
Robin Wolff
r.wolff@salford.ac.uk
The Centre for Virtual
Environments
Business House
University Road
University of Salford
Salford
Manchester M5 4WT
United Kingdom

David J. Roberts
d.j.roberts@salford.ac.uk
The Centre for Virtual
Environments
Business House
University Road
University of Salford
Salford
Manchester M5 4WT
United Kingdom

Oliver Otto
o.otto@salford.ac.uk
The Centre for Virtual
Environments
Business House
University Road
University of Salford
Salford
Manchester M5 4WT
United Kingdom

Presence, Vol. 13, No. 3, June 2004, 251–262

© 2004 by the Massachusetts Institute of Technology

A Study of Event Traffic During
the Shared Manipulation of
Objects Within a Collaborative
Virtual Environment

Abstract

Event management must balance consistency and responsiveness above the require-

ments of shared object interaction within a Collaborative Virtual Environment

(CVE) system. An understanding of the event traffic during collaborative tasks helps

in the design of all aspects of a CVE system. The application, user activity, the dis-

play interface, and the network resources, all play a part in determining the charac-

teristics of event management.

Linked cubic displays lend themselves well to supporting natural social human com-

munication between remote users. To allow users to communicate naturally and

subconsciously, continuous and detailed tracking is necessary. This, however, is hard

to balance with the real-time consistency constraints of general shared object inter-

action.

This paper aims to explain these issues through a detailed examination of event

traffic produced by a typical CVE, using both immersive and desktop displays, while

supporting a variety of collaborative activities. We analyze event traffic during a

highly collaborative task requiring various forms of shared object manipulation, in-

cluding the concurrent manipulation of a shared object. Event sources are catego-

rized and the influence of the form of object sharing as well as the display device

interface are detailed. With the presented findings the paper wishes to aid the de-

sign of future systems.

1 Introduction

Collaborative Virtual Environments (CVE) allow people to share experi-
ence through a set of common virtual objects, regardless of geographical sepa-
ration. Established applications include visualization, training, planning, and
entertainment. Various forms of natural social human communication may be
supported through avatars (virtual objects that represent a user), which may
move around the environment, while users look at, point to, discuss, and ma-
nipulate the common objects. The CVE system is responsible for supporting
such forms of communication between remote users. The distribution of a vir-
tual environment is typically done through a shared, networked database of
objects. The network introduces latencies and consistency issues which must

Wolff et al. 251



be addressed by the CVE system. Systems adopt a vari-
ety of distribution patterns. Centralized databases offer
simple consistency control but are more affected by la-
tency than are replicated databases, which allow users to
interact with local copies of objects before communicat-
ing state changes as events. During event distribution
and processing a number of mechanisms are needed for
managing the balance of consistency and responsiveness.
A detailed discussion would go beyond the scope of this
paper and we refer the reader to Singhal and Zyda
(1999) and Roberts (2004).

Interaction-rich applications may produce a scale of
events that overwhelms the event management of a
CVE system, reducing the quality of consistency and
responsiveness. Users interface to the CVE through dis-
play systems, the capabilities of which determine the
kinds of human communication that can be supported.
Cubic Immersive Projection Technology (IPT), such as
a CAVE, lends itself well to social human communica-
tion as the user’s own body is placed within the spatial
social context. This encourages natural, subconscious,
nonverbal communication. Although it is trivial to cap-
ture such body movement using tracking systems, the
resultant scale of event traffic can be hard to communi-
cate across the CVE. Many teamwork tasks in the real
world require the shared manipulation of objects, both
sequentially and concurrently. Although many systems
allow the manipulation of objects to be shared sequen-
tially, few allow concurrent manipulation. This is be-
cause doing so in a natural manner requires complex
consistency balancing to address the problem of net-
work latency. Designing such consistency control re-
quires a thorough understanding of event traffic.

This paper aims to increase the understanding of the
level and proportions of event frequency and the effect
of both the method of object sharing and the display
device. In contrast to related research, we focus on co-
operative manipulation as a form of closely coupled col-
laboration by supporting concurrent manipulation of
shared objects via both the same and distinct attributes.
We examine event traffic during collaboration through
linked cubic IPT and desktop display devices while users
share objects in a variety of ways. The main sources of

events are identified and the frequency of communi-
cated events is measured.

