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Speech transmission indexSTI) is an important objective parameter concerning speech
intelligibility for sound transmission channels. It is normally measured with specific test signals to
ensure high accuracy and good repeatability. Measurement with running speech was previously
proposed, but accuracy is compromised and hence applications limited. A new approach that uses
artificial neural networks to accurately extract the STI from received running speech is developed in
this paper. Neural networks are trained on a large set of transmitted speech examples with prior
knowledge of the transmission channels’ STls. The networks perform complicated nonlinear
function mappings and spectral feature memorization to enable accurate objective parameter
extraction from transmitted speech. Validations via simulations demonstrate the feasibility of this
new method on a one-net-one-speech extract basis. In this case, accuracy is comparable with normal
measurement methods. This provides an alternative to standard measurement techniques, and it is
intended that the neural network method can facilitate occupied room acoustic measurements.
© 2003 Acoustical Society of AmericdDOI: 10.1121/1.1558373
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I. INTRODUCTION formance specifications. Nevertheless, it is known that in
certain circumstances STl is not completely succedsful.
Traditionally, two different approaches are used to quan-  The normal STI measurement method uses artificial test
tify room acoustics: subjective and objective assessmentsignals and so is not particularly well suited to occupied
Subjective measurements are based on human perception améasurement. The standard method takes about 10—15 min-
so usually use music or speech signals. Objective measurgtes to perforni,which is a long time to expect occupants to
ments, on the other hand, use artificial test signals such dgten to noise and yet continue with their normal activities.
noise, to ensure reproducibility and repeatability. Much roomFor this reason, RaSTI was developed in the mid 1980s, and
acoustics research concerns quantifying acoustic quality imore recently, another new technique, STI-PA has been
terms of objective parameters and this enables designs to goposed. Both RaSTI and STI-PA have reduced measure-
readily made and evaluated. Objective measurements, howhent time, but the test signal is still noise, and consequently
ever, use high sound pressure levels that are usually unageither are true nonevasive test techniques. Steeneken and
ceptable to audiences. This hinders objective measurementfputgast did, however, propose a method to estimate the
under occupied in-use conditions. Occupied measurementfodulation transfer functiofMTF) and in turn STI from
are important because it is well established that occupancyunning speecﬁ‘? It was suggested that the MTF is roughly
affects the acoustic, especially the absorption and backestimated by comparing the envelope spectra of source and
ground noise levels. It is suggested that many of the probreceived speech signals. This technique works, but at a cost
lems encountered in occupied objective parameter measuref compromised accuracy. For this reason, practical measure-
ments could be overcome if the naturally occurring signals inments of STI are rarely made with running speech, but still
a space, such as music or speech, were used as test signalsefy predominantly on artificial test signals.
technique to achieve this for speech is given in this paper. Inspired by the fact that humans can sensitively differ-
Speech Transmission Indé&TI) is a common objective  entiate reverberation times, artificial intelligence methods
parameters used to assess speech intelligibility of spaces ahgdve been developed as a means of extracting objective pa-
other transmission channels, such as classrooms, theaterameters from speech. Previously, a time domain approach
public address and telephony systelm&STI combines two  was applied to extract reverberation parameters from sepa-
major phenomena that affect speech intelligibility— rate monosyllable word utterancEs.The time domain
reverberation and noise—to extract a single index that givegethod, however, is not applicable to running speech and has
good correlation with subjective perceptidbMoreover, STI signal to noise ratio problems when estimating octave band
method utilizes simple artificial test signals and enables porparameters. A neural network method to estimate STI from
table instrumentation to be implemenfédonsequently, STl running speech was proposed and a few pilot results
has been adopted as a mainstream objective parameter fouiblished? Since then, many refinements have been made,
speech intelligibility and is included in standards and per- especially to the preprocessor, to form a more accurate and
robust method. This paper will present the details of this new
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systems that can perform nonlinear mapping, in this caseheres/n is the signal to noise ratio, and allows the effect of
from running speech to objective parameters. ANNs learn ambient noise interference to be included. This part of Eq.
mapping through experience, in this case by being exposed) was added by Steeneken and Hout§aEherefore, an

to many examples of running speech in rooms and the coMTF can be obtained by first measuring the impulse re-
responding objective parameter values of the room. The insponse. This is often done using a maximum length sequence
puts to the neural network are 60 s speech excerpts, preprseignal or a swept sine wave. This approach becomes invalid
cessed with an envelope spectrum estimator. Thisvhen a system is nonlinear as the impulse response in Eq.
preprocessing exploits and extends the underlying mechdd) should be linear. This can be a serious limitation. For
nism of the envelope spectrum technique developed for thexample, many speech reinforcement and public address sys-
standard STl method. Refinements are needed to allow bettegms use compressors to improve intelligibility.

