biological
grammars contains gaps matching a range of large lengths. In this work, we
considered that they can be approximated by the gap/2 predicate.

2.2 Sequence Family Knowledge

In addition to the generic BKSs discussed above, BKSs on the particular pro-
tein family under study are available. These BKSs can be obtained from two
sources: from experts on that protein family, or by automatically processing the
examples. Since the availability and quality of background knowledge provided
by experts can vary, it is not taken into account in this study. We therefore focus
on knowledge that can be automatically extracted from the training examples,
before inference.

Subsequences We consider providing exceptionally frequent subsequences of
the positive examples to the ILP system. We proceed in four steps. During step
(1), we extract subsequences that are present in at least 10% of the positive
training set. This enables inferred rules using the subsequences to cover a rea-
sonable amount of examples. Let Obs(s) be the number of positive examples
containing subsequence s. During step (2), we de�ne a distribution over sub-
sequences and compute for each subsequence s the number of times, denoted
Exp(s), s is expected to appear in the examples. We consider two distributions
detailed in the paragraphs below. In step (3), we score each subsequence us-

ing the value (Obs(s)�Exp(s))2

Exp(s) . This score function was proposed in [17] for the

extraction of exceptional subsequences in biological sequences. In step (4) the
subsequences are ranked using the score and only the best 40 are kept. The next
two paragraphs detail the two distributions used for step (2).

Distribution over the positive examples Using a distribution based on the positive
examples enables to detect subsequences describing the positive examples. To
obtain such a distribution, we use Verbumculus [17]. Verbumculus trains
a Markov Model (MM) on the provided sequences. The expected frequency of
the subsequences with respect to the MM distribution can be extracted from
Verbumculus output. The order of the MM is an important parameter: when
an order of O is taken, only subsequences longer than O + 1 have frequency
which can be di�erent from the MM expected frequency. To use the maximum
amount of information available in the positive examples, we therefore trained a
MM of order L�2 to obtain the expected frequencies for subsequences of length
L. The subsequences obtained using this distribution are denoted by Sp.



Distribution over the negative examples Subsequences generated from the above
distribution may be present in the negatives as well as in the positives. Subse-
quences discriminating between positive and negative examples can be obtained
by using a distribution based on the set of negative examples. In this case, the
distribution and the extracted subsequences are not obtained from the same set
of sequences. In consequence we can use a simpler method than the one proposed
for the previous distribution. Instead of using a MM, the expected frequency of
a subsequence is estimated by Exp = count(sub) � P

N
, where count(sub) is the

number of negative examples containing the subsequence, and P and N are re-
spectively the positive and negative training set size. The subsequences obtained
using this distribution are denoted by Sn.

Pratt In addition to subsequence extraction, software already exist to extract
common points in protein sequences and represent them as patterns. The most
popular is certainly Pratt [10]. The patterns inferred by Pratt are obtained
using only positive examples. Pratt patterns can be seen as simpli�ed regu-
lar expressions, an example of such a pattern is: H-[TI]-x(0,1)-[KRH]-T. An
equivalent DCG is provided in Figure 1, line Pa. Such patterns are widely used
by molecular biologists, as shown by their availability in the Prosite database
[11]. We propose to use these patterns as they stand (BKS denoted by Pa) or to
extract smaller patterns from them (denoted by Ps). For Ps, we extracted all sub-
patterns containing two non gap elements. For example, sub-patterns H-[TI],
[TI]-x(0,1)-[KHR] and [KHR]-T can be extracted from the above pattern (see
also Figure 1, line Ps). This second usage aims at compensating for the fact that
Pratt cannot take into account counter-examples: it potentially returns pat-
terns frequent in both the positive and negative examples sets. Re�nements of
Ps by the ILP system could help the creation of patterns rejecting the negatives.

3 Evaluation of Background Knowledge E�ects

Subsection 3.1 presents the inference task. Subsection 3.2 explains the experi-
ments that evaluate the inuence of the di�erent BKSs on inference and subsec-
tion 3.3 discusses the experimental results. Experimental materials are available
at: http://www.comp.rgu.ac.uk/staff/chb/research/data_sets/ecml06/bk.

