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Abstract. The mural system was an outcome of a signi�cant e�ort to

develop a support tool for the e�ective use of a full formal methods

development cycle. Experience with it, however, has been limited to a

small number of illustrative examples that have been carried out by those

closely associated with its development and implementation. This paper

aims to remedy this situation by describing the experience of using mural

for specifying Dust-Expert, an expert system for the relief venting of

dust explosions in chemical processes. The paper begins by summarising

the main requirements for Dust-Expert, and then gives a avour of the

VDM speci�cation that was formalised using mural. The experience of

using mural is described with respect to users' expectations that a formal

methods tool should: (i) spot any inconsistencies, (ii) help manage and

organise the speci�cations and allow one to easily add, access, update

and delete speci�cations, (iii) help manage and carry out the re�nement

process,(iv) help manage and organise theories, (v) help manage and

carry out proofs. The paper concludes by highlighting the strengths and

weaknesses of mural that could be of interest to those developing the
next generation of formal methods development tools.

1 Introduction

Although there are a number of tools that support the speci�cation phases of

the formal development cycle, there are few that support the full development

cycle covering speci�cation, re�nement, generating proof obligations, and theo-

rem proving. A notable exception to this is the research on the mural system [6],

which was developed by Manchester University and Rutherford Appleton Lab-

oratory under the Alvey IPSE 2.5 project. The mural system aims to support

speci�cation, re�nement, and veri�cation, all within one user-friendly environ-

ment. To achieve these tasks,mural has two principal components: a speci�cation

support tool, and a generic theorem proving assistant. However, experience with

the mural system is limited to only a few relatively small case studies such as



a Reactor Watchdog [3], and a simple address book [1] that have been carried

out by those who were closely associated with the development of mural. This

paper takes a step towards remedying this situation by describing an attempt

to use mural for the speci�cation and design of an expert system known as

Dust-Expert [9, 11, 12].

The paper is organised as follows. Section 2, introduces Dust-Expert, its re-

quirements, and outlines an informal speci�cation. Section 3 presents a formali-

sation of some of the operations using VDM. The speci�cation is then re�ned in

section 4. Section 5 presents the experience of using mural for each of the main

phases of a formal development cycle: speci�cation, re�nement, veri�cation (the-

orem proving in mural). Finally, section 6 summarises the main strengths and

weaknesses of mural that could be of interest to those designing the next gener-

ation of formal methods tools.

2 An Informal Description of Dust-Expert

Dust-Expert aims to help companies that process or manufacture powders and

dusts satisfy safety procedures. The main concern with dust handling processes

is that of an explosion in a vessel. If a cloud of dust is ignited by a spark, such

an explosion could result in a rapid rise in pressure that could destroy a vessel

and lead to injuries to employees. The Institute of Chemical Engineers publish

a guide [7] that explains how a relief panel can be placed on a vessel to avoid

this kind of rise in pressure. The basic idea is that, as the pressure rises, the

relief panel will open and release the pressure thereby avoiding an explosion.

The guide also includes methods for calculating the size of the relief panel based

on the kind of vessel, the kind of dust, the strength of the vessel, etc.

To enable greater utilisation of safety guidelines, the Health and Safety Ex-

ecutive (HSE) led a research project that developed a prototype expert system,

called Dust-Expert, that was evaluated by over 16 member companies of the

British Materials Handling Board. The promise shown by the prototype system

resulted in the development of a commercial version of Dust-Expert by Adelard

Ltd using the IFAD VDM toolkit and which is now available commercially from

the Institute of Chemical Engineers.

This paper is based on the experiences gained in using mural to formalise

the original prototype version of Dust-Expert for which one of the authors was

responsible.1

1 The speci�cation of the commercial version is con�dential, and the paper includes

only those aspects of Dust-Expert that are already published elsewhere.

2



2.1 The Requirements

The primary requirements for Dust-Expert are typical of most expert systems

and include:

1. The system should be easy to develop, requiring little programming exper-

tise.

2. The system should be able to explain why a method is applicable or not as

well as why it may be recommended.

3. It should be easy to update and add new methods.

4. It should provide enough exibility for a user to ask question like

`What range of dusts are acceptable for the given vessel?'

