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Abstract. We identify a shortcoming of a standard positive-only clause
evaluation function within the context of learning biological grammars.
To overcome this shortcoming we propose L-modification, a modification
to this evaluation function such that the lengths of individual examples
are considered. We use a set of bio-sequences known as neuropeptide pre-
cursor middles (NPP-middles). Using L-modification to learn from these
NPP-middles results in induced grammars that have a better perfor-
mance than that achieved when using the standard positive-only clause
evaluation function. We also show that L-modification improves the per-
formance of induced grammars when learning on short, medium or long
NPPs-middles. A potential disadvantage of L-modification is discussed.
Finally, we show that, as the limit on the search space size increases,
the greater is the increase in predictive performance arising from L-
modification.
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1 Introduction

This work aims to improve the automated learning of biological grammars using
Inductive Logic Programming (ILP) tools.

1.1 Biological grammars

Biological grammars (BG) are patterns in the form of grammars that model bio-
logical sequences: among others, protein sequences. Linguistic approaches can be
used for representing the structure of proteins [11] because their primary struc-
ture can be represented as a sequence of characters from a well defined chemical
alphabet of only 20 different amino-acids (A, C, D, E, F, G, H, I, K, L, M, N,
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P, Q, R, S, T, V, W, Y). These sequences can be of any length, from very small,
up to hundreds of characters long. Formal grammars can define dependencies
in biological sequences because of their declarative and hierarchical nature (e.g.
biological sequences folding up in three dimensional space lead to dependencies
between distant parts). Using grammars to model biological sequences brings
two main advantages to the biologist: first, grammars can be used to annotate
sequences whose function is yet unknown and thus suggest a likely function;
second, because the grammar structure represents common points between se-
quences of similar functions, they could help biologists to understand biological
functions. See Figure 1 for a basic example of a BG parsing a protein sequence.
BGs can take several forms depending on the approach taken. In our experi-
ments, BGs take the form of context free grammars (CFG) (see Section 2.2) and
describe a specific family of proteins (see Section 2.1).

Protein sequences Protein sequences 
(examples)(examples)

MYIAGFSLLLSFLLRRLVTLIS…
MYGTIAGLSFSLSFLRLVIL…
MGYIGFRFSLLSFLLRRVTLS…

Biological Grammar Biological Grammar 
NPP Signal Filler NP Filler
Signal …
Filler …
NP Start Middle End
End Positive R Small | …

MYIAGFSLLLGFKRRQLLRRIAGFKRPQRAGFSLSP

NPP

Signal FillerNPFiller

Start Middle End

Positive Small

A protein folded in 3-dimensional space

a) b)

c)

d)

Fig. 1. Figure 1a) shows an example of how a protein might look like in 3 dimensional
space. Figure 1c) shows a few examples of protein sequences. These are sequences of
the amino acids which make up the proteins, but ignoring the 3 dimensional structure.
Figure 1b) gives an indication of what a biological grammar describing an Neuropeptide
Precursor Protein (NPP) might look like; a set of production rules that can parse a
protein sequence. Figure 1d) shows a very basic example of a parse tree, illustrating
how an NPP sequence could be parsed by an NPP grammar.

In our experiments we learn BGs from examples of protein sequences belong-
ing to a certain family of proteins (see Section 2.1). Protein sequences generally
have highly variable length, which is what sets our task of learning BG apart
from most traditional ILP learning tasks. It is this variable length of examples
in the training data given to the ILP system that is the main focus of this work.