resolutions and maintain a reasonable number of input neu-

rons to facilitate machine learning. As it is the basis for many

aspects of the project, the paper starts by discussing the ef- Using the speech envelope spectrum

velope spectrum and STI method. A short rectangular window is moved along a running
speech signal, typically 40-60 s long. The square of the
II. STI METHOD AND ENVELOPE SPECTRA windowed portion is divided by the average value of the

) ) squared long-time speech signal; this gives the intensity
The STI method is closely linked to the envelope of ¢, tion13 An average of the intensity function is taken, and

running speech. Speech needs to retain its original envelopge |0 frequency envelope spectra of the function found.
to be intelligible, the more the envelope is modified thetpg hart of the envelope spectra important to speech intelli-
poorer the intelligibility. A room acts as a low pass filter of ibility lies in frequency band 0—20 Hz. It was suggested
speech envelopes, smoothing the envelope and hence Otgﬂht MTFs could be roughly estimated from the envelope
grading intelligibility. Moreover, ambient noise disturbs spectra of original and transmitted speéthet Ey (F) be
speech signals and reduces intelligibility. Both reverberationy, envelope of original speech akd(F) be the envelope

and noise cause the normalized low frequency envelopgpectrum of received speech, then MF(is estimated by
spectrum of speech to decreddeConsequently, the MTF

was introduced to quantify the combined effect of reverbera- ~ MTF(F)~Ey(F)/Ex(F). 2

tion and ambient noise by means of modulation indexthis method was validated by empirical results showing that
reductions’ By properly combining and processing selectedine ST| obtained using this approach and measured through
frequencies in the MTF, a single index STl is forme@he  standard methods have a reasonably good agreg@eat-
measurement of the MTF is the core process in determininge|ation coefficient of 0.971° In both the original paper and
STI, and three different methods exist. Once MTFs are obghe standard$2° however, it is pointed out that MTFs ob-
tained, the STI can be calculated from 98 MTF data pointsained from speech envelopes using E2). have compro-

via a series of weighting, limiting and averaging mised accuracy.

processes.’ The three methods for obtaining the MTF are

as follows.

IIl. NEURAL NETWORK METHOD

A. Rationale
A. Standard method

) . ) Room effects are contained in the difference between
Th(_a envelope shap.lng effect of at.ransm|SS|on Channel('f%aceived,Y(w), and transmittedX(w), speech signals. The
determined by measuring the MTFs in seven octave bandgse of input and output envelope to gain the MTF as sug-
(125 Hz-8 kHz using sine-wave modu_Iated noise with its ested above, can be regarded as a linear approximation of a
spectrum shqped to be the same as typlcal Iong—Ferm speec guared linear time invariant filter:

The modulation transfer function MTF is determined by the

ratio of modulation index of output to input intensity. This Y(w)=H(w)X(w),

process needs to be carried out for each of the 14 modulation . 3
frequencies, and hence the process is relatively slow. The Ev(F)~MTR(F)EX(F),
advantage of this method is that it works with nonlinear syswhereH(w) is the transfer function of the room, which pre-
tems, such as many public address systems. cisely describes the input—output relationship of the signals.
The MTF, on the other hand, approximately relates the en-
velopes of the input and output signals.

Such a relation described by MTFs would be accurate if
Schroedélf* systematically reviewed and discussed MTF (a) the envelope of speech were periodic dhiithe spec-
measurement methods from a signal and system perspectiteum of speech were white with constant power per unit
and reconfirmed a relationship between MTF and room imbandwidth** Unfortunately, running speech is a complicated,
pulse responsh(t): nonstationary stochastic process, only approximately con-
forming to these criteria. This makes the mapping relation-

B. Impulse response method

|[oh?(t)e 2mFt dt] 1 \ ) )
MTF(F)= —— e, D ship between the envelope spectra and MTFs imprecise. Ar-
Joh“(t)dt (1+10 %) tificial neural networks are therefore considered to perform
2000 J. Acoust. Soc. Am., Vol. 113, No. 4, Pt. 1, April 2003 F. F. Li and T. J. Cox: Speech transmission index from running speech
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FIG. 1. Block diagram of the trainingop) and retrievalbottom phases of
the system.

