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Abstract. We are interested in using inductive logic programming (ILP)
to generate rules for recognising functional upstream open reading frames
(uORFs) in the yeast Saccharomyces cerevisiae. This paper empirically
investigates whether providing an ILP system with predicted mRNA
secondary structure can increase the performance of the resulting rules.
Two sets of experiments, with and without mRNA secondary structure
predictions as part of the background knowledge, were run. For each set,
stratified 10-fold cross-validation experiments were run 100 times, each
time randomly permuting the order of the positive training examples,
and the performance of the resulting hypotheses were measured. Our
results demonstrate that the performance of an ILP system in recog-
nising known functional uORFs in the yeast S. cerevisiae significantly
increases when mRNA secondary structure predictions are added to the
background knowledge and suggest that mRNA secondary structure can
affect the ability of uORFs to regulate gene expression.

1 Introduction

Uncovering the mechanisms that regulate gene expression at a system-level is an
important task in systems biology. Understanding the roles of post-transcriptional
regulatory elements in gene expression is one aspect of this. Upstream open read-
ing frames (uORFs) are among the regulatory elements that can be present in
the 5′ untranslated region (UTR) of messenger RNA (mRNA). In the yeast
Saccharomyces cerevisiae, some uORFs have been well studied and it has been
verified that some of these regulate gene expression (i.e. they are functional) [1–
5], while a few others do not (i.e. they are non-functional) [6, 7]. The mechanism
by which uORFs regulate genes is still only partially understood. This is mainly
because wet-lab experiments to test whether a gene contains functional uORFs
are costly and time-consuming.
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Fig. 1. Left: A predicted secondary structure of the 5′ UTR sequence and ten nu-
cleotides of gene YAP2 (YDR423C), made by RNAfold. The boxes have been added
to show how we view the structure as three stem-loop structures. Right: Illustration of
a uORF intersects with an mRNA secondary structure on the uORF’s left (upstream)
part.

It has been shown that inductive logic programming (ILP) can automatically
generate a set of hypotheses which makes searching for novel functional uORFs
(i.e. uORFs which can regulate gene expression) in the yeast S. cerevisiae more
efficient than random sampling [8]. Those hypotheses were simple and easy to
understand, but appeared to be too general. This is due not only to the limited
number of positive examples and the high degree of noise in the data, two prob-
lems which cannot be easily rectified, but also due to the limited background
knowledge.

In this paper, we investigate whether incorporating predicted mRNA sec-
ondary structure as background knowledge can increase the performance of the
resulting hypotheses in recognising functional uORFs in the yeast S. cerevisiae.
The type of mRNA secondary structure we consider is the stem-loop. A stem-
loop is a simple RNA secondary structure motif that can occur when the tran-
scribed sequence contains an inverted repeat sequence (see Fig. 1). Based on
their study on a maize gene, Wang and Wessler [9] concluded that uORF and
mRNA secondary structure regulate gene expression independently. However,
the results from [10], based on studies on human genes, are rather different;
the presence of secondary structure seems to affect uORFs’ ability to regulate
gene expression. The difference between the conclusions of [9] and those of [10]
leave open the question whether mRNA secondary structure influences uORFs’
ability to regulate gene expression. This motivates our study; to test whether
mRNA secondary structure predictions could help in recognising known func-
tional uORFs in the yeast S. cerevisiae.

The rest of this paper is organised as follows. Section 2 describes the dataset
and the learning system used in this work. The experimental method, includ-
ing how we incorporate mRNA secondary structure predictions as background
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knowledge, is detailed in Section 3. Our results are presented in Section 4. Fi-
nally, in Section 5, we discuss our main results and suggest directions for future
work.

2 The Dataset and the Learning System

The same dataset that was used for training and testing in [8] was used here
for training and testing. For the task of learning which uORFs regulate gene
expression, positive examples are verified functional uORFs, and negative ex-
amples are verified non-functional uORFs. Since confirmed negative examples
are scarce (there are only two compared to 20 positive examples) and given that
there are 380 random examples (unlabelled uORFs, most of which are prob-
ably negatives), we use the positive-only setting [11] of CProgol [12] version
4.4 [13]; the same was used in [8]. CProgol is an established ILP system which
uses a covering approach for hypotheses construction. CProgol has been suc-
cessfully applied to many different problems, including some in bioinformatics.
The positive-only setting of CProgol4.4 learns from both positive and random
examples; the random examples can either be provided by the user or generated
automatically by CProgol. The random examples used for our experiments here
are the 380 unlabelled uORFs. We did not use the system-generated random
examples because these could be less informative than unlabelled uORFs and
might not represent true examples (i.e., true uORFs).

