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Speech transmission index from running speech:
A neural network approach

F. F. Lia) and T. J. Cox
School of Acoustics and Electronic Engineering, University of Salford, Salford M5 4WT, United Kingdom

~Received 20 August 2001; revised 30 October 2002; accepted 14 January 2003!

Speech transmission index~STI! is an important objective parameter concerning speech
intelligibility for sound transmission channels. It is normally measured with specific test signals to
ensure high accuracy and good repeatability. Measurement with running speech was previously
proposed, but accuracy is compromised and hence applications limited. A new approach that uses
artificial neural networks to accurately extract the STI from received running speech is developed in
this paper. Neural networks are trained on a large set of transmitted speech examples with prior
knowledge of the transmission channels’ STIs. The networks perform complicated nonlinear
function mappings and spectral feature memorization to enable accurate objective parameter
extraction from transmitted speech. Validations via simulations demonstrate the feasibility of this
new method on a one-net-one-speech extract basis. In this case, accuracy is comparable with normal
measurement methods. This provides an alternative to standard measurement techniques, and it is
intended that the neural network method can facilitate occupied room acoustic measurements.
© 2003 Acoustical Society of America.@DOI: 10.1121/1.1558373#
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I. INTRODUCTION

Traditionally, two different approaches are used to qu
tify room acoustics: subjective and objective assessme
Subjective measurements are based on human perceptio
so usually use music or speech signals. Objective meas
ments, on the other hand, use artificial test signals suc
noise, to ensure reproducibility and repeatability. Much ro
acoustics research concerns quantifying acoustic qualit
terms of objective parameters and this enables designs t
readily made and evaluated. Objective measurements, h
ever, use high sound pressure levels that are usually u
ceptable to audiences. This hinders objective measurem
under occupied in-use conditions. Occupied measurem
are important because it is well established that occupa
affects the acoustic, especially the absorption and ba
ground noise levels. It is suggested that many of the pr
lems encountered in occupied objective parameter meas
ments could be overcome if the naturally occurring signals
a space, such as music or speech, were used as test sign
technique to achieve this for speech is given in this pape

Speech Transmission Index~STI! is a common objective
parameters used to assess speech intelligibility of spaces
other transmission channels, such as classrooms, thea
public address and telephony systems.1–4 STI combines two
major phenomena that affect speech intelligibility
reverberation and noise—to extract a single index that g
good correlation with subjective perception.5 Moreover, STI
method utilizes simple artificial test signals and enables p
table instrumentation to be implemented.6 Consequently, STI
has been adopted as a mainstream objective paramete
speech intelligibility7 and is included in standards and pe

a!Current address: Department of Computing and Mathematics, Manch
Metropolitan University, Manchester M1 5GD, UK.
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formance specifications. Nevertheless, it is known that
certain circumstances STI is not completely successful.8

The normal STI measurement method uses artificial
signals and so is not particularly well suited to occupi
measurement. The standard method takes about 10–15
utes to perform,9 which is a long time to expect occupants
listen to noise and yet continue with their normal activitie
For this reason, RaSTI was developed in the mid 1980s,
more recently, another new technique, STI–PA has b
proposed.9 Both RaSTI and STI-PA have reduced measu
ment time, but the test signal is still noise, and conseque
neither are true nonevasive test techniques. Steeneken
Houtgast did, however, propose a method to estimate
modulation transfer function~MTF! and in turn STI from
running speech.10 It was suggested that the MTF is rough
estimated by comparing the envelope spectra of source
received speech signals. This technique works, but at a
of compromised accuracy. For this reason, practical meas
ments of STI are rarely made with running speech, but s
rely predominantly on artificial test signals.

