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Abstract. We are interested in using Inductive Logic Programming
(ILP) to infer grammars representing sets of biological sequences. We
call these biological grammars. ILP systems are well suited to this task
in the sense that biological grammars have been represented as logic
programs using the De�nite Clause Grammar or the String Variable
Grammar formalisms. However, the speed at which ILP systems can
generate biological grammars has been shown to be a bottleneck. This
paper presents a novel re�nement operator implementation, specialised
to infer biological grammars with ILP techniques. This implementation
is shown to signi�cantly speed-up inference times compared to the use
of the classical re�nement operator: time gains larger than 5-fold were
observed in 4

5
of the experiments, and the maximum observed gain is

over 300-fold.

1 Introduction

A signi�cant challenge in the analysis and interpretation of biological sequence
data is the discovery of patterns common to sequences sharing a given biological
function. The use of such patterns is twofold: (1) they can be used to annotate
sequences of unknown function, providing molecular biologists with a likely func-
tion for such sequences; (2) they can help biologists to understand how functions
are realised because they represent common points between sequences of similar
functions.

Patterns in the form of grammars have been used with success to model bio-
logical sequences, we call these biological grammars. Many formalisms have been
used for this task, including String Variable Grammars (SVG) [Sea93], Patscan
patterns [DLO97], Prosite patterns [FPB+02], Basic Gene Grammars [LMR01]
and Probabilistic Regular or Context-Free Grammars [BCD+04,SBH+94]. How-
ever, the hand development of grammars, using for example the formalisms of
[Sea93] or of [LMR01], is diÆcult and requires expensive human expertise. More-
over, some patterns might be too subtle to be recognised by a human expert.
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Thus, given the enormous volume of data arising from genome projects, the ac-
quisition of biological grammars from sets of biological sequences needs to be
automated.

We propose to use Inductive Logic Programming (ILP) to infer biological
grammars. The advantage of ILP for this purpose is twofold: �rst ILP infers
logic programs, and logic programs have been shown to be useful for representing
hand designed biological grammars (e.g., [Sea93]); second, unlike most machine
learning technique, ILP is able to bias inference to take expert knowledge into
account. This is certainly an advantage in this application domain since, as
biological sequences are not just sequences but represent molecules with physical
and chemical properties, potential parts of the target grammar are often available
as expert knowledge.

ILP however has an important drawback: inference speed. The usual ap-
proach to obtaining a more eÆcient inference process is to use language and
search biases. The former allows the search space to be reduced, while the lat-
ter inuences its exploration [LD94, sec. 1.3]. This approach have been used to
infer grammars over proteins [MBS+01], the biases being integrated into mode
declarations and pruning predicates. However, despite the e�orts of Muggleton
et al. [MBS+01], some inference processes took days to run while exploring a
small fraction of the search space. Such long running times were also con�rmed
by Bryant & Fredouille [BF05]. This drawback has made it diÆcult to discover
the true potential of ILP for biological grammar acquisition.

We propose to tackle this speed problem by hard-coding the languages and
search biases of Muggleton et al. [MBS+01] in Muggleton's re�nement operator
[Mug95] (Section 2). Compared to classical techniques inuencing re�nements
with respect to background knowledge (e.g., mode declarations, typing, : : : , see
[Tau94] for an early review), our technique sacri�ces the range of applications to
the advantage of eÆciency. We empirically show that this sacri�ce is worthwhile
since our re�nement operator can lead to very signi�cant speeds-up of biological
grammar inference: gains in inference times larger than 5-fold were obtained
in 4

5 of the experiments, with the maximum observed gain being over 300-fold
(Section 3).

Grammars and Biological Sequences Biological sequences are de�ned either
over an alphabet of 4 letters (DNA or RNA sequences), or over an alphabet of 20
letters (protein sequences). Each letter of such sequences represents a chemical
unit which is called a nucleic acid for DNA or RNA sequences, or an amino-acid
for proteins.