1.2 Biological Grammar Learning with ILP

Muggelton et al [8] first investigated Chomski-like grammar representations for
learning cost-effective, comprehensible predictors of members of biological se-
quence families. They used the ILP tool CProgol [6] to learn grammars describ-
ing neuropeptide precursors (NPPs). Their best predictor made the search for
novel NPPs more than one hundred times more efficient than randomly selecting
proteins for synthesis and testing them for biological activity. Our work takes
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its roots in the approach of [8] as we use definite clause grammars DCG [9] (see
Section 2.2) and we also use a subset of the NPP dataset used in [8](see Section
2.1). Bryant et al. [1, 3, 2], which also takes its roots in the approach of [8] used
the ILP tool Aleph [12] because Aleph is a modular system, it is easier to modify
and gives a large number of options. Our work also uses Aleph as we also need
the ability to customize the clause evaluation functions and the clause coverage
computation (see Section 3.4).

1.3 Hypothesis

The hypothesis that we want to test in this work is as follows:
When using the generic ILP system Aleph to learn biological grammars de-

scribing proteins of the NPP family, then the predictive performance of these
grammars can be improved by estimating the quality of a learned clause through
an evaluation function that takes into account the length of the examples in the
training data.

1.4 Justification

To decide between two models that equally well describe the data, the minimum
description length principle (MDL) [10] suggests that I(M |E) (which is the de-
scription length I of the model M, given the examples E ) should be minimized.
In our experiments we consider I(M |E) to be the sum of the description lengths
of the model I(M) and the examples encoded through the model I(E|M). An
approximation to this principle is to estimate the compression that would be
achieved by encoding the examples with the model [13, 5]. To estimate this com-
pression, the size of the examples that would be encoded by the model has to
be known. Under the assumption that each example has the same length, which
is usually the case, their individual length can be neglected and a simple count
of covered examples can be used to estimate the compression achieved. How-
ever if we are learning BGs, the examples given are biological sequences, which
often have variable length. In that case the length of each individual example
has an undeniable impact on the total size of examples encoded through the
model. It then becomes clear that the length of individual examples should not
be neglected while estimating the compression achieved by a model. We want to
apply this idea to an evaluation function that is to evaluate a grammar clause
during learning. Such an evaluation function would use the size of the clause and
the size of all examples that are covered by that clause to evaluate the perfor-
mance of the clause. To the knowledge of the authors there has been no previous
work on positive-only clause evaluation functions, used in ILP, that consider the
length of training examples. Evaluation functions that estimate the compression
achieved by a model are often called compression measures.
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2 Experiment Design

In our experiments we run the ILP tool Aleph [12] on the NPP datasets de-
scribed in Section 2.1. For each of those datasets we use several different clause
evaluation functions (as described in Section 3) and observe the differences in
performance. The results of the training and testing are recorded and subse-
quently summarized in Section 4.

2.1 Data Sets

Dataset 1 - Whole set
For the first set of experiments we used a part of the human Neuropeptide Pre-
curser Protein (NPP) dataset which was used in [8]. The experiments conducted
by [8] involved, among others, the inference of BGs on a set of NPP sub-sequences
called middle (henceforth denoted as NPP-middles). In this work, we will only
consider the NPP-middles because these are most interesting in relation to our
hypothesis (Section 1.3). First, the NPP-middles are considerably longer than
any of the other NPP parts which makes the induction of a grammar describing
them a more challenging task, and second, they are also the only NPP sub-
sequences that display high variations in length; our NPP-middles range from 5
to 95 amino acids. This dataset consists of 76 positive examples, 2908 random
examples and some Background Knowledge (BK).