Inspired by the fact that humans can sensitively diff
entiate reverberation times, artificial intelligence metho
have been developed as a means of extracting objective
rameters from speech. Previously, a time domain appro
was applied to extract reverberation parameters from se
rate monosyllable word utterances.11 The time domain
method, however, is not applicable to running speech and
signal to noise ratio problems when estimating octave b
parameters. A neural network method to estimate STI fr
running speech was proposed and a few pilot res
published.12 Since then, many refinements have been ma
especially to the preprocessor, to form a more accurate
robust method. This paper will present the details of this n
method to accurately estimate STI from running speech
cerpts using artificial neural networks~ANNs!. ANNs are

ter
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systems that can perform nonlinear mapping, in this c
from running speech to objective parameters. ANNs lear
mapping through experience, in this case by being expo
to many examples of running speech in rooms and the
responding objective parameter values of the room. The
puts to the neural network are 60 s speech excerpts, pre
cessed with an envelope spectrum estimator. T
preprocessing exploits and extends the underlying me
nism of the envelope spectrum technique developed for
standard STI method. Refinements are needed to allow b
resolutions and maintain a reasonable number of input n
rons to facilitate machine learning. As it is the basis for ma
aspects of the project, the paper starts by discussing the
velope spectrum and STI method.

II. STI METHOD AND ENVELOPE SPECTRA

The STI method is closely linked to the envelope
running speech. Speech needs to retain its original enve
to be intelligible, the more the envelope is modified t
poorer the intelligibility. A room acts as a low pass filter
speech envelopes, smoothing the envelope and hence
grading intelligibility. Moreover, ambient noise disturb
speech signals and reduces intelligibility. Both reverberat
and noise cause the normalized low frequency envel
spectrum of speech to decrease.13 Consequently, the MTF
was introduced to quantify the combined effect of reverbe
tion and ambient noise by means of modulation ind
reductions.2 By properly combining and processing select
frequencies in the MTF, a single index STI is formed.3 The
measurement of the MTF is the core process in determin
STI, and three different methods exist. Once MTFs are
tained, the STI can be calculated from 98 MTF data poi
via a series of weighting, limiting and averagin
processes.3–7 The three methods for obtaining the MTF a
as follows.

A. Standard method

The envelope shaping effect of a transmission chann
determined by measuring the MTFs in seven octave ba
~125 Hz–8 kHz! using sine-wave modulated noise with i
spectrum shaped to be the same as typical long-term spe7

The modulation transfer function MTF is determined by t
ratio of modulation index of output to input intensity. Th
process needs to be carried out for each of the 14 modula
frequencies, and hence the process is relatively slow.
advantage of this method is that it works with nonlinear s
tems, such as many public address systems.

B. Impulse response method

Schroeder14 systematically reviewed and discussed MT
measurement methods from a signal and system perspec
and reconfirmed a relationship between MTF and room
pulse responseh(t):

MTF~F !5
u*0

`h2~ t !e22p jFt dtu
*0

`h2~ t !dt

1

~1110~2s/n!/10!
, ~1!
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wheres/n is the signal to noise ratio, and allows the effect
ambient noise interference to be included. This part of
~1! was added by Steeneken and Houtgast.4 Therefore, an
MTF can be obtained by first measuring the impulse
sponse. This is often done using a maximum length seque
signal or a swept sine wave. This approach becomes inv
when a system is nonlinear as the impulse response in
~1! should be linear. This can be a serious limitation. F
example, many speech reinforcement and public address
tems use compressors to improve intelligibility.

C. Using the speech envelope spectrum

A short rectangular window is moved along a runni
speech signal, typically 40–60 s long. The square of
windowed portion is divided by the average value of t
squared long-time speech signal; this gives the inten
function.13 An average of the intensity function is taken, an
the low frequency envelope spectra of the function fou
The part of the envelope spectra important to speech int
gibility lies in frequency band 0–20 Hz. It was suggest
that MTFs could be roughly estimated from the envelo
spectra of original and transmitted speech.10 Let EX (F) be
the envelope of original speech andEY(F) be the envelope
spectrum of received speech, then MTF(F) is estimated by

MTF~F !'EY~F !/EX~F !. ~2!

This method was validated by empirical results showing t
the STI obtained using this approach and measured thro
standard methods have a reasonably good agreement~a cor-
relation coefficient of 0.971!.10 In both the original paper and
the standards,5,10 however, it is pointed out that MTFs ob
tained from speech envelopes using Eq.~2! have compro-
mised accuracy.

III. NEURAL NETWORK METHOD

A. Rationale

Room effects are contained in the difference betwe
received,Y(v), and transmitted,X(v), speech signals. The
use of input and output envelope to gain the MTF as s
gested above, can be regarded as a linear approximation
squared linear time invariant filter:

Y~v!5H~v!X~v!,
~3!