To meet these requirements a shell was designed and implemented. This shell

represents the key to meeting the above requirements since it enables domain

experts to encode the knowledge and methods without requiring programming

skills. The following section summarises some of the key characteristics of the

shell. The reader can consult [12] for more information about the shell as well as

a comparative evaluation with CRYSTAL, a more conventional expert systems

shells.

2.2 The Dust-Expert Shell

The shell enables an expert to encode knowledge as constrained methods and

consists of three major kinds of methods called Optional, Actual and Any:

Actual methods. The Actual methods enable an expert to de�ne individual

constrained methods to calculate the value of a variable.

Optional methods. In general, there will be a number of available methods to

calculate the value of a variable. The Optional methods enable one to express

that a group of methods can potentially be used to work out the value of

a variable and also that a group of rules can be used to give priorities to

methods (i.e. rank the methods).

Any methods These allow an expert to de�ne a sequence of methods, any of

which could be tried to calculate a value for a variable. The shell attempts

them in sequence and uses the �rst one that is applicable.

Figure 1(a) shows an actual method, called the kst nomograph method for

calculating the vent area (Av) and states that the calculation in the body can

be utilised provided the expressions in the Constraints box can be satis�ed. The

text in the Assumptions box consists of additional information that is displayed
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if the method is used. The variables in the constraints, (e.g., Density area)

may themselves be de�ned by other methods. Figure 1(b) gives an example of

an optional method. If the volume of the vessel V is in the range speci�ed in the

constraint, and any of the methods listed are successful, then they are (partially)

ordered by the ranking rules. Given a knowledge base of such methods, the task

Method name      :  Kst_nomograph                           

Output variable   :   Av      

Constraints:         

  Pred <= 2      
  0.1 <= Pstats <= 0.4        
  Pstats + 0.1 <= Pred         
  Density _area < 10       

Body  :         
a = 0.000571 * exp(2*Pstat)                   
b = 0.978 * exp(-0.105 * Pstat) 
c = - 0.687 * exp(0.226 * Pstat)    
Av  = a * V ^ (2/3) * Kst ^ b * Pred ^ c     

Assumptions  :   

Kst should only be measured by           
the 1 m^3 or the 20 litre sphere test.
and so on ...

Method name      :  Optional_methods                           

Output variable   :   Av      

Constraints:         

Methods :         

Ranking rules :   

 1 <= V <= 1000         

Kst_nomograph              
St_nomograph 
K_ factor  
Vent_Ratio

IF  Pred <= 0.2                
THEN  Vent_Ratio is_better_than all

IF Kst < 50 OR max_rate_of_pressure_rise < 343         
THEN Kst_nomograph is_better_than Vent _Ratio         

Figure 1(a) Example actual method Figure 1(b) Example optional method

of the shell is to begin with a top level optional method and work through the

methods in a top-down manner and obtain relevant information from the user so

as to reach a recommended value for a variable (e.g. Av above). At any point, a

user may ask how a value for a variable was obtained, or why a particular method

was utilised. These explanations are provided by displaying a method that was

used to obtain a value and displaying the constraints that are satis�ed. The user

can also understand why a particular method was not used by examining the

constraints that were not satis�ed.

3 A Flavour of the Formal Speci�cation of Dust-Expert

Given the purpose of the paper, and the limited space available, this section

aims to give only a avour of the formal speci�cation for the Dust-Expert shell

using VDM. A full speci�cation is available in [4]. Section 3.1 presents the data

types, and section 3.2 presents two example speci�cations.
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3.1 Data types

Simple types

The speci�cation uses the following simple data types for the method names,

values, and variable names:

Method-name = char+

V alue = R

V ariable-name = char+

The state of Dust-Expert must consist of the three kinds of methods, and

the global variables. The methods are speci�ed using a map from the method

name to each type of method and the global variables are speci�ed using a map

from the variable name to its information:

compose Dust-Expert of

opts : Method-name -!m Optional

anys : Method-name -!m Any

acts : Method-name -!m Actual

gts : G-V ar -!m Gv-info

end

For this state, we require that:

{ The method names must be unique across the di�erent kinds of methods.

