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Abstract: Global competition and rapidly changing customer requirements are demanding increasing changes in 

manufacturing environments. Enterprises are required to constantly redesign their products and continuously 

reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this 

new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed 

by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. 

The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different 

Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the 

components of  IMS.  
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I TRODUCTIO  

The growing complexity of industrial manufacturing and the need for higher efficiency, greater flexibility, better 

product quality and lower cost have changed the face of manufacturing practice (Rao et al., 1993). Since the early 

50s when classical control theory was being established, engineers have devised several procedures which analyse or 

design systems. These procedures can be summarised as (Jamshidi, 1997): 

(1) Modelling procedures which consist of differential equations, input-output transfer functions and state-space 

formulations 

(2) Behavioural procedures of systems such as controllability, observability and stability tests. 

(3) Control procedures such as series compensation, pole placement, optimal control, robust control etc. 

In today's complex systems, the application of these procedures alone may not be sufficient to maximise the 

performance of a manufacturing organisation. Rodd (1992) also stated that when examining the nature of the 

different manufacturing process, one is faced with many issues which no single unifying mathematically-provable 

theory can cope with. Rodd stated the following problems: (1) Inherent instability of the process; (2) Mixture of 

continuous and batch operations; (3) Incomplete and/or excessive data; (4) Unidentified processes; (5) changed 

processes and (6) Temporal problems.  

 

In addition to these technical issues, modern manufacturing technology is interdisciplinary in nature and allows the 

application of different knowledge from other scientific fields such as manufacturing, computer science, 

management, marketing and control systems. Manufacturing has also shifted from mass production, to a more 

controlled one where products are only produced if there is a market for them, and when there is a market, they must 



be manufactured quickly, e.g. JIT manufacturing. We need also to look at all aspects of the process before 

manufacturing a product. We have to make sure that we can do it right, efficiently and cost effectively if we want to 

make any profit. Therefore our control on the manufacturing process should not be only on machines but should also 

include human aspects. Another shift of modern manufacturing is from a localised level to total plant-wide control. 

We need also to predict how our system will perform under certain circumstances. In short, we need to be in a 

position to model our production and control processes as accurately as possible (Rodd, 1992).  

This paper is a review of the use of AI techniques in manufacturing. Indeed, many authors have supported the view 

that AI can make a significant contribution to improving control and manufacturing systems. The remainder of the 

paper is organised as follows: in the next section, we present a case for supporting the view that AI can lead to 

improving manufacturing systems. In section three we outline the AI techniques that are considered in this paper 

together with the components of a simplified intelligent manufacturing system. Section 4 will look at the different AI 

techniques used for the different components of an intelligent manufacturing system. The paper concludes with a 

section on the future trends in using AI for manufacturing systems.  

 

A CASE FOR ARTIFICIAL I TELLIGE CE 

Since its emergence in the 50s, AI has provided several techniques with applications in manufacturing. In the early 

years, knowledge based systems attracted many attention. Recently neural networks, case-based reasoning, genetic 

algorithms and fuzzy logic have attracted more attention and have been successfully employed in manufacturing. 

Karwowski and Evans (1986) identified three key reasons why fuzzy logic is relevant to production management, 

this can be generalised to all AI techniques: 

(1) Imprecision and vagueness are inherent to the decision maker's mental model  

(2) In the production management environment, the information required to formulate a model's objective, decision 

variables, constraints and parameters may be vague or not precisely measurable. 

(3) Imprecision and vagueness as a result of personal bias and subjective opinion may further dampen the quality 

and quantity of available information. 

 

The application of AI in manufacturing has been the subject of extensive research in the last two decades. This surge 

in the application of AI in manufacturing is mainly due to the availability of powerful computers. In this paper, we 

concentrate on the work done since 1995 and report mainly on the journals where most of the research has been 

published. Table 1 summarises the journals and the number of articles published on the use of AI techniques in 

manufacturing systems per year and per journal. Other journals that contain papers on the use of artificial 

intelligence in manufacturing, and have been consulted, include Robotics and Integrated Manufacturing, IEEE 

Transactions on Robotics and Automation, Integrated Manufacturing Systems and Computers, Computers and 

Industrial Engineering and Operations Research.  This review focuses on the use of the following AI techniques: 

expert systems, neural networks, genetic algorithms, fuzzy logic, case-based reasoning and any combination of these 

techniques. There have been a number of more specialised surveys than the one presented in this paper which is a 

very general survey. A summary of these reviews include:  

 



� Fuzzy set theory applications in production management research. (Karwowski and Evans,1986 and Guiffrida 

and Nagi, 1998) 

� Application of Fuzzy set Theory (Maiers and Sherif, 1985). 

� Use of genetic algorithms in integrated planning and scheduling (Morad and Zalzala, 1999). 

� Use of expert systems in quality control (Kuo and Mital, 1993). 

� Expert systems in computer aided process planning (Alting and Zhang, 1989 and Kiritsis, 1995). 

� Applications of neural networks in chemical process control (Azlan, 1999). 

� Use of genetic algorithms for the facility layout problem (Mauridou and Pardalos, 1997) 

� Intelligent management systems in operations (Prodlove et al., 1997). 

� Application of Neural Networks in Manufacturing (Zhang and Huang, 1995) 

 

Reviews on  manufacturing include: 

� Intelligent Manufacturing (Kopacek, 1999). 

� Design and Planning problems in flexible manufacturing systems (Kouvelis, 1992) 

� Intelligent real-time flexible manufacturing systems (FMS) control (Shukla and Chen, 1996). 

 

Table1:  umber of published papers on the use of AI in manufacturing in selected journals (1995-1999) 

Journal 1995 1996 1997 1998 1999 Total 

International Journal of Production Research 17 12 16 21 22 88 

Computers in Industry 3 12 15 12 5 47 

Artificial Intelligence in Engineering * 12 13 8 25 58 

The Internat. Journal of Advanced Manufacturing Technology 9 15 * 15 13 52 

Journal of Intelligent Manufacturing 9 16 13 19 10 67 

Engineering Applications of Artificial Intelligence 26 27 22 35 27 137 

IEEE Transactions on Systems, Man and Cybernetics 16 24 23 27 24 114 

Total 80 118 102 137 126 563 

 

AI TECH IQUES A D COMPO E TS OF A  I TELLIGE T MA UFACTURI G 

SYSTEMS 

This section contains a very brief and much simplified outline of the main AI techniques and the components of a 

simplified model of an intelligent manufacturing system. 