EY~F !'MTF~F !EX~F !,

whereH(v) is the transfer function of the room, which pre
cisely describes the input–output relationship of the sign
The MTF, on the other hand, approximately relates the
velopes of the input and output signals.

Such a relation described by MTFs would be accurat
~a! the envelope of speech were periodic and~b! the spec-
trum of speech were white with constant power per u
bandwidth.14 Unfortunately, running speech is a complicate
nonstationary stochastic process, only approximately c
forming to these criteria. This makes the mapping relatio
ship between the envelope spectra and MTFs imprecise.
tificial neural networks are therefore considered to perfo
. F. Li and T. J. Cox: Speech transmission index from running speech
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this nonlinear mapping. The mapping is likely to be mo
accurate, because ANNs are inherently powerful nonlin
mapping engines.15,16

A speech excerpt can be regarded as a speech env
modulated noise, once it is chosen, its envelope spect
and the spectrum of the carrier is fixed and the differe
between these and the standard test signal can be obta
The ANN algorithm is used to perform nonmodel based
gression to memorize features of speech samples and
pensate the errors found in the estimated MTFs. From M
to STI is a deterministic nonlinear limiting and linear com
bination process. ANNs are known to be able to calcul
any computable nonlinear and linear functions and there
should be able to perform these calculations.17 As one step
further, it is possible to combine the accurate MTF estim
tion and the subsequent calculation of STI value into o
neural network system, i.e., use the neural algorithm to m
received envelope signals directly onto STI values. This
stage mapping is useful as it simplifies implementation. S
an ANN network method is illustrated as a block diagram
Fig. 1.

Two phases, training and retrieval are involved in t
development of the ANNs and applying them to real wo
problems. In the training phase, the ANNs learn from e
amples, memorize related information and generalize fro
closed set of training data to a class of cases including th
not in the training set. This is achieved by presenting a la
number of examples to the ANN and utilizing multivariab
optimization techniques to minimize the total errors betwe
the actual STI value and the output of the ANN. Examp
used to training the ANN are generated using simulat
techniques. Convolutions of anechoic speech and simul
impulse responses are used as transmitted speech exam
The expected STI values are obtained from the impulse
sponses and additional ambient noise. The knowledge o
original envelope spectrum is implicitly built into the ANN
as part of training. As a result, there is no need to monitor
original speech in the retrieve phase. This reduces two ch
nel measurement to one channel. However, as shall be
cussed later, the drawback is that it is limited to a on
speech-one-net scheme, i.e., a particular neural netw

FIG. 1. Block diagram of the training~top! and retrieval~bottom! phases of
the system.
J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 F. F. Li a
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learns to memorize features of a particular speech exc
and works with that excerpt only.

B. Neural network architecture

A nonlinear, multilayer, feed forward network trained b
the back-propagation algorithm17–19 is chosen for this work.
Backpropagation is a successful algorithm; the penalty
using this type of neural network can be in excessive train
times. The fundamental building blocks of the neural n
work is the cellules processing neuron unit as depicted
Fig. 2. Typically, it comprises two functions: a linear bas
function used to gather input signals, and an activation fu
tion f ( ) to nonlinearly process the information. The bas
function used is

ui5(
j 51

n

wi j xj1bi , ~4!

where wi j is the weight connecting thej th neuron toi th
neuron, andxj is the output ofj th neuron. The activation
function is

ai5 f ~ui !5
1

11e2ui
. ~5!

The activation function is used for the two hidden layers
provide nonlinear mapping capability. The neural network
constructed in a feed forward fashion by interconnecting
large number of these simple neurons as shown in Fig. 3.
leftmost input layer takes signals from the preprocessor
distributes them to subsequent layers without processing
signals. There are two nonlinear hidden layers. The STI
normalized index from 0 to 1. As a common ANN desig

FIG. 2. The neuron model.