{ The variables in the constraints are de�ned global variables.

{ The subsidiary methods in an optional or any method are de�ned.

{ The last assignment in the body of each actual method must aim to assign

a value to the output variable which must be a global variable. The other

variables on the LHS must be local variables.

These requirements can be formalised as the following invariant:

inv(mk-Dust-Expert(opts; anys; acts; gts)) 4

unique-method(opts; anys; acts) ^

defined-global-in-cnst(opts; anys; acts; gts) ^

defined-subsidiary-mns(opts; anys; acts) ^

body-vars-in-actual(acts; gts)

The state is initialised as follows:

init(mk-Dust-Expert(opts0; anys0; acts0; gts0)) 4

opts0 = f g ^ anys0 = f g ^ acts0 = f g ^ gts0 = f g
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Data types for the methods and variables

The data types for the three methods closely mirror the informal description

given in section 2. Each type of method is de�ned as a composite type with

relevant components.

An actual schema has components for the output (output), the list of con-

straints (cnstl), and the body (bdyl):

Actual :: output : G-V ar;

cnstl : Constraint�;

bdyl : Assignment+

The body of an actualmethod has a list of the assignments, where Assignment

is de�ned as:

Assignment :: var : V ariable;

expr : Expression

The type for an optional method is de�ned in a similar way: in addition to

the output and the list of constraints, the optional method also has the list of

methods (lmns) and the selection type (seltp) :

Optional :: output : G-V ar;

cnstl : Constraint�;

lmns : Method-name+;

seltp : Selection-type

The �eld seltp speci�es which of the successful methods should be selected. There

are three options: (i)min to select the method that returns the smallest value, (ii)

max to select the method that returns the largest value, and (iii) ranking-rules

to utilise the associated rules to rank the methods. Selection-type is therefore

de�ned by:

Selection-type = fall;min;maxg j Ranking-Rules

Ranking-Rules = Rule+

The type Rule+ denotes a production rule whose consequent de�nes one

method to be `better than' others if its antecedent is true. For conciseness, this

type is not speci�ed further here (see [12] for details).

The third kind of method, called the any method, has the three components

of output, a list of constraints, and a list of methods:
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Any :: output : G-V ar;

cnstl : Constraint�;

lmns : Method-name+

There are two kinds of variables used in Dust-Expert: the global variables

which are de�ned as output variables and the local variables which are de�ned

as the LHS variables for the local assignments used in actual methods. Hence

the type V ariable is de�ned as:

V ariable = G-V ar j L-V ar

G-V ar :: gvar : V ariable-name

L-V ar :: lvar : V ariable-name

The value of a global variable can be obtained in three ways: (i) it can

be calculated by a method; (ii) a user may provide it; (iii) it can also be a

constant such as � or a chemical constant. Hence we de�ne the following types

for recording this information for global variables.

Gv-info = Gv-from-method j Gv-from-user j Gv-from-constant

Gv-from-method :: mn : Method-name;

val : [V alue]

Gv-from-user :: val : [V alue]

Gv-from-constant :: val : V alue

The types Expression and Constraint, used above, denote arithmetic ex-

pressions and boolean expressions. These are speci�ed in a relatively standard

way and are not detailed here.

Data types for the answer

As mentioned earlier, the ability to provide explanations is an important

requirement for Dust-Expert. Each type of method can fail or succeed. Hence,

the answer must contain enough information to explain why a method failed or

how a method succeeded. Thus, the type Answer is de�ned as:

Answer = Failure-ans j Success-ans

In general, a method can fail in two ways: it can fail because one or more of

its constraints fails; or it can fail because none of its methods succeeds (i.e. when

it is an optional method or an any method). The type Failure-ans is therefore
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de�ned as:

Failure-ans = Fail-cnst j Fail-lmns

To enable explanation, when a method fails because of its constraints, we

record all the method's constraints together with whether they are satis�ed or

not. The succeeding constraints are included to provide relevant background

information. Hence the type for Fail-cnst is:

Fail-cnst :: mn : Method-name;

ans-cnst : Cnst�

Cnst :: cr : B;

cnst : Constraint

Where the �eld cr records whether the constraint cnst is satis�ed or not.