3 Methods

To enable us to test whether incorporating mRNA secondary structure predic-
tions as background knowledge increases ILP performance when learning which
uORFs in yeast are functional, we run two sets of experiments, with and without
mRNA secondary structure predictions as part of the background knowledge. For
each set, stratified 10-fold cross-validation experiments were run 100 times, each
time with a random permutation of the order in which positive training examples
are presented to the ILP system; this was done because CProgol4.4 may generate
different hypotheses when given different orderings of positive training examples.
The same 100 random orderings were used for both sets of experiments. Strat-
ified 10-fold cross-validation means that the set of positive examples is divided
into ten roughly equal partitions and the same is done to the set of random
examples; each of these positive and random partitions are in turn used as a test
set while the rest of the partitions are used as training set. Table 1 summarises
our experimental procedure.

The ILP learner was instructed to learn a predicate has_functional_role/1
from a set of training examples. Positive examples were represented as instances
of the predicate has_functional_role(X), where X is a uORF ID. A uORF ID
is a composite of the systematic name of the gene to which the uORF belongs
(for example, YDR423C is the systematic name of gene YAP2 ) and a uORF
identifier (e.g., uORF1, uORF2, etc.). The definition of the hypotheses space for



4 Selpi et al.

Table 1. The Experimental Procedure

For i=1 to 100

Randomly permute the order of examples

Divide dataset into stratified 10 folds

Divide set of positives into 10 equal partitions

Divide set of randoms into 10 roughly equal partitions

For j=1 to 10

Concatenate partition j of positives and partition j of randoms

to create fold j

For each set of background knowledge

For j=1 to 10

Use fold j as test set

Construct hypotheses using the other nine folds

Use the resulting hypotheses to classify the test set

Get the performance of stratified 10-fold cross-validation

experiments

Table 2. Representation of a predicted structure shown in Figure 1.
has stemloop(X,Y) represents the relationship between UTR X and stem-loop
Y. stemloop(W,X,Y,Z) states that stem-loop W has its opening and closing positions in
X and Y bases to the coding sequence; and there are, in total, Z base pairs within W.

has_stemloop(YDR423C, YDR423C_sl3). stemloop(YDR423C_sl3, 98, 71, 10).

has_stemloop(YDR423C, YDR423C_sl2). stemloop(YDR423C_sl2, 66, 17, 13).

has_stemloop(YDR423C, YDR423C_sl1). stemloop(YDR423C_sl1, 13, -3, 3).

the experiments without mRNA secondary structure predictions were the same
as in Table 5 of [8].

RNAfold [14]4 was used, with its default settings, to generate mRNA sec-
ondary structure predictions from sequence data. For each of the 17 well-studied
genes, the 5′ UTR sequence and the first ten nucleotides of the coding sequence
was used as an input for RNAfold. The length of 5′ UTRs were taken from the Eu-
ropean Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database5,
where available, or, failing that, [1]. The output from RNAfold was transformed
into Prolog predicates representing predicted mRNA secondary structure as ex-
tensional background knowledge. In this work, we view the predicted mRNA
secondary structure from the highest level. This means that we do not consider
a nested stem-loop as an independent stem-loop. For example, we only consider
YAP2 to have the three stem-loop structures shown in the left part of Fig. 1
and Table 2.

4 ViennaRNA-1.6.1 was downloaded from http://www.tbi.univie.ac.at/~ivo/RNA/
5 ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/5UTR.Fun_nr.dat.gz version 16
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Table 3. Additional mode declarations used in experiments with mRNA secondary
structure predictionsa.

:- modeb(1,is_inside_stemloop(+uORF))?

:- modeb(1,intersectleft_with_stemloop(+uORF))?