FIG. 3. Multilayer feed forward network architecture.
2001nd T. J. Cox: Speech transmission index from running speech
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consideration, a hard limiting nonlinear neuron at the out
layer could be to used to clamp the output values so tha
output can possibly go beyond the interval of 0 to 1; ho
ever, it is found in this application that hard limiting th
output reduces the back propagation of errors to the hid
layers in the early stages of training, and hence inhibits c
vergence. So, a linear summation function without a non
ear activation function is adopted as the output neuron.

The neural network is trained under a supervised mo
as an approximator. The training, as shown in Fig. 1, is
iteratively apply the preprocessed speech examples to
input of the neural network and minimize the mean squ
errors between the teachers~known STIs! and the output of
the neural network over all examples in the training set. T
optimization is done by iteratively updating the connecti
weights (wi j and bi) within the neural network using th
well-known back propagation algorithms.15,17–19Training is
achieved using the delta learning rule:15,16

wi j
~m11!5wi j

~m!1hDwi j
~m! , ~6!

where wi j
(m11) is the new connection weights,wi j

(m) is the
previous weights,Dwi j

(m) is the estimated maximum gradie
according to backpropagation algorithm andh is the learning
rate. Learning with too large a learning rate can cause
algorithm to diverge and can also mean important mini
are missed, but too small a learning rate results in slow le
ing and the network is prone to being trapped in lo
minima. The standard backpropagation algorithm employ
constant learning rate, which is empirically determined. E
periments with the STI problem showed a constant learn
rate, when the value is suitable, converges steadily, bu
very slow. A modified learning rule, with variable learnin
rate, is used to speed up the training. The training phas
divided into three periods: output clamping, intermedia
training and fine tuning. In the early stage of training, t
ANN tends to gradually converge to output values within t
@0 1# interval. In the intermediate stage of training, the AN
fits the details from training set. In the final stage, the AN
fine tunes itself to give the best performance for general
tion. Different learning rates are used in first and last peri
When the output of the ANN is beyond the@0 1# interval,
larger steps are used to quickly drive the ANN to produ
outputs in the@0,1# region. In the final fine tuning period
smaller steps are used. This modified learning thus can
expressed as

h5H ~1.2– 1.3!h when output¹@0,1#,

h others,

~0.3– 0.5!h when error reduction→0.

~7!

Such a modification to standard training method is fou
effective in speeding up the early phase of training and
numerically robust. Using a variable learning rate is comm
practice in neural network applications20 and has been show
to speed training for a wide range of applications. Figur
shows the typical error reduction found in the early period
training. A rapid drop of ensemble errors can normally
achieved due to the enhanced error back propagation w
output is beyond the interval of 0 to 1. Incidentally, If initia
2002 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 F
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convergence is slow, the weights of the neural network
randomized and the training process restarted.

The termination criteria for neural networks are cruci
The requirement for generalization, i.e., that the network
successful with data not seen in training, indicates that se
ing global minimum mean square error for the training se
neither necessary, nor the best solution. Tuning the ANN
overly fit the training data set does not necessarily guara
that the best generalization results. Therefore, the trainin
continuously monitored by the examination of the neural n
works’ response to a small set of validation data. The train
stops when, either the predefined prediction accuracy
achieved or a sign of over-fitting occurs~consistently in-
creasing mean-square-error!, whichever the first. It is known
that a 0.02 standard deviation is typical when using the S
standard method,6 and so this is used as a termination crit
rion.

There are three other important aspects to specify in
ANNs: size, structures, and preprocessors. In theory,
more neurons and hidden layers a neural network posse
better its function mapping capability will be. Nevertheles
excessive number of neurons and too many hidden la
cause problems in practice,15 as back propagation tends to b
slow and learning becomes inefficient and extremely ti
consuming. As a practical rule of thumb, small sized AN
are preferable if they suffice. The suitable size for the n
work is determined through trial and error. Training tends
be more efficient when input information is coded in a su
able format for the ANN.15,17As a common practice, a pre
processor, which functions to perform data reduction and
nal conditioning is used to bridge the real world signals a
the input layer of the ANN. In this application, an envelo
spectrum estimator is the core of the preprocessor.