3.1 Description of the Inference Data and Task

Data-set G-protein coupled receptors (GPCRs) are the biggest single class of
receptors in biology. An understanding of how they couple with speci�c classes
of G-proteins is vital for further comprehending the function of the receptor
within a cell. The data set consists of two sets of sequences representing two
qualitatively distinct classes, Gi/o and Gs/q, of GPCRs [18]. Gi/o and Gs/q are
the coupling speci�city of the GPCRs proteins. Data allowing the classi�cation
of these proteins into the two sets is proprietary to GlaxoSmithKline (GSK),
the industrial collaborator of this project. The Gi/o and Gs/q data-sets contain



64 and 126 sequences respectively. The task we consider is to infer rules which
classify GPCRs as either Gi/o or Gs/q. It is possible that some GPCRs have
both the Gi/o and Gs/q properties, however the sequences in our data-set are
known to belong only to one of these classes.

Di�erent papers tackle the prediction of GPCR coupling using machine
learning. These include the use of regular expressions, Na��ve Bayes and Hid-
den Markov Models (see [19] for a good overview). The state of the art methods
providing the best classi�cations are very specialised to the GPCR coupling
prediction task [19], showing the diÆculty of the task. Our aim in this paper
is not to provide a better classi�er than the existing ones, but to evaluate the
e�ect of the BKSs on this hard inference task, using generic ILP methods.

GPCRs have a characteristic 7 membrane-spanning regions and thus have
regions outside the cell, within the cell membrane and inside the cell. It is be-
lieved that the G-protein binding property depends only on the subsequences of
GPCRs situated inside the cell. We therefore only considered these four intra-
cellular subparts during the inference processes. This means that the original
data-set can be separated into eight sets, four containing Gi/o sequences and
four containing Gs/q sequences; the four data-sets associated to each class cor-
responding to the four intra-cellular subparts. The length of these subsequences
varies from 11 to 23 in the �rst subpart, from 16 to 42 in the second, 21 to 245
in the third, and �nally 21 to 172 in the fourth. Because the limits of subse-
quences in each subpart are not always well de�ned, we decided to infer patterns
conserved inside the subparts, therefore all bodies of inferred rules for this work
start and end with the gap/2 predicate. Providing (or not) Gu to the inference
process therefore means that we allow (or not) the gap/2 predicate to be present
somewhere other than at the beginning or end of inferred rules' body.

We created cross-validation sets from this data. Our method of partitioning
the data ensured training and test sets never contained homologous sequences. To
ensure this: (1) we concatenated the four intra-cellular subparts of each GPCR;
(2) we created clusters over these sequences with BlastClust [20] (these clusters
are based on homology between the sequences); and �nally (3), clusters (instead
of sequences) are randomly put in n-disjoint sets which are then used to create
a n-folds cross-validation set (we used n=5 and n=10, see Subsection 3.2).

Predictions To be able to make predictions, we have to combine the 8 in-
ferred sets of rules which are obtained by: (1) inferring on the four di�erent
intra-cellular subparts, (2) using either Gi/o or Gs/q as positive examples (the
examples of the other class being used as negatives). For a given rule r, let pr(r)
be its precision over the Gi/o training examples, i.e., pr(r) = p

p+n where p (resp.

n) is the number of training Gi/o examples (resp. Gs/q examples) accepted by
r. For each sequence to classify, we parse each of its intra-cellular subparts with
the associated inferred rules6. Let R be the set of rules matching the sequence
(on the respective subparts they have been inferred on). The sequence is then

6 To ensure there is a score for each of the eight sets of rules, each set is completed
with a \default" rule, used when no other matches. The precision of the default rule



associated with the average obtained precisions over the matching rules, i.e., the

value
P

r2R
pr(r)
jRj . The larger the obtained value, the more likely the sequence is

Gi/o, the smaller, the more likely the sequence is Gs/q. This strategy has been
used mainly because it is a simple way to weight rules using information from
their training set performance.

ILP System and Parameters We used the Aleph ILP inference platform
(http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph) to
run our experiments. our previous work which provides large speed-ups ofAleph
for biological grammar inference.