B. Neural network architecture
A nonlinear, multilayer, feed forward network trained by
this nonlinear mapping. The mapping is likely to be morethe back-propagation algoriti1*is chosen for this work.
accurate, because ANNs are inherently powerful nonlineaBackpropagation is a successful algorithm; the penalty of
mapping engine¥>1® using this type of neural network can be in excessive training
A Speech excerpt can be regarded as a Speech enve'ob.@es. The fundamental bUIldIng blocks of the neural net-
modulated noise, once it is chosen, its envelope spectruffork is the cellules processing neuron unit as depicted in
and the spectrum of the carrier is fixed and the differencd 9. 2. Typically, it comprises two functions: a linear basis
between these and the standard test signal can be obtainddnction used to gather input signals, and an activation func-
The ANN algorithm is used to perform nonmodel based refion f_( ) to nopllnearly process the information. The basis
gression to memorize features of speech samples and corfinction used is
pensate the errors found in the estimated MTFs. From MTF n
to STl is a deterministic nonlinear limiting and linear com- ui=2 wijXj+bj, 4)
bination process. ANNs are known to be able to calculate =1
any computable nonlinear and linear functions and thereforevhere w;; is the weight connecting théth neuron toith
should be able to perform these calculatibhés one step neuron, andx; is the output ofjth neuron. The activation
further, it is possible to combine the accurate MTF estimafunction is
tion and the subsequent calculation of STI value into one 1
neural network system, i.e., use the neural algorithm to map a;=f(u;))=——=. (5)
. . . . 1+e ™
received envelope signals directly onto STI values. This one
stage mapping is useful as it simplifies implementation. Sucfhe activation function is used for the two hidden layers to
an ANN network method is illustrated as a block diagram inprovide nonlinear mapping capability. The neural network is
Fig. 1. constructed in a feed forward fashion by interconnecting a
Two phases, training and retrieval are involved in thelarge number of these simple neurons as shown in Fig. 3. The
development of the ANNs and applying them to real worldleftmost input layer takes signals from the preprocessor and
problems. In the training phase, the ANNs learn from ex-distributes them to subsequent layers without processing the
amples, memorize related information and generalize from &ignals. There are two nonlinear hidden layers. The STl is a
closed set of training data to a class of cases including thos@ormalized index from 0 to 1. As a common ANN design
not in the training set. This is achieved by presenting a large
number of examples to the ANN and utilizing multivariable
optimization techniques to minimize the total errors between
the actual STI value and the output of the ANN. Examples
used to training the ANN are generated using simulation
techniques. Convolutions of anechoic speech and simulated
impulse responses are used as transmitted speech examples.
The expected STI values are obtained from the impulse re-
sponses and additional ambient noise. The knowledge of the
original envelope spectrum is implicitly built into the ANN
as part of training. As a result, there is no need to monitor the
original speech in the retrieve phase. This reduces two chan-

nel measurement to one channel. However, as shall be dis- input Two nonrlinear Output
. N Layer Hidden Layer Layer
cussed later, the drawback is that it is limited to a one-
speech-one-net scheme, i.e., a particular neural network FIG. 3. Multilayer feed forward network architecture.
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consideration, a hard limiting nonlinear neuron at the output ;°
layer could be to used to clamp the output values so that nc
output can possibly go beyond the interval of 0 to 1; how- 0t b
ever, it is found in this application that hard limiting the 'io’
output reduces the back propagation of errors to the hiddert |
layers in the early stages of training, and hence inhibits con-g '® -
vergence. So, a linear summation function without a nonlin- 5
ear activation function is adopted as the output neuron.
The neural network is trained under a supervised modefg
as an approximator. The training, as shown in Fig. 1, is to 45|
iteratively apply the preprocessed speech examples to thé
input of the neural network and minimize the mean squarew 10
errors between the teachdksiown STIg and the output of
the neural network over all examples in the training set. The