C. Preprocessor

There are three key issues to be considered in desig
the preprocessor for STI extraction. First, useful informat
should be retained while redundant information should
reduced—only about 0.01% of the original data in the spe

FIG. 4. Typical error reduction found in early phases of training. Ea
training iteration comprises a block of 50 examples.y axis is the sum of
squared errors tested by randomly chosen blocks comprising 50 exam
. F. Li and T. J. Cox: Speech transmission index from running speech
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can be sent to the neural network otherwise the numbe
input neurons becomes too large. Second, existing kno
edge should be used, otherwise the ANN has to model fu
tions that could have been more efficiently processed u
traditional means—this minimizes the load on the AN
Third, the input vectors to the ANN should be normalized
between21 and11 as this speeds the training. The env
lope spectrum estimator is naturally considered as the
processor. It can significantly reduce the amount of data
long speech excerpts, but maintains decisive information
STI values.

The best estimate of the long term envelope spect
needs to be obtained. Traditional methods applied repetit
of the speech to spectral analyzers,9,13 but nowadays more
sophisticated algorithms are available. A Hilbert transform
used as it gives a better estimation of the time sig
envelopes.21 Accordingly, the envelopeev(t) is

ev~ t !5As2~ t !1sh
2~ t !, ~8!

where sh(t) is the Hilbert transform of speech signals(t)
defined by

sh~ t !5H@s~ t !#[
1

p E
2`

` s~ t2t8!

t8
dt8. ~9!

Figure 5 demonstrates a detected envelope using
method. Such a detector gives an unambiguous definitio
signal envelopes; it is superior to techniques where wind
width and overlap have to be chosen.21 Another attractive
feature of the Hilbert transform based detector is that it
be performed via a fast Fourier transform~FFT! enabling a
quicker implementation.

Figure 6 is a block diagram of the proposed preproc
sor. One minute of speech is used. Octave bandpass fi
are inserted when needed. Only low frequency conte
found in the envelope spectra are of interest. Conseque
envelope signals are low pass filtered by a fourth order B

FIG. 5. Envelopes detected by Hilbert transform. Top is speech sig
middle is envelope, and bottom is 80 Hz low pass filtered envelope. Gr
normalized to maximum magnitude.
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terworth filter with a23 dB point of 75 Hz and the signal i
then resampled at 160 Hz. The decimated envelope sig
are then passed onto the power spectrum estimator to ob
the envelope spectrum. This is done using an overlap
Hanning window technique, and the windows are typica
2.5 s long. Envelope spectra are normalized to the ave
energy of speech signal excerpts~when a sine wave having
RMS value equal to the mean intensity of the speech sig
passes through, 0 dB is obtained!. The normalization has
important practical and physical meaning.

~1! Ensuring envelope spectra are not input signal level
pendent.

~2! Expressing the frequency components of speech en
lope with respect to the total energy.

~3! Including both speech envelope fluctuation and interf
ence noise levels in the envelope spectra.13

Envelope spectra are frequency domain sampled and
into the input layer of the neural networks. Not surprising
it is found that the window width and FFT length of th
spectrum estimator has a significant impact on obtaining
curate results. According to the standard STI method, 14 d
points at central frequencies of 1/3-octave bands from 0
to 12.5 Hz are used. To achieve these sample frequen
requires some zero padding of the time windows. This f
quency domain sampling is found adequate in training AN
on single speech excerpt in octave bands. Using a dig
implementation of the envelope spectrum estimator ena
higher resolution frequency sampling to be achieved, giv
a more detailed representation of the envelope spectr
This is found particularly useful in training ANNs on broad
band unfiltered speech and multiple speech examples as
cussed in Secs. IV D and IV E.

STI values are determined from MTFs in octave ban
of speech interest. However, as speech signals have lim
bandwidth, very little energy is found in frequency ban
above 6.3 kHz. Figure 7 shows the spectrum of a typi
anechoic speech excerpt. Because of this signal to noise
tion problem, the 6.3 kHz band is used instead of the pr
lematic 8 kHz band.

