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Abstract. Particle-in-cell (kinetic) simulations of shear Alfvén wave (AW)
interaction with one-dimensional, across the uniform-magnetic field, density
inhomogeneity (phase mixing) in collisionless plasma were performed for the
first time. As a result, a new electron acceleration mechanism is discovered.
Progressive distortion of the AW front, due to the differences in local Alfvén
speed, generates electrostatic fields nearly parallel to the magnetic field, which
accelerate electrons via Landau damping. Surprisingly, the amplitude decay law
in the inhomogeneous regions, in the kinetic regime, is the same as in the MHD
approximation described by Heyvaerts and Priest (1983 Astron. Astrophys. 117
220).

Interaction of shear Alfvén waves (AWs) with plasma inhomogeneities is a topic of considerable
importance both in astrophysical and laboratory plasmas. This is due to the fact, that both
AWs and inhomogeneities often coexist in many of these physical systems. Shear AWs are
believed to be good candidates for plasma heating, energy and momentum transport. On the
one hand, in many physical situations, AWs are easily excitable and they are present in a
number of astrophysical systems. On the other hand, these waves dissipate on shear viscosity as
opposed to compressive fast and slow magnetosonic waves which dissipate on bulk viscosity. In
astrophysical plasmas, shear viscosity is extremely small as compared to bulk viscosity. Hence,
AWs are notoriously difficult to dissipate. One of the possibilities to improve AW dissipation is to
introduce progressively collapsing spatial scales, δl → 0, into the system (recall that the classical

3 Author to whom any correspondence should be addressed.

New Journal of Physics 7 (2005) 79 PII: S1367-2630(05)93973-6
1367-2630/05/010079+9$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

viscous and ohmic dissipation is ∝δl−2). Heyvaerts and Priest have proposed (in an astrophysical
context) one such mechanism called AW phase mixing [1]. It occurs when a linearly polarized
shear AW propagates in the plasma with a one-dimensional, transverse to the uniform magnetic
field density inhomogeneity. In such a situation, initially, a plane AW front is progressively
distorted because of different Alfvén speeds across the field. This creates progressively stronger
gradients across the field (effectively in the inhomogeneous regions transverse scale collapses),
and thus in the case of finite resistivity, dissipation is greatly enhanced. Thus, it is believed that
phase mixing can provide substantial plasma heating.A significant amount of work has been done
in the context of heating open magnetic structures in the solar corona [1]–[11]. All phase mixing
studies have so far been performed in the MHD approximation; however, since the transverse
scales in the AW collapse progressively to zero, MHD approximation is inevitably violated, first,
when the transverse scale approaches ion gyro-radius ri and then the electron gyro-radius re.
Thus, we proposed to study the phase-mixing effect in the kinetic regime, i.e. we go beyond the
MHD approximation. As a result, we discovered a new mechanism of electron acceleration due
to wave–particle interactions which has important implications for various space and laboratory
plasmas, e.g. the coronal heating problem and acceleration of solar wind.

We used 2D3V, the fully relativistic, electromagnetic, particle-in-cell (PIC) code with MPI
parallelization, modified from 3D3V TRISTAN code [12]. The system size is Lx = 5000�

and Ly = 200�, where �(=1.0) is the grid size. The periodic boundary conditions for x- and
y-directions are imposed on particles and fields. There are about 478 million electrons and ions
in the simulation. The average number of particles per cell is 100 in the low-density regions (see
below). Thermal velocity of electrons is vth,e = 0.1c and for ions it is vth,i = 0.025c. The ion
to electron mass ratio is mi/me = 16. The time step is ωpe�t = 0.05. Here, ωpe is the electron
plasma frequency. The Debye length is vth,e/ωpe = 1.0. The electron skin depth is c/ωpe = 10�,
while the ion skin depth is c/ωpi = 40�. Here ωpi is the ion plasma frequency. The electron
Larmor radius is vth,e/ωce = 1.0�, while the same for ions is vth,i/ωci = 4.0�. The external
uniform magnetic field B0 is in the x-direction and the initial electric field is zero. The ratio
of electron cyclotron frequency to electron plasma frequency is ωce/ωpe = 1.0, while the same
for ions is ωci/ωpi = 0.25. The latter ratio is essentially the Alfvén speed VA/c. For a plasma,
β = 2(ωpe/ωce)

2(vth,e/c)
2 = 0.02. Here, all plasma parameters are quoted far away from the

density inhomogeneity region. The dimensionless (normalized to some reference constant value
of n0) ion and electron density inhomogeneity is described by

ni(y) = ne(y) = 1 + 3 exp{−[(y − 100�)/(50�)]6} ≡ F(y). (1)