:- modeb(1,intersectright_with_stemloop(+uORF))?

:- modeb(*,has_stemloop(+uORF,-stemloop))?

:- modeb(1,stemloop(+stemloop,-pospair1,-pospair2,-numberofpairs))?

:- modeb(1,+numberofpairs=< #int)?

:- modeb(1,+numberofpairs>= #int)?

:- modeb(1,+numberofpairs= #int)?

:- modeb(1,+pospair1=< #int)? :- modeb(1,+pospair2=< #int)?

:- modeb(1,+pospair1>= #int)? :- modeb(1,+pospair2>= #int)?

:- modeb(1,+pospair1= #int)? :- modeb(1,+pospair2= #int)?

amodeb describes the predicates to be used in a hypothesis and has the for-
mat: modeb(RecallNumber,Template). RecallNumber specifies how many times the
Template can be called successfully; * means the Template can be called successfully
up to 100 times. Template is n-ary predicates, with n ≥ 1 and each of the arguments
is a variable type preceded by either a ‘+’ (indicates that the argument should be an
input), ‘-’ (indicates that the argument should be an output), or ‘#’ (indicates that
the argument should be a constant). The types uORF and stemloop were declared by
defining a set of instances of the predicates uORF(X) and stemloop(Y) respectively,
where X is a uORF ID and Y is a stem-loop ID. The types of pospair1, pospair2,
and numberofpairs were all defined as integer. pospair1 and pospair2 represent the
opening and closing positions of the stemloop. numberofpairs represents the length of
stem.

[15] and [16] suggested that the stability of a secondary structure and its
distance from the coding sequence influence its ability to inhibit the translation
of the coding sequence. Therefore, the predicate stemloop/4 (see Table 3) was
designed to capture both the distance (the opening and the closing positions
in the right part of Fig. 1) of a predicted stem-loop structure to the coding
sequence and the stability. Here, the stability was represented by the number
of base pairs (the length of the stem); the longer the stem the more stable the
secondary structure and the more energy is needed to unwind it. We do not use
the predicted minimum free energy because of the way we view the predicted
mRNA secondary structure. For example, we consider three stem-loop structures
while there was only one predicted minimum free energy for the overall predicted
structure shown in the left part of Fig. 1.

With the biological knowledge gained from literature, we defined several
declarative rules that identify if a uORF intersects with any predicted secondary
structure on the uORF’s left (upstream) part (see an illustration in Fig. 1), on
the uORF’s right (downstream) part, or is inside any predicted secondary struc-
ture. To instruct CProgol to include mRNA secondary structure predictions in
its hypothesis space, we defined additional mode declarations (Table 3). Some
adjustments were made to the parameter settings used in [8] to allow CProgol to
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consider a larger hypotheses space. The parameter c (the maximum number of
atoms in the body of the rules constructed) was increased from 6 to 10; nodes

(the maximum number of nodes explored during clause searching) was increased
from 7,000 to 50,000; and h (the maximum depth of resolutions allowed when
proving) was increased from 30 (default value) to 100.

4 Results

To statistically evaluate the impact of incorporating mRNA secondary struc-
ture predictions as part of the background knowledge on the task of recognising
yeast functional uORFs, we compared the relative advantage (RA) values [17,
Appendix A] from 100 experiments with and without mRNA secondary structure
predictions. RA was used as a performance measure in [8]. The characteristics of
the data used here matched with the characteristics for which RA is claimed to
be useful. The idea of using RA is to predict the cost reduction in finding func-
tional uORFs using a recognition model compared to using random sampling.
In this application domain, RA is defined as

RA =
A

B

where

– A is the expected cost of finding one functional uORF by repeated indepen-
dent random sampling from the set of possible uORFs and performing a lab
analysis of each uORF;

– B is the expected cost of finding one functional uORF by repeated indepen-
dent random sampling from the set of possible uORFs and analysing only
those uORFs which are predicted by the learned model as functional uORFs.

In 87 experiments out of 100, the mean RA values from the experiments with
mRNA secondary structure predictions are better than the mean RA values from
the corresponding experiments without mRNA secondary structure predictions
(see Fig. 2). The result from a Wilcoxon Signed Rank test shows that there was a
statistically significant increase from the mean RA values from the experiments
without mRNA secondary structure predictions to those from the correspond-
ing experiments with mRNA secondary structure predictions (mean RA values:
mean without=34.05, mean with=61.53, p < 0.0005).