The Gi/o and Gs/q sets contain a very di�erent number of sequences while
having the same importance to the biologists. Therefore, to avoid biasing the
inference toward one class, we decided to weight, in the ILP system evaluation
function, the examples of each class by the inverse of the number of instances
of the class available. The evaluation function used is the accuracy over the
weighted examples, i.e., acc = 1

2 � (
p

P
+ n

N
), where P (resp. N) is the size of

the positive (resp. negative) training set size, and p (resp. n) is the number of
positive (resp. negative) training examples covered (resp. rejected) by the rule.

To prevent over-�tting, we consider that a rule is valid only if it covers at
least 10% of the positives training examples. To prevent the inference of over-
general rules, we constrain the inferred rules to accept a proportion of the pos-
itives larger than 1.5 times the proportion of accepted negative (e.g., rules like
target(A,B):-gap(A,B). are rejected thanks to this condition). Finally, based
on results of preliminary experiments, we limited the explored part of the space
by setting the parameters nodes to 50000 and depth to 7.

3.2 Design of Experiments

We designed experiments to answer the following questions: (Q1) Which combi-
nations of BKSs improve the results of the ILP inference processes, and which
make it worse? (Q2) Does the expected best combination of BKSs actually result
in a predictor with signi�cantly high predictive power?

To be able to answer (Q1), we have to sample the space of combinations of
BKSs. We have eight di�erent background knowledge types that we want to
test (Gs, Gu, Let, Pa, Ps, Pro, Sn, Sp), which can be combined in 28 = 256
di�erent ways. We could not try all combinations because the running times
are too long. We therefore had to sample the space of combinations. This was
done using the technique known as Taguchi design [7]. The Taguchi method
takes care to select a set of samples balanced with respect to the use of the
di�erent factors (here the BKSs), and of selected sets of interactions between
the factors (i.e., the e�ects of combining di�erent BKSs). The e�ects of these
factors and interactions can then be studied independently without sampling

is set as the number of rejected (by all other rules) Gi/o training examples over the
number of rejected Gi/o and Gs/q examples.



biases. We selected our Taguchi design among those available in the statistical
softwareMinitab (http://www.minitab.com/), taking the one allowing for the
study of the largest number of interactions. This design requires 32 samples, (i.e.,
inference over 32 di�erent combinations of BKSs) and allows for the study of
20 interactions between two BKSs. Because gaps by themselves cannot produce
interesting rules and are expected to interact, we chose to study interactions
between Gu and all other BKSs, and Gs and all other BKSs. Other available
interactions were �xed by Minitab and are between Let and all other BKSs,
between Pa and Sp, and between Pa and Sn.

To augment the statistical signi�cance of our results, we used a 5-folds cross-
validation: the number of the fold being considered as a noise parameter in the
Taguchi design. We limited ourselves to a 5-folds due to execution time con-
straints: one combination of BKSs in a 5-folds experiment takes approximately
60 hours to run on a SunBlade 2500 processor under Sun0S 5.8. Hence a total of
60 � 32 = 1920 hours of cpu time. ROC area on the cross-validation test sets has
been chosen as a predictive performance measure. One of its main advantages is
that it is independent of the proportions of classes in the test sets.

The analysis of the Taguchi experiments was used to answer question (Q1).
This analysis was conducted by examining Taguchi graphs (available on the
web), and �tting the responses (i.e., ROC areas) to a linear model of the di�er-
ent factors (the BKSs), and available interactions. The coeÆcients of the linear
model provide indications of the amount of ROC area each BKS (or interac-
tion) brings or remove to the total area. These coeÆcients are associated with
p-values which represent their signi�cance, i.e., the estimated probability that
the hypothesis \the e�ect is nul" is true. A value of 0.05 (i.e., 5%) is a usual sig-
ni�cance threshold. Finally, a R2 value is provided, representing the percentage
of the ROC area variation explained by the linear model.

Using the linear model, we can predict which combinations of BKSs will
improve the ROC area. The best combinations were tested by using 10-folds
cross-validation, enabling a �nal selection of the BKSs. (Q2) was then answered
by comparing the ROC area for this selection with random classi�cation.