1.1 Related Work

Much research has been dedicated to the develop-
ment of CVE systems and toolkits, including the man-
agement and optimization of network usage. Relevant
examples are NPSNET (Macedonia, Zyda, Pratt, Bar-
ham, & Zeswitz, 1994), PaRADE (Roberts, Sharkey,
& Sandoz, 1995), DIVE (Frécon & Stenius, 1998),
MASSIVE (Greenhalgh, Purbrick, & Snowdon, 2000),
CAVERNsoft (Leigh, Johnson, & DeFanti, 1997) and
QUICK (Capps, 2000). Some studies have investigated
the performance of communication infrastructures used
to link training simulators (Wuerfel, 1998; d’Ausbourg,
Bussenot, & Siron 2002), while other studies have in-
vestigated the network traffic generated by both social
gatherings and teamwork activities (Roberts, Richard-
son, Sharkey, & Lake, 1998; Roberts, Strassner, Worth-
ington, & Sharkey, 1999; Frécon, Smith, Steed, Ste-
nius, & Stahl, 2001; Greenhalgh, Bullock, Frécon,
Lloyd, & Steed, 2001; Leigh et al., 2001).

Although some research addresses issues of the coop-
erative manipulation of shared objects and the impact of
the network on user performance (e.g., Ryan & Shar-
key, 1998; Margery, Arnaldi, & Plouzeau, 1999; Park
& Kenyon, 1999; Broll, Meier, & Schardt, 2000;
Mortensen et al., 2002; Pinho, Bowman, & Freitas,
2002; Linebarger, Janneck, & Kessler, 2003), little is
known about the impact of shared object manipulation
through various display devices on the characteristics of
the network and event handling.

2 Experimentation

The strategy for our experimentation included the
measurement of event traffic during a highly collabora-
tive application, on top of an existing CVE system, us-
ing distinct display devices. The following section de-
scribes the details of the display devices, the application
and its implementation, as well as the measurements
and results.

252 PRESENCE: VOLUME 13, NUMBER 3



2.1 Display Devices

Our study is based on measurements of event traf-
fic generated by two distinct display devices: an immer-
sive cubic display and a nonimmersive desktop display.
An immersive cubic display uses IPT to surround the
user with projection screens showing stereo images.
Common setups consist of three walls and a floor, 3 by
3 meters each. Interaction within the virtual world is
achieved by motion-tracking of a user’s head and hand
movement. The important difference to other immer-
sive displays, such as head-mounted displays (HMD), is
that the user is still aware of his or her own body while
completely immersed within computer graphics. This
encourages subconscious, nonverbal social communica-
tion and allows a natural interaction within virtual envi-
ronments.

The most common nonimmersive display is a desktop
workstation, as it is cheap and easily available. In our
configuration, a desktop user interacted on a conven-
tional PC through a mono screen using the keyboard
and mouse. Both displays were equipped with an audio
connection to support verbal communication during
collaboration. Throughout the measurements, the dis-
play devices were interconnected via an Ethernet LAN.

2.2 Application

Scenarios of shared object manipulation can be
found in many application areas. In order to examine
the event traffic during various distinct scenarios of
shared object manipulation, we have designed a simple
application that simulates a construction site. This ap-
plication has already been a benchmark for related re-
search, including social human communication, (Otto
& Roberts, 2003; Roberts, Wolff, & Otto, 2003). The
application situated remote users into a virtual construc-
tion site surrounded by a selection of building materials
and tools. Their task was to build a predefined simple
structure, requiring both systematic usage of tools and
collaboration with remote users to gather and join ma-
terials in a number of structured subtasks. The simula-
tion of gravity within the virtual world enforced concur-
rent object sharing and teamwork as in the real world.

For example, a material must be held in place while it is
fixed, or two users must carry large materials together.

Throughout the experiment, a user’s task required
both sequential and concurrent manipulation of shared
objects to achieve the goal. Within the concurrent ma-
nipulation of shared objects, we can identify two major
scenarios: that of distinct object attributes, and that of
the same object attribute. The concurrent manipulation
of distinct attributes is, for example, involved when join-
ing building materials together. Here, one person con-
trols the position attribute to hold a material in place,
while another controls the “fixed” attribute that releases
it from the effects of gravity. The concurrent manipula-
tion of the same attribute is involved when users are
carrying artificially heavy building materials, controlling
the material’s position attribute together. Finally, a lim-
ited number of tools in the virtual world enforced com-
petition and sequential sharing.

2.3 Implementation

The application was implemented above a well-
known CVE, DIVE (Frécon & Stenius, 1998). This was
chosen because it is an established testbed for experi-
mentation of collaboration in virtual environments and,
after three major revisions, remains an effective bench-
mark (Frécon et al., 2001; Greenhalgh et al., 2001;
Schroeder et al., 2001; Steed, Mortensen, & Frécon,
2001; Mortensen et al., 2002). DIVE version 3.3.5 was
used for all display devices.