The analysis made so far is based on the mean RA values from our ex-
periments. However, RA is less well known than other performance measures
such as precision, recall (also known as sensitivity), specificity, and F1 score.
Therefore, to support our analysis, we also measured the precision, recall, speci-
ficity6, and F1 score. We found that there were statistically significant increases
in the values of precision, recall, specificity, and F1 score from the experiments

6 In this case, specificity measures the fraction of randoms which are predicted as
randoms.
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Fig. 2. Comparison of mean RA values from 100 experiments with and without mRNA
secondary structure predictions. Experiments are sorted with respect to mean RA
values from the experiments without mRNA secondary structure predictions. In 87
experiments, the mean RA values from experiments with mRNA secondary structure
predictions are better than those from experiments without mRNA secondary structure
predictions.

Table 4. Spearman’s rank correlation between mean RA and other performance mea-
sures from 100 experiments with and without mRNA secondary structure predictions.

Experiment Precision Recall Specificity F1 score

with Mean RA 0.94 -0.02 0.73 0.74

without Mean RA 0.91 -0.05 0.72 0.70

Note: There is no significant correlation between mean RA and
recall. All other correlations are significant with p < 0.0005.

without mRNA secondary structure predictions to those from the correspond-
ing experiments with mRNA secondary structure predictions (precision: mean
without=0.45, mean with=0.63; recall: mean without=0.77, mean with=0.87;
specificity: mean without=0.94, mean with=0.96; F1 score: mean without=0.54,
mean with=0.70; all were based on Wilcoxon Signed Ranks test with p < 0.0005).

Spearman’s rank correlation was used to find out whether there are relation-
ships between RA and the other measures (Table 4). We conclude that mean
RA has a strong positive correlation with precision and specificity. Spearman’s
correlation also shows that there was a strong positive correlation between mean
RA and F1 score. This is due to the strong positive correlation between mean
RA and precision, since there was no significant correlation between mean RA
and recall; precision and recall are the two components used for calculating F1

score.

The content of the hypotheses were also analysed. The hypotheses from the
10 experiments that give the 10 highest average cross-validation performances
(mean RA) suggest that mRNA secondary structure influences uORFs’ ability
to regulate gene expression in the yeast S. cerevisiae. The rules also suggest that
a functional uORF is likely to lie inside a stem-loop structure, or to intersect
with a stem-loop structure on the uORF’s left part. In our data, 17 of the 20
functional uORFs (positive examples) lie inside stem-loop structures predicted
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in the associated UTRs. For 3 of the 20 uORFs, their left part intersect with
stem-loop structures predicted in the associated UTRs; 2 of these 3 uORFs do
not lie inside stem-loop structures predicted in the associated UTRs.

5 Discussion and Future Work

Our empirical results show that the performance of an ILP system, CProgol 4.4,
in recognising known functional uORFs in the yeast S. cerevisiae significantly
increases when mRNA secondary structure predictions are added to the back-
ground knowledge (mean RA values: mean without=34.05, mean with=61.53,
p < 0.0005). This conclusion still holds when performance is measured using
precision, recall, specificity, and F1 score, which are very well known in both
machine learning and bioinformatics domains.

In this work, the background knowledge regarding mRNA secondary struc-
ture was derived from predictions made by RNAfold on the given S. cerevisiae

sequences. However, the reliability of predictions made by RNAfold, and other
similar software based on thermodynamic energy minimisation, is often ques-
tioned because each prediction is made based on a single sequence. Therefore,
for future work, one could consider deriving the background knowledge from
mRNA secondary structures that are predicted to be conserved among yeast
species.

Here, we view the predicted mRNA secondary structure from the highest
level, and do not consider a nested stem-loop as an independent stem-loop.
Thus, we limited the type of background knowledge that was derived from the
predicted mRNA secondary structure. It would be interesting to investigate the
effect of including more detailed background knowledge of the mRNA secondary
structure predictions on the ILP system’s performance in recognising functional
uORFs.
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