A context-free grammar can be seen as a set of rules which represents sets
of sequences. For biological grammars, these sequences are biological sequences.
The rules of a context-free grammar can be represented using the logic formal-
ism known as De�nite Clause Grammar (DCG) [PW80]. In this formalism a
sequence over a �nite alphabet of letters is represented as a list, each element of
the list corresponding to a letter of the sequence. Figure 1 gives an example of
such a grammar.



target(A,B):-gap(A,C),al(C,D),bl(D,E),gap(E,B).

gap(A,A). al([a|X],X).

gap(A,[_|B]):-gap(A,B). bl([b|X],X).

Each predicate in a DCG clause takes as input (�rst argument) a list representing the
sequence to analyse, and outputs (second argument) the part of the list remaining when
removing a pre�x that the predicate matches. For this DCG, a call target(Seq,[]) will
succeed if and only if Seq contains the sublist [a,b] (i.e., the subsequence `a b'). Indeed,
the gap/2 predicate matches any sequence, and the al/2 (resp. bl/2) predicate matches
sequences starting with `a' (resp. `b'). The main rule (target/2) therefore accepts all
sequences starting with any sequence, followed by `a b', followed by any sequence.

Fig. 1. A simple grammar represented as a DCG.

We denote the length of a sequence s by jsj. Biological sequences are of very
variable length, protein sequences' lengths range from roughly 50 to many thou-
sands of letters. Note the contrast with natural language, where sequences rarely
exceed 500 letters. This implies that it is very unlikely that any grammar of rea-
sonable size can characterise all parts of a set of biological sequences (even if
these sequences share a common biological function). From this observation, the
notion of gap { as introduced by Figure 1 { is very important to biological gram-
mars: gap/2 is the predicate which can be used to cover parts of the biological
sequences uncharacterised by the rest of the grammar rules. A typical biological
grammar therefore includes some well characterised parts separated by gaps.

Inference of Biological Grammars with ILP Di�erent approaches to gram-
mar learning with ILP have been considered, mainly [CP99,PC01,MBS+01].
These papers di�er in two main points. The �rst application is natural language
grammars [CP99,PC01] while the application in [MBS+01] is biological gram-
mars. Second, the representation of grammars in [CP99,PC01] uses chart parsing
tables, while [MBS+01] uses DCGs.

Our work takes its roots in the approach of Muggleton et al. [MBS+01] and
uses the DCG formalism. To infer a rule like the target/2 rule of Figure 1, the
idea of [MBS+01] is to provide: (1) examples under the form target(L,[]).

where L is a list of letters representing a biological sequence; and (2) DCG
predicates as background knowledge (in Figure 1 this corresponds to providing
the gap/2, al/2 and bl/2 de�nitions). The inference process aim is to combine
them into new DCG rules optimising the evaluation function.

In this framework, the ILP system has to be prevented from inferring logic
rules which do not represent DCGs. A main constraint is that the user can only
provide background predicates respecting the DCG semantic, i.e., they must
have two arguments, take a sequence s as �rst argument, and return in the
second argument a suÆx of s. We also have to ensure that the inferred rule is a
DCG, leading to the following constraints:

c0) the head of the rule contains two variables;



c1) the �rst variable of the head must be uni�ed with the �rst variable in the
�rst literal of the body;

c2) the second variable of all body literals but the last must be uni�ed with the
�rst variable of the following literal;

c3) the second variable of the head must be uni�ed with the second variable of
the last body literal;

c4) all couples of variables unspeci�ed by points (c1-c3) must not be uni�ed5.

Part of these constraints can be enforced using mode declarations of the following
form [MBS+01]: modeh(1,target(+rl,-rl))and modeb(n,bk_predicate(+rl,
-rl)). In these declarations, rl is a predicate accepting lists of letters; target
is the predicate to infer; bk predicate is a background knowledge predicate
and n is its ambiguity (i.e., the maximum number of times a backtrack on this
predicate can succeed). These declarations enforce c0-c1 but only partially c2-
c46: Muggleton et al. [MBS+01] had to use pruning predicates to enforce the
remaining parts (Subsection 2.2 gives more details on this point).

2 A Re�nement Operator for Biological Grammar

Inference

This section is divided in two parts. Subsection 2.1 considers the notion of bottom
clause and how this notion can be simpli�ed for biological grammars. The bottom
clause de�nes elements of the search space. Subsection 2.2 details the proposed
re�nement operator to explore this space.