Each remote user was represented by an avatar em-
bodied by a human-like character. A static avatar repre-
sented the nonimmersed desktop user, whereas the im-
mersed user’s avatar represented dynamic head and arm
articulation, controlled through head- and hand-track-
ing of the cubic display device. As a construction simu-
lation, our test application included various interactive
objects that imitated the behavior of building materials
and tools. Each object’s behavior has been implemented
by DIVE/Tcl scripts that describe a set of procedures to
change an object’s state in a specific way. For instance, a
screwdriver tool object would make a screw object and
all its intersecting material objects unmovable and thus
changed to a “fixed” state. All behavior scripts were re-

Wolff et al. 253



active and triggered by occurrences of specific events.
DIVE supports several event types. These included ob-
ject transformations, such as movement or rotation; ob-
ject interactions, such as grasp, release, or select; object
collisions; and changes to object-specific properties and
flags. Most functionality in our application was trig-
gered by collisions of material and tool objects. For ex-
ample, when a drill tool collided with a material object,
the resulting collision event would trigger a procedure
in the material’s behavior script to increase a specific
counter attribute.

The distribution of events between remote sites was
handled by DIVE’s distribution layer. The application
can cope with the loss of certain event types. For exam-
ple, users may repeat their action if an intended collision
did not show the expected effect. Some specific events,
however, are vital within the application. If, for exam-
ple, an event that signals a change from an unfixed to a
fixed state gets lost during distribution to remote sites,
the object would become held in place at one site but
not at the other. DIVE implements the replicated data-
base approach above peer-to-peer communication. An
event occurs first locally and is then distributed via mul-
ticast to remote replicas. The DIVE system provides a
loose level of consistency, where it is assumed that ob-
jects are likely to be modified often, and therefore uses
reliable multicast, relying on eventually converging
states of replicas.

We have provided additional, tighter consistency
management, implemented within the application-level
object behavior scripts. To acknowledge the successful
action of a tool, a flag is set to signal a definite state. A
level of causal ordering and discarding of events was
realized by constraining the order of manipulations
through flags that can only be set in a certain order. For
example, the flag to fix construction materials could
only be set after the collision event from the drill tool
and a screw occurred. If such a condition was not ful-
filled the action would not be successful and the current
event discarded, forcing the user to repeat the step. Al-
lowing script procedures to set several distinct proper-
ties concurrently has enabled concurrent object manipu-
lation of distinct attributes, avoiding exclusive object
ownership. For instance, a counter attribute of an object

could be set while its position was continuously up-
dated. In contrast, concurrent manipulation of the same
attribute was realized through intermediate procedures
that gather and “combine” events before setting the
actual attributes of the manipulated object. For exam-
ple, carrying construction materials together with a re-
mote user would be performed with the help of special
tools used on each end of the material to attract a trans-
formation. These tools send their current position to
the carried object, which in turn attempts to find an
average transform between them, and finally, communi-
cates this opinion to the peer(s). One can see that this
application-level consistency management adds addi-
tional events to the common traffic. However, the lack
of support for the consistent shared manipulation of
objects, as in many CVE systems, makes this necessary.

2.4 Measurements

To make a clear assessment of the event traffic, we
extended the DIVE distribution layer for synchronized,
wall-clock timed event logging. Our extension logs oc-
currences of outgoing event messages that have been
sent over the network and maps them to a global time
stamp through synchronized local clocks. The measured
traffic shows the result of communicated events per sec-
ond, which in turn are a result of local state changes at
each site.

2.4.1 Event Types. Our measurements recorded
only those events directly involved in the construction
task. These included state changes of building materials,
and tool and avatar objects caused by both the user and,
indirectly, the object behavior scripts. Table 1 lists the
various event types of DIVE that have been monitored.

Avatar movement can represent the activity and intent
of the remote user in various ways. Within our applica-
tion, avatar movement actions that hold particular infor-
mation include change of attention, locomotion to a
place, and reaching for an object or moving a hand that
results in object manipulation, as well as gestures of the
avatar as a form of social human communication during
the collaboration. Event types in DIVE that mapped to

254 PRESENCE: VOLUME 13, NUMBER 3



avatar movement were transform events caused by ava-
tar objects and the resulting collision events.

Object manipulation included events that showed a
direct effect on the shared objects caused by both the
user directly and the object behavior scripts indirectly.
This included positioning the materials and tools, as
well as simple interactions, such as picking and select-
ing. Moving and rotating of shared objects generated
transform events, whereas grasping, releasing, and se-
lecting an object generated interaction events in DIVE.
Again, collision events were generated when shared ob-
jects collided during transformation.