 

AI Techniques 

 

Knowledge based systems 

The first attempt to be widely used to equip manufacturing systems with some degree of intelligence was the use of 

Knowledge Based Systems (KBS) (Schreiber et al., 1993). They seek to incorporate human knowledge about an 

application area, usually elicited from experts in the particular domain, so that the system can automatically replicate 



aspects of best practice. The human knowledge is represented using the IF-THEN production systems or more 

structured formats such as frames and semantic nets (Vadera, 1989). 

 

�eural networks 

Neural networks (Gurney, 1997 and Mehrotra et al. 1997) are based on ideas about how the brain may work. Input 

stimuli (e.g. the parameter values encountered in a problem situation) are connected through a network of nodes to 

output nodes (e.g. the solution). This technique has been widely used in many classification and optimisation 

situations. History data are used to ‘train’ the network, automatically determining the most appropriate configuration 

of the hidden network. 

Fuzzy logic 

Fuzzy logic allows the representation and processing of uncertain or vague information such as linguistic statements,  

for example the customer desires a car which is ”fairly luxurious”. Judging the degree of membership of classes (e.g. 

”luxury” and ”economy”) way of quantifying information that otherwise could not be used in mathematical 

modelling or target setting: The reader is refereed to Klir and Yuan (1995) for a good tutorial. 

 

Genetic algorithms 

Genetic Algorithms (Goldberg, 1989 and Nissen and Biethahn, 1995) use ideas from population genetics for solving 

complex global optimisation problems. A pool of potential candidate solutions evolve through reproduction and 

mutation of the fittest and elimination of  the least promising solutions of each generation are made ‘extinct’. 

 

Case-based reasoning 

In Case-Based Reasoning (CBR), the intelligent component of the system contains a history of past problems and the 

(successful) solutions applied. Future problems can then be considered through analogy with these past cases to 

rapidly home in on the most promising type of solutions. A further step is incorporating machine learning through 

the updating of the ‘case-base’ with those for which the solutions suggested proved successful (Watson and Marir, 

1994, Kolodner, 1993). 

 

Components of an intelligent manufacturing system 

As mentioned in the previous section, the manufacturing process is a complex one and can be decomposed into 

several components. Rao et al. (1993) decomposed  intelligent manufacturing systems into the following 

components: intelligent design, intelligent operation, intelligent control, intelligent planning and intelligent 

maintenance. We modify this decomposition slightly to reflect the current trends in the literature on intelligent 

manufacturing systems as shown in figure 1. We give a brief description of each phase in this section, and in the 

following section, we look at how AI techniques are used within each component. 



 

Figure 1: Components of an intelligent manufacturing systems (adapted from (Rao, 1993)) 

 

Intelligent design 

The importance of product design is undeniable. A firm's products or services are typically the primary source and 

focus of contact with its customers, and the development of new designs plays a key role in establishing and 

maintaining a competitive position for most firms. There are many problems in design manufacturing systems. A 

review of the problems encountered in manufacturing systems can be found in (Kouvelis, 1992). In this paper, 

process design is also included in intelligent design. 

 

Intelligent process planning 

Intelligent process planning is a dynamic and complex activity. Process planning provides a detailed description of 

manufacturing capabilities and requirements for transforming a stock of raw material into a completed product 

(Requicha and Vandenbrande, 1988). Intelligent process planning include Computer-Aided Process Planning 

(CAPP) and facility and location layout. Process planning is the interface between Computer-Aided Design (CAD) 

and Computer-Aided Manufacturing (CAM). CAPP is vital to achieving the ultimate goal of complete integrated 

factories of the future. A CAPP system contains a large amount of knowledge that includes rules about arranging 

machine operations and facts about the machine shop. Inventory management is also considered under this section 

because successful inventory management is essential for successful manufacturing and requires sophisticated 

methods to cope with the continuously changing environment. Literature is rich with papers about theoretical 

independent demand inventory modelling but practice lags behind these developments. AI can play an important role 

in aiding practitioners to implement such models and also to overcome the problems associated with managing large-

scale inventories 

 

Intelligent quality management 

Quality management has evolved from a focus on inspection through quality control techniques such as statistical 

process control (SPC) and through quality assurance to current total quality management (TQM) (Proudlove et al., 

1997). More organisations are involving customers in the early stages of design to assure quality and a market for 
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their products. Zhang and Huang (1995) stated that there are two approaches to quality assurance: reactive quality 

assurance and proactive quality assurance. Reactive tools include sampling plans, lot acceptance determination, 

scrap or rework analysis etc. Proactive strategy requires an emphasis on physical cause-effect knowledge, risk 

analysis, experience and judgement. 

 

Intelligent maintenance and diagnosis 

The goal of fault diagnosis is to detect the faults and their causes early enough, so that failure of the overall system 

can be avoided. From the fault-detection point, faults are divided into three categories, actuator faults, component 

faults, and sensor faults. The basic task of fault diagnosis is to detect the faults that occur, and to provide information 

about their size and source (Frank and Koppen-Seliger, 1997). Three steps need to be taken in fault diagnosis: signal 

generation, fault classification and evaluation, and fault analysis. See (Frank and Koppen-Seliger, 1997) for a survey 

on the use of AI techniques in fault diagnosis.  

 

Maintenance management and planning is a fundamental component of successful manufacturing operations. 

Scheduling preventive maintenance activities is an important aspect of maintenance management and it is 

particularly challenging for large and complex systems with many thousands of components. There are some useful 

commercial software packages for optimising maintenance activities available in the market (Dekker, 1996).  

However, most of these software packages have restrictive applicability since they are usually developed for very 

specific tasks. Dhaliwal (1986) and Kobaccy (1992) suggested the development of an approach for maintenance 

decision support that combines optimisation models and artificial intelligence techniques. Since then several attempts 

have been made to develop such systems. 

 

Intelligent scheduling  

Scheduling is a resource allocation problem subject to allocation and sequencing constraints. It is an optimisation 

problem. The objective in optimisation is to allocate a limited amount of resources to a set of tasks such that cost 

functions are optimised. 

 

Intelligent control 

The basic objective of control is to provide the appropriate input signal to a given physical process to yield the 

desired response. It is a complex process that continues to require human intelligence to ensure proper operation. 

 

I TELLIGE T DESIG  

This section reviews the use of AI techniques in intelligent design. 