D. Training and validation data sets

Artificial neural networks using supervised training ne
to learn from a large number of example-teacher pairs
simple stochastic model for impulse response synthes
multiplying white noise by an exponential decay function
was previous used by Schroeder to investigate MTF m
surement methods14 and was said to be realistic in the la
part of reverberation. However, such simple stochastic mo
does not give frequency dependency and is inaccurate i
description of early reflections. STI by definition is a fr
quency dependent parameter. An improved stochastic m

l,
hs

FIG. 6. Block diagram of envelope spectrum preprocessor.
2003nd T. J. Cox: Speech transmission index from running speech
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was developed for this study which incorporates various p
sible early reflection patterns, frequency dependence an
alistic reflection density. Figure 8 shows an example of
impulse response synthesized using the new stoch
model.11

The stochastic impulse response synthesiser is co
such that it randomly generates all impulse response patt
while statistically it is controlled by governing diffuse fiel
physical laws. Although governed by the diffuse field law
the stochastic nature of the generator meant that distin
nonlinear decays could be generated. When it is run for
ficiently large number of times, it hypothetically generate
superset of impulse responses found in reality. A small nu
ber of real impulse responses were also used, not enoug
properly validate the systems ability for actual measu
ments, but some reassurance that the simulations are re
tic.

The success of ANN methods is evaluated using vali
tion tests. The validation tests use data not seen in trainin
test for generalization as is standard practice in ANN
search. The data sets are split into two halves, the first ha
used to train the ANNs, while the second half is used
validate the trained ANNs. Rigorous validation is achiev
by ensuring that cases in validation sets have never b
used in training. In this study, six untrained narrators w
used to read excerpts from three different text materials
each different text material two different excerpts we
taken. The text extracts were contrasting samples, ran

FIG. 7. An example of a speech spectrum.

FIG. 8. An example of simulated impulse response.
2004 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 F
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from a descriptive passage from a classic 19th century no
to a conversation passage from a late 20th century pop
novel. The teachers for training the ANNs are the true S
values of these speech examples. STI was calculated f
impulse responses as follows. First, the MTFs are calcula
using Eq.~1!, Then the standard procedure for obtaining S
from the MTF is followed.3,6,7

~1! Calculation of mean apparentS/N ratio (S/N)app,F in
each octave band

~S/N!app,F

5
1

14 (
F50.63

12.5

maxFminF10 logS MTF~F !

12MTF~F ! D ,15G ,
215G . ~10!

~2! Calculation of overall mean apparentS/N by weighting
the (S/N)app,F of seven octave bands, and converting
an index ranging from 0 to 1:

~S/N!app5
151(wk~S/N!app,F

30
. ~11!

The values ofwk are given in Refs. 3 and 6. In this pape
examples cover reverberation times from 0 to 5 s, signa
noise ratios from 0 dB to noise free. Added noise is whit

IV. APPLICATION OF ANNS TO STI EXTRACTION

A. Training on impulse responses

The capability of ANNs to extract STI values from im
pulse responses is first explored. The experiment intend
identify ~i! if the ANN can generalize impulse responses a
~ii ! if the ANN can perform the nonlinear calculation need
to obtain STI values. The 14 000 simulated impulse
sponses are used. These are octave band filtered and us
input signals. The MTF values are obtained via Eq.~1!. The
14 MTF values in the 1/3 octave band used in the stand
STI method are fed into an artificial neural network. Th
network has the following neurons in the input, hidden a
output layers: 14–10–8–1. Typically, 50 000 iterations~each
iteration presents a block of 280 examples! are required for
satisfactory results, but this may vary with different initi
weights and learning rates. When training is completed,
network is validated. To demonstrate how the network g
eralizes to different impulse responses, Fig. 9 shows the s
dard deviation found over all validation tests. It is found th
relatively large standard deviations are associated w
higher level of noises because the noise interference n
repeats. Even so, very low errors can be obtained in this c
This is not surprising, since neural networks can map alm
any complicated function. This also shows that the netw
can generalize from impulse responses seen in the trai
phase, to ones not seen before in the validation phase. S
the precise relation between impulse response and MT
known, the use of ANN here does not surpass traditio
calculation in terms of accuracy. On the other hand, the A
. F. Li and T. J. Cox: Speech transmission index from running speech
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method to map impulse responses to STIs would provid
useful alternative neural computing approach for implem
tation on very simple hardware.