There are a number of distinctions that must be
noted here between the display types. An immersed user
must physically reach for an object before grasping it,
whereas a desktop user can pick up even a distant object
through the pointer and keyboard. Grasping an object
in the cubic display results in a hierarchy change in the
scenegraph where the object becomes a child of the ava-
tar’s hand. This means that manipulation does not
change the relative transformation attribute of the ob-
ject, as this is already mapped through hand movement
events of the avatar. By default, selection in the desktop
does not change the hierarchy and allows the user to
directly affect the object’s relative transform attribute.
Thus, object manipulation through the cubic display
will be communicated primarily by events describing
avatar movement, while object manipulation on the
desktop will be communicated primarily by those events
describing object transforms.

Control comprises the application logic and application-

level consistency management implemented in the ob-
ject behavior scripts. Events generated by the behavior
scripts included property and flag event types. Property
events come from user-defined, object-specific infor-
mation changes, such as counters, object references, or
the level of sharing. Such events would also be gener-
ated when an object’s behavior script accesses and mod-
ifies attributes within other objects, such as setting the
alignment position of the target object during concur-
rent manipulation. Flag events were usually generated at
the end of a manipulation action, signaling a definite
state.

The system checks for collisions of moving objects
and generates an event describing the result of a colli-
sion for each affected object. Any object within the en-
vironment, including the user’s avatar, may cause colli-
sion events. As mentioned above, most functionality of
our application was manged by collision triggers of cer-
tain material and tool objects. The behavior scripts must
listen to and process all occurring collision events to
find out whether they are relevant or not. In order to
assess the load of the scripts we monitored all collision
event occurrences.

In our application, vital events, such as grasping, fix-
ing, and dropping, bound manipulation. Although
these do not need to be tightly synchronized between
the sites, a minimum level of causal ordering must be
maintained. For example, a delayed transform event
must not be allowed to affect a material once fixed. We
were especially interested in the proportion of vital
events to nonvital. Therefore, we monitored selected

Table 1. Summary of Monitored Event Types

Category Description Source Event type in DIVE

Avatar Translation and rotation of avatar
objects

User interface Transform, Collision

Shared object Grasping, releasing, selecting,
translation, and rotation of
shared objects

User interface and object
behavior scripts

Transform, Interaction,
Collision

Control Application logic and application
level consistency control

Object behavior scripts Property, Flag

Wolff et al. 255



event types that have been identified as vital separately
from the others. The set of vital events includes most
flag events, as well as some property and collision events
in DIVE.

2.4.2 Timing of Subtasks. During the measure-
ments, two remote users performed the whole construc-
tion task, structured into subtasks, for several test runs.
The task included fetching tools and materials, carrying
materials together, and holding materials in place while
they are fixed. Within these subtasks, shared objects had
to be manipulated sequentially as well as concurrently.
Table 2 shows a summary of all subtasks that involved
concurrent object manipulation. The table includes the
approximate time stamp when a subtask was performed
and how it was shared between the two users. Simple
complexity of manipulation refers just to controlling the
position attribute of a concurrently shared object during
carrying or holding it in place, whereas comprehensive
complexity refers to a number of separate manipulations
of various tools and materials in a logical order to finally
fix the object.

3 Results and Observations

Each test run completed construction in around
four to five minutes. The process of the subtasks varied
considerably over all test runs. This made a statistical
analysis very difficult. However, both users always con-
tributed with similar activity. Ten test runs were re-
coded. In this section, we compare the results of one
typical test run. We start with analyzing the frequency

of the typed event generated on each display. This is
followed by a summary of the proportions of event
types over the entire test run and then an overview of
the influence of asymmetric displays. Throughout all
tests, the average bandwidth used by the CVE system
for two collaborating users within the test configuration
was around 4 KBytes/s, with occasional peaks up to 20
Kbytes/s, exclusive audio streams.

3.1 Event Frequency

Figure 1 shows the measured frequency of events
sent from each site. It shows graphs of events generated
locally by the immersive cubic display and the nonim-
mersive desktop display. The values are sorted by event
types, similar to Table 1, and are mapped to a common
time stamp illustrating the task progressing over time in
minutes. As stated in Table 2, approximately the first
third of the task included concurrent manipulation of
the same attribute, whereas the middle and the last third
involved concurrent manipulation of distinct attributes
of shared objects. Sequential sharing took place in be-
tween these subtasks.