Knowledge based systems 

Knowledge based systems were extensively used in early intelligent manufacturing systems and many of them were 

used in the design phase. Chon et al., 1993, reported the use of a knowledge based system for centrifugal fan blade 

design. Significant factors such as input variables, output variables and constraints are conceptualised. The 

knowledge base is developed using the expertise of a fan design expert and a corresponding rule set that combines 

the centrifugal fan theory.  The experience of human experts is developed and applied using an inference engine. A 



number of KBS were used in the electronic engineering field. A survey of the applications developed before 1993 

can be found in (Rowland and Jain, 1993).  In the same period, KBS were also used for the design of circulating 

fluidised bed boiler’s (Mitra et al., 1993) and for designing computer network topologies (Pierre, 1993).  

Basu et al. (1995) used an expert system for the design of manufacturing cells. The starting point for the expert 

system is the initial solution generated by traditional mathematical techniques. Based on a flexible set of user-driven 

quantitative and qualitative factors, the expert system evaluates these preliminary solutions for feasibility and quality. 

If the solutions are not satisfactory, the system suggests modifications. The trend of using KBS for manufacturing 

design has continued throughout the 90’s. Recently, KBS were used for concurrent engineering in metallurgy 

component design, materials selection, powder packing and compaction (Smith and Midha, 1999). 

 

 eural networks 

The product design process can be modelled as a mapping from a function space to a structure space to a physical 

space (Kumara and Kamarthi, 1991). An experienced human designer is usually aware of the structures that satisfy a 

particular set of functions. In his/her memory the designer may have stored the representations of a number of design 

solutions. By association, the designer can selectively retrieve those designs. Neural networks are very well suited 

for modelling the human associative memory (Zhang and Huang, 1995) and this has attracted a lot of research on the 

application of NNs for product design. 

 

Gunasekera et al. (1998) used a neural network model for the flat rolling process. The neural network was based on 

the backpropagation paradigm. A nonlinear mathematical model based on the slab method was developed to guide 

and supervise the learning procedures. Neural Networks have been used in the design of cellular manufacturing 

systems. Rao and Gu, (1995) used a multilayered neural network to configure and alternate cell designs by 

considering multiple constraints and objectives.  Kusiak and Lee (1996) constructed a three layer NN for designing a 

cellular manufacturing system that integrates several manufacturing functions.  

 

Genetic algorithms 

Bos (1998) used a procedure based on the combination of a genetic and a gradient-guided optimization algorithm for 

the design of a second-generation supersonic transport aircraft. Karafyllidis (1999) has developed a method for 

designing a dedicated processor, which executes a cellular automaton algorithm that simulates the photolithography 

process. Starting from a cellular automaton with a continuous state space which simulates the photolithography 

process, the genetic algorithm is used to find a cellular automaton with discrete state space, having the smallest 

possible lattice size and the smallest possible number of discrete states, the results of which are as close as possible 

to the results of the cellular automaton with continuous state space. The dedicated processor that executes the 

discrete cellular automaton algorithm was designed to the level of a silicon compiler output.  

 

Scott et al. (1999) provided an approach for multi-parameter controller design. The electromechanical actuators 

specific to thrust vector control applications are addressed. The control solution involves a traditional PID controller 

with an additional control filter. Genetic algorithms are utilized to optimize the controller gains using a frequency-

domain technique. 



Fuzzy logic 

Optimising the efficiency in cutting a sculptured surface using numerically controlled machining techniques needs to 

carefully consider the relationship between cutting edges and surface geometry. A fuzzy basis material removal 

optimisation approach is suggested by Ip (1998) to compensate the variation of cutting speed due to the change of 

gradient on the sculptured surface in machining process. Fuzzy modeling is used for the Penicillin-G conversion 

process (Babuska et al., 1999). A linguistic fuzzy model, which represents the kinetic term of the conversion, is 

developed from experimental data by means of fuzzy clustering 

 

Case based reasoning 

The frequent use of past experience by human engineers when solving new problems has led to an interest in the use 

of case based reasoning (CBR) to help automate engineering design. Purvis and Pu (1998) developed a constraint 

based methodology for case combination. The methodology is implemented in a case based reasoning system called 

COMPOSER and has been tested in two design domains: assembly sequence design and configuration design. Gao 

et al. (1998) used CBR for mechanical plan systems design. Design plans are stored as the actual cases in the CBR 

system. CBR is used for the design of bar linkages (Bose et al., 1997), Fixture design (Sun and Chen, 1995). 

A product may have different ways of disassembly and experience is important during disassembly if we want to 

satisfy goals such as part reuse, recycle or discard. Zeid et al. (1997) have proposed a CBR approach to solve design 

for disassembly (DFD) problem. 

 

Hybrid systems 

Chen et al. (1998) have developed an integrated expert system that consists of a knowledge base, a database, pattern-

recognition, ANN, and GA modules for complicated chemical reaction systems used to prepare industrial materials. 

The system has been used in many applications including the production of alloy steel, synthetic rubber, ceramic 

materials production and materials design of composite materials, high temperature (Tc) superconductors, and 

ceramic semiconductors. 

Lee et al. (1999) have developed a fuzzy non linear programming model to optimise machining operations. It uses 

fuzzy logic together with traditional mathematical programming to make a more flexible, reliable and acceptable 

model. In addition, the model can consider the qualitative viewpoint of the decision maker. The model also uses a 

NN model which can be used to assess the machinability of the machining operations. The output from the fuzzy 

non-linear programming model provides the input for the NN model. 

A material design system has been developed, utilising mathematical modelling and knowledge-based  approaches 

by Shivathaya and Fang (1999). The Knowledge-Based System (KBS) generates about 15-30 different target 

compositions for steelmaking for each customer order. Fuzzy logic is applied in the system for the design of steel 

plates, to rank the alternative target compositions for steelmaking according to the degree to which they will satisfy 

customer's requirements.  

 

I TELLIGE T PROCESS PLA  I G 

This section reviews the use of Artificial intelligence during process planning and inventory management. 



 

Knowledge based systems 

By 1993, a large number of expert system had been developed to assist process planning. An early survey on the use 

of expert systems in process planning was carried out by Alting and Zhang (1989) while a more recent survey was 

carried out by Kiritsis (1995). The maturity of the use of expert system in process planning has pushed some 

researchers to look at the development of tools to build expert system for process planning (Eskicioğlu, 1992).  

Wong and Siu (1995) used an expert system for automatic process selection and sequencing. This process selection 

and sequencing algorithm comprises three sub-algorithms, the transformation algorithm, the refinement algorithm 

and the linearization algorithm. The module is a part of a prototype expert process planning system for the 

machining of prismatic parts. Pande and Desai (1995) used an expert system (EXTURN) for the process planning of 

rotationally symmetric components manufactured on single spindle automats. The ES comprises an interactive 

graphical feature modeller and process planning modules for operation extraction, sequencing, tool selection, and 

process plan generation.  