Dataset 2 - Training data grouped by length
To see if the evaluation functions perform differently for longer or shorter exam-
ples we decided to split up the dataset into several parts and conduct a second
set of experiments. We took the dataset discussed in the previous paragraph
and split it into three disjoint subsets, based on the length of positive examples,
effectively creating three separate datasets. We denote these three subsets as
follows: NPP-middles-short, NPP-middles-medium and NPP-middles-long. The
intention was to split the set of positive examples into three sets containing
more or less the same number of examples. The first subset, NPP-middles-short,
contains 24 examples each of length (number of characters) l < 13. The reason
why this set contains only 24 examples instead of 25 or 26, as seems logical with
76 total positive examples, is because we set a length threshold of 13 in order
to prevent the examples of length 13 being split between two subsets. The sec-
ond subset, NPP-middles-medium contains 26 examples with 13 ≤ l ≤ 29. The
third subset, NPP-long contains 26 examples with l > 29. The random exam-
ples were split up in the same way according to length of their examples, using
the same cut-off values that were used for the positive examples. This results
in NPP-middles-short containing 908 random examples, NPP-middles-medium
containing 864 random examples and NPP-middles-long containing 1136 random
examples.
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Background Knowledge (BK)
The BK in this dataset consists of general molecular biology knowledge which
can be considered relevant for any protein grammar inference process. The BK
contains amino acid letters and their physio-chemical properties (as first pro-
posed by [4], and also used by [8]) and gaps. The purpose of gaps is to match
parts of the protein sequence that are not directly relevant to the function or
which cannot be characterized by the provided background predicates, but which
still participate in the overall structure of the molecule [2]. This dataset, includ-
ing the BK, was also used in [3] and [1]. (The datasets and BK can be found
at: www.comp.rgu.ac.uk/staff/tm/materials/ILP08/) The set of random exam-
ples may contain protein sequences that would be positive, but at the time this
dataset was collected, were still undiscovered as such. Consequently we cannot
treat them as negative examples so we have to use a positive-only learning ap-
proach [7].

A 5-fold stratified cross-validation was performed on all datasets. The strati-
fication of the cross validation was based on the length of the examples, ensuring
that all training and test sets include a variety of examples of different lengths.
The same Background Knowledge is used in each experiment.

2.2 Representation of biological grammars and sequences

We are using the ILP tool Aleph to learn biological grammars. All input given
to Aleph is using a Prolog related syntax. The same goes for the induced result,
especially since we might want to use the induced grammar in further tests or
experiments using Aleph or Prolog. The resulting BG, a context free grammar,
is a set of rules that represent a given set of protein sequences. To represent
such a grammar we use a Definite Clause Grammar (DCG) formalism [9] in the
same way as in [8, 1, 3, 2]. DCGs require sequences to be represented by a list,
where each element in this list stands for a letter in the sequence. DCG rules
take such a list as input and pass it on to the predicates that make up the rule.
Each predicate, starting with the first, then matches one or more elements from
the start of the list and returns the rest. This new, shorter list is then in turn
given to the next predicate in the rule. If the last predicate returns an empty
list, then the whole sequence is matched by the grammar rule and we consider
the sequence to be covered by that rule. Aleph learns one rule at the time until
all the examples are covered, and then it puts all the induced rules together to
form the resulting grammar. (See Table 2 on page 8 for a summary of Aleph’s
search algorithm)

2.3 Suitable performance measure for an induced grammar

In Machine Learning and more specifically ILP, the most popular performance
measure used to evaluate the final result of learning is the predictive accuracy:

accuracy =
TP + TN

TP + TN + FP + FN
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where TP stands for true positives, FP for false positives, TN for true negatives
and FN for false negatives However the accuracy of an induced grammar might
not be a suitable performance measure when learning biological grammars. Our
dataset (see Section 2.1) contains random examples instead of negative ones, so
instead of TN and FN, we get TR and FR, referring to true and false randoms.
These values can still be put in the above formula to compute the accuracy, but
they don’t quite mean the same thing. Our dataset also has a considerable unbal-
ance in the ratio between positive and random examples: 76 positives compared
to 2908 randoms. A consequence of this is that despite covering different num-
bers of the considerably rare positives, induced grammars have a high chance
of being awarded a very high accuracy by excluding most of the abundant ran-
dom examples [8]. To prevent cases where the accuracy could be inconclusive,
we considered other, additional quality measures for the induced grammars.