2.1 Bottom Clause Construction

Bottom Clause for Biological Grammar Learning The notion of bot-
tom clause was introduced by Muggleton in [Mug95]. Such a clause, denoted
by botc(e) is constructed from a positive example e and represents the most
speci�c logic program, de�ned using the background knowledge and respecting
the mode declarations, that covers e. The CProgol algorithm [Mug95] works
by taking an example e1 and constructing its bottom clause botc(e1). It then
searches through the sets of clauses �-subsuming botc(e1) to return the best one
with respect to the evaluation function. Further clauses are inferred using the
same strategy iteratively, but starting from the set of yet uncovered examples
(uncovered by any of the already inferred clauses); this is the principle of the
cover set algorithm.

An example of bottom clause for biological grammar learning is given in
Figure 2. In this example the background knowledge predicates are limited (for
the sake of explanation) to two physical properties of the letters (representing

5 For example, a rule target(A,B):-foo1(A,A),foo2(A,B). is not a DCG rule but
respects (c0-c3).

6 For example, a rule target(A,B):-foo1(A,C),foo2(A,C),gap(C,B). respects the
mode declarations but violates c2.



target(A0,A4) :- gap(A0,A0), gap(A0,A1), : : : , gap(A4,A4),

neg(A0,A1), neg(A3,A4), small(A0,A1), small(A1,A2).

Fig. 2. Bottom clause for a (fake) protein sequence [d,p,i,e] using background knowl-
edge from three predicates: the gap/2 predicate and two predicates related to physical
properties of amino-acids (neg/2 and small/2).

amino-acids). The neg/2 (resp. small/2) predicate corresponds to negatively
charged (resp. small) amino-acids. They can be de�ned by the sets of rules:
fneg([�|X],X). : � 2 fd,egg and fsmall([�|X],X). : � 2 fa,c,d,g,n,p,s,tgg.
Then there is the gap/2 predicate which, as explained in Section 1, can be con-
sidered to be compulsory for biological grammar inference processes and allows
parts of the sequences uncharacterised by the inferred grammar to be covered.

Calls to DCG predicates which succeed match a pre�x of the input sequence
and return the remaining suÆx. Therefore, each variable of the bottom clause
botc(e) corresponds to a suÆx of the sequence e. We emphasise this fact in Figure
2 by using notation Ai for the variable corresponding to the suÆx of e starting
at position i in e (positions are between letters of e, and 0 is the position before
the �rst letter). Therefore, on Figure 2, the presence of a predicate foo(Ai,Aj)
means that foo/2 matches the subsequence of e between positions i and j. This
particularity of bottom clauses constructed over DCGs enables the use of a
simpli�ed representation: we call it the bottom automaton.

From Bottom Clause to Bottom Automaton In the bottom automaton,
denoted by bota(e), positions are represented by states and transitions represent
background predicates: a transition foo between states i and j meaning that
predicate foo/2matches sequence e between positions i and j. Since they violate
(c4), transitions such that i = j are ignored (i.e., transitions corresponding to
predicates of the form foo(X,X) in the bottom clause). A bottom automaton is
represented in Figure 3. On this �gure, unlabelled transitions are those for the
gap/2 predicate. The initial (resp. �nal) state of this automaton corresponds
to position 0 (resp. jej) of e, and is represented with a short incoming (resp.
outgoing) arrow.

0 1 2 3 4

neg
small

small neg

Fig. 3. The bottom automaton bota(e) equivalent to the bottom clause botc(e) of Fig-
ure 2.



By de�nition, the bottom automaton and the bottom clause are two equiv-
alent representations of the same concept. The important things to see is that
all DCG �-subsuming the bottom clause and respecting constraints (c0) to (c4)
correspond to a path from the initial state 0 to the �nal state jej in bot a(e).
For example, the path: 0 ! gap ! 1 ! small ! 2 ! gap ! 4, which accepts
sequence gap small gap, corresponds to rule:
target(A,B):-gap(A,C),small(C,D),gap(D,B). In addition, a path not end-
ing in state jej corresponds to a rule respecting all constraints but (c3). (This
fact will be useful later on.) For example, the path: 0! neg! 1! small! 2
corresponds to rule: target(A, ):-neg(A,B),small(B, ).