 

 eural networks 

The learning ability of NNs provides a promising approach for automated knowledge acquisition and can be 

advantageously used in the building of automated process planning systems. 

The application of perceptron-type neural networks to tool-state classification during a metal-turning operation is 

reported by Dimla (1999). The inputs to the networks consist of descriptive, independent and different source 

process parameters of the cutting process. The cutting conditions were fused with the process parameters, and a 

single network output defined the tool state.  

 

Genetic algorithms 

Mauridou and Pardolos (1997), have carried out a comprehensive survey on the use of genetic algorithms for facility 

layout.  GAs have been successfully used in layout design (Suresh et al., 1995, Gupta et al., 1996 and Rao et al., 

1999), and have been shown to outperform human and KBS designs (Hamamoto, 1999). Parallel GAs were also used 

to solve the layout problem with geometric constraints (Tam and Chan, 1998). Hamamoto (1999) integrates GAs 

with an embedded simulation model to tackle the facility layout problem for pharmaceutical factories. The proposed 

method allows the user to specify objectives for each particular case and generate layouts that achieve those 

objectives. The experimental results show that the proposed model outperforms all existing computer layout 

algorithms such as CRAFT, LORELAP and LOCPPLAN. 

 

Bhaskara et al. (1999) demonstrates the application of GAs as a global search technique for a quick identification of 

optimal or near optimal operation sequences in a dynamic planning environment. The approach uses a precedence 

graph based on various manufacturing constraints, generates a precedence cost matrix using production rules and 

applied GAs to arrive at optimal or near optimal sequences. 

Fuzzy logic 

Many of the factors affecting facility layout and location problems are difficult to measure precisely and require a 

considerable amount of human judgement. Closeness measures are a key input in nearly all facility layout models 



and are often determined in the form of a closeness rating. Subjective weights are often used with closeness measures 

when determining criterion based scores to determine the layout of departments or machines. Fuzzy set theory 

effectively models facility layout and location by incorporating subjectivity in the parameters used by the models 

(Guiffrida, 1998). Fuzzy set theory has also been applied in inventory production and process plan selection. 

Inventory management requires demand forecasts as well as parameters for inventory-related costs such as carrying, 

replenishement, shortages and backorders (Guiffrida and Nagi, 1998). Precise estimations of these parameters are 

difficult. 

Dweiri and Meier(1996), defined a fuzzy decision-making system (FDMS) consisting of four principle components: 

(1) fuzzification of input and output variables; (2) the experts' knowledge base; (3) fuzzy decision making and (4) 

defuzzification of fuzzy output into crisp values. The analytical hierarchy process is used to weight factors affecting 

closeness ratings between departments.  

 

Case based reasoning 

BenArieh and Chopra (1997) describe a process planning system that utilises case-based reasoning. The system, 

CBPlan, uses a feature-based part representation as a key to the case library. Champati et al. (1996) also used a CBR 

approach for the automated sequencing in intelligent process planning. 

 

Hybrid systems 

Malakooti et al. (1995) developed a monitoring and supervising system for machining operations using in-process 

regression for monitoring and adaptive feedforward artificial neural networks for supervising. The monitoring system 

predicts tool life by using different sensors for gathering information based on a regression model that allows for the 

variations between tools and different machine setups. The regression model makes its prediction by using the 

history of other tools and combining it with the information obtained about the tool under consideration. The 

supervision system identifies the best parameters for the machine setup problem within the framework of multiple 

criteria decision making. Ming (1999) has combined expert systems and NNs to develop a CAPP system.  

 

Kobbacy and Liang (1999) presented a serious attempt at developing intelligent inventory management system. The 

system has an appropriate knowledge scope and focuses on the interrogation of the historical data rather than on 

asking the user to describe the system under analysis. The system first identifies a demand pattern based on the 

analysis of history data then it uses its model selection rule base to select an appropriate model from the model base. 

Other attempts have been made to use AI in managing dependent demand inventories.  Notably several applications 

have been published in the area of Just in Time (JIT) including the work of Fielder et al (1993  ), Rixen et al(1995) 

and Ettl and Schwehm (1995). A wider discussion can be found in the review of Proudlove et al (1998) 

 

I TELLIGE T QUALITY MA AGEME T 

 

This section reviews the use of AI techniques in manufacturing quality management. 

 

Knowledge based systems 



Statistical quality control (SQC) is one of the most effective tools for ensuring quality products and services by 

means of control charts. The interpretation of chart patterns, trends and associated diagnosis require expert 

knowledge. Quality control expert systems are used to help solve these problems and also to provide non specialised 

staff involved in quality with expert knowledge. A good review of expert systems used in quality control up to 1992 

can be found in (Kuo and Mital, 1993). Deslandres and Pierreval (1995) developed SYSMIQ, a knowledge-based 

advisory system for quality control to assist decision-makers in selecting the best quality tools and techniques and 

correctly apply them on the shop floor.  

 

 eural networks 

Reactive quality assurance is strongly related to monitoring and diagnosis. Therefore NNs can play an important 

role, especially where high processing and classification capabilities are required (Zhang et al., 1996). NN 

techniques can also be used in proactive quality assurance. 

 

NNs have been used for fault diagnosis in hydraulic forging presses (Lin et al., 1995b). The technical descriptions of 

the presses and the 47 major possible faults are presented. For diagnosing these faults, a back propagation NN was 

utilised and provided 99% accuracy in identifying causes of the failures of hydraulic forging presses. Chinnan and 

Kolarik (1997) proposed the use of NNs for optimising the controllable variables of a process to achieve real-time 

quality control. 

 

Genetic algorithms 

There is little work reported on the use of fuzzy logic for quality. Gill and Bector (1997) used a fuzzy linguistic 

approach to quantify part feature information for the part family formation problem.  

 

Fuzzy logic 

In early research, Fuzzy Logic (FL) was mainly used in acceptance sampling and statistical process control 

(Chakraborty, 1992&1994, Kanagawa and Ohta, 1990 and Kanagawa et al., 1994, Wang and Chen, 1995). In more 

recent research, fuzzy logic is used in quality topics such as quality improvement and quality function deployment 

(QFD) (Gutierez and Carmona, 1995, Khoo and Ho, 1996, Yongting, 1996, Wang, 1999 and Chan et al., 1999). 