If a method fails because all its subsidiary methods are not applicable, Dust-

Expert must be able to explain why each of its methods fails. Hence we de�ne

Fail-lmns as:

Fail-lmns :: mn : Method-name;

all-f : Failure-ans�

A successful answer will be returned in the type Success-ans:

Success-ans = Act-s j Opt-s j Any-s

A successful actual method will simply return the answer. We therefore de�ne

Act-s as:

Act-s :: mn : Method-name;

ans : Ans

Ans :: output : G-V ar;

value : V alue

The result returned by a successful optional method depends on the kind of

priority speci�ed by the selection �eld: min, max, or ranking-rules as de�ned

earlier. Hence, we de�ne Opt-s as follows:

Opt-s :: mn : Method-name;

all-s : Success-ans� ;

all-f : Failure-ans�;

res : [Success-ans j Ranker]
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Note that the �elds all-s and all-f are de�ned for all succeeding and failing

methods so that the information for providing full explanations is available.

The type for an answer returned by a successful any method is de�ned as:

Any-s :: mn : Method-name;

res : Success-ans;

all-f : Failure-ans�

3.2 Example speci�cations

The shell for Dust-Expert has a number of operations for: (i) adding, deleting

and updating methods, (ii) checking consistency, (iii) processing each type of

method, (iv) evaluating constraints and expressions, and (v) explanation gener-

ation and user interaction. This section gives two example speci�cations to give

an indication of the kind of speci�cations that mural had to handle.

Example 1: Adding an actual method

The operation for adding new actual methods is speci�ed as follows. The pre-

condition ensures three things: (i) the method name is new, (ii) all variables used

in the constraints are de�ned, (iii) the last LHS variable used in the body of an

actual method must be a global variable and the others variables on the LHS

must be local variables. In addition, all RHS variables are de�ned before they

are used. The post-condition simply adds the method.

New-act (mn:Method-name; output:G-V ar; cnstl:Constraint�;

bdyl:Assignment+)

ext wr acts : Method-name -!m Actual;

rd opts : Method-name -!m Optional;

rd anys : Method-name -!m Any;

rd gts : G-V ar -!m Gv-info
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pre mn =2 (dom opts [ dom anys [ dom acts)

^

let cnstvars = extract-cnst-vars(elems cnstl) in

cnstvars � dom gts

^

let n = len bdyl in

bdyl(n):var 2 dom gts ^

8i 2 inds bdyl � i < n ) bdyl(i):var =2 dom gts ^

8j 2 inds bdyl � defined-before-used(bdyl(j):expr; j; bdyl;dom gts)

post acts =
(��
acts y fmn 7! mk-Actual(output; cnstl; bdyl)g

Where the function extract-cnst-vars(cnsts) returns all the variables in the

set of constraints cnsts. The function defined-before-used(expr; i; bdyl; gvars)

returns true if all the variables in the expression expr are either globally de�ned

(i.e. in gvars) or de�ned earlier (i.e., before the ith) in the list of assignments

bdyl and returns false otherwise.

Example 2: Processing an actual method

An actual method obtains a value by processing its assignments if its constraints

hold. If the constraints fail then the actual method must return an answer ex-

plaining its failure. If a method succeeds, the answer obtained is recorded in the

global variable in the state. Hence the speci�cation takes the form:

do-actual (mn:Method-name) aoc:Answer

ext rd acts : Method-name -!m Actual;

wr gts : G-V ar -!m Gv-info

pre mn 2 dom acts

post let acs = process-cnstl(acts(mn):cnstl) in

if acs:r = false

then aoc = mk-Fail-cnst(mn; acs:ans)

else let v = do-body(acts(mn):bdyl; gts) in

let ans = mk-Ans(acts(mn):output; v) in

aoc = mk-Act-s(mn; ans) ^

gts =
(�
gtsyfacts(mn):output 7! mk-Gv-from-method(mn; v)g

Where the function process-cnstl takes a list of constraints as an argument and

returns acs:r as true if all the constraints are satis�ed and otherwise returns

acs:r as false together with the list of constraints, and whether they failed or

10



not, in acs:ans. The function do-body evaluates a sequence of assignments and

returns the value of the last assignment.