3.3 Experimental Results and Analysis

This section presents the statistical analysis of the results; full tables of results
are available on the web. For the analysis, we �rst constructed a linear model
with all available terms (i.e., main e�ects and interactions). Then, assuming that
e�ects with large p-values are random, as per Taguchi strategy in small design,
interaction terms with large p-values (over 0:4) have been removed and a new
model was constructed. The obtained model is given in Table 1. The lower bound
estimation for the R2 value of this model is 82:9%, i.e., approximately 17% of
the variation has to be explained by parameters not included in the model (e.g.,
other unavailable second order interactions, or higher order interactions).

Usefulness of Gu, Gs, Pro, Pa, Ps and Sn In the linear model Gu, Gs
and Pro have the largest main e�ects coeÆcients, signi�cant at the 5% level. In



Table 1. Linear model of the ROC areas. P-values are expressed as percentages.

Main e�ects Coef. p-value Interactions Coef. p-value

Constant 54.75 0.0 Let-Pro -0.81 4.1
Let 0.27 46.4 Let-Sp -0.89 2.7
Pro 2.49 0.0 Gs-Let 1.16 0.6
Gs 2.59 0.0 Gs-Ps 0.92 2.2
Gu 1.51 1.0 Gu-Sn 0.78 4.7
Pa 0.02 95.2 Gu-Sp 0.70 7.3
Ps 0.59 12.3 Pa-Sn 1.04 1.1
Sp 0.39 30.2
Sn 0.55 14.8

Table 2. Results for combinations of BKSs suggested by the linear model (4 �rst lines),
and some complementary experiments (last 3 lines). The \Pred." column corresponds
to predictions of mean ROC areas by the linear model on 5-folds experiments.

5-folds 10-folds
Combination Mean Med. Pred. Mean Med.

BKS1 Gs-Gu-Let-Pa-Ps-Pro-Sp-Sn 60.5 63.4 66.1 71.6 75.3

BKS2 Gs-Gu-Pa-Ps-Pro-Sp-Sn 61.7 62.5 66.6 61.3 64.6

BKS3 Gs-Gu-Let-Pa-Ps-Pro-Sn 60.6 61.8 65.7 71.4 75.0

BKS4 Gs-Gu-Pa-Ps-Pro-Sn 61.2 61.3 62.7 57.9 66.7

BKS5 Gs-Gu-Let-Ps-Pro-Sp-Sn 61.0 67.1 63.9 69.8 74.6

BKS6 Gs-Gu-Let-Pa-Ps-Pro-Sp 60.7 61.8 61.3 70.3 73.1

BKS7 Gs-Gu-Let-Pa-Pro-Sp-Sn 65.3 65.9 63.0 59.1 60.4

addition, Gs, Gu, Pa, Ps, and Sn are shown to have positive interactions at the
5% signi�cance level. This is strong evidence that these BKSs have to be used.

Interactions with gaps (Gs and Gu) were expected: gaps cannot describe the
sequences by themselves, and in fact the importance of their main e�ects can
be seen as an indication that they positively interact with others background
predicates most of the time.

The e�ects of Let and Sp are less clear than for the othersBKSs. For Let, two
negative interactions are observed (with Pro and Sp), and one positive with Gs.
For Sp, in addition to the negative interaction with Let, a positive interaction is
observed with Gu; this interaction is observed at a 10% signi�cance level instead
of a stronger 5% level for the negative interaction. Further experiments are
therefore needed to prove utility of the Let and Sp BKSs.