 

Wang and Chen (1995) presented a fuzzy mathematical programming model and solution heuristic for the economic 

design of statistical control charts. After noting that quality decisions are inherently ambiguous, Gutierrez and 

Carmona (1995) proposed a fuzzy multicriteria decision theory framework for modelling quality decisions. The 

framework was demonstrated on an automobile manufacturing example consisting of the following five decision 

alternatives: purchasing new machinery, workforce training, preventive maintenance, supplier quality and inspection. 

Khoo and Ho (1996) presented a framework for a fuzzy quality function deployment (QFD) system in which the 

customer requirements can be expressed as both linguistic and crisp variables. The QFD system was demonstrated 

for determining the design requirement of a flexible manufacturing system Yongting (1996) stated that a fundamental 

shortcoming of traditional quality management is its failure to deal with quality as a fuzzy concept. Ambiguity in 

customer's understanding of standards, the need for multi-criteria appraisal and the psychological aspects of quality 



in the mind of the customers are examples of parameters that support the use of fuzzy logic to model quality. QFD 

consists of many phases and the first one translates customer needs for a product into technical measures. Chan et al., 

(1999) proposed a fuzzy and entropy method to obtain the final importance rating of the customer needs. The ratings 

form the basis for the company to make the product more attractive to customers and thus more competitive. The 

fuzzy method is used to convert the customers' importance assessments of the needs to fuzzy members and the 

relative importance ratings of the customer needs are then obtained using fuzzy arithmetic. The paper concludes that 

the proposed approach shows clearly the consistency of QFD with multiple criteria decision making (MCDM) in 

determining the relative importance ratings of customer needs. Fuzzy logic is also used by Fung et al. (1999) to 

analyse customer requirements. 

 

Wang (1999) considers QFD planning as a multi-criteria decision problem and proposes a fuzzy outranking decision 

model to prioritise design requirements recognised in QFD. The inputs of QFD are represented with the linguistic 

terms of fuzzy sets, which are appropriate for characterising imprecise and uncertain product information. Fuzzy 

outranking relations based on the possibility theory is used to model the imprecise preference relations found in 

design requirements. The purpose of the model is to achieve customer satisfaction and a balanced design of the 

product.  

 

Case based reasoning 

Malek et al. (1998) developed an operator support system to help and guide the operator in decision making during 

the control of the plastic injection moulding process. The main objective was to increase the quality during 

production. The approach used a CBR and learning system.  

 

I TELLIGE T MAI TE A CE A D DIAG OSIS 

 

The use of Ai techniques in maintenance and diagnosis is reviewed in this section. 

 

Knowledge based systems 

It has been reported that analytical approaches are not adequate for fault diagnosis (Frank, 1997), this is particularly 

due to the fact that the knowledge to be processed is commonly incomplete and therefore cannot be represented by 

analytical models. Fault classification and evaluation is a complex logical process that requires intelligent decision 

making techniques. Therefore, knowledge based methods are of great importance in fault diagnosis and expert 

systems have so far been applied successfully for fault diagnosis (Frank, 1997). A number of KBS were used for 

maintenance and fault diagnosis. A survey on the use of KBS for failure diagnosis before 1993 can be found in 

(Rowland, 1993). Arslan et al.. (1993) reported the use of an expert system for failure diagnosis for printed circuit 

boards. The KBS exploits functional test data, which is output from automatic test equipment which is used to test 

every board subsequent to manufacture. Fujikawa and Ishii (1995) use a KBS to identify the causes of various 

manufacturing defects in hot forging and suggest remedies. 

 



For maintenance, several systems have been developed to tackle specific industrial applications. For example Clark 

et al (1992) developed a knowledge-based system to optimise the building management maintenance and Batanove 

et al (1993) developed EXPERT-MM: a KBS for maintenance management for a large manufacturing company. A 

more general approach based on knowledge-based reasoning was adopted by Kobaccy et al (1995) and Zhang and 

Jardine(1997).  Kobbacy et al (1995) developed IMOS, a prototype intelligent maintenance optimisation system 

aimed at developing and enhancement of preventive maintenance routines for large and complex industrial systems. 

IMOS has a rule base for selecting an appropriate model for application based on identification of maintenance data 

pattern. Zhang and Jardine(1997) proposed a similar smart system for data-analysis models and optimising 

replacement age.  

 

 eural networks 

The fault identification process is essentially a pattern recognition procedure in which the analysed signals are used 

to make a decision. NNs, which have learning and self-organising abilities, can be advantageously used in pattern 

recognition. NNs have been widely used in monitoring and diagnosing (Zhang and Huang, 1995). 

 

Lately, NNs have been suggested as alternatives to state process charts, and shown to exhibit superior performance 

in detecting non-random patterns (Chang and Ho, 1999). Researchers are working to combine monitoring of process 

means with monitoring of process variance (e.g. Chang and Ho, 1999, Ho and Chang, 1999, Dedeakayogullari and 

Buma, 1999). The ability of NNs to detect several patterns occurring simultaneously is also being investigated (Guh 

and Tannock, 1999). 

NNs have been used for matching stereoscopic pictures and correcting 3D measurement error (Tien and Chang, 

1999) extending earlier work by Su et al. (1995) and identifying product defects (e.g. Kim and Kumara, 1997; Wang 

and Huang, 1997). A feed forward NN has been used for manufacturing diagnosis by Ransing and Lewis (1997).  

 

Fuzzy logic 

Fault identification can be seen as a classification problem. The task is to match each pattern of the symptom vector 

with one of the preassigned classes of faults. The principle of fault evaluation using fuzzy logic consists of a three-

step process. First the symptoms have to be fuzzified, then they have to be evaluated by an inference mechanism 

using fuzzy IF-THEN rules, and finally they have to be defuzzified (Frank, 1997). The fuzzification of the signals is 

a mapping of the representation using crisp values into a representation by fuzzy sets. With the aid of a fuzzy 

relation, the set of the fuzzified signals is transformed into a set of fuzzy statements (faults). Finally, the fuzzy 

information on the faults has to be converted into crisp sets such as yes-no statements. Khoo et al. (1999) propose 

the use of fuzzy logic techniques rather than NNs, which require long training times and large amounts of data, or 

KBS, which are domain dependent and have difficulty dealing with novel situations. 

Case based reasoning 

Xia and Rao (Xia and Rao, 1999) developed a dynamic CBR system that can represent system dynamics and fault-

propagation. The CBR include mechanisms such as tagged indexes, dynamic and composite features, and multiple 

indexing paths. 