. . . . . . . . 10 i 1 1 i 1 1 i L
optimization is done by iteratively updating the connection 0 2000 2000 8000 8000 10000 12000 14000 18000 18000

[t St

Sq
=y

e

weights (v;; and b;) within the neural network using the Training ferations
well-known back propagation algorithms’~1°Training is
achieved using the delta Iearning ra?él._G FIG. 4. Typical error reduction found in early phases of training. Each
training iteration comprises a block of 50 examplgsaxis is the sum of
Wi(jm+ 1)_ Wi(jm) + 77AWi(jm) , (6) squared errors tested by randomly chosen blocks comprising 50 examples.

where Wi(jm+1) is the new connection weightsvi(jm) is the convergence is slow, the weights of the neural network are

previous weightsAw{™ is the estimated maximum gradient randomized and the training process restarted. ,
according to backpropagation algorithm anis the learning The termination criteria for neural networks are crucial.
rate. Learning with too large a learning rate can cause th&he requirement for generalization, i.e., that the network is

algorithm to diverge and can also mean important minimasuccessful with data not seen in training, indicates that seek-
are missed, but too small a learning rate results in slow learrind global minimum mean square error for the training set is
ing and the network is prone to being trapped in localn€ither necessary, nor the best solution. Tuning the ANNs to

minima. The standard backpropagation algorithm employs gverly fit the training Qatg set does not necessarily guarantee
constant learning rate, which is empirically determined. Exthat Fhe best gengrahzatlon results. _The_refore, the training is
periments with the STI problem showed a constant learning®ntinuously monitored by the examination of the neural net-
rate, when the value is suitable, converges steadily, but ig/orks’responsg to a small set of.valldatlon.dgta. The training
very slow. A modified learning rule, with variable learning StoPS when, either the predefined prediction accuracy is
rate, is used to speed up the training. The training phase Rchieved or a sign of over-fitting occufsonsistently in-
divided into three periods: output clamping, intermediateCT€@sing mean-square-efronhichever the first. It is known
training and fine tuning. In the early stage of training, thethat a 0.02 standard deviation is typical when using the STI
ANN tends to gradually converge to output values within thes_tandard methofland so this is used as a termination crite-
[01] interval. In the intermediate stage of training, the ANN 0N _ o

fits the details from training set. In the final stage, the ANN _ There are three other important aspects to specify in the
fine tunes itself to give the best performance for generaliza®NNS: size, structures, and preprocessors. In theory, the
tion. Different learning rates are used in first and last periodMore neurons and hidden layers a neural network posses the
When the output of the ANN is beyond tfi6 1] interval, better its function mapping capability will be. Neyertheless,
larger steps are used to quickly drive the ANN to produceEXcessive number of neurons and too many hidden layers
outputs in the[0,1] region. In the final fine tuning period, Cause problems in practiceas back propagation tends to be
smaller steps are used. This modified learning thus can baOW and learning becomes inefficient and extremely time

expressed as consuming. As a practical rule of thumb, small sized ANNs
are preferable if they suffice. The suitable size for the net-

(1.2-1.3% when outpu&[0,1], work is determined through trial and error. Training tends to

n=1{ n others, @) be more efficient when input information is coded in a suit-

able format for the ANN>'” As a common practice, a pre-
processor, which functions to perform data reduction and sig-

Such a modification to standard training method is found@! conditioning is used to bridge the real world signals and
effective in speeding up the early phase of training and i$h€ input layer of the ANN. In this application, an envelope
numerically robust. Using a variable learning rate is commorsPectrum estimator is the core of the preprocessor.
practice in neural network applicatidiend has been shown

to speed training for a wide range of applications. Figure 4C' Preprocessor
shows the typical error reduction found in the early period of  There are three key issues to be considered in designing
training. A rapid drop of ensemble errors can normally bethe preprocessor for STI extraction. First, useful information
achieved due to the enhanced error back propagation wheshould be retained while redundant information should be
output is beyond the interval of 0 to 1. Incidentally, If initial reduced—only about 0.01% of the original data in the speech

(0.3-0.5% when error reduction:0.
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FIG. 6. Block diagram of envelope spectrum preprocessor.

terworth filter with a—3 dB point of 75 Hz and the signal is
then resampled at 160 Hz. The decimated envelope signals
are then passed onto the power spectrum estimator to obtain
the envelope spectrum. This is done using an overlapped
Hanning window technique, and the windows are typically
2.5 s long. Envelope spectra are normalized to the average
energy of speech signal excerfighen a sine wave having a
RMS value equal to the mean intensity of the speech signal
passes through, 0 dB is obtainedhe normalization has
important practical and physical meaning.