Creating the Bottom Automaton Algorithm 1 shows how to create the
bottom automaton. A similar procedure could be used to create a bottom clause
specialised to biological grammar learning, but the formalism of the bottom
automaton turned out to be easier to use. Optimisations of this algorithms use
properties (p1) and (p2), linked to the gap/2 predicate:

p1) All states of bota(e) can be reached from state 0 (equivalently, botc(e) con-
tains jej+ 1 di�erent variables)7.

p2) We have (jej)(jej+1)
2 transitions by symbol gap in the bottom automaton

(equivalently, (jej+1)(jej+2)
2 gap/2 predicates in the bottom clause, this num-

ber is larger than the number of transitions in the bottom automaton to
count predicates of the form foo(X,X)).

Property (p1) allows us not to compute the set of positions of e that can be
reached by the use of the background knowledge: we know that all positions are
reached (hence the loop on line 2 of Algorithm 1). Property (p2) means that
very large bottom clauses are considered during inference (e.g., if jej = 200, the
bottom clause is of minimal size 20301). We can circumvent this problem; since
it is known that gap transitions are present between each couple of states of the
automaton, it is easier not to store them (line 3, condition pred6=gap): instead,
a particular treatment in the re�nement operator can be used to introduce gaps
when needed. The advantage is twofold: gain in memory, since this prevents the
bottom clause size being quadratic in the sequence length; gain in execution
time, since the bottom automaton can then be constructed faster.

The size of the resulting automaton is in O(jej � jBKj �max(ma)), where
jBKj is the number of background knowledge predicates and max(ma) is the
maximum ambiguity encountered for a predicate di�erent from gap/2. Asmax(ma)
can be considered much smaller than the sequence length8, the automaton size
can be considered linear in this length (compare with the O(jej2) number of
elements in a bottom clause storing gaps). The time complexity of Algorithm 1
is in O(jej � jBKj � (K1 +max(ma)�K2)), where K1 is the cost of obtaining

7 This is because the gap/2 predicate can return all suÆxes of its input sequence.
8 In practice, only the gap predicate is so ambiguous that it can match in between all
positions of the example sequence.



Algorithm 1 Construction of the bottom automaton without the gap transi-
tions over a sequence e.

1: Create jej+ 1 states, labelled 0 to jej.
2: for i in [0; jej] do
3: for all background knowledge predicate pred (pred 6=gap) do
4: let ma be the ambiguity degree of pred as stated by mode declarations
5: let S be the list of Aj obtained by backtracking up to ma times on pred(Ai,Aj)

6: for all Aj in S do

7: Add a transition between states i and j labelled by pred

the list S (which depends on the background predicates implementation), and
where K2 is the cost of inserting a transition in the automaton (line 7); this cost
is, in our implementation, in O(log(jBKj)).

2.2 Re�nement Operator

Using the bottom automaton, we propose a re�nement operator adapted to
biological grammar learning. Our operator can be seen as a specialisation of
the classical ILP re�nement operator introduced by Muggleton [Mug95]. This is
the same specialisation that Muggleton et al. [MBS+01] achieved using pruning
predicates. We therefore start by describing [MBS+01] pruning, and then explain
how we integrate this pruning into the re�nement operator.

Removing Non DCG Rules using Pruning Muggleton et al. [MBS+01]
pruned all rules not respecting constraints (c2) or (c4). Rules with two following
gaps in the body were also pruned since two following gaps are equivalent to a
single gap. Rules violating (c0) and (c1) do not need to be pruned: they are not
present in the space thanks to mode declarations. Finally, rules only violating
(c3) were not pruned: they were re�ned to enable all DCG rules of the search
space to be reached. The rules returned by inference processes do however respect
(c3): indeed, the mode declarations allow them to be present in the search space
but not to be returned by the inference process.