 



Hybrid Systems 

Analysis of a typical large data file in IMOS (Kobbacy et al 1995) shows that about two thirds of components cannot 

be modelled.  Mostly because of an insufficient number of history records needed for model selection. Some of the 

cases which could not be modelled may have parameters with values close to those of a model’s acceptance level 

which have been based on arbitrary expert judgement.    

 

Jeon (2000) developed a hybrid intelligent maintenance optimisation system (HIMOS) for decision support which 

aims at overcoming the problems of IMOS. The key to this analysis is the application of intelligent judgement in 

selecting the most suitable model from a model-base utilising a hybrid knowledge/case based system (KBS/CBR). 

Thus initially a rule base is applied to select a model. If no model is matched, the system reverts to its historical case-

base to match the current case with a similar case that has been previously modelled. This double reasoning adds to 

the system’s true learning capabilities (intelligence) and increases the rate of success of model selection significantly. 

Labib et al (1997) used fuzzy logic combined with a rule base to develop an ‘Intelligent Maintenance Model’ which 

is applied to a manufacturing company to identify the most critical machines and determine appropriate maintenance 

action.   

I TELLIGE T CO TROL 

 

This section summarises the use of AI techniques in control. 

 

 

 eural networks 

Neural networks have several unique characteristics that allow them to perform some of the complex process control 

tasks that are traditionally reserved to humans (Zhang and Huang, 1995). Neural networks can (Hall and Lu, 1992): 

(1) be used to accurately represent response surface models of complex processes, 

(2) emulate the abilities of humans to incorporate new knowledge into existing models, providing the capability for 

self improvement and adaptation, 

(3) emulate human abilities to reason from a general model to a specialised case, making human-like assumptions 

when faced with incomplete data, 

(4) emulate human knowledge fusion capabilities by forming a single, coherent process model from a variety of 

partial knowledge sources. 

Hao et al. (1995) used a neural network approach in real-time control of flexible manufacturing systems. A 

hierarchical manufacturing controller, consisting of two NN structures, was used. The first NN participates in the 

feasibility analysis, and the other, at the lower level, in the process of dispatching and control.  

Sung (1999) has used a multilayer perceptron NN for a batch process in a wafer fabrication. Whenever, a batch 

processing machine is available, a batching policy can be implemented to make a decision either to process a batch 

immediately or to wait for additional wafer lots to arrive. Acosta et al. (1999) presented a control algorithm based on 

NNs. The control algorithm has been applied to a robot arm which has a highly nonlinear structure. The control 

technique proposed has provided satisfactory results. A decentralised model has been assumed where a controller is 

associated with each joint and a separate NN is used to adjust the parameters of each controller. NNs have been used 

to adjust the parameters of the controllers. 



 

Genetic algorithms 
 

Lenon (1999) discusses a variety of genetic adaptive control methods, and gives an extensive comparative analysis 

of their performance relative to conventional adaptive control techniques. Ong and Khoo (1999) used a GA for 

optimising the sequence of component placements onto a printed circuit board and the arrangement of component 

types onto feeders simultaneously. 

 

Fuzzy logic 
 

Caprihan et al. (1997) used a fuzzy system for the control of flexible machines operating under information delays 

The system comprises a flexible machine capable of processing two different part types and operating under an on-

line control system.  

 

Hybrid systems 
 

Suresh et al. (1999) proposed a pattern recognition approach based on a fuzzy ART neural network for rapid 

scanning of families of parts having a similar sequence of operations. First a representation schema for operation 

sequencing was developed and the fuzzy ART NN was modified to suit this application.  

Filipic et al. (1999) combined machine learning and evolutionary optimisation in learning to control a physical 

device. The knowledge is first made explicit by means of machine learning, and then a genetic algorithm is used to 

improve the control performance with respect to chosen criteria. This hybrid control-synthesis scheme was tested in 

swing control on a model of a container crane. It has proved successful in reducing the number of trials needed for 

optimisation, which is especially important when dealing with physical devices. Vishnupade (1996) used NNs and 

fuzzy logic for the control of manufacturing systems. The underlying nonlinear process is modelled by artificial NNs 

and process control is performed by fuzzy logic. Fuzzy rules are automatically generated from the trained NN. 

 

Ortega et al. (1998) propose the use of a fuzzy logic and GAs to develop a control system for provision of spacecraft 

servicing to a space station which comprises the tasks of assembly, resupply, repair and maintenance of 

manufactured space parts in-orbit. The geno-fuzzy controller is a knowledge-based controller that performs the 

closed-loop operations autonomously. It produces smooth control actions in the proximity of the target and during 

the docking, to avoid disturbance torques in the final assembly orbit. A GA is used to optimise the controller so as to 

reduce docking time and fuel consumption. 

 

I TELLIGE T SCHEDULI G 

 

 eural networks 

NNs which can achieve high computation rates by employing a massive number of simple processing elements with 

a high degree of connectivity among the elements, provide a new approach for optimisation problems. More 

specifically, feedback networks provide a computing model capable of exploiting fine-grained parallelism to solve a 



rich class of optimisation problems (Zhang and Huang, 1995). NNs have been successfully applied to the solution of 

constrained optimisation problems. The scheduling problem can be solved using NNs to reduce the computational 

complexity. It is argued by Grabot (1998) that providing a feasible schedule is not sufficient anymore. Human 

expertise becomes necessary in order to improve the provided solution. This improvement requires the definition of 

synthetic performance indicators allowing the assessment of a schedule before choosing improvement actions. A  

hierarchical structure of performance indicators is suggested to aggregate the degree of satisfaction of elementary 

objectives, thus allowing the definition of a compromise between these elementary objectives. NNs have been tested 

in order to emulate the expertise involved in the definition of such compromise. 

 

Genetic algorithms 

Candido (1998) used a GA to solve job scheduling problems with many constraints such as jobs with several sub-

assembly levels, alternative processing plans for parts and alternative resources for operations, requirements of 

multiple resources to process an operation, resource calendar, batch overlap and sequence dependent setups. The 

system uses modified schedule generation algorithms to obtain a set of initial solutions. Each initial solution is 

enhanced by a local improvement procedure. Then a hybrid genetic algorithm which incorporates a local hill 

climbing procedure is applied to the set of local optimum schedules. Webster (1998) used a GA for scheduling jobs 

about an unrestricted common due date on a single machine. The objective is to minimise total earliness and 

tardiness cost where early and tardy penalty rates are allowed to be arbitrary for each job. 