From the domain of Information Retrieval (IR) we considered precision, recall
and F-measure [14]. Precision in IR is the fraction of predicted positive examples
that are indeed true positives and Recall is the fraction of true positives among
all positives:

precision =
TP

TP + FP
; recall =

TP

TP + FN

In IR these two measures are often used in conjunction with the F-measure,
which is the weighted harmonic mean of precision and recall:

F −measure =
2 · precision · recall

precision + recall

These measures seem appropriate for our domain as well, so we decided to include
them in this work (see Table 4 on page 9).

3 Clause Evaluation Functions

The focus of this work is the evaluation function which the ILP system uses to
evaluate a clause. Such a clause evaluation function gives each accepted clause
a score estimating its quality (Table 2 step 3). After the search is complete, the
clause with the best score is added to the grammar (Table 2 step 4). This section
describes the different clause evaluation functions used in this work. A summary
can be found in Table 1.

Note here that a clause evaluation function and a grammar performance mea-
sure (introduced in Section 2.3) are two distinct things. While a clause evalua-
tion function is used to grade each individual clause during learning, a grammar
performance measure is only used after learning is completed successfully. The
grammar performance measure aims to estimate the future performance of the
entire learned grammar, which consists of a number of clauses.
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Table 1. List of all evaluation functions used in this work

(1) Score = log(P ) −log( R+1
Rsize+2

) −L
P

(2) Score = log(PosCoverage) −log( RanCoverage+1
RLsize+2

) − L
PosCoverage

(3) Score = log(PosCoverage) −log( RanCoverage+1
Rsize+2

) − L
PosCoverage

(4) Score = log(PosCoverage) −log( RanCoverage+1
Rsize+2

) −L

3.1 Standard positive-only evaluation function

The standard positive-only learning evaluation score in ILP was devised by
Muggelton [7]:

Score = log (P )− log(
(R + 1)

(Rsize + 2)
)− L

P
(1)

Where P is the number of positives covered; R is the number of randoms covered;
Rsize is the total number of randoms and L is the number of literals in the
hypothesis. This evaluation function has been widely used by the community and
therefore is our benchmark evaluation function. This means that our experiments
aim to find a function that outperforms this one.

3.2 L-modification of the standard positive-only evaluation function

Function (1) does not consider the length of individual examples, so to put our
hypothesis to the test we had to modify it. What we propose is to replace any
variable in evaluation function (1) that would refer to numbers of examples (may
that be covered, not covered or total) with a different variable that instead refers
to a modified value which takes into account the length of examples. This means
more precisely that instead of feeding P and R to to the evaluation function, we
replaced all their occurrences in (1) with PosCoverage and RanCoverage respec-
tively. PosCoverage is the sum of the lengths of all covered positive examples and
RanCoverage is the sum of the lengths of all covered random examples. These
changes combine the idea of existing pos-only evaluation functions with the idea
of considering the length of examples. Henceforth we denote such a change of
variables as L-modification. In addition to P and R, the variable Rsize in (1)
also refers to a number of examples: the total number of random examples in
the training data. As the name of the variable suggests, this number intends to
represent the size of the set of randoms, so within the context of this work, it
makes sense that we also apply our L-modification to this variable. This means
that we replace Rsize with RLsize, which is the sum of the lengths of all random
examples in the training data. Applying these modifications gives us:

Score = log(PosCoverage)− log(
RanCoverage + 1

RLsize + 2
)− L

PosCoverage
(2)
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3.3 Further L-modified evaluation functions used in this work

Although our experiments will focus on evaluation functions (1) and 2 we also
ran our experiments on two other modified versions of evaluation function (1).
The first of these only replaces P and R with PosCoverage and RanCoverage
respectively with no further changes:

Score = log(PosCoverage)− log(
RanCoverage + 1

Rsize + 2
)− L

PosCoverage
(3)

The second one also takes into account that the value of PosCoverage is 10 to
60 times larger than P, therefore the last term of function 3, ( L