We now closely examine the results shown in Figure
1. Graphs A and B show transform event occurrences
triggered by avatar movement, while Graphs C and D
illustrate the frequency of transform and interaction
events caused by direct object manipulations through
the users or indirectly through the object’s behavior
scripts. Graphs E and F display occurrences of events
that were necessary for consistency control, managed by
the object behavior scripts. Graphs G and H show all
collision event occurrences, and finally, Graphs I and J

Table 2. Summary of Subtasks Involving Concurrent Object Manipulation

Subtask Description Time stamp
Manipulated
attributes

Complexity of manipulation

Cubic display Desktop

ST1 Carry obj1 0.5–1.5 Same Simple Simple
ST2 Fix obj1 1.5–3.0 Distinct Comprehensive Simple
ST3 Fix obj2 3.0–4.5 Distinct Simple Comprehensive

256 PRESENCE: VOLUME 13, NUMBER 3



show the frequency of events that have been vital to the
application.

In the beginning phase, between time stamp 0 and
0.5, one can see avatar movement and collision event
occurrences generated by both display devices. Graph A
illustrates how the tracking system of the cubic display
creates events by constantly sampling the location of the
user’s head and hand. In our tests, the tracker update
rate was configured with 500 ms, which was found to
provide a reasonable compromise between accuracy and
performance. All other graphs show bursts of events as a
result of human interaction, similar to those found in
Macedonia et al. (1994). Collisions occur when the ava-

tar approaches the tool and material objects. The dy-
namic avatar of the user in immersive cubic display
causes collisions in higher frequencies than the desktop
user’s rigid avatar. At time stamp 0.1 and 0.25, the
desktop user manipulated an object, as event occur-
rences in graphs D, F, and J reveal. In this form, as se-
quential object sharing, the behavior scripts generated
few events on the desktop.

At time stamp 0.4, one can see an interaction event in
Graph C as the immersive user picked up a tool for con-
current manipulation and initiated subtask 1. Graph E
shows frequent events with high peaks. These events are
a result of the behavior scripts controlling the concur-

Figure 1. Transferred events within one collaborative session.

Wolff et al. 257



rent manipulation. However, an actual manipulation of
the shared object has not been measured at this point in
Graph C. Although both users interacted with distinct
objects, no shared interaction occurred yet. The onset
of concurrent manipulation of a shared object begins
and is synchronized by vital events at time stamp 0.7.
This is followed with a burst in nonvital events (Graphs
C, D, E, and F), terminating with vital events at time
stamp 1.5 when concurrent manipulation ends. Again
high peaks are observed in the frequency of events for
object behavior at the cubic display. One can clearly see
a difference in the frequency of events for consistency
management when comparing Graph E with F. The
immersive display device causes the behavior scripts to
generate events much more often than the desktop dis-
play.

Remember that, through motion tracking in the cu-
bic display, no events are generated from direct transfor-
mations by the user, as these are mapped to hand move-
ments from the dynamic avatar. What we see in Graph
C is the result of transformations by the behavior
scripts, whereas Graph D shows the sum of transforma-
tions by the user and behavior scripts. Both graphs show
occasional peaks, rather than a smooth update rate. The
users who observed a jerky movement of the material
object when carrying it could confirm this. This is a re-
sult of event queuing caused by the preceding high
event frequencies that must be processed by the behav-
ior scripts before they can update the transformation of
the manipulated object.

During the concurrent manipulation of distinct at-
tributes in subtask 2 between time stamps 2.0 and 2.8,
the graphs of the desktop display device show a long
gap. This is because the desktop user can hold an object
in the air from a distance, taking a share of the weight
to allow the other user in the cubic display to manipu-
late it. Thus, although the desktop user does not move
the mouse, all the event traffic associated with moving
the object is generated from the cubic display. After the
occurrence of vital events that signalized a fixed-state
change of the concurrently manipulated object at 2.7 in
Graph I, one can see the response of the desktop user at
time stamp 2.8. The frequent events in Graph D reveal
that the shared object was still manipulated before the

avatar moved away, although the event for fixing should
have taken effect. A delayed evaluation of vital events
can lead to an erroneous application.

In the graphs of the desktop, one can see increased
occurrences of events during more complex object ma-
nipulations within subtask 3. Vital event occurrences are
dense at this time. Closer inspection of the log files re-
vealed that the desktop user generated a high number of
interaction events. This can be attributed to the user
trying to precisely position objects within the scene,
which resulted in several grasps and releases of an ob-
ject. The concurrent manipulation of distinct attributes
produces clearly fewer events for consistency manage-
ment than manipulating the same attribute, as the ob-
ject behavior graphs show.