Lam et al. (1999) used GAs for a scheduling problem encountered in a semi-conductor manufacturing company 

where the time for designing products needs to be minimised. The paper supports the view that GAs can provide 

near optimal solutions to problem instances that are too large to model otherwise but are nevertheless present in a 

wide variety of industrial scenarios. Min and Cheng (1999) have used GAs for the identical parallel machine 

scheduling problem for minimising the makespan.  

 

Fuzzy logic 

Fuzzy techniques have been suggested to adapt the preference levels of the multiple objectives present in many 

scheduling problems, in response to dynamic changes in the environment such as unexpected rush orders and 

unavailable resources (Yu et al., 1999). 

 

Shipley (1996) incorporates fuzzy logic, belief functions, extension principles and fuzzy probability distributions to 

develop a fuzzy PERT algorithm. The algorithm is applied to a real-world project consisting of eight activities 

involved in the selling and producing of thirty television commercials. Yu et al. (1999) proposed an approach to 

FMS scheduling with multicriteria based on fuzzy inference. The proposed system has the following characteristics: 

(1) each criteria or objective has a preference level at the scheduling time; (2) all objectives and their preference 

levels are considered in the decision time; (3) the changes in the conditions of the factory are captured in real time by 

a fuzzy inference model that maps the changes to the proper preference levels; (4) multi-criteria scheduling is 

realised using a partition method based on the preference levels obtained from fuzzy inference. The proposed system 

performed very robustly with respect to shop workload for all used performance measures. 

 



Case based reasoning 

Using CBR in scheduling involves the definition of a scheduling problem, then search and retrieval of a case similar 

to it and finally building a new schedule. Cunningham and Smyth (1997) explored the components of a scheduling 

system using CBR. The authors started first by providing a solution to the travelling salesman problem and then to a 

single machine scheduling problem with sequence dependent setup times. Coello and DosSantos (1999) used CBR 

and heuristic search for a real-time scheduling system. The problem addressed involves scheduling sets of tasks with 

precedence, ready time and deadline constraints. 

 

Hybrid systems 

Szelke and Markus (1997) combined machine learning techniques and CBR to solve the shop floor scheduling 

problems. Kim et al. (1998) used an integrated approach of inductive learning and competitive NNs for developing 

multi-objective FMS schedulers. The FMS scheduler can assist the operator to make a decision in real time, while 

satisfying multiple objectives desired by the operator. Lee et al. (1998) combined GAs and machine learning to 

develop a job shop scheduling system. The idea was to generate empirical results using machine learning for 

releasing jobs into the shop floor and a genetic algorithm to dispatch jobs at each machine. 

FFUUTTUURREE  

 

Table 2 summarises the published papers referred to in this paper classified by manufacturing processes and AI 

techniques used. This table shows that there are some areas that are well researched such as the use of fuzzy logic in 

maintenance, neural networks in diagnosis and genetic algorithms in process planning.  However, there are many 

areas where more research is needed.  There is little work reported on the use of neural networks in process planning, 

fuzzy logic in process planning, maintenance and diagnosis, control and scheduling. There is also little work on the 

use of genetic algorithms in design and quality. There is nearly no attempt in using CBR in quality, maintenance and 

control. These are the areas we believe artificial intelligence should concentrate in the future to further improve 

manufacturing. Other technologies that can also improve manufacturing are intelligent agents, the World Wide Web 

and Virtual Reality. The impact of these new technologies is addressed in the next two subsections. In the application 

area side, to give a realistic view of current manufacturing systems, future systems should consider environment, 

health and safety issues. 

 

 

 

 

Table 2: Summary of the papers referred to in this paper classified by manufacturing processes and AI 

technique used 

 

 Design Process 

Planning 

Quality Maintenance & 
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Control Scheduling 

Knowledge-

based 

Systems 

 

Basu et all. 

(95), Chon et 

al. (93), Mitra 

et all. (93), 

Eskicioğlu 
(92), Pande 

& Desai 

(95), Wong 

Desl&res & 

Pierreval 

(95) 

Arslan et all. 

(93), Batanov et 

all. (93), Clark et 

all. (92), 

 Zhang & 

Chen (99) 



Rowland & 

Jain (93), 

Smith & 

Midha, (99), 

& Siu (95) Fujikawa & Ishii 

(95), Kobbacy 

(92), Pandelidis 

& Kao (90), 

Rowland & Jain 

(93) 

Neural 

Networks 

 

Christodoulou 

& Gaganis 

(98), 

Gunasekera et 

all. (98), 

Gunes et all. 

(99), Kusiak 

& Lee (96), 

Rao & Gu 

(95),  

Dimla (99)  Chinnan & 

Kolarik, (97), 

Guh & 

Tannock 

(99), Zhang 

et all. (96) 

Chang & Ho 

(99), 

Dedeakayogullari 

& Buma (99), Ho 

& Chang (99), 

Kim & Kumara 

(97), Lin et all. 

(95b), Ransing & 

Lewis (97), Su et 

all. (95), Tien & 

Chang (99), 

Wang & Huang 

(97), Wei (99) 

Acosta et all. 

(99), Hall & Lu 

(1992), Hao et 

all. (95), Sung 

& Choung, (99) 

Chen & 

Muraki (97), 

Grabot (98), 

Rovithakis 

et all. (99) 

Fuzzy 

Logic 

 

Babuska et 

all. (99), Ip, 

(98), Masnata 

& Settinesi 

(97), 

Dweiri & 

Meier (96) 

Chan et al. 

(99), Chan 

&. Lau (99), 

Fung et al. 

(99), 

Glushkovsky, 

& Florescu, 

(96), 

Gutierrez & 

Carmona 

(95), Khoo & 

Ho. (96), 

Wang & 

Chen, (95), 

Wang (99), 

Yongting 

(96)  

Khoo et all. (99) Caprihan et all. 

(97) 

Shipley et 

all. (96), Yu 

et all. (99)  

Genetic 

Algorithms 

 

Bos (98), 

Scott et all. 

(99), 

Bhaskara 

Reddy et all. 

(99), Dutta 

& Yip-Hoi 

(96), Gupta 

et all. (96), 

Hamamoto et 

all. (99), 

Morad & 

Zalzala (99), 

Rajasekharan 

et all. (97), 

Rao et all. 

(99), Suresh 

et all. (95), 

Tam & Chan 

(98) 

Gill & Bector 

(97), Vancza 

& Markus 

(91) 

Fushuan & 

Chang (98), 

Garrell et all. 