In practice this corresponds to re�ning rules of the form:

target(A, ) :- foo0(A,B), : : : , foom(X, ). (r0)

into rules of the following forms:

target(A, ) :- foo0(A,B), : : : , foom(X,Y), foom+1(Y, ). (r1)
target(A,Z) :- foo0(A,B), : : : , foom(X,Y), foom+1(Y,Z). (r2)

Rules (r0) and (r1) violates (c3) while rule (r2) is an inferable DCG rule. Using
this strategy, the search space was reduced to a tree containing all DCG rules
�-subsuming botc(e) (i.e., the operator is optimal for the DCG rules), the rules
respecting (c0) to (c4) being the leaves of the tree and internal nodes being rules
violating only (c3). Such a tree, corresponding to the bottom clause of Figure 2,
is given in Figure 4.



target( , ):-

true.target(A,B):-

gap(A,B).

target(A, ):-

gap(A, ). target(A, ):-

gap(A,B),

small(B, )

target(A, ):-

neg(A, ).

target(A, ):-

small(A, ).

target(A,C):-

gap(A,B),

neg(B,C).
target(A, ):-

gap(A,B),

neg(B, ). : : : : : :

: : :

: : :

Fig. 4. First levels of the search space associated with the pruning proposed by
[MBS+01] and the bottom clause of Figure 2. Re�nements are represented by arrows.
Double boxes correspond to inferable rules, while single boxes are internal nodes of the
search space.

The Proposed Re�nement Operator By integrating the constraints in the
re�nement operator, we generate only rules that are correct for the application,
instead of generating rules that need to be pruned. Our re�nement operator is
described by Algorithm 2.

Algorithm 2 Re�nement operator for grammar inference in the space de�ned
by bota(e).

1: let tgt(A, ):- foo0(A,B), : : : ,foom(X, ) be the rule to re�ne
2: Compute the set of reachable states in bota(e) by foo0, : : : ,foom
3: M  f0g (The marked states, starting with the initial state)
4: for v 2 [0; m] do
5: if foov=gap then M  fi 2 N : min(M) < i � jejg
6: else M 0  ;
7: for transitions i

foov�! j in bota(e) with i 2M do M 0  M 0 [ fjg
8: M  M 0

9: Compute predicates that can be added at the end of the re�ned rule
10: if foom = gap then P2  P1  ; else P1  P2  fgapg
11: for i 2M do

12: for transitions i
pred
�! j in bota(e) do

13: P1  P1 [ fpredg
14: if j = jej then P2  P2 [ fpredg
15: Compute the set of possible re�nements
16: R ; (The set of re�nements)
17: for pred 2 P1 do R R [ ftgt(A, ):-foo0(A,B), : : : ,foom(X,Y),pred(Y, )g
18: for pred 2 P2 do R R [ ftgt(A,Z):-foo0(A,B), : : : ,foom(X,Y),pred(Y,Z)g

Consider rule (r0), to re�ne it the algorithm has to add a predicate at its
end, but also has to ensure that the obtained rule is in the search space de�ned
by bota(e). As legal predicates correspond to paths in the bottom automaton,
the problem can be reduced to path searching. Re�nements into rules of the (r1)



form have to correspond to paths starting from state 0, but which can end in
any state i of the automata. This means that the rule can cover the �rst i letters
of e and that further re�nement is needed to cover the remaining letters. For
rules of the form (r2) the paths have, in addition, to end in state jej: this ensures
that the rule is able to cover e.

Therefore, the �rst step of Algorithm 2 is to �nd all states of the bottom
automaton that can be reached, starting from state 0, by the sequence of pred-
icates foo0 : : : foom. This can be done using dynamic programming to mark
the states that are reachable in the bottom automaton by following transition
foo0 from state 0, then foo1 from the marked states, : : : , up to foom. This
work is done by lines 2-8 of Algorithm 2 (among these, line 5 takes into account
that gap rules are not stored in the bottom automaton: gaps match any sequence
so, when it is encountered, the updated marked states are all positions larger
than the current minimal marked state). We can then deduce, from the set of
marked states, the possible predicates to use for the (r1) re�nements: i.e., all
predicates present on outgoing transitions of the marked states (lines 9-14 of
Algorithm 2); and for (r2) re�nements, i.e., those that also enable to reach state
jej. Finally, we construct the set of re�ned rules from the original rule and these
sets of predicates (lines 15-18). Algorithm 2 avoids returning redundant rules by
working with sets instead of lists, and prevents rules which contain 2 consecutive
gaps, which is meaningless (condition line 10).