4 Data and Operation Re�nement

The process of proceeding from an abstract speci�cation towards a more concrete

speci�cation, that is closer to an implementation, can be an important aspect

of a formal development. In VDM, this is done by re�ning the data types and

de�ning speci�cations on the more concrete types. In order to appreciate the

kind of support o�ered by mural for the re�nement process, a simple re�nement,

that is described below, was carried out.

4.1 A Representation

There are many ways in which a speci�cation can be re�ned in order to bring

it closer to an implementation. An abstract speci�cation can be translated into

many alternative representations by using di�erent data types.

In the abstract speci�cation, we made extensive use of maps. The imple-

mentation language for Dust-Expert was intended to be Prolog. Hence, if one is

proceeding towards such an implementation language, a re�nement of maps to

sequences is appropriate and can be carried out fairly systematically through-

out the speci�cation. For example, the abstract state component, opts, can be

re�ned to:

optsc = Optionalc�

Where Optionalc can be speci�ed as:

Optionalc :: mn : Method-name;

output : G-V ar;

cnstl : Constraint�;

lmns : Method-name+;

seltp : Selection-type

The other state components can be re�ned in a similar way. Given such a re�ne-

ment, the state representation is:
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compose Dust-Expert-c of

optsc : Optionalc�;

anysc : Anyc�;

actsc : Actualc�;

gsc : Gv-record�

end

In representing a map by sequences, we may introduce duplicate names un-

necessarily. Thus we also have to ensure no duplicate names in the components

of the concrete state. Hence the concrete state invariant is de�ned as:

inv(mk-Dust-Expert-c(optsc; anysc; actsc; gsc)) 4

unique-method-c(optsc; anysc; actsc) ^

defined-global-in-cnstl-c(optsc; anysc; actsc; gsc) ^

body-vars-in-actual-c(actsc; gsc) ^

defined-subsidiary-mns-c(optsc; anysc; actsc) ^

no-duplicates(optsc; anysc; actsc; gsc)

The functions used in the above invariant are similar to those in the abstract

speci�cation. Given the above representation, a suitable retrieve function based

on converting sequences to maps was de�ned and mural's theorem proving as-

sistant was used to carry out the usual adequacy proof obligation of VDM.

4.2 Operation Modelling

The main re�nement made above was to use sequences instead of maps. As a

consequence, accessing the methods requires di�erent notation. Bearing this in

mind, we can produce more concrete speci�cations to model each of the abstract

speci�cations fairly systematically. The following gives an example of modelling

the abstract operation New-act:

New-actc (mn:Method-name; output:G-V ar;

cnstl:Constraint�;

bdyl:Assignment+ )

ext rd optsc : Optionalc�;

rd anysc : Anyc�;

wr actsc : Actualc�;

rd gsc : Gv-record�
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pre mn =2 method-names(optsc; anysc; actsc) ^

extract-cnst-vars(elems cnstl) � fgsc(l):gvar j l 2 inds gscg

^

let n = len bdyl in

bdyl(n):var 2 fgsc(l):gvar j l 2 indsgscg ^

8l 2 inds bdyl � l < n ) bdyl(l):var =2 fgsc(l):gvar j l 2 inds gscg^

8m 2 inds bdyl �m � n

) defined-before-used(bdyl(m):expr;m; bdyl; fgsc(l):gvar j l 2 indsgscg)

post actsc =
(���
actsc_� [mk-Actualc(mn; output; cnstl; bdyl)]

Where method-names is de�ned as:

method-names :Optionalc� �Anyc� � Actualc� !Method-name-set

method-names(optsc; anysc; actsc) 4

foptsc(i):mnc j i 2 inds optscg [ fanysc(j):mnc j j 2 indsanyscg [

factsc(k):mnc j k 2 indsactscg

To show that this operation models its abstract version, we needed to use the

theorem proving assistant to carry out the domain and result proof obligations

[5].

5 Experience with Mural

This section reects upon the experience of using mural to formalise the speci�-

cation of Dust-Expert that consists of the kind of speci�cations and re�nements

given in the above sections.