PosCoverage ), pos-
sibly leads to the clause length L greatly losing influence on the score. Therefore
we tried giving L more weight by not dividing by PosCoverage:

Score = log(PosCoverage)− log(
RanCoverage + 1

Rsize + 2
)− L (4)

3.4 Implementing L-modifications

Three of the four evaluation functions in this work use the L-modified coverage
instead of the traditional coverage. Aleph, the ILP tool we are using does not
have features that can access the length of individual examples in the training
data. However it allows for user defined clause evaluation functions. Therefore,
instead of having Aleph calculate the coverage of a clause by itself, we had it use
customized predicates to compute the coverage during clause evaluation. These
predicates parse examples through the clause and return the modified coverage.
They still respect the search algorithm that Aleph applies (see Table 2), i.e. they
only parse those examples that are still uncovered (not yet deemed redundant).
In our experiments, when using the clause evaluation function (1) our predicates
calculate the number of positive and random examples covered, just like Aleph’s
functions would, however for all subsequent experiments, using functions (3),
(4) and (2) our predicates calculate the L-modified coverage, e.g. the sum of the
lengths of all the covered positive or random examples. Some of the predicates
that were used in this work to compute the L-modified coverage can be found
in Appendix B on page 16.

Table 2. A simplification of the basic Aleph algorithm

1. Select a positive example to be generalised. If none exist, stop.
2. Build the bottom clause; the most specific clause entailing the example selected.
3. Search; Find a clause more general than the bottom clause.

(Construct a search tree, each node containing a clause which consists of a subset
of the literals in the bottom clause. Search for the clause with the best score)

4. Remove redundant. The clause with the best score is added to the grammar.
All examples made redundant are removed. Return to Step 1.
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Table 3. Summary of the results on all datasets (see Section 2.1) - The first leftmost
column indicates which evaluation function was used (see Section 3 or Table 1), all the
subsequent columns give the sum, average and standard deviation (std) of true positives
(TP), false positives (FP), true randoms (TR) and false randoms (FR) observed during
testing.

Experiments conducted on NPP-middles

evalfunc TP FP TR FR
sum av. std sum av. std sum av. std sum av. std

(1) 50 10 2.12 652 130.4 72.44 2256 451.2 72.28 26 5.2 2.39

(2) 39 7.8 2.39 29 5.8 1.92 2879 575.8 1.79 37 7.4 2.61

Experiments conducted on NPP-middles-short

(1) 20 4 1.00 62 12.4 9.13 846 169.2 8.93 4 0.8 1.10

(2) 15 3 0.71 5 1 1.00 903 180.6 1.34 9 1.8 1.10

Experiments conducted on NPP-middles-medium

(1) 13 2.6 2.30 76 15.2 10.83 788 157.6 10.83 13 2.6 2.61

(2) 14 2.8 1.64 9 1.8 1.92 855 171 2.35 12 2.4 1.82

Experiments conducted on NPP-middles-long

(1) 6 1.2 0.84 170 34 26.45 966 193.2 26.48 20 4 0.71

(2) 2 0.4 0.55 19 3.8 2.68 1117 223.4 2.88 24 4.8 0.8

Table 4. Evaluation of the results, derived from the values given in Table 3 - The
first leftmost column indicates which dataset the values are referring to, the following
column states which evaluation function (evalfunc) was used (see Section 3 or Table
1) and the next columns give the average of accuracy, precision, recall and F-measure
observed during testing

Dataset evalfunc av. Accuracy av. Precision av. Recall F-measure

NPP-middles (1) 0.77 0.08 0.66 0.14

(2) 0.98 0.57 0.52 0.54

NPP-middles-short (1) 0.93 0.24 0.83 0.38

(2) 0.98 0.75 0.62 0.68

NPP-middles-medium (1) 0.90 0.15 0.50 0.23

(2) 0.98 0.61 0.54 0.57

NPP-middles-long (1) 0.84 0.03 0.23 0.06

(2) 0.96 0.10 0.08 0.09
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4 Results

Table 3 shows the results obtained from running evaluation functions (1) and
(2) on all datasets. From the results of the 5-fold cross validation we get the sum,
average and standard deviation of TP (true positives), FP (false positives), TR
(true randoms) and FR (false randoms).