3 Experimental Evaluation

In this section we report our empirical investigation of the time gain obtained
by using our re�nement operator.

3.1 Experimental Method

The experiments concern inference of grammars over protein sequences. We con-
sider two aspects of the problem: inference of a grammar from positive and ran-
dom examples as proposed by Muggleton [Mug97], and inference from positive
and negative examples. The implementation of the bottom automaton algorithm
and the re�nement operator, as well as the public part of the datasets, can
be found at http://www.comp.rgu.ac.uk/staff/chb/research/data_sets/

ilp06/refine_op.

Positive and Random Dataset The dataset for positive only learning was
provided by experiments of Muggleton et al. [MBS+01]. Among the di�erent
experiments reported in [MBS+01] we selected the one that took the longest to
complete because in this case the eÆciency of the grammar acquisition was a
bottleneck. This experiment involved inferring on subsequences, calledmiddle, of
Neuropeptide Precursors Proteins (NPPs). The examples comprise 76 positive
and 2 910 random middle sequences. The length of these sequences vary from 5
letters to 95. We denote this dataset by PosRand. This dataset is in the public
domain.



Positive and Negative Dataset The data set for discriminative learning
consists of two sets of sequences representing two qualitatively distinct classes,
Gi/o and Gs/q, of a protein family known as the G-protein coupled receptors
(GPCRs) [PPL02]. Data allowing the classi�cation of these proteins into the two
sets is proprietary. The Gi/o and Gs/q datasets contain 43 and 94 sequences
respectively. GPCRs have a characteristic 7 membrane-spanning regions and
thus have regions outside the cell, within the cell membrane and inside the cell.

In this paper we present results for one of the parts inside the cell, called intra-
cellular loop #2, and for this inference process, the Gs/q sequences were used as
positive examples while the Gi/o sequences were used as negative examples. The
lengths of these sequences vary from 12 to 46 letters. We denote this dataset by
PosNeg.

Inference Processes and Parameters All experiments have been running on
a SunBlade2500 under SunOS 5.8. We used the Aleph [Sri93] implementation of
Muggleton's re�nement operator [Mug95] to test our ideas, instead of the orig-
inal CProgol implementation. This choice was made because Aleph is much
easier to modify than CProgol: it gives the user a large number of options
including de�ning a user re�nement operator and preventing the default bottom
clause construction. We denote inference with Aleph, using Muggleton's opera-
tor [Mug95], by ref-@, and inference with Aleph, using our biological grammar
dedicated bottom clause construction and re�nement operator, by ref-g.

The principle of the experiments is to explore the search space up to a given
depth with both systems and observe execution times, knowing that the inferred
rules from both systems are the same (see Appendix A) because the explored
search spaces are the same. We considered maximum exploration depths in the
search space (corresponding to Aleph parameter clauselength) of 4, 5 and 6
for the PosRand dataset, and of 5 and 6 for the PosNeg dataset. Inference with
clauselength less than 5 on PosNeg is not interesting because, for biological
reasons on this dataset, rules are required to start and end with the gap predicate:
the head and the two gaps already count for 3, so a value of 4 corresponds to
using background knowledge rules one at a time, hence the starting value of 5.

The evaluation function used for PosRand dataset was Muggleton's evalua-
tion function for positive only learning [Mug97]. A di�erent evaluation function
was needed for the PosNeg dataset because it does not contain randoms. The
Gi/o and Gs/q subsets of the PosNeg dataset contain a very di�erent number
of sequences while having the same importance to the biologists. Therefore, to
avoid biasing the inference toward one class, we decided to use an evaluation
function which weights the examples of each class by the inverse of the number
of instances of the class available. The evaluation function used is the accuracy
over the weighted examples, i.e., acc = 1

2 �(
p

P
+ n

N
), where P (resp. N) is the size

of the positive (resp. negative) training set size, and p (resp. n) is the number of
positive (resp. negative) training examples covered (resp. rejected) by the rule.