B. Training on octave band STI

Octave band STI is defined as ((S/N)app,F115)/30,
where(S/N)app,F is defined in Eq.~10!. The training phase
and retrieval phases are as illustrated in Fig. 1. Again, en
lope spectra values at 14 designated modulation freque
points are extracted and fed into the input layer of the ne
networks. It is empirically found that a 14–20–8–1 netwo
performs well for all octave bands. It is found that very hi
accuracy is possible. No signs of over-training were fou
before the maximum error in validation tests dropped to
low 0.01 STI. ~The reason why a more strict terminatio
criterion was used here is because the extracted octave-
STI values will eventually be used to calculate full ST!
This method is found robust to different speakers, text ty
and mode of reading, as long as they are individually train
on those particular speech excerpts, i.e., each speaker o
requires a different network. This demonstrates that the A
can be used to memorize speech spectra and compensa
error in measurement when natural running speech is use
excitation.

C. Full STI

As the full band STI is a linear combination of ST
values in octave bands according to Eq.~12!, this can be
implemented with a fixed network structure as shown in F
10. Seven neural networks representing corresponding
tave bands are individually training as described above, t
then form a bank of trained neural networks. The outputs
these are processed by the additional linear layer. As
weights for octave bands are known, no further training
this weighting layer is required.

The maximum prediction error found is 0.018 STI
shown in Fig. 11. Unfortunately, accurate error values
Steeneken and Houtgast’s running speech method10 are not

FIG. 9. Standard deviation found over validation tests.
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available from their brief conference paper, but it is know
that the correlation coefficient between their running spe
method and the true STI was 0.971. The correlation coe
cient between the ANN estimated and true STI is 0.99
considerably higher.

D. Training on unfiltered speech

Artificial neural networks together with the preprocess
were trained on unfiltered speech to extract STI values.
motivation here is to form a more compact structure wh
would then be more efficient to implement in instrumen
tion. In this case, octave band filters are not inserted. Spe
was fed into ANN via the spectra estimator directly. ANN
have been successfully used to enhance accuracy of spec
analysis22 and this philosophy is followed. Due to the squa
ing operation in forming the envelope, high frequency co
ponents of the received speech appear also at low freq
cies, these additional components being generated by
cross terms in the squaring operation. This gives the A
access to additional information to base its parameter est
tion on.

It is therefore sought to train the ANN to learn from
unfiltered speech and automatically associate contribut
from different octave bands to give reasonably accurate
estimations. Envelope spectrum values for the 14 1/3-oct
frequency bands used in the standard STI method~the energy
being summed over the 1/3-octave band!, are used as inpu
vector for the ANN. Full STI values were used as teache
Gradual convergence was shown in training process, h
ever, ensemble errors were not reduced to a satisfactorily
value even after training for a long time. The test res
showed a maximum prediction error of 0.07.

It has been empirically identified that the traditional S
envelope spectrum analysis1,9,12 is inadequate for extracting
STI from unfiltered speech. To decrypt the intermodula
information, a higher resolution envelope spectrum estima
is needed. Consequently, the Hilbert transform detected
velope, low pass filtered at a cutoff frequency of 80 Hz,
used to allow more information to be used. High resoluti
power spectrum estimator gives envelope spectra at a 0.3
Hz frequency step giving 40 linearly sampled envelope sp
tra from 0.3125 Hz to 12.18 Hz. The 40 data point are s

FIG. 10. How the ANNs trained to give octave band STI are combined
give full STI values.
2005nd T. J. Cox: Speech transmission index from running speech
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FIG. 11. Maximum prediction errors and standard deviations found in validation tests. STI obtained using the structure shown in Fig. 10.
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sequently used to form the input vector for the ANN. A ne
work size of 40–20–10–1 was found suitable. Validati
results are shown in Fig. 12. The correlation coefficient
tween the ANN estimated and true STI is 0.999 97 and
maximum prediction error is 0.0197 STI.

E. Multiple speech excerpts: source independence

So far, a set of ANN models have developed to ac
rately extract STIs from received speech. The systems w
with a specific speech excitation, as the statistical featur
that particular speech is learned and imbedded in the AN
This means prerecorded speech signals have to be use
one step further, the feasibility to learn from different spee
excitations and generalize to arbitrary speech~source inde-
pendent! extraction of STI is explored. This would enable th
instrument to be much more flexible, with the potential
work with live speech.