Normalized Magnitude (V)

(1) Ensuring envelope spectra are not input signal level de-
pendent.
FIG. 5. Envelopes detected by Hilbert transform: Top is speech signal(2) Expressing the frequency components of speech enve-
mlddle_ls envelope‘, and bottorr_l is 80 Hz low pass filtered envelope. Graphs Iope with respect to the total energy.
normalized to maximum magnitude. . . .
(3) Including both speech envelope fluctuation and interfer-
ence noise levels in the envelope spettra.

Time (8)

can be sent to the neural network otherwise the number of
input neurons becomes too large. Second, existing knowl- Envelope spectra are frequency domain sampled and fed
edge should be used, otherwise the ANN has to model fundnto the input layer of the neural networks. Not surprisingly,
tions that could have been more efficiently processed usintj is found that the window width and FFT length of the
traditional means—this minimizes the load on the ANN.Spectrum estimator has a significant impact on obtaining ac-
Third, the input vectors to the ANN should be normalized tocCurate results. According to the standard STI method, 14 data
between—1 and +1 as this speeds the training. The enve-points at central frequencies of 1/3-octave bands from 0.63
lope spectrum estimator is naturally considered as the prd0 12.5 Hz are used. To achieve these sample frequencies
processor. It can significantly reduce the amount of data ifiequires some zero padding of the time windows. This fre-
long speech excerpts, but maintains decisive information fofluency domain sampling is found adequate in training ANN
STI values. on single speech excerpt in octave bands. Using a digital
The best estimate of the long term envelope spectruninplementation of the envelope spectrum estimator enables
needs to be obtained. Traditional methods applied repetitiondigher resolution frequency sampling to be achieved, giving
of the speech to spectral analyz&f$,but nowadays more @ more detailed representation of the envelope spectrum.
sophisticated algorithms are available. A Hilbert transform isThis is found particularly useful in training ANNs on broad-
used as it gives a better estimation of the time signaPand unfiltered speech and multiple speech examples as dis-

envelopeg! Accordingly, the envelopeu (t) is cussed in Secs. IVD and IVE.
STI values are determined from MTFs in octave bands
ev(t)=\s?(t) +si(t), (8)  of speech interest. However, as speech signals have limited
wheres,(t) is the Hilbert transform of speech signs(t) bandwidth, very IiFtIe energy is found in frequency bapd
defined by above 5.3 kHz. Figure 7 shows the spgctrgm of a typlcal
anechoic speech excerpt. Because of this signal to noise ra-
1 (= s(t=t") | tion problem, the 6.3 kHz band is used instead of the prob-
siv=Hiswl=- [ ar O lomatie & Kz band,

Figure 5 demonstrates a detected envelope using thi
method. Such a detector gives an unambiguous definition o
signal envelopes; it is superior to techniques where window  Artificial neural networks using supervised training need
width and overlap have to be choseénAnother attractive to learn from a large number of example-teacher pairs. A
feature of the Hilbert transform based detector is that it carsimple stochastic model for impulse response synthesis—
be performed via a fast Fourier transfo(fFT) enabling a  multiplying white noise by an exponential decay function—
quicker implementation. was previous used by Schroeder to investigate MTF mea-

Figure 6 is a block diagram of the proposed preprocessurement method$and was said to be realistic in the late
sor. One minute of speech is used. Octave bandpass filtepart of reverberation. However, such simple stochastic model
are inserted when needed. Only low frequency contentdoes not give frequency dependency and is inaccurate in its
found in the envelope spectra are of interest. Consequentligescription of early reflections. STI by definition is a fre-
envelope signals are low pass filtered by a fourth order Butquency dependent parameter. An improved stochastic model

. Training and validation data sets
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0 5 ; 5 5 5 5 : from a descriptive passage from a classic 19th century novel