In summary, the results show high event peaks for
application-level consistency management during con-
current sharing of the same attribute. The highest fre-
quency bursts were observed in those events generated
by the behavior scripts for application control, particu-
larly at the immersive cubic display, as shown in E. Our
application tried to filter similar, superseded transform
events based on thresholds for time and coordinate dif-
ferences. However, the high input rate through tracking
in the immersive display still resulted in event queuing.
Additionally, many collision events were communicated.
Only some contributed to, and few were necessary for,
collaboration. Most collisions seem to occur uninten-
tionally, often from avatars “brushing past” materials
and each other during locomotion. This was partly due
to the crowded nature of the environment. Although of
no relevance to our application, such collisions still add
to the overall event traffic within the CVE. Graphs G
and H uncover that the immersive display generated
collision events with higher frequency, and more
densely, than the desktop display. It is interesting to see
how the immersive display generates collisions during
simple object manipulations during subtask 3, while the
nonimmersive desktop display does not during subtask
2. Although the user in the cubic display was not navi-
gating but just holding a material in place, the system
still generated collisions by small natural head and hand
movements, whereas the desktop user could rest his or
her hand on a table during simple manipulations. How-

258 PRESENCE: VOLUME 13, NUMBER 3



ever, these small movements can be useful for creating a
feeling of copresence and in helping to demonstrate
emotion.

Peaks of vital events sometimes occur when states are
changed for several objects at the same time, such as
setting the fixed state for all material objects that inter-
sect with a screw object. Vital events always occur dur-
ing or around bursts of object behavior scripts, object
manipulation, or collision events. Such bursts in the
load for the event management can lead to a delayed
evaluation of vital events and to erroneous application.

3.2 Proportions

Table 3 summarizes the proportions of the various
event occurrences that had to be sent over the network.
The values, given as percentages, indicate the contribu-
tion of the distinct display devices to the whole event
traffic, averaged over all test runs. In summary, the im-
mersive display device contributed 20% more to the to-
tal amount of event occurrences compared to a desktop
display. Comparing the sums and ratios of avatar move-
ment and object manipulation proportions, one can see
now how continuous motion-tracking in an immersive
display compensates for additional object manipulation
events caused by a desktop. However, an immersive dis-
play causes considerably more collision events, as well as
application-specific events for consistency control by the
object behavior scripts, than the nonimmersive desktop
display. The cubic display generated double the number
of events than object behaviors and three times more

collisions were caused. The proportions of vital events
were small compared to the rest. In our highly collabo-
rative task, only 2.5% are vital events. No significant dif-
ference in proportions of vital events can be seen be-
tween the display types, as both users showed similar
activity and contribution to the collaborative task.

3.3 Comparison

Finally, we look at the effect of asymmetric dis-
plays on the total event traffic. In Figure 2, we compare
the frequency of events communicated between an im-
mersive cubic display connected to a desktop display,
Graph K, and two connected cubic displays, Graph L.
The former were tested across a local area network,
whereas the latter were tested across the Internet, but
we here assume this difference to have negligible effect
on the traffic.

Comparing the frequency of event occurrences shown
in the two graphs in Figure 2, one can see that in Graph
L, the two immersive cubic displays together generated
high peaks of up to 150 events per second, whereas in
Graph K, the cubic and desktop combination showed
peaks of around 60 events per second. Referring to find-
ings of the previous results, the highest peaks occur dur-
ing the concurrent manipulation of the same attribute
of a shared object. During the concurrent manipulation
of distinct attributes, both display configurations show
similar peaks. However, the mean frequency of events,
and thus the load for the CVE system, is about one
third higher in Graph L than in Graph K.

4 Conclusion

This paper aimed to add to the understanding of
typical event traffic in a CVE through investigating the
impact of various forms of object sharing across two
distinct device types. This was approached by analyzing
the event traffic during a highly collaborative task, in
terms of both frequency and proportions of various
event types. We have presented measurements of events
sent across the network during a collaborative task re-
quiring distinct forms of object manipulation as well as

Table 3. Event Proportions on Total Traffic

Category
%
Cubic

%
Desktop

Avg. ratio
cubic/
desktop

Avatar movement 13.8 3.6 4:1
Object manipulation 4.9 18.0 1:4
Object behaviour 21.3 9.8 2:1
Collision 17.3 6.4 3:1
Vital 2.5 2.3 1:1

Wolff et al. 259



nonverbal communication. Unlike previous work, this
has included measurements taken during the concurrent
sharing of an object, both through the same and distinct
attributes. The impact on the event traffic of the type of
shared object manipulation and the display device used
was compared. The presented results may be of value in
the design of applications, infrastructure, and input de-
vices. For example, recognizing characteristics in collab-
orative actions and its resulting event traffic may lead to
the development of advanced consistency control mech-
anisms matching the characteristics and requirements of
the actual method of shared object manipulation.