When using a formal development tool, an analyst will hope or even expect

that the tool will:

1. contain most of the formal notation in an easy to use form,

2. spot any mistakes or inconsistencies,

3. help manage and organise the speci�cation and allow one to easily add, store,

access, update and delete speci�cations,

4. help manage and carry out the re�nement process,

5. help manage and organise the theory and allow one to easily add, access,

update and delete the signatures, axioms and rules,

6. help manage and carry out proof obligations.

The following describes the extent to which these expectations were met.

In interpreting our experience, the reader should note that mural was in fact a
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vehicle for research on formal development tools, and some of the above expec-

tations are for an ideal commercial formal methods development tool. That is,

the purpose of reporting our experience is to help identify improvements to the

next generation of formal development tools, and not simply to be critical.

5.1 Experience with the VDM Speci�cation Tool

The speci�cation was formalised in three stages in mural: �rst, the data types

were created, then second, the speci�cations were created, and third, the speci-

�cations were translated to theories. The following describes each of these steps.

Creating the data types and the invariant

The VDM support tool (VST) of mural provides most of the VDM notation

for creating data types and invariants. A syntax directed editor can be used to

create and edit data types in a relatively straight forward manner. Apart from

some minor di�erences with VDM-SL, the de�nitions are as one would expect.

The mural system was being implemented while e�orts to standardise VDM were

still proceeding, and it is therefore not surprising that some of mural's notation

di�ers from the VDM-SL notation. There are two main di�erences with VDM-SL

that had an adverse e�ect on creating the data types.

First, VDM-SL's pattern notation allows one to take advantage of pattern

matching so that variables can be bound to values. It can be used in many places

such as quanti�ers, set comprehensions, let..in expressions, and case expressions.

However,mural does not allow patterns to be used in such expressions. The only

place where this is possible is in an invariant. Even there, the implementation is

incomplete. For example, we used a pattern in a state invariant as follows: 2

inv-Dust-Expert(mk-Dust-Expert(opts; anys; acts; gts):Dust-Expert) 4

::::

Unfortunately, although this was allowed in the de�nition, mural later failed to

translate it to a theory.

Second, the VST does not allow one to create an enumerated type. To achieve

the same e�ect, one can use a suitable invariant. For example, the following data

type:

Selection-type= fall;min;maxg jRanking-rules

2 Note that the addition of a type Dust-Expert of the parameter is amural requirement.
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can be rewritten as follows in mural: 3

Type = is not yet de�ned

Selection-type= Selection jRanking-rules

Selection :: sl : Type

inv-Selection(sl:Type) 4 sl 2 fall;min;maxg

where `all', `min', and `max' are all de�ned as Constant of type `Type'.

Creating the speci�cations

Once the data types were created, we proceeded to create the functions and

speci�cations. In mural, this is done by adding a speci�cation and �lling out a

template using a syntax directed editor.

We encountered four problems that we needed to work around when creating

the speci�cations. These are described and illustrated below.

Problem 1: Restricted constraints in quanti�ers

Quanti�er expressions in mural are restricted to have simple constraints of

the form:

variable:Type

Thus, an expression like:

8i 2 inds bdyl � i < n ) bdyl(i):var 2 L-V ar

has to be reformulated to: 4

8i:N � i 2 inds bdyl ^ i < n ) s-var(bdyl(i)) 2 L-V ar

Since quanti�ers were heavily used in our speci�cations, this resulted in an in-

crease in the complexity and length of the speci�cations.

Problem 2: No let..in expression

The let..in notation is not available, forcing the use the existential quanti�er.

For example, an expression like :

3 Another alternative, this Selection-type can be re-de�ned by using the union type:

Selection-type= all j min j max jRanking-rule

4 The VST provides a selector function for naming a �eld from a record so that

bdyl(i):var is written as s-var(bdyl(i)).
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let n = len bdyl in

bdyl(n):var 2 dom gts

Which is used in the speci�cation of New-act has to be reformulated to:

9n:N � n = len bdyl ^ s-var(s-bdyl(n)) 2 dom gts

This type of reformulation tends to make the speci�cation less readable.