' : ; : ' ; to a conversation passage from a late 20th century popular
novel. The teachers for training the ANNs are the true STI
values of these speech examples. STI was calculated from
impulse responses as follows. First, the MTFs are calculated
using Eq.(1), Then the standard procedure for obtaining STI
from the MTF is followed®®”’

(dB)

(1) Calculation of mean apparei®N ratio (S/N)gppp in
each octave band

(SN)appr
A5 : : : ! : : : 1 & ) MTF(F)
o 1000 2000 sn;ureql;iu; (Hszc)mu §000 7000 8000 :ﬂF=o.63 ma{mln 10 IOQ{T‘I’F(F)) ,15},
FIG. 7. An example of a speech spectrum. —15/. (10)

was developed for this study which incorporates various pos- ) L

sible early reflection patterns, frequency dependence and r&2) Calculation of overall mean appare®tN by weighting

alistic reflection density. Figure 8 shows an example of an  the (S/N)appr Of seven octave bands, and converting to

impulse response synthesized using the new stochastic a0 index ranging from 0 to 1:

model:" . o 15+ SWK(SIN) gppr
The stochastic impulse response synthesiser is coded (S/N),p,= 30 .

such that it randomly generates all impulse response patterns

while statistically it is controlled by governing diffuse field The values ofw, are given in Refs. 3 and 6. In this paper,

physical laws. Although governed by the diffuse field laws,examples cover reverberation times from 0 to 5 s, signal to

the stochastic nature of the generator meant that distinctlyioise ratios from 0 dB to noise free. Added noise is white.

nonlinear decays could be generated. When it is run for suf-

ficiently large number of times, it hypothetically generates a

superset of impulse responses found in reality. A small num-

ber of real impulse responses were also used, not enough % APPLICATION OF ANNS TO STI EXTRACTION

properly validate the systems ability for actual measureA. Training on impulse responses

ments, but some reassurance that the simulations are realis-

tic.

(11

The capability of ANNs to extract STI values from im-

. . . _pulse responses is first explored. The experiment intends to
. The success Qf A.NN methods is evaluated using Ya“dai'dentify (i) if the ANN can generalize impulse responses and
tion tests. The validation tests use data not seen in training

test f lizati ‘s standard tice in ANN tﬁi) if the ANN can perform the nonlinear calculation needed
est Tor generaiization as Is standard practice in 30 obtain STI values. The 14000 simulated impulse re-

search. The data sets are split into two halves, the first half is )
i . R onses are used. These are octave band filtered and used as
used to train the ANNs, while the second half is used to P

: . . S ) Input signals. The MTF values are obtained via Eq. The
validate the trained ANNs. Rigorous validation is achieved P 9 B

hetwork has the following neurons in the input, hidden and

used to read excerpts from three different text materials. I%utput layers: 14—10—8—1. Typically, 50 000 iterati¢each
each difierent text material two diffe_rent excerpts Wer€iieration pres.ents a block of 280 ex:;lmplase required for
taken. The text exiracts were contrasting samples, ranglngatisfactory results, but this may vary with different initial
weights and learning rates. When training is completed, the
! oroctoons | ' ' ' ' ' ' ' network is validated. To demonstrate how the network gen-
o 1 eralizes to different impulse responses, Fig. 9 shows the stan-
r dard deviation found over all validation tests. It is found that
o relatively large standard deviations are associated with
higher level of noises because the noise interference never
repeats. Even so, very low errors can be obtained in this case.
This is not surprising, since neural networks can map almost
any complicated function. This also shows that the network
can generalize from impulse responses seen in the training
y , . . ) , . phase, to ones not seen before in the validation phase. Since
o0 0 8203 ‘J;ime (: 06 07 08 08 the precise relation between impulse response and MTF is
known, the use of ANN here does not surpass traditional
FIG. 8. An example of simulated impulse response. calculation in terms of accuracy. On the other hand, the ANN

02f

0
02F

Pressure (Pa)

Ritlg
4B
08F -
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1l | FIG. 10. How the ANNSs trained to give octave band STI are combined to
r give full STI values.
0
0 STl 1 available from their brief conference paper, but it is known

that the correlation coefficient between their running speech
method and the true STI was 0.971. The correlation coeffi-
. . cient between the ANN estimated and true STI is 0.9999,
method to map impulse responses to STIs would provide & = . .