After preliminary experiments, it became clear that inference times were
strongly inuenced by the minacc setting of Aleph. This parameter is a thresh-



Table 1. Inference times (seconds) on the PosRand and PosNeg datasets. (�): Ex-
periments where the nodes limit of Aleph was exceeded. (+): Experiments stopped
after running more than the indicated time.

PosRand PosNeg

min clauselength clauselength

Algo acc 4 5 6 5 6

ref-@ 0.1 1 213 �17 530 �+324 000 956 � 69 329
ref-g 151 1 897 38 899 1 087 52 299

Gain 8.0 9.24 >8.3 0.9 1.3

ref-@ 0.5 1 311 �+334 000 �+413 280 834 � 60 827
ref-g 131 1 944 55 878 265 12 098

Gain 10.0 >171.8 >7.4 3.1 5.0

ref-@ 0.9 1 802 �+511 220 �+511 200 1232 � 120 030
ref-g 156 1 601 63 253 186 5 541

Gain 11.6 > 319:0 >8.1 6.6 21.7

old on the minimal precision of inferable rules with respect to the training ex-
amples9. We therefore considered inferences with di�erent minacc values (0:1,
0:5 and 0:9) to obtain an idea of the gain in di�erent inference situations.

3.2 Results of the Experiments

The running times are listed in Table 1. Very di�erent speed-ups were obtained
depending on the data, the minacc and the clauselength parameters. Speed-
up factors over 5 were obtained in 4

5 of the experiments, the best speed-up
obtained being over 300-fold (PosRand, minacc= 0:9, clauselength= 5). It
is possible that even greater speed-ups can be achieved since many experiments
on PosRand using the default re�nement operator had to be stopped after
running more than 90h, while the corresponding experiments using the hand-
made re�nement �nished by themselves (always in less than a day). Moreover,
many ref-@ experiments reached the limit on the maximum number of nodes
to be explored by the algorithm on at least some of the algorithm cycles (the
nodes parameter of Aleph was set to 500 000). Inference with ref-g never
reached this limit. This implies two things: (1) the potential gains, given an
unlimited value for nodes are larger than those shown in Table 1 (cells with
the � symbol); (2) given that the search is exhaustive, the results of the ref-g
experiments guarantee that the obtained clauses are the best possible up to the
given clauselength.

The inference times of Table 1 clearly show the advantages of our re�nement
operator, both in the PosRand and the PosNeg experiments. In practice only
one inference process was slower when using our re�nement operator (Table 1,
PosNeg, minacc= 0:1, clauselength= 5). This possible loss is however small

9 Precision is de�ned here as the number of accepted positives over the sum of the
number of accepted positives and accepted negatives.



compared to the potential gains observed for all other parameters. The best
gains were obtained with larger values for the minacc setting. This is good news
because maximising the precision is usually desirable.

3.3 Interpretation of Experiments

Even if the results obtained are very satisfying, being able to explain their vari-
ation can help us understand how to improve them. A potential explanation
of this variation is that Aleph is using di�erent optimisations to speed-up the
search. We discuss how two of these optimisations can explain the variation of
the results of Table 1.

The gain of 0:9 observed with PosNeg, clauselength=5 and minacc=0.1

We will refer to the �rst of these optimisations as optimisation A. Optimisation
A, which is only available to ref-@, is that Aleph knows that its default re-
�nement operator is working by specialising rules. It can use this information
to prevent, when evaluating the performance of a rule, the parsing of examples
which were rejected by its father rule. This optimisation does not take place
if the user provides his own re�nement since Aleph does not know if the re-
�nement operator works by specialisation or generalisation (or both). The gain
of 0:9 for PosNeg with minacc=0.1 and clauselength=5 could be the extra
parsing time needed outweighing the optimisations brought by the re�nement
operator.

The Improvement in Gain when Augmenting minacc Another optimisa-
tion of Aleph, Optimisation B, uses the minacc value to prevent the parsing of
some examples when the evaluated clauses are at maximum depth. This is done
using the formulae minacc = p

p+n (where p and n are respectively the number

of positives and negatives/randoms accepted by the rule), Aleph computes the
maximum number of negatives/randoms that the rule can accept once the num-

ber of positives covered is known (i.e., (1�minacc)p
minacc

). It then stops parsing if this
number is reached and if the clause is of size clauselength (smaller rules have
to be evaluated as they could be re�ned). This optimisation is available both for
ref-@ and ref-g.