Problem 3: No comprehension notation

Set and sequence comprehension expressions are missing in the VST and

were frequently used in our speci�cation. Equivalent recursive functions had to

be written to work around this omission. For example, an expression used in

de�ning a functionextract-cnst-vars:
S
fvars-in-cnst(c) j c 2 csg

was translated to the function:

extract-cnst-vars :Constraint� ! V ariables-set

extract-cnst-vars(cs) 4 if cs = [ ]

then f g

else vars-in-cnst(hd cs) [ extract-cnst-vars(tl cs)

Besides being tedious, this work around made the speci�cation less concise.

Problem 4: Cases cannot be translated

Although the VST provides case expressions, it is unable to translate them

into the theories. The developers of mural propose two ways of working around

this problem [6]:

1. Carry out the translation by hand and leave the speci�cation alone (i.e. with

case statements).

2. Change the speci�cation so that it no longer uses case expressions.

As an experiment, we tried both alternatives and describe the experience below.

Consider the function:

vars-in-cnst :Constraint! V ariable-set

vars-in-cnst(cnst) 4

cases cnst of

mk-Compare-expr(cop; cx; cy) ! var-in-expr(cx) [ var-in-expr(cy)

mk-Boundary-expr(bop; be; bx; by)! var-in-expr(be) [ var-in-expr(bx)

[ var-in-expr(by)

end
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The �rst approach, namely to create the rules by hand, results in:

1-vars-in-cnst

cnst:Constraint; cnst = mk-Compare-expr(cop; cx; cy);

(var-in-expr(cx) [ var-in-expr(cy)): V ariable-set

vars-in-cnst(cnst) = var-in-expr(cx) [ var-in-expr(cy)

2-vars-in-cnst

cnst:Constraint; cnst =mk-Boundary-expr(bop; be; bx; by);

(var-in-expr(be) [ var-in-expr(bx) [ var-in-expr(by)): V ariable-set

vars-in-cnst(cnst) = var-in-expr(be) [ var-in-expr(bx) [ var-in-expr(by)

The second approach, to translate the cases to if's results in:

if (9cop:Compare-op � 9bx:Expression �

9by:Expression � cnst = mk-Compare-expr(cop; cx; cy))

then var-in-expr(s-cx(cnst))[ var-in-expr(s-cy(cnst))

else if (9bop:Boundary-op � 9be:Expression � 9bx:Expression �

9by:Expression � cnst = mk-Boundary-expr(bop; be; bx; by))

then var-in-expr(s-be(cnst))[var-in-expr(s-bx(cnst))[var-in-expr(s-by(cnst))

else f g

Both approaches proved to be tedious. The �rst requires going through each

and every case expression. It has the disadvantage of the possibility of introduc-

ing a mis-match between the case expression and the theory. The second requires

translating the case expression into a conditional expression and has the disad-

vantage that the speci�cation is made more complex. Our own preference was to

trade o� some readability for knowing that the theory was consistent with the

speci�cation, and we therefore opted for the second option of translating cases

to if-then expressions.

At this stage of creating the speci�cation, the VST wasn't much help in

spotting mistakes. Some signi�cant type mistakes were spotted at the transla-

tion stage, however, some mistakes such as logic errors, inconsistencies, or some

simple type errors were not revealed until proofs were attempted. For example,

we made the following mistake in a function called de�ned-before-used:

bdyl(k):var = lvar

This was an error, because the data type for bdyl(k).var was de�ned as Variable

and di�ered from the type for lvar which was Variable-name. We did not �nd

this mistake earlier and the VST did not �nd it at the translation stage. It was

only discovered when attempting to prove the well-formedness proof obligation.

To be fair, research on mural may have sacri�ced type checking in order to focus

on other research problems.

Translation to theories

Once the speci�cations are created, we need to obtain the theories before

carrying out any proof obligations. The VST provides facilities that allow us to
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translate the data types and speci�cations into their associated theory and also

generates proof obligations. The translation stage aims to achieve two goals [6]:

{ To reveal errors in the speci�cations. When this occurs warning messages

are given by the system.

{ To generate a theory including any proof obligations. This theory can be

opened, and proofs can be carried out supported by the TPA.