! : . considerably higher.
useful alternative neural computing approach for implemen-

tation on very simple hardware.

FIG. 9. Standard deviation found over validation tests.

D. Training on unfiltered speech

B. Training on octave band STI Artificial neural networks together with the preprocessor

Octave band STl is defined agS(N)appe+15)/30, Were trained on unfiltered speech to extract STI values. The

where (S/IN) o5 is defined in Eq(10). The training phase motivation here is to for.m. a more compact ;trgcture which
and retrieval phases are as illustrated in Fig. 1. Again, envevould then be more efficient to implement in instrumenta-
lope spectra values at 14 designated modulation frequemtipn. In this case, octave band filters are not inserted. Speech
points are extracted and fed into the input layer of the neuraf@s fed into ANN via the spectra estimator directly. ANNs
networks. It is empirically found that a 14—-20-8-1 network have been successfully used to enhance accuracy of spectrum
performs well for all octave bands. It is found that very highanalysi and this philosophy is followed. Due to the squar-
accuracy is possible. No signs of over-training were foundnd operation in forming the envelope, high frequency com-
before the maximum error in validation tests dropped to bePonents of the received speech appear also at low frequen-
low 0.01 STI.(The reason why a more strict termination cies, these additional components being generated by the
criterion was used here is because the extracted octave-baftPss terms in the squaring operation. This gives the ANN
STI values will eventually be used to calculate full 9TI. 8cCess to additional information to base its parameter estima-
This method is found robust to different speakers, text type&on on.

and mode of reading, as long as they are individually trained It is therefore sought to train the ANN to learn from
on those particular speech excerpts, i.e., each speaker or tédfiltered speech and automatically associate contributions
requires a different network. This demonstrates that the ANNrom different octave bands to give reasonably accurate STI
can be used to memorize speech spectra and compensate ggiimations. Envelope spectrum values for the 14 1/3-octave

error in measurement when natural running speech is used §§quency bands used in the standard STI metttvelenergy
excitation. being summed over the 1/3-octave barare used as input

vector for the ANN. Full STI values were used as teachers.
Gradual convergence was shown in training process, how-
ever, ensemble errors were not reduced to a satisfactorily low
As the full band STI is a linear combination of STI value even after training for a long time. The test result
values in octave bands according to Ef2), this can be showed a maximum prediction error of 0.07.
implemented with a fixed network structure as shown in Fig. It has been empirically identified that the traditional STI
10. Seven neural networks representing corresponding oenvelope spectrum analysis'?is inadequate for extracting
tave bands are individually training as described above, the®TI from unfiltered speech. To decrypt the intermodulated
then form a bank of trained neural networks. The outputs ofnformation, a higher resolution envelope spectrum estimator
these are processed by the additional linear layer. As this needed. Consequently, the Hilbert transform detected en-
weights for octave bands are known, no further training forvelope, low pass filtered at a cutoff frequency of 80 Hz, is
this weighting layer is required. used to allow more information to be used. High resolution
The maximum prediction error found is 0.018 STI aspower spectrum estimator gives envelope spectra at a 0.3125
shown in Fig. 11. Unfortunately, accurate error values forHz frequency step giving 40 linearly sampled envelope spec-
Steeneken and Houtgast's running speech métha@ not  tra from 0.3125 Hz to 12.18 Hz. The 40 data point are sub-

C. Full STI
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FIG. 11. Maximum prediction errors and standard deviations found in validation tests. STI obtained using the structure shown in Fig. 10.

sequently used to form the input vector for the ANN. A net- envelope spectra of anechoic speech signals read by six un-
work size of 40-20-10-1 was found suitable. Validationtrained native English narrators. A maximum difference of
results are shown in Fig. 12. The correlation coefficient beapproximately 7 dB is found.

tween the ANN estimated and true STl is 0.99997 and the  The problem with arbitrary speech is that the attack and

maximum prediction error is 0.0197 STI. decay of the anechoic speech mixes with the reverberance in
the room. To take a simple example, a word pronounced with
a long decaye.qg., “bus”) in a dry room, can have the same

envelope as a short decay wdelg., “stop”) in a reverber-
So far, a set of ANN models have developed to accu- P y weeelg P)

: nt space. While using a long speech extract can help aver-
rately extract STls from received speech. The systems WOI’E e (;out random variat?ons cgns?stent differences in fonun-
with a specific speech excitation, as the statistical feature atd ' P

that particular speech is learned and imbedded in the ANerzlatlon will affect the envelope spectrum. These differences
This means prerecorded speech signals have to be used.