Within the confines of our application and implemen-
tation, the primary findings of this work are:

1) Event bursts occur during shared object manipula-
tion that often result in event queuing and thus
the “jumping around” of the shared object.

2) The size of the burst depends on a combination of
interface and type of object sharing.

3) Tight, real-time, consistency management exacer-
bates these bursts.

4) Erroneous results occur from the delay or loss of
vital events.

5) Vital events are rare but tend to coincide or
bound bursts of nonvital events.

We have shown that the interface, provided by a par-
ticular display type, has significant impact on the fre-

quency of events. When linking several immersive
displays for collaboration, the event traffic increases
considerably. This should be considered when porting
collaborative applications from desktop to tracked dis-
play. Furthermore, we have shown that concurrent ob-
ject manipulation can result in more traffic than sequen-
tial manipulation, whereas concurrent manipulation of
the same attribute has more impact than distinct at-
tributes.

Generic support for collaboration requires both the
support for various forms of object sharing and commu-
nication of natural body movements. We have shown
that supporting both is achievable but nontrivial. Our
results show a specific need for filtering nonvital events
while maintaining some level of causal ordering for all.
Strategies such as sufficient causal ordering have ad-
dressed this issue in the past (Roberts, 1995) but have
not been rigorously tested with such high levels of mo-
tion-tracked data. It remains to be seen if they could
offer a generic solution for supporting social human
communication.

5 Future Work

We are currently developing a flexible consistency
control module that supports a variety of time manage-
ment strategies. Dedicated pipes distinguish between

Figure 2. Total event occurrences on different display combinations.

260 PRESENCE: VOLUME 13, NUMBER 3



vital and nonvital events. The time management strate-
gies determine delivery, garbage collection, and order-
ing criteria.

Acknowledgments

We would like to thank Anthony Steed, and the team from
the University College London (UK) as well as Christoph An-
thes, Dieter Kranzlmüller, and the team from the Johannes
Kepler Universität in Linz (Austria) for collaborations during
this research.

References

Broll, W., Meier, E., & Schardt, T. (2000). The virtual round
table—A collaborative augmented multi-user environment.
Proceedings of CVE 2000 (pp. 39–45). New York: ACM
Press.

Capps, M. V. (2000). The QUICK framework for task-specific
asset prioritization in Distributed Virtual Environments.
Proceedings of IEEE Virtual Reality 2000, 143–150.

d’Ausbourg, B., Bussenot, J.-L., & Siron, P. (2002). PERFO-
SIM: A performance evaluation tool for HLA distributed
simulations. Proceedings of the Sixth IEEE International
Workshop on Distributed Simulation and Real-Time Applica-
tions (DS-RT’02), 23–31.

Frécon, E., Smith, G., Steed, A., Stenius, M., & Stahl, O.
(2001). An overview of the COVEN platform. Presence:
Teleoperators and Virtual Environments, 10(1), 109–127.

Frécon, E., & Stenius, M. (1998). DIVE: A scalable network
architecture for distributed virtual environments. Distrib-
uted Systems Engineering Journal (special issue on Distrib-
uted Virtual Environments), 5(3), 91–100.

Greenhalgh, C., Bullock, A., Frécon, E., Lloyd, D., & Steed,
A. (2001). Making networked virtual environments work.
Presence: Teleoperators and Virtual Environments, 10(2),
142–159.

Greenhalgh, C., Purbrick, J., & Snowdon, D. (2000). Inside
MASSIVE-3: Flexible support for data consistency and
world structuring. Proceedings of CVE 2000 (pp. 119–127).
New York: ACM Press.

Leigh, J., Johnson, A. E., & DeFanti, T. A. (1997). CAV-
ERN: A distributed architecture for supporting scalable per-

sistence and interoperability in collaborative virtual environ-
ments. Journal of Virtual Reality Research, Development
and Applications 2(2), 217–237.

Leigh, J., Yu, O., Schonfeld, D., Ansari, R., He, E., & Nayak,
A. (2001). Adaptive networking for tele-immersion. Pro-
ceedings of Immersive Projection Technology/Eurographics
Virtual Environments Workshop (IPT/EGVE), 199–208.

Linebarger, J. M., Janneck, C. D., & Kessler, G. D. (2003).
Shared simple Virtual Environment: An object-oriented
framework for highly-interactive group collaboration. Pro-
ceedings of the Seventh IEEE International Symposium on
Distributed Simulation and Real-Time Applications (DS-
RT’03), 170–180.