This means that in the central region (across y-direction), density is smoothly enhanced by a
factor of 4, and there are strong density gradients of width of about 50� around the points
y = 51.5� and 148.5�. The background temperature of ions and electrons, and their thermal
velocities are varied accordingly

Ti(y)/T0 = Te(y)/T0 = F(y)−1, (2)

vth,i/vi0 = vth,e/ve0 = F(y)−1/2, (3)

such that the thermal pressure remains constant. Since the background magnetic field along the
x-coordinate is also constant, the total pressure remains constant too. Then, we impose a current

New Journal of Physics 7 (2005) 79 (http://www.njp.org/)

http://www.njp.org/


3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

150

100y

50

1000 2000

Bz, t=250/ω ce=15.62/ω ci 

3000

X

4000

150

100y

50

Bz, t=500/ω ce=31.25/ω ci 

1000 2000 3000

X

4000

150

100y

50

Bz, t=875/ω ce=54.69/ω ci 

1000 2000 3000

X

4000

150

100y

50

Ey, t=250/ω ce=15.62/ω ci 

1000 2000 3000

X

4000

150

100y

50

Ey, t=500/ω ce=31.25/ω ci 

1000 2000 3000

X

4000

150

100y

50

Ey, t=875/ω ce=54.69/ω ci 

1000 2000 3000

X

4000

Figure 1. Contour (intensity) plots of phase mixed AW Bz and Ey components at
instants: t = (15.62, 31.25, 54.69)/ωci. Excitation source is at the left boundary.
Because of periodic boundary conditions, left-propagating AW re-appears from
the right-hand side of the simulation box. Note how AW is progressively stretched
because of differences in local Alfvén speed.

of the following form:

∂tEy = −J0 sin(ωdt){1 − exp [−(t/t0)
2]}, (4)

∂tEz = −J0 cos(ωdt){1 − exp [−(t/t0)
2]}. (5)

Here ωd is the driving frequency which was fixed at ωd = 0.3ωci, which ensures that no significant
ion-cyclotron damping is present. Also, ∂t denotes a time derivative, t0 is the onset time of the
driver, which was fixed at 50/ωpe or 3.125/ωci. This means that the driver onset time is about
three ion–cyclotron periods. Imposing such a current on the system results in the generation of
left circularly polarized shear AW, which is driven at the left boundary of simulation box and
has a width of 1�. The initial amplitude of the current is such that the relative AW amplitude is
about 5% of the background in the low-density regions, thus the simulation is weakly non-linear.

Because no initial (perpendicular to the external magnetic field) velocity excitation was
imposed in addition to the above-specified currents (cf [9]), at the left boundary, the excited
(driven) circularly polarized AW is split into two circularly polarized AWs that travel in opposite
directions. The dynamics of these waves is shown in figure 1, where we show three snapshots of
the evolution. A typical simulation, till the last snapshot shown in the figure, takes about 8 days
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Figure 2. Left column: contour plots of electrostatic field Ex generated nearly
parallel to the external magnetic field at instants: t = (15.62, 31.25, 54.69)/ωci.
Right column: x-component of electron phase space at the same times. Note that,
in order to reduce the figure size, only electrons with Vx > 0.15c were plotted.

on the parallel 32 dual 2.4 GHz Xeon processors. It can be seen from the figure that, because
of the periodic boundary conditions, circularly polarized AW that was travelling to the left has
reappeared from the right-hand-side of the simulation box (t = 15.62/ωci). Then the dynamics of
theAW (Bz, Ey) progresses in a similar manner as in MHD, i.e. it phase mixes [1]. In other words,
the middle region (in y-coordinate) travels slower because of the density enhancement (note that
VA(y) ∝ 1/

√
ni(y)). This obviously causes distortion of the initially plane wave front and the

creation of strong gradients in the regions around y = 50 and 150. In MHD approximation, in
the case of finite resistivity η, in these regions AW is strongly dissipated due to enhanced viscous
and ohmic dissipation. This effectively means that the outer and inner parts of the travelling
AW are detached from each other and propagate independently. This is why the effect is called
phase mixing; in the case of developed phase mixing, after a long time, phases in the wave
front become effectively uncorrelated. A priori it was not clear what to expect from our PIC
simulation because it was performed for the first time. The code is collisionless and there are no
sources of dissipation in it (apart from the possibility of wave–particle interactions). It is evident
from figure 1 that, at later stages (t = 54.69/ωci), the AW front is strongly damped in the strong
density gradient regions. This immediately raises a question: where did the AW energy go? The
answer lies in figure 2, where we plot the longitudinal electrostatic field Ex, and electron phase
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Figure 3. The distribution function of electrons at t = 0 (dotted curve) and
t = 54.69/ωci (solid curve).

space (Vx/c versus x) for the different times (note that, in order to reduce the figure size, only
electrons with Vx > 0.15c were plotted). In the regions around y = 50 and 150, for later times
significant electrostatic field is generated. This is the consequence of stretching of the AW front
in those regions because of difference in the local Alfvén speed. In the right column of this
figure, we see that exactly in those regions where Ex is generated, the electrons are accelerated
in large numbers. Thus, we conclude that energy of the phase mixed AW goes into acceleration
of electrons. In fact, line plots of Ex show that this electrostatic field is strongly damped, i.e.
energy is channelled to electrons via Landau damping.