Table 4 shows the evaluation of all the data collected in Table 3; the accuracy,
precision, recall and F-measure of a theory. Definitions of these performance
measures, can be found in Section 2.3.

5 Discussion

5.1 Effects of the L-modifications

Dataset NPP-middles
We use the experiment using clause evaluation function (1) as our benchmark and
compare the results of the other experiments with this one. The main change that
we can observe when looking at Table 3 is that the FP rate has been decreased
drastically by the L-modified experiments. FP of 5.8 is an acceptable value, even
within the positive-only learning NPP domain. It is mainly a consequence of this
change in FP that the accuracy was increased from 0.77 to 0.98.

However, as we suggested in Section 2.3 this high accuracy could be mislead-
ing. The precision has been increased from 0.08 to 0.57 which is a considerable
change. (1) has an extremely low precision as on average 130 random exam-
ples are accepted by the theory learned. This is over 25% of the total randoms
provided in each fold.

The recall has been slightly decreased from 0.66 to 0.52. The reason for this is
that the L-modified experiments produce theories with lower TP: 7.8 as opposed
to 10 by our benchmark experiment.

Finally, the F-measure, the weighted harmonic mean of precision and recall,
is increased in the L-modified experiments: from 0.14 to 0.54. We see this as a
significant improvement.

Dataset NPP-middles-(short,medium,long)
Concerning all 3 subsets of this dataset, the same observations can be made
as in the previous paragraph, using NPP-middles: the accuracy increases as a
consequence of FP decreasing, the precision improves as well, the recall decreases,
except using NPP-middles-medium where is increased by only 0.04 and the F-
measure finally increases as well.

However a few additional observations can be made here. Looking at Figure
2 we can see that for each subset of the NPP-middles (short, medium and long)
the performance of the L-modified evaluation functions is higher than that of
our benchmark function (1). Also, generally, for each measure, the performance
is better for shorter examples than for longer ones. The reason for this is that it
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is easier to learn rules covering shorter examples than longer ones, which makes
sense.

Another observation that can be made when looking at Table 4 is that
for datasets NPP-middle-short and NPP-middle-medium the accuracy and F-
measure are higher than for dataset NPP-middles, even without L-modification.
This is quite interesting as one would not expect this to be the case. Clearly,
datasets NPP-middle-short and NPP-middle-medium, being subsets of NPP-
middles, contain less examples than NPP-middles, so one would expect the per-
formance to be lower. What sets the smaller datasets apart from the larger one
is that the variation in the length of examples is different. This seems to indi-
cate that the greater variations in the length of the examples contained in the
NPP-middles dataset, compared to that in each of its subsets, make it harder
for Aleph to generate hypotheses with similar performance.

short medium long
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dataset

F
−m
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su
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evalfunc(1)

evalfunc(2)

evalfunc(3)

evalfunc(4)

Fig. 2. for all three parts of dataset NPP-middles-(short, medium and long) the per-
formance in terms of F-measure of each of the four evaluation functions is plotted