Macedonia, M. R., Zyda, M. J., Pratt, D. R., Barham, P. T.,
& Zeswitz, S. (1994). NPSNET: A network software archi-
tecture for large-scale Virtual Environments. Presence: Tele-
operators and Virtual Environments, 3(4), 265–287.

Margery, D., Arnaldi, B., Plouzeau, N. (1999). A general
framework for cooperative manipulation in Virtual Environ-
ments. In M. Gervautz, A. Hildebrand, and D. Schmalstieg
(Eds.), Proceedings of Eurographics Workshop (Virtual Envi-
ronments ’99) (pp. 169–178). Vienna: Springer Verlag.

Mortensen, J., Vinagayamoorthy, V., Slater, M., Steed, A.,
Lok, B., & Whitton, M. C. (2002, May). Collaboration in
Tele-Immersive Environments. Paper presented at the Eighth
Eurographics Workshop on Virtual Environments, Barce-
lona, Spain.

Otto, O., & Roberts, D. (2003). Importance of communica-
tion influences on a highly collaborative task. Proceedings of
the Seventh IEEE International Symposium on Distributed
Simulation and Real-Time Applications (DS-RT’03), 195–
201.

Park, K., & Kenyon, R. (1999). Effects of network character-
istics on human performance in a collaborative virtual envi-
ronment. Proceedings of IEEE Virtual Reality 1999, 104–
111.

Pinho, M. S., Bowman, D., & Freitas, C. (2002). Cooperative
object manipulation in immersive Virtual Environments:
Framework and techniques. Proceedings of ACM Symposium
on Virtual Reality Software and Technology (VRST’02) (pp.
171–178). ACM SIGCHI & ACM SIGGRAPH.

Roberts, D. J. (2004). Communication infrastructures for
inhabited information spaces. In D. N. Snowdon, E. F.
Churchill, & E. Frécon (Eds.), Inhabited Information
Spaces, Living with your Data (pp. 233–267). Computer
Supported Cooperative Work. London: Springer-Verlag.

Wolff et al. 261



Roberts, D. J., Richardson, A. T., Sharkey, P. M., & Lake,
T. W. (1998). Optimising exchange of attribute ownership
in the DMSO RTI. Proceedings of the Spring Simulation
Interoperability Workshop, SISO, 379–386.

Roberts, D. J., Sharkey, P., & Sandoz, P. (1995). A real-time,
predictive architecture for Distributed Virtual Reality. Pro-
ceedings of the First ACM SIGGRAPH Workshop on Simula-
tion & Interaction in Virtual Environments, 279–288.

Roberts, D. J., Strassner, J., Worthington, B. G., & Sharkey, P.
(1999). Influence of the supporting protocol on the latencies
induced by concurrency control within a large scale multi user
distributed virtual reality system. Paper presented at the Interna-
tional Conference on Virtual Worlds and Simulation (VWSIM),
SCS Western Multi-conference ’99, San Francisco, CA, 70–75.

Roberts, D. J., Wolff, R., & Otto, O. (2003). Constructing a
gazebo: Supporting teamwork in a tightly coupled, distrib-
uted task in virtual reality. Presence: Teleoperators and Vir-
tual Environments, 12(6), 644–660.

Ryan, M. D., & Sharkey, P. M. (1998). Distortion in distrib-

uted virtual reality. In J.-C. Heudin (Ed.), Proceedings of the
First International Conference on Virtual Worlds (VW’98),
Lecture Notes in Artificial Intelligence, Vol. 1434, 42–48.
London: Springer-Verlag.

Schroeder, R., Steed, A., Axelsson, A., Heldal, I., Abelin, A.,
Widestom, J., et al. (2001). Collaborating in networked
immersive spaces: As good as being there together? Com-
puters & Graphics 25(5), 781–788.

Singhal S., & Zyda M. (1999). Networked Virtual Environ-
ments: Design and Implementation. SIGGRAPH Series,
New York: ACM Press.

Steed, A., Mortensen, J., & Frécon, E. (2001). Spelunking:
Experiences using the DIVE System on CAVE-like plat-
forms. In H.-J. Bullinger (Ed.), Immersive Projection Tech-
nologies and Virtual Environments (pp. 153–164). Vienna:
Springer-Verlag.

Wuerfel, R. D. (1998). A comparison of HLA and DIS real-
time performance. Proceedings of the Spring Simulation In-
teroperability Workshop ’98.

262 PRESENCE: VOLUME 13, NUMBER 3