The very low frequency envelope spectrum of anech
running speech is known to be a generally stable.13 However,
speech is very complicated stochastic process and the e
lope spectra are not sufficiently stable to be regarded as
stant for STI extraction. Figure 13 shows an over-plot of
2006 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 F
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envelope spectra of anechoic speech signals read by six
trained native English narrators. A maximum difference
approximately 7 dB is found.

The problem with arbitrary speech is that the attack a
decay of the anechoic speech mixes with the reverberanc
the room. To take a simple example, a word pronounced w
a long decay~e.g., ‘‘bus’’! in a dry room, can have the sam
envelope as a short decay word~e.g., ‘‘stop’’! in a reverber-
ant space. While using a long speech extract can help a
age out random variations, consistent differences in pron
ciation will affect the envelope spectrum. These differenc
in the envelope spectrum caused by pronunciation can
indistinguishable from the changes due to reverberanc
the room. For this reason, contradictions in the data set
seen, and the neural network fails to properly converge
cause it is asked to map similar envelope spectra to diffe
STI values.

To deal with these contradictions, additional informati
must be fed to the ANN. One possibility is to feed addition
information from frequency ranges not previously used~.25
Hz!. As the envelope spectra are normalized, a speech ha
lower level spectrum in certain frequencies must result
peech.
FIG. 12. Maximum prediction errors and standard deviations found in validation tests. STI obtained using one neural network from unfiltered s
. F. Li and T. J. Cox: Speech transmission index from running speech
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higher level spectrum at other frequencies as there is no l
age. In addition, it is assumed that in the vast quantity of d
being filtered out by the preprocessor, there is informat
concerning how the speaker pronounces words, and this
formation is needed for the neural network to resolve
contradictions in the data set.

The envelope spectra are taken up to 80 Hz; these
estimated using Welch’s average periodogram method.23 Fre-
quency contents are sampled at a 0.5 Hz step up to 80
providing 160 inputs for the ANN. The ANN has a 160–40
20–1 architecture. The 18 different anechoic speech
amples and three different texts read by six narrators are
in the training.

Figure 14 illustrates the errors found with the validati
tests. The maximum prediction error for STI found in is 0.1
and the correlation coefficient between actual and predic
STI is 0.9948. Better accuracy can be obtained by avera
over several different speech excerpts. When averaging

FIG. 13. Over plot of envelope spectra of 18 speech excerpts in 1 kHz b
Envelopes obtained using a digital implementation of a traditional enve
spectrum analyzer.

FIG. 14. Comparison of ANN predicted~worst cases! and actual STI over
18 different speech extracts.
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estimated STI over three different speech excerpts read
different narrators, prediction errors can normally be redu
to less than 0.1. Consequently, accurate enough extrac
from arbitrary speech with only output speech knowled
has not been achieved.

V. DISCUSSIONS AND CONCLUSIONS

A neural network method to improve the accuracy a
repeatability of STI measurements with running speech
proposed and validated via simulations. This method can
nificantly improve the accuracy of STI measured with na
ral running speech, hence facilitating measurement in oc
pied conditions. The proposed neural network method wo
with both received broadband and octave band speech
nals, providing an accuracy comparable to measurem
made using artificial test signals, typically a standard dev
tion of less than 0.02, when a one-net-one-speech exc
case is considered.

Source independent extraction of STI from speech, w
explored. It seems that the proposed ANN method has a
tain capability to learn from examples and adapt to differ
speakers and texts. The actual STI and ANN estimation sh
reasonable agreement when testing with speech excerpt
previously seen by the ANN. Further investigations a
needed to fully develop such a technique to gain suffici
accuracy for a practical measurement system.

Only a few real impulse responses have been use
training and validations, to fully validate this method an
evaluate its use, more on-site validations will be need
Nevertheless, this method proposed and validated h
mainly with simulations, provides a promising avenue
wards accurately measuring STI from natural occurr
sound sources. The work has only considered the cas
natural sound reproduction into rooms, but there is no rea
why this cannot work with public address systems.
achieve this, suitable examples of sound reproduced b
public address system would have to be included in the tr
ing set.
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