5.2 Comparing clause evaluation functions (3), (4) and (2)

In this work, we limited the reporting of results to evaluation functions (1), which
served as our benchmark, and (2), which is the main contribution of this work.
However as we stated in Section 3.3 we also ran all experiments reported using
evaluation functions (3) and (4). The results of using these functions were not
reported in Tables 3 and 4 because they were very similar, and in many cases
identical to the outcomes of the experiments using function (2). Furthermore
when we learn on the entire NPP-middle dataset, without any cross validation,
then the grammars learned using these 3 evaluation functions are in fact identi-
cal and the search constructs the same number of nodes for these 3 experiments.
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There is a slight variation in time needed which can be accounted for by different
computation times of the slightly different evaluation functions. We can conclude
that although there is a significant difference in performance when introducing
the length of examples into the clause evaluation function, there is no further
advantage to be gained by considering the differences between (2), (3) and (4).
The most likely explanation for this is that the first term of these L-modified
equations, log(PosCoverage), is the dominant term, especially in these experi-
ments where we deal with large values of PosCoverage. As a consequence, the
second and third terms in the L-modified equations have only a minor influence
on the score.

5.3 Analysis of induced grammars

We have already noted that using our L-modified clause evaluation function
increases the accuracy and F-measure of the learned grammars. However we
made other observations that need mentioning. Table 5 contains an analysis of
the grammars that were learned using the NPP-middle dataset, without any
cross validation.

Applying L-modification to the evaluation function increases the number of
rules in the learned grammars. This is the case because more rules cover only one
positive example each (see Table 5 column 4). So even though the grammars are
better at describing the positive examples (cover a lot less random examples),
they are more complex. This could be an indication that the grammars are more
likely to be overfitted to the dataset. It is worth noting that those rules that cover
only one example usually cover a very large example. Also, rules that cover only
one example could provide useful information to the experts of the domain as
they may indicate which part of a protein is of biological significance.

Table 5. Details of the grammars induced using the NPP-middle dataset, without any
cross validation - The first column indicates which evaluation function from Section 3
was used while inducing the grammar, the second column gives the average number of
rules that make up the induced grammars when learned using 5-fold cross validation,
the third column gives the number of rules that make up the induced grammar when
learned on the whole dataset and the fourth column gives a count of how many rules
were induced that only cover one positive example when learned on the whole dataset

evaluation av. # of rules # of rules in # of rules
function per fold whole dataset covering 1 ex.

(1) 15 14 3

(2) 30.6 35 22

5.4 Total time

In our experiments we also recorded the total time needed for the induction pro-
cess. In general, experiments using functions (2), (4) and (3) took a lot longer
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than those using function (1). Even though computing our L-modified cover-
age requires a little more computational power, it is more likely that the large
increase in running time is a consequence of more nodes being constructed by
the search, which in turn results in the increase of performance of the resulting
grammars.

In order to confirm this we ran an additional set of experiments using the
NPP-middles dataset. This time we used a number of different parameters for
setNodes, the Aleph setting that controls how many nodes are constructed dur-
ing each search. We used the following values: 100000 (the value we used in all
other experiments), 50000, 10000, 5000 and 1000. We then recorded the total
number of nodes constructed for each learning task (the sum of all nodes con-
structed during each search). Figure 3 shows the graph plotting the performance
of the evaluation functions against the total number of nodes constructed. We
can observe that more nodes are constructed to learn grammars with better per-
formance. In addition to that, the rate of increase is greater for the L-modified
evaluation functions than for the benchmark function. This shows that indeed,
for larger search spaces, the L-modified evaluation functions result in grammars
with a higher F-measure. There are two factors that are responsible for the search
space being larger when using L-modified evaluation functions:

1. If L-modified clause evaluation functions are used to calculate the score for a
clause, the search is not as easily satisfied and more iterations of the search
algorithm are called before a clause is finally added to the resulting grammar.

2. As we have shown in Section 5.3, grammars learned using the L-modified
scores consist of more rules than their unmodified counterpart, which means
that more examples are chosen to be generalized by step 1 of the search
algorithm (see Table 2).