Conjecture To summarize, thanks to optimisation B, the higher the minacc

value, the smaller is the number of examples to parse. Now, there is an e�ect of
optimisation B on optimisation A: when minacc is high, optimisation B is very
eÆcient and optimisation A cannot reduce the number of examples to parse much
more. We therefore make the following conjecture to explain the increasing gains
with respect to minacc: when increasing minacc, optimisation A has less and
less e�ect, and the gain o�ered by ref-g over ref-@ is more and more visible.
This suggests that:

{ the true gain of our optimisation is closer to that observed when minacc=0.9;



{ both higher and more stable gains with respect to minacc could be obtained
by making Optimisation A available for inference with ref-g.

4 The Quality of the Resulting Grammars

This paper has focused on the speed at which ILP systems can generate bio-
logical grammars. Elsewhere [BFW+06] we have published results concerning
the quality of the resulting grammars. We have applied our re�nement operator
implementation to a hard protein function inference task: the prediction of the
coupling preference of GPCR proteins [BFW+06]. The time needed to execute
the experiments reported in [BFW+06] was approximately two months. It would
have taken much longer to obtain the same results if we had used the default
re�nement operator (ref-@). We estimate that it would have taken 10 months
given that Table 1 suggests a �ve fold time gain for similar tasks (PosNeg,
minacc=0.5).

While this does illustrate why our re�nement operator implementation (ref-g)
is important for hard protein function inference tasks, further work is need to
establish whether, given the same amount of run-time, ref-g results in signif-
icant improvements in the quality of the resulting grammars in comparison to
ref-@.

5 Other Applications of the Bottom Automaton

Formalism

This paper has shown how our bottom automaton formalism can be used to
implement one particular re�nement operator, namely the one introduced by
[Mug95]. However it could be used to implement other re�nement operators; the
formalism itself does not place constraints on the exploration strategy.

Moreover, we believe that the strategy used to create the bottom automaton
could be usefully reused for problems involving complex examples (e.g., trees,
graphs,...) which involve trying to �nd rules matching substructures of those
examples (e.g., subgraphs or subtrees). Indeed simpli�cations similar to those
proposed in Algorithms 1 and 2 (i.e. those linked to the gap/2 predicate) could
also be considered in such problems.

Conclusion

We have integrated the biases of biological grammar inference into a dedicated
ILP re�nement operator. We have shown that, by using this operator, inference
running times can decrease very signi�cantly compared to the previously used
technique using pruning predicates: time gains larger than 5-fold where obtained
in most experiments, and the best observed gain is over 300-fold.
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A Appendix: the Equality of Rules Inferred by REF-G

and REF-@

In the ref-g implementation, Aleph is prevented from constructing the bottom
clauses, therefore the inferred rules are not checked for consistency with the mode
declarations. This means that rules violating (c3) (i.e., of the form target(A, )

:- foo0(A0,A1), : : : ,foom(Am, )) can be inferred when using ref-g but not
when using ref-@. For the sake of comparison between ref-g and ref-@, we
added in ref-g an Aleph false/0 predicate rejecting clauses violating (c3).
(Like the prune/1 predicate, the false/0 predicate can be used to prevent the
inference of some rules; however, unlike rules rejected by prune/1, rules rejected
by false/0 are re�ned.) After this modi�cation of the ref-g code, the rules
inferred by both systems were the same.

When using the ref-g operator in other frameworks, adding a false/0 pred-
icate is not needed. Indeed, since gap/2 predicates are allowed in rules, we can
systematically transform a rule violating (c3), i.e., of the form: target(A,Z)
:- foo0(A,B), : : : ,foom(X,Y), where Z and Y are free variables, into a rule:
target(A,Z) :- foo0(A,B), : : : ,foom(X,Y),gap(Y,Z).
These two rules cover the same examples. Therefore, without adding a false/0

predicate, the algorithm explores for free, for all rules ending with a gap, one
step deeper in the search space. The only drawback is that a small syntactic
correction must be applied to the inferred rules.