The next piece of evidence comes from looking at the distribution function of electrons
before and after the phase mixing took place. In figure 3, we plot the distribution function
of electrons at t = 0 and 54.69/ωci. Note that, even at t = 0, the distribution function does
not look like a purely Maxwellian because of the fact that the temperature varies across the
y-coordinate (to keep the total pressure constant) and the graph is produced for the entire
simulation domain. There is also a substantial difference at t = 54.69/ωci compared to its original
form because of the aforementioned electron acceleration. We see that the number of electrons
having velocities Vx = ±(0.1 − 0.3)c is increased. Note that the acceleration of electrons takes
place mostly along the external magnetic field (along the x-coordinate). No electron acceleration
occurs in Vy or Vz (not plotted here).

The next step is to check whether the increase in electron velocities comes from the
resonant wave–particle interactions. For this purpose in figure 4, we plot two snapshots of AW
Bz(x, y = 148) components at instances t = 54.69/ωci (solid line) and t = 46.87/ωci (dotted
line). The distance between the two upper leftmost peaks (which is the distance travelled by the
wave in time between the snapshots) is about δL = 150� = 15(c/ωpe). Time difference between
the snapshots is δt = 7.82/ωci. Thus, the AW speed measured at the point of the strongest density
gradient (y = 148) is VM

A = δL/δt = 0.12c. Now, we can also work out the Alfvén speed. In
the homogeneous low-density region, the Alfvén speed was set to be VA(∞) = 0.25c. From
equation (1), it follows that, for y = 148, density is increased by a factor of 2.37, which means
that the Alfvén speed, at this position is VA(148) = 0.25/

√
2.37c = 0.16c. The measured and

calculated Alfvén speeds in the inhomogeneous region do not coincide. This can be attributed to
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Figure 4. Two snapshots of AW Bz(x, y = 148) component at instants t =
54.69/ωci (——) and t = 46.87/ωci (· · · · · ·). The dashed line represents the fit
0.056 exp [−(x/1250)3].

the fact that, in the inhomogeneous regions (where electron acceleration takes place), because of
momentum conservation, theAW front is decelerated as it passes on energy and momentum to the
electrons. However, this may be not the case if wave–particle interactions play the same role as
dissipation in the MHD: then wave–particle interactions would result only in the decrease of the
AW amplitude (dissipation), not in its deceleration. If we compare these values to figure 3,
we deduce that these are the velocities >0.12c above which electron numbers with higher
velocities are greatly increased. This deviation peaks at about 0.25c which in fact corresponds
to the Alfvén speed in the lower-density regions. This can be explained by the fact that the
electron acceleration takes place in wide regions (cf figure 2) along and around y = 148 (and
y = 51)—hence the spread in the accelerated velocities.

In figure 4, we also plot a visual fit curve (dashed line) in order to quantify the amplitude
decay law for theAW (at t = 54.69/ωci) in the strongest density inhomogeneity region. The fitted
(dashed) curve is represented by 0.056 exp [−(x/1250)3]. There is an astonishing similarity of
this fit to the MHD approximation results. Hayvaerts and Priest [1] found that for large times
(developed phase mixing), in the case of harmonic driver, the amplitude decay law is given by

∝ exp [−(
ηω2V ′2

A

6V 5
A

)x3] which is much faster than the usual resistivity dissipation ∝ exp(−ηx). Here

V ′
A is the derivative of the Alfvén speed with respect to the y-coordinate. The most intriguing

fact is that, even in the kinetic approximation, the same ∝ exp(−Ax3) law holds as in the
MHD. In the MHD, a finite resistivity and Alfvén speed non-uniformity are responsible for
the enhanced dissipation via a phase mixing mechanism. In our PIC simulations (kinetic phase
mixing), however, we do not have dissipation and collisions (dissipation). Thus, in our case
wave–particle interactions play the same role as resistivity η in the MHD phase mixing. It should
be noted that no significant AW dissipation was found away from the density inhomogeneity
regions. This has the same explanation as in the case of MHD—it is the regions of density
inhomogeneities (V ′

A �= 0) where the dissipation is greatly enhanced, while in the regions where
V ′

A = 0, there is no substantial dissipation (apart from the classical ∝ exp(−ηx)). In the MHD
approximation, the aforementioned amplitude decay law is derived from the diffusion equation,
to which MHD equations reduce to for large times (developed phase mixing). It seems that the
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kinetic description leads to the same type of diffusion equation. It is unclear, however, at this
stage, what physical quantity would play the role of resistivity η (from the MHD approximation)
in the kinetic regime.