(99), Rojas-

Guzman & 

Kramer (94) 

Lennon & 

Passino (99), 

Ong & Khoo 
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Candido et 
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Jawahar et 
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Lam et al. 

(99), Min & 
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Webster et 
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Reasoning 

 

Bose (97), 

Gao et all. 

(98), Hua et 

all. (96), 

Manfaat (97), 

Purvis & Pu 

Ben-Arieh & 

Chopra (97), 

Champati et 
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Malek et 
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Xia & Rao (99)  Coello & 

DosSantos. 

(99), 

Cunningham 

& Smyth 

(1997), 



(98), Sun & 

Chen (95), 

Zeid et all. 

(97), Shii, 

(97) 

MacCarthy 

& Jou (96) 

Hybrid 

Systems 

 

Chen et 

all.(98), Lee 

et al. (99), 

Shivathaya & 

Fang (99), 

Ettl & 

Schwehm  

(95), 

Kobbacy & 

Liang (99), 

Malakooti et 

all. (95), 

Ming et all. 

(99), Rixen 

et all. (95) 

 Leger et all. (98), 

Wen and Chang 

(99), Kobbacy 

(92), Kobbacy et 

all. (95), Zhang 

& Jardine(97), 

Labib et al. (98) 
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(99), Ortega & 

Giron-Sierra 

(98), Santa et 

al. (99), Suresh 

et all. (99), 

Vishnupad, 

(96)  

Kim et all. 

(98), Lee, et 

all. (98), 

Szelke & 

Markus (97) 

 

 

Integration and Intelligent Agents 

Much of the work on intelligent systems is at a research and prototype stage, and so is naturally on a relatively small 

scale. A danger of isolated small-scale efforts is a tendency to compartmentalise the operations area and as a result 

design systems which aim for local solutions to sub-problems. Rodd (1992) and Kopacek (1999) state that 

integration will be the main task facing manufacturing systems in the future. Some attempts are made to integrate 

some components of the manufacturing system. There is some work on the integration of computer-integrated 

process planning and scheduling (Aldakhilallah and Ramesh (1999), Morad and Zalzala (1999). Morad and Zalzala 

have integrated process planning and scheduling using genetic algorithms. The scheduling problem is extended to 

include process planning. The scope of consideration of the alternative machines includes different capabilities and 

cost to operate, as well as different capabilities and cost to operate and different processing times. The scheduling 

problem is formulated as a multi-objective problem with the objectives of minimising makespan, minimising total 

number of rejects and minimising total processing cost.  

 

Intelligent agents are seen as the solution for integration (Kopacek, 1999). Intelligent agents are used in distributed 

AI. They allow the co-ordination of local AI systems distributed throughout the manufacturing process (i.e. 

production, scheduling, inventory and maintenance etc.) and through the business as a whole (e.g. marketing, product 

design, operations, finance and personnel etc.). Negotiation between the separate AI systems, each with their own set 

of local optima or preferences, enables the selection of policies more closely aligned to the objectives of the 

manufacturing function and /or business as a whole (example, Lee and Lau, 1999). AARIA project (Baker et al., 

1999) explores how agent technology can combine distribution with the Internet's global communications 

infrastructure to make virtual manufacturing more cost-effective than existing, centrally managed operations. 

Mutarana et al. (1999), proposed MetaMorph, an adaptive agent based architecture for intelligent manufacturing.  

 

Advance in technology 

 

The world Wide Web (WWW) represents one of the most important challenges in the emerging information society. 

Many organisations and companies have turned to the WWW to sell and promote their product. The WWW is seen 



as the future window shopping for businesses. This new approach to business is commonly known as E-Commerce. 

The WWW is also promising for distributed manufacturing. 

 

Virtual manufacturing is another new approach to manufacturing. It requires a robust information infrastructure that 

comprises rich information models for products, processes and production systems. The decreasing costs of 

hardware have made virtual environments increasingly popular and are used in many fields. Virtual reality (VR) can 

be applied for most components of the manufacturing process. In design VR will support detailed and accurate 

design activities and will provide sophisticated means of manipulating shape and form represented by the virtual 

models. Nakayasu et al. (1999) have used VR for design and production of metal sheet. Virtual manufacturing (VM) 

is expected to support assessing the manufacturability of a candidate design and to provide accurate estimates for 

processing times, cycle times and costs as well as product quality. This is because VM will be able to model both the 

processes employed for the product's manufacture and the production process (Lin, 1995).  VM may play a 

significant role in distributed manufacturing and is expected to support distributed design. VM can provide details 

and information about, process, production, and shop floor control to be shared over networks. 

 

From the hardware side, computer performances keep improving and this will result in more powerful applications 

and automations in manufacturing. Robots will be needed and the research in robotics will be dominated by two 

directions (Kopacek, 1999). Additional features such as combined force and position control, external sensors based 

on microsystems, flexible and lightweight structures need to be added to robots used in classical applications. 

Another type of robot that need to be developed for the next generation are service robots. Service robots are 

characterised by the following facilities: mobility, portability, operating case, sensing, learning, judging function and 

adaptability (Kopacek, 1999). In an invited paper, Burdea(1999), reviewed how robotics and VR can be integrated . 

VR-enhanced CAD design, robot programming, and plant layout simulation were considered. 

 

Environment, Health and Safety  

Back in 1989, clean manufacturing was one of the six cases defined by the Intelligent manufacturing initiative 

(Kopacek, 1999). Recently, concern for the environment has led many manufacturing industries to take a proactive 

role in clean manufacturing. Sustainable development, where the waste from one process becomes the raw material 

for another, is used to achieve clean manufacturing (Young et al., 1997). Tools to help manufacturing engineers and 

environmental reviewers to assess the consequences of their manufacturing decisions are also developed, example 

Eco_Sys ( Kleban et al., 1996). Work on process planning for environmentally conscious machining can be found in 

(Srinivasan and Sheng, 1999a and b).  

 

There are more than 60 acts of parliament and about 400 sets of regulations that are relevant to health and safety at 

work in the UK (The Royal Institution of Chartered Surveyors, 1997). The proper application of these acts and 

regulations by use of intelligent systems will influence future manufacturing systems.  Health and Safety should 

therefore be introduced and taken into account in any manufacturing model in the future.  

 



To conclude, this review shows that the use of AI in design, planning, quality management, maintenance, control, 

and scheduling can result in significant gains in these particular component areas of manufacturing.  The continuing 

demands of the manufacturing industry will necessitate the development of AI to facilitate more integrated, and 

holistic manufacturing systems.  
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