Usefulness of Let and Sp The linear model suggests di�erent combinations
to test: always using Gs, Gu, Pa, Ps, Pro and Sn, but adding or not Let and Sp
(or both). Results for these 4 combinations both with 5-folds experiments (used
for the Taguchi design) and 10-folds ones are in lines BKS1 to BKS4 in Table 2.
The Let BKS: Wilcoxon Signed Rank tests have been used to test di�erences
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Fig. 2. Mean ROC areas as a function of the number of BKSs used. The plot con-
tains points obtained for the Taguchi design, but also extra-points obtained during
preliminary experiments.

between the results of BKS1 and BKS2, and of BKS3 and BKS4
7 (i.e., com-

paring inferences with and without Let). On the 5-folds data, no evidence of
di�erences in the results medians is available (at the 10% signi�cance level).
However, on the 10-folds data, their is evidence at the 5% signi�cance level that
BKS2 has lower median than BKS1; and at the 1% signi�cance level that BKS4
has lower median than BKS3. The Let BKS can therefore be considered useful
with strong evidence.
The Sp BKS: Wilcoxon Signed Rank tests between BKS1 and BKS3, and BKS2
and BKS4 (i.e., comparing inferences with and without Sp) do not detect di�er-
ences, at the 10% signi�cance level, between these results medians. Therefore, we
do not have any statistical evidence that providing Sp changes inference results.

Is Classi�cation Better than Random? From the previous results, the best
obtained combinations are BKS1, followed very closely by BKS3. Using a 1-
Sample Wilcoxon test, it can be shown that, for both these combinations, the
median is above random (i.e., a value of 50:0), at the 10% signi�cance level
on the 5-folds, and at a strong 1% signi�cance level on the 10-folds data. This
con�rms, after the work of [6], that protein grammars inferred by ILP can be
useful for predicting protein functions: a stronger statistical evidence is provided
in this work thanks to 10-folds cross-validation (holdout was used in [6]).

High order interactions: Each provided background predicate enlarges the
search space, we therefore could expect performance to decrease when adding
many BKSs. Two facts tend to show the e�ect of the search space size can be
observed. First, the predictions from the linear model (column Pred. in Table 2)
are most of the times lower than the results of the practical experiments. Second,
Figure 2 shows a plot of mean ROC areas with respect to the number of BKSs
used; on this �gure, improvements in ROC areas are smaller when more than 5

7 The Wilcoxon Signed Rank test is used instead of a more classical paired t-test since
the di�erences of distributions cannot be assumed to be normal.



BKSs are provided. Both observations could be explained by the presence of a
negative high order interaction like the search space size e�ect.

If such an interaction takes place, and that BKSs not studied in this work are
considered for inference, using them in addition to proposed ones could lower
the results. If this is observed, a solution would be to replace BKSs of this
study having low contribution by the new one(s). The �rst BKS suggested for
replacement, both by the linear model and by the 10-folds experiments, is Sp. If
this does not prove enough, Table 2 suggests removing Pa or Sn.

Sensitivity to the Examples Count: Di�erent ROC areas are often observed
between the 5-folds and 10-folds results (e.g., for BKS1 in Table 2, but more can
be seen on the data table available on the web). This may be due to a sensitivity
of the ILP system to the size of the training set available to inference. It may
also be due to higher quality BKSs being generated when more sequences are
available.

Processing the BKSs To obtain more insight on generated BKSs of Section
2.2, we ran 10-folds experiments using all BKSs except either Pa, Ps, Sn or Sp
(Table 2). When using a Wilcoxon Signed Rank test to compare these results
with BKS1, the medians of the results are not shown di�erent at the 10% sig-
ni�cance level. However, the Wilcoxon Signed Rank test with the lowest p-value
is with BKS7, i.e., when the Ps BKS is removed (p-value of 11:8%)8. Ps is also
the generated BKS with the lowest p-value (12:3%) on the linear model. This
makes us believe that Ps is likely to be the best generated BKS.

Ps is the only generated BKS which was not obtained directly from the
examples, but obtained by processing another BKS. This encourages us to think
that re-working the BKSs obtained from the examples is a possible way to
improve further the inference results.

4 Conclusion

This work provides statistical evidence that all but one of the proposed BKSs
are useful to inference, sometimes directly, sometimes through interactions with
each other. It also provides further con�rmation, after the work of Muggleton et

al. [6] that ILP can help to predict protein functions.
Other sources of background knowledge have still to be studied, these in-

clude known regular expressions (e.g., from the Prosite database [11]), but also
probabilistic grammars (e.g., weight matrices or Markov models).
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