It is worthwhile mentioning that, in the MHD approximation, [8, 11] showed that, in the
case of localized Alfvén pulses, Heyvaerts and Priest’s amplitude decay formula ∝ exp(−Ax3)

(which is true for harmonic AWs) is replaced by the power law Bz ∝ x−3/2. A natural next step
forward would be to check whether, in the case of localized Alfvén pulses, the same power law
holds in the kinetic regime.

Finally, we would like to mention that, after this study was completed, we became aware
of a study by [13], who used a hybrid code (electrons treated as neutralizing fluid, while ion
kinetics is retained) as opposed to our (fully kinetic) PIC code, to simulate resonant absorption.
They found that a planar (body) AW propagating at less than 90◦ to a background gradient
has field lines which lose wave energy to another set of field lines by cross-field transport.
Furthermore, Vasquez [14] found that when perpendicular scales of order 10 proton inertial
lengths (10c/ωpi) develop from wave refraction in the vicinity of the resonant field lines, a non-
propagating density fluctuation begins to grow to large amplitudes. This saturates by exciting
highly oblique, compressive, and low-frequency waves which dissipate and heat protons. These
processes lead to a faster development of small scales across the magnetic field, i.e. this is
ultimately related to the phase-mixing mechanism, studied here. Continuing this argument, we
would like to make a clear distinction between the effects of phase mixing and resonant absorption
of the shear AWs. Historically, there was some confusion in the use of those terms. In fact, earlier
studies, which were performed in the context of laboratory plasmas, e.g. [15], proposed (quote)
‘the heating of collisionless plasma by utilizing a spatial phase mixing by shear AW resonance
and discussed potential applications to toroidal plasma’ used the term ‘phase mixing’ to discuss
the physical effect, which in reality was the resonant absorption. In their later works, Hasegawa
and Chen [16, 17], when they treated the same problem in the kinetic approximation (note that
Hasegawa and Chen [15] used the MHD approach), avoided further use of the term ‘phase
mixing’ and instead they talked about linear mode conversion of shear AW into kinetic AW near
the resonance ω2 = k2

‖VA(x) (in their geometry, the inhomogeneity was across the x-axis). In
the kinetic approximation, Hasegawa and Chen [16, 17] found a number of interesting effects
including:

(i) They established that, near the resonance, initial shear AW is linearly converted into kinetic
AW (which is the AW modified by the finite ion Larmor radius and electron inertia) that
propagates almost parallel to the magnetic field into the higher density side. Inclusion of the
finite ion Larmor radius and electron inertia removes the logarithmic singularity present in
the MHD resonant absorption which exists because, in MHD, shear AW cannot propagate
across the magnetic field. Physically, this means that the finite ion Larmor radius prevents
tying of ions to magnetic field lines and thus allows propagation across the field. The electron
inertia eliminates singularity in the same fashion but on different, ri

√
Te/Ti, spatial scale

(here ri is the ion gyro-radius).

(ii) They also found that in the collisionless regime (which is applicable to our case), dissipation
of the (mode-converted) kinetic AW is through Landau damping of parallel electric fields
both by electrons and ions. However, in the low plasma β regime (which is also applicable
to our case, β = 2(ωpe/ωce)

2(vth,e/c)
2 = 0.02) they showed that only electrons are heated
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(accelerated), but not the ions. In our numerical simulations, we see a similar behaviour:
i.e. preferential acceleration of electrons (cf Tsiklauri et al [18]). In spite of this similarity,
however, one should make clear distinction between (a) phase mixing which essentially is a
result of enhanced, due to plasma inhomogeneity, collisional viscous and ohmic dissipation
and (b) resonant absorption which can operate in the collisionless regime as a result of
generation of kinetic AW in the resonant layer, which subsequently decays via Landau
damping preferentially accelerating electrons in the low β regime.

(iii) They also showed that, in the kinetic regime, the total absorption rate is approximately
the same as in the MHD. Our simulations seem to produce similar results. We cannot
comment quantitatively on this occasion, but at least the spatial form of the amplitude
decay (∝ exp(−Ax3)) is similar in both cases.

Resuming the above discussion, we conjecture that the generated nearly parallel electrostatic
fields found in our numerical simulations are due to the generation of kineticAWs that are created
through interaction of initial shear AWs with plasma density inhomogeneity, in a similar fashion
as in resonant absorption described above. Further theoretical study is thus needed to provide a
solid theoretical basis for interpretation of our numerical simulation results and to test the above
conjecture.
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