6 Conclusions

We have shown that when learning on the NPP-middle dataset, the L-modifications
we propose do improve the performance of the induced grammars, both in terms
of accuracy and F-measure. Splitting the NPP-middle dataset in 3 disjoint sub-
sets and learning on those, we have shown that our L-modification improves
performance of induced grammars for short, medium and long examples. Within
this context, we have also shown that it is generally harder to learn rules cov-
ering longer examples than shorter ones. By observing the outcomes of learning
on NPP-middle dataset and comparing them with those that we can observe
when learning on each of its subsets (NPP-middle-short, -medium and -large)
we conclude that it is harder for the ILP tool used in this work (Aleph) to learn
from examples that have a high variation in their lengths. Finally, by running
several experiments setting different limits for the amount of nodes allowed to
be constructed during learning, we have shown that for larger search spaces, the
L-modified evaluation functions result in grammars with a higher F-measure and
that the rate of improvement is higher using L-modified functions.
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Fig. 3. for each evaluation function (evalfunc) the performance is plotted against the
total number of nodes constructed at the end of induction
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Considering all the above, we can conclude that the L-modification proposed
in this work does indeed improve the performance of evaluation function (1).
Therefore we would expect the L-modification to improve other clause evaluation
functions as well, so now there is a need to apply this approach to more than
one standard clause evaluation function.

7 Future Work

Applying L-modification to different evaluation functions

To fully support our claims that the L-modification proposed in this work im-
proves the grammars that are learned, there is a need to apply this approach to
other standard clause evaluation functions. However, this is complicated by the
fact that so far, we were dealing with positive-only learning. Evaluation func-
tions meant for positive and negative learning are more common. We therefore
propose to investigate how to apply this approach of L-modifying the coverage
computation to clause evaluation functions which are tailored to positive and
negative learning.
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Appendix A: Materials

Most of the materials used in this work, dataset and input files for Aleph can be
found online at www.comp.rgu.ac.uk/staff/tm/materials/ILP08/.

Appendix B: Code for L-modified coverage computation

predicate: compute Lmodcover/3

This predicate computes the L-modified coverage of a clause on all remaining
examples of a certain type, where type stands for either positive or negative
examples. In our experiments negative examples were substituted by random
examples (see Section 2.1 page 4).

%used as: compute_Lmodcover(Type,Clause, L-modifiedCoverage)
compute_Lmodcover(Type,(Head:-Body), Cov) :- !,

’$aleph_global’(atoms_left,atoms_left(Type,Left)),
compute_Lmodcover(Type, (Head:-Body), Left, 0, Cov).

compute_Lmodcover(Type, ClauseWithoutBody, Cov) :-
compute_Lmodcover(Type,(ClauseWithoutBody:-true),Cov).

compute_Lmodcover(_, _, [], Cov, Cov).
compute_Lmodcover(Type, Clause, [Inter|Rest], Cov, CovRes) :-

compute_Lmodcover_interval(Type, Clause, Inter, Cov, Cov1),
compute_Lmodcover(Type, Clause, Rest,Cov1,CovRes).

compute_Lmodcover_interval(_, _, Start-Finish, Cov, Cov) :-
Start > Finish, !.

compute_Lmodcover_interval(Type,Clause,Start-Finish,Cov,CovRes) :-
example(Start, Type, Atom),

%get the L-modified coverage SeqLength for this example:
parse_exple_for_length(Clause, Atom, SeqLength),

%add L-modified coverage for this example to the total coverage:
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Cov1 is Cov+SeqLength,
Start1 is Start+1,
compute_Lmodcover_interval(Type, Clause, Start1-Finish,

Cov1, CovRes).

predicate: parse exple for length/3

This predicate parses an example and returns the length of the sequence if it
was parsed sucessfully. If it cannot be parsed, 0 is returned.

%used as: parse_exple_for_length(Clause,Example,SequenceLength)
parse_exple_for_length((Head:-Body),Example,SeqLength) :-
% the \+(\+()) are needed to ensure Head and Example
% do not stay unified after the call

\+((\+((Example=Head, call(Body))))),
Example=middle(MidSeq,[]),
length(MidSeq,SeqLength), !.

parse_exple_for_length(_,_,0).