When we translated our speci�cations, mural found spelling errors and un-

declared data type errors. Some undeclared type errors were not real errors in

that the type was declared, but after it was used (i.e. a forward reference). This

was easily �xed by following the instructions given by mural. A more signi�cant

problem was that the process was not incremental. If an error was detected or we

wanted to change the speci�cation, we �rst had to remove the signature, axioms

and rules related to the changes, second we had to go back to the speci�cation

tool to change it, and then retranslate the relevant components. Speci�cations

change and improve, making the lack of help for such changes a signi�cant omis-

sion.

5.2 Experience with the theorem proving assistant

One of the most tedious and costly aspects of using formal methods fully is

carrying out proofs. Indeed, many of the reported uses of formal methods avoid

this phase of formal methods on the grounds that it is uneconomical.

If the role of proofs in real uses of formal methods is to increase then formal

methods development tools must help analysts to manage and carry out proofs

as painlessly as possible. As well as the usual requirements of theorem proving

tools, proof tools must provide an environment that:

1. enables a user to easily construct a proof in a backwards, forwards, or mixed

mode,

2. allows users to manage di�erent attempts,

3. provides facilities for using proof strategies.

This subsection summarises the extent to which mural's thorem proving as-

sistant (TPA) provides these features. To do this, the TPA was used to carry

out the three proof obligations mentioned in section 4: the adequacy, domain and

result proof obligations. Based on the experiences of carrying out these proofs,

together with previous experience with the TPA ([10]), the authors believe that

the proof tool provides good support for carrying out proofs from �rst principles:
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{ One can use the proof tool and work in a backwards, forwards, or mixed

directions.

{ Theories can be searched for appropriate rules.

{ Versions of proofs can be maintained.

{ Tactics can be developed and used to carry out proofs or subproofs.

The TPA is undoubtedly very good, and it may be possible to build upon the

strengths of such proof tools and develop tactics (e.g. Bundy's explicit proof

plans to guide inductive proofs [2]) or even use proofs by analogy [10] to reduce

the cost of carrying out proofs.

6 Conclusions

The mural system provides a friendly, modern interface for developing formal

speci�cations. Based on this study, its main strengths were:

1. The speci�cation tool provided good support for developing, managing and

maintaining the speci�cation.

2. Although not fully implemented, speci�cations and their re�nements could

be translated to corresponding theories. This is particularly useful, since

other studies have shown that hand translations of speci�cations can intro-

duce errors (e.g. [8]).

3. The theorem proving assistant provided very good support for managing,

organising and maintaining theories, as well as support for carrying out

proofs.

There were several problems encountered in using mural in this study. The

most signi�cant ones are:

{ It wasn't an incremental system. When a change is made, a user has to

manually trace the consequences of the change in order to ensure consistency.

Ideally mural should provide some guidance about what is e�ected.

{ Type checking was not carried out as well as in the IFAD Toolbox. This

meant that some type errors were detected only when carrying out proofs.

{ It wasn't fully implemented. Only a subset of the VDM-SL notation was

available in the speci�cation tool, and the operation modelling proof obliga-

tions were not generated by the translation process. This meant that alter-

native, less natural notation was used for some of the speci�cation and proof

obligations were created manually.

{ As the size of the speci�cation grew, the size of the image (mural was imple-

mented in smalltalk) grew very large and the system got slower and slower.
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When the �ndings of this study are brought together with other studies (e.g.

[8]), the following main conclusions can be drawn about formal methods tools:

1. They need to be more incremental. Speci�cations change, either because we

are unsure about the requirements or because we make mistakes. If changes

are made, then the tools should o�er some guidance on what else is e�ected

and help make the changes. For example in mural, if a proof can not be

completed because of a mistake, and that leads to a speci�cation being cor-

rected. Then new versions of the proof obligations are generated, which then

requires a new proof, even for those sub-parts that may have been correct.

2. They should provide better support for the proof process. Providing the

basic functionality for carrying out proofs is not enough. Much more needs

to be done to aid reusability of proofs and developing proof strategies and

tactics.

To conclude, this paper has presented our experience of usingmural that may

be worth considering when developing the next generation of formal methods

development tools. In the future, we intend to repeat the exercise with other

tools.
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