K'sthe envelope spectrum caused by pronunciation can be
one step further, the feasibility to learn from different speecHndistinguishable from the changes due to reverberance in
excitations and generalize to arbitrary spe¢sburce inde- the room. For this reason, contr§d|ctlons in the data set are
pendentextraction of STI is explored. This would enable the S€€N, and the neural network fails to properly converge be-
instrument to be much more flexible, with the potential toCause it is asked to map similar envelope spectra to different
work with live speech. STl values.

The very low frequency envelope spectrum of anechoic To deal with these contradictions, additional information
running speech is known to be a generally stabldowever, must be fed to the ANN. One possibility is to feed additional
speech is very complicated stochastic process and the envigformation from frequency ranges not previously uge@5
lope spectra are not sufficiently stable to be regarded as cotiz). As the envelope spectra are normalized, a speech having
stant for STI extraction. Figure 13 shows an over-plot of 18lower level spectrum in certain frequencies must result in

E. Multiple speech excerpts: source independence
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FIG. 12. Maximum prediction errors and standard deviations found in validation tests. STI obtained using one neural network from unfiltered speech.
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estimated STI over three different speech excerpts read by
different narrators, prediction errors can normally be reduced
to less than 0.1. Consequently, accurate enough extraction
from arbitrary speech with only output speech knowledge

has not been achieved.

V. DISCUSSIONS AND CONCLUSIONS

A neural network method to improve the accuracy and
] I [ o prommeeeee R . repeatability of STI measurements with running speech is
.25 ; : : : 1 proposed and validated via simulations. This method can sig-
2 4 B 8 10 12

nificantly improve the accuracy of STI measured with natu-
ral running speech, hence facilitating measurement in occu-
FIG. 13. Over plot of envelope spectra of 18 speech excerpts in 1 kHz ban(Pied conditions. The proposed neural network method works
Envelopes obtained using a digital implementation of a traditional envelopavith both received broadband and octave band speech sig-
spectrum analyzer. nals, providing an accuracy comparable to measurements
made using artificial test signals, typically a standard devia-
higher level spectrum at other frequencies as there is no lealion of less than 0.02, when a one-net-one-speech excerpt
age. In addition, it is assumed that in the vast quantity of datgase is considered.
being filtered out by the preprocessor, there is information  Source independent extraction of STI from speech, was
concerning how the speaker pronounces words, and this irexplored. It seems that the proposed ANN method has a cer-
formation is needed for the neural network to resolve theain capability to learn from examples and adapt to different
contradictions in the data set. speakers and texts. The actual STI and ANN estimation show
The envelope spectra are taken up to 80 Hz; these an@asonable agreement when testing with speech excerpts not
estimated using Welch's average periodogram metfi®de-  previously seen by the ANN. Further investigations are
quency contents are sampled at a 0.5 Hz step up to 80 Haeeded to fully develop such a technique to gain sufficient
providing 160 inputs for the ANN. The ANN has a 160—40— accuracy for a practical measurement system.
20-1 architecture. The 18 different anechoic speech ex- Only a few real impulse responses have been used in
amples and three different texts read by six narrators are usefhining and validations, to fully validate this method and
in the training. evaluate its use, more on-site validations will be needed.
Figure 14 illustrates the errors found with the validation Nevertheless, this method proposed and validated here
tests. The maximum prediction error for STI found in is 0.13,mainly with simulations, provides a promising avenue to-
and the correlation coefficient between actual and predictediards accurately measuring STI from natural occurring
STl is 0.9948. Better accuracy can be obtained by averagingound sources. The work has only considered the case of
over several different speech excerpts. When averaging theatural sound reproduction into rooms, but there is no reason
why this cannot work with public address systems. To
achieve this, suitable examples of sound reproduced by a

Frequency (Hz)

; public address system would have to be included in the train-
08f--re-menee O e ing set.
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